

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное
образовательное учреждение

высшего профессионального образования

«Пермский национальный исследовательский
политехнический университет»

А.М. Ноткин

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ
ПРОГРАММИРОВАНИЕ:

ООП на языке С++

Утверждено
Редакционно-издательским советом университета

в качестве учебного пособия

Издательство
Пермского национального исследовательского

политехнического университета
2013

УДК 681.3
 Н85

Рецензенты:

канд. техн. наук, ст. науч. сотрудник
ТиИС ИМСС УрО РАН Г. Ф. Масич;

канд. техн. наук, доцент кафедры информационных
технологий и автоматизированных систем

Пермского национального исследовательского
политехнического университета

О. А. Полякова

Ноткин, А.М.

Н85 Объектно-ориентированное программирование : ООП
на языке С++ : учебное пособие / А.М. Ноткин. – Пермь :
Изд-во Перм. нац. исслед. политехн. ун-та, 2013. – 230 с.

ISBN 978-5-398-00966-8

Пособие является первой частью многотомного издания, по-

священного технологии объектно-ориентированного программи-
рования на языке С++. Следующие тома будут посвящены ООП
на языках Java, C# NET, Pyton и Ruby.

Даны основные понятия ООП и технология объектно-
ориентированного программирования на языке С++. Подробно
рассматриваются синтаксис, семантика и техника программиро-
вания. Приведено большое количество примеров, иллюстрирую-
щих возможности и особенности применения языка С++ для соз-
дания объектно-ориентированных программ.

Предназначено для студентов направления «Информатика
и вычислительная техника» как для самостоятельной работы, так
и для аудиторных занятий.

УДК 681.3

ISBN 978-5-398-00966-8 © ПНИПУ, 2013

 3

ОГЛАВЛЕНИЕ

1. Классы С++... 6

1.1. Новый тип данных – класс ...6
1.2. Доступность компонентов класса ...9
1.3. Конструктор и деструктор ...10
1.4. Компоненты-данные и компоненты-функции18

1.4.1. Данные – члены класса ..18
1.4.2. Функции – члены класса..18
1.4.3. Константные компоненты-функции.......................................19
1.4.4. Статические члены класса...20

1.5. Указатели на компоненты класса ..23
1.5.1. Указатели на компоненты-данные ...23
1.5.2. Указатели на компоненты-функции24

1.6. Указатель this...25
1.7. Друзья классов...27

1.7.1. Дружественная функция..27
1.7.2. Дружественный класс ..29

1.8. Определение классов и методов классов..31

2. Наследование .. 37

2.1. Определение производного класса..37
2.2. Конструкторы и деструкторы производных классов41
2.3. Виртуальные функции ..46
2.4. Абстрактные классы ...54
2.5. Включение объектов ...56
2.6. Включение и наследование ..59
2.7. Множественное наследование ...66
2.8. Локальные и вложенные классы..70
2.9. Пример программы для Microsoft Visual Studio75
2.10. Упражнения ...83

 4

3. Перегрузка операций .. 90

3.1. Перегрузка унарных операций ..91
3.2. Перегрузка бинарных операций ..93
3.3. Перегрузка операций ++ и -- ...94
3.4. Перегрузка операции вызова функции ...95
3.5. Перегрузка операции присваивания ...96
3.6. Перегрузка операции new...99
3.7. Перегрузка операции delete..105
3.8. Основные правила перегрузки операций105
3.9. Примеры программ ...108

4. Шаблоны функций и классов .. 113

4.1. Шаблоны функций ..113
4.2. Шаблоны классов ..118
4.3. Компонентные функции параметризованных классов120
4.4. Примеры программ ...123

5. Обработка исключительных ситуаций... 129

5.1. Механизм обработки исключений в С++129
5.2. Получение дополнительной информации об исключении137
5.3. Определение типа исключения..140
5.4. Иерархия исключений ..142
5.5. Спецификация функций, обрабатывающих исключения143

6. Потоковые классы... 145

6.1. Библиотека потоковых классов ...145
6.2. Ввод-вывод в языке С++ ..146
6.3. Стандартные потоки ввода-вывода ...148
6.4. Форматирование..150
6.5. Манипуляторы...152
6.6. Ввод-вывод объектов пользовательских классов153
6.7. Определение пользовательских манипуляторов............................156
6.8. Пользовательские манипуляторы с параметрами.........................158
6.9. Использование макросов для создания манипуляторов160
6.10. Состояние потока ..161

 5

6.11. Неформатированный ввод-вывод..163
6.12. Файловый ввод-вывод ..169

7. Новые возможности языка С++ .. 176

7.1. Пространство имен ...176
7.2. Динамическая идентификация типов..180
7.3. Безопасное приведение типа..183

8. Стандартная библиотека шаблонов... 187

8.1. Введение в STL..187
8.2. Итераторы ..190
8.3. Классы-контейнеры ..192
8.4. Контейнер vector ...196
8.5. Многомерные массивы ...201
8.6. Ассоциативные контейнеры ..205
8.7. Объекты-функции ...214
8.8. Алгоритмы ...215

Приложение ... 222

 6

1. КЛАССЫ С++

1.1. Новый тип данных – класс

Целью введения концепции классов в С++ является пре-
доставление программисту средств создания новых типов, ко-
торые настолько же удобны в использовании, как и встроенные
типы. Тип является конкретным представлением некоторой
концепции. Например, встроенный тип С++ float вместе с опе-
рациями +, –,* и другими. является воплощением математиче-
ской концепции вещественного числа. Класс – это определен-
ный пользователем тип. Создаем новый тип для определения
концепции, невыражаемой непосредственно встроенными типа-
ми. Например, можно ввести тип TrunkLine (междугородная ли-
ния) в программе, имеющей отношение к телефонии, тип De-
positir (вкладчик) в программе управления банком или тип Pre-
tator (хищник) в программе экологического моделирования.

Класс – фундаментальное понятие С++ и лежит в основе
многих свойств С++. Класс предоставляет механизм для созда-
ния объектов. В классе отражены важнейшие концепции объ-
ектно-ориентированного программирования: инкапсуляция, на-
следование, полиморфизм.

С точки зрения синтаксиса класс в С++ – это структуриро-
ванный тип, образованный на основе уже существующих типов.

В этом смысле класс является расширением понятия
структуры. В простейшем случае класс можно определить с по-
мощью конструкции:

тип_класса имя_класса{список_членов_класса};
где тип_класса – одно из служебных слов class, struct, union;

имя_класса – идентификатор;
список_членов_класса – определения и описания типизи-

рованных данных и принадлежащих классу функций.

 7

Функции – это методы класса, определяющие операции
над объектом.

Данные – это поля объекта, образующие его структуру.
Значения полей определяют состояние объекта.

Будем называть члены класса компонентами класса, раз-
личая компонентные данные и компонентные функции.

Пример 1.1
struct date //дата
{int month,day,year; // поля: месяц, день, год
 void set(int,int,int); // метод – установить дату
 void get(int*,int*,int*); // метод – получить дату
 void next(); // метод – установить следую-

щую дату
 void print(); // метод – вывести дату
};

Пример 1.2
struct complex // комплексное число
{double re,im;
 double real(){return(re);}
 double imag(){return(im);}
 void set(double x,double y){re = x; im = y;}
 void print(){cout<<”re = ”<<re; cout<<“im = ”<<im;}
};
Для описания объекта класса (экземпляра класса) исполь-

зуется конструкция
имя_класса имя_объекта
date today,my_birthday;
date *point = &today; //указатель на объект типа date
date clim[30]; // массив объектов
date &name = my_birthday; //ссылка на объект
В определяемые объекты входят данные, соответствую-

щие членам – данным класса. Функции – члены класса позволя-
ют обрабатывать данные конкретных объектов класса. Обра-

 8

щаться к данным объекта и вызывать функции для объекта
можно двумя способами. Во-первых, с помощью «квалифици-
рованных» имен:

имя_объекта.имя_класса : : имя_данного
имя_объекта.имя_класса : : имя_функции
Имя класса может быть опущено
имя_объекта.имя_данного
имя_объекта.имя_функции
Например:
класс “комплексное число”
complex x1,x2;
x1.re = 1.24;
x1.im = 2.3;
x2.set(5.1,1.7);
x1.print();

Второй способ доступа использует указатель на объект:
указатель_на_объект–>имя_компонента
complex *point = &x1; // или point = new complex;
point –>re = 1.24;
point –>im = 2.3;
point –>print();

Пример 1.3
Класс “товары”
int percent=12; // наценка
struct goods
{char name[40];
 float price;
 void Input()
 {cout<<“наименование: ”;
 cin>>name;
 cout<<“цена: ”;
 cin>>price;}

 9

void print()
{cout<<“\n”<<name;
cout<<“, цена: ”;
cout<<long(price*(1.0+percent*0.01));}
};
void main(void)
{ goods wares[5];
int k = 5;
for(int i = 0; i < k; i++) wares[i].Input();
cout<<“\nСписок товаров при наценке ”<<percent<<“ % ”;
for(i = 0; i < k; i++) wares[i].print();
percent = 10;
cout<<“\nСписок товаров при наценке ”<< percent<<” % ”;
goods *pGoods = wares;
for(i = 0; i < k; i++) pGoods++–>print();
}

1.2. Доступность компонентов класса

В рассмотренных ранее примерах классов компоненты
классов являются общедоступными. В любом месте программы,
где «видно» определение класса, можно получить доступ к ком-
понентам объекта класса. Тем самым не выполняется основной
принцип абстракции данных – инкапсуляция (сокрытие) данных
внутри объекта. Для изменения видимости компонентов в опре-
делении класса можно использовать спецификаторы доступа:
public, private, protected.

 Общедоступные (public) компоненты доступны в любой
части программы. Они могут быть использованы любой функ-
цией как внутри класса, так и вне его. Доступ извне осуществля-
ется через имя объекта:

имя_объекта.имя_члена_класса;
ссылка_на_объект.имя_члена_класса;
указатель_на_объект->имя_члена_класса;

 10

Собственные (private) компоненты локализованы в классе
и не доступны извне. Они могут использоваться функциями –
членами данного класса и функциями – «друзьями» того класса,
в котором они описаны.

Защищенные (protected) компоненты доступны внутри
класса и в производных классах. Защищенные компоненты
нужны только в случае построения иерархии классов. Они ис-
пользуются так же, как и private-члены, но дополнительно могут
использоваться функциями – членами и функциями – «друзья-
ми» классов, производных от описанного класса.

Изменить статус доступа к компонентам класса можно
и с помощью использования в определении класса ключевого
слова class. В этом случае все компоненты класса по умолча-
нию являются собственными.

Пример 1.4
class complex
{
 double re, im; // private по умолчанию
public:
 double real(){return re;}
 double imag(){return im;}
 void set(double x,double y){re = x; im = y;}
};
Современный стиль программирования рекомендует

для определения класса использовать ключевое слово class.

1.3. Конструктор и деструктор

Недостатком рассмотренных ранее классов является отсут-
ствие автоматической инициализации создаваемых объектов. Для
каждого вновь создаваемого объекта необходимо было вызвать
функцию типа set (как для класса complex) либо явным образом
присваивать значения данным объекта. Однако для инициализации

 11

объектов класса в его определение можно явно включить специ-
альную компонентную функцию, называемую конструктором.
Формат определения конструктора следующий:

имя_класса(список_форм_параметров)
{операторы_тела_конструктора};
Имя этой компонентной функции по правилам языка С++

должно совпадать с именем класса. Такая функция автоматиче-
ски вызывается при определении или размещении в памяти
с помощью оператора new каждого объекта класса.

Пример 1.5
сomplex(double re1 = 0.0,double im1 = 0.0){re = re1; im = im1;}
Конструктор выделяет память для объекта и инициализи-

рует данные – члены класса.
Конструктор имеет ряд особенностей:
– Для конструктора не определяется тип возвращаемого

значения. Даже тип void не допустим.
– Указатель на конструктор не может быть определен и,

соответственно, нельзя получить адрес конструктора.
– Конструкторы не наследуются.
– Конструкторы не могут быть описаны с ключевыми сло-

вами virtual, static, const, mutuable, valatile.
Конструктор всегда существует для любого класса, причем

если он не определен явно, он создается автоматически. По умол-
чанию создается конструктор без параметров и конструктор копи-
рования. Если конструктор описан явно, то конструктор по умол-
чанию не создается. По умолчанию конструкторы создаются об-
щедоступными (public).

В классе может быть несколько конструкторов, но только
один с умалчиваемыми значениями параметров. Перегрузка ча-
ще всего используется для передачи конструктору аргументов,
предназначенных для инициализации данных – членов класса.
Параметром конструктора не может быть его собственный
класс, но может быть ссылка на него (T&). Без явного указания
программиста конструктор всегда автоматически вызывается

 12

при определении (создании) объекта. В этом случае вызывается
конструктор без параметров. Для явного вызова конструктора
используются две формы:

имя_класса имя_объекта(фактические_параметры);
имя_класса(фактические_параметры);
Первая форма допускается только при непустом списке

фактических параметров. Она предусматривает вызов конструк-
тора при определении нового объекта данного класса:

complex ss(5.9,0.15);
Вторая форма вызова приводит к созданию объекта без

имени:
complex ss = complex(5.9,0.15);
Существуют два способа инициализации данных объекта

с помощью конструктора. Ранее мы рассматривали первый спо-
соб, а именно передачу значений параметров в тело конструкто-
ра. Второй способ предусматривает применение списка ини-
циализаторов данного класса. Этот список помещается между
списком параметров и телом конструктора. Каждый инициали-
затор списка относится к конкретному компоненту и имеет вид

имя_данного(выражение)

Пример 1.6
class A
{
 int i; float e; char c;
public:
 A(int ii,float ee,char cc) : i(8),e(i * ee + ii),с(сс){}
 . . .
};
Пример 1.7. Класс "символьная строка”.
#include <string.h>
#include <iostream.h>
class string
{

 13

 char *ch; // указатель на текстовую строку
 int len; // длина текстовой строки
public:
 // конструкторы
 // создает объект – пустая строка
 string(int N = 80): len(0){ch = new char[N+1]; ch[0] = ‘\0’;}
 // создает объект по заданной строке
 string(const char *arch){len = strlen(arch);
 ch = new char[len+1];
 strcpy(ch,arch);}
 // компоненты-функции
 // возвращает ссылку на длину строки
 int& len_str(void){return len;}

 // возвращает указатель на строку
 char *str(void){return ch;}
 . . .
};
Здесь у класса string два конструктора – перегружаемые

функции.
По умолчанию создается также конструктор копирования

вида T::T(const T&), где Т – имя класса. Конструктор копирова-
ния вызывается всякий раз, когда выполняется копирование
объектов, принадлежащих классу. В частности, он вызывается:

а) когда объект передается функции по значению;
б) при построении временного объекта как возвращаемого

значения функции;
в) при использовании объекта для инициализации другого

объекта.
Если класс не содержит явным образом определенного

конструктора копирования, то при возникновении одной из этих
трех ситуаций производится побитовое копирование объекта.
Побитовое копирование не во всех случаях является адекват-
ным. Именно для таких случаев и необходимо определить соб-

 14

ственный конструктор копирования. Например, создадим два
объекта типа string:

string s1(“это строка”);
string s2=s1;
Здесь объект s2 инициализируется объектом s1 путем вы-

зова конструктора копирования, созданного компилятором по
умолчанию. В результате эти объекты имеют одинаковое значе-
ние в полях ch, то есть эти поля указывают на одну и ту же об-
ласть памяти. В результате при удалении объекта s1 будет осво-
бождаться и область, занятая строкой, но она еще нужна объек-
ту s2. Чтобы не возникало подобных ошибок, определим
собственный конструктор копирования.

string(const string& st)
{len=strlen(st.len);
ch=new char[len+1];
strcpy(ch,st.ch); }
Конструктор с одним аргументом может выполнять неяв-

ное преобразование типа своего аргумента в тип класса конст-
руктора.

Например:
class complex
{double re,im;
complex(double r):re(r),im(0){ }
...
};
Этот конструктор реализует представление вещественной

оси в комплексной плоскости.
Вызвать этот конструктор можно традиционным способом:
complex b(5);
Но можно вызвать его и так:
complex b=5;
Здесь необходимо преобразование скалярной величины

(типа аргумента конструктора) в тип complex. Это осуществля-
ется вызовом конструктора с одним параметром. Поэтому кон-

 15

структор, имеющий один аргумент, не нужно вызывать явно,
а можно просто записать complex b=5, что означает complex
b = complex(3).

Преобразование, определяемое пользователем, неявно
применяется в том случае, если оно уникально. Например,

class demo{
demo(char);
demo(long);
demo(char*);
demo(int*);
...}
Здесь в
demo a=3;
неоднозначность: вызов demo(char)? или demo(long)?
А в demo a=0; также неоднозначность: вызов demo(char*)

или demo(int*), или demo(char), или demo(int)?
В некоторых случаях необходимо задать конструктор, ко-

торый можно вызвать только явно. Например,
class string{
char * ch;
int len;
public:
string(int size){
len=size; ch=new[len+1]; ch[0]=’\0’;
};
В этом случае неявное преобразование может привести

к ошибке. В случае string s=’a’; создается строка длиной int(‘a’).
Вряд ли это то, что мы хотели.

Неявное преобразование можно подавить, объявив конст-
руктор с модификатором explicit. В этом случае конструктор
будет вызываться только явно. В частности, там, где конструк-
тор копирования в принципе необходим, explicit-конструктор
не будет вызываться неявно. Например:

 16

class string{
char * ch;
int len;
public:
explicit string(int size);
string(const char* ch);
};
string s1=’a’; // Ошибка,
// нет явного преобразования char в string
string s2(10); // Правильно,
//строка для хранения 10 символов-
//явный вызов конструктора
string s3=10; //Ошибка, нет явного преобразования int в string
string s4=string(10); // Правильно,
// конструктор вызывается явно
string s5=”строка”;// Правильно,
// неявный вызов конструктора s5=string(“строка”)
Можно создавать массив объектов, однако при этом соот-

ветствующий класс должен иметь конструктор по умолчанию
(без параметров).

Это связано с тем, что при объявлении массива объектов
невозможно определить параметры для конструкторов этих объ-
ектов, и единственная возможность вызова конструкторов – это
передача им параметров, заданных по умолчанию.

Массив объектов может инициализироваться либо автома-
тически конструктором по умолчанию, либо явным присваива-
нием значений каждому элементу массива.

class demo{
int x;
public:
demo(){x=0;}
demo(int i){x=i;}
};
void main(){

 17

class demo a[20]; //вызов конструктора без параметров (по
умолчанию)

class demo b[2]={demo(10),demo(100)};//явное присваивание
При объявлении массива объектов невозможно опреде-

лить параметры для конструкторов этих объектов и единствен-
ная возможность вызова конструкторов – это передача им пара-
метров, заданных по умолчанию. Таким образом, для того чтобы
создавать массив объектов, соответствующий класс должен
иметь заданный по умолчанию конструктор. Можно уменьшить
количество конструкторов, если задать конструктор с аргумен-
тами по умолчанию. Он же будет конструктором по умолчанию.

Динамическое выделение памяти для объекта создает необ-
ходимость освобождения этой памяти при уничтожении объекта.
Например, если объект формируется как локальный внутри блока,
то целесообразно, чтобы при выходе из блока, когда уже объект
перестает существовать, выделенная для него память была возвра-
щена. Желательно, чтобы освобождение памяти происходило ав-
томатически. Такую возможность обеспечивает специальный ком-
понент класса – деструктор класса. Его формат

~имя_класса(){операторы_тела_деструктора};
Имя деструктора совпадает с именем его класса, но пред-

варяется символом “~” (тильда).
Деструктор не имеет параметров и возвращаемого значе-

ния. Вызов деструктора выполняется неявно (автоматически),
как только объект класса уничтожается.

Например, при выходе за область определения или при
вызове оператора delete для указателя на объект.

string *p=new string(“строка”);
delete p;
Если в классе деструктор не определен явно, то компилятор

генерирует деструктор по умолчанию, который просто освобож-
дает память занятую данными объекта. В тех случаях, когда тре-
буется выполнить освобождение и других объектов памяти, на-

PNRPU

 18

пример, область, на которую указывает ch в объекте string, необ-
ходимо определить деструктор явно: ~string(){delete []ch;}

Так же, как и для конструктора, не может быть определен
указатель на деструктор.

1.4. Компоненты-данные и компоненты-функции

1.4.1. Данные – члены класса

Определение данных класса внешне аналогично описанию
переменных базовых или производных типов. Однако при опи-
сании данных класса не допускается их инициализация. Для их
инициализации должен использоваться автоматический или яв-
но вызываемый конструктор. Принадлежащие классу функции
имеют полный доступ к его данным. Для доступа к элементам-
данным из операторов, выполняемых вне определения класса,
нужно использовать операции выбора компонентов класса (“ . ”
или ”–>”). Данные класса необязательно должны быть опреде-
лены или описаны до их первого использования в принадлежа-
щих классу функциях. Все компоненты класса “видны” во всех
операторах его тела. Область доступа к компонентам-данным
регулируется модификатором доступа (см. п. 1.2).

Компоненты-данные могут быть описаны как const. В этом
случае после инициализации они не могут быть изменены.

Компоненты-данные могут быть описаны как mutuable.
В этом случае они являются изменяемыми, даже если объект,
содержащий их, описан как const.

1.4.2. Функции – члены класса

Компонентная функция должна быть обязательно описана
в теле класса. При определении классов их компонентные функ-
ции могут быть специфицированы как подставляемые (inline).
Кроме явного использования слова inline для этого используют-
ся следующие соглашения. Если определение функции полно-

 19

стью размещено в теле класса, то эта функция по умолчанию
считается подставляемой. Если в теле класса помещен только
прототип функции, а ее определение – вне класса, то для того,
чтобы функция была подставляемой, ее надо явно специфици-
ровать словом inline. При внешнем определении функции в теле
класса помещается прототип функции

тип
имя_функции(спецификция_и_инициализация_параметров);

Вне тела класса функция определяется так
тип имя_класса : :

имя_функции(спецификция_формальных_параметров)
{тело_функции}

1.4.3. Константные компоненты-функции

Функции – члены класса могут быть описаны как const.
В этом случае они не не могут изменять значения данных – чле-
нов класса и могут возвращать указатель или ссылку только на
данные–члены класса, описанные как const. Они являются един-
ственными функциями, которые могут вызываться для объекта-
константы.

Например, в классе conplex:
class complex{
double re,im;
public:
//...
double real()const{return re;}
double imag()const{return im;}
};
Объявление функций real() и imag() как const гарантирует,

что они не изменяют состояние объекта complex. Компилятор
обнаружит случайные попытки нарушить это условие.

Когда константная функция определяется вне класса, ука-
зывать const надо обязательно:

double complex::real()const{return re:}

 20

Константную функцию-член можно вызвать как для кон-
стантного, так и для неконстантного объекта, в то время как
неконстантную функцию-член можно вызвать только для объ-
екта, не являющегося константой.

1.4.4. Статические члены класса

Каждый объект одного и того же класса имеет собствен-
ную копию данных класса. Это не всегда соответствует требо-
ваниям решаемой задачи. Например, счетчик объектов, указате-
ли на первый и последний объект в списке объектов одного
класса или наценка в классе goods в примере 1.1.3. Эти данные
должны быть компонентами класса, но иметь их нужно только
в единственном числе. Такие компоненты должны быть опреде-
лены в классе как статические (static). Статические данные
классов не дублируются при создании объектов, т.е. каждый
статический компонент существует в единственном экземпляре.
Доступ к статическому компоненту возможен только после его
инициализации. Для инициализации используется конструкция

тип имя_класса : : имя_данного инициализатор;
Например, int goods : : percent = 12;
Это предложение должно быть размещено в глобальной

области после определения класса. Только при инициализации
статическое данное класса получает память и становится дос-
тупным. Обращаться к статическому данному класса можно
обычным образом через имя объекта

имя_объекта.имя_компонента
 Но к статическим компонентам можно обращаться и то-

гда, когда объект класса еще не существует. Доступ к статиче-
ским компонентам возможен не только через имя объекта, но
и через имя класса

имя_класса : : имя_компонента
Однако так можно обращаться только к public компонентам.
А как обратиться к private статической компоненте извне

определения объекта? С помощью компонента-функции этого
класса. Однако при вызове такой функции необходимо указывать

 21

имя объекта, а объект может еще не существовать. Эту проблему
решают статические компоненты-функции. Эти функции мож-
но вызвать через имя класса.

имя_класса : : имя_статической_функции

Пример 1.8
#include <iostream.h>
class TPoint
{
 double x,y;
// статический компонент-данное : количество точек
static int N;
public:
 // конструктор
 TPoint(double x1 = 0.0,double y1 = 0.0){N++; x = x1; y = y1;}
// статический компонент-функция
static int& count(){return N;}
};
//инициализация статического компонента-данного
int TPoint : : N = 0;
void main(void)
{TPoint A(1.0,2.0);
 TPoint B(4.0,5.0);
 TPoint C(7.0,8.0);
 cout<<“\nОпределены ”<<TPoint : : count()<<“точки.”;
}

Пример 1.9. Моделирование списка
class list
{int x; //информационное поле
list *next; //указатель на следующий элемент
static list *begin // начало списка
public:
list(int x1);

 22

~list();
add(); //объект добавляет себя в список
static show(); //статическая функция для просмотра списка
};
list * list : : begin = NULL;
void main()
{list* p;
// создаем первый объект и добавляем его в список
p=new list(5); p->add();
// создаем второй объект и добавляем его в список
p=new list(8); p->add();
// создаем третий объект и добавляем его в список
p=new list(35); p->add();
list::show(); // показываем весь список
}

Пример 1.10. Другая реализация класса goods – см. при-

мер 1.3.
#include <iostream.h>
// Класс “товары”
class goods
{char name[40];
 float price;
 static int percent; // наценка
public:
void Input(){cout<<“наименование: ”;
 cin>>name;
 cout<<“цена: ”;
 cin>>price;}
void print(){cout<<“\n”<<name;
cout<<“, цена: ”;
cout<<long(price*(1.0+goods : : percent*0.01));}
};
int goods : : percent = 12;

 23

void main(void)
{
 goods wares[5];
 int k = 5;
 for(int i = 0; i < k; i++) wares[i].Input();
 cout<<“\nСписок товаров при наценке“
<<wares[0].percent<<“% ”;
 for(i = 0; i < k; i++) wares[i].print();
 goods : : percent = 10;
 cout<<“\nСписок товаров при наценке ”
<<goods : : percent<<” % ”;
 goods *pGoods = wares;
 for(i = 0; i < k; i++) pGoods++–>print();
}

1.5. Указатели на компоненты класса

1.5.1. Указатели на компоненты-данные

Можно определить указатель на компоненты-данные:
тип_данных(имя_класса : :*имя_указателя)
В определении указателя можно включить его инициа-

лизатор:
&имя_класса : : имя_компонента
Пример: double(complex : :*pdat) = &complex : : re;
Естественно, что в этом случае данные-члены должны

иметь статус открытых(pubic).
После инициализации указателя его можно использовать

для доступа к данным объекта.
complex c(10.2,3.6);
c/*pdat=22.2; //изменилось значение поля re объекта c.
Указатель на компонент класса можно использовать в ка-

честве фактического параметра при вызове функции.

 24

Если определены указатели на объект и на компонент, то
доступ к компоненту с помощью операции ‘ –>* ’.

указатель_на_объект –>*указатель_на_компонент

Пример 1.11
double(complex : :*pdat) = &complex : : re;
complex C(10.2,3.6);
complex *pcom = &C;
pcom –>*pdat = 22.2;

Можно определить тип указателя на компоненты-данные

класса:
typedef double(complex::*PDAT);
void f(complex c, PDAT pdat) {c.*pdat=0;}
complex c;
PDAT pdat=&complex::re; f(c,pdat);
pdat=&complex::im; f(c,pdat);

1.5.2. Указатели на компоненты-функции

Можно определить указатель на компоненты-функции.
тип_возвр_значения(имя_класса::
*имя_указателя_на_функцию)(специф_параметров_функции);

Пример 1.12
// Определение указателя на функцию-член класса
double(complex : :*ptcom)();
// Настройка указателя
ptcom = &complex : : real;
// Теперь для объекта А
complex A(5.2,2.7);
// можно вызвать его функцию
cout<<(A.*ptcom)();
// Если метод real определить типа ссылки
double& real(void){return re;}

 25

// то, используя этот метод, можно изменить поле re
(A.*ptcom)() = 7.9;
// При этом указатель определяется так:
double&(complex : :*ptcom)();

Можно определить также тип указателя на функцию:
typedef double&(complex::*PF)();
а затем определить и сам указатель:
PF ptcom=&complex::real;

1.6. Указатель this

Когда функция-член класса вызывается для обработки
данных конкретного объекта, этой функции автоматически и
неявно передается указатель на тот объект, для которого функ-
ция вызвана. Этот указатель имеет имя this и неявно определен
в каждой функции класса следующим образом:

имя_класса *const this = адрес_объекта
Указатель this является дополнительным скрытым пара-

метром каждой нестатической компонентной функции. При
входе в тело принадлежащей классу функции this инициализи-
руется значением адреса того объекта, для которого вызвана
функция. В результате этого объект становится доступным
внутри этой функции.

В большинстве случаев использование this является неяв-
ным. В частности, каждое обращение к нестатической функции-
члену класса неявно использует this для доступа к члену соот-
ветствующего объекта. Например, функцию add в классе com-
plex можно определить эквивалентным, хотя и более простран-
ным способом:

void complex add(complex ob)
{this->re=this->re+ob.re;
// или *this.re=*this.re+ob.re
this->im=this->im+ob.im;}

 26

Если функция возвращает объект, который ее вызвал, ис-
пользуется указатель this.

Например, пусть функция add возвращает ссылку на объ-
ект. Тогда

complex& complex add(complex& ob)
{re=re+ob.re;
im=im+ob.im;
return *this;
}
Примером широко распространенного использования this

являются операции со связанными списками.

Пример. 1.13. Связанный список.
#include <iostream.h>
//Определение класса
class item
{
 static item *begin;
 item *next;
 char symbol;
public:
 item (char ch){symbol = ch;} // конструктор
 void add(void); // добавить в начало
 static void print(void);
};
//Реализация класса
void item : : add(void)
{
 this –>next = begin;
 begin = this;
}
void item : : print(void)
{
 item *p;

 27

 p = begin;
 while(p != NULL)
 {
 cout<<p –>symbol<<“ \t ”;
 p = p –>next;
 }
}
//Создание и просмотр списка
item *item : : begin = NULL; // инициализация статического

компонента
void main()
{
 item A(‘a’); item B(‘b’); item C(‘c’);
 // включение объектов в список
 A.add(); B.add(); C.add();
 // просмотр списка в обратном порядке
 item : : print();
}

1.7. Друзья классов

1.7.1. Дружественная функция

Дружественная функция – это функция, которая, не явля-
ясь компонентом класса, имеет доступ к его защищенным и соб-
ственным компонентам. Такая функция должна быть описана
в теле класса со спецификатором friend.

Пример 1.14
class myclass
{
 int x,y;
 friend void set(myclass*,int,int);
public:

 28

 myclass(int x1,int y1){x = x1; y = y1;}
 int sum(void){return (x+y);}
};
void set(myclass *p,int x1,int y1){p–>x = x1; p–>y = y1;}
void main(void)
{
 myclass A(5,6);
 myclass B(7,8);
 cout<<A.sum();
 cout<<B.sum();
 set(&A,9,10);
 set(&B,11,12);
 cout<<A.sum();
 cout<<B.sum();
}
Функция set описана в классе myclass как дружественная

и определена как обычная глобальная функция (вне класса, без
указания его имени, без операции ‘ : : ‘ и без спецификатора
friend).

Дружественная функция при вызове не получает указате-
ля this. Объекты класса должны передаваться дружественной
функции только через параметр.

Итак, дружественная функция:
– не может быть компонентной функцией того класса, по

отношению к которому определяется как дружественная;
– может быть глобальной функцией;
– может быть компонентной функцией другого ранее оп-

ределенного класса.
Например,
class CLASS1
{. . .
 int f(. . .);
 . . .
};

 29

class CLASS2
{. . .
 friend int CLASS1 : : f(. . .);
 . . .
};
// В этом примере класс CLASS1 с помощью своей ком-

понентной функции f()
// получает доступ к компонентам класса CLASS2.
– может быть дружественной по отношению к нескольким

классам.
Например,
// предварительное неполное определение класса
class CL2;
class CL1
{friend void f(CL1,CL2);
 . . .
};
class CL2
{friend void f(CL1,CL2);
 . . .
};
// В этом примере функция f имеет доступ к компонентам

классов CL1 и CL2.

1.7.2. Дружественный класс

Класс может быть дружественным другому классу. Это
означает, что все компонентные функции класса являются дру-
жественными для другого класса. Дружественный класс должен
быть определен вне тела класса, «предоставляющего дружбу».

Например,
class X2{friend class X1; . . .};
class X1
{. . .

 30

 void f1(. . .);
 void f2(. . .);
 . . .
};
// В этом примере функции f1 и f2 класса Х1 являются

друзьями класса Х2, хотя они
// описываются без спецификатора friend.

Пример 1.15
Рассмотрим класс point – точка в n-мерном пространстве

и дружественный ему класс vector – радиус-вектор точки («вектор
с началом в начале координат n-мерного пространства»). В классе
vector определим функцию для определения нормы вектора, кото-
рый вычисляется как сумма квадратов координат его конца.

class point
{int N; // размерность
 double *x; // указатель на массив координат
 friend class vector;
public:
 point(int n,double d = 0.0);
};
point : : point(int n,double d)
{N = n;
 x = new double[N];
 for(int i = 0; i < N; i++) x[i] = d;
}
class vector
{double *xv;
 int N;
public:
 vector(point,point);
 double norma();
};
vector : : vector(point begin,point end)

 31

{N = begin.N;
 xv = new double[N];
 for(int i = 0; i < N; i++) xv[i] = end.x[i]–begin.x[i];
}
double vector : : norma()
{double dd = 0.0;
 for(int i = 0; i < N; i++) dd += xv[i]*xv[i];
 return dd;
}
void main(void)
{point A(2,4.0);
 point B(2,2.0);
 vector V(A,B);
 cout<<V.norma();
}
// Будет выведено – 8.
Недостатком предложенного класса point является то,

что значения всех координат точки x[i] одинаковы. Чтобы они
были произвольными и разными, необходимо определить кон-
структор как функцию с переменным числом параметров, на-
пример, так:

point : : point(int n,double d,. . .)
{
 N = n;
 x = new double[N];
 double *p = &d;
 for(int i = 0; i < N; i++){x[i] = *p; p++;}
}

1.8. Определение классов и методов классов

Определение классов обычно помещают в заголовочный
файл.

 32

Пример 1.16
// POINT.H
#ifndef POINTH
#define POINTH 1
class point
{
 int x,y;
public:
 point(int x1 = 0,int y1 = 0);
 int& getx(void);
 int& gety(void);
 . . .
};
#endif
Поскольку описание класса point в дальнейшем планиру-

ется включать в другие классы, то для предотвращения недопус-
тимого дублирования описаний в текст включена условная пре-
процессорная директива #ifndef POINTH. Таким образом, текст
описания класса point может появляться в компилируемом фай-
ле только однократно, несмотря на возможность неоднократно-
го появления директив #include “point.h”.

Определить методы можно следующим образом:
// POINT.CPP
#ifndef POINTCPP
#define POINTCPP 1
#include “point.h”
point : : point(int x1,int y1){x = x1; y = y1;}
int& point : : getx(void){return x;}
int& point : : gety(void){return y;}
. . .
#endif
В программе, использующей объекты класса
#include “point.cpp”
. . .
void main(void)

 33

{ point A(5,6);
 point B(7,8);
 . . .}
Внешнее определение методов класса дает возможность,

не меняя интерфейс объектов класса с другими частями про-
грамм, по-разному реализовать компонентные функции.

Пример программы, разрабатываемой и выполняемой
в среде Microsoft Visual Studio

Задание: создать фабрику роботов.
Для этого мы создаем два класса: класс «робот» и дружест-

венный ему класс «фабрика». Поскольку роботов можно создавать
только на фабрике, все поля класса «робот» закрыты (private).

Класс «фабрика» имеет метод add(), с помощью которого
создается робот и сохраняется в массиве.

Ниже представлены файлы программы на С++, разрабо-
танные в среде Visual C++ 6.0

Файл “robot.h” Определение классов (рис.1.1).

Рис. 1.1

//класс «робот»
class robot{
int id;

 34

char name[20];
robot(){}
robot(char*);
robot(const robot&);
void copy(const robot&);
~robot(){}
void show()const;
friend class factory;
};

//класс «фабрика роботов»
class factory{
int n;
robot work[100];
public:
factory();
void add(char*);
void print()const;
};
Файл “robot.cpp” Определение методов классов (рис.1.2).
#include<iostream.h>
#include<string.h>
#include<stdlib.h>
#include "robot.h"
robot::robot(char*NAME)
{id=rand();
strcpy(name,NAME);}
robot::robot(const robot&ob)
{id=ob.id;
strcpy(name,ob.name);}
void robot::copy(const robot& ob)
{id=ob.id;
strcpy(name,ob.name);}

 35

void robot::show()const
{cout<<id<<" "<<name<<endl;}
factory::factory()
{n=0;}
void factory::add(char* name)
{robot temp(name);
work[n].copy(temp);
n++;}
void factory::print()const
{for(int i=0;i<n;i++)work[i].show();
}

Рис. 1.2

Файл “main.cpp” Демонстрация работы программы (рис.1.3).

 36

Рис. 1.3

Создаются четыре робота и просматриваются
#include "robot.h"
int main()
{
factory alfa;
alfa.add("b1");
alfa.add("b2");
alfa.add("b3");
alfa.add("b4");
alfa.print();
return 0;}

 37

2. НАСЛЕДОВАНИЕ

2.1. Определение производного класса

Наследование – это механизм получения нового класса на
основе уже существующего. Существующий класс может быть
дополнен или изменен для создания нового класса.

Существующие классы называются базовыми, а новые –
производными. Производный класс наследует описание базового
класса; затем он может быть изменен добавлением новых чле-
нов, изменением существующих функций-членов и изменением
прав доступа. Таким образом, наследование позволяет повторно
использовать уже разработанный код, что повышает производи-
тельность программиста и уменьшает вероятность ошибок.
С помощью наследования может быть создана иерархия клас-
сов, которые совместно используют код и интерфейсы.

 Наследуемые компоненты не перемещаются в производ-
ный класс, а остаются в базовых классах. Сообщение, обработку
которого не могут выполнить методы производного класса, ав-
томатически передается в базовый класс. Если для обработки
сообщения нужны данные, отсутствующие в производном клас-
се, то их пытаются отыскать автоматически и незаметно для
программиста в базовом классе.

При наследовании некоторые имена методов и данных ба-
зового класса могут быть по-новому определены в производном
классе. В этом случае соответствующие компоненты базового
класса становятся недоступными из производного класса. Для
доступа к ним используется операция указания области види-
мости ‘ : : ’.

В иерархии производный объект наследует разрешенные
для наследования компоненты всех базовых объектов (public,
protected).

 38

Допускается множественное наследование – возможность
для некоторого класса наследовать компоненты нескольких, ни-
как не связанных между собой базовых классов. В иерархии
классов соглашение относительно доступности компонентов
класса следующее:

private – член класса может использоваться только функ-
циями- членами данного класса и функциями-«друзьями» своего
класса. В производном классе он недоступен;

protected – то же, что и private, но дополнительно член
класса с данным атрибутом доступа может использоваться
функциями–членами и функциями-«друзьями» классов, произ-
водных от данного;

public – член класса может использоваться любой функцией,
которая является членом данного или производного класса, а также
к public-членам возможен доступ извне через имя объекта.

Следует иметь в виду, что объявление friend не является
атрибутом доступа и не наследуется.

Синтаксис определение производного класса:
class имя_класса : список_базовых_классов
{список_компонентов_класса};
В производном классе унаследованные компоненты получают

статус доступа private, если новый класс определен с помощью
ключевого слова class, и статус public, если с помощью struct.

Например.
а) class S : X,Y,Z{. . .};
S – производный класс;
X,Y,Z – базовые классы.
Здесь все унаследованные компоненты классов X,Y,Z

в классе A получают статус доступа private;
б) struct S : X,Y,Z{. . .};
S – производный класс;
X,Y,Z – базовые классы.
Здесь все унаследованные компоненты классов X,Y,Z

в классе A получают статус доступа public.

 39

Явно изменить умалчиваемый статус доступа при наследо-
вании можно с помощью атрибутов доступа – private, protected
и public, которые указываются непосредственно перед именами
базовых классов. Как изменяются при этом атрибуты доступа
в производном классе, показано в табл. 2.1.

Т а б л и ц а 2 . 1

Атрибут, указанный
при наследовании

Атрибут в базовом
классе

Атрибут, полученный
в производном классе

public public
protected

public
protected

protected public
protected

protected
protected

private public
protected

private
private

Пример 2.1
class B
{protected: int t;
 public: char u;
 private: int x;
};
struct S : B{ }; // наследуемые члены t, u имеют атрибут

доступа public
class E : B{ }; // t, u имеют атрибут доступа private
class M : protected B{ }; // t, u – protected.
class D : public B{ }; // t – protected, u – public
class P : private B{ }; // t, u – private
 Таким образом, можно только сузить область доступа, но

не расширить.
Таким образом, внутри производного класса существуют

четыре уровня, для которых определяется атрибут доступа:
– для членов базового класса;
– для членов производного класса;
– для процесса наследования;
– для изменения атрибутов при наследовании.

 40

Рассмотрим, как при этом регулируется доступ к членам
класса извне класса и внутри класса.

Доступ извне
Доступными являются лишь элементы с атрибутом public.
♦ Собственные члены класса.
Доступ регулируется только атрибутом доступа, указан-

ным при описании класса.
♦ Наследуемые члены класса.
Доступ определяется атрибутом доступа базового класса,

ограничивается атрибутом доступа при наследовании и изменя-
ется явным указанием атрибута доступа в производном классе.

Пример 2.2
class Basis{
public:
int a,b;
protected:
int c;};
class Derived:public Basis{
public:
Basis::a;};
void main(){
Basis ob;
Derived od;
ob.a; //правильно
ob.c; //ошибка
od.a; //правильно
od.b; //ошибка

Для членов класса действуют следующие права доступа:
♦ Собственные члены класса.
Доступ извне возможен только для public-членов класса.
private и protected-члены класса могут быть использованы

только функциями-членами данного класса.

 41

♦ Наследуемые члены класса.
private-члены класса могут использоваться только собст-

венными функциями-членами базового класса, но не функциями
членами производного класса.

protected или public-члены класса доступны для всех
функций-членов. Подразделение на public, protected и private
относится при этом к описаниям, приведенным в базовом клас-
се, независимо от формы наследования.

Пример 2.3
class Basis{
int a;
public b;
void f1(int i){a=i;b=i;}
class Derived:private Basis{
public:
void f2(int i){
a=i; //ошибка
b=i;} // //правильно
};

2.2. Конструкторы и деструкторы
производных классов

Поскольку конструкторы не наследуются, при создании
производного класса наследуемые им данные-члены должны
инициализироваться конструктором базового класса. Конструк-
тор базового класса вызывается автоматически и выполняется
до конструктора производного класса. Если наследуется не-
сколько базовых классов, то их конструкторы выполняются
в той последовательности, в которой перечислены базовые клас-
сы в определении производного класса. Конструктор производ-
ного класса вызывается по окончании работы конструкторов

 42

базовых классов. Параметры конструктора базового класса ука-
зываются в определении конструктора производного класса.
Таким образом происходит передача аргументов от конструкто-
ра производного класса конструктору базового класса.

Например:
class Basis
{ int a,b;
public:
Basis(int x,int y){a=x;b=y;}
};
class Inherit:public Basis
{int sum;
public:
Inherit(int x,int y, int s):Basis(x,y){sum=s;}
};
Запомните, что конструктор базового класса вызывается

автоматически, и мы указываем его в определении конструктора
производного класса только для передачи ему аргументов.

Объекты класса конструируются снизу вверх: сначала ба-
зовый, потом компоненты-объекты (если они имеются), а потом
сам производный класс. Таким образом объект производного
класса содержит в качестве подобъекта объект базового класса.

Уничтожаются объекты в обратном порядке: сначала
производный, потом его компоненты-объекты, а потом базо-
вый объект.

Как мы знаем, объект уничтожается при завершении про-
граммы или при выходе из области действия определения объ-
ектов, и эти действия выполняет деструктор. Статус деструктора
по умолчанию public. Деструкторы не наследуется, поэтому да-
же при отсутствии в производном классе деструктора он не пе-
редается из базового, а формируется компилятором как умал-
чиваемый. Классы, входящие в иерархию, должны иметь в сво-
ем распоряжении виртуальные деструкторы. Деструкторы могут
переопределяться, но не перегружаться.

 43

В любом классе могут быть в качестве компонентов опреде-
лены другие классы. В этих классах могут быть свои деструкторы,
которые при уничтожении объекта охватывающего (внешнего)
класса выполняются после деструктора охватывающего класса.
Деструкторы базовых классов выполняются в порядке, обратном
перечислению классов в определении производного класса. Таким
образом, порядок уничтожения объекта противоположен по отно-
шению к порядку его конструирования.

Пример 2.4
// Определение класса базового класса ТОЧКА и произ-

водного класса ПЯТНО.
#include <graphics.h> // используем графику
#include <conio.h>
class point // Определение класса ТОЧКА
{
 protected:
 int x,y;
 public:
 point(int x1=0,int y1=0);
 int& getx(void);
 int& gety(void);
 void show(void);
 void move(int x1=0,int y1=0);
 private:
 void hide();
};
class spot : public point // Определение класса ПЯТНО
{protected:
 int r; // радиус
 int vis; // признак видимости
 int tag;// признак сохранения образа объекта в памяти
 spot *pspot; // указатель на область памяти для образа
 public:

 44

 spot(int ,int ,int);
 void show();
 void hide();
 void move(int ,int);
 void change (float d) // изменить размер
 };
// Определение функций – членов класса ТОЧКА
point : : point(int x1,int y1){x = x1; y = y1;}
int& point : : getx(void){return x;}
int& point : : gety(void){return y;}
void point : : show(void){putpixel(x, y, getcolor());}
void point : : hide(void){putpixel(x,y,getbkcolor());}
void point : : move(int x1,int y1)
{
 hide();
 x = x1; y = y1;
 show();
}
// Определение функций – членов класса ПЯТНО
spot::spot(int x1,int y1,int r1) : point(x1,y1)
{int size;
 vis = 0; tag = 0; r = r1;
size = imagesize(x1–r,y1–r,x1+r,y1+r);
pspot = (spot*)new char[size];}
spor::~spot(){hide(); tag = 0; delete pspot;}
void show()
{if(tag = = 0)
{circle(x,y,r);
 floodfill(x,y,getcolor());
 getimage(x–r,y–r,x+r,y+r,pspot);
 tag = 1; }
else putimage(x–r,y–r,pspot,XOR_PUT);
vis = 1;}
void spot::hide()

 45

{if(vis = = 0) return;
putimage(x–r,y–r,pspot,XOR_PUT);
vis = 0;}
void spot::move(int x1,int y1)
{hide();
 x = x1; y = y1;
 show();}
 void spot::change(float d)
{float a; int size; hide(); tag = 0;
 delete pspot;
 a = d*r;
 if(a<=0) r = 0;
 else r = (int)a;
 size = imagesize(x–r,y–r,x+r,y+r);
 pspot = (spot*)new char[size];
 show();}
 int& spot::getr(void){return r;}
};
// Создаются два объекта, показываются, затем один
//перемещается, а другой изменяет размеры
void main()
{
//инициализация графики
int dr=DETECT,mod;
initgraph(&dr,&mod,“C : \ tc \ bgi”);
{
 spot A(200,50,20);
 spot B(500,200,30);
 A.show(); getch();
 B.show(); getch();
 A.move(50,60); getch();
 B.change(3); getch();
}
closegraph();
}

 46

В этом примере в объекте spot точка создается как безы-
мянный объект класса point. Особенностью функции main в при-
мере является наличие внутреннего блока для работы с объекта-
ми spot. Это связано с наличием в классе spot деструктора, при
выполнении которого вызывается метод hide(), требующий гра-
фического режима. Если построить программу без внутреннего
блока, то деструктор будет вызываться при окончании програм-
мы, когда графический режим закрыт.

Эту проблему можно также решить путем явного вызова
деструктора, например:

…
В.change(3); getch();
А.spot : : ~spot();
getch();
B.spot : : ~spot();
closegraph();

2.3. Виртуальные функции

К механизму виртуальных функций обращаются в тех
случаях, когда в каждом производном классе требуется свой ва-
риант некоторой компонентной функции. Классы, включающие
такие функции, называются полиморфными и играют особую
роль в ООП.

Рассмотрим, как ведут себя при наследовании невирту-
альные компонентные функции с одинаковыми именами, типа-
ми и сигнатурами параметров.

Пример 2.5
class base
{
public :
 void print(){cout<<“\nbase”;}

 47

};
class dir : public base
{
public:
 void print(){cout<<“\ndir”;}
};
void main()
{
 base B,*bp = &B;
 dir D,*dp = &D;
 base *p = &D;
 bp –>print(); // base
 dp –>print(); // dir
 p –>print(); // base
}
В последнем случае вызывается функция print базового

класса, хотя указатель p настроен на объект производного клас-
са. Дело в том, что выбор нужной функции выполняется при
компиляции программы и определяется типом указателя, а не
его значением. Такой режим называется ранним или статиче-
ским связыванием.

Пример 2.6
//птицы
class bird{
//...
public:
void fly()const{cout<<"fly"<<endl;} //может летать
};
//пингвин
class penguin:public bird{
//...
public:
void fly()const{cout<<"nofly"<<endl;} //не летает

 48

};
int main()
{bird b; penguin p;
b.fly(); //летит
p.fly(); //не летит
return 0;
}
Выполним эту программу. Все нормально: птицы летают,

но пингвин не летает.
Усложним задание. Добавим функцию alarm() – сигнал

«тревога», который поступает всем птицам, в том числе и пин-
гвину. Реакция птиц на сигнал «тревога» : убежать, улететь.

//Сигнал тревоги
void alarm(const bird& b)
{
b.fly();
}
int main()
{
bird b;
penguin p;
b.fly(); //летит
p.fly(); //не летит
alarm(b); //полетела
alarm(p); //как ни странно, и пингвин полетел ???
return 0;
}
Выполним эту программу. Видим, что все птицы, в том чис-

ле и пингвин, летят.
Рассмотрим, почему так происходит. На рис. 2.1 приведе-

на мерархия классов.

 49

Рис. 2.1

void person::show()
{
cout<<name<<“ “<<age<<endl;
}
void student::show()
{
cout<<name<<“ “<<age<<“ “<<grade<<endl;
}
void teacher::show()
{
cout<<name<<“ “<<age<<“ “<<post<<endl;
}
void main()
{
person* p;
p=new person(“Иванов”,35);
p->show(); // Что будет выведено?
p=new student(“Петров”,21,75.8);
p->show(); // Что будет выведено?
p=new teacher(“Поляков”,51,”Декан”);
p->show(); // Что будет выведено?

 50

return 0;
}
Ожидаем следующее:
void main()
{
person* p;
p=new person(“Иванов”,35);
p->show(); // Иванов 25
p=new student(“Петров”,21,75.8);
p->show(); // Петров 21 75.5
p=new teacher(“Поляков”,51,”Декан”);
p->show(); // Поляков 51 Декан
return 0;
}
А на самом деле выведено
void main()
{
person* p;
p=new person(“Иванов”,35);
p->show(); // Иванов 25
p=new student(“Петров”,21,75.8);
p->show(); // Петров 21
p=new teacher(“Поляков”,51,”Декан”);
p->show(); // Поляков 51
return 0;
}
Это происходит потому, что вызывается функция show()

базового класса, хотя указатель «p» настроен на объект произ-
водного класса.

void alarm(const bird& b)
{ b.fly(); }
person* p;
p->show();

 51

Дело в том, что выбор нужной функции выполняется при
компиляции программы и определяется типом указателя, а не
его значением.

Как мы уже знаем, такой режим называется ранним или
статическим связыванием.

Большую гибкость обеспечивает позднее (отложенное)
или динамическое связывание, которое предоставляется меха-
низмом виртуальных функций. Любая нестатическая функция
базового класса может быть сделана виртуальной, для чего ис-
пользуется ключевое слово virtual.

Пример 2.7
class base
{
public:
 virtual void print(){cout<<“\nbase”;}
. . .
};
// и так далее – см. предыдущий пример.
В этом случае будет напечатано
base
dir
dir

Пример 2.8
class person
{
protected:
string name;
int age;
public:
person(string Name=“Noname”,int Age=0):

name(Name),age(Age){}
virtual void show();

 52

};
class student:public person
{
protected:
double grade;
public:
student(string Name=“Noname”, int Age=0, double

Grade=0.0):
person(Name,Age),grade(Grade){}
virtual void show();
};

Таким образом, интерпретация каждого вызова виртуаль-

ной функции через указатель на базовый класс зависит от зна-
чения этого указателя, т.е. от типа объекта, для которого вы-
полняется вызов.

Виртуальные функции – это функции, объявленные в базо-
вом классе и переопределенные в производных классах. Иерар-
хия классов, которая определена открытым наследованием, соз-
дает родственный набор пользовательских типов, на все объекты
которых может указывать указатель базового класса. Выбор того,
какую виртуальную функцию вызвать, будет зависеть от типа
объекта, на который фактически (в момент выполнения про-
граммы) направлен указатель, а не от типа указателя.

Виртуальными могут быть только нестатические функ-
ции-члены.

Виртуальность наследуется. После того как функция оп-
ределена как виртуальная, ее повторное определение в произ-
водном классе (с тем же самым прототипом) создает в этом
классе новую виртуальную функцию, причем спецификатор
virtual может не использоваться.

Конструкторы не могут быть виртуальными в отличие от
деструкторов. Практически каждый класс, имеющий виртуаль-
ную функцию, должен иметь виртуальный деструктор.

 53

Если в производном классе ввести функцию с тем же име-
нем и типом, но с другой сигнатурой параметров, то эта функ-
ция производного класса не будет виртуальной.

Виртуальная функция может быть дружественной в дру-
гом классе.

Механизм виртуального вызова может быть подавлен
с помощью явного использования полного квалифицированного
имени (рис. 2.2).

Рис. 2.2

В Visual Studio C++ .NET для переопределения виртуаль-
ной функции вы можете использовать ключевое слово override

class person
{
public:
virtual void show();
};
class student:public person

 54

{
public:
void show()override;
};

2.4. Абстрактные классы

Абстрактным называется класс, в котором есть хотя бы
одна чистая (пустая) виртуальная функция.

Чистой виртуальной называется компонентная функция,
которая имеет следующее определение:

virtual тип имя_функции(список_формальных_параметров) = 0;
Чистая виртуальная функция ничего не делает и недос-

тупна для вызовов. Ее назначение – служить основой для под-
меняющих ее функций в производных классах. Абстрактный
класс может использоваться только в качестве базового для
производных классов.

Механизм абстрактных классов разработан для представ-
ления общих понятий, которые в дальнейшем предполагается
конкретизировать. При этом построение иерархии классов вы-
полняется по следующей схеме. Во главе иерархии стоит абст-
рактный базовый класс. Он используется для наследования ин-
терфейса. Производные классы будут конкретизировать и реа-
лизовать этот интерфейс. В абстрактном классе объявлены
чистые виртуальные функции, которые ,по сути, есть абстракт-
ные методы.

Пример 2.9
class Base{
public:
Base(); // конструктор по умолчанию
Base(const Base&); // конструктор копирования
virtual ~Base(); // виртуальный деструктор

 55

virtual void Show()=0; // чистая виртуальная функция
// другие чистые виртуальные функции
protected:
// защищенные члены класса
private:

};
class Derived: virtual public Base{
public:
Derived(); // конструктор по умолчанию
Derived(const Derived&); // конструктор копирования
Derived(параметры); // конструктор с параметрами
virtual ~Derived(); // виртуальный деструктор
void Show(); // переопределенная виртуальная

функция
// другие переопределенные виртуальные функции
// перегруженная операция присваивания
Derived& operator=(const Derived&);
// ее смысл будет понятен после прочтения главы 3
// другие перегруженные операции
protected:
// используется вместо private, если ожидается наследование
private:
// используется для деталей реализации
};
По сравнению с обычными классами абстрактные классы

пользуются «ограниченными правами». А именно:
– невозможно создать объект абстрактного класса;
– абстрактный класс нельзя употреблять для задания типа

параметра функции или типа возвращаемого функцией значения;
– абстрактный класс нельзя использовать при явном при-

ведении типов; в то же время можно определить указатели
и ссылки на абстрактный класс.

 56

Объект абстрактного класса не может быть формальным
параметром функции, однако формальным параметром может
быть указатель на абстрактный класс. В этом случае появляется
возможность передавать в вызываемую функцию в качестве
фактического параметра значение указателя на производный
объект, заменяя им указатель на абстрактный базовый класс.
Таким образом мы получаем полиморфные объекты.

В Visual Studio C++ .NET для определения абстрактных
функций и классов вы можете использовать ключевое слово
abctract.

class person abstract
{
protected:
string name;
int age;
public:
person(string Name,int Age): name(Name), age(Age){}
virtual void show()const abstract;
};

2.5. Включение объектов

Есть два варианта включения объекта типа X в класс A:
1) Объявить в классе А член типа Х;
class A{
X x;
//...
};
2) Объявить в классе А член типа X* или X&.
class A{
X* p;
X& r;
};

 57

Предпочтительно включать собственно объект, как в пер-
вом случае. Это эффективнее и меньше подвержено ошибкам,
так как связь между содержащимся и содержащим объектами
описывается правилами конструирования и уничтожения.

Например,
// Персона
class person{
char* name:
public:
person(char*);
//...
};
//Школа
class school{
person head; //директор
public:
school(char* name):head(name){}
//...
};
Второй вариант с указателем можно применять тогда, ко-

гда за время жизни «содержащего» объекта нужно изменить
указатель на «содержащийся» объект.

Например,
class school{
person* head; //директор
public:
school(char* name):head(new person(name)){}
~school{delete head;}
person* change(char * newname){
person* temp=head;
head=new person(newname);
return temp;}
//...
};

 58

Второй вариант можно использовать, когда требуется за-
давать «содержащийся» объект в качестве аргумента.

Например,
class school{
person* head; //директор
public:
school(person* q):head(q){}
//...
};
Имея объекты, включающие другие объекты, мы создаем

иерархию объектов. Она является альтернативой и дополнением
к иерархии классов. А как быть в том случае, когда количество
включаемых объектов заранее неизвестно и (или) может изменять-
ся за время жизни «содержащего» объекта. Например, если объект
school содержит учеников, то их количество может меняться.

Существуют два способа решения этой проблемы. Первый
состоит в том, что организуется связанный список включенных
объектов, а «содержащий» объект имеет член-указатель на на-
чало этого списка.

Например,
class person{
char* name;
person* next;
...
};
class school{
person* head; // указатель на директора школы
person* begin; // указатель на начало списка учеников
public:
shool(char* name):head(new person(name)),begin(NULL){}
~shool();
void add(person* ob);
//...
};

 59

В этом случае при создании объекта school создается пус-
той список включенных объектов. Для включения объекта вы-
зывается метод add(), которому в качестве параметра передается
указатель на включаемый объект. Деструктор последовательно
удаляет все включенные объекты. Объект person содержит поле
next, которое позволяет связать объекты в список. Законченная
программа, демонстрирующая этот способ включения, приведе-
на в упражнении.

Второй способ заключается в использовании специально-
го объекта-контейнера.

Контейнерный класс предназначен для хранения объектов
и представляет собой простые и удобные способы доступа к ним.

class school{
person* head;
container pupil;
...
};
Здесь pupil – контейнер, содержащий учеников. Все, что

необходимо для добавления, удаления, просмотра и т.д. вклю-
ченных объектов, должно содержаться в методах класса con-
tainer. Примером могут служить контейнеры стандартной биб-
лиотеки шаблонов (STL) С++.

Рассмотрим отношения между наследованием и включе-
нием.

2.6. Включение и наследование

Пусть класс В есть производный класс от класса D.
class B{...};
class D:public B{...};
Слово public в заголовке класса D говорит об открытом

наследовании. Открытое наследование означает, что производ-
ный класс D является подтипом класса В, т.е. объект D является
и объектом В. Такое наследование является отношением is-a

 60

или говорят, что D есть разновидность В. Иногда его называют
также интерфейсным наследованием. При открытом наследо-
вании переменная производного класса может рассматривается
как переменная типа базового класса. Указатель, тип которого –
«указатель на базовый класс», может указывать на объекты,
имеющие тип производного класса. Используя наследование,
мы строим иерархию классов.

Рассмотрим следующую иерархию классов:
class person{
protected:
char* name;
int age;
public:
person(char*,int);
virtual void show() const;
//...
};
class employee:public person{
protected:
int work;
public:
employee)char*,int,int);
void show() const;
//...
};
class teacher:public employee{
protected:
int teacher_work;
public:
teacher(char*,int,int,int);
void show() const;
//...
};

 61

Определим указатели на объекты этих классов.
person* pp;
teacher* pt;
Создадим объекты этих классов.
person a(“Петров”,25);
employee b(“Королев”,30.10);
pt=new teacher(“Тимофеев”,45.23,15);
Просмотрим эти объекты.
pp=&a;
pp->show(); //вызывает person::show для объекта а
pp=&b;
pp->show(); // вызывает employee::show для объекта b
pp=pt;
pp->show(); // вызывает teacher::show для объекта *pt
Здесь указатель базового класса pp указывает на объекты

производных классов employee, teacher, т.е. он совместим по
присваиванию с указателями на объекты этих классов. При вы-
зове функции show с помощью указателя pp вызывается функ-
ция show того класса, на объект которого фактически указывает
pp. Это достигается за счет объявления функции show виртуаль-
ной, в результате чего мы имеем позднее связывание.

Пусть теперь класс D имеет член класса В.
class D{
public:
B b;
//...
};
В свою очередь, класс В имеет член класса С.
class В{
public:
С с;
//...
};

 62

Такое включение называют отношением has-a. Используя
включение, мы строим иерархию объектов.

На практике возникает проблема выбора между наследо-
ванием и включением. Рассмотрим классы «Самолет» и «Двига-
тель». Новичкам часто приходит в голову сделать «Самолет»
производным от «Двигатель». Это неверно, поскольку самолет
не является двигателем, он имеет двигатель. Один из способов
увидеть это – задуматься, может ли самолет иметь несколько
двигателей? Поскольку это возможно, нам следует использовать
включение, а не наследование.

Рассмотрим следующий пример:
class B{
public:
virtual void f();
void g(); };
class D{
public:
B b;
void f(); };
void h(D* pd){
B* pb;
pb=pd; // #1 Ошибка
pb->g(); // #2 вызывается B::g()
pd->g(); // #3 Ошибка
pd->b.g(); // #4 вызывается B::g()
pb->f(); // #5 вызывается B::f()
pd->f(); // #6 вызывается D::f()
}
Почему в строках #1 и #3 ошибки ?
В строке #1 нет преобразования D* в B*.
В строке #3 D не имеет члена g().
В отличие от открытого наследования не существует не-

явного преобразования из класса в один из его членов, и класс,
содержащий член другого класса, не замещает виртуальных
функций того класса.

 63

Если для класса D использовать открытое наследование
class D:public B{
public:
void f();};
то функция
void h(D* pd){
B* pb=pd;
pb->g(); // вызывается B::g()
pd->g(); // вызывается B::g()
pb->f(); // вызывается D::f()
pd->f(); // вызывается D::f()
}
не содержит ошибок.
Поскольку D является производным классом от B, то вы-

полняется неявное преобразование из D в B. Следствием являет-
ся возросшая зависимость между B и D.

Существуют случаи, когда вам нравится наследование, но
вы не можете позволить таких преобразований.

Например, мы хотим повторно использовать код базового
класса, но не предполагаем рассматривать объекты производно-
го класса как экземпляры базового. Все, что мы хотим от насле-
дования – это повторное использование кода. Решением здесь
является закрытое наследование. Закрытое наследование не
носит характера отношения подтипов или отношения is-a. Мы
будем называть его отношением like-a(подобный) или наследо-
ванием реализации в противоположность наследованию ин-
терфейса. Закрытое (так же, как и защищенное) наследование не
создает иерархии типов.

С точки зрения проектирования закрытое наследование
равносильно включению, если не считать вопроса с замещением
функций. Важное применение такого подхода – открытое насле-
дование из абстрактного класса и одновременно закрытое (или
защищенное) наследование от конкретного класса для представ-
ления реализации.

 64

Пример 2.10. Бинарное дерево поиска
//Файл tree.h
// Обобщенное дерево
typedef void* Tp; //тип обобщенного указателя
int comp(Tp a,Tp b);
class node{ //узел
private:
friend class tree;
node* left;
node* right;
Tp data;
int count;
node(Tp d,Tp* l,Tp*r):data(d),left(l),right(r),count(1){}
friend void print(node* n);
};
class tree{//дерево
public:
tree(){root=0;}
void insert(Tp d);
Tp find(Tp d) const{return(find(root,d));}
void print() const{print(root);}
protected:
node* root; //корень
Tp find(node* r,Tp d) const;
void print(node* r) const;
};
Узлы двоичного дерева содержат обобщенный указатель

на данные data. Он будет соответствовать типу указателя в про-
изводном классе. Поле count содержит число повторяющихся
вхождений данных. Для конкретного производного класса мы
должны написать функцию comp для сравнения значений кон-
кретного производного типа. Функция insert() помещает узлы
в дерево.

 65

void tree::insert(TP d)
{node* temp=root;
node* old;
if(root==0){root=new node(d,0,0);return;}
while(temp!=0){
old=temp;
if(comp(temp->data,d)==0){(temp->count)++;return;}
if(comp(temp->data,d)>0)temp=temp->left;
 else temp=temp->right;}
it(comp(old->data,d)>0)old->left=new(d,0,0);
 else old->right=new node(d,0,0);
}
Функция Tp find(node* r,Tp d) ищет в поддереве с корнем r

информацию, представленную d.
Tp tree::find(node* r,Tp d)const
{if(r==0) return 0;
 else if(comp(r->data,d)==0)return(r->data);
 else if (comp(r->data,d)>0)return(find(r->left,d));
 else return(find(r->right,d));
}
Функция print() – стандартная рекурсия для обхода бинар-

ного дерева
void tree::print(node* r) const
{if(r!=0){
 print(r->left);
 ::print(r);
 print(r->right);
}
В каждом узле применяется внешняя функция ::print().
Теперь создадим производный класс, который в качестве

членов данных хранит указатели на char.
//Файл s_tree.cpp
#include “tree.h”
#include <string.h>

 66

class s_tree:private tree{
public:
s_tree(){}
void insert(char* d){tree::insert(d);}
char* find(char* d) const {return(char*)tree::find(d));
voif print() const{tree::print();}
};
В классе s_tree функция insert использует неявное преоб-

разование char* к void*.
Функция сравнения comp выглядит следующим образом:
int comp(Tp a,Tp b)
{return(strcmp((char*)a,(char*)b));}
Для вывода значений, хранящихся в узле, используется

внешняя функция:
print(node* n){
cout<<(char*)(n->data)<<endl;
cout<<n->cout<<endl;
}
Здесь для явного приведения типа void* к char* мы использу-

ем операцию приведения типа (имя_типа)выражение. Более на-
дежным является использование оператора static_cast<char*>(Tp)

2.7. Множественное наследование

 Класс может иметь несколько непосредственных базовых
классов:

class A1{. . .};
class A2{. . .};
class A3{. . .};
class B : public A1,public A2,public A3{. . .};
Такое наследование называется множественным. При

множественном наследовании никакой класс не может больше
одного раза использоваться в качестве непосредственного базо-
вого. Однако класс может больше одного раза быть непрямым
базовым классом.

 67

class X{. . . f(); . . .};
class Y : public X{. . .};
class Z : public X{. . .};
class A : public Y,public Z{. . .};
Имеем следующую иерархию классов (и объектов):

 X X

 Y Z

 A

Такое дублирование класса соответствует включению в про-
изводный объект нескольких объектов базового класса. В этом
примере существуют два объекта класса Х. Для устранения воз-
можных неоднозначностей нужно обращаться к конкретному
компоненту класса Х, используя полную квалификацию

Y : : X : : f() или Z : : X : : f)
Пример
class circ // окружность
{
 int x,y,r;
public:
 circ(int x1,int y1,int r1){x = x1; y = y1; r = r1;}
 void show();
. . .
};
class square // квадрат
{
 int x,y,l;
 // x, y – координаты центра
 // l – длина стороны

 68

public:
 square(int x1,int y1,int l1){x = x1; y = y1; l = l1;}
 void show();
 . . .
};
class cirlsqrt : public circ,public square // окружность, вписан-

ная в квадрат
{
public:
 cirlsqrt(int x1,int y1,int r1) : circ(x1,y1,r1),square(x1,y1,2*r1){. . .}
 void show()
 {circ : : show();
 square : : show();
 }
 . . .
};
Чтобы устранить дублирование объектов непрямого базо-

вого класса при множественном наследовании, этот базовый
класс объявляют виртуальным.

class X{. . .};
class Y : virtual public X{. . .};
class Z : virtual public X{. . .};
class A : public Y,public Z{. . .};
Теперь класс А будет включать только один экземпляр Х,

доступ к которому равноправно имеют классы Y и Z.

 X

 Y Z

 A

 69

Пример 2.11
class base
 {int x; char c,v[10]; . . .};
class abase : public virtual base
 {double y; . . .};
class bbase : public virtual base
 {float f; . . .};
class top : public abase, public bbase
 {long t; . . .};
void main()
{cout<<sizeof(base)<< endl;
 cout<<sizeof(abase)<< endl;
 cout<<sizeof(bbase)<<endl;
 cout<<sizeof(top)<< endl;
}
Здесь
♦ объект класса base занимает в памяти 13 байт:
2 байта – поле int;
1 байт – поле char;
10 байт – поле char[10].
♦ объект класса abase занимает в памяти 23 байта:
8 байт – поле double;
13 байт – поля базового класса base;
2 байта – для связи в иерархии виртуальных классов;
♦ объект класса bbase занимает в памяти 19 байт:
4 байта – поле float;
13 байт – поля базового класса base;
2 байта для связи в иерархии виртуальных классов;
♦ объект класса top занимает в памяти 33 байта:
4 байта поле long;
10 байт – данные и связи abase;
6 байт – данные и связи bbase;
13 байт – поля базового класса base.

 70

Если при наследовании base в классах abase и bbase базо-
вый класс сделать невиртуальным, то результаты будут такими:

♦ объект класса base занимает в памяти 13 байт;
♦ объект класса abase занимает в памяти 21 байт (нет 2 байт

для связи);
♦ объект класса bbase занимает в памяти 17 байт (нет 2 байт

для связи);
♦ объект класса top занимает в памяти 42 байта (объект

base входит дважды).

2.8. Локальные и вложенные классы

Класс может быть объявлен внутри блока, например внут-
ри определения функции. Такой класс называется локальным.
Локализация класса предполагает недоступность его компонен-
тов вне области определения класса (вне блока).

Локальный класс не может иметь статических данных, так
как компоненты локального класса не могут быть определены
вне текста класса.

Внутри локального класса разрешено использовать из
объемлющей его области только имена типов, статические (static)
переменные, внешние (extern) переменные, внешние функции и
элементы перечислений. Из того, что запрещено, важно отметить
переменные автоматической памяти. Существует еще одно важ-
ное ограничение для локальных классов – их компонентные
функции могут быть только inline.

Внутри класса разрешается определять типы, следова-
тельно, один класс может быть описан внутри другого. Такой
класс называется вложенным. Вложенный класс является ло-
кальным для класса, в рамках которого он описан, и на него ра-
пространяются те правила использования локального класса,
о которых говорилось выше. Следует особо сказать, что вло-
женный класс не имеет никакого особого права доступа к чле-
нам охватывающего класса, то есть он может обращаться к ним

 71

только через объект типа этого класса (так же, как и охваты-
вающий класс не имеет каких-либо особых прав доступа к вло-
женному классу).

Пример 2.12
int i;
class global{
static int n;
public:
int i;
static float f;
 class intern{
 void func(global& glob)
 {i=3; // Ошибка: используется имя нестатического данного
 // из охватывающего класса
 f=3.5; // Правильно: f-статическая функция
 ::i=3; // Правильно: i-внешняя (по отношению к классу)
 // переменная
 glob.i=3;// Правильно: обращение к членам охватывающего
 // класса через объект этого класса
 n=3; // Ошибка: обращение к private-члену охватывающего
 //класса
 } }; };

Пример 2.13. Класс «ПРЯМОУГОЛЬНИК»
Определим класс «прямоугольник». Внутри этого класса

определим класс как вложенный класс «отрезок». Прямоуголь-
ник будет строится из отрезков.

#include <conio.h>
#include <graphics.h>
// точка
class point{
protected:
int x,y;

 72

public:
point(int x1=0,int y1=0):x(x1),y(y1){}
int& getx(){return x;}
int& gety(){return y;}
};
// прямоугольник
class rect{
// вложенный клас “отрезок”
class segment{
point a,b; //начало и конец отрезка
public:
segment(point a1=point(0,0),point b1=point(0,0))
{a.getx()=a1.getx();
 a.gety()=a1.gety();
 b.getx()=b1.getx();
 b.gety()=b1.gety();}
 point& beg(){return a;}
 point& end(){return b;}
 void Show() //показать отрезок
 {line(a.getx(),a.gety(),b.getx(),b.gety());}
}; //конец определения класса segment
segment ab,bc,cd,da; //стороны прямоугольника
public:
rect(point c1=point(0,0),int d1=0,int d2=0)
{point a,b,c,d; //координаты вершин
 a.getx()=c1.getx();
 a.gety()=c1.gety();
 b.getx()=c1.getx()+d1;
 b.gety()=c1.gety();
 c.getx()=c1.getx()+d1;
 c.gety()=c1.gety()+d2;
 d.getx()=c1.getx();
 d.gety()=c1.gety()+d2;
//граничные точки отрезков

 73

ab.beg()=a; ab.end()=b;
bc.beg()=b; bc.end()=c;
cd.beg()=c; cd.end()=d;
da.beg()=d; da.end()=a;}
void Show() //пока прямоугольник
{ab.Show();
 bc.Show();
 cd.Show();
 da.Show();}
}; //конец определения класса rect

void main()
{int dr=DETECT,mod;
 initgraph(&dr,&mod,"C:\\tc3\\bgi");
 point p1(120,80);
 point p2(250,240);
 rect A(p1,80,30);
 rect B(p2,100,200);
 A.Show();getch();
 B.Show();getch();
 closegraph();
}
Используя эту методику, можно определить любую гео-

метрическую фигуру, состоящую из отрезков прямых.

Пример 2.14. Класс «СТРОКА»
Класс string хранит строку в виде массива символов с за-

вершающим нулем в стиле Си и использует механизм подсчета
ссылок для минимизации операций копирования.

Класс string пользуется тремя вспомогательными классами:
– srep, который позволяет разделять действительное пред-

ставление между несколькими объектами типа string с одинако-
выми значениями;

 74

– range – для генерации исключения в случае выхода за
пределы диапазона;

– cref – для реализации операции индексирования, кото-
рый различает операции чтения и записи.

class string{
struct srep;
srep* rep;
public:
class cref; //ссылка на char
class range{};
//…
};
Так же, как и другие члены, вложенный класс может быть

объявлен в самом классе, а определен позднее:
struct string::srep{
char *s; //указатель на элементы
int sz; //количество символов
int n; //количество обращений
srep(const char *p)
{n=1;
sz=strlen(p);
s=new char[sz+1];
strcpy(s,p);
}
~srep(){delete[]s;}
srep *get_copy() //сделать копию,если необходимо
{if(n==1)return this;
n--;
return new srep(s);}
void assign(const char *p)
{if(strlen(p)!=sz){delete[]s;
sz=strlen(p);
s=new char[sz+1];}
strcpy(s,p);}

 75

private: //предохраняет от копирования
sper(const srep&);
srep& operator=(const srep&);
}

2.9. Пример программы для Microsoft Visual Studio

Задание: создать иерархию классов – персона, студент, пре-
подаватель и класс «список», хранящий объекты этих классов.

Файл list.h – Определение классов
Абстрактный класс Person содержит абстрактные (чистые

виртуальные) функции Show() и Input(), которые должны быть
определены в производных классах. В классе Person объявлен
дружественный ему класс List (рис. 2.3).

Рис. 2.3

 76

class Person
{
public:
Person();
Person(char*,int);
virtual~Person(){};
virtual void Show()=0; //показать объект
virtual void Input()=0; //ввести значения данных объекта
friend class List;
protected:
char name[20]; //имя персоны
int age; //возраст персоны
Person* next; //указатель на следующий объект в списке
};

class Student:public Person{
public:
Student();
Student(char* NAME,int AGE,float GRADE);
void Show();
void Input();
protected:
float grade; //рейтинг
};

class Teacher:public Person{
public:
Teacher();
Teacher(char* NAME,int AGE,int WORK);
void Show();
void Input();
protected:
int work; //рабочий стаж
};
class List

 77

{
private:
Person* begin; //указатель на начало списка
public:
List();
~List();
void Insert(Person*); //вставить в список объект
void Show(); //показать весь список
};
Файл person.cpp – Определение функций класс Person

(рис. 2.4)

Рис. 2.4

#include<stdlib.h>
#include<iostream.h>
#include<string.h>
#include"list.h"

 78

Person::Person()
{strcpy(name,"NONAME");
age=0;
next=0;};

Person::Person(char*NAME,int AGE)
{
strcpy(name,NAME);
age=AGE;
next=0;}
Файл student.cpp – Определение функций класса Student

(рис. 2.5)

Рис. 2.5

#include<stdlib.h>
#include<iostream.h>
#include<string.h>
#include"list.h"

 79

Student::Student()
{grade=0;}

Student::Student(char* NAME,int AGE,float GRADE)
:Person(NAME,AGE)

{
grade=GRADE;
next=0;
}

void Student::Show(){cout<<"name="<<name<<"
age="<<age<<" grade="<<grade<<endl;}

void Student::Input()
{
cout<<"name=";cin>>name;
cout<<"age=";cin>>age;
cout<<"grade=";cin>>grade;
}
Файл teacher.cpp– Определение функций класса Teacher

(рис. 2.6)

Рис. 2.6

 80

#include<stdlib.h>
#include<iostream.h>
#include<string.h>
#include"list.h"

Teacher::Teacher()
{work=0;}

Teacher::Teacher(char* NAME,int AGE,int

WORK):Person(NAME,AGE)
{
work=WORK;
next=0;
}

void Teacher::Show(){cout<<"name="<<name<<"
age="<<age<<" work="<<work<<endl;}
void Teacher::Input()
{
cout<<"name=";cin>>name;
cout<<"age=";cin>>age;
cout<<"work=";cin>>work;
}

Файл list.cpp – Определение функций класса List (рис. 2.7)

#include<stdlib.h>
#include<iostream.h>
#include<string.h>
#include"list.h"
List::List(){begin=0;} //создается пустой список
List::~List(){
Person*r;
//проходим по списку и удаляем каждый объект

 81

Рис. 2.7

while(begin!=0){
r=begin;
begin=begin->next;
delete r;}}

void List::Insert(Person*p){
Person *r;
//вставляем объект в начало списка
r=begin;
begin=p;
p->next=r;}

void List::Show()
{Person *r;
r=begin;
//проходим по списку и вызываем для каждого объекта
//его виртуальную функцию Show

 82

while(r!=0)
{r->Show();
r=r->next;}
}

Файл main.cpp – Демонстрационная программа (рис. 2.8)

Рис. 2.8

#include<iostream.h>
#include"list.h"
#include<process.h>
int main()
{
List list;
Student* ps;
Teacher* pt;
ps=new Student("Ivanov",21,50.5);
list.Insert(ps);
pt=new Teacher("Petrov",34,10);

 83

list.Insert(pt);
ps=new Student;
ps->Input();
list.Insert(ps);
pt=new Teacher;
pt->Input();
list.Insert(pt);
list.Show();
system("pause");
return 0;
}

2.10. Упражнения

Упражнение 1. В этом упражнении мы покажем, что функ-
ции-члены базового и производного классов не составляют множе-
ства перегруженных функций, т.е. функция set класса CDerived
скрывает видимость функции-члена CBase::set, а не перегружает
ее. Вызов функции-члена базового класса из производного в этом
случае приводит к ошибке при компиляции.

В среде Microsoft Visual C++ создайте следующую про-
грамму и попытайтесь ее откомпилировать:

#include<iostream.h>
class CBase
{
protected:
 int x;
public:
 CBase(int);
 void print();
 void set(int);
};

 84

CBase::CBase(int X):x(X){}
void CBase::print(){cout<<x<<endl;}
void CBase::set(int X){x=X;}

class CDerived:public CBase
{
protected:
 int y;
public:
 CDerived(int,int);
 void print();
 void set(int,int);
};
CDerived::CDerived(int X,int Y):CBase(X),y(Y){}
void CDerived::print(){cout<<x<<' '<<y<<endl;}
void CDerived::set(int X,int Y){x=X;y=Y;}

int main()
{
CDerived ob(5,6);
ob.set(7,8);
ob.print();
ob.set(9);// Ошибка компиляции
ob.print();
ob.CBase::print();
return 0;
}

При компиляции выделенной строки вы получите сообщение:
Compiling...
error C2660: 'set' : function does not take 1 parameters
Error executing cl.exe.

 85

Замените ошибочную строку строкой b.set(9);
на ob.CBase::set(9); откомпилируйте и выполните програм-

му, и вы увидите, что она выполняется без ошибки.
Результат выполнения посмотрите здесь inh1.exe
Другой способ решения этой проблемы – написать в про-

изводном классе небольшую встроенную функцию заглушку
для вызова функции базового класса.

class CDerived:public CBase
{
protected:
 int y;
public:
 CDerived(int,int);
 void print();
 void set(int,int);
 void bset(int i){CBase::set(i);} //Функция-заглушка
};

Выполнив
int main()
{
CDerived ob(5,6);
ob.set(7,8);
ob.print();
ob.bset(9); //
ob.print();
ob.CBase::print();
system("pause");
return 0;
}

Вызов ob.bset(9); дает тот же результат, что и ob.CBase::set(9);

 86

Упражнение 2. В этом упражнении мы покажем исполь-
зование виртуальных функций.

Создадим иерархию классов: «птицы» имеют свойство
«летать» и наследуемый класс «пингвин», который летать не
умеет.

#include<iostream.h>
//птицы
class bird{
//...
public:
void fly()const{cout<<"fly"<<endl;} //может летать
//Если не const, то при вызове в функции alarm() b.fly();
// сообщение
//cannot convert 'this' pointer from 'const class bird' to 'class bird &'
};
//пингвин
class penguin:public bird{
//...
 public:
 // Переопределяем, чтобы пингвин не летал
 void fly()const{cout<<"nofly"<<endl;}
};

int main()
{
bird b;
penguin p;
b.fly();//летит
p.fly();//не летит
return 0;
}

Создадим и выполним эту программу. Все нормально:

птицы летают, но пингвин не летает.

 87

Усложним задание. Добавим функцию alarm() – сигнал «тре-
вога», который поступает всем птицам, в том числе и пингвину.
Реакция птиц на сигнал «тревога» : убежать, улететь.

#include<iostream.h>
//птицы
class bird{
//...
public:
void fly()const{cout<<"fly"<<endl; }
};
//пингвин
class penguin:public bird{
//...
 public:
 void fly()const{cout<<"nofly"<<endl;}
};
//Сигнал тревоги
void alarm(const bird& b)
{
b.fly();
}

int main()
{
bird b;
penguin p;
b.fly();//летит
p.fly();//не летит
alarm(b);//полетела
alarm(p);//как ни странно, и пингвин полетел
return 0;
}

 88

Создадим и выполним эту программу. Видим, что все
птицы, в том числе и пингвин, летят.

Сделаем функцию fly() виртуальной.
virtual void fly()const{cout<<"fly"<<endl;
Создадим и выполним эту программу. Все нормально: пти-

цы летают, но пингвин не летает.
int main()
{
bird b;
penguin p;
b.fly();//летит
p.fly();//не летит
alarm(b);//полетела
alarm(p);//не летит, а только бежит
return 0;
}
Более грамотным решением будет создание абстрактного

класса «птицы» с абстрактной виртуальной функцией fly().
В конкретном классе птиц эта функция переопределяется
должным образом.

#include<iostream.h>
// Абстрактный класс-птицы
class bird{
//...
public:
virtual void fly()const=0;//Абстрактный метод-
//должен быть переопределен в производных классах
};
//ворона
class crow:public bird{
//...
public:
 //Ворона летает
 void fly()const{cout<<"fly"<<endl;}

 89

};

//пингвин
class penguin:public bird{
//...
 public:
 //Пингвин не летает
 void fly()const{cout<<"nofly"<<endl;}
};
//Сигнал тревоги
void alarm(const bird& b)
{
b.fly();
}

int main()
{
crow c;
penguin p;
c.fly(); // летит
p.fly(); //не летит
alarm(c); //полетела
alarm(p); //не летит, а бежит
 return 0;
}

 90

3. ПЕРЕГРУЗКА ОПЕРАЦИЙ

В языке С++ определены множества операций над пере-
менными стандартных типов, такие как +, *, / и т.д. Каждую
операцию можно применить к операндам определенного типа.

К сожалению, лишь ограниченное число типов непосредст-
венно поддерживается любым языком программирования. Напри-
мер, С и С++ не позволяют выполнять операции с комплексными
числами, матрицами, строками, множествами. Однако все эти опе-
рации можно выполнить через классы в языке С++.

Рассмотрим пример.
Пусть заданы множества А и В:
А = {а1,а2,а3};
В = {a3,a4,a5},

и мы хотим выполнить операции объединения (+) и пересечения
(*) множеств.

А+В = {a1,a2,a3,a4,a5}
А*В = {a3}.
Можно определить класс Set – «множество» и определить

операции над объектами этого класса, выразив их с помощью
знаков операций, которые уже есть в языке С++, например, + и *.
В результате операции + и * можно будет использовать, как
и раньше, а также снабдить их дополнительными функциями
(объединения и пересечения). Как определить, какую функцию
должен выполнять оператор: старую или новую? Очень просто –
по типу операндов. А как быть с приоритетом операций? Сохра-
няется определенный ранее приоритет операций. Для распро-
странения действия операции на новые типы данных надо опре-
делить специальную функцию, называемую «операция-функция»
(operator-function). Ее формат:

тип_возвр_значения operator знак_операции
(специф_параметров) {операторы_тела_функции}

 91

При необходимости может добавляться и прототип:
тип_возвр_значения operator знак_операции
(специф_параметров)
Если принять, что конструкция operator знак_операции

есть имя некоторой функции, то прототип и определение опера-
ции-функции подобны прототипу и определению обычной
функции языка С++. Определенная таким образом операция на-
зывается перегруженной (overload).

Чтобы была обеспечена явная связь с классом, операция-
функция должна быть либо компонентом класса, либо она
должна быть определена в классе как дружественная, и у нее
должен быть хотя бы один параметр типа класс (или ссылка на
класс). Вызов операции-функции осуществляется так же, как
и любой другой функции С++: operator⊕ .Однако разрешается
использовать сокращенную форму ее вызова: a⊕ b , где ⊕ – знак
операции.

3.1. Перегрузка унарных операций

♦ Любая унарная операция ⊕ может быть определена
двумя способами: либо как компонентная функция без парамет-
ров, либо как глобальная (возможно, дружественная) функция
с одним параметром. В первом случае выражение ⊕ Z означает
вызов Z.operator⊕ (), во втором – вызов operator⊕ (Z).

♦ Унарные операции, перегружаемые в рамках опреде-
ленного класса, могут перегружаться только через нестатиче-
скую компонентную функцию без параметров. Вызываемый
объект класса автоматически воспринимается как операнд.

♦ Унарные операции, перегружаемые вне области класса
(как глобальные функции), должны иметь один параметр типа
класса. Передаваемый через этот параметр объект воспринима-
ется как операнд.

 92

Синтаксис:
а) в первом случае (описание в области класса):
тип_возвр_значения operator знак_операции
б) во втором случае (описание вне области класса):
тип_возвр_значения operator
знак_операции(идентификатор_типа)

Примеры
1)
class person
{int age;
//другие поля
public:
 //конструкторы, деструктор и другие методы
void operator++(){ ++age;}
};
void main()
{
class person jon;
 ++jon;
}

 2)
class person
{int age;
//другие поля
public:
//конструкторы, деструктор и другие методы
friend void operator++(person&);
};

void operator++(person&ob)
{++ob.age;}

 93

void main()
{
class person jon;
 ++jon;
}

3.2. Перегрузка бинарных операций

♦ Любая бинарная операция ⊕ может быть определена
двумя способами: либо как компонентная функция с одним па-
раметром, либо как глобальная (возможно дружественная)
функция с двумя параметрами. В первом случае x⊕ y означает
вызов x.operator⊕ (y), во втором – вызов operator⊕ (x,y).

♦ Операции, перегружаемые внутри класса, могут пере-
гружаться только нестатическими компонентными функциями
с параметрами. Вызываемый объект класса автоматически вос-
принимается в качестве первого операнда.

♦ Операции, перегружаемые вне области класса, должны
иметь два операнда, один из которых должен иметь тип класса.

Примеры.
1)class person{…};
class adresbook
{
// содержит в качестве компонентных данных
// множество объектов типа person, представляемых как
//динамический массив, список или дерево
public:
//конструкторы, деструктор и другие методы
person& operator[](int); //доступ к i-му объекту
};
person& adresbook : : operator[](int i)
{/*реализация метода*/}
void main()
{class adresbook persons;

 94

 class person record;
 record = persons[3];
}

2) class person{…};
class adresbook
{ // содержит в качестве компонентных данных
// множество объектов типа person, представляемых как
//динамический массив, список или дерево
public:
//конструкторы, деструктор и другие методы
 friend person& operator[](const adresbook&,int); //доступ к
//i-му объекту
};
 person& operator[](const adresbook& ob ,int i)
{ /*реализация метода*/}

void main()
{class adresbook persons;
 class person record;
 record = persons[3];
}

3.3. Перегрузка операций ++ и --

Унарные операции инкремента ++ и декремента – сущест-
вуют в двух формах: префиксной и постфиксной. В современ-
ной спецификации С++ определен способ, по которому компи-
лятор может различить эти две формы. В соответствии с этим
способом задаются две версии функции operator++() и operator—().
Они определены следующим образом:

– префиксная форма:
operator++();
operator—();

 95

– постфиксная форма:
operator++(int);
operator—(int);
Указание параметра int для постфиксной формы не спе-

цифицирует второй операнд, а используется только для отличия
от префиксной формы.

Пример
class person
{ int age;
//другие поля
public:
 //конструкторы, деструктор и другие методы
 void operator++(){ ++age;}//префиксная форма
 void operator++(int){ age++;} // постфиксная форма
 };
void main()
{class person jon;
 ++jon; jon++}

3.4. Перегрузка операции вызова функции

Это операция ‘()’. Она является бинарной операцией. Пер-
вым операндом обычно является объект класса, вторым – список
параметров.

Пример
class matriza // двумерный массив вещественных чисел
{
// поля класса
public:
//конструкторы, деструктор и другие методы
double operator()(int,int); //доступ к элементам матрицы

по индексам
};
double matriza::operator()(int i,int j)

 96

{/*реализация метода*/}
void main()
{
class matriza a(7,8);//создание матрицы 7*8
double k;
k:=a(5,6);// k получает значение элемента матрицы
//с индексами 5 и 6
}

3.5. Перегрузка операции присваивания

Операция отличается тремя особенностями:
– операция не наследуется;
– операция определена по умолчанию для каждого класса

в качестве операции поразрядного копирования объекта, стоя-
щего справа от знака операции, в объект, стоящий слева;

– операция может перегружаться только в области опре-
деления класса. Это гарантирует, что первым операндом всегда
будет леводопустимое выражение.

Если вас устраивает поразрядное копирование, нет смысла
создавать собственную функцию operator=(). Однако бывают слу-
чаи, когда поразрядное копирование нежелательно. Например,
использование предопределенной операции присваивания для
классов, содержащих указатели в качестве компонентных дан-
ных, чаще всего приводит к ошибкам. Покажем это на примере.

Пользовательский класс – строка string:
class string
{
char *p; //указатель на строку
int len; //текущая длина строки
public:
string(char *);
~string();
void show();

 97

};
string::string(char*ptr)
{len=strlen(ptr);
p=new chat[len+1];
if(!p){cout<<”Ошибка выделения памяти\n”);
 exit(1);}
strcpy(p,ptr);}
string::~string()
{delete[]p;}
void string::show()
{cout<<*p<<”\n”;}

void main()
string s1(“Это первая строка”),
 s2(“А это вторая строка”);
s1.show; s2.show;
s2=s1; // Это ошибка
s1.show; s2.show;
}
В чем здесь ошибка? Когда объект s1 присваивается объ-

екту s2, указатель p объекта s2 начинает указывать на ту же са-
мую область памяти, что и указатель p объекта s1. Таким обра-
зом, когда эти объекты удаляются, память, на которую указыва-
ет указатель p объекта s1, освобождается дважды, а память, на
которую до присваивания указывал указатель p объекта s2, не
освобождается вообще.

Хотя в данном примере эта ошибка и неопасна, в реаль-
ных программах с динамическим распределением памяти она
может вызвать крах программы.

В этом случае необходимо самим перегружать операцию
присваивания. Покажем, как это сделать для нашего класса string.

class string
{
char *p; //указатель на строку
int len; //текущая длина строки

 98

public:
...
string& operator=(string&);
};
string& string::operator=(string& ob);
{if(this==&ob) return *this;
if(len<ob.len){
 //требуется выделить дополнительную память
delete[]p;
p=new char[ob.len+1];
if(!p){cout<<”Ошибка выделения памяти\n”);
 exit(1);}
len=ob.len;
strcpy(p,ob.p);
return *this;}

В этом примере выясняется, не происходит ли самопри-

сваивание (типа ob=ob). Если имеет место самоприсваивание, то
просто возвращается ссылка на объект.

Затем проверяется, достаточно ли памяти в объекте, стоя-
щем слева от знака присваивания, для объекта, стоящего справа
от знака присваивания. Если недостаточно, то память освобожда-
ется и выделяется новая, требуемого размера. Затем строка копи-
руется в эту память.

Отметим две важные особенности функции operanor=.
Во-первых, в ней используется параметр-ссылка. Это необходимо
для предотвращения создания копии объекта, передаваемого че-
рез параметр по значению. В случае создания копии она удаляет-
ся вызовом деструктора при завершении работы функции. Но де-
структор освобождает память, на которую указывает р. Однако
эта память все еще необходима объекту, который является аргу-
ментом. Параметр-ссылка помогает решить эту проблему.

Во-вторых, функция operator=() возвращает не объект, а ссыл-
ку на него. Смысл этого тот же, что и при использовании парамет-

 99

ра-ссылки. Функция возвращает временный объект, который уда-
ляется после завершения ее работы. Это означает, что для времен-
ной переменной будет вызван деструктор, который освобождает
память по адресу р. Но она необходима для присваивания значения
объекту. Поэтому, чтобы избежать создания временного объекта,
в качестве возвращаемого значения используется ссылка.

Другой путь решения проблем, описанных выше, – это
создание конструктора копирования. Но конструктор копирова-
ния может оказаться не столь эффективным решением, как
ссылка в качестве параметра и ссылка в качестве возвращаемого
значения функции. Это происходит потому, что использование
ссылки исключает затраты ресурсов, связанных с копированием
объектов в каждом из двух указанных случаев.

3.6. Перегрузка операции new

Операция new, заданная по умолчанию, может быть в двух
формах:

1) new тип <инициализирующее выражение>
2) new тип[];
Первая форма используется не для массивов, вторая – для

массивов.
Перегруженную операцию new можно определить в сле-

дующих формах, соответственно для немассивов и для массивов:
void* operator new(size_t t[,остальные аргументы]);
void* operator new[](size_t t[,остальные аргументы]);
Первый и единственный обязательный аргумент t всегда

должен иметь тип size_t. Если аргумент имеет тип size_t, то
в операцию-функцию new автоматически подставляется аргу-
мент sizeof(t), т.е. она получает значение, равное размеру объек-
та t в байтах.

Например, пусть задана следующая функция:
void* operator new(size_t t,int n){return new char[t*n];}
и она вызывается следующим образом:

 100

double *d=new(5)double;
Здесь t=double, n=5.
В результате после вызова значение t в теле функции бу-

дет равно sizeof(double).
При перегрузке операции new появляется несколько гло-

бальных операций new, одна из которых определена в самом
языке по умолчанию, а другие являются перегруженными. Воз-
никает вопрос: как различить такие операции? Это делается пу-
тем изменения числа и типов их аргументов. При изменении
только типов аргументов может возникнуть неоднозначность,
являющаяся следствием возможных преобразований этих типов
друг к другу. При возникновении такой неоднозначности следу-
ет при обращении к new задать тип явно, например:

new((double)5)double;
Одна из причин, по которой перегружается операция new,

состоит в стремлении придать ей дополнительную семантику,
например, обеспечение диагностической информацией или ус-
тойчивости к сбоям. Кроме того, класс может обеспечить более
эффективную схему распределения памяти, чем та, которую
предоставляет система.

В соответствии со стандартом С++ в заголовочном файле
<new> определены следующие функции-операции new, позво-
ляющие передавать наряду с обязательным первым size_t аргу-
ментом и другие:

void* operatop new(size_t t)throw(bad_alloc);
void* operatop new(size_t t,void* p)throw();
void* operatop new(size_t t,const nothrow&)throw();
void* operatop new(size_t t,allocator& a);
void* operatop new[](size_t t)throw(bad_alloc);
void* operatop new[](size_t t,void* p)throw();
void* operatop new[](size_t t,const nothrow&)throw();
Эти функции используют генерацию исключений (throw)

и собственный распределитель памяти (allocator).

 101

Версия с nothrow выделяет память, как обычно, но если вы-
деление заканчивается неудачей, возвращается 0, а не генериру-
ется bad_alloc. Это позволяет нам для выделения памяти исполь-
зовать стратегию обработки ошибок до генерации исключения.

Правила использования операции new
1. Объекты, организованные с помощью new, имеют неог-

раниченное время жизни. Поэтому область памяти должна осво-
бождаться оператором delete.

2. Если резервируется память для массива, то операция
new возвращает указатель на первый элемент массива.

3. При резервировании памяти для массива все размерно-
сти должны быть выражены положительными величинами.

4. Массивы нельзя инициализировать.
5. Объекты классов могут организовываться с помощью

операции new, если класс имеет конструктор по умолчанию.
6. Ссылки не могут организовываться с помощью опера-

ции new, так как для них не выделяется память.
7. Операция new самостоятельно вычисляет потребность

в памяти для организуемого типа данных, поэтому первый па-
раметр операции всегда имеет тип size_t.

Обработка ошибок операции new
Обработка ошибок операции new происходит в два этапа:
1. Устанавливается, какие предусмотрены функции для

обработки ошибок. Собственные функции должны иметь тип
new_handler и создаются с помощью функции set_new_handler.
В файле new.h объявлены

typedef void(*new_handler)();
new_handler set_new_handler(new_handler new_p);
2. Вызывается соответствующая new_handler функция.

Эта функция должна:
– либо вызвать bad_alloc исключение;
– либо закончить программу;

 102

– либо освободить память и попытаться распределить ее
заново.

Диагностический класс bad_alloc объявлен в new.h.
В реализации ВС++ включена специальная глобальная пе-

ременная _new_handler, значением которой является указатель
на new_handler функцию, которая выполняется при неудачном
завершении new. По умолчанию, если операция new не может
выделить требуемое количество памяти, формируется исклю-
чение bad_alloc. Изначально это исключение называлось xalloc
и определялось в файле except.h. Исключение xalloc продолжает
использоваться во многих компиляторах. Тем не менее оно вы-
тесняется определенным в стандарте С++ именем bad_alloc.

Рассмотрим несколько примеров.

Пример 1. В примере использование блока try...catch дает
возможность проконтролировать неудачную попытку выделе-
ния памяти.

#include <iostream>
#include <new>
void main()
{double *p;
try{
p=new double[1000];
cout<<"Память выделилась успешно"<<endl;
}
catch(bad_alloc xa)
{cout<<"Ошибка выделения памяти\n";
cout<<xa.what(); return;} }

Пример 2. Поскольку в предыдущем примере при работе
в нормальных условиях ошибка выделения памяти маловероят-
на, в этом примере ошибка выделения памяти достигается при-
нудительно. Процесс выделения памяти длится до тех пор, пока
не произойдет ошибка.

#include <iostream>

 103

#include <new>
void main()
{double *p;
do{
try{
p=new double[1000];
//cout<<"Память выделилась успешно"<<endl;
}
catch(bad_alloc xa)
{cout<<"Ошибка выделения памяти\n";
cout<<xa.what();
 return;}
}while(p);
}

Пример 3. Демонстрируется перегруженная форма опера-
ции new-операция new(nothow).

#include <iostream>
#include <new>
void main()
{double *p;
struct nothrow noth_ob;
do{
p=new(noth_ob) double[1000];
if(!p) cout <<"Ошибка выделения памяти\n";
else cout<<"Память выделилась успешно\n";
}while(p);
}

Пример 4. Демонстрируются различные формы перегруз-
ки операции new.

#include<iostream.h>
#include<new.h>
double *p,*q,**pp;
class demo

 104

{ int value;
public:
 demo(){value=0;}
 demo(int i){value = 1;}
 void* operator new(size_t t,int,int);
 void* operator new(size_t t,int);
 void* operator new(size_t t,char*);
 };

void* demo :: operator new(size_t t,int i, int j)

{
 if(j) return new(i)demo;
 else return NULL;
}
void* demo :: operator new(size_t t,int i)
{demo* p= ::new demo;
 (*p).value=i;
 return p;
}
void* demo::operator new(size_t t,char* z)
{
return ::new(z)demo;
}

void main()
{ class demo *p_ob1,*p_ob2;
// struct nothrow noth_ob;
 p=new double;
 pp=new double*;
 p=new double(1.2); //инициализация
 q=new double[3]; //массив
 p_ob1=new demo[10]; //массив объектов demo
 void(**f_ptr)(int); //указатель на указатель на функцию

 105

 f_ptr=new(void(*[3])(int)); //массив указателей на функцию
 char z[sizeof(demo)]; //резервируется память в соответст-

вии с величиной //demo
 p_ob2=new(z)demo; //организуется demo-объект в облас-

ти памяти на //которую указывает переменная z
 p_ob2=new(3)demo; //demo-объект с инициализацией
 p_ob1=new(3,0)demo; //возвращает указатель NULL
 // p_ob2=new(noth_ob)demo[5];//массив demo-объектов,
 // в случае ошибки возвращает NULL
 }

3.7. Перегрузка операции delete

Операция-функция delete бывает двух видов:
– void operator delete(void*);
– void operator delete(void*,size_t);
Вторая форма включает аргумент типа size_t, передавае-

мый вызову delete. Он передается компилятору как размер объ-
екта, на который указывает р.

Особенностью перегрузки операции delete является то, что
глобальные операции delete не могут быть перегружены. Их можно
перегрузить только по отношению к классу.

 В заключение сформулируем основные правила пере-
грузки операций.

3.8. Основные правила перегрузки операций

1. Вводить собственные обозначения для операций, не
совпадающие со стандартными операциями языка С++ , нельзя.

2. Не все операции языка С++ могут быть перегружены.
Нельзя перегрузить следующие операции:

‘.’ – прямой выбор компонента,
‘.*’ – обращение к компоненту через указатель на него,

 106

‘?:’ – условная операция,
‘::’ – операция указания области видимости,
‘sizeof’,
‘#’, ‘##’– препроцессорные операции.
3. Каждая операция, заданная в языке, имеет определенное

число операндов, свой приоритет и ассоциативность. Все эти
правила, установленные для операций в языке, сохраняются
и для ее перегрузки, т.е. изменить их нельзя.

4. Любая унарная операция ⊕ определяется двумя способа-
ми: либо как компонентная функция без параметров, либо как гло-
бальная (возможно дружественная) функция с одним параметром.
Выражение ⊕ z означает в первом случае вызов z.operator⊕ (),
во втором – вызов operator⊕ (z).

5. Любая бинарная операция ⊕ определяется также двумя
способами: либо как компонентная функция с одним парамет-
ром, либо как глобальная (возможно дружественная) функция
с двумя параметрами. В первом случае x⊕ y означает вызов
x.operator⊕ (y), во втором – вызов operator⊕ (x,y).

6. Перегруженная операция не может иметь аргументы
(операнды), заданные по умолчанию.

7. В языке С++ установлена идентичность некоторых опе-
раций, например, ++z – это то же, что и z+=1. Эта идентичность
теряется для перегруженных операций.

8. Функцию operator можно вызвать по ее имени, напри-
мер, z=operator*(x,y) или z=x.operator*(y). В первом случае
вызывается глобальная функция, во втором – компонентная
функция класса Х , и х – это объект класса Х. Однако чаще всего
функция operator вызывается косвенно, например z=x*y.

9. За исключением перегрузки операций new и delete
функция operator должна быть либо нестатической компо-
нентной функцией, либо иметь, как минимум, один аргумент
(операнд) типа «класс» или «ссылка на класс» (если это гло-
бальная функция).

 107

 10. Операции ‘=’, ‘[]’, ‘–>’ можно перегружать только
с помощью нестатической компонентной функции operator⊕ .
Это гарантирует, что первыми операндами будут леводопусти-
мые выражения.

 11. Операция ‘[]’ рассматривается как бинарная. Пусть а –
объект класса А, в котором перегружена операция ‘[]’. Тогда вы-
ражение a[i] интерпретируется как a.operator[](i).

 12. Операция ‘()’ вызова функции рассматривается как
бинарная. Пусть а – объект класса А, в котором перегружена
операция ‘()’. Тогда выражение a(x1,x2,x3,x4) интерпретируется
как a.operator()(x1,x2,x3,x4).

 13. Операция ‘–>’ доступа к компоненту класса через ука-
затель на объект этого класса рассматривается как унарная. Пусть
а – объект класса А, в котором перегружена операция ‘–>’. Тогда
выражение a–>m интерпретируется как (a.operator–>())–>m. Это
означает, что функция operator–>() должна возвращать указатель
на класс А, или объект класса А, или ссылку на класс А.

 14. Перегрузка операций ‘++’ и ‘--‘, записываемых после
операнда (z++, z--), отличается добавлением в функцию operator
фиктивного параметра int, который используется только как при-
знак отличия операций z++ и z-- от операций ++z и --z.

 15. Глобальные операции new можно перегрузить, и в об-
щем случае они могут не иметь аргументов (операндов) типа
«класс». В результате разрешается иметь несколько глобальных
операций new, которые различаются путем изменения числа
и (или) типов аргументов.

 16. Глобальные операции delete не могут быть перегру-
жены. Их можно перегрузить только по отношению к классу.

 17. Заданные в самом языке глобальные операции new
и delete можно изменить, т.е. заменить версию, заданную в язы-
ке по умолчанию, на свою версию.

 18. Локальные функции operator new() и operator delete()
являются статическими компонентами класса, в котором они
определены, независимо от того, использовался или нет специ-

 108

фикатор static (это, в частности, означает, что они не могут быть
виртуальными).

 19. Для правильного освобождения динамической памяти
под базовый и производный объекты следует использовать вир-
туальный деструктор.

 20. Если для класса Х операция “=” не была перегружена
явно и x и y – это объекты класса Х, то выражение x = y задает
по умолчанию побайтовое копирование данных объекта y в дан-
ные объекта x.

 21. Функция operator вида operator type() без возвра-
щаемого значения, определенная в классе А, задает преобразо-
вание типа А к типу type.

 22. За исключением операции присваивания ‘=’ все опе-
рации, перегруженные в классе Х, наследуются в любом произ-
водном классе Y.

23. Пусть Х – базовый класс, Y – производный класс. То-
гда локально перегруженная операция для класса Х может быть
далее повторно перегружена в классе Y.

3.9. Примеры программ

Программа 1
Задание: определить и реализовать класс «complex» –

комплексное число. Для сложения чисел определить в классе
функцию и перегруженную операцию. Предусмотреть счетчик
созданных в программе чисел (рис. 3.1).

Файл «complex.h»
class complex
{
private:
double re,im;
static int n; //счетчик объектов
public:

 109

Рис. 3.1

complex(double Re=0 ,double Im=0):re(Re),im(Im){n++;};
~complex(){n--;}
double& real() {return re;}
double& imag() {return im;}
//функции для сложения чисел
complex add(const complex&)const;
//функции для вывода числа
void show();
//перегруженная операция сложения чисел
complex operator+(const complex& ob)const;
static int count(){return n;}
};

 Файл «complex.cpp» (рис. 3.2).
#include<iostream.h>
#include"complex.h"
 void complex::show()
{

 110

Рис. 3.2

cout<<"re="<<re<<" im="<<im<<endl;
}
complex complex::add(const complex& ob)const
{
complex temp;
temp.re=re+ob.re;
temp.im=im+ob.im;
return temp;
}
complex complex::operator+(const complex& ob)const
{
complex temp;
temp.re=re+ob.re;
temp.im=im+ob.im;
return temp;
}
Файл «main.cpp» (рис. 3.3).

 111

Рис. 3.3

#include<iostream.h>
#include"complex.h"
int complex::n=0;//
int main()
{
//Чисел еще нет, статическая функция возвращает 0
cout<<complex::count()<<endl;
complex a(5,6),b(7,9),c;

//сложение чисел a и b, результат в с
//используем автоматически созданную операцию –
функцию
//присваивания
c=a.add(b);
cout<<c.real()<<' '<<c.imag()<<endl;
complex d=55.55;
cout<<d.real()<<' '<<d.imag()<<endl;

 112

//Сейчас имеется три числа – функция возвращает 3
cout<<complex::count()<<endl;
//вводим указатель на функцию и инициализируем его
double&(complex::*pf)()=&complex::real;
//используя указатель на функцию , изменяем
// действительную часть числа d
(d.*pf)()=15;
//изменяем значение указателя на функцию
//сейчас он указывает на функцию imag
pf=&complex::imag;
//используя указатель на функцию , изменяем
// мнимую часть числа d
 (d.*pf)()=-15;
cout<<d.real()<<' '<<d.imag()<<endl;
cout<<d.count()<<endl;
//показываем число с
c.show();
//демонстрируем, что перегруженные операции сложения
//и присваивания возвращают объект
((a+b)=c).show();
return 0;
}

 113

4. ШАБЛОНЫ ФУНКЦИЙ И КЛАССОВ

4.1. Шаблоны функций

Шаблоны являются одой из важных особенностей С++.
Причина этого заключается в том, что шаблоны фунда-

ментально изменяют внешнюю сторону программирования. Ис-
пользуя шаблон, можно создать обобщенные спецификации для
функций и для классов, которые называются параметризован-
ными функциями (generic functions) и параметризованными
классами (generic classes). Параметризованная функция опреде-
ляет общую процедуру, которая может быть применена к дан-
ным различных типов. Параметризованный класс определяет
общий класс, который может применяться к различным типам
данных. В обоих случаях конкретный тип данных, над которы-
ми выполняется операция, передается в качестве параметра.

Причина использования параметризованных функций за-
ключается в следующем.

Многие алгоритмы не зависят от типа данных, которыми
они манипулируют. Например, обмен значениями:

TData temp,x,y;
// . . .
temp=x; x=y; y=temp;
Этот алгоритм работает вне зависимости от фактического

значения типа данных TData. Однако в большинстве языков
программирования для обмена данными каждого типа требуется
написание новой версии подпрограммы, несмотря на то, что ле-
жащий в ее основе алгоритм остается неизменным.

Многие алгоритмы допускают отделение метода от дан-
ных. При использовании таких алгоритмов большим преимуще-
ством была бы возможность однократного определения и отлад-
ки логики алгоритма и последующее применение алгоритма

 114

к различным типам данных без необходимости перепрограмми-
рования. Это не только позволяет экономить усилия и время, но
и страхует от ошибок.

Итак, обобщенные параметризованные процедуры пре-
доставляют очевидные преимущества. Поэтому программисты
всегда пытались их использовать. Однако до изобретения шаб-
лонов такие попытки имели лишь частичный успех. Появились
два далеких от совершенствования метода.

Первый заключается в построении параметризированных
функций через использование макросов. Например, макрос создает
«родовую функцию», возвращающую абсолютное значение числа.

define ABS(a)
((a<0)?–(a):(a))
. . .
int x;
float f;
x=ABS(-10);
f=ABS(15.25);
Однако добиться работы макросов с типами данных, оп-

ределенными пользователем, достаточно сложно. Кроме того,
поскольку этот макрос не выполняет никакой проверки типов,
возможна ситуация, когда он будет ошибочно использован с та-
кими типами данных, для которых не определены используе-
мые в нем операции. Также не для всех алгоритмов можно на-
писать макрос.

Второй метод построения параметризованной функции
заключается в добавлении одного или нескольких параметров,
предназначенных для определения типов данных, над которыми
функция выполняет операции. Например, распространенным
подходом была передача функции указателя на данные в качест-
ве одного параметра и размера этих данных в байтах – в качест-
ве другого (например, указатель типа void*).

Примером может служить библиотечная функция qsort().
void qsort(void* buf,size_t num,size_t size,int(*comp)(const

void*,const void*));

 115

Но поскольку параметры передаются через стек, передача
каждого параметра генерирует несколько инструкций в машин-
ном коде, что уменьшает эффективность кода, увеличивая вре-
мя, требующееся для вызова функции.

Так, функция qsort() обычно реализуется как рекурсивная
функция, и поэтому наличие дополнительных параметров при-
водит к значительному снижению ее производительности.

В С++ параметризированная функция создается с помо-
щью ключевого слова template. Шаблон определяет общий на-
бор операций (алгоритм), которые будут применяться к данным
различных типов. При этом тип данных, над которыми функция
должна выполнять операции, передается ей в виде параметра на
стадии компиляции. Формат функции-шаблона:

template <class тип_данных> тип_возвр_значения
имя_функции(список_параметров)

{тело_функции}
Параметр тип_данных обозначает тип данных, исполь-

зуемых функцией. Это имя может использоваться в пределах
действия определения функции. Когда компилятор будет созда-
вать конкретную версию этой функции, он автоматически заме-
нит этот параметр конкретным типом данных. Можно опреде-
лить несколько родовых типов данных, которые в списке долж-
ны отделяться друг от друга запятыми. Каждый элемент данного
списка предваряется ключевым словом class, которое в данном
контексте ссылается не на конкретный тип данных class, а на
любой тип данных, фактически передаваемый при вызове функ-
ции (встроенный либо определенный программистом). Это так
называемые параметры – шаблоны.

Пример 4.1. Шаблон функции для обмена значениями.
template <class Stype> void swap(Stype& x,Stype& y)
{Stype temp;
 temp=x; x=y; y=temp;}

 116

Хотя функция-шаблон по мере надобности может пере-
гружать себя сама, можно выполнять ее явную перегрузку. Если
параметризованная функция перегружается явно, то эта пере-
груженная функция «скрывает» параметризованную функцию
по отношению к конкретной версии.

Пример 4.2. Сортировка методом обмена
include <iostream.h>
include <string.h>
template <class Stype> void bubble(Stype* item,int count);
void main()
{
 // сортировка массива символов
 char str[]=”dcab”;
 bubble(str,strlen(str));//здесь компилятор построит функцию
 //сортировки для данных типа char,
 // т.е. Stype заменится на char
 cout<<str<<endl;
 // сортировка массива целых чисел
 int nums[]={5,7,3,9,5,1,8};
 int i;
 bubble(nums,7);//а здесь компилятор построит
 //функцию сортировки для данных типа int
 for(i=0;i<7;i++) cout<<nums[i]<<” “;
 cout<<endl;
}
// Определение параметризованной функции
template <class Stype> void bubble(Stype* item,int count)
{register int i,j;
 Stype temp;
 for(i=1;i<count;i++)
 for(j=count-1;j>=i;--j)
 if(item[j-1]>item[j])
 {temp=item[j-1];

 117

 item[j-1]=item[j];
 item[j]=temp;
 }
}
Можно считать, что параметры шаблона функции являют-

ся его формальными параметрами, а типы тех параметров, кото-
рые используются в конкретных обращениях к функции, служат
фактическими параметрами шаблона.

При первом вызове функции с конкретными типами пара-
метров компилятор построит функцию для параметров этого
типа. Естественно, операции, используемые в функции, должны
быть определены для этих типов.

Перечислим основные свойства параметров шаблона

функции:
Имена параметров шаблона должны быть уникальными во

всем определении шаблона.
1. Список параметров шаблона не может быть пустым.
2. В списке параметров шаблона может быть несколько

параметров, и каждому из них должно предшествовать ключе-
вое слово class.

3. Имя параметра шаблона имеет все права имени типа
в определенной шаблоном функции.

4. Все параметры шаблона должны быть обязательно ис-
пользованы в спецификациях параметров определения функции.
Например, будет ошибочным такой шаблон:

template <class A,class B,class C> C func(A x,B y)
{C temp; . . .}
Здесь остался неиспользованным параметр шаблона

с именем C.
5. Определенная с помощью шаблона функция может

иметь любое количество непараметризованных формальных па-
раметров. Может быть не параметризовано и возвращаемое
функцией значение.

 118

6. В списке параметров прототипа шаблона имена пара-
метров не обязаны совпадать с именами тех же параметров
в определении шаблона.

7. При конкретизации параметризованной функции необ-
ходимо, чтобы при вызове функции типы фактических парамет-
ров, соответствующие одинаково параметризованным формаль-
ным параметрам, были одинаковы.

8. При использовании шаблонов функций возможна пере-
грузка как шаблонов, так и функций. Могут быть шаблоны
с одинаковыми именами, но разными параметрами. Или с по-
мощью шаблона может создаваться функция с таким же именем,
что и явно определенная функция. В обоих случаях «распозна-
вание» конкретного вызова выполняется по сигнатуре, т.е. по
типам, порядку и количеству фактических параметров.

4.2. Шаблоны классов

Шаблон класса используется для построения родового клас-
са. При создании родового класса создается целое семейство род-
ственных классов, которые можно применять к любому типу
данных. Таким образом, тип данных, которым оперирует класс,
указывается в качестве параметра при создании объекта, при-
надлежащего к этому классу. Принципиальное преимущество па-
раметризованного класса заключается в том, что он позволяет оп-
ределить члены класса один раз, но применять класс к данным лю-
бых типов. Подобно тому, как класс определяет правила
построения и формат отдельных объектов, шаблон класса опреде-
ляет способ построения отдельных классов. В определении класса,
входящего в шаблон, имя класса является не именем отдельного
класса, а параметризованным именем семейства классов.

Наиболее широкое применение шаблоны классов находят
при создании контейнерных классов. Фактически создание кон-
тейнеров является одной из основных причин, по которым были
введены в употребление шаблоны.

 119

Контейнерными классами (контейнерами) называются
классы, в которых хранятся организованные данные. Например,
массивы и связные списки. Преимущество, даваемое определе-
нием параметризованных контейнерных классов, заключается в
том, что, как только логика, необходимая для поддержки кон-
тейнера, определена, он может применяться к любым типам
данных без необходимости его переписывания. Например, па-
раметризованный контейнер связного списка можно использо-
вать для построения списков, содержащих почтовые адреса, за-
главия книг, названия автомобилей.

Общая форма объявления параметризованного класса:
template <class тип_данных> class имя_класса { . . . };
Здесь тип_данных представляет собой имя типа шаблона,

которое в каждом случае конкретизации будет замещаться фак-
тическим типом данных. При необходимости можно использо-
вать более одного параметризованного типа данных, используя
список с разделителем – запятой. В пределах определения клас-
са имя тип_данных можно использовать в любом месте.

Создав параметризованный класс, можно создать кон-
кретную реализацию этого класса, используя следующую об-
щую форму:

имя_класса <тип> имя_объекта;
Здесь тип представляет собой имя типа данных, над кото-

рыми фактически оперирует класс, и заменяет собой перемен-
ную тип_данных.

Перечислим основные свойства шаблонов классов:
1. Компонентные функции параметризованного класса ав-

томатически являются параметризованными. Их необязательно
объявлять как параметризованные с помощью template.

2. Дружественные функции, которые описываются в па-
раметризованном классе, не являются автоматически парамет-
ризованными функциями, т.е. по умолчанию такие функции яв-
ляются дружественными для всех классов, которые организуют-
ся по данному шаблону.

 120

3. Если friend-функция содержит в своем описании параметр
типа параметризованного класса, то для каждого созданного по
данному шаблону класса имеется собственная friend-функция.

4. В рамках параметризованного класса нельзя определить
friend-шаблоны (дружественные параметризованные классы).

5. С одной стороны, шаблоны могут быть производными
(наследоваться) как от шаблонов, так и от обычных классов,
с другой стороны, они могут использоваться в качестве базовых
для других шаблонов или классов.

6. Определенные пользователем имена в описании шабло-
на по умолчанию рассматриваются как идентификаторы пере-
менных. Чтобы имя рассматривалось как идентификатор типа,
оно должно быть определено внутри шаблона или в окружаю-
щей области определения через ключевое слово typename.

7. Шаблоны функций, которые являются членами классов,
нельзя описывать как virtual.

8. Локальные классы не могут содержать шаблоны в каче-
стве своих элементов.

4.3. Компонентные функции
параметризованных классов

Реализация компонентной функции шаблона класса, кото-
рая находится вне определения шаблона класса, должна вклю-
чать дополнительно следующие два элемента:

1. Определение должно начинаться с ключевого слова
template, за которым следует такой же список_параметров_типов
в угловых скобках, какой указан в определении шаблона класса.

2. За именем_класса, предшествующим операции области
видимости (::), должен следовать список_имен_параметров
шаблона.

template <список_типов> тип_возвр_значения
имя_класса<список_имен_параметров>::

 121

имя_функции(список_параметров)
{тело функции };

Пример 4.3
template <class A,class B> class myclass
{A x;
 B y;
public:
 A func();
};
template <class A,class B> A myclass<A,B>: : func()
{return A;}

Пример 4.4. «Защищенный» массив
В С++ во время выполнения можно выйти за границу мас-

сива без генерации сообщения об ошибке. Хотя эта возможность
позволяет генерировать исключительно быстрый исполняемый
код, но одновременно служит источником ошибок. Решить эту
проблему можно, если создать класс, который содержит массив,
и разрешить доступ к массиву через перегруженную операцию
[]. В функции operator[]() можно перехватывать индекс, выхо-
дящий за рамки диапазона массива.

include <iostream.h>
include <stdlib.h>
template <class ARRAY> class array
{ARRAY *a;
 int length;
public:
 array(int size);
 ~array(){delete[]a;}
 ARRAY& operator[](int i);
};
template <class ARRAY> array<ARRAY>: : array(int size)
{register int i;
 length=size;

 122

 a=new ARRAY[size];
//Проверка, распределена ли память?
 if(!a){cout<<”Ошибка!”; exit(1);}
 for(i=0;i<size;i++) a[i]=0;
}
template <class ARRAY> ARRAY& array<ARRAY>: : op-

erator[](int i)
{
//Проверка, не вышел ли индекс за границы
if((i<0)||(i>length-1)){cout<<”Ошибка!”; exit(1);}
 return a[i];
}
void main()
{array<int> masint(20);
 array<double> masdouble(10);
 int i;
 for(i=0;i<20;i++){masint[i]=i; cout<<masint[i]<<” ”;}
 cout<<endl;
 for(i=0;i<10;i++){masdouble[i]=(double)i*3.14;

cout<<masdouble[i]<<” “;}
 cout<<endl;
 masint[45]=100; //ошибка, недопустимый индекс
 array<char> C(5);
 array<int> X(5);
 for(i=0;i<5;i++){X[i]=i; C[i]=’A’+i;}
 for(i=0;i<5;i++) cout<<X[i]<<C[i]<<’ ’;
}
В списке параметров шаблона могут присутствовать фор-

мальные параметры, тип которых фиксирован.

Пример 4.5. Размер массива задается по умолчанию
#include<iostream.h>
template <class ARRAY, int size=64> class array
{

 123

 ARRAY *a;
 int len;
public:
 array(){len=size; a=new ARRAY[len];}
 int setlen(){return len;}

};
int main()
{
array<int,5> x; //создается массив типа int размером 5
cout<<x.setlen()<<endl; //будет выведено 5
array<int> y; //создается массив типа int размером 64

cout<<y.setlen()<<endl; //будет выведено 64
return 0;
 }
Этот пример показывает возможность использования для

создания объекта конструктора без параметров с заданием па-
раметров объекта через параметры шаблона.

4.4. Примеры программ

Задание: написать программу, использующую так назы-
ваемый «умный» указатель. «Интеллектуальный» или «умный»
указатель– это указатель, который автоматически уничтожает
объект, когда уничтожается последняя ссылка на него, т.е. па-
мять освобождается, когда на объект нет больше ссылок.

Создайте и выполните в Microsoft Visual C++ следующую
программу.

#include<iostream> //Для поддержки нового типа string
#include <string> //Тип string библиотеки STL
using namespace std; //использовать пространство имен std

 124

//класс Ref хранит исходный указатель и счетчик ссылок
template<class T> struct Ref
{
T* realPtr; //исходный указатель на объект
int count; //счетчик ссылок
};
//шаблон класса «умного» указателя
template<class T> class SmartPtr
{
Ref<T>* refPtr;
public:
SmartPtr(T*ptr=NULL);
SmartPtr(const SmartPtr& s);
~SmartPtr();
//Перегруженная операция присваивания
SmartPtr& operator=(const SmartPtr& s);
// Перегруженная операция доступа к членам класса че-

рез ука//затель
T* operator->()const;
// Перегруженная операция разыменовывания
T& operator*()const;
// Перегруженная операция преобразования типа
operator int(){return refPtr->count;}
};

template<class T> SmartPtr<T>::SmartPtr(T*ptr)
{
if(!ptr)refPtr=NULL;
else
{
 refPtr=new Ref<T>;
 refPtr->realPtr=ptr;
 refPtr->count=1;

 125

}
}

template<class T> SmartPtr<T>::~SmartPtr()
{
if(refPtr)
{
refPtr->count--;
 if(refPtr->count<=0)//если ссылок нет, освободить память
 {
 delete refPtr->realPtr;
 delete refPtr;
 refPtr=NULL;
 }
}
}

template<class T> T* SmartPtr<T>::operator->()const
{
if(refPtr)return (refPtr->realPtr);
else return NULL;
}

template<class T> T& SmartPtr<T>::operator*()const
{
if(refPtr)return *(refPtr->realPtr);
else throw ; //генерировать исключение
 }

template<class T> SmartPtr<T>::SmartPtr(const SmartPtr& s)
{
refPtr=s.refPtr;
if(refPtr)refPtr->count++;
}
/*

 126

При выполнении операции присваивания прежде всего
нужно отсоединиться от имеющегося объекта, а затем присое-
диниться к новому, подобно тому, как это сделано в конструк-
торе копирования

*/
template<class T> SmartPtr<T>& SmartPtr<T>::operator=(const

SmartPtr& s)
{
if(refPtr)
{
refPtr->count--;
 if(refPtr->count<=0) //если ссылок нет, освободить память
 {
 delete refPtr->realPtr;
 delete refPtr;
 }
}
refPtr=s.refPtr;
if(refPtr)refPtr->count++;//если есть ссылки
return *this;
}

//Типы объектов, с которыми будет работать указатель

SmartPtr
struct A
{
int x,y;
double d;
string s;
};

struct B
{
int x,y,z;

 127

string s1,s2;
};

int main()
{
SmartPtr<A> aPtr(new A);
//С объектами класса SmartPtr можно обращаться, как с

обычными указателями на объект типа T
{//начало блока
(aPtr->x)=5;
cout<<"aPtr->x="<<aPtr->x<<endl;
(*aPtr).y=3;
cout<<"aPtr->y="<<aPtr->y<<endl;
(aPtr->d)=45.67;
cout<<"aPtr->d="<<aPtr->d<<endl;
(aPtr->s)="new string";
cout<<"aPtr->s="<<aPtr->s<<endl;
cout<<"count="<<(int)aPtr<<endl;//Количество ссылок=1;
{//Объекты SmartPtr размещаются в автоматической памяти
SmartPtr<A> aPtr1=aPtr;
cout<<"count="<<(int)aPtr<<endl;// количество ссылок=2;
SmartPtr<A> aPtr2=aPtr;
cout<<"count="<<(int)aPtr<<endl;//количество ссылок=3;
SmartPtr<A> aPtr3;
aPtr3=aPtr;
cout<<"count="<<(int)aPtr<<endl;// количество ссылок=4;
(aPtr2->x)=15; //Изменяется для всех связанных объектов
cout<<"aPtr->x="<<aPtr->x<<endl;//Выводится 15
} //конец блока - освобождаются 3 ссылки на объект
cout<<"count="<<(int)aPtr<<endl;//Количество ссылок=1;
//Теперь будем размещать объекты в динамический памяти
SmartPtr<A>*p,*p1,*p2;
p=new SmartPtr<A>(new A);
(*p)->x=155;

 128

cout<<"count="<<((int)(*p))<<endl;//Количество ссылок =1;
p1=new SmartPtr<A>(*p);
cout<<"count="<<((int)(*p))<<endl;//Количество ссылок =2
p2=new SmartPtr<A>(new A);
//количество ссылок не изменилось, т.к. p2 указывает на

новый //объект
cout<<"count="<<((int)(*p))<<endl;//Количество ссылок =2
(*p2)=(*p); //теперь p2 указывает на тот же объект
cout<<"count="<<((int)(*p))<<endl;//Количество ссылок =3
delete p;
cout<<"count="<<((int)(*p1))<<endl;//Количество ссылок =2
delete p1;
cout<<"count="<<((int)(*p2))<<endl;//Количество ссылок =1
cout<<(*p2)->x<<endl;
//Будем обрабатывать ошибки через исключения
//Контролируемый блок
try
{
delete p2;
//Здесь будет ошибка, т.к. ссылок больше нет и память ос-

во - //бождена
cout<<"count="<<(int)(*p2)<<endl;
}
catch (...){cout<<"No reference!"<<endl;}
// «Умный» указатель можно использовать для
//объектов любого типа
//Создаем указатели на объект типа B
SmartPtr bPtr(new B); //Количество ссылок =1
{
SmartPtr bPtr1=bPtr; //Количество ссылок =2
SmartPtr bPtr2=bPtr; //Количество ссылок =3
}//Здесь две ссылки освобождаются
cout<<"count="<<(int)bPtr<<endl; //Количество ссылок =1
return 0;

}

 129

5. ОБРАБОТКА ИСКЛЮЧИТЕЛЬНЫХ СИТУАЦИЙ

5.1. Механизм обработки исключений в С++

Рассмотрим программы, которые используют библиотеки
классов. Разработчик библиотеки может предложить методы
выявления ошибок, возникающих на этапе выполнения про-
граммы. Например, в классе array перегружена операция [] для
проверки принадлежности индекса диапазону. Выявить такие
ошибки можно только на этапе выполнения программы, и раз-
работчик библиотеки знает, как это сделать. Однако он не знает,
что делать дальше, поскольку об этом знает только разработчик
программы, использующий эту библиотеку. С другой стороны,
разработчик программы не знает, как найти эти ошибки, а даже
если и знает, то это требует введения в программу специальных
фрагментов, осуществляющих поиск ошибок, что приводит к ее
усложнению и ухудшению читабельности.

В языке С++ вводится понятие исключения (exception),
которое использует специальный механизм для выявления и уст-
ранения ошибок рассмотренного типа.

Для реализации механизма обработки исключений в языке
С++ введены следующие три ключевых слова:

try (попытка контролировать),
catch (ловить),
throw (бросать, кидать, генерировать).
Служебное слово try позволяет выделить в любом месте

программы так называемый контролируемый блок:
try{операторы}
Среди операторов могут быть описания, определения,

обычные операторы С++ и специальные операторы генерации
исключения:

throw выражение_генерации_исключения

 130

Когда выполняется такой оператор, то с помощью выра-
жения после throw формируется специальный объект, называе-
мый исключением. Исключение создается как статический
объект, тип которого определяется типом выражения. После
формирования исключения throw передает исключение и управ-
ление непосредственно за границы контролируемого блока.
В этом месте (за закрывающей фигурной скобкой) обязательно
находится один или несколько обработчиков исключений:

catch(тип_исключения имя){операторы}
Обработчик исключений похож на определение функции

с одним параметром. Когда обработчиков несколько, они долж-
ны отличаться друг от друга типами исключений. Это похоже на
перегрузку функций.

Механизм обработки исключений является весьма общим
средством управления программой. Он может использоваться не
только при обработке аварийных ситуаций, но и при любых
других состояниях в программе, которые почему-либо выделил
программист.

Для этого достаточно, чтобы та часть программы, где пла-
нируется возникновение исключений, была оформлена в виде
контролируемого блока, в котором выполнялись бы операторы
генерации исключений при обнаружении заранее запланирован-
ных ситуаций.

Общую идею обработки исключений неформально можно
выразить следующим образом:

а) программа пользователя
try{ // try-блок
/* Попытайтесь делать что-то, и если не возникают какие-то

особые ситуации, то продолжайте в том же духе. Если возникает
особая ситуация, то выполнение операций прерывается и осущест-
вляется автоматический переход к catch-блоку */

}
catch(…){
/* Обработка исключительной ситуации */
}

 131

б) библиотечная программа (библиотечный класс)
Обычное выполнение программы, если не возникает особая

ситуация. Если возникает заранее определенная особая ситуация,
то выполняется переход throw к обработке этой ситуации, вид
которой определяется именем класса после слова throw.

В целом механизм обработки исключений представляет
собой альтернативу традиционным методам, таким как:

– завершение программы;
– возвращение значения, указывающего на ошибку;
– установление некоторого кода ошибки (глобальная пе-

ременная errno в C);
– вызов некоторой функции, которая обрабатывает ошибку.
Но эти методы работают хуже.
Техника обработки исключений позволяет выделить в про-

грамме отдельные независимые части: собственно программу (try-
блок) и фрагмент для обработки ошибок (catch-блок). Это делает
программу более читабельной и регулярной (нехаотичной). Этот
механизм поддерживает хороший стиль программирования, так
как плохая программа будет периодически прерываться (завер-
шаться), а не давать ошибочные результаты.

Следует указать, что рассмотренный механизм применим
только для выявления синхронных исключений, т.е. таких, ко-
торые можно сопоставить с выполнением различных действий в
самой программе. Асинхронные исключения, генерируемые,
например, аппаратно (сигналы от клавиатуры, таймера и т.д.),
нельзя непосредственно обработать этим способом.

Пример 5.1. Содержит локальный класс – индикатор ис-
ключения range.

#include <iostream.h>
#include<windows.h>
#define ss 10
class string
{char *p;
 int size;

 132

public:
 string(int SIZE){p=new char[size=SIZE];}
 ~string(){delete[] p;}
//локальный класс – класс индикатор исключения
 class range{/*здесь могут быть поля и методы */};
 char& operator[](int); //опреция «доступ по индексу
};
char& string : : operator[](int j)
{
/*

проверяем, не вышел ли индекс за границы и если вышел, то
генерируем исключение–создаем объект класса исключения

*/
if((j<0)||(j>=size)) throw range();
 return p[j];
}
void main()
{
SetConsoleOutputCP(1251); //Меняем кодовую страницу
int index;
 string str(ss);
//заполняем строку символами
 for(int i=0;i<ss;i++) str[i]=’A’+i;
 try
 {for(;;) //бесконечный цикл
 {cout<<”\nВведите индекс: ”;
 cin>>index;
 cout<<str[index];
 }
 }
 catch(string : : range){cout<<”\nОшибка!”;}
}
Здесь обработчик исключения позволяет завершить при

необходимости или при ошибке бесконечный цикл.

 133

Пример 5.2. Содержит глобальный класс – индикатор ис-
ключения range.

#include <iostream.h>
#include<windows.h>
class range{};
class string
{char *p;
 int size;
public:
 string(int SIZE){p=new char[size=SIZE];}
 ~string(){delete[] p;}
 char& operator[](int);
};
char& string : : operator[](int j)
{if((j<0)||(j>=size)) throw ::range();
 return p[j];
}
void main()
{
 void main()
{
SetConsoleOutputCP(1251);
int index;
string str(ss);
//заполняем строку символами
 for(int i=0;i<ss;i++) str[i]=’A’+i;
 try
 {for(;;) //бесконечный цикл
 {cout<<”\nВведите индекс: ”;
 cin>>index;
 cout<<str[index];
 }
 }
 catch(range){cout<<”\nОшибка!”;}
}
}

 134

Пример 5.3
Используем два обработчика исключений и два индикатора

исключений, один из которых глобальный, а другой – локальный.
Исключение типа локального класса range генерируется,

когда индекс выходит за границу.
Исключение типа глобального класса range генерируется,

когда количество ошибок больше заданного (в нашем примере
больше 2).

#include <iostream.h>
#include <stdlib.h>
#include<windows.h>
#define ss 10
class range{}; // глобальный класс – индикатор исключе-

ния range.
class string
{char *p;
 int size;
 int i; //счетчик ошибок
public:
 string(int SIZE):i(0){ p=new char[size=SIZE];}
 class range{}; //локальный класс–индикатор исключения

range.
 ~string(){delete[] p;}
 char& operator[](int);}; //конец определения string
char& string : : operator[](int j)
{
 if((j<0)||(j>=size)){i++; if(i>2) throw : : range(); else
 throw range();}
 return p[j];
}
void main()
{
SetConsoleOutputCP(1251);
 int index;

 135

string str(ss);
//заполняем строку символами
 for(int i=0;i<ss;i++) str[i]=’A’+i;
 for(;;)
 {try{for(;;){for(;;) //бесконечный цикл
 {
 cout<<”\nВведите индекс: ”;
 cin>>index;
 cout<<str[index];
}}}
 catch(range) //первый обработчик.
 {cout<<”\nСлишком много ошибок!”;
 exit(0);
 }
 catch(string : : range) //второй обработчик.
 {cout<<”\nИндекс за границей!”;
 cout<<”\nПопытайтесь снова”<<endl;
 }
 }
}
Здесь при активизации первого обработчика исключений

осуществляется завершение программы по exit. При активиза-
ции второго обработчика после его завершения выполняется
очередная итерация бесконечного цикла.

Пример 5.4
Покажем возможный вызов в обработчике исключения

функции, содержащей блоки try и catch. Это можно делать, напри-
мер, когда возникшая ошибка не является опасной. В результате ее
можно исправить и повторить соответствующие операции.

#include <iostream.h>
#include<stdio.h>
#include<windows.h>
#include<process.h>

 136

#define ss 20
class string
{
char *p;
int size;
public:
 string(int SIZE){p=new char[size=SIZE];}
 ~string(){delete[] p;}
 class range{/*здесь могут быть поля и методы */};
 char& operator[](int);
};
char& string::operator[](int j)
{
 if((j<0)||(j>=size)) throw range();
 return p[j];
}
void f() //рекурсивная функция
{
 string str(ss);
 for(int i=0;i<ss;i++) str[i]='A'+i;
 int index;
 try{
 cout<<"\nВведите индекс: ";
 cin>>index;
 cout<<str[index];
 }
 catch(string::range)
 {cout<<"\nОшибка!";
 f(); //новая попытка
 }
}
int main()
{
SetConsoleOutputCP(1251);

 137

int k;
char s[]="\nПродолжить? Да-1,Нет-0 ";
while(true)
{
f();
cout<<s;
cin>>k;
if(k==0){system("pause"); return 0;}
}

5.2. Получение дополнительной
информации об исключении

Передача такой информации производится через дополни-
тельные поля, которые указываются в классе-индикаторе ис-
ключения. Вся необходимая информация передается в обработ-
чик исключения с помощью соответствующего объекта (напри-
мер, объекта класса range).

Пример 5.5
Добавим в класс string вложенный класс range, поле кото-

рого i будет хранить значение ошибочного индекса.
struct range
 {
 int i;
 range(int s):i(s){};
 };
При ошибке создается объект range,
char& string :: operator[](int s)
{if((s<0)||(s>size)) throw range(s); return p[s];}
Теперь в выражении throw range(s) в поле i объекта класса

range будет записано значение ошибочного индекса s.
Для того чтобы в обработчике исключения проанализиро-

вать значение ошибочного индекса, необходимо задать имя объ-
екту-индикатору исключения:

 138

try{/* контролируемый код*/}
catch(string : : range ob)
{cerr<<”Неверный индекс: ”<<ob.i<<endl;}
Выражение (string : : range ob) объявляет тип исключения

(string : : range) и может дополнительно задавать имя объекта
исключения (ob).

Полностью программа выглядит так:
#include <iostream.h>
#include<stdio.h>
#include<windows.h>
#include<process.h>
#define ss 20
class string
{
 char *p;
 int size;
public:
 struct range
 {int i;
 range(int s):i(s){};
 };// конец класса range
string(int SIZE){p=new char[size=SIZE];}
 ~string(){delete[] p;}
 char& operator[](int s);
};//конец класса string
char& string :: operator[](int s)
{if((s<0)||(s>size)) throw range(s);
 return p[s];}
int main()
{
SetConsoleOutputCP(1251);
int index;
string str(ss);
for(int i=0;i<ss;i++) str[i]='A'+i;

 139

try
{
for(;;) //бесконечный цикл
 {cout<<"\nВведите индекс: ";
 cin>>index;
 cout<<str[index];}
}
catch(string ::range ob)
{cerr<<"Неверный индекс: "<<ob.i<<endl;
}
system("pause");
return 0;
}

Пример 5.6
В классе range задается переменная i с атрибутом private,

получающая значение ошибочного индекса и две public функ-
ции get_index() и index_range(), которые соответственно возвра-
щают значение ошибочного индекса и диапазон допустимых
индексов.

class range
 {int i;
 int s;
 public:
 range(int I,int S):i(I),s(S){}
 int get_index(){return i;}
 void index_range(){cout<<"Допустимый диапазон:0 -

"<<s<<endl;}
 };
При ошибке создается объект range, содержащий уже два

значения: ошибочный индекс и максимальное значение индекса.
char& string::operator[](int j)
{if((j<0)||(j>=size)) throw range(j,size); return p[j];}
Таким образом, поскольку исключение – это класс, он может

содержать любые поля и методы.

 140

5.3. Определение типа исключения

Во время выполнения программы в ней могут возникать
различные ошибки, которые можно сопоставить с исключения-
ми различных типов. Например, для класса string можно рас-
смотреть два типа возможных ошибок: неправильное значение
индекса и невозможность конструирования объекта из-за того,
что задан очень большой размер строки.

class string
{…
public:
 class range{};
 class error_size{};
 string(int);
 ~string();
 char& operator[](int);
};
Мы хотим использовать исключение для того, чтобы ус-

тановить, правильно ли сконструирован объект. Мы знаем, что
конструктор не возвращает никаких значений, поэтому нельзя
использовать традиционные подходы для проверки правильно-
сти конструирования объекта. Но эту задачу можно решить дру-
гим способом.

string : : string(int s)
{if((s<0)||(s>max)) throw error_size();
 p=new char[size=s];
}
или таким образом:
string : : string(int s)
{p=new char[size=s];
 if(!p) throw error_size();
}

 141

Тогда прикладная программа выглядит следующим образом:
void main()
{…
 try
{
описание и выполнение каких-либо операций с объектами

класса string
}
 catch(string : : range){…}
 catch(string : : error_size){…}
}
При наличии ошибки активизируется соответствующий

обработчик исключений.
void f()
{…
 try{…}
 catch(string : : range)
 {исправление ошибки и повторный вызов функции f();
 }
 catch(string : : error_size)
 {выдача сообщений и завершение программы
 exit(1);
 }
}
Здесь записана часть функции, которая будет выполнена,

если либо не было исключений, либо была достигнута закрываю-
щая фигурная скобка исключения range. Функция f может перехва-
тывать лишь некоторые исключения. Например, можно рассмот-
реть такие две функции f1 и f2, что f1 перехватывает только
error_size, а f2 – только range. В этом случае после блока try первой
функции записывается один блок catch(string : : error_size), а после
блока try второй – один блок catch(string : : range).

Также можно в программе использовать два блока try,
один из которых позволяет выявлять ошибки конструирования
объекта, а второй – ошибки индекса.

 142

5.4. Иерархия исключений

Исключения можно группировать так, что в каждую
группу включается некоторое подмножество близких по сути
исключений.

Например:
– ошибки распределения памяти;
– ошибки ввода-вывода;
– ошибки при работе с файлами;
– ошибки при выполнении арифметических операций.
Если проанализировать все группы, то можно построить

некоторую иерархию исключений с использованием принципов
наследования. Можно рассмотреть базовый класс и производные
классы, каждый из которых соответствует либо некоторой группе
исключений, либо конкретному исключению. В качестве главно-
го базового класса рассматривают некоторый пустой класс. Это
позволяет построить иерархическую структуру с единым корнем.
Тогда блоки try и catch будут иметь такой вид:

try{…}
catch(group_N)
{
//Обработка конкретного исключения нижнего уровня N
}
catch(group_N-1)
{
//Обработка исключений следующего уровня (класс group_N-1
// является базовым для класса group_N
}
catch(…)
{
//Обработка всех возможных исключений
}
Здесь в выражении catch(…) три точки означают «любой

аргумент». Поэтому обработчик catch(…) перехватывает любое

 143

исключение. Последовательность, в которой записаны различ-
ные обработчики исключений, является существенной, посколь-
ку производные исключения могут быть перехвачены несколь-
кими обработчиками.

Например, если в цепочке обработчиков встретится
catch(…), то все последующие обработчики будут заблокирова-
ны (они никогда не будут выполняться). Иногда обработчик ис-
ключения активизируется, но не знает, как устранить возник-
шую ошибку, более того, возможно, не знает и о том, что делать
дальше. В этом случае он может активизировать то же исключе-
ние снова в надежде на то, что какой-то другой обработчик зна-
ет, как решить эту проблему. Повторная активизация осуществ-
ляется инструкцией throw без аргументов.

try{…}
catch(класс-индикатор)
 {if(знает как обработать исключение){обработка исклю-

чения}
 else throw;
 }

5.5. Спецификация функций,
обрабатывающих исключения

Если некоторая функция содержит инструкцию throw для
генерации исключения, то ее можно специфицировать (объя-
вить) как функцию, генерирующую исключения, например:

void f(void) throw(x,y,z);
Здесь объявляется функция f, генерирующая исключения

z, y, z и исключения, которые являются производными от x, y, z.
Другие исключения функция не генерирует. В этом случае при
возникновении исключений из указанного списка функция f
должна установить индикатор для соответствующего обработ-
чика. Если же возникает другое исключение, то f должна завер-
шить свое выполнение некоторым выходом по критической (не-

 144

исправимой) ошибке (например, с помощью библиотечной
функции abort).

 Важным здесь является то, что объявление функции дает
пользователю информацию о том, как она взаимодействует с
внешней средой. Пользователь получает представление о воз-
можности использования этой функции для обработки тех или
иных ошибок.

void f(void) – эта функция может генерировать любое ис-
ключение.

int f(void) throw() – эта функция не генерирует исключения.
Рассмотрим некоторую функцию
void f(void) throw(A);
Предположим, что функция генерирует исключение В, ко-

торое не является производным от А (т.е. исключение, которое
не в списке). В этом случае автоматически вызывается библио-
течная функция unexpected ()

По умолчанию функция unexpected вызывает другую биб-
лиотечную функцию terminate()

По умолчанию terminate вызывает функцию abort(), кото-
рая выдает сообщение:

Abnormal program termination
и завершает программу. Пользователь может заменить функцию
unexpected и terminate своими. Для этого надо:

1) описать новую версию этой функции
 void my_unexpected(void){описание новых действий}
 void my_terminate(void){описание новых действий}
 2) установить (зарегистрировать) новую функцию с по-

мощью функций set_unexpected() и set_terminate();
Функция terminate() будет вызвана автоматически и тогда,

когда генерируется исключение и не находится соответствую-
щий обработчик.

 145

6. ПОТОКОВЫЕ КЛАССЫ

6.1. Библиотека потоковых классов

Потоковые классы представляют объектно-ориентирова-
нный вариант библиотечных функций ввода-вывода C. Поток
данных между источником и приемником при этом обладает
следующими свойствами:

Источник или приемник данных определяется объектом
потокового класса.

Потоки используются для ввода-вывода высокого уровня.
Общепринятые стандартные С-функции ввода/вывода

разработаны как методы потоковых классов, чтобы облегчить
переход от С-функций к С++ классам.

Потоковые классы опредены как шаблоны и делятся на
три группы :

♦ basic_istream, basic_ostream – общие потоковые классы,
которые могут быть связаны с любым буферным объектом;

♦ basic_ifstream, basic_iostream – потоковые классы для
считывания и записи файлов;

♦ basic_istringstream, basic_ostringstream – потоковые
классы для объектов-строк.

Каждый потоковый класс поддерживает буферный объект,
который предоставляет память для передаваемых данных, а
также важнейшие функции ввода/вывода низкого уровня для их
обработки.

Базовым шаблоном классов basic-ios (для потоковых клас-
сов) и basic-streambuf (для буферных классов) передаются по два
параметра шаблона:

♦ первый параметр (charT) определяет символьный тип;
♦ второй параметр (traits) – объект типа ios-traits (шаблон

класса), в котором заданы тип и функции, специфичные для ис-
пользуемого символьного типа;

 146

♦ для типов char и wchar_t образованы соответствующие
объекты типа ios_traits и потоковые классы.

Например, шаблон класса для потокового ввода определен
следующим образом:

template <class charT, class traits = ios_traits <charT>> class
basic_istream: virtual public basic_ios <charT, traits>;

6.2. Ввод-вывод в языке С++

Ввод-вывод – одна из самых сложных областей любого
языка. Она тесно связана и с операционной системой, и с обору-
дованием.

Система ввода-вывода, принятая в ANSI, хороша, но не
идеальна. Она не учитывает огромной разницы между устройст-
вами, с точки зрения программиста. Все устройства можно раз-
делить на блочные и символьные. Например, диски и ленты –
это блочные устройства, тогда как терминалы – символьные.
Блочные устройства для эффективного чтения-записи требуют
буферизации , а символьные в ней не нуждаются. Устройства
ввода-вывода имеют и много других различий. В библиотеку С
(stdio.h) были введены некоторые исключения для обработки
специальных устройств. В конце 60-х годов обращение к уст-
ройствам, как к файлам, было новинкой. Однако в большинстве
случаев программист не работает с устройствами, как с файла-
ми. Это приводит к добавлению в С новых функций, поскольку
иногда программист должен знать, работает он с дисковым фай-
лом или с устройством.

Существует множество примеров того, что функции, при-
меняемые к устройствам, а не к нормальным файлам, ведут себя
по-разному, а иногда и некорректно.

С++ – это не первый язык, работающий с потоками. ANSI
C использует так называемые потоки для указания на некоторый
абстрактный порт, через который могут передаваться неструк-
турированные данные. В ANSI С поток рассматривается как

 147

конструкция ввода-вывода низкого уровня, на которую наслаи-
вается более структурированная файловая система.

В С++ потоки реализованы через целую иерархию клас-
сов, которая является единственной основной иерархией, по-
ставляемой со всеми компиляторами языка С++.

В С++ потоки составляют некую оболочку, которая при-
дает операциям ввода-вывода полиморфные и объектно-ориен-
тированные свойства. Несмотря на то, что потоки часто ассо-
циируются с вводом-выводом, реально они являются абстракци-
ей передачи данных от одного объекта к другому с помощью
механизма буферизации. Это означает, что любая функция, ис-
пользуемая для передачи данных из одного места в памяти
в другое (с изменением данных или без такового), может рас-
сматриваться как потоковая операция.

Библиотека потоковых классов С++ построена на основе
двух базовых классов: ios и streambuf .

 Класс streambuf и его потомки обеспечивают организацию
и взаимосвязь буферов ввода-вывода, размещаемых в памяти,
с физическими устройствами ввода-вывода. Методы и данные
класса streambuf программист явно обычно не использует. Этот
класс нужен другим классам библиотеки ввода-вывода. Он досту-
пен и программисту для создания новых классов на основе уже
существующих. На рис. 6.1 показана иерархия буферных классов.

Рис. 6.1

 148

Класс ios и его потомки содержат средства для формати-
рованного ввода-вывода и проверки ошибок. Иерархия классов
ввода-вывода представлена на рис. 6.2.

Рис. 6.2

Потоковые классы, их методы и данные становятся дос-
тупными в программе, если в неё включен нужный заголовоч-
ный файл.

Итак, потоки С++ обеспечивают:
– буферизацию при обменах с внешними устройствами;
– независимость программы от файловой системы кон-

кретной ЭВМ;
– контроль типов передаваемых данных;
– возможность удобного обмена для типов, определенных

пользователем.

6.3. Стандартные потоки ввода-вывода

В файле iostream.h определены следующие объекты, свя-
занные со стандартными потоками ввода-вывода.

cin – объект класса istream, связанный со стандартным бу-
феризированным входным потоком.

 149

cout – объект класса ostream, связанный со стандартным
буферизированным выходным потоком.

cerr – объект класса ostream, связанный со стандартным небу-
феризированным выходным потоком для сообщения об ошибках.

clog – объект класса ostream, связанный со стандартным бу-
феризированным выходным потоком для сообщения об ошибках.

Для класса istream перегружена операция >>, а для класса
ostream <<. Операции << и >> имеют два операнда. Левым опе-
рандом является объект класса istream (ostream), а правым – дан-
ное, тип которого задан в языке.

Для того чтобы использовать операции << и >> для всех
стандартных типов данных, используется соответствующее
число перегруженных функций operator<< и operator>>. При
выполнении операций ввода-вывода в зависимости от типа
правого операнда вызывается та или иная перегруженная
функция operator.

Поддерживаются следующие типы данных: целые, веще-
ственные, строки (char*), для вывода – void* (все указатели, от-
личные от char*, автоматически переводятся к void*).

Функции operator<< и operator>> возвращают ссылку на
тот потоковый объект, который указан слева от знака операции.
Таким образом, можно формировать «цепочки» операций.

cout << a << b << c;
cin >> i >> j >> k;
При записи цепочек операторов вывода нужно не забы-

вать о приоритете операций.
Зависимость от компилятора результатов выполнения це-

почки операций вывода и необходимость аккуратно учитывать
приоритеты операций приводят к следующей рекомендации:
изменяемая переменная не должна появляться в цепочке вы-
вода более одного раза.

Извлечение данных из потока начинается только после на-
жатия клавиши «Enter». При этом при извлечении числовых дан-
ных (без буфера) игнорируются начальные пробельные символы.

 150

Чтение начинается с первого непробельного символа и заканчи-
вается при появлении нечислового символа.

Значения указателей (т.е. адреса) выводятся в стандартный
поток в шестнадцатеричном виде.

Ввод-вывод массивов и символьных массивов-строк – это
различные процедуры.

char st[] = ”строка”;
char* pst = st;
cout << st;
cout << pst;
В обоих случаях будет выведено – строка. Операция <<,

настроенная на операнд char*, всегда выводит строку, а не зна-
чение указателя. Чтобы вывести указатель, необходимо явное
приведение типа.

При вводе строки с клавиатуры набираются любые симво-
лы до тех пор, пока не будет нажата клавиша Enter. Система
ввода-вывода переносит эту последовательность в буфер вход-
ного потока, а из буфера при выполнении каждой операции >>
извлечение происходит до ближайшего пробела.

6.4. Форматирование

Непосредственное применение операций ввода << и вы-
вода >> к стандартным потокам cout, cin, cerr, clog для данных
базовых типов приводит к использованию «умалчиваемых»
форматов внешнего представления пересылаемых значений.

Форматы представления выводимой информации и правила
восприятия данных при вводе могут быть изменены программи-
стом с помощью флагов форматирования. Эти флаги унаследо-
ваны всеми потоками из базового класса ios.

Флаги форматирования определены в public перечислении
класса ios следующим образом:

enum {
skipws = 0X0001;

 151

left = 0X0002;
right = 0X0004;
// и т.д.
stdio = 0X4000;
};
Таким образом, флаги форматирования реализованы в ви-

де отдельных фиксированных битов и хранятся в protected ком-
поненте класса long x_flags.

Открытая функция long flags() возвращает значение пере-
менной x_flags. Функция long flags(long f) устанавливает х_flags
в новое значение f и возвращает предыдущее значение х_flags.

Функция long setf(long s, long f) устанавливает те биты в
x_flags, которые в s и f имеют значение 1. Все биты, которые в s
имеют значение 0, а в f – 1, сбрасываются. Возвращает преды-
дущее значение x_flags, логически умноженное на f.

Функция long setf(long s) устанавливает те биты в x_flags,
которые в s равны 1. Те биты, которые в s равны 0, остаются без
изменения. Возвращает предыдущее значение x_flags, логически
умноженное на s.

Функция long unsetf(long s) сбрасывает те биты, которые в
s равны 1. Биты, которые в s равны 0, остаются без изменений.
Возвращает предыдущее значение x_flags, логически умножен-
ное на s.

Кроме флагов форматирования используются следующие
protected компонентные данные класса ios:

int x_width; – минимальная ширина поля вывода;
int x_precision; – точность представления вещественных

чисел (количество цифр дробной части) при выводе;
int x_fill; – символ заполнитель при выводе, по умолчанию –

пробел.
Для получения (установки) значений этих полей исполь-

зуются следующие public компонентные функции:
int width();
int width(int);

 152

int precision();
int precision(int);
char fill();
char fill(char);

6.5. Манипуляторы

Несмотря на гибкость и большие возможности управления
форматами с помощью компонентных функций класса ios, их при-
менение достаточно громоздко. Более простой способ изменения
параметров и флагов форматирования обеспечивают манипуляторы.

Манипуляторами называются специальные функции, по-
зволяющие модифицировать работу потока. Особенность мани-
пуляторов состоит в том, что их можно использовать в качестве
правого операнда операции >> или <<. В качестве левого операн-
да, как обычно, используется поток (ссылка на поток), и именно
на этот поток воздействует манипулятор.

Для обеспечения работы с манипуляторами в классах istream
и ostream имеются следующие перегруженные функции operator:

istream& operator>>(istream&(*_f)(istream&));
ostream& operator<<(ostream&(*_f)(ostream&));
При использовании манипуляторов следует включить за-

головочный файл <iomanip.h>.
Приведем список встроенных манипуляторов:
dec – устанавливает десятичную систему счисления;
hex – шестнадцатеричную;
oct – восьмеричную;
endl – вставляет в поток вывода символ новой строки и за-

тем сбрасывает поток;
ends – вставляет ‘\∅ ’ в поток вывода;
flush – сбрасывает поток вывода;
ws – выбирает из потока ввода пробельные символы, по-

ток будет читаться до появления символа, отличного от про-
бельного;

 153

setbase(int) – устанавливает основание системы счисления;
resetiosflags(long f) – сбрасывает флаги форматирования,

для которых в f установлен бит в 1;
setiosflags(long f) – устанавливает те флаги форматирования,

для которых в f соответствующие биты установлены в 1;
setfill(int c) – устанавливает символ-заполнитель (с – код

символа-заполнителя);
setprecision(int n) – устанавливает точность при выводе

вещественных чисел;
setw(int n) – устанавливает минимальную ширину поля

вывода.

6.6. Ввод-вывод объектов пользовательских классов

 Чтобы использовать операции >> и << с данными типов,
определяемых пользователем, необходимо расширить действие
этих операций, введя новые операции-функции. Первым парамет-
ром операции-функции должна быть ссылка на объект потокового
типа, вторым – ссылка или объект пользовательского типа.

Пример 6.1
#include <iostream.h>
//Точка в трехмерном пространстве
class Point{
float x,y,z;
public:
Point(float i,float j,float k):x(i),y(j),z(k){};
friend ostreeam operator<<(ostream& stream,Point& p);
friend istreeam operator>>(istream& stream,Point& p);
};

ostream& operator<<(ostream& stream,Point& p)
{

 154

return stream<<”\nx=”<<p.x<<” y=”<<p.y<<” z=”<<p.z<<endl;
}
istream& operator>>(istream& stream,Point& p)
{cout<<”\nx=”; stream>>p.x;
cout<<”y=”; stream>>p.y;
cout<<”z=”; stream>>p.z;
return stream;
}

При перегрузке операторов ввода-вывода для пользова-

тельских типов можно предусмотреть определенный контроль,
например, читать только некоторые символы из потока и про-
пускать все остальные. Это позволит вводить данные в более
гибком формате. Например, для класса Point приемлемы сле-
дующие входные потоки:

10 20 30
(10, 20, 30)
(10
20
30)

Пример 6.2
#include<ctype.h>
#include <iostream.h>
#include<process.h>
#include<windows.h>
//Точка в трехмерном пространстве
class Point{
float x,y,z;
public:
Point(float i,float j,float k):x(i),y(j),z(k){}
friend ostream& operator<<(ostream& os,Point& p);
friend istream& operator>>(istream& is,Point& p);
};

 155

ostream& operator<<(ostream& os,Point& p)
{return os<<"\nx="<<p.x<<" y="<<p.y<<" z="<<p.z<<endl;}
// Функция помещает в входной поток только символы чисел
void SkipNoDigits(istream& is)
{char c;
for(;;)
{is>>c;
if(isdigit(c)||c==’-‘)
{
is.putback(c); //поместить символ в входной поток
return;}
}}

//Перегрузка операции ввода
istream& operator>>(istream& is,Point& p)
{SkipNoDigits(is);
is>>p.x;
SkipNoDigits(is);
is>>p.y;
SkipNoDigits(is);
is>>p.z;
return is;
}

void main()
{
SetConsoleOutputCP(1251);
Point a(1.1,2.2,3.3);
cout<<"Старые координаты"<<a;
cout<<"Введите новые координаты:";
cin>>a;
cout<<"Новые координаты"<<a;
system("pause");
}

 156

Ниже показан пример выполнения программы (рис. 6.3).

Рис. 6.3

6.7. Определение пользовательских манипуляторов

В ситуации, когда нужно повторно определять одну и ту же
команду форматирования, пользовательский манипулятор обес-
печивает простую запись, нечто вроде макро.

Манипулятор без параметра создается следующим образом.
Определяется класс с функцией operator<<(), которая, в свою оче-
редь, вызывает определенные функции форматирования.

Пример 6.3
Определим класс манипулятора
class my_f{};
Перегрузим функцию-оператор operator<< для объекта

класса манипулятора. Манипулятор позволит выполнить вырав-
нивание по правому краю. По умолчанию выравнивание по ле-
вому краю.

ostream& operator<<(ostream& out,my_f)
{
out.width(12);

 157

out.fill(‘# ’);
cout.setf(ios:: right,ios::adjustfield);
 return out;
}
void main()
{my_f MF;
cout<<52.3456<<endl<<MF<<52.3456<<endl;
}
Синтаксис языка разрешает параметры без имен, если по-

следние не используются в теле функции. В стандарте языка
С++ отмечается, что использование специального параметра без
имени «полезно для резервирования места в списке парамет-
ров». В дальнейшем этот параметр может быть введен в функ-
ции без изменения интерфейса, т.е. без изменения вызывающей
программы. Такая возможность бывает удобной при развитии
уже существующей программы за счет изменения входящих
в нее функций.

Поскольку манипулятор – это функция, принимающая
и возвращающая ссылку на поток, то лучше определить мани-
пулятор MF, как показано ниже.

Пример 6.4
ostream& MF(ostream& out)
{
return out<<resetiosflags(ios::right)<<setiosflags(ios::right);
}

Примеры 6.3 и 6.4 показывают два различных подхода

к созданию пользовательских манипуляторов. В первом случае
мы, по сути, не создавали манипулятор, а перегрузили операцию
>> для класса my_f. Во втором случае мы создали собственно
функцию-манипулятор. Вызов её обеспечивает перегруженная
операция << в классе ostream.

 158

6.8. Пользовательские манипуляторы
с параметрами

Пусть, например, необходимо создать новый манипулятор
с параметрами wp(n,m), где n – ширина поля вывода, m – точ-
ность.

Пример 6.5
//Класс манипулятора
class my_manip {
int n,m;
ostream&(*f)(ostream&,int,int);
public:
//конструктор
my_manip(ostream&(*F)(ostream&,int,int),int N, int M):
f(F),n(N),m(M){}
//здесь f,F – указатели на функцию
friend ostream& operator<<(ostream& s,my_manip& my)
{return my.f(s,my.n,my.m);}
};
ostream& wi_pre(ostream& s,int n,int m)
{s.width(n);
s.flags(ios::fixed);
s.precision(m);
return s;
}
my_manip wp(int n,int m)
{return my_manip(wi_pre,n,m);
}
void main()
{cout<<52.3456<<endl<<wp(10,5)<<52.3456<<endl;
}
Рассмотрим этот пример подробнее. Конструктор класса

my_manip имеет первый аргумент ostream&(*F)(ostream&,int,int).
Здесь F – указатель на функцию, имеющую три аргумента типов

 159

ostream&, int и int и возвращающую ссылку на класс ostream. Те-
перь конкретную функцию можно задавать для класса my_manip
через указатель при конструировании объекта этого класса. Мы
задали функцию wi_pre. При выполнении cout<<wp(10,5) факти-
чески вызывается следующая функция:

osteram& operator<<(cout,wp(10,5))
{return wi_pre(cout,10,5);}
Действительно, функция wp возвращает объект класса

my_manip с передачей в его конструктор параметров: wi_pre, n и m.
Сформулируем последовательность создания пользова-

тельского манипулятора с параметрами:
1. Определить класс (my_manip) с полями: параметры ма-

нипулятора + поле – указатель на функцию типа
ostream& (*f)(ostream&,<параметры манипулятора>);
2. Определить конструктор этого класса (my_manip) с ини-

циализацией полей.
3. Определить в этом классе дружественную функцию –

operator<<. Эта функция в качестве правого аргумента принима-
ет объект класса (my_manip), левого аргумента (операнда) поток
ostream и возвращает поток ostream как результат выполнения
функции f.

4. Определить функцию типа *f(wi_pre), принимающую
поток и параметры манипулятора и возвращающую поток. Эта
функция выполняет форматирование.

5. Определить собственно манипулятор (wp) как функ-
цию, принимающую параметры манипулятора и возвращающую
объект my_manip, поле f которого содержит указатель на функ-
цию wi_pre.

При выполнении манипулятора cout<<wp(10,5); вызывается
функция wp, которая создает и возвращает объект my_manip,
в поле f которого содержится указатель на функцию wi_pre.

Затем вызывается функция operator<<, которой передается
объект my_manip, созданный функцией wp.

Наконец, функция operator<< выполняет функцию *f, т.е.
wi_pre, и возвращает поток.

 160

6.9. Использование макросов для создания
манипуляторов

Для создания манипуляторов можно использовать макро-
сы OMANIP(int), IMANIP(int), IOMANIP(int).

Эти макросы содержатся в файле <iomanip.h>
Ниже приведены примеры использования этих макросов:
а) манипулятор с одним параметром
ostream& w(ostream& out,int n)
{out.width(n);
//out<<setw(n);
return out;
}
OMANIP(int) w(int n)
{return OMANIP(int)(w,n);
}
Здесь две функции с именем w, вторая на первый взгляд

кажется ненужной. Однако OMANIP(int) – это макрос, позво-
ляющий определить манипулятор, который принимает парамет-
ры. Обнаружив в операции << манипулятор, компилятор ис-
пользует вторую функцию для вызова первой;

б) манипулятор с двумя параметрами.
Проблема здесь в том, что макросы принимают только

один параметр, так что для передачи нескольких параметров
придется использовать структуру или класс. Например, для двух
параметров:

struct Point
{
int n;
int m;
};
Перед использованием в манипуляторе Point нужно вы-

звать IOMANIPdeclare(Point). IOMANIPdeclare(Type) принимает
только идентификатор, так что передача указателей или ссылок
требует использования typedef.

 161

#include<iostream.h>
#include<iomanip.h>
struct Point
{int x,y;};
IOMANIPdeclare(Point);
ostream& wp(ostream& out,Point p)
{out.width(p.x);
out.flags(ios::fixed);
out.precision(p.y);
return out;
}
OMANIP(Point) wp(int x,int y)
{Point p;
p.x=x;
p.y=y;
return OMANIP(Point)(wp,p);
}

6.10. Состояние потока

 Каждый поток имеет связанное с ним состояние. Состоя-
ния потока описываются в классе ios в виде перечисления enum.

public:
enum io_state
{
goodbit,//нет ошибки 0Х00
eofbit,//конец файла 0Х01
failbit,//последняя операция не выполнилась 0Х02
badbit,//попытка использования недопустимой операции 0Х04
hardfail //фатальная ошибка 0Х08
};
Флаги, определяющие результат последней операции с объ-

ектом ios, содержатся в переменной state. Получить значение этой
переменной можно с помощью функции int rdstate();

 162

Кроме того, проверить состояние потока можно следую-
щими функциями:

int bad(); возвращает 1, если badbit или hardfail
int eof(); возвращает, если eofbit
int fail(); возвращает, если failbit, badbit или hardfail
int good();возвращает, если goodbit
Если попытаться выполнить ввод из потока, который нахо-

дится не в состоянии good(), то возвращается значение NULL. Если
осуществляется чтение в переменную и происходит ошибка, то
значение переменной не изменяется (предполагается, что перемен-
ная имеет стандартный тип, определенный в самом языке). Если
операция >> используется для новых типов данных, то при её пе-
регрузке необходимо предусмотреть соответствующие проверки.

Установить состояние потока в заданное значение можно
функцией void clear(int s=0);

Эта функция устанавливает флаги ios::state в значение, за-
данное параметром s, не изменив при этом бита hardfail.

Пример 6.6
#include<iostream.h>
#include<stdlib.h>
void main()
{int flags;
int k;
cin>>k;
flags=cin.rdstate();
if(flags) //если ошибка
 if(flags& ios:badbit)
 {cout<<”Ошибка\n”;
 cin.clear(0);}
 else{cerr<<”Эту ошибку нельзя исправить\n”;
 abort();}
cout<<”Ввод без ошибок\n”;
cout<<k<<endl;
}

 163

Пример 6.7
#include<iostream.h>
#include<stdlib.h>
void main()
{int k;
cin>>k;
if(!cin)
 if(cin.bad())
 {cout<<”Oшибка\n”;
 cin.clear(0);}
 else
 {cerr<<”Неисправимая ошибка\n”;
 abort();}
cout<<”Ввод без ошибок\n”;
cout<<k<<endl;
}
Здесь используется перегруженная int operator!();
Результат операции – значение функции ios::fail().
Есть еще operator void*(), который возвращает 0, когда

fail() возвращает 1, в противном случае возвращает указатель
this на объект ios.

6.11. Неформатированный ввод-вывод

В классе istream определены следующие функции:
1) istream& get(char* buffer,int size,char delimiter=’\n’);
Эта функция извлекает символы из istream и копирует их

в буфер. Операция прекращается при достижении конца файла,
либо когда будет скопировано size символов, либо при обнару-
жении указанного разделителя. Сам разделитель не копируется
и остается в streambuf. Последовательность прочитанных сим-
волов всегда завершается нулевым символом;

2) istream& read(char* buffer,int size);

 164

Не поддерживает разделителей, и считанные в буфер сим-
волы не завершаются нулевым символом. Количество считан-
ных символов запоминается в istream::gcount_ (private);

3) istream& getline(char* buffer,int size, char delimiter=’\n’);
Разделитель извлекается из потока, но в буфер не заносит-

ся. Это основная функция для извлечения строк из потока. Счи-
танные символы завершаются нулевым символом;

4) istream& get(streambuf& s,char delimiter=’\n’);
Копирует данные из istream в streambuf до тех пор, пока не

обнаружит конец файла или символ-разделитель. Последний не
извлекается из istream. В «s» нулевой символ не записывается;

5) istream get (char& С);
Читает символ из istream в С. В случае ошибки С прини-

мает значение 0XFF;
6) int get();
Извлекает из istream очередной символ. При обнаружении

конца файла возвращает EOF;
7) int peek();
Возвращает очередной символ из istream, не извлекая его

из istream;
8) int gcount();
Возвращает количество символов, считанных во время

последней операции неформатированного ввода;
9) istream& putback(С)
Если в области get объекта streambuf есть свободное про-

странство, то туда помещается символ С;
10) istream& ignore(int count=1,int target=EOF);
Извлекает символ из istream, пока не произойдет следующего:
– функция не извлечет count символов;
– не будет обнаружен символ target;
– не будет достигнуто конца файла.
В классе ostream определены следующие функции:
1) ostream& put(char C);
Помещает в ostream символ С;

 165

2) ostream& write(const char* buffer,int size);
Записывает в ostream содержимое буфера. Символы копи-

руются до тех пор, пока не возникнет ошибка или не будет скопи-
ровано size символов. Буфер записывается без форматирования.
Обработка нулевых символов ничем не отличается от обработки
других. Данная функция осуществляет передачу необработанных
данных (бинарных или текстовых) в ostream;

3) ostream& flush();
Сбрасывает буфер streambuf.
Следующие функции позволяют использовать прямой доступ:
1) istream& seekg(long p);
Устанавливает указатель потока get (не путать с функци-

ей) со смещением «р» от начала потока;
2) istream& seekg(long p,seek_dir point);
Указывается начальная точка перемещения:
enum seek_dir{beg,curr,end}
Положительное значение «р» перемещает указатель get

вперед (к концу потока), отрицательное значение «р» – назад
(к началу потока);

3) long tellg();
Возвращает текущее положение указателя get.
4) ostream& seekp(long p);
Перемещает указатель put в streambuf на позицию «р» от

начала буфера streambuf;
5) ostream& seekp(long p,seek_dir point);
Указывается начальная точка перемещения;
6) long tellp();
Возвращает текущее положение указателя.

Пример 6.8. Использование istream с filebuf для чтения
#include<fstream.h>
void main()
{char buffer[80];
filebuf dir_file;

 166

//присоединение файла к объекту filebuf
if(!dir_file.open(“dir.txt”,ios::in))
{cout<<“Ошибка\n”;
return;}
//создание потока ввода с присоединенным файлом
istream dir_stream(&dir_file);
for(;;);
{//считывание очередной строки текста
dir_stream.getline(buffer,sizeof(buffer));
if(dir_stream.eof())break;
//печать строки текста
cout<<“\n”<<buffer;
}
Нет необходимости закрывать файл явно: деструктор для

dir_file сделает это автоматически.

Пример 6.9. Чтение текстового файла
#include<fstream.h>
void main()
{ifstream fin(“c:\\user\\my.txt”);
if(!fin){cout<<“\nОшибка”; return;}
while(fin)
{char buffer[80];
fin.getline(buffer,sizeof(buffer));
cout<<“\n”<<buffer;}
}

Пример 6.10.Чтение текстового файла в бинарном режиме
#include<fstream.h>
void main()
{ifstream fin(“имя”,ios::binary);
if(!fiin){cout<<“\nОшибка”; return;}
while(fin)
{char c;

 167

fin.get(c);
cout<<c;}
}
Выходной поток можно прочитать и с помощью операции >>
Например, dir_stream >>buffer;
Для копирования всего файла используется и более быст-

рый способ, который связан с применением
istream::operator>>(streambuf*)
Эта функция выполняет все сразу без необходимости ис-

пользования цикла и проверки конца файла. Она копирует сим-
волы из istream в streambuf, начиная с текущей позиции потока.
Копирование прекращается при достижении конца файла.

Цикл for в нашем примере можно заменить одной строкой
ввода dir_stream>>cout.rdbuf();

 Выражение cout.rdbuf() возвращает указатель на
streambuf, используемый стандартным потоком вывода.

ofstream::filebuf* rdbuf();
Затем вызывается функция istream::operator>>(strstreambuf*),

которая копирует символы потока в буфер до тех пор, пока не будет
достигнут конец файла или не возникнут какие-либо ошибки.

Пример 6.11. Запоминание текущего каталога в файле

#include<fstream.h>
#include<dir.h>
void main()
{char buffer[80];
filebuf dir_file;
if(!dir_file.open(“dir.txt”,ios::out)){cout<<“Ошибка\n”; return;}
//создание потока вывода с присоединенным файлом
ostream dir_stream(&dir_file);
//определение пути к текущему каталогу
if(getcwd(buffer,sizeof(buffer))==0){cout<<“Ошибка\n”; return;}
//сохранение пути
dir_stream<<“\nДиректорий: ”<<buffer<<“\n\n”;

 168

//сохранение каталога в файле
struct ffblk file_block;
if(findfirst“*.*”,&fileblock,0))
{dir_stream<<“Ошибка доступа к каталогу\n”; return;}
do dir_stream<< file_block.ff_name<<“\n”;
while(!findnext(&file_block));
}

Пример 6.12. Запись в поток текстового файла
#include<fstream.h>
void main()
{ifstream fin(“имя”);
ofstream fout(“имя”);
if(!fin){cout<<“\nОшибка”; return;}
if(!fout){cout<<“\nОшибка”; return;}
//копирование пяти строк файла fin
int count=0;
while(fin && fout){
char buffer[80];fout<<buffer<<“\n”;
if(++count==5)break;}
}
В этих примерах используется следующая схема создания

потока:
1. Создается объект класса filebuf:
filebuf dir_file;
2. Объект filebuf связывается с устройством (в нашем при-

мере с дисковым файлом, который открывается либо в режиме in,
либо out):

dir_file.open(“dir.txt”,ios::in);
При успешном выполнении функции возвращает указа-

тель на собственный объект класса, в противном случае – нуль.
3. Создается поток как объект класса istream или ostream

и связывается с объектом типа filebuf:
istream dir_stream(&dir_file);

 169

Конструктор создает объект dir_strcom и связывает его
с dir_file.

6.12. Файловый ввод-вывод

Потоки для работы с файлами создаются как объекты сле-
дующих классов:

ofstream – запись в файл;
ifstream – чтение из файла;
fstream – чтение/запись.
Для создания потоков имеются следующие конструкторы:
1) fstream();
создает поток, не присоединяя его ни к какому файлу;
2) fstream(int file_descriptor);
создает поток и присоединяет его к уже открытому файлу;
3) fstream(int fd,char* buffer,int size);
Этот конструктор получает буфер buffer размером size и

использует его для создания внутреннего объекта filebuf. Поток
присоединяется к уже открытому файлу;

4) fstream(const char* name,int mode,int p=filebuf::openprot);
создает поток, присоединяет его к файлу с именем name,

предварительно открыв файл, устанавливает для него режим
mode и уровень защиты p. Если файл не существует, то он соз-
дается. Для m=ios::out, если файл существует, то его размер бу-
дет усечен до нуля. Флаги режима имеют следующие значения:

enum ios::open_mode{
in=0X01, //для чтения
out=0X02, //для записи
ate=0X04, /*индекс потока помещен в конец файла. Чте-

ние больше недопустимо, //выводные данные записываются
в конец файла. При открытии файла //ищется конец файла. Да-
лее можно указать seekp(k);*/

app=0X08, /*поток открыт для добавления данных в ко-
нец. Независимо от seekp будет писаться в конец */

 170

trunc=0X10, //усечение существующего потока до нуля
nocreate=0X20, /*команда открытия потока будет завер-

шена неудачно, если файл не существует*/
noreplace=0X40, /*команда открытия потока будет завер-

шена неудачно, если файл существует*/
binary=0X80, //поток открывается для двоичного обмена
};
static const int filebuf::openprot указывает на тип защиты дос-

тупа к файлам. Система DOS предлагает ограниченный набор за-
щитных механизмов, поэтому по умолчанию защита файлов уста-
новлена в(S_IREAD|S_IWRITE). Системы UNIX могут использо-
вать openprot для предоставления определенным категориям
пользователей прав на чтение, запись или выполнение файла.

Если при создании потока он не присоединен к файлу, то
присоединить существующий поток к файлу можно функцией.

void open(const char* name,int mode,int p=filebuf::openprot);
Функция void fstreambase::close(); сбрасывает буфер по-

тока, отсоединяет поток от файла и закрывает файл. Эту функ-
цию необходимо явно вызвать при изменении режима работы с
потоком. Автоматически она вызывается только при заверше-
нии программы.

Пример 6.13. Запись в бинарные файлы
#include<iostream.h>
#include<fstream.h>
struct Person{
char name[10];
int age;
float salary;};
void main
{//открытие файла
ofstream fout(“person.dat”,ios::binary);
//проверка на ошибки открытия
if(!fout){cout<<“Ошибка\n”; return;}

 171

Person employee;
int k=0;
while(k<10 && fout)
{cout<<“name=”;
cin>> employee.name;
cout<<“age=”;
cin>> employee.age;
cout<<“salary=”;
cin>> employee.salary;
fout.write((char*)&employee,sizeof(employee));
k++;}
fout.seekp(0,ios::end);
long size=fout.tellp();
cout<<“записано ”<<size<<“ байт\n”;
}

Пример 6.14. Чтение бинарного файла
#include<iostream.h>
#include<fstream.h>
struct Person;
void main()
{ifstream fin(“person.dat”,ios::binary);
if(!fin){cout<<“Ошибка\n”; return;}
fin.seekg(0,ios::end);
long size=fin.tellg();
cout<<“В файле ”<<size<<“ байт\n”;
fin.seekg(0,ios::beg);
Person employee;
int k=0;
fin.read((char*)&employee,sizeof(employee));
while(fin)
{cout<<“name=”<<employee.name<<“ age=”<<employee.age
 <<“ salary=”<<employee.salary<<endl;
k++;

 172

fin.read((char*)&employee,sizeof(employee));}
cout<<“прочитано ”<<k<<“ записей\n”;
}

Пример 6.15. Запись в бинарный файл структуры пере-

груженной операцией <<
#include<fstream.h>
struct Person;
ofstream& operator<<(ofstream& out, Person& item)
{out.write((char*)& item,sizeof(item));}
void main()
{ofstream fout(“person.dat”,ios::binary);
if(!fout){…}
int k=0;
TPerson employee;
while(k<10 && fout)
{//сформировать employee
fout<<employee;
k++;}
fout.seekp(0,ios::end);
long size=fout.tellp();
cout<<“записано ”<<size<<“ байт\n”;
}

Общая схема записи в файл:
1) создать потоковый объект
fstream f;
2) открыть для записи
f.open(“имя”,ios::out|ios::binary);
3) выполнять в цикле запись из переменной в файл
f.write((char*)&zap,sizeof(zap));
4) закрыть файл
f.close();

 173

Общая схема чтения из файла:
1) создать потоковый объект
fstream f;
2) открыть для чтения
f.open(“имя”,ios::in|ios::binary);
3) выполнить в цикле чтение из файла в переменную
f.read((char*)&zap,sizeof(zap));

Открыть файл для изменений (чтения/записи) следует

следующим образом:
f.open(“имя”,ios::binary|ios::in|ios::out);
Если указать режим только out без in, то файл усекается

до нуля.
Если требуется только писать в файл (в любую позицию),

то следует открыть его следующим образом:
f.open(“имя”,ios::binary|ios::out|ios::ate);
Если указать только ate без out, то файл не откроется. Если

вместо ate указать app, то данные будут писаться всегда в конец
файла независимо от seekp().

Таким образом, открытие файла на запись в режиме
ios::out приведет к усечению существующего файла до нуля.
Для того чтобы это предотвратить, нужно использовать режим
ios::ate. При этом после открытия индекс файла переместится в
конец. Затем, если необходимо, перемещение по файлу осуще-
ствляет seekp(). Если при открытии был использован режим
ios::app, то все данные будут записываться в конец файла, неза-
висимо от того, какие команды seekp() выдавались. Однако ко-
манда seekg() все же влияет на операцию чтения.

Команда открытия файла выполняется успешно, незави-
симо от того, существует файл или нет. Чтобы предотвратить
открытие уже существующего файла, нужно воспользоваться
режимом открытия ios::noreplace. Чтобы возникла ошибка, когда
файла нет, нужно воспользоваться режимом ios::nocreate.

Как проверить файловый поток на ошибки?

 174

Пусть имеется следующий поток fstream stream. Тогда:
if(!stream) //ошибка была
if(stream) //ошибки не было
Более подробную информацию об ошибке можно полу-

чить с помощью следующих функций:
if(stream.bad()) //были ошибки
if(stream.eof()) //конец файла
if(stream.good()) //ошибок не было
Если произошла ошибка потока, то дальнейшая работа

с ним блокируется. Для продолжения работы необходимо
очистить все биты ошибок потока, выполнив функцию clear(),
например stream.clear();

Если установлен бит ошибки при чтении за концом фай-
ла, то для продолжения работы с файлом следует сбросить бит
ios::eofbit и переместить указатель get в начало файла.

stream.clear();stream.seekg(0);

Если требуется проверить, открыт ли файл, то следует ис-

пользовать функцию is_open(), которая возвращает true, если
файл открыт, например,

if(!stream.is_open()) //файл не открыт
В заключение перечислим возможные способы открытия

файла для операций ввода/вывода:
1. Создается объект filebuf
filebuf fbuf;
Объект filebuf связывается с устройством файлом, кото-

рый открывается в требуемом режиме
fbuf.open(“имя”,ios::in);
Создается поток и связывается с filebuf
istream stream(&fbuf);
2. Создается поток fstream (ifstream, ofstream)
fstream stream;
Открывается файл, который связывается через filebuf

с потоком

 175

stream.open(“имя”,ios::in);
3. Создается объект fstream, одновременно открывается

файл, который связывается с потоком
fstream stream(“имя”,ios::in);
4. Файл открывается функцией ANSI C
FILE* f;
f=fopen(“имя”,”r”);
Создается поток fstream (ifstream, ofstream) и связывается

с файлом
fstream stream(*f.fd);

 176

7. НОВЫЕ ВОЗМОЖНОСТИ ЯЗЫКА С++

7.1. Пространство имен

Пространства имен предназначены для локализации имен
идентификаторов во избежание конфликтов имен. До введения
понятия пространств имен все имена используемых в среде про-
граммирования С++ переменных, функций и классов находи-
лись в одном глобальном пространстве имен, и возникало мно-
жество конфликтов. Конфликты могут быть двух типов.

1. Вы работаете в группе разработчиков и ввели в своей про-
грамме класс Dog. Кому-то из ваших коллег тоже понадобилось
ввести класс Dog. Само по себе это не так уж страшно, поскольку
если вы попытаетесь объединить ваши программы, то компилятор
обнаружит ошибку дублирования имен. Гораздо хуже, если кон-
фликт имен возникает из-за наличия одинакового имени где-
нибудь внутри библиотеки классов, которую вы купили для ис-
пользования в вашем проекте. Особенно вероятна такая ситуация,
когда в одной и той же программе используются библиотеки
функций и классов разных производителей. Если библиотеки по-
ставляются без исходных текстов, а только с заголовочными фай-
лами, вы окажетесь в очень затруднительной ситуации.

2. Конфликт второго рода связан с сокрытием перемен-
ных. Например, имеется следующий текст:

void main()
{int x;
…
{int x;
…}
…}
В момент входа во внутренний блок локальная перемен-

ная х скрывает внешнюю х из main().

 177

Сокрытие переменных в С++ является на первый взгляд
достоинством языка, а не недостатком. Оно облегчает инкапсу-
ляцию. С другой стороны, также нетрудно вообразить случай,
когда программист полагает, что он использует одну перемен-
ную, в то время как в действительности использует совершенно
другую. Множество различных определений переменных, вло-
женных одно в другое и составленных пирамидой благодаря
наследованию, может привести к ситуации, когда происходит
непреднамеренное сокрытие переменных и в конце концов не-
правильное их использование.

 Ясно, что необходим некоторый механизм, который по-
зволил бы квалифицировать (уточнять) переменные и тем самым
избавлять программы от возможных двусмысленностей.

Этим механизмом и является понятие пространств имен
и ключевое слово namespace.

Основная форма объявления пространства имен
namespace имя{
//объявления
}
Все, что определено внутри инструкции namespace, нахо-

дится внутри области видимости данного пространства имен.

Пример 7.1
namespace MyNameSpace{
int i,k;
void myfunc(int j);
class myclass{
int x;
public:
…};
//определение функций
…
}

 178

Здесь имена переменных i и k, функции myfunc и класса
myclass находятся в области видимости, определенной про-
странством имен MyNameSpace.

К идентификаторам, объявленным в пространстве имен,
внутри этого пространства можно обращаться напрямую. Одна-
ко при обращении извне пространства имен к объектам, объяв-
ленным внутри этого пространства, следует указывать оператор
расширения области видимости

MyNameSpace::i=10;
Если имя часто используется вне своего пространства имен,

довольно утомительно писать его каждый раз с квалификатором.
Эту проблему можно решить с помощью объявления using.

using имя_ пространства_имен::идентификатор;
Такое объявление делает видимым и, соответственно, дос-

тупным в текущем пространстве имен указанный идентификатор.
using MyNameSpace::i;
i=10;
Для того чтобы сделать доступными в текущем простран-

стве имен все имена из заданного пространства имен, необхо-
димо использовать директиву using.

using namespace имя_ пространства_имен;
using namespace MyNameSpace;
i=10;
k=5;
myclass ob;
Имеется возможность объявить более одного пространст-

ва имен с одним и тем же именем. Это позволяет разделить про-
странство имен на несколько файлов или внутри одного файла.

namespace NS{
int i;
…}
…
namespace NS{
int j;
...}

 179

Здесь пространство имен NS разделено на две части. Не-
смотря на это, содержимое каждой части по-прежнему остается
в одном и том же пространстве имен NS.

Пространство имен должно объявляться вне всех осталь-
ных областей видимости, за исключением того, что одно про-
странство имен может быть вложено в другое. Следовательно,
вложенным пространство имен может быть только в другое
пространство имен, но не в какую бы то ни было иную область
видимости. Это означает, что нельзя объявить пространство
имен, например, внутри функции.

Пространство имен может быть объявлено без имени
namespace{
//объявления
}
Это позволяет создавать идентификаторы, являющиеся

уникальными внутри некоторого файла. Вне файла, содержаще-
го безымянное пространство имен, члены этого пространства не
видимы.

Одна из проблем с namespace состоит в том, что короткие
названия пространств имен могут войти в конфликт друг с другом.
С другой стороны, весьма неудобно применять длинные имена.

Решение данной проблемы состоит в использовании псев-
донимов для namespace.

namespace Lib=Foundation_library_classes;
Перегрузка компонентных функций.
Одним из достоинств пространства имен является воз-

можность вводить в свои программы библиотеки, написанные
другими, не заботясь о вероятном совпадении имен.

Пример 7.2
Файл lib.h.
#ifndef LIB_H
#define LIB_H
namespace Other_lib

 180

{
#include<head1.h>
#include< head2.h >
#include< head3.h >
}
namespace LIB=Other_lib;
#endif

//использование другой библиотеки
#include<lib.h>
…
LIB::func();
Для небольших и средних по объему программ маловеро-

ятна необходимость создания своих пространств имен. Однако
если вы собираетесь создавать библиотеки функций или клас-
сов, предназначенных для многократного использования, или
хотите гарантировать своим программам широкую переноси-
мость, вам следует рассмотреть возможность размещения своих
кодов внутри некоторого пространства имен. В Microsoft Visual
C++ библиотека классов определена в пространстве имен std.

using namespace std;

7.2. Динамическая идентификация типов

Динамическая идентификация типа (RTTI–Run-Time Type
Identification) характерна для языков, в которых поддерживается
полиморфизм. В этих языках возможны ситуации, в которых
тип объекта на этапе компиляции неизвестен.

В С++ полиморфизм поддерживается через иерархии
классов, виртуальные функции и указатели базовых классов.
При этом указатель базового класса может использоваться либо
для указания на объект базового класса, либо для указания на
объект любого класса, производного от этого базового.

 181

Информацию о типе объекта получают с помощью опера-
тора typeid, при использовании которого следует подключить
заголовочный файл <typeinfo.h>

Оператор typeid имеет две формы:
1) typeid (объект),
2) typeid (имя_типа).
Оператор typeid возвращает ссылку на объект типа type_info.
В классе type_info определены следующие открытые члены:
bool operator==(const type_info&ob)const;
bool operator!=(const type_info&ob)const;
const char* name()const;
Перегруженные операции == и != обеспечивают сравне-

ние типов.
Функция name() возвращает указатель на имя типа.
Оператор typeid имеет одно ограничение. Он работает

корректно только с объектами, у которых определены виртуаль-
ные функции. Когда оператор typeid применяют к неполиморф-
ному классу (в классе нет виртуальной функции), получают ука-
затель или ссылку базового типа.

Пример 7.3
#include<iostream.h>
#include<typeinfo.h>
class Base{
virtual void f(){};
//…
};
class Derived: public Base{
//…
};
void main()
{int i;
Base ob,*p;
Derived ob1;

 182

cout<<typeid(i).name(); //Выводится int
p=&ob1;
cout<<typeid(*p).name(); //Выводится Derived
}

Пример 7.4
#include<iostream.h>
#include<typeinfo.h>
class Base{
virtual void f(){};
//…
};
class Derived: public Base{
//…
};
void WhatType(Base& ob)
{cout<< typeid(ob).name()<<endl;
}
void main()
{
Base ob;
Derived ob1;
WhatType(ob); // Выводится Base
WhatType(ob1); // Выводится Derived
}

Пример 7.5
class X{
virtual void f(){};
};
class Y{
virtual void f(){};
};
void main()

 183

{X x1,x2;
Y y1;
if(typeid(x1)==typeid(x2))cout<<“тип одинаков”;
else cout<<“тип не одинаков”;
if(typeid(x1)!=typeid(y1)) cout<<“тип неодинаков”;
…
if(typeid(x1)==typeid(X)) cout<<“x1 имеет тип X”;
…
}
При использовании указателей на объект, например

typeid(*p), если p==NULL, то возникает исключительная ситуа-
ция bad_typeid.

7.3. Безопасное приведение типа

Приведение типа вида (имя_типа) выражение, опреде-
ленное в стандарте языка С, может привести к ошибкам. Ошибка
может произойти, когда вы попытаетесь привести один объект
к другому при их несовместимости.

Пример 7.6
struct A
{int i};
struct B
{char* s;}
void f(A* x)
{B* p=(B*)x;
cout<<p–>s;}
void main()
{B b;
A a,*r;
b.s=new char[5];
b.s=“abcd”;

 184

a.i=15;
r=&a;
f(r);//Здесь ошибка
r=(A*)(&b);
f(r);//А так ошибки нет
}
Для решения проблемы безопасного приведения типов в

С++ введены операторы:
dynamic_cast, static_cast, const_cast, reinterpret_cast.
Оператор dynamic_cast
Оператор dynamic_cast предназначен для безопасного

приведения типа одного указателя или ссылки в другой. Основ-
ное назначение оператора dynamic_cast заключается в реализа-
ции приведения полиморфных типов.

Синтаксис оператора dynamic_cast:
dynamic_cast<целевой_тип>(выражение)
Здесь «целевой_тип» – это тип, которым должен стать тип

параметра «выражение» после выполнения приведения типа.
Оператор выполняется успешно, когда указатель (или ссылка)
после приведения типа становится указателем на объект целево-
го типа либо на объект производного от целевого типа. При не-
возможности приведения результатом является либо NULL, ес-
ли приводятся указатели, либо возбуждается исключительная
ситуация bad_cast, если приводятся ссылки.

Пример 7.7
Base* bp,b;
Derived* dp,d;
bp=&d;
dp= dynamic_cast<Derived*>(bp);
if(dp)cout<<“приведение прошло успешно”;
bp=&b;
dp=dynamic_cast<Derived*>(bp);

 185

if(!dp)cout<<“приведение невозможно”;
Оператор dynamic_cast в некоторых случаях можно ис-

пользовать вместо typeid.
Base* bp;
Derived* dp;
Приведение типов можно выполнить так:
if (typeid(*bp)==typeid(Derived))dp=(Derived*)bp;
А можно и короче:
dp=dynamic_cast<Derived*>(bp);
Оператор const_cast
const_cast<целевой_тип>(выражение)
Используется в том случае, когда вам необходимо удалить

атрибут const из объекта.
void f(const int* p)
{int* v;
v=const_cast<int*>(p);
v=2(*v);
}
Оператор static_cast
static_cast<целевой_тип> (выражение)
Предназначен для выполнения операции приведения ти-

пов над объектами неполиморфных классов. Например, его
можно использовать для приведения типа указателя базового
класса к типу указателя производного класса. Кроме этого, он
подойдет и для выполнения любой стандартной операции пре-
образования, но только не в динамическом режиме.

int i;
float f;
f=199.22;
i=static_cast<int>(f);
Оператор reinterpret_cast
reinterpret_cast<целевой_тип>(выражение)
Дает возможность преобразовать указатель одного типа

в указатель совершенно другого типа. Он также позволяет

 186

приводить указатель к типу целого или целое к типу указате-
ля. Это преобразование также опасно, как и старый С-стиль
преобразования.

int i;
char* p=“Это строка”;
i=reinterpret_cast<int>(p);
cout<<i;

 187

8. СТАНДАРТНАЯ БИБЛИОТЕКА ШАБЛОНОВ

8.1. Введение в STL

Создание стандартной библиотеки шаблонов (Standard
Template Library, STL) является результатом многолетних ис-
следований под руководством Александра Степанова и Менга
Ли из компании «Hewlett-Packard» и Девида Мюссера из «Rens-
selaer Polytechnic Institute».

Одна из наиболее необычных идей STL – это обобщенные
алгоритмы. Обобщенные алгоритмы в STL напоминают клас-
сы-шаблоны. Но есть принципиальная разница между принци-
пами ООП и принципами, лежащими в основе STL.

В ООП хорошо разработанный объект старается инкапсу-
лировать всё состояние и поведение, необходимые для выпол-
нения задачи и в то же время скрывает как можно больше дета-
лей внутреннего устройства. Во многих предшествующих объ-
ектно-ориентированных библиотеках этот подход воплощался
в контейнерных классах, обладающих широкой функционально-
стью и богатым интерфейсом.

Разработчики STL пошли в другом направлении. Поведе-
ние, обеспечиваемое их стандартными компонентами, является
минимальным. Вместо этого каждый компонент предназначен
для функционирования совместно с большим набором обоб-
щенных алгоритмов (шаблонов), имеющихся в библиотеке. Эти
алгоритмы не зависят от контейнеров и поэтому могут работать
с многими различными типами.

Отделяя функционирование алгоритмов от контейнерных
классов, библиотека STL много выигрывает в размере – как
в объёме самой библиотеки, так и в генерируемом коде. Вместо
того, чтобы дублировать алгоритмы для многих контейнерных
классов, одно-единственное описание библиотечной функции

 188

может использоваться с любым контейнером. Более того, опи-
сание этих функций является настолько общим, что они могут
применяться с обычными массивами и указателями и с другими
типами данных.

Парадигму обобщенного программирования можно сфор-
мулировать следующим образом: реши, какие требуются алго-
ритмы; параметризуй их так, чтобы они могли работать со мно-
жеством подходящих типов и структур данных.

STL обеспечивает общецелевые, стандартные классы и функ-
ции, которые реализуют наиболее популярные и широко используе-
мые алгоритмы и структуры данных. Поскольку STL строится на
основе шаблонов классов, входящие в неё алгоритмы и структу-
ры применимы почти ко всем типам данных

Ядро библиотеки образуют три элемента: контейнеры,
алгоритмы и итераторы.

Контейнеры (containers) – это объекты, предназначен-
ные для хранения других элементов: вектор, линейный спи-
сок, множество.

Ассоциативные контейнеры (associative containers) по-
зволяют с помощью ключей получить быстрый доступ к храня-
щимся в них значениям.

В каждом классе-контейнере определен набор функций
для работы с ними. Например, список содержит функции для
вставки, удаления и слияния элементов.

Алгоритмы (algorithms) выполняют операции над содер-
жимым контейнера. Существуют алгоритмы для инициализа-
ции, сортировки, поиска, замены содержимого контейнеров.
Многие алгоритмы предназначены для работы с последователь-
ностью (sequence), которая представляет собой линейный спи-
сок элементов внутри контейнера.

Итераторы (iterators) – это объекты, которые по отноше-
нию к контейнеру играют роль указателей. Они позволяют по-
лучить доступ к содержимому контейнера примерно так же, как
указатели используются для доступа к элементам массива.

 189

Вдобавок к контейнерам, алгоритмам и итераторам в STL
поддерживается ещё несколько стандартных компонентов.
Главными среди них являются распределители памяти, пре-
дикаты и функции сравнения.

У каждого контейнера имеется определенный для него
распределитель памяти (allocator), который управляет процес-
сом выделения памяти для контейнера.

По умолчанию распределителем памяти является объект
класса allocator. Можно определить собственный распределитель.

В некоторых алгоритмах и контейнерах используется
функция особого типа, называемая предикатом. Предикат может
быть унарным и бинарным. Возвращаемое значение: истина либо
ложь. Точные условия получения того или иного значения опре-
деляются программистом. Тип унарных предикатов – UnPred,
бинарных – BinPred. Тип аргументов соответствует типу храня-
щихся в контейнере объектов.

Специальный тип бинарного предиката для сравнения двух
элементов называется функцией сравнения (comparison function).
Функция сравнения возвращает истину, если первый элемент
меньше второго. Типом функции является тип Comp.

Для поддержки контейнерных классов STL включает так
называемые классы-утилиты (Utility-классы). Заголовочные
файлы: <utility.h> и <function.h>. Например, шаблон класса pair
(пара) для хранения пары объектов.

Шаблоны из заголовочного файла <function.h> помогают
создавать объекты, определяющие оператор-функцию operator().
Эти объекты называются объектами-функциями (function
objects) и во многих случаях могут использоваться вместо указа-
телей на функции, что позволяет генерировать более эффектив-
ный код. Например, класс-функция less (меньше), который по-
зволяет определить, является значение одного объекта меньше,
чем другого. Это предикат.

 190

template<class T> struct less: public binary_function<T,T,bool>
{bool operator()(const T& x,const T& y)const
//возвращает результат сравнения x<y
{return x<y;}
};
Для поддержки единого определения типов аргументов

и типа возвращаемого значения для различных объектов-
функций с двумя аргументам в STL введен вспомогательный
базовый класс:

template<class Arg1,class Arg2,class Result> struct bi-
nary_function{}

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

8.2. Итераторы

Итератор – это специальный вспомогательный объект, ко-
торый поставляется разработчиком контейнерного класса.
Единственное назначение такого объекта – обеспечить доступ
к элементам контейнера без показа внутренней структуры кон-
тейнера (один элемент за одно обращение).

Обычно итератор содержит указатель, с которым произ-
водятся различные манипуляции.

 В STL итератор – это фундамент, на котором основано
использование контейнерных классов и алгоритмов.

Итераторы применяются для различных целей:
– итератор может обозначать конкретное значение;
– пара итераторов может задавать диапазон значений. При

этом второе значение (второй итератор) рассматривается не как
часть определяемого диапазона, но как запредельный элемент,
описывающий значение, следующее за последним значением из
заданного диапазона.

Основное действие, которое модифицирует итератор, –
это операции: инкремент ++ , декремент -- и увеличение +.

 191

Для доступа к данным, определяемым итератором, ис-
пользуется оператор разыменования *.

Итератор является шаблоном, параметром которого явля-
ется контейнерный класс. Существует пять типов итераторов.

Итераторы ввода (input_iterator) поддерживают опера-
ции равенства, разыменования и автоинкремента. Итераторы,
отвечающие этим условиям, могут использоваться для однопро-
ходных алгоритмов, которые читают значения данных в одном
направлении. Специальным случаем итератора ввода является
istream_iterator.

==, !=, *i, ++i, i++, *i++.
Итераторы вывода (output_iterator) поддерживают ра-

зыменование, допустимое только с левой стороны присваива-
ния, и инкремент:

++i, i++, *i=t, *i++=t
Однонаправленные итераторы (forward_iterator) под-

держивают все операции итераторов ввода-вывода и, кроме то-
го, позволяют без ограничений применять присваивание. Для
них из i==j следует ++i==++j, что не всегда истинно для итера-
торов ввода, т.е. forward-итераторы сохраняют позицию внутри
структуры данных (контейнера) при многократных проходах.
Таким образом, их можно использовать в алгоритмах с много-
кратным проходом.

==, !=, =, *i, ++i, i++, *i++.
Двунаправленные итераторы (biderectional_iterator) об-

ладают всеми свойствами forward-итераторов, а также возможно-
стью прохода контейнера в обоих направлениях, т.е. имеют до-
полнительная операции –декремент:

--i, i--, *i--.
Итераторы произвольного доступа (random_access_

iterator) обладают всеми свойствами двунаправленных итерато-
ров, а также поддерживают операции сравнения и адресной
арифметики, т.е. непосредственный доступ по индексу.

i+=n, a+n, i-=n, a-n, i-j, i[n], i<j, i<=j, i>j, i>=j.

 192

Таким образом, с их помощью можно написать такие ал-
горитмы, как алгоритмы быстрой сортировки, которые требуют
эффективного произвольного доступа.

С итераторами можно работать так же, как с указателями.
К ним можно применить операции *, инкремента, декремента.
Типом итератора объявляется тип iterator, который определен
соответствующим образом в различных контейнерах. В STL
также поддерживаются обратные итераторы (reverse iterators).
Обратными итераторами могут быть либо двунаправленные
итераторы, либо итераторы произвольного доступа, но прохо-
дящие последовательность в обратном направлении. Следова-
тельно, если обратный итератор указывает на последний эле-
мент последовательности, то инкремент этого итератора приве-
дет к тому, что он будет указывать на предпоследний элемент.

8.3. Классы-контейнеры

В STL определены два типа контейнеров – последователь-
ности и ассоциативные контейнеры.

Встроенные массивы, строки string, векторы valarray
(векторы, оптимизированные для численных расчетов) и бито-
вые поля bitset содержат элементы и, следовательно, могут счи-
таться контейнерами. Однако эти типы не являются полностью
разработанными стандартными контейнерами. Если бы они яв-
лялись таковыми, это помешало бы их основному назначению.

Ниже перечислены основные классы-контейнеры с указа-
нием заголовочных файлов, которые необходимо подключить
при их использовании:

bitset множество битов <bitset>,
deque двусторонняя очередь <deque>,
list линейный список <list>,
map ассоциативный список для хранения пар

ключ/значение, где с каждым ключом свя-
зано одно значение <map>,

 193

multimap с каждым ключом связаны два или более
значений <map>,

multiset множество, в котором каждый элемент не
обязательно уникален <set>,

priority_queue очередь с приоритетом <queue>,
queue очередь <queue>,
set множество <set>,
stack стек <stack>,
vector динамический массив <vector>.

Ключевая идея для стандартных контейнеров заключает-

ся в том, что, когда это представляется разумным, они должны
быть логически взаимозаменяемыми. Пользователь может вы-
бирать между ними, основываясь на соображениях эффективно-
сти и потребности в специализированных операциях. Например,
если часто требуется поиск по ключу, можно воспользоваться
map (ассоциативным массивом). С другой стороны, если преоб-
ладают операции, характерные для списков, можно воспользо-
ваться контейнером list. Если добавление и удаление элементов
часто производятся в концы контейнера, следует подумать об
использовании очереди queue, очереди с двумя концами deque,
стека stack. По умолчанию пользователь должен использовать
vector; он реализован, чтобы хорошо работать для самого широ-
кого диапазона задач. Кроме того, пользователь может разрабо-
тать дополнительные контейнеры, вписывающиеся в рамки
стандартных контейнеров.

Идея обращения с различными видами контейнеров –
и в общем случае со всеми видами источников информации –
унифицированным способом ведет к понятию обобщенного
программирования, о чем излагалось выше.

Поскольку имена типов элементов, входящих в объявле-
ние класса-шаблона, могут быть самыми разными, в классах-
контейнерах с помощью ключевого слова typedef объявляются

 194

некоторые согласованные версии этих типов. Эта операция по-
зволяет конкретизировать имена типов. Ниже перечислены име-
на этих типов:

size_type интегральный тип, эквивалентный типу
size_t, являющемуся беззнаковым целочис-
ленным типом, представляющим результат
операции sizeof,

reference тип ссылки на элемент контейнера,
const_reference тип константной ссылки на элемент

контейнера,
iterator тип итератора,
const_iterator тип константного итератора,
reverse_iterator тип обратного итератора,
const_reverse_iterator тип константного обратного итератора
value_type тип хранящегося в контейнере значения,
allocator_type тип распределителя памяти,
key_type тип ключа в ассоциативных контейнерах,
mapped_type тип отображенного значения в ассоциатив-

ных контейнерах,
key_compare тип функции, которая сравнивает два ключа,
value_compare тип функции, которая сравнивает два зна-

чения.
Следующие компонентные функции контейнеров исполь-

зуют итераторы в качестве возвращаемого значения:
iterator begin() указывает на первый элемент,
iterator end() указывает на элемент, следующий

за последним,
reverse_iterator begin() указывает на первый элемент в об-

ратной последовательности,
reverse_iterator rend() указывает на элемент, следующий

за последним в обратной последо-
вательности.

Следующие компонентные функции контейнеров исполь-
зуют итераторы в качестве возвращаемого ссылки:

 195

reference front() ссылка на первый элемент,
reference back() ссылка на последний элемент,
reference operator[]() доступ по индексу без проверки,
reference at() доступ по индексу с проверкой.
Следующие компонентные функции контейнеров включают

элементы в контейнер:
insert() включает элемент (последовательность элемен-

тов) в контейнер,
push_back() добавление х в конец,
push_front() добавление нового первого элемента (только

для списков и очередей с двумя концами).
Следующие компонентные функции контейнров удаляют эле-

лементы из контейнера:
pop_back() удаление последнего элемента,
pop_front() удаление первого элемента (только для списков

и очередей с двумя концами),
erase() удаление заданной последовательности эле-

ментов,
clear() удаление всех элементов контейнера.
Операция доступа к элементу контейнера по индексу:
reference operator[](size_type pos);
Операции для ассоциативных контейнеров:
T& operator[](const key_type& k)
доступ к элементу с ключом k,
iterator find(const key_type&k)
находит элемент с ключом k,
iterator lower_bound(const key_type&k)
находит первый элемент с ключом k,
iterator upper_bound(const key_type&k)
находит первый элемент с ключом большим k,
pair<iterator,iterator>equal_range(const key_type&k)
находит lower_bound (нижнюю границу) и upper_bound

(верхнюю границу) элементов с ключом k.

 196

Другие операции для контейнеров:
size_type size()const возвращает число элементов

в контейнер,
bool empty()const проверяет, пуст ли контейнер,
size_type capacity()const возвращает размер памяти, выде-

ленной под контейнер-вектор,
void reserve(size_type n) выделяет память под вектор,
void resize(size_type n,T obj=T()) изменяет размер контейне-

ра (только для векторов, списков
и очередей с двумя концами),

swap(x) обмен местами двух контейнеров,
==, !=, < операции сравнения контейнеров.

Для создания контейнеров имеются следующие конструкторы:
container() создается пустой контейнер,
container(n) создается контейнер, содержащий n

элементов со значением по умолчанию,
container(n,x) создается контейнер, содержащий n ко-

пий элементов х,
container(first,last) создается контейнер, содержащий элемен-

ты из диапазона [first:last],
container(x) конструктор копирования.

8.4. Контейнер vector

В качестве примера подробнее рассмотрим контейнер vector.
Контейнер вектор представляет собой динамический мас-

сив с доступом к его элементам по индексу. Возможность дос-
тупа к элементам по индексу обеспечивает поддерживаемый
контейнером итератор произвольного доступа. Шаблон класса
vector определен следующим образом:

template<class T, class Allocator=allocator<T> >
class std:: vector{/*члены класса*/};
T – тип предназначенных для хранения данных.

 197

Allocator задает распределитель памяти, который по умол-
чанию является стандартным.

В классе определены следующие конструкторы.
explicit vector(const Allocator& a=Allocator());
explicit vector(size_type число,const T&значение=T(),const

Allocator&a=Allocator());
vector(const vector<T,Allocator>&объект);
template<class InIter>vector(InIter начало,InIter конец, const

Allocator&a=Allocator());
Описатель explicit подавляет неявное преобразование ти-

пов из типа аргумента в тип класса конструктора.
Первая форма представляет собой конструктор пустого

вектора.
Во второй форме конструктора вектора число элементов –

это число, а каждый элемент равен значению значение. Пара-
метр значение может быть значением по умолчанию.

Третья форма конструктора вектор – это конструктор ко-
пирования.

Четвертая форма – это конструктор вектора, содержащего
диапазон элементов, заданный итераторами начало и конец.

Пример 8.1
vector<int> a;
vector<double> x(5);
vector<char> c(5,’*’);
vector<int> b(a);
Для любого объекта, который будет храниться в векторе,

должен быть определен конструктор по умолчанию. Кроме того,
для объекта должны быть определены операторы < и ==.

Для класса вектор определены следующие операторы
сравнения

==, <, <=, !=, >, >=.
Кроме этого, для класса vector определяется оператор дос-

тупа по индексу [].

 198

Новые элементы могут включаться в контейнер с помо-
щью функций:

1) iterator insert(iterator i,const T&значение=T());
Вставляет параметр значение перед элементом, заданным

итератором i. Возвращает итератор элемента,
2) void insert(iterator i,size_type число,const T&значение);
Вставляет число копий параметра значение перед элемен-

том, заданным итератором i,
3) template<class InIter>void insert(iterator i,InIter начало,InIter

конец);
Вставляет последовательность, определенную между итера-

торами начало и конец, перед элементом, заданным итератором i,
4) void push_back(const T&значение);
Добавляет в конец вектора элемент, значение которого

равно параметру значение,
5) void resize(size_type число,T значение=T());
Изменяет размер вектора в соответствии с параметром чис-

ло. Если при этом вектор удлиняется, то добавление в конец векто-
ра. Элементы получают значение, заданное параметром значение;

6)template<class InIter>void assign(InIter начало,InIter конец);
Присваивает вектору последовательность, определенную

итераторами начало и конец.
Существующие элементы могут удаляться с помощью

функций:
1) iterator erase(iterator i);
Удаляется элемент заданный итератором i,
2) iterator erase(iterator начало, iterator конец);
Удаляет элементы последовательности, определенной

итераторами начало и конец,
3) void pop_back();
Удаляет последний элемент,
4) void clear() const;
Удаляет все элементы. Контейнер становится пустым,
5) void resize(size_type число,T значение=T());

 199

Изменяет размер вектора в соответствии с параметром чис-
ло. Если размер уменьшается, последние элементы удаляются.

Доступ к отдельным элементам осуществляется с помо-
щью итераторов:

1) iterator begin();
Возвращает итератор на первый элемент,
2) iterator end();
Возвращает итератор на конец последовательности,
3) reference operator[](size_type pos);
Возвращает ссылку на элемент в позиции pos без контроля,
4) reference at(size_type pos);
Возвращает ссылку на элемент в позиции pos с контролем.

При выходе индекса за границу генерируется исключение
out_of_range,

5) reference front();
Возвращает ссылку на первый элемент.
6) reference back();
Возвращает ссылку на последний элемент.
Манипулирование контейнером: сортировка, поиск в нем

и тому подобное возможны с помощью глобальных функций
файла-заголовка <algorithm.h>.

Два вектора х и у считаются равными (==), если
x.size()==y.size() и x[i]=y[i] для любого допустимого индекса i.

Вектор х меньше вектора у (<), если первый x[i], не равный
соответствующему y[i], меньше, чем y[i], или x.size()<y.size() при
равенстве всех x[i] соответствующим y[i].

Пример 8.2. Создание массива целых чисел и заполнение

его числами от 0 до 10.
#include<iostream.h>
#include<vector.h>
using namespace std;
int main()
{vector<int> v;

 200

int i;
for(i=0;i<10;i++)v.push_back(i);
cout<<“size=”<<v.size()<<“\n”;
for(i=0;i<10;i++)cout<<v[i]<<“ ”;
cout<<endl;
for(i=0;i<10;i++)v[i]=v[i]+v[i];
for(i=0;i<v.size();i++)cout<<v[i]<<“ ”;
cout<<endl;
return 0;
}

Пример 8.3. То же, что и предыдущий, но используется

итератор
int main()
{vector<int> v;
int i;
for(i=0;i<10;i++)v.push_back(i);
//доступ к вектору через итератор
vector<int>::iterator p=v.begin();
while(p!=v.end()){cout<<*p<<“ ”; p++;}
return 0;
}

Пример 8.4
int main()
{vector<int> v(5,1);
vector<int>::iterator p=v.begin();
while(p!=v.end()){cout<<*p<<“ ”; p++;}
 p=v.begin();
p+=2;//указывает на третий элемент
/*вставка в вектор v на то место, куда указывает итератор

р, десять новых элементов, каждый из которых равен 9*/
v.insert(p,10,9);
//вывод

 201

p=v.begin();
while(p!=v.end()){cout<<*p<<“ ”; p++;}
//удаление вставленных элементов
p=v.begin();
p+=2;
v.erase(p,p+10);
//вывод
p=v.begin();
while(p!=v.end()){cout<<*p<<“ ”; p++;}
return 0;
}

Пример 8.5. Массив объектов пользовательского класса
#include<iostream.h>
#include “student.h”
using namespace std;
int main()
{vector<STUDENT> v(3);
int i;
v[0]= STUDENT(“Иванов”,21);
v[1]= STUDENT(“Петров”,19);
v[2]= STUDENT(“Попов”,20);
for(i=0;i<3;i++)cout<<v[i];
return 0;
}

8.5. Многомерные массивы

Многомерный массив можно представить как вектор с
компонентами типа вектор:

vector<vector<int>> v;
Так создаётся вектор векторов с целыми элементами, ко-

торый в начале не содержит ни одного элемента. Проинициали-
зируем его в матрицу 3×5.

 202

v.resize(3);//теперь вектор содержит три пустых вектора
for(int i=0;i<v.size();i++)
{v[i].resize(5);//каждый из векторов содержит пять элементов
//проинициализируем их
for(int j=0;j<v[i].size();j++)v[i][j]=10*i+j;}
Вектора vector<int> в векторе vector<vector<int>> не обя-

заны иметь один и тот же размер.
Каждая реализация шаблона vector содержит указатель на

его элементы плюс число элементов. Как правило, элементы
содержатся в массиве.

v: 3

v

v[0]: 5 0 1 2 3 4

v

v[1]: 5 10 11 12 13 14

v

v[2]: 5 20 21 22 23 24

 Доступ к элементам осуществляется путем двойного ин-

дексирования.
for(int i=0;i<v.size();i++){
for(int j=0;j<v[i].size();j++)cout<<v[i][j]<<“ ”;
Можно перегрузить операции << и >> для вектора.
ostream& operator<<(ostream& out,const vector<int>& v){
vector<int>::iterator p;
for(p=v.begin();p!=v.end();++p)out<<*p<<’\t’;
out<<endl;
return out;}
istream& operator>>(istream& in,vector<int>& v){

 203

vector<int>::iterator p;
for(p=v.begin();p!=v.end();++p)in>>*p;
return in;}
Можно написать также функцию суммирования элемен-

тов вектора:
int sum(vector<int>::iterator first,vector<int>::iterator last,
int initial_val)
{vector<int>::iterator p;
int sum=initial_val;
for(p=first;p!=last;p++)sum+=*p;
return sum;
}

Программа 8.1. Напишите функцию быстрой сортировки

массива целых чисел.
Функцию быстрой сортировки сложно запрограммировать

из-за многочисленных индексов, которые отслеживаются в тра-
диционной реализации. Мы будем использовать контейнер vec-
tor и заменим индексирование итераторами.

Вначале запишем рекурсивную функцию сортировки:
void quicksort(vector<int>::iterator from,vector<int>::iterator to)
{
vector<int>::iterator mid;
if(from<(to-1)){
mid=partition(from,to);
quicksort(from,mid);
quicksort(mid+1,to);}
}
Здесь используется функция partition, которая в соответ-

ствиии с алгоритмом разделяет массив на две части.
Запишем эту функцию.
vector<int>::iterator
partition(vector<int> :: iterator from, vector <int> :: iterator to)
{

 204

vector<int>::iterator front=from+1;
vector<int>::iterator back=to-1;
int compare=*from;
while(front<back){
while((front<back)&&(compare>*front))++front;
while((front<back)&&(compare<=*back))--back;
swap(*front,*back);}
if(compare>*front)
{swap(*from,*front);
return front;}
else{
swap(*from,*(front-1));
return front-1;}
}
Используемая здесь функция swap() меняет местами два

элемента.
inline void swap(int& i,int& j)
{int temp=i;
i=j;
j=temp;}
Напишем также функцию print() для вывода массива:
void print(vector<int> v)
{
for(int i=0;i<v.size();i++)cout<<v[i]<<' ';
cout<<endl;
}
И,наконец, запишем функцию main():
int main()
{
srand((unsigned)time(NULL));
vector<int> v(10);
for(int i=0;i<v.size();i++)v[i]=rand()/10;
print(v);
quicksort(v.begin(),v.end());

 205

print(v);
return 0;
}
Не забудьте подключить заголовочные файлы и указать

пространство имен:
#include<iostream>
#include<vector>
#include <stdio.h>
#include <time.h>
using namespace std;
В программе определяется вектор, заполняется случайны-

ми числами и сортируется.
В качестве самостоятельной работы напишите шаблон

функции быстрой сортировки последовательностей любого типа.

8.6. Ассоциативные контейнеры

Ассоциативные контейнеры – это обобщение понятия ас-
социативного массива.

Ассоциативный массив – это один из самых полезных
и универсальных типов, определяемых пользователем. Фактиче-
ски в языках, занимающихся главным образом обработкой тек-
стов и символов, это зачастую встроенный тип .

Ассоциативный массив, часто называемый отображением
(map), а иногда словарем (dictionary), содержит пары значений.
Зная одно значение, называемое ключом (key), мы можем полу-
чить доступ к другому, называемому отображенным значени-
ем (mapped value).

Ассоциативный массив можно представить как массив,
для которого индекс необязательно должен иметь целочислен-
ный тип:

template<class K,class V> class Assoc{
public:

 206

V& operator[](const K&);
//…
}
Здесь operator[] возвращает ссылку на элемент V, соответ-

ствующий ключу K.
STL содержит два вида контейнеров, построенных как ас-

социативные массивы: map и multimap, set и multiset, причем
set и multiset можно рассматривать как вырожденные ассоциа-
тивные массивы, в которых ключу не соответствует никакое
значение (т.е. set содержит одни ключи).

Контейнеры map и multimap
Это последовательность пар (ключ, значение), которая

обеспечивает быстрое получение значения по ключу. Контейнер
map предоставляет двунаправленные итераторы.

Контейнер map требует, чтобы для типов ключа сущест-
вовала операция “<”. Он хранит свои элементы отсортирован-
ными по ключу так, что перебор происходит по порядку.

Спецификация шаблона для класса map:
template<class Key,classT,class Comp=less<Key>,
class Allocator=allocator<pair>> class std::map
В классе map определены следующие конструкторы:
explicit map(const Comp& c=Comp(),
const Allocator& a=Allocator());
map(const map<Key,T,Comp,Allocator>& ob);
template<class InIter> map(InIter first,InIter last,const

Comp& c=Comp(),const Allocator& a=Allocator());
Первая форма представляет собой конструктор пустого ас-

социативного контейнера, вторая – конструктор копии, третья –
конструктор ассоциативного контейнера, содержащего диапазон
элементов.

В классе определена операция присваивания:
map& operator=(const map&);
Определены также следующие операции сравнения: ==,

<, <=, !=, >, >=.

 207

Копирование контейнера требует выделения памяти для
элементов и создания копии каждого элемента. Это может ока-
заться очень дорого, и делать это нужно лишь при необходимо-
сти. Поэтому такие контейнеры часто передаются по ссылке.

Пары ключ/значение хранятся в контейнере в виде объек-
тов типа pair. Тип pair – это класс, точнее, шаблон класса.

template<class Key,class V> struct pair{
typedef Key TFirst;//тип ключа
typedef V TSecond;//тип значения
Key first;//ключ
V second;//значение
pair():first(Key()),second(V()){}
pair(const Key& x,const V& y):first(x),second(y){}
template<class A,class B> pair(const pair<A,B>& ob):

first(ob.first),second(ob.second){}
};
Последний конструктор существует для того, чтобы по-

зволить преобразование в инициализаторе. Например:
pair<int,double> f(char c,int i)
{return pair<int,double>(c,i);}
Создавать пары ключ/значение можно не только с помо-

щью конструкторов класса pair, но и с помощью функции
make_pair, которая создает объекты типа pair, используя типы
данных в качестве параметров.

template<class T1,classT2> pair<T1,T2>
std::make_pair(const T1& t1,const T2& t2){
return pair<T1,T2>(t1,t2);}
Преимущество этой функции в том, что она дает возмож-

ность компилятору автоматически распознавать типы предна-
значенных для хранения объектов, и вам не нужно указывать их
явно. Таким образом, map – это последовательность.

Что касается реализации контейнера map, то он, скорее
всего, реализован с использованием какой-либо формы дерева, и
итераторы для map обеспечивают некоторый способ прохода по

 208

дереву. Такая реализация обеспечивает быстрый поиск значения
по ключу.

Операции с ассоциативными контейнерами
Типичная операция – это ассоциативный поиск при по-

мощи операции индексации ([]).
mapped_type& operator[](const key_type& K);
Операция индексации должна найти ключ. Когда ключ не

находится, добавляется элемент по умолчанию. Таким образом,
индексация может использоваться, если mapped_type имеет зна-
чение по умолчанию. Это является следствием того, что pair по
умолчанию инициализируется значениями по умолчанию для
типов её элементов. Элементы встроенных типов инициализи-
руются нулями, а строки string – пустыми строками.

Пример 8.1
map<string,int> m; Создан пустой контейнер
int x=m[“Иванов”]; Добавляется элемент с ключом “Ива-

нов” и знечение 0.
m[“Петров”]=7; Добавляется элемент с ключом “Петров”

и знечение 7.
int y=m[“Иванов”]; y будет иметь значение 0
int z=m[“Петров”]; z будет иметь тзначение 7
m[“Петров”]=9; Изменено значение элемента с ключем

“Петров”

Пример 8.2. Подсчитать общую стоимость предметов,

представленных в виде пар (название предмета,стоимость):
void InitMap(map<string,int,less<string>>& m)
{string name;
int cost=0;
while(cin>>name>>cost)
//выход по ^z(Ctrl+z)
m[name]+=cost;
}

 209

Если вводятся несколько предметов с одинаковым назва-
нием, то стоимость суммируется. Это видно в последней строке.

void main(){
map<string,int,less<string>> ware;
InitMap(ware);
int total=0;
typedef map<string,int,less<string>>::const_iterator pware;
for(pware p=ware.begin();p!=ware.end();p++){
total+=(*p).second;
cout<<(*p).first<<‘\t’<<(*p).second<<‘\n’;}
cout<<“--------------\n”;
cout<<“total\t”<<total<<‘\n’
}
В этом примере используется определенная в STL функ-

ция сравнения less.
Для доступа к элементам контейнера map можно использо-

вать также функции find(k), lower_bound(k), upper_bound(k), ко-
торые возвращают итератор, соответствующий элементу с ключом
k или начало/конец последовательности элементов контейнера,
имеющих ключ k.

Обычно конец последовательности – это итератор, указы-
вающий на элемент, следующий за последним в последовательно-
сти. Если элемента с ключом k нет, возвращается итератор end().

Вводить значения в ассоциативный контейнер принято про-
стым присваиванием с использованием индекса (см. пример 8.1):

m[“Петров”]=7;
Это гарантирует, что будет занесена соответствующая запись.
Также можно вставить элемент функцией insert() и удалить

функцией erase(). Функция insert() пытается добавить в map пару
типа <Key,T>. Вставка производится, только если в map не суще-
ствует элемента с таким ключом. Возвращаемое значение – пара
pair<iterator,bool>. Переменная типа bool принимает значение
true, если элемент вставлен. Итератор указывает на элемент с за-
данным ключом.

 210

Примеры 8.3. Типы пар ключ/значение указаны явно в кон-
струкции pair<char,int>.

#include<iostream>
#include<map>
using namespace std;
void main(){
map<char,int> m;
int i;
for(i=0;i<10;i++)m.insert(pair<char,int>(‘A’+i,i));
char ch;
cin>>ch;
map<char,int>::iterator p;
//поиск
p=m.find(ch);
if(p!=m.end())cout<<(*p).second;
else cout<<“Не найден\n”;
}

Примеры 8.4. Используем функцию make_pair, которая

создает пары объектов на основе типов данных своих параметров.
void main(){
map<char,int> m;
int i;
for(i=0;i<10;i++)m.insert(make_pair(char(‘A’+i),i));
//дальше также, как в примере 8.6.3
Так же, как и в других контейнерах, в ассоциативных кон-

тейнерах можно хранить создаваемые пользователем типы дан-
ных. Например, создадим map для хранения слов с соответст-
вующими словами антонимами.

Примеры 8.5
#include<iostream.h>
#include<map.h>
#include<string.h>

 211

using namespace std;
class word{
string str;
public:
word(){str=“”;}
word(string s){str=s;}
string get(){return str;}
};
bool operator<(word a,word b){return (a.str<b.str);}
class opposite{
string str;
public:
opposite(){str=“”;}
opposite (string s){str=s;}
string get(){return str;}
};
void main(){
map<word,opposite> m;
m.insert(pair<word,opposite>(word(“хорошо”),opposite(

“плохо”)));
//и т.д.
//поиск антонима по слову
string ss;
cin>>ss;
map<word,opposite>::iterator p;
p=m.find(word(ss));
if(p!=m.end())cout<<(*p).second.get();
else cout<<“Такого слова нет\n”;
}

Примеры 8.6. Используется контейнер multimap для хра-

нения группы студентов
typedef multimap<string,STUDENT,less<string>> TGroup;
typedef TGroup::value_type TItem;
void PrintStudent(const TItem& s,bool printCourse=true)

 212

{if(printCourse)cout<<s.first;
cout<<s.second<<endl;
}
void main(){
TGroup curs; //студенты курса
Включить всех студентов в контейнер, так как показано ниже
curs.insert(TItem(“АСУ-07-1”,STUDENT(“Иванов”,19,0)));

//Распечатать всех студентов курса
for(TGroup::iterator i=curs.begin(); i!=curs.end(); i++)
{PrintStudent(*i);}
//Распечатаь студентов только заданной группы
for(TGroup::iterator i=curs.lower_bound(“АСУ-07-1”);
(i!=curs.upper_bound(“АСУ-07-1”))&&(i!=curs.end());i++)
PrintStudent(*i,false);
}
Контейнеры set и multiset
Множества можно рассматривать как ассоциативные мас-

сивы, в которых значения не играют роли, так что мы отслежи-
ваем только ключи. Шаблон класса контейнера set

template<class T,class Cmp=less<T>,
class Allocator =allocator <T> > class std::set{…};
Множество, как и ассоциативный массив, требует, чтобы

для типа T существовала операция «меньше» (<). Оно хранит
свои элементы отсортированными, так что перебор происходит
по порядку.

Примеры 8.7. Множество объектов пользовательского класса
Пользовательский класс, объекты которого будут сохра-

няться в множестве
class STUDENT{
string name;
float grade;
public:

 213

STUDENT(const string& name1=“”,
float grade1=-1.0):name(name1), grade(grade1){}
STUDENT(const STUDENT& Student){*this=Student;}
const string& GetName()const{return name;}
float GetGrade()const{return grade;}
void SetName(string& name1){name=name1;}
void SetGrade(float grade1){grade=grade1;}
STUDENT& operator=(const STUDENT& student)
{if(this!=&student){name=student.name;

grade=student.grade;}
return *this;}
bool operator==(const STUDENT& student)const
{return(name==student.name);}
bool operator<(const STUDENT& student)const
{return(name<student.name;}
friend ostream& operator<<(ostream& os,const STUDENT& s)
{os<<s.GetName()<<“grade=”<<s.GetGrade()<<endl;
return os;
}
};
typedef set<STUDENT> STUDENT_SET1;
Класс с перегруженной операцией для сравнения объектов

STUTENT по полю grade-рейтинг. Таким образом, студенты
в контейнере будут упорядочены по рейтингу.

struct GRADE_COMPARE{
bool operator()(const STUDENT& s1,const STUDENT&

s2)const
{return(s1.GetGrade()<s2.GetGrade();}
};
typedef multiset<STUDENT,GRADE_COMPARE>
STUDENT_SET2;
void main(){
Создается два множества
STUDENT_SET1 Set1;

 214

STUDENT_SET2 Set2;
Помещаются студенты в контейнер Set1
Set1.insert(STUDENT(“Иванов”,35.5));
//и т.д.
Просматриваем контейнер Set1 и помещаем студентов в

контейнер Set2,
for(STUDENT_SET1::iterator

i=Set1.begin();i!=Set1.end();i++){
cout<<*i;
Set2.insert(*i);}
Просматриваем контейнер Set2
for(STUDENT_SET2::iterator

i=Set2.begin;i!=Set2.end();i++)cout<<*i;
}

8.7. Объекты-функции

Объект-функция – это экземпляр класса, в котором пере-
гружена операция «круглые скобки» (). В ряде случаев удобно
заменить функции сравнения на объекты-функции. Когда объ-
ект-функция используется в качестве функции, то для её вызова
используется operator().

Примеры 8.8. Сравнение двух целых
class less{
public:
bool operator()(int x,int y){return x<y;}
};
Можно сделать шаблон класса для сравнения данных лю-

бых типов.
template<class T> class less{
public:
bool operator()(const T& x,const T& y)const{return x<y;}};
Следует иметь в виду, что для типа T должна быть опре-

делена операция меньше(<).

 215

В STL определены вспомогательные базовые классы, под-
держивающие единое определение типов аргументов и типа
возвращаемого значения для различных объектов функций с
одним и двумя аргументами. Это шаблоны unary functions и
binary_function, которые доступны при подключении заголо-
вочного файла< functional >.

template<class Arg, class Result>struct unary_function
{typedef Arg argument_type;typedef Result result_type;};
Этот шаблон служит базовым для классов, в которых опе-

рация «круглые скобки» определена в форме
result_type operator()(argument_type)

template<class Arg1, class Arg2, class Result>
 struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
 };
Этот шаблон служит базовым для классов, в которых опе-

рация «круглые скобки» определена в форме
result_type operator()(first_argument_type,
second_argument_type)
В STL также определен шаблон less.
template<class T> struct less: public binary_function<T,T,bool>;
Этот шаблон используется для создания класса функции,

проверяющей, меньше ли первый операнд второго.

8.8. Алгоритмы

Каждый алгоритм выражается шаблоном функции или на-
бором шаблонов функций. Таким образом, алгоритм может рабо-
тать с очень разными контейнерами, содержащими значения раз-
нообразных типов. Алгоритмы, которые возвращают итератор,

 216

как правило, для сообщения о неудаче используют конец входной
последовательности. Алгоритмы не выполняют проверки диапа-
зона на их входе и выходе. Когда алгоритм возвращает итератор,
это будет итератор того же типа, что и был на входе. Алгоритмы
в STL реализуют большинство распространенных универсальных
операций с контейнерами, такие как просмотр, сортировку, по-
иск, вставку и удаление элементов. Алгоритмы доступны при
включении заголовочного файла <algorithm>

Ниже приведены имена некоторых наиболее часто ис-
пользуемых функций – алгоритмов STL.

I. Немодифицирующие операции
for_earch() – выполняет операции для каждого элемента по-

следовательности,
find() – находит первое вхождение значения в последо-

вательность,
find_if() – находит первое соответствие предикату в по-

следовательности,
count() – подсчитывает количество вхождений значе-

ния в последовательность,
count_if() – подсчитывает количество выполнений преди-

ката в последовательности,
search() – находит первое вхождение последовательности

как подпоследовательности,
search_n() – находит n-е вхождение значения в последова-

тельность.

II. Модифицирующие операции
copy() – копирует последовательность, начиная

с первого элемента,
swap() – меняет местами два элемента,
replace() – заменяет элементы с указанным значением,
replace_if() – заменяет элементы при выполнении пре-

диката,

 217

replace_copy() – копирует последовательность, заменяя
элементы с указанным значением,

replace_copy_if() – копирует последовательность, заменяя
элементы при выполнении предиката,

fill() – заменяет все элементы данным значением
remove() – удаляет элементы с данным значением,
remove_if() – удаляет элементы при выполнении пре-

диката,
remove_copy() – копирует последовательность, удаляя

элементы с указанным значением,
remove_copy_if() – копирует последовательность, удаляя

элементы при выполнении предиката,
reverse() – меняет порядок следования элементов на

обратный,
random_shuffle() – перемещает элементы согласно случай-

ному равномерному распределению («та-
сует» последовательность),

transform() – выполняет заданную операцию над каж-
дым элементом последовательности,

unique() – удаляет равные соседние элементы,
unique_copy() – копирует последовательность, удаляя

равные соседние элементы.

III. Сортировка
sort() – сортирует последовательность с хоро-

шей средней эффективностью,
partial_sort() – сортирует часть последовательности,
stable_sort() – сортирует последовательность, сохраняя

порядок следования равных элементов,
lower_bound() – находит первое вхождение значения

в отсортированной последовательности,
upper_bound() – находит первый элемент, больший, чем

заданное значение,

 218

binary_search() – определяет, есть ли данный элемент в от-
сортированной последовательности,

merge() – сливает две отсортированные последова-
тельности.

IV. Работа с множествами
includes() – проверка на вхождение,
set_union() – объединение множеств,
set_intersection() – пересечение множеств,
set_difference() – разность множеств.

V. Минимумы и максимумы
min() – меньшее из двух,
max() – большее из двух,
min_element() – наименьшее значение в последовательности,
max_element() – наибольшее значение в последовательности.

VI. Перестановки
next_permutation() – следующая перестановка в лекси-

кографическом порядке,
pred_permutation() – предыдущая перестановка в лекси-

кографическом порядке.

Пример 8.9. Сортировка массива данных встроенных типов
Алгоритм sort() имеет следующие основные формы:
template<class RandIter>
 void sort(RandIter начало,RandIter конец)
template<class RandIter,class Comp>
void sort(RandIter начало,RandIter конец,
Comp функция_сравнения)
В примере создается и сортируется массив символов.
#include<iostream>
#include<vector>
#include<cstdlib>

 219

#include<algorithm>
using namespace std;
void main()
{vector<char> v;
int i,k;
cin>>k;
//создание векторов из случайных символов
for(i=0;i<k;i++)
v.push_back(‘A’+(rand()%26));
//исходный массив
for(i=0;i<v.size();i++)cout<<v[i];
cout<<endl;
//сортировка вектора
sort(v.begin(),v.end());
//отсортированный массив
for(i=0;i<v.size();i++)cout<<v[i];
cout<<endl;
}

Пример 8.10. Сортировка массива данных пользователь-

ских типов
#include<iostream>
#include<vector>
#include<string>
#include<algorithm>
#include <functional>
#include“student.h” //Определение класса STUDENT
using namespace std;
Определим функцию для сравнения студентов по рейтингу:
class pred : public binary_function< STUDENT, STU-

DENT,bool>
{
public:
bool operator()(const STUDENT& st1, STUDENT& s2)const

 220

{return s1.GetGrade()<s2.GetGrade();}
};
В функции main() запишем:
vector< STUDENT> v;
Затем надо заполнить контейнер v, например так:
v1.push_back(STUDENT ("Иванов",19,54.5));
Если сейчас отсортировать контейнер следующим образом:
sort(v.begin(),v.end());
то студенты будут отсортированы в зависимости от того,

как определена в классе STUDENT опрерация <.
Если мы хотим отсортировать контейнер нужным для нас

образом, следует использовать объект-функцию. Например, оп-
ределим функцию для сравнения студентов по рейтингу:

class pred : public binary_function< STUDENT, STU-
DENT,bool>

{
public:
bool operator()(const STUDENT& st1, STUDENT& s2)const
{return s1.GetGrade()<s2.GetGrade();}
};
Сортируем контейнер
sort(v.begin(),v.end(),pred());
При передаче алгоритму sort третьего параметра создается

объект класса pred (вызовом контейнера без конструктора) и
вызывается перегруженная операция ().

Пример 8.11. Поиск в контейнере
Создадим фунциональный класса для поиска по имени:
class pred1:public unary_function< STUDENT,bool>
{
string s;
public:
 explicit pred1(const string& ss):s(ss){}
 bool operator()(const STUDENT & ob)const

 221

 {return ob.Get_Name()==s;}
};

После этого для поиска можно использовать алгоритм find_if:
vector<STUDENTt>::iterator it;
it= find_if(v1.begin(),v1.end(),pred1("Котов"));
После выполнения find_if следует проверить, найден ли

объект. Вспомним, что в случае неудачи алгоритм возвращает
значение функции end().

if(it!=v1.end())cout<<endl<<*p<<endl;
 else cout<<"Такого объекта нет"<<endl;

 222

ПРИЛОЖЕНИЕ

Создание С++ приложений в среде
Microsoft Visual Studio

Концепция решений и проектов
Сеанс работы в Microsoft Visual Studio.Net начинается

с открытия существующего или создания нового решения (so-
lution). Решение – это синоним рабочего пространства (work-
space) в Microsoft Visual C++ 6.0. Файлы решений имеют рас-
ширение sln и используются IDE для хранения настроек и на-
чальных установок конкретных решений. Концепция решений
помогает объединить проекты и другие элементы в одном ра-
бочем пространстве. Рабочее пространство может содержать
несколько проектов, быть пустым или содержать файлы, кото-
рые имеют смысл и вне контекста решений. Проект как часть
решения состоит из отдельных компонентов, например, файлов
ресурсов(rc-файл), файлов с исходными кодами(.cpp, .h).
Настройки проектов хранятся в специальных файлах проектов.
Они могут иметь разные расширения, так как в одном про-
странстве можно объединять проекты разных типов. Напри-
мер, проект Win32 Aplication хранит свои установки в файле
с расширением vcproj.

Создание нового проекта
После запуска Visual Studio появится следующее окно

(рис. П 1).
В этом окне выберем в меню File команду New->Project

либо нажмем Ctrl+Shift+N.
В появившемся окне New Project в списке Project type вы-

берем Visual C++/Win32, а в списке Templates – Win32 Console
Application (рис. П2). В строке name введем имя проекта,
а в строке Location выберем расположение проекта.

Если вы хотите создать папку для решения (solution), то
следует отметить «Create directory for solution» и ввести имя
решения в строке «Solution Name».

 223

Рис. П1

Рис. П2

 224

Нажав кнопку OK, перейдем в мастер-приложения (рис. П3).

Рис. П3

Нажмем кнопку “Next” и перейдем в окно установки па-
раметров проекта (рис. П4).

Рис. П4

 225

В этом окне выберем Console application и Empty project.
Нажмем кнопку “Finish”. Мастер создаст проект – консольное
приложение.

В окне проекта (рис. П5) мы видим три раздела: Object
Browser, Solution Explorer и Resourse View. В окне Solution Ex-
plorer можно осуществлять навигацию по файлам проекта. В
этом окне мы видим имя проекта (lab1) и три группы файлов
(Header Files, Resource Files и Source Files). Пока проект не со-
держит файлов. Создадим необходимые файлы. Для этого в ок-
не Solution Explorer щелкнем правой кнопкой мыши по проекту
и в появившемся контекстном меню выберем Add/New Item… .

Рис. П5

В появившемся окне Add New Item (рис. П6) в списке
Categories выберем Code, а в списке Templates – тип добавляе-
мого в проект файла.

Создадим три файла: country.h – определение класса, coun-
try.cpp – реализация класса и main.cpp – демонстрационная про-
грамма, содержащая функцию main(). Пока файлы пустые.
Щелкнув по имени файла, мы перейдем в редактор кода, где и
запишем соответствующий код (рис. П7).

 226

Рис. П6

Рис. П7

Для того чтобы откомпилировать и собрать проект (соз-
дать выполняемый exe-файл), щелкните правой кнопкой мыши
по проекту и в появившемся контекстном меню выберите Build,
Rebuild или Debug/Start new instance. То же самое можно сде-
лать через меню Build и Debug, или нажав Ctrl+F5. Результаты

 227

выполнения проекта увидим на вкладке Output (рис. П8). Если
программа содержит ошибки, получим сообщение, показанное
на рисунке.

Рис. П8

Щелкнув по сообщению об ошибке (рис. П9), мы перей-
дем к месту ошибки в коде программы (рис. П10).

Рис. П9

На рис. П11 показаны сообщения при успешной компиля-
ции и компоновке программы.

 228

Рис. П10

Рис. П11

 229

Рис. П12

Установить конфигурацию проекта (Debug или Release)

можно через меню Build/Configuration Menager(рис. П12).

Учебное издание

Ноткин Аркадий Михайлович

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ
ПРОГРАММИРОВАНИЕ:

ООП на языке С++

Учебное пособие

Редактор и корректор И.Н. Жеганина

__
Подписано в печать 14.01.2013. Формат 60×90/16.
 Усл. печ. л. 14,5. Тираж 100 экз. Заказ № 2/2013.

Издательство

Пермского национального исследовательского
политехнического университета.

Адрес: 614990, г. Пермь, Комсомольский проспект, 29, к. 113.
Тел. (342) 219-80-33.

