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ШАНОВНІ ВОСЬМИКЛАСНИКИ!
Ви продовжуєте вивчати цікавий шкільний предмет — алгебру. Дея-

кі елементи алгебри ви вже вивчили в 7 класі, а протягом восьмого кла
су вам доведеться познайомитися з новими алгебраїчними поняттями, їх 
означеннями, властивостями та способами розв’язування алгебраїчних за-
вдань.

Пропонований посібник є продовженням аналогічного посібника для 
7  класу і призначений допомогти вам успішно засвоїти алгебраїчний ма-
теріал при навчанні за будь-яким підручником алгебри.

Усі розділи посібника повністю відповідають програмі курсу алгебри 
8  класу і побудовані однаково.

Спочатку пропонуються опорні таблиці, у яких розглядається основний 
теоретичний матеріал розділу та орієнтири для виконання алгебраїчних за-
вдань (тобто саме те, що ви повинні засвоїти і запам’ятати!) з прикладами, 
що ілюструють кожне поняття чи властивість.

Наступний пункт розділу — це розв’язування вправ. Тут для всіх осно-
вних типів завдань, що розглядаються в розділі, пропонується план дій або 
схема міркувань, які допоможуть скласти і реалізувати такий план. Після 
цього пропонуються тренувальні вправи, які містять мінімальну кількість 
типових вправ до матеріалу розділу (при необхідності значно більшу кіль-
кість тренувальних вправ до розділу ви можете знайти у своєму підручнику 
з алгебри).

Для того щоб ви та ваш учитель впевнилися в тому, що ви правильно 
і повно засвоїли матеріал розділу, у посібнику пропонуються контрольні 
роботи.

А щоб полегшити підготовку до контрольної роботи та тематичного 
контролю, до кожного розділу пропонується тренувальний тест для під-
готовки до контрольної роботи та тематичного контролю, у завданнях 
якого не тільки подані типові вправи до розділу, а й нагадуються плани 
їх розв’язування.

Планувати потрібно не тільки розв’язування алгебраїчних задач, 
а  й  своє майбутнє життя, тому ті з вас, хто збирається після закінчення 
школи вступати до вищих навчальних закладів, мають можливість позна-
йомитися з методами розв’язування деяких задач вступних іспитів з мате-
матики та зовнішнього оцінювання з математики у пунктах посібника для 
майбутніx абітурієнтів.

Наприкінці посібника запропонований довідковий матеріал  з курсу 
математики 5—6 класів та алгебри 7 класу поданий у таблицях.

Бажаю успіху!
Автор
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Розділ 1. Раціональні вирази

Таблиця 1. �Ділення степенів і одночленів.  
Степінь з нульовим і від’ємним показником

Означення або правила Приклади

Поділити вираз А на вираз В означає 
знайти вираз Х такий, що A X B= ⋅  

x

x
x

7

3

4= , оскільки x x x7 4 3= ⋅

a

a

m

n
am n= − , a ≠ 0

x

x
x x

20

7

20 7 13= =−

Щоб поділити одночлен на одночлен, 
треба:
1) �поділити коефіцієнт діленого на ко-

ефіцієнт дільника;
2) �до знайденої частки приписати 

множниками кожну змінну ділено-
го з показником, що дорівнює різ-
ниці показників цієї змінної в діле-
ному і дільнику

32

8

32

8

7 9 5

6 7

7

6

9

7

5

4 2 4a b c

a b c

a

a

b

b

c

c
ab c= ⋅ ⋅ ⋅ =

32

8

32

8

7 9 5

6 7

7

6

9

7

5

4 2 4a b c

a b c

a

a

b

b

c

c
ab c= ⋅ ⋅ ⋅ =

Степінь з нульовим і від’ємним показником

a0 1= , a ≠ 0 5 10 = ; −( ) =7 1
0

a n

an

− = 1
, n ∈N, a ≠ 0 2 1 1

2
− = ; x

x
− =1 1

;  

−( ) =
( )

=−

−
3

2 1

3

1

92
; x

x
− =3 1

3

a

b

b

a

n n






= 





− 2

3

3

2

9

4

2 2






= 





=
−

Запис числа в стандартному вигляді

Стандартним виглядом числа нази-
вається його запис у вигляді добутку 
a n⋅10 , де 1 10 a <  і n — ціле число.

Маса Землі 5 98 1027, ⋅  г;  

маса Місяця 7 35 1025, ⋅  г;
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Опорні таблиці

Запис числа в стандартному вигляді

У цьому запису показник степеня n 
називається порядком числа.
Як правило, стандартний запис числа 
використовують для подання дуже ве-
ликих чи дуже малих чисел

маса атома водню  
1 674 10 24, ⋅ −  г

Таблиця 2. Дробові раціональні вирази

Означення або правила Приклади

Раціональним виразом називається 
вираз, складений із чисел і змінних 
за допомогою дій додавання, відні-
мання, множення, ділення і підне-
сення до степеня

a c+( )2
3
; 

a

x

x

b
c+





⋅ +






1
2

 — 

раціональні вирази

Цілим виразом називається раціо-
нальний вираз, який не містить ді-
лення на вираз із змінною
Дробом називається частка від ді-
лення двох виразів, записана за до-
помогою дробової риски

2

5

2

2

3

x x

a

+

−( )
 — �цілі раціональні ви-

рази

x
a

+
+
5

2
 — �дробовий раціо-

нальний вираз

Допустимими значеннями змінних 
у виразі називають такі значення 
змінних, при яких вираз має число-
ве значення (тобто при допустимих 
значеннях змінних можна викона-
ти всі дії, записані у виразі)

1) �Для виразу a b2 2 3
1+( ) +  усі 

значення а і b є допустимими.

2) �Для виразу 
x

x

+ 5
 допустими-

ми є всі значення x ≠ 0  (при 

x = 0  
x

x

+ =5 5

0
 — не число, 

бо на 0 ділити на можна)

Множину всіх допустимих значень 
змінних із даного виразу часто на-
зивають областю допустимих зна­
чень виразу (ОДЗ)

Для виразу x−2  ОДЗ: x ≠ 0,
бо при x = 0  

x
x

− = = =2 1 1

0

1

02 2
 — не число 

(на 0 ділити на можна)

Закінчення таблиці 1
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Означення або правила Приклади
Для змінних, що стоять у зна-
меннику дробу, допустимими 
є тільки ті значення, при яких 
цей знаменник не дорівнює нулю

1) Для виразу 
b

a
  ОДЗ: a ≠ 0.

2) �Для виразу 

1
2

3
x
x

+

−
  

ОДЗ: 
x

x

≠
− ≠





0

3 0

,

,
 тобто 

x

x

≠
≠





0

3

,

Щоб знайти допустимі значення 
змінних у раціональному дробі, 
можна:
1) �прирівняти знаменники дробів 

до нуля;
2) �знайти розв’язки одержаних 

рівнянь;
3) �з усіх чисел виключити одер-

жані розв’язки

Щоб знайти допустимі значен-

ня x у виразі 
2

42

x

x x−
,

з’ясовуємо, коли x x2 4 0− = ;
x x −( ) =4 0 .

Добуток дорівнює нулю, якщо 
хоча б один із співмножників до-
рівнює нулю:

x = 0  або x − =4 0;
x = 0  або x = 4.

Допустимими значеннями x є всі 
числа, крім 0 і 4.
Відповідь. ОДЗ: x ≠ 0  і x ≠ 4

Тотожними називаються вирази, 
відповідні числові значення яких 
рівні при всіх допустимих значен-
нях змінних

Вирази 
x

x

5

 і x4  тотожно рівні, бо 

для всіх x ≠ 0  (ОДЗ виразу 
x

x

5

) 

значення виразів 
x

x

5

 і x4  рівні

Таблиця 3. Основна властивість дробу
Властивість Приклади

Якщо чисельник і знаменник дробу 
помножити або поділити на один 
і той самий вираз (що не дорівнює 
нулю на ОДЗ даного дробу), то одер-
жимо дріб, тотожно рівний даному

x x

x

x

x

−

− −

( )
( )

=
( )

1

1 1
3 2

; 
1 2

2

2

2x

x

x x
= ( )

+
+

Закінчення таблиці 2
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Опорні таблиці

Cкорочення дробів

Скоротити дріб означає поділити чи-
сельник і знаменник дробу на спіль-
ний дільник (зазначимо, що на ОДЗ 
даного дробу цей спільний дільник 
не дорівнює нулю)

x

x x

x

x

5

2

3

3 3+ +( ) =

Для того щоб скоротити дріб, треба:
1) �розкласти чисельник і знаменник 

дробу на множники;
2) �вибрати спільний множник для 

чисельника і знаменника дробу;
3) �розділити чисельник і знаменник 

дробу на спільний множник

Скоротити дріб 
a a

a a

3

4 3

9

3

−
−

.

1) �Розкладаємо чисельник 
і знаменник на множники 
(виносимо за дужки спільні 
множники і в чисельнику 
розкладаємо на множ
ники різницю квадратів): 
a a

a a

a a a

a a

2

3 3

9

3

3 3

3

−

−
− +

−
( )
( ) = ( )( )

( ) ;

2) �вибираємо спільний множ-
ник для чисельника і зна-
менника — це a a −( )3 ;

3) �ділимо чисельник і знамен-
ник дробу на a a −( )3  і одер-

жуємо дріб 
a

a

+ 3
2

Таблиця 4. Дії з раціональними дробами

Правило Приклад
1. Додавання і віднімання дробів

Якщо знаменники рівні, то 
чисельники додаються (від-
німаються), а знаменник збе-
рігається (якщо після цього 
одержаний дріб можна скоро-
тити, то його скорочують)

x x

x

x

x

2 3

1

2

1

− −
−

+
−

+ =  

= = = ( )( ) = +− − + +
−

−
−

− +
−

x x x

x

x

x

x x

x
x

2 23 2

1

1

1

1 1

1
1

= = = ( )( ) = +− − + +
−

−
−

− +
−

x x x

x

x

x

x x

x
x

2 23 2

1

1

1

1 1

1
1

Закінчення таблиці 3
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Правило Приклад
Якщо знаменники різні, 
то спочатку дроби зводять 
до спільного знаменника, 
а потім додають (відніма-
ють) як дроби з рівними 
знаменниками

3

2

5

2

3 2

2 2

5 2

2 2a a

a

a a

a

a a+ −
−

+ −
+

+ −
− = ( )

( )( ) − ( )
( )( ) =

= ( )
( )( ) = ( )( ) =

− − +
+ −

− − −
+ −

− −
−

3 6 5 10

2 2

3 6 5 10

2 2

2 16

42

a a

a a

a a

a a

a

a

2. Множення дробів

При множенні дробів у чи-
сельнику записують добуток 
чисельників, а в знаменни-
ку — добуток знаменників 
(якщо після цього одержаний 
дріб можна скоротити , то його 
скорочують)

x

x

x

x

x x

x x

x x

x x

x

x

2

2

2

2

1

1

1

1

1 1

1

1−
−

− ⋅

⋅ −
− +

−
+⋅ =

( )
( ) = ( )( )

( ) =

x

x

x

x

x x

x x

x x

x x

x

x

2

2

2

2

1

1

1

1

1 1

1

1−
−

− ⋅

⋅ −
− +

−
+⋅ =

( )
( ) = ( )( )

( ) =

При множенні дробу на цілий 
вираз у чисельнику записують 
добуток чисельника на цей ви-
раз, а знаменник зберігається 
(можна також цілий вираз по-
дати як дріб із знаменником 1)

a

a

a

a

a a a

a
a

+ +
− −

+
⋅ −( ) = ⋅ =

( )
=

2 2

4

1

4

2
2 4

2 2

= ( )( ) = −( ) = −
− +

+
a a a

a
a a a a

2 2

2
2 22

3. Ділення дробів

При діленні дробів можна пер-
ший дріб помножити на дріб, 
обернений до другого

a a

a

a

a

a a

a

a

a

a a a

a a
a

2 23

1

3

1

3

1

1

3

3 1

1 3

+
+

+
+

+
+

+
+

+ +
+ +

= ⋅ = ( )( )
( )( ) =:

a a

a

a

a

a a

a

a

a

a a a

a a
a

2 23

1

3

1

3

1

1

3

3 1

1 3

+
+

+
+

+
+

+
+

+ +
+ +

= ⋅ = ( )( )
( )( ) =:

При піднесенні дробу до степе-
ня підносять до цього степеня 
окремо чисельник і знаменник 
і записують дріб, у якого чи-
сельник є степенем чисельни-
ка, а знаменник — степенем 
знаменника

a

b

a

b

a

b

2

3

2 7

3 7

14

21

7






=
( )
( )

=

Продовження таблиці 4
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Опорні таблиці

Правило Приклад
Перед множенням або ділен-
ням алгебраїчних дробів часто 
зручно (якщо це можливо) 
розкласти чисельники і зна-
менники дробів на множники

Таблиця 5. Раціональні рівняння

Означення Приклади
Рівняння називають раціо­
нальним, якщо його ліва 
і права частини — раціональ-
ні вирази

x

x

x x
x x

−
+

−

=

+ =

− =

5

3
1 1

2

0

3

2 03 2

— раціональні рівняння

Cхема розв’язування дробових раціональних рівнянь

Схема Приклад
Щоб розв’язати дробове ра­
ціональне рівняння, можна:
1) �перенести всі члени рів-

няння в ліву частину;
2) �виконати всі вказані дії 

й одержати рівняння, 
у якого ліва частина — 
дріб (чи цілий вираз), 
а права  — нуль;

3) �використати властивість: 
дріб дорівнює нулю тоді 
і тільки тоді, коли його 
чисельник дорівнює нулю 
(а знаменник не дорівнює 
нулю), і прирівняти чи-
сельник одержаного дробу 
до нуля;

Розв’язати рівняння 
2 2

1

22

x

x

x

x

x
+ =

+
+

.
Розв’язання
Перенесемо всі члени рівняння в ліву 
частину і згрупуємо дроби з однакови-
ми знаменниками:

2 2 2

1

2

0
x

x

x

x

x
− + =+

+
; 

2 2 2

1

2

0
− +

+
( )

+ =
x

x

x

x
;

− + =
+

x
x

x

2

1
0; 

− − +
+

=x x x

x

2 2

1
0;

− +
+

=x x

x

2

1
0; − + =x x2 0; x x− +( ) =1 0, 

якщо x = 0  або − + =x 1 0,  
тобто x = 0  або x = 1.

Закінчення таблиці 4
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4) �розв’язати одержане рів-
няння;

5) �перевірити, чи при всіх 
знайдених розв’язках 
у знаменниках заданого 
рівняння будуть числа, 
які не дорівнюють нулю 
(якщо одержимо в зна-
меннику нуль, то знай
дене число не є коренем 
заданого рівняння)

При x = 0  в знаменнику першого дро-
бу в заданому рівнянні одержуємо 
нуль. Отже, x = 0  не є коренем задано-
го рівняння.
При x = 1  усі знаменники дробів у за-
даному рівнянні не дорівнюють нулю 
( x = ≠1 0; x + = ≠1 2 0). Отже, x = 1  — 
корінь заданого рівняння.
Відповідь: 1

Рівносильні рівняння
Означення Приклад

(7 клас) Рівносильні рівнян-
ня — це рівняння, які мають 
ті ж самі корені. Якщо рівнян-
ня не мають коренів, то їх та-
кож вважають рівносильними

3 24x =  і x − =8 0  — рівносильні 
рівняння (обидва мають тільки один 
корінь x = 8)

Два рівняння називаються рів-
носильними на деякій множи-
ні, якщо на цій множині вони 
мають ті ж самі корені.
Якщо рівняння не мають коре-
нів на заданій множині, то їх 
також вважають рівносильни-
ми на цій множині

Рівняння 
x

x

2 1

1
0

−
+

=  (1)  

має єдиний корінь x = 1.
Рівняння x2 1 0− =  (2) має корені x = 1  
і x = −1  (й інших коренів не має).
Якщо розглядати ці рівняння на 
множині всіx чисел, то вони не рів-
носильні.
Але на множині додатних чисел ці 
рівняння рівносильні (обидва мають 
тільки один додатний корінь x = 1)

Областю допустимих значень 
(ОДЗ) рівняння (або областю 
визначення рівняння) назива-
ється спільна область визна-
чення для всіх функцій, які 
входять до запису рівняння

Для рівняння 
x

x

2 1

1
0

−
+

=  (1)  

ОДЗ: x + ≠1 0, тобто x ≠ −1

Продовження таблиці 5
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Опорні таблиці

Найчастіше всі рівносильні 
перетворення рівнянь (та їх 
систем) виконуються на ОДЗ 
цього рівняння (системи)

При x ≠ −1  рівняння (1) рівносильне 
рівнянню x2 1 0− =  (2), яке має коре-
ні x = 1  і x = −1.
Враховуючи ОДЗ x ≠ −( )1 , одержує-
мо, що коренем рівняння (1) є тіль-
ки x = 1

Найпростіші властивості рівносильних рівнянь
Якщо обидві частини рівняння помножити або поділити на одне 
і те ж саме число, яке не дорівнює нулю (або на один і той же са-
мий вираз, який визначений і не дорівнює нулю на ОДЗ заданого), 
то одержимо рівняння, рівносильне даному (на ОДЗ заданого)

Якщо з однієї частини рівняння перенести в іншу будь-який член 
і змінити його знак на протилежний, то одержимо рівняння, рівно-
сильне даному (на будь-якій множині)

Інша схема розв’язування дробових раціональних рівнянь
Схема Приклад

Щоб розв’язати дробове ра­
ціональне рівняння, можна:
1) �записати ОДЗ заданого 

рівняння;
2) �знайти спільний знамен-

ник усіх дробів, що вхо-
дять до запису рівняння 
(доцільно вибирати той 
спільний знаменник, 
який можна подати як 
многочлен найменшого 
степеня, тоді він не буде 
дорівнювати нулю на ОДЗ 
заданого рівняння);

3) �помножити обидві части-
ни рівняння на спільний 
знаменник (одержимо 
рівняння, рівносильне за-
даному на його ОДЗ);

Розв’язати рівняння 
2 2

1

22

x

x

x

x

x
+ =

+
+

.
Розв’язання

ОДЗ: 
x
x

≠
+ ≠{ 0

1 0
,

.
Помножимо обидві частини заданого 
рівняння на спільний знаменник за-
даних дробів: x x +( )1 , який не дорів-
нює нулю на ОДЗ:

2 1 2 2 12 2x x x x+( )+ = +( ) +( ),

2 2 2 2 22 3 2x x x x x+ + = + + + ,
2 2 2 2 2 02 3 2x x x x x+ + − − − − = ,

− + =x x3 2 0,
− −( ) =x x2 1 0.

Тоді x2 0=  або x − =1 0, тобто x = 0  або 
x = 1.

Продовження таблиці 5



12 Розділ 1. Раціональні вирази

12     Нелін Є. П. Алгебра. Т6488У

4) �розв’язати одержане ціле 
рівняння;

5) �перевірити, чи всі знайдені 
розв’язки входять до ОДЗ, 
тобто чи задовольняють 
вони всі умови ОДЗ (якщо 
знайдене число не задоволь-
няє якесь з обмежень ОДЗ, 
то воно не є коренем задано-
го рівняння)

Врахуємо ОДЗ: x = 0  — не задоволь-
няє першу умову ОДЗ, отже, x = 0  
не є коренем заданого рівняння.
При x = 1  обидві умови ОДЗ викону-
ються, отже, x = 1  — корінь заданого 
рівняння.
Відповідь: 1

Таблиця 6. Функція y
k
x

=  k ≠( )0

Властивості
1. Область визначення x ≠ 0

2. Область значень y ≠ 0

3. �Точки перетину з осями 
координат

Оскільки x ≠ 0  і y ≠ 0, то точок пере-
тину з осями координат немає

Графік

Графік функції y
k

x
=  — крива, що складається з двох віток (симе-

трична відносно початку координат), яка називається гіперболою 
(при k > 0  вітки гіперболи розміщені в І і ІІІ чвертях, при k < 0  — 
у ІІ і ІV чвертях)

k > 0 k < 0

y
k

x
=k

y

x10

y
k

x
=

k

y

x0
1

Закінчення таблиці 5
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Розв’язування вправ

Розв’язування вправ
1.	З найдіть значення виразу:

а) 
6 4a b

a b

−
+

,  б) 
a b ab

a b

2 2

2 2

2+ −
−

 при a = 1 3, ; b = 0 7, .

План Розв’язання

Обчислити значення даних 
виразів при заданих значен-
нях змінних можна двома 
способами.
1. �Безпосередньо підставити 

значення змінних в зада-
ний вираз (пункт «а»).

2. �Спочатку спростити за-
даний вираз, а потім під-
ставити значення змінних 
у більш простий вираз 
(пункт «б»).

а) �При a = 1 3, ; b = 0 7,  одержуємо: 
6 4 6 1 3 4 0 7

1 3 0 7

7 8 2 8

2

5

2
2 5

a b

a b

−
+

⋅ − ⋅
+

−= = = =, ,

, ,

, ,
,

6 4 6 1 3 4 0 7

1 3 0 7

7 8 2 8

2

5

2
2 5

a b

a b

−
+

⋅ − ⋅
+

−= = = =, ,

, ,

, ,
, .

б) �
a b ab

a b

a b

a b a b

a b

a b

2 2

2 2

2
2+ −

−
−

− +
−
+

= ( )
( )( ) = .

При a = 1 3, ; b = 0 7,  одержуємо:
a b

a b

−
+

−
+

= = =1 3 0 7

1 3 0 7

0 6

2
0 3

, ,

, ,

,
, .

Відповідь: а) 2,5; б) 0,3

2.	 Доведіть тотожність 
x y

x y

x y

x y

xy

x y

x y

xy

+
−

−
+ −

++





=:
2
2 2

2 2

.

План Розв’язання

Щоб довести тотожність, 
досить довести, що ліва 
частина тотожності дорів-
нює правій (або права час-
тина дорівнює лівій) або 
різниця між лівою і пра-
вою частинами тотожності 
дорівнює нулю.
Перетворимо ліву частину 
тотожності, послідовно ви-
конуючи:
1) дії у дужках,
2) ділення одержаного ви-
разу на другий вираз

1) �
x y

x y

x y

x y

x y x y

x y x y

+
−

−
+

+ + −
− +

+ = ( ) ( )
( )( ) =

2 2

 

= = =
( )+ + + − +

−
+
−

+

−
x xy y x xy y

x y

x y

x y

x y

x y

2 2 2 2

2 2

2 2

2 2

2 2

2 2

2 2 2 2 2

= = =
( )+ + + − +

−
+
−

+

−
x xy y x xy y

x y

x y

x y

x y

x y

2 2 2 2

2 2

2 2

2 2

2 2

2 2

2 2 2 2 2
.

2) �
2 2 2

2

2 2

2 2 2 2

2 2 2 2

2 2

2 2x y

x y

xy

x y

x y x y

x y xy

x y

xy

+

− −

+ −

− ⋅
+( )

=
( )( )
( ) =:

2 2 2

2

2 2

2 2 2 2

2 2 2 2

2 2

2 2x y

x y

xy

x y

x y x y

x y xy

x y

xy

+

− −

+ −

− ⋅
+( )

=
( )( )
( ) =: .

Отже, ліва частина дорівнює правій і за-
дана рівність є тотожністю
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3.	 Виконати дії: 
ab a

a b

a

a b

b

a b

b

a b

2 3

2 2 2 2 2

−
+ − − −

⋅
( )

−








 + .

План Розв’язання

Будемо 
розв’язувати 
цей приклад, 
послідовно ви-
конуючи:
1) дії в дужках;
2) �множення 

першого дро-
бу на одержа-
ний вираз;

3) �додавання 
одержано-
го виразу 
й останнього 
дробу

1) �
a

a b

b

a b

a

a b

b

a b a b− − − − +( )
− =

( )
− ( )( ) =

2 2 2 2
 

= ( ) ( )
( ) ( )

=
( ) ( )

=
(

+ − −

− +

+ − +

− +

+

−

a a b b a b

a b a b

a ab ab b

a b a b

a b

a b
2

2 2

2

2 2

)) ( )+2
a b

;

2) �
ab a

a b

a b

a b a b

a b a a b

a b a b

2 3

2 2

2 2

2

2 2 2 2

2 2

−
+

+

− +

− ⋅ +

+ ⋅ −
⋅
( ) ( )

=
( ) ( )

( ) ( )22
a b+( )

=  

=
( ) ( )

( ) ( )
=

( )
( )

=
− ⋅ +

− +

− ⋅ −

−

−
−

a b a b a

a b a b

a a b

a b

a

a b2 2
;

3) 
−
− −

− +
−

− −
−

+ = = ( ) = −a

a b

b

a b

a b

a b

a b

a b
1 .

Відповідь: –1

4.	 Дві бригади трактористів, працюючи разом, зорали поле за 8 год. 
За скільки годин може зорати це поле кожна бригада, працюючи 
самостійно, якщо другій бригаді на це потрібно в два рази більше 
часу, ніж першій?

План
Розв’язання

І спосіб ІІ спосіб

У задачах на 
сумісну роботу 
часто зручно: 
1) �увесь обсяг 

роботи, що 
виконуєть-
ся, позначи-
ти через 1;

Нехай обсяг усієї роботи 
дорівнює 1.
Позначимо час виконан-
ня всієї роботи першою 
бригадою через х год, 
тоді друга виконає всю 
роботу за 2x год.

Нехай обсяг усієї роботи 
дорівнює 1.
Позначимо продуктив-
ність роботи першої 
бригади через ν, тоді про-

дуктивність другої — 
ν
2

 

(оскільки вона працює 
вдвічі повільніше).
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Розв’язування вправ

План
Розв’язання

І спосіб ІІ спосіб

2) �визначити 
продуктив-
ність* кож-
ного пра-
цюючого та 
їх сумісну 
продуктив-
ність;

3) �скласти 
рівняння 
за умо-
вою задачі 
й розв’язати 
його

Продуктивність роботи 

першої бригади буде 
1

x
, 

а другої — 
1

2x
. Сумісна 

продуктивність обох бри-
гад (при їх спільній робо-
ті) дорівнює

1 1

2

3

2x x x
+ = .

Але з умови одержуємо, 
що сумісна продуктив-

ність дорівнює 
1

8
. Одер-

жуємо рівняння 
3

2

1

8x
= . 

Звідси x = 12  (год) — час 
роботи першої бригади, 
а час роботи другої —

2 2 12 24x = ⋅ =  (год).

Відповідь: 12 год, 24 год

Сумісна продуктивність 
обох бригад (при їх спіль-
ній роботі) дорівнює

ν νν+ =
2

3

2
.

За умовою одержуємо 

рівняння 
3

2
8 1ν⋅ = .  

Звідси ν = 1

12
.

Тоді час роботи першої 
бригади дорівнює

1 1

1

12

12
ν

= =  (год),

а час роботи другої —
12 2 24⋅ =  (год).

Відповідь: 12 год, 24 год

5.	 На одному з рисунків зображено графік функції y
x

= − 2
. Укажіть 

цей рисунок.

y y y y

x x x xO

A Б В Г

O O O

*	 Продуктивність — це обсяг роботи, яка виконується за одиницю часу, 
тобто це швидкість виконання роботи
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План Розв’язання

Згадаємо, яка лінія є графіком 
заданої функції (гіпербола).
Потім, спираючись на власти-
вості заданої функції, виберемо 
один із двох наведених графіків 
(А чи В), де зображено гіпер
боли

Задана функція y
x

= − 2
 — це 

функція виду y
k

x
= , графіком якої 

є гіпербола. Оскільки k = − <2 0, то 
ця гіпербола розміщена в другій 
і четвертій координатних чвертях. 
Отже, графік заданої функції зо-
бражено на рисунку В

Тренувальні вправи

1.	 При яких значеннях змінної має зміст вираз:

	 а)	 2 5x − ;  б) 
5

a
;  в) 

x + 2

4
;  г) 

5

4a −
;  д) 

x

x

+
−

7

1
;  е) 

1 5

1x x
+

+
?

2.	 При яких значеннях змінної значення даного дробу дорівнює 
нулю?

	 а)	
x −1

2
;  б) 

5 − a

a
;  в) 

x

x

2 4

2

−
+

;  г) 
a

a − 4
;  д) 

x

x

+
−
1

12
;  е) 

x

x

−
−

2

3
.

3.	З найдіть значення виразу:

	 а)	
a

a

2 9

3

−
−

, якщо a = 2 79, ;

	 б)	
a

b

a b

a
a

2 2 2

⋅ −






−
, якщо a = −1, b = −4;

	 в)	
a

a a

2

1

1

1− −
+ , якщо a = 1 7, .

4.	 Спростіть вираз:

	 а)	 4
2

1

1

2 2
a

a

a

a

a
−





⋅
+

+
;	 б) 

1 1 2
2 2a b

ab

a b
+





⋅
−

;

	 в)	
a b

a b

a b

a b

2 2

2 2

+
−

−
+

− ;		 г) 
a

c

c

a a c
+ −





⋅
−

2
1

.
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5.	 Виконайте дії:

	 a)	
a

a

a

a

a a

a

a

a− −
− +

+( )
−









 ⋅ +

1 1

2 1

2 12 2

2

;

	 б)	
x

x

x

x

x

x

+
−

−
+ −

−





3

3

3

3

2

9 2
: ;

	 в)	
y

y

y

y

y

y

−
+

+
− −

−





1

2 2

1

2 2 4 4 2
: ;

	 г)	
b b

b

b

b

b

b b

2

2 2

8 16

4 16

8

4

+ +

+ − −
⋅

( )
+









 + .

6.	 Розв’яжіть рівняння:

	 а)	
2

4

2

2
0

x x

x

−
−

= ;  б) 
x x

x

2

21
0

−
−

= ;  в) 
x x

x x

2

2

3

4 3
0

−
− +

= ;  г) 
5

30

2

2
0

x x

x x

−
+ −

= .

7.	 Розв’яжіть рівняння:

	 а)	
3 5

2

32

x

x

x

x

x
+ =

−
+

;  б) 
4

1

7 72x

x x

x

x−
++ = .

8.	 Побудуйте графік функції: а) y
x

= 2
, б) y

x
= − 4

.

9.	 На одному з рисунків зображено графік функції y
x

= 3
. Укажіть 

цей рисунок.

y y y y

x x x xO

A Б В Г

O O O

10.	Не виконуючи побудови графіка функції y
x

= 12
, вкажіть, через 

які з даних точок проходить графік заданої функції: A − −( )2 6; ; 
B 1 12; −( ); C 3 4;( ); D 2 6; −( ).

11.	Катер, швидкість якого в стоячій воді дорівнює 8 км/год, прой-
шов 15 км за течією річки і зразу повернувся назад, витративши 
на весь шлях 4 год. Знайдіть швидкість течії річки.
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12.	Два крани, працюючи разом, можуть розвантажити баржу за 
12 год. За який час може розвантажити цю баржу кожний кран, 
працюючи самостійно, якщо другому крану на це потрібно в три 
рази менше часу, ніж першому?

13.	З пункту A в пункт B, відстань між якими становить 80 км, од-
ночасно виїхали два автомобіля. Один із них зробив зупинку на 
15 хв, але до пункту B прибув на 5 хв раніше від другого. Відо-
мо, що його швидкість в 1,5 разу більша за швидкість другого. 
Знайдіть швидкість кожного автомобіля.

Тренувальні тести для підготовки до контрольної 
роботи та тематичного оцінювання

Записуючи відповіді на завдання тесту, обведіть літери, що від-
повідають твердженням, які ви вважаєте правильними, та закрес-
літь літери, що відповідають твердженням, які ви вважаєте непра-
вильними. Наприклад, якщо ви вважаєте правильними твердження 
А і В, а неправильними — твердження Б і Г, запишіть А ВБ Г . 
Якщо хоча б одна літера з чотирьох буде не позначеною, завдання 
вважається не виконаним.

Частина 1

1 рівень

1.	 Користуючись формулою 
a

a

m

n
am n= −  a ≠( )0 , виберіть правильну 

рівність.

А. 
5

5

8

4
52= .	 Б. 

5

5

8

4
54= .	 В.  3 3 39 3 3: = .	 Г.  3 3 39 3 7: = .

2.	З адано дріб 
3 a b

a a b

+
+

( )
( ) . Виберіть правильне твердження.

А.	 Чисельник і знаменник заданого дробу не мають спільного 
множника.
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Б.	 Чисельник і знаменник заданого дробу мають спільний множ-
ник a a b+( ).

В.	 Після скорочення заданого дробу можна отримати дріб 
3

a
.

Г.	 Після скорочення заданого дробу можна отримати дріб 
3

a b+
.

3.	З адано дріб 
2

3

a

a +
. Враховуючи, що знаменник дробу не може до-

рівнювати нулю, виберіть правильне твердження.
А.	 При a = 3  числове значення заданого дробу не існує.

Б.	 Числове значення заданого дробу існує при всіх значеннях a.

В.	 При a = −3  існує числове значення заданого дробу.

Г.	 Числове значення заданого дробу існує тільки при a ≠ −3.

2 рівень

4.	 Одночлен 15 14 9u v⋅  ділиться на одночлен 5 5 7u v⋅ . Позначте, які 
з  наведених чотирьох тверджень правильні, а які — непра
вильні.
А.	 У результаті ділення одержимо одночлен.

Б.	 Щоб знайти коефіцієнт частки, треба поділити коефіцієнт ді-
леного на коефіцієнт дільника.

В.	 До одночлена-частки змінна u входить у степені, який до-
рівнює 14 5+ .

Г.	 Частка від ділення заданих одночленів дорівнює 5 9 2u v⋅ .

5.	 Обчислюють значення дробу 
3

4

2x

x −
 при деяких значеннях x. По-

значте, які з наведених чотирьох тверджень правильні, а які — 
неправильні.
А.	 Для обчислення значення заданого дробу при x = 5  треба об-

числити значення виразу 
3 5

5 4

2⋅
−

.

Б.	 При x = 5  значення заданого дробу дорівнює 25.
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В.	 При x = 4  значення заданого дробу дорівнює 48.

Г.	 Значення заданого дробу можна обчислити при будь-яких 
значеннях x.

6.	 Два дроби 
2a

a b a−( )  і 
3
2a b

 зводять до спільного знаменника. По-

значте, які з наведених чотирьох тверджень правильні, а які — 
неправильні.
А.	 Спільним знаменником заданих дробів є a b ab−( ) .

Б.	 Спільним знаменником заданих дробів є a b a b−( ) 2 .

В.	 Після зведення заданих дробів до спільного знаменника одер-

жуємо дроби 
2 2

2

a b

a b a b−( )  і 
3

2

a b

a b a b

−
−
( )

( ) .

Г.	 Після зведення заданих дробів до спільного знаменника одер-

жуємо дроби 
2ab

a b ab−( )  і 
3 a b

a b ab

−
−
( )

( ) .

3 рівень

7.	 Розглядають частку двох виразів: 6 1 2 1
5 7 5 3 9 8a x y a x y−( ) ⋅ ⋅ −( ) ⋅ ⋅( ): . 

Позначте, які з наведених чотирьох тверджень правильні, а які — 
неправильні.

А.	 Задану частку можна записати так: 3 1
2 2 3a x y−( ) ⋅ ⋅ .

Б.	 Задану частку можна записати так: 3 1
2 2 3a x y−( ) ⋅ ⋅− − .

В.	 Задана частка дорівнює дробу 
3 1

2 2

3

a х

y

−( )
.

Г.	 Задана частка дорівнює дробу 
3 1

2

2 3

a

х y

−( )
.

8.	 Треба скоротити дріб 
2 4

42

ab a

b

−
−

. Позначте, які з наведених чоти-

рьох тверджень правильні, а які — неправильні.
А.	 Чисельник заданого дробу можна розкласти на множники 

так: 2 2a b +( ).
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Б.	 Знаменник заданого дробу можна розкласти на множники 
так: b b+( ) −( )2 2 .

В.	 Якщо скоротити заданий дріб, то одержимо 
2

2

a

b +
.

Г.	 Значення заданого дробу можна обчислити при будь-яких 
значеннях a і b.

9.	 Спрощують вираз: 
a

a b

a b

b a

a

a b−
+
− +

+ +
2 2

2 2
. Позначте, які з наведених 

чотирьох тверджень правильні, а які — неправильні.
А.	 Спільним знаменником усіх заданих дробів є a b2 2− .

Б.	 Заданий вираз дорівнює 
a b

a b

2 2

2 2

+
−

.

В.	 При будь-яких значеннях a і b значення заданого виразу до-
рівнює 1.

Г.	 Значення заданого виразу дорівнює 1 тільки при a b≠  і  a b≠ − .

4 рівень

10.	Задано вираз: 
3 22 2

2

y xy x

x xy y

− +
+ +2 . Відомо, що 

y

x
= 3. Позначте, які з на-

ведених чотирьох тверджень правильні, а які — неправильні.
А.	 Якщо чисельник і знаменник заданого виразу поділити на  x2, 

то можна одержати дріб 
3 1

1

2

2

y

x

y

x

y

x

y

x













− +

+ +

.

Б.	 Значення заданого виразу можна обчислити за формулою
3 3 2 3 1

1 3 3

2

2

⋅ − ⋅ +
+ +

.

В.	 З умови випливає, що y x= 3 .

Г.	 Значення заданого виразу дорівнює 
25

13
.

11.	Скорочують дріб 
x a x a

x a

4 2 2 4

3 3

+ +
+

. Позначте, які з наведених чоти-

рьох тверджень правильні, а які — неправильні.
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А.	 Якщо до виразу в чисельнику дробу додати a x2 2  і відняти a x2 2 , 
то чисельник можна подати як різницю квадратів двох виразів.

Б.	 Чисельник заданого дробу можна розкласти на множники 

так: x a ax x a ax2 2 2 2+ +( ) + +( ).

В.	 Знаменник заданого дробу можна розкласти на множники 

так: x a x ax a+( ) + +( )2 2 .

Г.	 Якщо скоротити заданий дріб, то одержимо дріб 
x ax a

x a

2 2+ +
+

.

12.	Задано вираз 
6

4 2

3

42 2x

x

x

x

x− + −
+ + . Позначте, які з наведених чо-

тирьох тверджень правильні, а які — неправильні.
А.	 Значення заданого виразу існує при всіх значеннях x.

Б.	 Заданий вираз дорівнює виразу 
x x

x x

− −
− +

( )( )
( )( )

3 2

2 2
.

В.	 Заданий вираз дорівнює 
x

x

−
+

3

2
 при всіх x з області визначення 

заданого виразу.

Г.	 При x = 2  значення заданого виразу дорівнює − 1

4
.

Частина 2

1 рівень

1.	 Користуючись тим, що 
A

B

A

B

n n

n







=
 

, де B ≠ 0, виберіть правильне 

твердження щодо виразу 
−





2

3

4

2

3
m

x

 

.

А.	 Щоб піднести заданий дріб до третього степеня, треба під-
нести до цього степеня тільки чисельник, а знаменник за-
лишити без змін.

Б.	 Щоб піднести заданий дріб до третього степеня, треба під-
нести до цього степеня тільки знаменник, а чисельник за-
лишити без змін.
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В.	 Заданий вираз дорівнює 
−8

27

12

6

m

x
.

Г.	 Заданий вираз дорівнює 
8

27

12

6

m

x
.

2.	 Розглядають добуток двох дробів: 
2

3

5

7

2 3

2

a

xy

a

x y
⋅ . Виберіть правильне 

твердження.
А.	 Якщо перемножити чисельники заданих дробів, то одержи-

мо  10 6a .

Б.	 Якщо перемножити знаменники заданих дробів, то одержи-
мо 3 3 2x y .

В.	 Добуток заданих дробів дорівнює 
10

3

6

3 2

a

x y
.

Г.	 Добуток заданих дробів дорівнює 
10

21

5

3 2

a

x y
.

3.	 Розглядають частку двох дробів: 
5 3

2

a

b c
: 

2 4bc

a
. Виберіть правильне 

твердження.

А.	 Дріб, обернений до другого із заданих дробів, дорівнює 
a

bc4
.

Б.	 Частка заданих дробів дорівнює добутку 
5 3

2 4

a

b c

a

bc
⋅ .

В.	 Частка заданих дробів дорівнює 
5

2

4

3 5

a

b c
.

Г.	 Частка заданих дробів дорівнює 
5 4

3 5

a

b c
.

2 рівень

4.	З адано вираз 
−





2 3

2

4
x

a b

 

. Позначте, які з наведених чотирьох твер-

джень правильні, а які — неправильні.

А.	 Заданий вираз можна записати так: 
−( )2 3 4

2

x

a b
.

Б.	 Заданий вираз можна записати так: 
−

( )
2 3

2 4

x

a b
.
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В.	 Заданий вираз можна записати так: 
−( )
( )

2 3 4

2 4

x

a b
.

Г.	 Заданий вираз дорівнює 
16 12

8 4

x

a b
.

5.	 Розглядають частку двох дробів: 
a b

a b

a b

a a b

+

−

+

−( )
( )
( )2

4

2
: . Позначте, 

які з наведених чотирьох тверджень правильні, а які — непра

вильні.

А.	 Щоб поділити перший дріб на другий, можна помножити 

перший дріб на дріб 
a a b

a b

−

+

( )
( )

2

4
.

Б.	 Задану частку можна записати так: 
a b a b

a b a b

+ −

− +

( )( )
( ) ( )

2

2 4
.

В.	 Задана частка дорівнює 
1

3
a b+( )

.

Г.	 Задана частка дорівнює 
a

a b+( )3
.

6.	З адано рівняння 
x

x

−
+

=1

4
0. Позначте, які з наведених чотирьох 

тверджень правильні, а які — неправильні.

А.	 Ліва частина заданого рівняння існує, якщо x + ≠4 0.

Б.	 Чисельник заданого дробу дорівнює нулю при x = 1.

В.	 При x = 1  знаменник заданого дробу дорівнює нулю.

Г.	 Задане рівняння має корінь x = 1.

3 рівень

7.	 Розглядають вираз: 
4 4m n

n

+
: 

m n

n

2 2

2

−
. Позначте, які з наведених 

чотирьох тверджень правильні, а які — неправильні.

А.	 Ділене можна перетворити так: 
2 m n

n

+( )
.
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Б.	 Дільник можна перетворити так: 
m n m n

n

+ +( )( )
2

.

В.	 Задану частку можна записати так: 
2n

m n+
.

Г.	 Задану частку можна записати так: 
4n

m n−
.

8.	 Розглядають вираз 
2

2 2 22 2

1
ab

a b

a b

a b

a b

a−
−
+

++





⋅





−

. Позначте, які з на-

ведених чотирьох тверджень правильні, а які — неправильні.

А.	 Для дробів, що стоять у перших дужках, як спільний зна-
менник можна взяти 2 a b a b+( ) −( ).

Б.	 Вираз у перших дужках дорівнює 
a b

a b a b

+
+ −
( )

( )( )
2

.

В.	 Другий множник у заданому виразі можна записати так: 
a

a b+
.

Г.	 Заданий вираз дорівнює 
a

a b−
.

9.	З адано рівняння 
x x

x x

−
− +
( ) =

1

3 22
0. Позначте, які з наведених чоти-

рьох тверджень правильні, а які — неправильні.

А.	 Чисельник дробу в лівій частині рівняння дорівнює нулю при 
x = 0  та при x = 1.

Б.	 При x = 0  знаменник дробу в лівій частині рівняння не до-
рівнює нулю.

В.	 При x = 1  знаменник дробу в лівій частині рівняння не до-
рівнює нулю.

Г.	 Задане рівняння має два корені.

4 рівень

10.	Відомо, що катер проплив 15 км за течією річки і 4 км по озеру, 
витративши на весь шлях 1 год. Швидкість течії річки становить 
4 км/год.
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Швидкість катера при русі по озеру позначили через 
x  км/год. Позначте, які з наведених чотирьох тверджень пра-
вильні, а  які  — неправильні.

А.	 За умовою можна скласти рівняння 
15

4

4
1

x x+
+ = .

Б.	 Рівняння, складене за умовою, рівносильне рівнянню
x x

x x

+ −
+

( )( )
( ) =

1 16

4
0 .

В.	 Обидва корені рівняння, складеного за умовою, задовольня-
ють задану умову.

Г.	 Швидкість катера при русі по озеру становить більше 
16  км/год.

11.	Задано вираз 

1 1

1 1 2
1

2 2 2

a b c

a b c

b c a

bc

+
+

−
+

+ −⋅ +






. Позначте, які з наведених 

чотирьох тверджень правильні, а які — неправильні.

А.	 Дріб, який стоїть перед дужками, дорівнює дробу 
b c a

a b c

+ +
− −

.

Б.	 Якщо вираз у дужках звести до спільного знаменника, то 
чисельник одержаного дробу можна буде подати у вигляді 
різниці квадратів двох виразів.

В.	 Вираз у дужках дорівнює дробу 
a b c a b c

bc

+ + − −( )( )
2

.

Г.	 Заданий вираз дорівнює 
a b c

bc

+ +( )2

2
.

12.	Задано рівняння 
x a

x

a

x x

−
− −

+ =2

1

2

2
0  (a — деяке число). Позначте, які 

з наведених чотирьох тверджень правильні, а які — неправильні.
А.	 Областю визначення заданого рівняння є всі значення x, які 

задовольняють умови: x ≠ 0  і x ≠ 1.

Б.	 Задане рівняння рівносильне рівнянню 
x a

x x

+
−

( )
( ) =

2

1
0.

В.	 При a = 0  задане рівняння має корені.

Г.	 При a ≠ 0  і a ≠ 1  задане рівняння має єдиний корінь x a= .
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Контрольна робота

Контрольна робота

В-І 7 балів В-ІІ

1. Знайдіть значення виразу (2 бали):

а) 4 2− ;  б) −( )−
5

3
а) 3 3− ;  б) −( )−

2
2

2. Спростіть вираз (2 бали):

1

2

2

22a a a− −
− 1

3

3

32x x x− −
−

3. Побудуйте графік функції (1 бал):

y
x

= 3
y

x
= 5

4. Розв’яжіть рівняння (2 бали):

x

x

2 25

5
0

−
+

= .
x

x

2 36

6
0

−
+

= .

В-ІІІ 9 балів В-IV

1. Знайдіть значення виразу (1 бал):

7

2

2






−
2

5

3






−

2. Спростіть вираз (2 бали):

x

x

x

x

x

x x− +
+

− +
− −







⋅
( )1 1

1

1

1

1

2

2 2

a

a b

a

a b

a b

b a

a b

a b− +
+
−

−

+
− −







⋅
( )

2 2

2 2 2

3. Побудуйте графік функції (1 бал):

y
x

= − 2
y

x
= − 3

4. Розв’яжіть рівняння (2 бали):

x

x x

2

2

4

3 2
0

−
− +

= x

x x

2

2

9

4 3
0

−
− +

=
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5. Розв’яжіть задачу (3 бали):

Майстер і учень, працюючи ра-
зом, виконали певну роботу за 
3 год. За скільки годин може 
виконати цю роботу кожний із 
них, працюючи самостійно, якщо 
учневі на це потрібно в 3 рази 
більше часу, ніж майстрові?

Басейн заповнюється двома тру-
бами за 8 год. За скільки годин 
може заповнити цей басейн кож-
на труба, працюючи окремо (тоб-
то коли відкривають тільки одну 
трубу), якщо першій трубі на це 
потрібно в 4 рази менше часу, 
ніж другій?

В-V 12 балів В-VІ

1. Розв’яжіть рівняння (2 бали):

x x

x x

2

2

2

5 2
0

−
− +

= x x

x x

2

2

3

2 3
0

+
+ −

=

2. Побудуйте графік функції (1 бал):

y
x

= − 1

2
y

x
= − 1

3

3. Спростіть вираз (3 бали):

16

4

2

2

2

22 2 2 2

a

a b

a b

ab a

a b

a ab−
+

−
−
+

− − x

x

x

x x x2 4

4

8 2

2

2

2

2 2−
+

− +
+ −

4. Розв’яжіть задачу (3 бали):

Катер, власна швидкість яко-
го 8 км/год, пройшов за течією 
річки 15 км і таку саму відстань 
проти течії річки, витративши на 
весь шлях 4 год. Знайдіть швид-
кість течії річки

Спортивний човен пройшов від-
стань 45 км проти течії річки 
і таку саму відстань за течією, 
витративши на весь шлях 14 год. 
Знайдіть швидкість течії річки, 
якщо власна швидкість човна 
7 км/год

5. Розв’яжіть рівняння відносно змінної x (3 бали):

x a x

x

− −
−

( )( ) =
3

2
0

x a x

x

− +
+

( )( ) =
2

5
0

Закінчення контрольної роботи
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Для майбутніх абітурієнтів

Для майбутніх абітурієнтів

Дробові раціональні рівняння з параметрами

Як і для лінійних рівнянь* корисно пам’ятати, що рівняння з па-
раметрами можна розв’язувати так само, як звичайні рівняння, але 
тільки до того часу, поки кожне потрібне перетворення можна ви-
конати однозначно. Якщо ж якесь перетворення не можна виконати 
однозначно, то розв’язання потрібно розбити на декілька випадків.

Для дробово-раціональних рівнянь слід також враховувати, що 
всі рівносильні перетворення рівнянь виконуються на області допус-
тимих значень (ОДЗ) заданого рівняння (тобто на спільній області 
визначення для всіх функцій, які входять до запису рівняння), тому, 
перш ніж записати відповідь, обов’язково слід враxувати ОДЗ за-
даного рівняння.

Приклад 1. Розв’яжіть рівняння 
x

x

a

x−
= +

3
1 , де x — змінна.

Розв’язання Пояснення

ОДЗ: x ≠ 3, x ≠ 0 Задані дробові вирази існують тоді 
і тільки тоді, коли знаменники зада-
них дробів не дорівнюють нулю

x x x a x2 3 3= −( )+ −( ),
x x x ax a2 2 3 3= − + −

Помножимо обидві частини заданого 
рівняння на вираз x x −( )3  — спіль-
ний знаменник дробів і одержимо ціле 
рівняння, яке за умови x x −( ) ≠3 0  
(тобто на ОДЗ заданого рівняння) рів-
носильне заданому

3 3x ax a− = ,
3 3−( ) =a x a

Після зведення подібних доданків 
в одержаному лінійному рівнянні пе-
реносимо члени із змінною x в одну 
частину, а без x — в іншу і виносимо 
в лівій частині змінну x за дужки

*	 Див. посібник: Нелін Є. П. Алгебра. 7 клас: Опорні таблиці, схеми 
розв’язування, тренувальні тести.— Х.: Веста: Видавництво «Ранок», 
2008.— 112 с.



30 Розділ 1. Раціональні вирази

30     Нелін Є. П. Алгебра. Т6488У

Для знаходження змінної x ми б хотіли поділити обидві части-
ни останнього рівняння на 3 −( )a , але при a = 3  ми будемо ділити 
на  0, що неможливо. Отже, починаючи з цього моменту, потрібно 
розглянути два випадки.

Наведені вище міркування можна наочно записати так:
x

x

a

x−
= +

3
1 .

Розв’язання
ОДЗ: x ≠ 3, x ≠ 0.

x x x a x2 3 3= −( )+ −( ), x x x ax a2 2 3 3= − + − , 3 3x ax a− = .

коренів немає

( )3 3− =a x a

3 0− =a 3 0− ≠a

a ≠ 3a = 3

0 9x =
x

a

a
=

−
3

3

З’ясуємо, при яких значеннях a знайдені корені не входять до 
ОДЗ. Для цього з’ясуємо, коли x = 3  і x = 0.

3

3
3

a

a−
= , тоді 3 3 3a a= −( ), 3 9 3a a= − , a = 3

2
. Отже, при a = 3

2
 ма-

ємо x = 3  — сторонній корінь (не входить до ОДЗ), тобто при a = 3

2
 

задане рівняння не має коренів.
3

3
0

a

a−
= , тоді a = 0. Отже, при a = 0  маємо x = 0  — сторонній ко-

рінь (не входить до ОДЗ), тобто при a = 0  задане рівняння не має 
коренів.

Відповідь: 1) при a = 3, a = 0, a = 3

2
 коренів немає;

2)	 при a ≠ 3, a ≠ 0, a ≠ 3

2
 x

a

a
=

−
3

3
.

Приклад 2. �Знайдіть усі значення a, при яких рівняння 
x a x a

x

+ −
+

( )( ) =
5

7
0  має єдиний корінь.
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Розв’язання Пояснення

ОДЗ: x ≠ −7 Заданий дробовий вираз існує тоді 
і тільки тоді, коли його знаменник 
не дорівнює нулю

x a x a+( ) −( ) =5 0. Тоді Оскільки дріб дорівнює нулю тоді 
і тільки тоді, коли його чисельник 
дорівнює нулю, а знаменник не 
дорівнює нулю, то на ОДЗ задане 
рівняння рівносильне рівнянню 

x a x a+( ) −( ) =5 0

x a+ = 0  або x a− =5 0. Одер-
жуємо x a= −  або x a= 5

Добуток дорівнює нулю тоді і тільки 
тоді, коли хоча б один із множників 
дорівнює нулю

Врахуємо ОДЗ. Для цього 
з’ясуємо, коли x = −7 :
− = −a 7  при a = 7,

5 7a = −  при a = − 7

5

З’ясуємо, при яких значеннях a 
знайдені корені не входять до ОДЗ. 
Для цього з’ясуємо, коли x = −7 , тоб-
то прирівняємо знайдені корені до 7 
і знайдемо відповідні значення a

Тоді при a = 7  одержуємо: 
x a= − = −7  — сторонній ко-
рінь; x a= =5 35  — єдиний 
корінь.

При a = − 7

5
 одержуємо: 

x a= = −5 7  — сторонній ко-

рінь; x a= − = 7

5
 — єдиний 

корінь.
Також задане рівняння буде 
мати єдиний корінь, якщо 
− =a a5 , тобто при a = 0  (тоді 
x a= − = 0  і x a= = ≠ −5 0 7).

Відповідь: a = 7, a = − 7

5
, a = 0

При знайдених значеннях a один із 
двох одержаних коренів буде сто-
роннім x = −( )7  і рівняння буде мати 
єдиний корінь. Крім того, задане рів-
няння буде мати єдиний корінь (одне 
значення кореня) ще і в тому випад-
ку, коли два одержані корені ( x a= −
та x a= 5 ) будуть збігатися (і, звичай-
но, входити до ОДЗ)
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Тренувальні вправи

1.	 Розв’яжіть рівняння зі змінною x.

	 а)	
x a

x

−
+

=
6

0;  б) 
x

x a

−
−

=3
0;  в) 

x a x

x

− −
+

( )( ) =
5

1
0;  г) 

a x

x

−
−

( ) =
2

7
0.

2.	 Розв’яжіть рівняння зі змінною x.

	 а)	
2

4

1 3

1 5x x a x
a

x− −
= ⋅

−
=

+
3

1 5x
a

x−
=

+
;	 б) 

a

x x+ +
=

2

1

1
;

	 в)	
3

1 5x

a

x− +
= ;			   г) 

2

2
2

x

x

a

x+
= + .

3.	З найдіть усі значення a, при яких задане рівняння не має ко
ренів.

	 а)	
x a

x

+
−

=
2 9

0;  б) 
x a

x

−
−

=
2 16

0;  в) 
x a

x x

−
−( ) =2

4
0.

4.	З найдіть усі значення a, при яких задане рівняння має єдиний 
корінь.

	 а)	
x a x a

x

− −
−

( )( ) =
2

4
0;  б) 

x a x a

x

+ −
+

( )( ) =
2 6

12
0.
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Опорні таблиці

Розділ 2. �Квадратні корені.  
Дійсні числа

Таблиця 7. Перетворення виразів із квадратними коренями

Означення
Квадратним коренем із числа a 
називається число, квадрат якого 
дорівнює a

Арифметичним квадратним 
коренем із числа a називається 
невід’ємне число, квадрат якого 
дорівнює a.
Арифметичний квадратний ко-

рінь із числа a позначається a  
(a — підкореневий вираз)

Приклади
Формулювання Обґрунтування Позначення Примітка

1. �Квадратний корінь 
із 9 дорівнює 3 3 92 = 9 3=

Арифметич-
ний корінь

2. �Квадратний корінь 
із 9 дорівнює −( )3 −( ) =3 92

Позначення 
немає

Не арифме-
тичний корінь

3. �Квадратний корінь 
із 0 дорівнює 0 0 02 = 0 0=

Арифметич-
ний корінь

4. �Квадратний корінь 
з 1 дорівнює 1 1 12 = 1 1=

Арифметич-
ний корінь

Область визначення
Зміст Приклади

a  має зміст тільки при a  0
(отже, квадратний корінь із 
від’ємного числа не визначений)

11  — має зміст;

−9  — не має змісту;

вираз x − 3  має зміст тільки 
при x − 3 0 , тобто x  3
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Властивості арифметичних квадратних коренів

Рівність a b=  (при a  0) пра-
вильна тоді і тільки тоді, коли

b
b a

 0
2

,
=





a a2 =  тільки при a  0

Для будь-якого значення a

a a2 =
−( ) = − =5 5 5

2
;

9 3 3 32 2
y y y y= ( ) = =

При a  0  a a( ) =
2

9 9
2( ) = ; 7 7

2( ) =

Корінь із добутку
Формула Приклад

При a  0; b  0:

ab a b= ⋅
9 16 9 16 3 4 12⋅ = ⋅ = ⋅ = ;

25 25 5a a a= ⋅ =

При будь-яких a і b, таких, 

що ab  0: ab a b= ⋅
−( )⋅ −( ) = − ⋅ − = ⋅ = ⋅ =9 16 9 16 9 16 3 4 12

−( )⋅ −( ) = − ⋅ − = ⋅ = ⋅ =9 16 9 16 9 16 3 4 12.

Якщо x  0  і y  0, то x x= − , y y= − , 
тому

xy x y x y= ⋅ = − ⋅ −

Корінь із частки

При a  0; b > 0: 
a

b

a

b
= 81

100

81

100

9

10
= = .

При будь-яких a і b, таких, 

що 
a

b
 0:

a

b

a

b
=

81

100

81

100

81

100

9

10
= = = .

Якщо x < 0  і y < 0, то 

x

y

x

y

x

y
= = −

−

Продовження таблиці 7
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Корінь із степеня

При a  0: a ak k2 = 3 310 5= ; 7 76 3=

Для будь-яких a:

a a ak k k2 2
= ( ) =

−( ) = −( ) =5 5 5
14 7 7;

1 3 1 3 3 1
6 3 3

−( ) = −( ) = −( )
(1 3 0− < , тому 1 3 3 1− = − )

Винесення множника з-під знака кореня

При a  0; b  0: a b a b2 = 12 4 3 2 3 2 32= ⋅ = ⋅ =

Для будь-яких a b  0( ):

a b a b2 =

3 32x x= ;

−( ) ⋅ = − =7 5 7 5 7 5
2

Внесення множника під знак кореня

При a  0; b  0:

a b a b= 2

5 3 5 3 752= ⋅ = ;

x y x y x y2 2 2 4= ( ) =

(враховано, що x2 0  завжди)

Для будь-яких a b  0( ):

a b
a b a

a b a
=

− <






  2

2

0

0

при

при

 , Якщо x < 0, то x y x y= − 2

Порівняння виразів із квадратними коренями

При a  0, b  0, якщо a b> , то a b>

Закінчення таблиці 7
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Таблиця 8. Дійсні числа

Означення та зміст Приклади

Раціональними числами назива-
ють числа, які можна записати 

у вигляді дробу 
m

n
, де m — ціле, 

n — натуральне число.
Множина раціональних чисел (Q) 
складається з цілих і дробових 
чисел

2

7
; 0 3

3

10
, = ; 0

0

1
= ; − = −

5
5

1
 — 

раціональні числа

Кожне раціональне число можна 
подати у вигляді нескінченного 
періодичного десяткового дробу. 
І навпаки, кожний нескінченний 
періодичний десятковий дріб зо-
бражає деяке раціональне число

Раціональне число 
1

3
:

1

3
0 3333 0 3= …= ( ), , .

Для раціонального числа 5:
5 5 0000= …,

Числа, які зображаються нескін-
ченними неперіодичними дроба-
ми, називають ірраціональними

2 1 4142135= …, ;
π = …3 1415926,  —  

ірраціональні числа

Раціональні та ірраціональні 
числа складають множину дій­
сних чисел (R)

0,5; 
1

3
; 2 ; π; 2 3+  —  

дійсні числа

На числовій прямій кожному 
дійсному числу відповідає єдина 
точка, і навпаки, кожній точці 
числової прямої відповідає єдине 
дійсне число

2− 3

1 2 x0–1–2

Корисно пам’ятати.
Квадратний корінь із натураль-

ного числа ( n , де n ∈N) завжди 
буде або натуральним числом, 
або ірраціональним

16 4=  — натуральне число,

169 13=  — натуральне число,

5  не може бути натуральним 

(оскільки 2 5 3< < ), тому 5  — 
ірраціональне число
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Опорні таблиці

Деякі властивості раціональних та ірраціональних чисел
Сума, різниця, добуток і частка 
(якщо дільник не дорівнює нулю) 
двох або декількох раціональних 
чисел завжди є раціональним 
числом

2

7
 — раціональне число,

0,13 — раціональне число, отже, 
2

7
0 13+ ,  — раціональне число

Якщо з двох чисел одне раціо-
нальне, а друге ірраціональне, то 
їх сума, різниця, добуток і частка 
завжди будуть ірраціональними 
числами (добуток і частка тільки 
у випадку, коли раціональне чис-
ло не дорівнює нулю)

3 — раціональне число,

5  — ірраціональне число, тоді 

3 5+ ; 3 5− ; 3 5 ; 
3

5
; 

5

3
 —

ірраціональні числа

Таблиця 9. Функція y x=

Властивості Графік

1. �Область визна-
чення x  0

y

x0 1

1
2
3

4

y x=

2. Область значень y  0

3. �Точки перетину 
з осями коорди-
нат

Оскільки при x = 0  зна-
чення y = 0, то графік 
проходить через поча-
ток координат

4. �При збільшенні аргументу значення 
функції збільшуються (функція зростає)

Закінчення таблиці 8
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Розв’язування вправ

1.	 Спростіть вираз 2 3 2 3−( ) +( ).

План Розв’язання

Спочатку використаємо фор-
мулу a b a b a b−( ) +( ) = −2 2 , 
а потім означення квадратно-

го кореня: 3 3
2( ) =

2 3 2 3 2 3 4 3 12
2

−( ) +( ) = −( ) = − = .

Відповідь: 1

2.	 Обчисліть:  а) 5 80⋅ ;  б) 
75

3
.

План Розв’язання

Використаємо формули кореня 
з добутку і частки справа налі-
во, тобто

a b ab⋅ =  ( a  0; b  0)

a

b

a
b

=  ( a  0; b  0)

а) 5 80 5 80 400 20⋅ = ⋅ = = ;

б) 
75

3

75

3
25 5= = =

3.	 Розкладіть на множники:  а) x2 3− ;  б) 21 7− ;  в) x x− 5 .

План Розв’язання

У пунктах «а» і «в») 
врахуємо, що при a  0  

a a= ( )2

, а потім вико-

ристаємо в пункті «а» 
формулу різниці ква-
дратів, а в пунктах «б» 
і «в» винесемо за дужки 
спільний множник

а) x x x x2 2
2

3 3 3 3− = −( ) = −( ) +( );

б) � 21 7 7 3 7 7 3 7 7 3 1− = ⋅ − = ⋅ − = −( )
21 7 7 3 7 7 3 7 7 3 1− = ⋅ − = ⋅ − = −( );

в) �заданий вираз існує тільки при  x  0.  

Тоді x x x x− = ( ) − ⋅ =5 5
2

 

= −( )x x 5
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Розв’язування вправ

4.	 Скоротіть дріб 
a a

a

+

+

3

3
.

План Розв’язання

Врахуємо, що при a  0  

a a= ( )2

, і розкладемо 

чисельник дробу на множ-
ники, щоб виконати скоро-
чення дробу

Заданий вираз існує тільки при a  0, 

але тоді a a= ( )2

. Отже,

a a

a

a a

a

a a

a
a

+

+

+

+

+

+
=

( )
=

( )
=3

3

3

3

3

3

2

5.	З вільніться від ірраціональності в знаменнику дробу:

	 а)	
3

7
;  б) 

2

3 1−
;  в) 

1

2a +
.

План Розв’язання

а) �Якщо домножити чисель-

ник і знаменник на 7  

7 0≠( ), то в знаменнику 

одержимо 7 7
2( ) =

а) 
3

7

3 7

7

3 7

72
=

( )
=

б) �Якщо домножити чисель-

ник і знаменник на 3 1+  

3 1 0+ ≠( ), то в знаменни-
ку одержимо різницю ква-
дратів, і після викорис-

тання формули 3 3
2( ) =  

у знаменнику не буде 
кореня

б) 
2

3 1

2 3 1

3 1 3 1

2 3 1

3 1

2 3 1

3 12
2−

+

− +

+

−

+

−
=

( )
( )( ) =

( )
( )

=
( )

=

2

3 1

2 3 1

3 1 3 1

2 3 1

3 1

2 3 1

3 12
2−

+

− +

+

−

+

−
=

( )
( )( ) =

( )
( )

=
( )

= 3 1+

в) �Аналогічно до пункту «б» 
домножимо чисельник 

і знаменник на a − 2  
(щоб одержати в знамен-
нику різницю квадратів).

в) Нехай A
a

=
+

1

2
.

  1) При a = 4  A =
+

=1

4 2

1

4
;



40 Розділ 2. Квадратні корені. Дійсні числа

40     Нелін Є. П. Алгебра. Т6488У

Але при a = 4  ми домножи-
мо чисельник і знаменник 
на 0, чого робити не можна. 
Тому випадок a = 4  розгля-
немо окремо

2) �при a ≠ 4  (і  a  0, щоб існував зада-
ний вираз)

A
a

a

a a

a

a
= = ( )( ) =

+

−

+ −

−
−

1

2

2

2 2

2

4
.

Відповідь:

1) при a = 4   A = 1

4
;

2) при a ≠ 4  a  0( )  A
a

a
= −

−
2

4
.

6.	 Винесіть множник з-під знака кореня 36 2x y , якщо:
	 а) x > 0;  б) x < 0.

План Розв’язання

При винесенні множника з-під 
знака кореня врахуємо, що

a a2 =

36 36 62 2x y x y x y= ⋅ ⋅ = ;
а) �при x > 0  x x= , тоді

36 62x y x y= ;

б) �при x < 0  x x= − , тоді

36 62x y x y= −

7.	 Внесіть множник під знак кореня:

	 а)	 5 7 ;  б) x x3  при x > 0;  в) x x3  при x < 0.

План Розв’язання

При внесенні множника під 
знак кореня, крім формули 

a b a b= 2  при a  0 , b  0 , слід 

враховувати, що вираз a b2  — 
це арифметичне значення кореня 
і він завжди тільки більше або 
дорівнює нулю (тому у випадку, 
коли заданий вираз від’ємний — 
у завданні «в»,— доводиться ста-
вити перед коренем знак «–»)

а) 5 7 5 7 25 7 1752= ⋅ = ⋅ = ;

б) при x > 0  x3 0> , отже,

x x x x x x x3 3 2 6 7= ( ) ⋅ = ⋅ = ;

в) при x < 0  x3 0< , отже,

x x x x x x x3 3 2 6 7= − ( ) ⋅ = − ⋅ = −
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Розв’язування вправ

8.	 Порівняйте числа 3 5  і 5 3 .

План Розв’язання

Внесемо множники, які стоять перед 
коренями, під знаки коренів і врахує-
мо, що корінь квадратний із більшого 
числа більший за корінь квадратний 
із меншого числа

3 5 3 5 9 5 452= ⋅ = ⋅ = ;

5 3 5 3 25 3 752= ⋅ = ⋅ = .
Оскільки 75 45> , то

5 3 3 5>

9.	 Розв’яжіть рівняння:

	 а) x − =5 3;  б) x + = −2 1;  в) 7 6+ =x .

План Розв’язання

Використаємо означення ариф-
метичного квадратного кореня.
Для рівняння з пункту «б» зга-
дуємо, що арифметичний ква-
дратний корінь не може бути 
від’ємним (отже, це рівняння не 
має коренів), а для пунктів «а» 

і «в» згадуємо, що рівність a b=  
(при b  0) правильна тоді і тіль-
ки тоді, коли a b= 2

а) �За означенням квадратного 

кореня, якщо x − =5 3, то 
x − =5 32 . Тоді x = 14.

б) �Рівняння x + = −2 1  коренів не 

має, оскільки значення x + 2  
не може бути від’ємним.

в) � 7 6+ =x , тоді 7 62+ =x , отже,
x = 29.

Відповідь: �а) 14; б) коренів немає; 
в) 29

10.	Чи належить графіку функції y x=  точка:

	 а) A 0 16 0 4, ; ,( );  б)  B 144 10;( )?

План Розв’язання

Точка M a b;( )  належить 
графіку функції y f x= ( )  
тоді і тільки тоді, коли 
f a b( ) = . Отже, нам по-
трібно перевірити, що при 
x a=  буде виконуватися 

рівність y x a b= = =

а) �При x = 0 16,  значення y x= = =0 16 0 4, ,

y x= = =0 16 0 4, , . Отже, точка A 0 16 0 4, ; ,( )  нале-

жить графіку функції y x= .

б) �При x = 144  значення y x= = = ≠144 12 10

y x= = = ≠144 12 10. Отже, точка B 144 10;( )  не 

належить графіку функції y x=
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11.	Розв’яжіть графічно рівняння x x= −2 .

План Розв’язання

Щоб розв’язати графічно 
рівняння, будуємо (в од-
ній системі координат) 
графіки функцій, які 
стоять у лівій і правій 
частинах рівняння, і зна-
ходимо абсциси їх точок 
перетину

Будуємо графіки функцій y x=  
і  y x= −2 .

y

x0 1

1

y x=

y x= −2

x 0 1 4

у 0 1 2

x 0 2

у 2 0

Побудовані графіки перетинаються в од-
ній точці з абсцисою x = 1. Це точне зна-

чення кореня, оскільки 1 2 1= − ; 1 1= .
Відповідь: 1

Тренувальні вправи

1.	 Обчисліть значення виразу:

	 а)	 81 100+ ;  б) 49 0 01+ , ;  в) 64 121+ ;

	 г)	 0 04 0 25, ,+ .

2.	 Обчисліть значення виразу:

	 а)	 2 5 2− a  при a = −2;  б) 4 6x +  при x = 2 5, .

3.	 Спростіть вираз:

	 а)	
98

2
;  б) 50 6 2− ;  в) 17 2 19

2

+( ) − ;  г) 
15 5

5

−
;

	 д)	 3 5 3 5+( ) −( );  е) 7 2
2

−( ) ;  є) 5 3
2

−( ) .

4.	 Обчисліть:  а) 2 98⋅ ;  б) 6 24⋅ ;  в) 
245

5
;  г) 

192

3
.

5.	 Розкладіть на множники:  а) a2 7− ;  б) 33 11− ;  в) 2x x− .
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Тренувальні вправи

6.	 Скоротіть дріб:

	 а) 
x

x

−

+

25

5
;  б) 

a

a

−
−

2

4
;  в) 

a a

a

+

+1
;  г) 

x x

x

+ +
−

2 1

1
.

7.	З вільніться від ірраціональності в знаменнику дробу:

	 а)	
2

5
;	 б) 

4

7 1+
;	 в) 

1

1x −
;	 г) 

3

3a +
.

8.	 Винесіть множник з-під знака кореня 64 2a b , якщо:
	 а) a > 0;	 б)  a < 0.

9.	 Внесіть множник під знак кореня:

	 а)	 3 11 ;	 б) a a5  при a > 0;	 в) a a5  при a < 0.

10.	Спростіть вираз:

	 1) 
a

a b a b

a

b a− + −
−







1

: ;  2) x
y x

y

x y
:

1

− −
+







.

11.	Чи належить графіку функції y x=  точка:

	 а) A 0 36 0 6, ; ,( );  б)  B 64 10;( );  в)  C 8 2 2;( )?

12.	Порівняйте числа:

	 а) 2 7  і 3 3 ;  б) 5 3  і 4 5 ;  в) 6 2  і 2 17 ;  г) 7 3  і 4 10 .

13.	Розв’яжіть рівняння:

	 а) x = 5;  б) x − = −1 5;  в) 3 2− =x ;  г) 2 3 7x − = .

14.	Розв’яжіть графічно рівняння:

	 а) x x= −6 ;  б) x x= −3 2 ;  в) x x= −10 2 .
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Тренувальні тести для підготовки до контрольної 
роботи та тематичного оцінювання

Обведіть літери, що відповідають твердженням, які ви вважаєте 
правильними, та закресліть літери, що відповідають твердженням, 
які ви вважаєте неправильними.

Частина 1

1 рівень

1.	 Рівність a b=  означає, що b a2 = . Виберіть правильне твер
дження.

А.  14 4= .	 Б.  15 4= .	 В.  16 4= .	 Г.  17 4= .

2.	 Враховуючи, що вираз a  існує тільки при a  0, виберіть пра-
вильне твердження.

А.	 Значення −16  існує.

Б.	 Значення −9  існує.

В.	 Значення −25  існує.

Г.	 Значення 11  існує.

3.	 Враховуючи, що a a( ) =
2

 при a  0, виберіть правильне твер-
дження.

А.  9 3
2( ) = .	 Б.  14 14

2( ) = .

В.  16 4
2( ) = .	 Г.  15 225

2( ) = .

2 рівень

4.	З адано число 2 . Позначте, які з наведених чотирьох тверджень 
правильні, а які — неправильні.

А.  2 1> .	 Б.  2 2> .	 В.  2 2< .

Г.	 Число 2 — раціональне число.

5.	 Використовуючи формулу a a2 = , позначте, які з наведених 
чотирьох тверджень правильні, а які — неправильні.



45

Нелін Є. П. Алгебра. Т2479У     45

Тренувальні тести

А.  −( ) <3 0
2

.	 Б.  −( ) = −3 3
2

.	 В.  −( ) = −3 3
2

.	 Г.  −( ) =3 3
2

.

6.	 Використовуючи формули ab a b= ⋅  і a b ab⋅ =  ( a  0, 
b  0), позначте, які з наведених чотирьох тверджень правиль-
ні, а які — неправильні.

А.	 16 36 16 36⋅ = ⋅ .	 Б.  16 36 28⋅ = .

В.	 20 5 100⋅ = .		  Г.  20 5 20⋅ > .

3 рівень

7.	 Позначте, які з наведених чотирьох тверджень щодо значень ква-
дратних коренів правильні, а які — неправильні.

А.	 Оскільки −( ) =2 4
2

, то одним із квадратних коренів із чоти-
рьох є 2.

Б.	 ( )− = −2 22 .

В.	 Арифметичне значення кореня квадратного з чотирьох до-
рівнює 2.

Г.	 Якщо x = 2, то x = 4.

8.	 Позначте, які з наведених чотирьох тверджень щодо добування 
квадратного кореня із степеня правильні, а які — неправильні.

А.  2 26 3= .  Б.  −( ) = −( )2 2
6 3

.  В.  2 7 2 7
2

−( ) = − .

Г.  2 7 7 2
2

−( ) = − .

9.	 Позначте, які з наведених тверджень, пов’язані з добуванням 
квадратного кореня з добутку та частки, правильні, а які — не-
правильні.

А.	 15 3 5= ⋅ .  Б. 
10

15

2

3
= .  В.  6 24 18⋅ = .

Г.	
25

64

5

6
= .
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4 рівень

10.	Позначте, які з наведених чотирьох тверджень щодо належності 
чисел до раціональних або ірраціональних, правильні, а які — 
неправильні.
А.	 Сума раціонального й ірраціонального чисел може бути ра-

ціональним числом.

Б.	 2 5+  — ірраціональне число.

В.	 Добуток раціонального й ірраціонального чисел може бути 
раціональним числом.

Г.	 3 5  — ірраціональне число.

11.	Задано вираз 9 4 5− . Позначте, які з наведених чотирьох твер-
джень правильні, а які — неправильні.

А.	 Підкореневий вираз можна подати у вигляді m −( )5
2

, 
де  m  — деяке ціле число.

Б.	 9 4 5 2 5− = − .

В.	 9 4 5 5 2− = − .

Г.	 9 4 5 2 5− = − .

12.	Позначте, які з наведених тверджень, пов’язаних з добуванням 
квадратного кореня з добутку, правильні, а які — неправильні.

А.	 Якщо ab  0, то ab  обов’язково дорівнює a b .

Б.	 Якщо ab  0, то ab  обов’язково дорівнює a b .

В.	 Якщо ab  0, то ab  обов’язково дорівнює a b .

Г.	 2 5 3 10 2 5 10 3−( ) −( ) = − ⋅ − .
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Частина 2

1 рівень

1.	З адано вираз 
2

7
. Виберіть правильне твердження щодо звіль-

нення знаменника заданого дробу від ірраціональності.
А.	 Якщо помножити чисельник і знаменник заданого виразу на 

7 , то в знаменнику одержимо не раціональне число.

Б. 
2

7

2 7

7
= .	 В. 

2

7

2 7

7
= .	 Г. 

2

7

2 7

7
= − .	

2.	 Враховуючи, що при a  0  виконується рівність a b a b2 = , ви-
беріть правильне твердження.

А.  45 9 15= ⋅ .	 Б.  45 3 15= .

В.  45 3 5= .		  Г.  45 5 3= .

3.	 Враховуючи, що при a  0  виконується рівність a b a b= 2 , ви-
беріть правильне твердження.

А.  6 2 6 2= ⋅ .		 Б.  6 2 6 22= ⋅ .

В.  6 2 6 22 2= ⋅ .	 Г.  6 2 6 22= ⋅ .

2 рівень

4.	 Дріб 
3

5 1+
 звільняють від ірраціональності в знаменнику за до-

помогою множення чисельника і знаменника на той же самий 
вираз. Позначте, які з наведених чотирьох тверджень правильні, 
а які — неправильні.
А.	 Якщо помножити чисельник і знаменник заданого виразу на 

5 1− , то знаменник можна записати без квадратних коренів.

Б.	 Якщо помножити чисельник і знаменник заданого виразу на 

5 1+ , то знаменник можна записати без квадратних коренів.

В. 
3

5 1

3

4+
= .		  Г. 

3

5 1

3 5 3

4+

−= .
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5.	 Позначте, які з наведених чотирьох тверджень щодо винесення 
множника з-під знака квадратного кореня правильні, а які — 
неправильні.

А.  63 3 7= .		  Б.  63 7 3= .

В.  100 10a a= .	 Г.  100 10a a= − .

6.	 Користуючись формулою a b a b= − 2  при a  0, b  0, позначте, 
які з наведених чотирьох тверджень правильні, а які — непра-
вильні.

А.  − = −( ) ⋅5 3 5 3
2

.	 Б.  − = − −( ) ⋅5 3 5 3
2

.

В.  −( )⋅ = −( ) ⋅2 3 2 3
2

.	 Г.  −( )⋅ = − −( ) ⋅2 3 2 3
2

.

3 рівень

7.	 Позначте, які з наведених чотирьох тверджень щодо звільнен-
ня знаменників заданих дробів від ірраціональності правильні, 
а які  — неправильні.

А. 
4

6

4 6

3
= .		  Б. 

4

6

2 6

3
= .

В. 
2

7 3
7 3

−
= − − .	 Г. 

2

7 3
7 3

−
= + .

8.	 Розглядають значення двох виразів 3 5  і 5 3 . Позначте, які 
з наведених чотирьох тверджень правильні, а які — неправильні.

А.  3 5 45= .	 Б.  5 3 15= .	 В.  3 5 5 3< .	 Г.  3 5 5 3> .

9.	З адано вираз 
a

a

2 3

3

−

−
. Позначте, які з наведених чотирьох твер-

джень правильні, а які — неправильні.

А.	 a2 3−  можна розкласти як різницю квадратів двох виразів.

Б.	 a a a2 2 23 3 3− = −( ) +( ).

В.	 Після спрощення заданого виразу можна одержати a + 3 .

Г.	 Після спрощення заданого виразу можна одержати a + 3.



49

Нелін Є. П. Алгебра. Т2479У     49

Тренувальні тести

4 рівень

10.	Задано вираз 
1

1a +
. Позначте, які з наведених чотирьох твер-

джень щодо звільнення знаменника заданого дробу від ірраціо-
нальності правильні, а які — неправильні.
А.	 При a = 1  значення заданого виразу — дріб, у якого немає 

ірраціональності в знаменнику.

Б.	 Якщо чисельник і знаменник заданого дробу помножити на 

a −1, то при всіх a  0  обов’язково одержуємо дріб, рівний 
даному.

В.	 Якщо при a  0  чисельник і знаменник заданого дробу по-

множити на a −1, то одержуємо дріб, рівний даному тільки 
при a ≠ 1.

Г.	
1

1

1

1a

a

a+

−
−

=  тільки при a  0  і a ≠ 1.

11.	Задано вираз x x− −2 1 , де x  1. Позначте, які з наведених 
чотирьох тверджень правильні, а які — неправильні.

А.	 Якщо x a− =1 , то x a= +2 1.

Б.	 Якщо x a− =1 , то x x a− − = +( )2 1 1
2
.

В.	 Для всіх x  1  заданий вираз дорівнює x − −1 1.

Г.	 Для всіх x  1  заданий вираз дорівнює x − −1 1 .

12.	Задано вираз 
a

a

a

a

a

a a

+

− −
−

+
−







1

1

4

1

1
: . Позначте, які з наведених 

чотирьох тверджень правильні, а які — неправильні.
А.	 При a  0  вираз a −1 можна подати як різницю квадратів 

двох виразів.

Б.	 a a a a+ = −( )1 .

В.	 Вираз у дужках можна подати у вигляді 
a

a a

−

+ +

( )
( )( )

1

1 1

2

.

Г.	 Після спрощення заданого виразу можна одержати a .
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Контрольна робота

В-І 7 балів В-ІІ
1. Обчисліть значення виразу (1 бал):

900 0 36+ , 400 0 01+ ,

2. Спростіть вираз (2 бали):

а) 
48

3
;  б) 50 2⋅ а) 

45

5
;  б) 50 2⋅

3. Винесіть множник з-під знака кореня (2 бали):

а) 18 ;  б) y5 а) 75 ;  б) x7

4. Внесіть множник під знак кореня (2 бали):

а) 5 7 ;  б) a a3 а) 4 5 ;  б) a a5

В-ІІІ 9 балів В-IV

1. Обчисліть значення виразу (1 бал):

3 12⋅ 7 63⋅

2. Розкладіть на множники (2 бали):

а) a2 5− ; б) 28 7− а) x2 7 0− = ; б) 75 5−

3. Винесіть множник з-під знака кореня (2 бали):

а) 108 ;  б) 5 2a , якщо a < 0  а) 128 ;  б) 7 2b , якщо b < 0

4. Внесіть множник під знак кореня (2 бали):

а) 0 3 11, ;  б) a b3 , якщо a < 0 а) 0 5 7, ;  б) b a5 , якщо b < 0

5. Звільніться від ірраціональності в знаменнику дробу (2 бали):

а) 
2

11
;  б) 

10

13 3−
а) 

3

7
;  б) 

6

11 5+
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В-V 12 балів В-VІ
1. Обчисліть значення виразу (2 бали):

2 5 3 1 2 15
2 2

−( ) + +( ) 3 2 7 3 14 1
2 2

−( ) − −( )
2. Скоротіть дріб (2 бали):

а) 
x

x

−

+

25

5
;  б) 

ab b

a b

+

+
а) 

a

a

−
−

2

4
;  б) 

x y

x xy

−

−

3. Винесіть множник з-під знака кореня (2 бали):

а) c7 ;  б) −c15 а) a9 ;  б) −a11

4. Внесіть множник під знак кореня (2 бали):

a c5 :
а) якщо a > 0;  б) якщо a < 0

a b9 :
а) якщо a > 0;  б) якщо a < 0

5. Спростіть вираз (2 бали):

a

a b

a b

a

b a

a b+

−
−

−






:

b

b a

a b

b

a b b

a−

+ −
−







⋅ ( )

6. Розв’яжіть графічно рівняння (2 бали):

x x= −4 3 ; x
x

= 1

Для майбутніх абітурієнтів

Використання узагальнених формул перетворення квадратних коренів

Основна частина формул, які виражають властивості квадратних 
коренів, обґрунтована для невід’ємних значень підкореневих вира-
зів. Але інколи доводиться виконувати перетворення виразів із ква-
дратними коренями і в тому випадку, коли таких обмежень немає. 
Наприклад, добути корінь квадратний із добутку ab від’ємних чисел 

( a < 0, b < 0). Тоді ab > 0  і ab  існує, проте формулою

				    ab a b= ⋅ � (1)

Закінчення контрольної роботи
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скористатися не можна: вона обґрунтована тільки для невід’ємних 
значень a і b. Але у випадку ab > 0  маємо: ab ab a b= = ⋅ , і тепер 

a > 0  і b > 0.
Отже, для добування кореня з добутку a b⋅  можна викорис-

тати формулу (1).
Тоді при a < 0, b < 0  можемо записати:

ab ab a b a b= = ⋅ = ⋅ .
Зазначимо, що одержана формула справедлива і при a < 0, b < 0, 

оскільки в цьому випадку a a=  і b b= . Отже, при ab  0

				    ab a b= ⋅ .� (2)

Аналогічно можна узагальнити формулу для добування квадрат-
ного кореня з частки, з парного степеня, винесення множника з-під 
знака кореня та внесення множника під знак кореня (див. таблицю).

Формули перетворення квадратних коренів

№ 
з/п

Формула
(формули використовуються 

тільки для невід’ємних значень 
а і b, тобто для a  0  і  b  0)

Узагальнена формула
(для будь-яких а і b з ОДЗ  

лівої частини формули)

1 ab a b= ⋅ ab a b= ⋅  (при ab  0)

2 a

b

a

b
= a

b

a

b
=  (при 

a
b

 0)

3 a an n2 = a an n2 =  (при будь-яких a)

4 a b a b2 = a b a b2 = ⋅   
(при будь-яких a і  b  0)

5 a b a b= 2

a b a b a

a b a b
=

− <







2

2

0

0 0

при

при





,

,

         

Таким чином, якщо за умовою завдання на перетворення вира-
зів із квадратними коренями (ірраціональних виразів) відомо, що 
всі букви (які входять до запису заданого виразу) невід’ємні, то для 
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перетворення цього виразу можна користуватися основними форму-
лами, а якщо такої умови немає, то доводиться аналізувати ОДЗ за-
даного виразу і тільки після цього вирішувати, якими формулами 
користуватися — основними чи узагальненими.

Приклад 1. Винести множник з-під знака кореня −x7 .

Розв’язання Пояснення

ОДЗ: x  0.

− = − ⋅ = − ⋅ = ⋅ −x x x x x x x7 6 6 3

− = − ⋅ = − ⋅ = ⋅ −x x x x x x x7 6 6 3

− = − ⋅ = − ⋅ = ⋅ −x x x x x x x7 6 6 3
.

При x  0  значен-
ня x x= − , тоді

x x x x x x
3 3 3⋅ − = −( ) − = − −

x x x x x x
3 3 3⋅ − = −( ) − = − −

x x x x x x
3 3 3⋅ − = −( ) − = − − .

Отже,

− = − −x x x7 3

При виконанні тотожних перетворень можна 
не знаходити ОДЗ заданого виразу, а безпосе-
редньо використовувати відомі формули. Але 
це можна робити тільки в тому випадку, коли 
ОДЗ заданого виразу збігається з тією множи-
ною, для якої було доведено ці формули (або 
входить у неї). Оскільки всі формули перетво-
рень ірраціональних виразів були доведені для 
невід’ємних значень змінних, а ОДЗ заданого 
виразу: −x7 0 , тобто x  0, то доведеться ви-
користовувати як основні, так і узагальнені 

формули. Зокрема, − = − ⋅x x x7 6  і при x  0  
значення −( )x  і x6  невід’ємні, тому для знахо-
дження кореня з добутку можна використати 

основну формулу − ⋅ = − ⋅x x x x6 6 . А от для 

обчислення x6  при x  0  доведеться викорис-

тати узагальнену формулу 3: x x6 3= , а потім 

врахувати, що при x  0  значення x x= −

Приклад 2. Спростіть вираз 
a ab

b ab

+

+
.

Розв’язання Пояснення

Позначимо A
a ab

b ab
= +

+
. При a  0  

і b  0  (і b ab+ ≠ 0) маємо:

ОДЗ заданого виразу: 

ab  0; b ab+ ≠ 0. Але ab  0  

при 
a

b




0

0

,



 або 
a

b




0

0

,

.




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Розв’язання Пояснення

A
a ab

b ab

a a b

b a b

a a b

b b a

a

b

a

b
= =

( )
( )

=
( )
( ) = =+

+

+

+

+

+

2

2

A
a ab

b ab

a a b

b a b

a a b

b b a

a

b

a

b
= =

( )
( )

=
( )
( ) = =+

+

+

+

+

+

2

2
.

При 
a
b




0
0

,{  (і b ab+ ≠ 0) маємо:

A
a ab

b ab

a a b

b a b
= =

( )
( )

=+

+

− − +

− − +

=
( )
( )

=
− − + − −

− − + − −

a a b

b a b

2

2

=
( )

( ) = − = − = −
− − − + −

− − − − −

−

−

−
−

a a b

b b a

a

b

a

b

a

b

=
( )

( ) = − = − = −
− − − + −

− − − − −

−

−

−
−

a a b

b b a

a

b

a

b

a

b
.

Відповідь:

1) при a  0  і b > 0  A
a

b
= ;

2) при a  0  і b < 0 (з ОДЗ) A
a

b
= −

При 
a

b




0

0

,



 ми маємо право ко-

ристуватися всіма основними 
формулами перетворення ко-

ренів, а при 
a

b




0

0

,



 доведеться 

використати узагальнену фор-

мулу: ab a b=  і враху-

вати, що при a  0  одержуємо 
−( )a  0, і тоді можна записати: 

a a a= − −( ) = − −( )2

. Аналогіч-

но при b  0  можна записати 

b b b= − −( ) = − −( )2

. Також слід 

врахувати, що при a  0  і b  0  

маємо: a a= −  і b b= −

Приклад 3. Обчисліть значення виразу 7 4 3 7 4 3+ + − .

Розв’язання Пояснення

Оскільки 

7 4 3 2 3
2

+ = +( ) , 

7 4 3 2 3
2

− = −( ) , то

Щоб знайти шлях до обчислення виразу 

7 4 3+ , висловимо правдоподібне при-
пущення про те, що підкореневий вираз 

7 4 3+ є квадратом деякого виразу.
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Для майбутніх абітурієнтів

Розв’язання Пояснення

7 4 3 7 4 3

2 3 2 3

2 3 2 3

2 3 2 3 4

2 2

+ + − =

= +( ) + −( ) =

= + + − =

= + + − =

Вираз 7 4 3+  не може бути квадратом од-
ночлена (він містить два члени). Перевіри-
мо, чи не є цей вираз квадратом двочлена. 
Ми знаємо, що 

	   a b a ab b+( ) = + +2 2 22 � (1)

	 і a b a ab b−( ) = − +2 2 22 � (2)
Якщо один із доданків a або b у цих фор-

мулах матиме вигляд k 3  (де k — раці-
ональне число), то до запису виразу 2ab 

також увійде 3 . Таким чином, можна 

припустити, що 7 4 3+  — квадрат дво-

члена, причому доданок 4 3  — це член 
2ab у виразах (1) або (2). Оскільки в роз-

глянутому виразі 7 4 3+  вірогідний член 

2ab входить зі знаком «+», то 7 4 3+  
може бути тільки квадратом суми двох чи-
сел (див. формулу (1)). Враховуючи, що за 

нашим припущенням 2 4 3ab = , природно 

припустити, що a = 2  і b = 3  (або a = 1  

і  b = 2 3 ). Знаходимо значення a b+( )2
: 

2 3 4 4 3 3 7 4 3
2

+( ) = + + = + .

Тоді 7 4 3 2 3 2 3 2 3
2

+ = +( ) = + = + .

Таким чином, правдоподібне припущення 

про те, що вираз 7 4 3+  є квадратом суми 
двох чисел, допомогло нам спростити ви-

раз 7 4 3+ .
Аналогічно, висловлюючи правдоподіб-

не припущення про те, що вираз 7 4 3−  
є квадратом різниці двох виразів, одержу-

ємо: 7 4 3 2 3 2 3 2 3
2

− = −( ) = − = −  
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Аналогічні міркування допомагають при перетвореннях не тіль-
ки числових, але й буквених виразів.

Приклад 4. Спростіть вираз x x− − −2 2 1 , якщо x − >2 1.

Розв’язання Пояснення

x x x x− − − = − −( ) = − −2 2 1 1 2 1 2
2

x x x x− − − = − −( ) = − −2 2 1 1 2 1 2
2

.

Враховуючи, що за умовою 

x − >2 1, одержуємо, що 

1 2 0− − <x , отже,

1 2 1 2 2 1− − = − − −( ) = − −x x x

1 2 1 2 2 1− − = − − −( ) = − −x x x .

Відповідь: 

x x x− − − = − −2 2 1 2 1, 

якщо x − >2 1

Висловимо правдоподібне при-
пущення, що підкореневий вираз 

x x− − −2 2 1 є квадратом різниці двох 

виразів a b−( )2
 і, виходячи з того, що 

2 2 2 2 1 2ab x x= − = ⋅ ⋅ − , припускаємо, 

що a = 1  і b x= − 2 . Дійсно, знаходимо 
значення

a b x x x x x−( ) = − −( ) = − − + − = − − −2 2

1 2 1 2 2 2 2 2 1

a b x x x x x−( ) = − −( ) = − − + − = − − −2 2

1 2 1 2 2 2 2 2 1

Тренувальні вправи

Обчисліть значення виразу:

1.	 а)  a +( )5
2

 при a  −5;	 б) 
a

b

22

8
 при a  0, b < 0.

2.	 а)  2 7 2 7
2 2

−( ) + +( ) ;	 б)  3 11 3 11
2 2

+( ) − −( ) .

3.	 Винесіть множник з-під знака кореня:

	 а)  −x11 ;  б)  −a b2 3 , якщо a < 0 ;  в)  a b8 11 ;  г)  −a b8 11 .

4.	 Спростіть вираз:

	 а) 
a

ab
;		  б) 

ab

a

b

;	 в) 
a ab

b ab

−

−
.
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Тренувальні вправи

5.	 Обчисліть значення виразу:

	 а)  4 2 3+ ;	 б)  13 4 3− ;

	 в)  21 8 5− ;	 г)  12 2 11 12 2 11− − + .

6.	 Спростіть вираз:

	 а) a a+ −2 1 ; б) a a− −2 1 , якщо a − >1 1;

	 в) 2 2 12a a+ − , якщо a >1.

7.	З найдіть значення виразу:

	 а) 
a a

a

− − −

− −

2 3 2

3 1
, якщо a = 3 1, ;

	 б) 
a a

a

− + +

− +

2 2 3

1 2
, якщо a = 0 1, .

8.	 Доведіть формулу складного кореня (радикала)*:

	 A B
A A B A A B± = ±+ − − −2 2

2 2
,

	 якщо A0 , B0 , A B2 0−  .

В к а з і в к а. �Доведіть, що квадрат правої частини рівності дорівнює 

A B± .

*	З апис «±» у лівій і правій частинах формули в даному випадку означає, 
що знаки «+» або «-» беруться одночасно в лівій і правій частинах.
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Розділ 3. Квадратні рівняння

Таблиця 10. Квадратні рівняння

Означення або властивість Приклади

Рівняння виду ax bx c2 0+ + = , де x — 
змінна, a, b, c — деякі числа, при-
чому a ≠ 0, називається квадратним 
рівнянням

2 5 3 02x x− + = ,

x2 4 0− = ,

2 3 02x x− =  —  
квадратні рівняння

Неповні квадратні рівняння

Якщо у квадратному рівнянні 
другий коефіцієнт або вільний член 
дорівнює нулю ( b = 0  або c = 0), то 
квадратне рівняння називається 
неповним

− + =x2 9 0, x x2 0− =  —  
неповні квадратні рівняння

1) При b = 0  і c = 0  a ≠( )0

ax2 0=
x2 0=

x = 0  — єдиний корінь

− =5 02x
Розв’язання

x2 0= ;
x = 0

Відповідь: 0

2) �При c = 0  ( a ≠ 0; b ≠ 0) виносимо 
за дужки спільний множник x:

ax bx2 0+ = ; x ax b+( ) = 0 ;

x = 0  або ax b+ = 0 ;

x = 0  або x
b

a
= −  — два корені

2 6 02x x− =
Розв’язання

2 3 0x x −( ) = ;

2 0x =  або x − =3 0 ;

x = 0  або x = 3 .

Відповідь: 0; 3

3) �При b = 0  ( a ≠ 0; c ≠ 0 ) приводимо 

рівняння до виду x d ax c2 2 0= + =:

x d ax c2 2 0= + =: ; ax c2 = − ; x
c

a
2 = −

3 21 02x + =
Розв’язання

3 72x = − .
Відповідь: коренів немає
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Опорні таблиці

Властивості Приклади

Якщо − <c

a
0, коренів немає.

Якщо − >c

a
0, x

c

a1 2, = ± −  — 

два корені

3 21 02x − =
Розв’язання

3 212x = ; x2 7= ; x = ± 7 ;

x1 7= ; x2 7= − .

Відповідь: 7 ; − 7

Повні квадратні рівняння

Повне квадратне рівняння ax bx c2 0+ + =  a ≠( )0  розв’язується за 
формулою

x
b D

a1 2 2, = − ±

де D b ac= −2 4  називається дискримінантом даного квадратного 
рівняння

Якщо D > 0, то рівняння має два 
різні корені

x
b D

a1 2
= − +

; x
b D

a2 2
= − −

3 5 2 02x x− + =
Розв’язання

D = − ⋅ ⋅ = >5 4 3 2 1 02 ; x1 2

5 1

6, = ±
;

x1

5 1

6
1= =+

; x2

5 1

6

4

6

2

3
= = =−

.

Відповідь: 1; 
2

3

Якщо D = 0 , то рівняння має  
два однакові корені

x x
b

a1 2 2
= = −

(одне значення кореня, тому, 
рахуючи кількість коренів, ка-

жуть, що при D = 0 рівняння має 
єдиний корінь)

x x2 6 9 0+ + =
Розв’язання

D = − ⋅ ⋅ =6 4 1 9 02 ;

x1 2

6 0

2, = − +
; x x1 2

6

2
3= = − = − .

Відповідь: –3

Якщо D < 0, то рівняння  
не має дійсних коренів

2 5 02x x+ + =
Розв’язання

D = − ⋅ ⋅ = − <1 4 2 5 39 02

Відповідь: коренів немає

Продовження таблиці 11
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Зведені квадратні рівняння
Означення або властивість Приклади

Квадратне рівняння називається зведе­
ним, якщо перший його коефіцієнт до-
рівнює одиниці.
Зведене квадратне рівняння часто запи-
сують так: x px q2 0+ + =

x x2 3 2 0− + = ;
x x2 5 4 0+ + =  — зведені 
квадратні рівняння

Зведене квадратне рівняння 
x px q2 0+ + =  можна розв’язувати як за 
формулою повного квадратного рівнян-
ня, так і за формулою

x q
p p

1 2 2 4

2

, = − ± −

де D q
p

1

2

4
= −  називається дискримінан-

том зведеного квадратного рівняння

x x2 4 3 0− + =
Розв’язання

D1

2
4

2
3 1 0= 





− = >

x1 2 2 1, = ±

x1 2 1 3= + = ; x2 2 1 1= − =
Відповідь: 3; 1

Таблиця 11. Теорема Вієта

Теорема Вієта

Для зведеного рівняння
Якщо рівняння x px q2 0+ + =  
має корені x1  і x2 , то x x p1 2+ = − ; 
x x q1 2⋅ =  (перш ніж використо-
вувати теорему Вієта, потрібно 
впевнитися, що задане рівняння 
має корені, тобто D > 0)

Для рівняння
x x2 4 3 0− + =  (див. вище)

x x1 2 4 4+ = − −( ) = ,

x x1 2 3⋅ =

У загальному випадку
Якщо рівняння ax bx c2 0+ + =  

a ≠( )0  має корені x1  і x2 , то 

x x
b

a1 2+ = − ; x x
c

a1 2⋅ =

Для рівняння
3 5 2 02x x− + =

D = >1 0. Отже, воно має два корені 

x1  і x2 . Тоді x x1 2

5

3
+ = ; x x1 2

2

3
⋅ =

Закінчення таблиці 10
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Опорні таблиці

Обернена теорема до теореми Вієта для зведеного рівняння

Якщо сума якихось двох чисел 
x1  і x2  дорівнює −( )p , а їх добу-
ток дорівнює q, то ці числа є ко-
ренями квадратного рівняння

x px q2 0+ + = .

Для рівняння x x2 5 6 0− + =
підберемо два числа x1  і x2  так, 
щоб їх сума дорівнювала 5, а до-
буток 6. Це числа x1 2= ; x2 3= .
За теоремою, оберненою до теоре-
ми Вієта, ці числа є коренями за-
даного квадратного рівняння

Цю теорему використовують для 
усного розв’язування деяких 
квадратних рівнянь

Таблиця 12. �Розклад квадратного тричлена ax bx c2 0+ + =  
( a ≠ 0 ) на множники

Твердження Приклад

Якщо ax bx c2 0+ + =  при x x= 1  
і  x x= 2  (тобто рівняння ax bx c2 0+ + =  
має корені x1  і x2 ), то

ax bx c a x x x x2
1 2+ + = −( ) −( )

Дійсно, 

a x x x x a x x x x x x−( ) −( ) = − −( ) +( )1 2
2

2 1 2 .

Але за теоремою Вієта 

x x
b

a1 2+ = − ; x x
c

a1 2⋅ = . Тоді одержує-

мо: a x x ax bx c
b

a

c

a
2 2− −





+






= + +

Розкласти на множники вираз
3 7 42x x− + .

Розв’язання
3 7 4 02x x− + = ;

D = − ⋅ ⋅ =7 4 3 4 12 ;

x1 2

7 1

6, = +
; x1

4

3
= ; x2 1= .

Тоді 

3 7 4 3 12 4

3
x x x x− + = −





−( ) =

= −( ) −( )3 4 1x x

Таблиця 13. Рівняння, які зводяться до квадратних
Заміна змінних

Орієнтир. Якщо до рівняння змінна входить у одному і тому самому 
вигляді, то зручно відповідний вираз із змінною позначити однією 
буквою (новою змінною)

Біквадратне рівняння — це рівняння виду ax bx c4 2 0+ + = , де a ≠ 0

Закінчення таблиці 11
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Приклади

x x4 2 2 0+ − = .
Розв’язання
Це біквадратне рівняння.

Заміна x t2 = . Тоді x x t4 2 2 2= ( ) = .
Одержуємо рівняння

t t2 2 0+ − = ; D = + =1 8 92 ;

t1 2

1 3

2, = − ±
; t1 1= ; t2 2= − .

Виконуємо обернену заміну.
1) �При t = 1  маємо x2 1= , тобто

x = ±1.
2) �При t = −2  маємо x2 2= −  — 

рівняння не має коренів.

Відповідь: 1; –1

x x x x2 2 2 6 0+( ) + + − = .

Розв’язання
Заміна x x t2 + = . Одержуємо 
рівняння

t t2 6 0+ − = ; D = + =1 24 252 ;

t1 2

1 5

2, = − ±
; t1 2= ; t2 3= − .

Виконуємо обернену заміну.

1) �При t = 2  маємо x x2 2+ = , 
тобто x x2 2 0+ − = . Звідси:

x1 1= ; x2 2= − .

2) �При t = −3  маємо x x2 3+ = − , 
тобто x x2 3 0+ + =  — рівнян-
ня не має коренів, оскільки 
D = − <11 0.

Відповідь: 1; 2

Розв’язування вправ
1.	 Розв’яжіть рівняння:
	 а) 3 48 02x − = ;	 б) 2 4 02x + = ;	  в) 7 02x = ;
	 г) x2 5 0− = ;	 д) x x2 3 0− = .

План Розв’язання

Неповні квадратні рівняння 
а—г легко зводяться до ви-
гляду x a2 = , а в рівнянні д 
зручно винести за дужки x 
і використати умову рівно-
сті добутку нулю (хоча б 
один із множників дорівнює 
нулю)

а) 3 48 02x − = , 3 482x = , x2 16= , x = ±4;

б) �2 4 02x + = , 2 42x = − , x2 2= −  —
коренів немає;

в) 7 02x = , x2 0= , x = 0;

г) x2 5 0− = , x2 5= , x = ± 5 ;

д) �x x2 3 0− = , x x −( ) =3 0, x = 0  або 
x − =3 0, отже, x = 0  або x = 3

Закінчення таблиці 13
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Розв’язування вправ

2.	 Розв’яжіть рівняння:

	 а) 2 3 5 02x x− − = ;	 б) x x2 2 5 0− + = .

План Розв’язання

Повні квадратні рівняння

ax bx c2 0+ + =  a ≠( )0

розв’язують з використанням 
загальної формули.
При цьому зручно спочатку 
обчислити дискримінант ква-
дратного тричлена D b ac= −2 4  
і з’ясувати, чи існують у зада-
ного рівняння корені, а вже по-
тім використовувати формулу

x
b D

a1 2 2, = − ±

а) 2 3 5 02x x− − = .

D b ac= − = −( ) − ⋅ −( ) = >2 2
4 3 4 2 5 49 0;

x
b D

a1 2 2

3 49

2 2

3 7

4, = = ( ) =− ± − − ±
⋅

±
; 

x1

5

2
= , x2 1= − ;

б) x x2 2 5 0− + = .

D b ac= − = −( ) − ⋅ ⋅ = − <2 2
4 2 4 1 5 16 0,

отже, задане рівняння не має коре-
нів

3.	 Розкладіть на лінійні множники квадратний тричлен 
− + +5 7 62x x .

План Розв’язання

1) �Знайдемо корені заданого 
квадратного тричлена. 
Для цього прирівняємо 
його до нуля і розв’яжемо 
одержане рівняння

− + + =5 7 6 02x x .

D = + ⋅ ⋅ =7 4 5 6 1692 ;

x1 2

7 13

10, = − ±
−

x1

3

5
= − ; x2 2=

2) �Використаємо формулу

ax bx c a x x x x2
1 2+ + = −( ) −( )

Тоді

− + + = − − −











−( ) = − +





−( )5 7 6 5 2 5 22 3

5

3

5
x x x x x x

− + + = − − −











−( ) = − +





−( )5 7 6 5 2 5 22 3

5

3

5
x x x x x x
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4.	 Виділити квадрат двочлена з квадратного тричлена  
2 8 52x x− + .

План Розв’язання

Щоб виділіть квадрат дво-
члена з квадратного тричлена 
ax bx c2 + +  a ≠( )0 , спочатку 
винесемо за дужки коефіці-
єнт a (коефіцієнт при x2), а по-
тім у виразі виду x mx n2 + +  
виділяємо квадрат двочлена 
(для цього враховуємо, що 

mx x
m= 2
2

)

2 8 5 2 42 2 5

2
x x x x− + = − +





=

= − + + −






= −( ) −





=2 4 4 4 2 22 25

2

3

2
x x x
 

= − + + −






= −( ) −





=2 4 4 4 2 22 25

2

3

2
x x x
 

2 2 3
2

x −( ) −

5.	 Не розв’язуючи рівняння x x2 7 5− + , знайдіть значення x x1
2

2
2+ , 

де  x1  і x2  — корені заданого квадратного рівняння.

План Розв’язання

Згадуємо, що за теоремою Віє-
та ми можемо, не розв’язуючи 
квадратне рівняння 
x px q2 0+ + =  (яке має корені 
x1  і x2 ), записати суму і добу-
ток його коренів

x x p1 2+ = − ; x x q1 2⋅ = .
Якщо ми зможемо записати 
заданий вираз x x1

2
2
2+  через 

суму x x1 2+  і добуток x x1 2⋅ , 
то, використовуючи теорему 
Вієта, знайдемо значення шу-
каного виразу

x x x x x x x x x x x x1
2

2
2

1
2

2
2

1 2 1 2 1 2

2

1 22 2 2+ = + + − = +( ) −
 

x x x x x x x x x x x x1
2

2
2

1
2

2
2

1 2 1 2 1 2

2

1 22 2 2+ = + + − = +( ) −
 

.

За теоремою Вієта (маємо право нею 
користуватися, оскільки для задано-
го рівняння D = − ⋅ = >7 4 5 29 02 ):

x x1 2 7+ = , x x1 2 5⋅ = .
Тоді

x x x x x x1
2

2
2

1 2

2

1 2
22 7 2 5 39+ = +( ) − = − ⋅ = .

Відповідь: 39



65

Нелін Є. П. Алгебра. Т6488У     65

Розв’язування вправ

6.	 Два вантажні крани, працюючи разом, можуть розвантажити 
баржу за 6 год. За скільки годин може розвантажити цю баржу 
кожний кран, працюючи окремо, якщо другому для цього по-
трібно на 9 год менше, ніж першому?

План Розв’язання

У задачах на сумісну ро-
боту часто зручно:

1) �увесь обсяг роботи, що 
виконується, позначи-
ти через 1;

2) �визначити продуктив-
ність кожного працю-
ючого та їх сумісну 
продуктивність;

3) �скласти рівняння 
за умовою задачі та 
розв’язати його.

Після розв’язування рів-
няння слід з’ясувати, чи 
задовольняють знайдені 
корені умову задачі

Нехай обсяг усієї роботи дорівнює 1.
Позначимо час виконання всієї роботи 
першим краном через х год, тоді другий 
виконає всю роботу за x −( )9  год.
Продуктивність роботи першо-

го крана буде 
1

x
, а другого — 

1

9x −
. Сумісна продуктивність обох 

кранів (при їх спільній роботі) дорівнює 
1 1

9x x
+

−
. Але з умови одержуємо, що 

сумісна продуктивність дорівнює 
1

6
. 

Одержуємо рівняння 
1 1

9

1

6x x
+ =

−
. При 

x ≠ 0  і x ≠ 9  це рівняння рівносильне 
рівнянню 6 9 6 9x x x x−( )+ = −( ). Тобто 

x x2 21 54 0− + = . Звідси x1 3= , x2 18= . 
Але значення x = 3  не задовольняє умо-
ву задачі (якщо перший кран виконає 
всю роботу за 3 год, то другому потріб-
но x − = − = −9 3 9 6  год, що неможли-
во). Отже, перший кран виконає всю 
роботу за x = 18  год, а другий — за 
x − = − =9 18 9 9  год.

Відповідь: 18 год, 9 год
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Тренувальні вправи
Розв’яжіть рівняння.

1.	 а) 3 02x = ;	 б) 2 18 02x − = ;	 в) x2 10 0+ = ;
	 г) x2 7 0− = ;	 д) x x2 5 0+ = ;		 е) 3 6 02x x− = .
2.	 а) x x2 4 5 0− − = ;	б) x x2 3 5 0− + = ;	 в) 2 3 02x x+ − = ;
	 г) x x2 1 0− − = ;	 д) x x2 10 21 0− + = ;	 е) 3 2 5 02x x+ − = .

3.	 а) x x x5 3 3 2 1
1

3
−( ) = −





;	 б)  2 1 3 4 9x x x x+( ) −( ) = −( )− ;

	 в) 3 2 3 2 4 1x x x x−( ) +( ) = −( ) ;	 г)  1 2 2 1 2 3 1 2−( ) +( ) = − +( )+x x x x .

4.	 а) 2 3 1 1
2

a a a+( ) = +( ) −( ) ;	 б) 5 1 3 2
2

a a a+( ) = −( ) ;

	 в) 2 3 1 25
2 2

p p+( ) − −( ) = ;	 г) 3 2 1 7 12
2 2m m−( ) = + .

�Розв’яжіть рівняння, використовуючи відповідну заміну 
змінних.

5.	 а) x x4 25 36 0+ − = ;  б)  x x4 26 8 0− + = ;  в) 2 3 1 04 2x x+ + = ;
	 г) x x4 28 20 0− − = ;  д) x x4 25 6 0− + = ;    е) x x4 28 9 0− − = .

6.	 а) x x x x2 2 25 2 5 24 0+( ) − +( )− = ;  б) x x x x2 21 2 12+ +( ) + +( ) = ;

	 в) 4 9 2 02 2 2x x x x−( ) + −( )+ = ;	 г) 2 1 2 2 1 1 02 2 2x x x x− +( ) − − +( )+ = .

7.	 а) 2 7 5 0
3

1

3

1

2

⋅





− ⋅ + =+
−

+
−

x

x

x

x
;	 б) 4 5 1 0

1 1
2 2

2

⋅





+ ⋅ + =+ +x

x

x

x
;

	 в) 
2 22 2

2

2 1 0
− −





− ⋅ + =x

x

x

x
;	 г) 3 10 3 0

3

1 3

3

1 3

2

⋅





+ ⋅ + =+
−

+
−

x

x

x

x
.

8.	 а) 7 2 9
1 12

2
x x

x x
+





− +





= ;	 б) 6 5 38 02 1 1
2

x x
x x

+





+ +





− = ;

	 в) x x
x x

2 4 2
2

8 0+





− +





− = ;	 г) x x
x x

2 16 4
2

12 0+





− +





− = .

9.	 Розкладіть на лінійні множники квадратний тричлен:
	 а) 15 6 02x x+ − = ;  б) 5 8 3 2 02y y+ + =, ;  в) − + + =12 5 3 02m m .

10. Скоротіть дріб: а) 
x x

x

2

2

5 6

1

− −
−

; б) 
6 13 5

12 4

2x x

x

+ −
−

; в) 
4 9

6 5 6

2

2

a

a a

−
− −

.
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11.	Рівняння 6 2 02x x+ − =  має корені x1  і x2 . Не розв’язуючи рів-
няння, знайдіть значення виразу:

	 а) x x1
2

2
2+ ;	 б) 

1 1

1 2x x
+ ;	 в) x x1 2

2−( ) ;	 г) x x1
3

2
3+ .

12.	Число 5 є коренем рівняння x px2 30 0+ − = . Знайдіть другий ко-
рінь рівняння і коефіцієнт p.

13.	Басейн наповнюється водою за допомогою двох труб. Коли перша 
труба пропрацювала 7 год, включили другу трубу. Разом вони 
пропрацювали 2 год до повного наповнення басейну. За скільки 
годин може наповнити басейн кожна труба, працюючи окремо, 
якщо першій потрібно на це на 4 год більше, ніж другій?

14.	Із селища в місто, до якого 150 км, відправилися одночасно лег-
ковий і вантажний автомобілі. Швидкість легкового автомобіля 
була на 10 км/год більша від швидкості вантажного, і тому він 

витратив на весь шлях на 
1

2
 год менше, ніж вантажний. Зна-

йдіть швидкість вантажного автомобіля.

15.	Мотоцикліст проїхав від села до озера 60 км. На зворотному шля-
ху він зменшив швидкість на 10 км/год і тому витратив часу на 
0,3 год більше. Скільки часу витратив мотоцикліст на зворотний 
шлях?

16.	На 80 км шляху велосипедист витрачає на 2 год більше, ніж мо-
тоцикліст, оскільки його швидкість на 20 км/год менша. Знай
діть швидкість велосипедиста.

17.	З першої ділянки зібрали 80 ц проса, а з другої — 90 ц, хоча 
площа другої ділянки є на 2 га меншою. З кожного гектара другої 
ділянки зібрали на 5 ц більше, ніж з кожного гектара першої. 
Яка врожайність проса на кожній ділянці?

18.	Катер пройшов за течією річки 36 км і проти течії 48 км, ви-
тративши на весь шлях 6 год. Яка швидкість катера в стоячій 
воді, якщо швидкість течії 3 км/год?

19.	Пліт пропливає за течією річки 60 км на 5 год швидше, ніж таку 
саму відстань проходить моторний човен проти течії. Знайдіть 
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швидкість човна за течією, якщо його швидкість у стоячій воді 
10 км/год.

20.	Моторний човен пройшов за течією річки 70 км. За той самий 
час він може пройти проти течії 30 км. Знайдіть швидкість течії, 
якщо швидкість човна в стоячій воді 10 км/год.

21.	Два слюсарі виконали завдання за 12 год. Якби половину завдан-
ня виконав перший слюсар, а решту другий, то першому знадо-
билося б часу на 5 год більше, ніж другому. За скільки годин 
кожний із них міг би виконати завдання?

22.	З посудини, повністю заповненої спиртом, відлили 6 л. Потім 
долили в  неї стільки ж літрів води і знову відлили 5 л суміші. 
У  посудині залишилася суміш, яка містить 80 % спирту. Зна-
йдіть місткість посудини.

23.	Пройшовши половину шляху, потяг збільшив швидкість на 
30 км/год. З якою швидкістю потяг пройшов першу половину 
шляху, якщо його середня швидкість на всьому шляху вияви-
лася рівною 72 км/год?

24.	У розчин, що містить 40 г солі, додали 100 г води. Унаслідок 
цього концентрація солі зменшилася на 2 % . Знайдіть початкову 
масу розчину.

25.	З одного пункту виїхали одночасно в одному й тому самому на-
прямі два автомобілі: перший — зі швидкістю 60 км/год, а дру-
гий — зі швидкістю 80 км/год. Через 0,5 год з того самого пункту 
вслід за ними виїхав третій автомобіль. Він догнав другий авто-

мобіль через 1
1

4
 год після того, як обігнав перший. Знайдіть 

швидкість третього автомобіля.
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Тренувальні тести для підготовки до контрольної 
роботи та тематичного оцінювання

Обведіть літери, що відповідають твердженням, які ви вважаєте 
правильними, та закресліть літери, що відповідають твердженням, 
які ви вважаєте неправильними.

Частина 1

1 рівень

1.	З наючи, що рівняння ax bx c2 0+ + =  a ≠( )0  є квадратним, вибе-
ріть, яке з наведених нижче рівнянь є квадратним.
А.  5 2 0x + = .		  Б.  2 4 1 03 2x x x+ + + = .

В.  3 2 02x x− + = .	 Г.  x x x4 2 0+ − = .

2.	З наючи, що рівняння x a2 =  має корені x a= ±  тільки при a  0, 
виберіть правильне твердження.

А.	 Рівняння x2 9= −  має корені.

Б.	 Рівняння x2 9=  не має коренів.

В.	 Рівняння x2 9=  має тільки один корінь.

Г.	 Рівняння x2 9=  має два корені: 3 і –3.

3.	З наючи, що дискримінантом квадратного рівняння ax bx c2 0+ + =  
a ≠( )0  є вираз D b ac= −2 4 , виберіть правильне твердження.

А.	 Для рівняння 3 1 02x x− − =  a = −1, b = 2, c = 3.

Б.	 Для рівняння 3 2 1 02x x− − =  дискримінант можна обчислити 

за формулою D = −( ) − ⋅ ⋅2 4 3 1
2

.

В.	 Для рівняння 3 2 1 02x x− − =  дискримінант дорівнює 8.

Г.	 Для рівняння 3 2 1 02x x− − =  дискримінант дорівнює 16.
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2 рівень

4.	З адано рівняння 2 8 02x − = . Позначте, які з наведених чотирьох 
тверджень правильні, а які — неправильні.

А.	 Задане рівняння є квадратним рівнянням.

Б.	 Задане рівняння можна привести до виду x2 4= .

В.	 Задане рівняння має тільки один корінь x = 2.

Г.	 Задане рівняння має два корені x1 2= , x2 2= − .

5.	З адано квадратне рівняння 3 9 02x x− = . Позначте, які з наведе-
них чотирьох тверджень правильні, а які — неправильні.

А.	 Якщо в лівій частині заданого рівняння винести 3x за дужки, 
то одержимо рівняння 3 3 0x x +( ) = .

Б.	 Добуток 3 3x x −( )  дорівнює нулю, якщо 3 0x =  або x − =3 0.

В.	 Задане рівняння має два корені: x = 0  і x = 3.

Г.	 Рівняння виду ax bx2 0+ =  завжди має корінь x = 0.

6.	З адано квадратне рівняння 2 5 3 02x x− − = . Знаючи, що корені 
квадратного рівняння ax bx c2 0+ + =  a ≠( )0  можна обчислити за 

формулою x
b D

a1 2 2, = − ±
, D b ac= −2 4 , позначте, які з наведених 

чотирьох тверджень правильні, а які — неправильні.

А.	 Для заданого рівняння a = −3, b = 5, c = 2.

Б.	 Дискримінант заданого рівняння можна обчислити за фор-

мулою D = −( ) − ⋅ ⋅ −( )5 4 2 3
2

.

В.	 Корені заданого рівняння можна обчислити за формулою 

x1 2

5 49

2, = ±
.

Г.	 Задане рівняння має два корені: x1 3= , x2

1

2
= − .



71

Нелін Є. П. Алгебра. Т6488У     71

Тренувальні тести

3 рівень

7.	З адано рівняння x x x−( ) +( ) = −3 3 9. Позначте, які з наведених 
чотирьох тверджень правильні, а які — неправильні.

А.	 Якщо розкрити дужки в лівій частині рівняння і перенести 
всі члени рівняння в ліву частину, то одержимо рівняння 
x x2 0− = .

Б.	 Задане рівняння можна звести до рівняння x x +( ) =1 0.

В.	 Усі корені заданого рівняння задовольняють хоча б одне 
з  рівнянь x = 0  або x − =1 0.

Г.	 Задане рівняння має тільки один корінь.

8.	З адано рівняння 
x

x

x

x

x

x

−
+

+
−

+
−

+ =1

2

1

2

2 8

42
. Позначте, які з наведених 

чотирьох тверджень правильні, а які — неправильні.

А.	 Рівняння має зміст тільки при значеннях x ≠ ±2.

Б.	 Якщо всі члени заданого рівняння перенести в ліву частину 
і звести дроби до спільного знаменника, то одержимо рівнян-

ня 
2 2 4

2 2

2

0
x x

x x

+ −
+ −( )( ) = .

В.	 Рівняння x x2 2 0− − =  має корені x1 1= − , x2 2= .

Г.	 Усі корені рівняння x x2 2 0− − =  є коренями заданого рів
няння.

9.	З адано рівняння 3 1 2 52 2x x x x+( ) = + −( ). Позначте, які з наведе-
них чотирьох тверджень правильні, а які — неправильні.

А.	 Задане рівняння можна звести до виду 2 5 3 02x x− − = .

Б.	 Задане рівняння має два різні корені.

В.	 Корені заданого рівняння можна обчислити за формулою 

x1 2

5 1

2, = ±
.

Г.	 Коренями заданого рівняння є числа 1 і 
3

2
.
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4 рівень

10.	Задано рівняння x
x

x
2 5 2

6 0− + = . Позначте, які з наведених чоти-

рьох тверджень правильні, а які — неправильні.

А.	 Задане рівняння можна записати так: x
x

x

2 5
2

6 0− + = .

Б.	 Якщо в заданому рівнянні виконати заміну x t= , то одер-
жимо квадратне рівняння t t2 5 6 0+ + = .

В.	 Усі корені заданого рівняння задовольняють хоча б одне з рів-
нянь x = 2  або x = 3.

Г.	 Задане рівняння має тільки два корені.

11.	Задано рівняння 2 3 8 2 3 15 02 2 2x x+( ) − +( )+ = . Позначте, які з на-

ведених чотирьох тверджень правильні, а які — неправильні.

А.	 Якщо в заданому рівнянні виконати заміну 2 32x t+ = , то 
одержимо квадратне рівняння t t2 8 15 0+ + = .

Б.	 Рівняння t t2 8 15 0− + =  має корені t1 3= , t2 5= .

В.	 Усі корені заданого рівняння задовольняють хоча б одне 
з  рівнянь 2 3 32x + =  або 2 3 52x + = .

Г.	 Задане рівняння має тільки два корені.

12.	Задано рівняння x a x a2 4 1 4 0− +( ) + = , де x — змінна, a — деяке 
число. Позначте, які з наведених чотирьох тверджень правильні, 
а які — неправильні.
А.	 Дискримінант заданого квадратного рівняння дорівнює 

4 1
2

a −( ) .

Б.	 Корені заданого рівняння можна обчислити за формулою 

x
a a

1 2

4 1 4 1

2, = ( )+ ± −
.

В.	 При a = 1

4
 задане рівняння має два різні корені.

Г.	 При будь-яких значеннях a коренями заданого рівняння 
є  числа 4a і 1.
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Тренувальні тести

Частина 2

1 рівень

1.	З веденим квадратним рівнянням називають таке квадратне рів-
няння, у якого коефіцієнт при x2  дорівнює одиниці. Виберіть 
правильне твердження.

А.	 Рівняння 5 3 4 02x x− − =  є зведеним квадратним рівнянням.

Б.	 Рівняння x x2 5 3 0− + =  є зведеним квадратним рівнянням.

В.	 Рівняння 2 7 02x x+ − =  є зведеним квадратним рівнянням.

Г.	 Рівняння 3 6 02x x− − =  є зведеним квадратним рівнянням.

2.	З адано квадратне рівняння x x2 5 6 0− + = , яке має корені x1 2= , 
x2 3= . Виберіть правильне твердження.

А.	 Сума коренів заданого рівняння дорівнює коефіцієнту при x.

Б.	 Сума коренів заданого рівняння дорівнює коефіцієнту при x, 
взятому з протилежним знаком.

В.	 Добуток коренів заданого рівняння дорівнює коефіцієнту при x.

Г.	 Добуток коренів заданого рівняння дорівнює вільному члену, 
взятому з протилежним знаком.

3.	З адано квадратне рівняння x x2 3 4 0− − = , яке має два корені x1  
і x2 . Знаючи, що за теоремою Вієта для квадратного рівняння 
x px q2 0+ + =  сума коренів x x p1 2+ = − , а добуток коренів x x q1 2 = , 
виберіть правильне твердження.
А.  x x1 2 4+ = .	 Б.  x x1 2 3+ = .	 В.  x x1 2 3= − .	 Г.  x x1 2 4= .

2 рівень

4.	 Відомо, що число 5 є коренем квадратного рівняння x px2 35 0+ + = . 
Позначте, які з наведених чотирьох тверджень правильні, а які — 
неправильні.

А.	 За теоремою Вієта для заданого рівняння добуток коренів до-
рівнює 35.

Б.	 Другий корінь заданого рівняння дорівнює −( )7 .
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В.	 За теоремою Вієта для заданого рівняння сума його коренів 
5 7+ = − p .

Г.	 Рівняння x px2 35 0+ + =  має вид x x2 12 35 0− + = .

5.	З адано квадратне рівняння x z2 9 4 0− − = , яке має два різні ко-
рені. Позначте, які з наведених чотирьох тверджень правильні, 
а  які — неправильні.

А.	 Дискримінант заданого рівняння від’ємний.

Б.	 За теоремою Вієта добуток коренів заданого рівняння дорів-
нює −( )4 .

В.	 У заданого рівняння один корінь додатний, а другий — 
від’ємний.

Г.	 У заданого рівняння обидва корені додатні.

6.	 Довжина прямокутника на 2  см більша за його ширину, а пло-
ща прямокутника дорівнює 15 см2. Ширину прямокутника по-
значили через x. Позначте, які з наведених чотирьох тверджень 
правильні, а які — неправильні.

А.	 Довжина прямокутника дорівнює x − 2.

Б.	 Площу прямокутника можна обчислити за формулою x x −( )2 .

В.	 За умовою можна скласти рівняння x x +( ) =2 15.

Г.	 Рівняння, складене за умовою, можна записати так: 
x x2 2 15 0+ + = .

3 рівень

7.	 Відомо, що x1  і x2  — корені квадратного рівняння x x2 4 10 0+ − = . 

Хочуть знайти значення виразу x x1

2

2

2( ) + ( ) , не розв’язуючи за-
дане рівняння. Позначте, які з наведених чотирьох тверджень 
правильні, а які — неправильні.

А.	 Для заданого рівняння x x1 2 4+ = − .

Б.	 Для заданого рівняння x x1 2 10= .
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Тренувальні тести

В.	 x x x x x x1

2

2

2

1 2

2

1 22( ) + ( ) = +( ) − .

Г.	 x x1

2

2

2
4( ) + ( ) = − .

8.	З адано квадратне рівняння x x2 2 5 0+ − = , яке має корені x1  і x2 . 
Хочуть, не розв’язуючи задане рівняння, скласти квадратне рів-
няння x px q2 0+ + = , корені якого дорівнюють 2 1x  і 2 2x . Позна-
чте, які з наведених чотирьох тверджень правильні, а які — не-
правильні.

А.	 За теоремою Вієта для коренів рівняння x x2 2 5 0+ − =  вико-
нуються рівності: x x1 2 2+ =  та x x1 2 5= .

Б.	 За теоремою Вієта для коренів шуканого рівняння 
x px q2 0+ + =  виконуються рівності: 2 21 2x x p+ = −  і 4 1 2x x q= .

В.	 З умови випливає, що p x x= − +( )2 1 2 , q x x= ( )4 1 2 .

Г.	 Шукане рівняння x px q2 0+ + =  має вигляд x x2 4 20 0+ − = .

9.	 Турист проплив на байдарці 3 км по озеру і 4 км за течією річки 
за той самий час, який потрібний йому, щоб проплисти 4 км про-
ти течії. Відомо, що швидкість течії дорівнює 2 км/год. Швид-
кість туриста при русі по озеру позначили через x. Позначте, 
які з наведених чотирьох тверджень правильні, а які — непра-
вильні.

А.	 Швидкість руху туриста за течією дорівнює x −( )2  км/год, 
а проти течії — x +( )2  км/год.

Б.	 За умовою можна скласти рівняння 
3 4

2

4

2x x x
+ =

+ −
.

В.	 З умови випливає, що x задовольняє рівняння 
3 16 12 02x x− − = .

Г.	 Обидва корені рівняння, складеного за умовою, задовольня-
ють цю умову.



76 Розділ 3. Квадратні рівняння

76     Нелін Є. П. Алгебра. Т6488У

4 рівень

10.	Шукають такі значення a, при яких різниця коренів рівняння 
x x a2 4 0− + =  дорівнює 2. Позначте, які з наведених чотирьох 
тверджень правильні, а які — неправильні.
А.	 Якщо корені заданого рівняння позначити x1  і x2 , то, врахо-

вуючи теорему Вієта, за умовою можна скласти таку систему 

рівнянь: 
x x

x x
1 2

1 2

4

2

+ =
− =





,

.
Б.	 Якщо корені заданого рівняння позначити x1  і x2 , то, врахо-

вуючи теорему Вієта, за умовою можна скласти таку систему 

рівнянь: 
x x

x x
1 2

2 1

4

2

+ =
− =





,

.
В.	 За теоремою Вієта для заданого рівняння x x a1 2 = − .

Г.	 Умову задовольняє тільки одне значення a = 3.

11.	Задано квадратне рівняння x x2 3 0− − = , яке має корені x1  і x2 . 
Хочуть, не розв’язуючи задане рівняння, скласти квадратне рів-
няння x px q2 0+ + = , корені якого дорівнюють x1 3−  і x2 3− . По-
значте, які з наведених чотирьох тверджень правильні, а які — 
неправильні.

А.	 За теоремою Вієта для коренів рівняння x x2 3 0− − =  викону-
ються рівності: x x1 2 1+ = −  і x x1 2 3= .

Б.	 За теоремою Вієта для коренів шуканого рівняння 
x px q2 0+ + =  виконуються рівності: x x p1 23 3−( )+ −( ) = −  
і  x x q1 23 3−( ) −( ) = .

В.	 З умови випливає, що p x x= − +( )6 1 2 , q x x x x= ( )− +( )+1 2 1 23 9.

Г.	 Шукане рівняння x px q2 0+ + =  має вигляд x x2 5 3 0+ + = .

12.	До розчину солі у воді, який містить 12 кг води, додали ще 5 кг 
води, після чого концентрація розчину зменшилася на 5 %. Кіль-
кість солі в розчині позначили через x кг. Позначте, які з наве-
дених чотирьох тверджень правильні, а які — неправильні.

А.	 Частка солі у розчині після доливання води дорівнює 
x

x +17
.
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Контрольна робота

Б.	 За умовою можна скласти рівняння 
x

x

x

x+ +
− =

12 17

1

20
.

В.	 Рівняння, складене за умовою, має ті ж самі корені, що і рів-
няння x x2 71 240 0+ + = .

Г.	 У розчині може міститися тільки 3 кг солі*.

Контрольна робота

В-І 7 балів В-ІІ

1. Розв’яжіть рівняння (3 бали):

а) 2 3 02x x− = ;
б) x2 10 0− = ;
в) − + +3 5 82x x  

а) 3 5 02x x+ = ;
б) x2 7 0− = ;
в) − − + =2 5 7 02x x

2. Розкладіть на лінійні множники квадратний тричлен (2 бали):

3 10 02x x− − = 3 6 02x x+ + =

3. Розв’яжіть задачу (2 бали):

Не розв’язуючи рівняння 
x x2 9 3− + , знайдіть значення 
x x

x x
1 2

1 2

+
, де x1  і x2  — корені зада-

ного квадратного рівняння.

Не розв’язуючи рівняння 
x x2 5 2− + , знайдіть значення 

x x x x1 2

2

1 22+( ) − , де x1  і x2  — коре-
ні заданого квадратного рівняння.

В-ІІІ 9 балів В-IV

1. Розв’яжіть рівняння (2 бали):

а) 7 5 02x x+ = ;  б) 2 4 1 02x x+ − = а) − + =3 4 02x x ;  б) 3 6 2 02x x− + =

2. Розкладіть на лінійні множники квадратний тричлен (2 бали):

− + + =3 2 5 02x x − − + =5 6 02x x

3. Розв’яжіть рівняння (3 бали):

2 5 3 04 2x x− + = 4 9 5 04 2x x− + =

*	 Врахуйте, що при кімнатній температурі в 1 кг води можна розчинити 
не більше 0,4 кг солі.
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4. Розв’яжіть задачу (2 бали):

Площа прямокутника дорівнює 
18 см2. Одна з його сторін біль-
ша за другу на 3 см. Знайдіть 
сторони прямокутника.

Площа прямокутника дорівнює 
15 см2. Одна з його сторін менша 
за другу на 2 см. Знайдіть сторони 
прямокутника.

В-V 12 балів В-VІ

1. Розв’яжіть рівняння (3 бали):

x x x x2 2 25 2 5 24 0+( ) − +( )− = x x x x2 2 23 2 0−( ) − −( )+ =

2. Розв’яжіть задачу (3 бали):

Не розв’язуючи рівняння 
3 9 12x x− − , знайдіть значення 
виразу x x x x1

2
2
2

1 2+ − , де x1  і x2  — 
корені заданого квадратного 
рівняння

Не розв’язуючи рівняння 
2 6 32x x− − , знайдіть значення 
виразу x x x x1

2
2
2

1 2+ + , де x1  і x2  — 
корені заданого квадратного рів
няння

3. Розв’яжіть задачу (3 бали):

Із селища до міста, до якого 
150 км, виїхали одночасно лег-
ковий і вантажний автомобілі. 
Швидкість легкового автомобі-
ля була на 10 км/год більша від 
швидкості вантажного, і тому 
на весь шлях він витратив на 
1

2
 год менше, ніж вантажний.

Знайдіть швидкість вантажного 
автомобіля

Дві швачки, працюючи разом, 
виконують одержане замовлення 
за 6 днів. За скільки днів кожна 
з них, працюючи окремо, може ви-
конати це замовлення, якщо одній 
потрібно для цього на 5 днів біль-
ше, ніж другій?

4. Розв’яжіть рівняння відносно змінної x (3 бали):

a x x a−( ) + − =1 2 4 02 a x x a+( ) − − =3 6 4 02

Закінчення контрольної роботи
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Для майбутніх абітурієнтів

Для майбутніх абітурієнтів

Квадратні рівняння з параметрами

Нагадаємо, що
рівняння з параметрами можна розв’язувати так само, як звичайні 
рівняння, але тільки до того часу, поки кожне потрібне перетво-
рення можна виконати однозначно. Якщо ж якесь перетворення не 
можна виконати однозначно, то розв’язання потрібно розбити на 
декілька випадків.

Слід також враховувати, що рівняння виду ax bx c2 0+ + =  на-
зивається квадратним тільки при a ≠ 0. Тому якщо в такого типу 
рівнянні не сказано, що a ≠ 0, то доводиться розглядати два випад-
ки: 1) a = 0  — одержуємо лінійне рівняння, 2) a ≠ 0  — одержуємо 
квадратне рівняння.

Приклад 1. Розв’яжіть рівняння ax x a2 1 0− − + = , де x — змінна. 

Розв’язання Пояснення

1) �При a = 0  одержуємо 
рівняння − + =x 1 0. 
Тоді x = 1

При a = 0  задане рівняння не є квадрат-
ним. Підставляємо a = 0  в задане рівняння 
і розв’язуємо одержане рівняння.

2) �При a ≠ 0  — одержу-
ємо квадратне рів
няння.

D a a a a a= − − +( ) = − + = −( )1 4 1 4 4 1 2 12 2

D a a a a a= − − +( ) = − + = −( )1 4 1 4 4 1 2 12 2
;

x
a

a1 2

1 2 1

2, = ( )± −
;

x1 1= ,

x
a

a

a

a2

2 2

2

1= =− −

При a ≠ 0  маємо квадратне рівняння. Зна-
ходимо його дискримінант і використовує-
мо формулу коренів квадратного рівняння.
При обчисленні коренів доцільно записати 
загальну формулу для двох коренів

x
a

a1 2

1 2 1

2

2

, =
( )± −

.

Враховуючи, що 2 1 2 1
2

a a−( ) = − , одер-

жуємо x
a

a1 2

1 2 1

2, =
± −

. Але пара чисел ± b  

збігається з парою чисел ±b  (хіба що не збі-
гається порядок цих чисел), тому у формулі 
коренів знак модуля можна не записувати

Відповідь: 1) при a = 0 x = 1; 2) при a ≠ 0 x1 1= , x
a

a2

1= −
.
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Нагадаємо, що для дробово-раціональних рівнянь слід також вра-
ховувати, що всі рівносильні перетворення рівнянь виконуються на 
області допустимих значень (ОДЗ) заданого рівняння, тому, перш 
ніж записати відповідь, обов’язково слід врахувати ОДЗ заданого 
рівняння.

Приклад 2. Розв’яжіть рівняння ax
a

x
+ = +

1
4 2

, де x — змінна.

Розв’язання Пояснення

ОДЗ: x ≠ 0 Задані вирази існують тоді і тільки 
тоді, коли знаменник дробу не дорів-
нює нулю

ax x a2 4 2 0+ − + =( ) Помножимо обидві частини заданого 
рівняння на вираз x — спільний зна-
менник дробів і одержимо ціле рів-
няння, яке за умови x ≠ 0  (тобто на 
ОДЗ заданого рівняння) рівносильне 
заданому

1) �При a = 0  одержуємо рів-
няння x − =2 0. Тоді x = 2

При a = 0  задане рівняння не є ква-
дратним. Підставляємо a = 0  в задане 
рівняння і розв’язуємо одержане рів-
няння

2) �При a ≠ 0  одержуємо ква-
дратне рівняння.

D a a a a a= + +( ) = + + = +( )1 4 4 2 16 8 1 4 12 2

D a a a a a= + +( ) = + + = +( )1 4 4 2 16 8 1 4 12 2
;

x
a

a1 2

1 4 1

2, = ( )− ± +
.

Тоді x1 2= , x
a

a2

2 1= − +
.

Враховуємо ОДЗ: x1 2=  — 
корінь (входить до ОДЗ) при 
будь-яких значеннях а.

При a ≠ 0  маємо квадратне рівняння. 
Знаходимо його дискримінант і вико-
ристовуємо формулу коренів квадрат-
ного рівняння.
При обчисленні коренів доцільно за-
писати загальну формулу для двох 
коренів (тільки тоді у формулі коренів 
знак модуля можна не записувати — 
див. пояснення в прикладі 1).
Перш ніж записувати відповідь, 
обов’язково слід з’ясувати, чи входять 
одержані значення до ОДЗ заданого 
рівняння.
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Для майбутніх абітурієнтів

Розв’язання Пояснення

Оскільки x2 0=  при 

a = − 1

2
, то при a = − 1

2
 

x2 0=  не є коренем задано-

го рівняння (але коренем 

є  x1 2= ), а при a ≠ − 1

2
 зна-

чення x
a

a2

2 1= − +
 є коренем

Для кореня x2  можна спочатку 
з’ясувати, коли він попадає в забо-
ронені значення x =( )0 , а потім дати 
відповідь для знайдених значень а 

a = −





1

2
 і для всіх інших значень a 

(та ще й врахувати, що при a = 0  одер-
жали такий же розв’язок, як і при 
a = −1)

Відповідь: �1) при a = 0  або a = − 1

2
 x = 2;  

2) при a ≠ 0  і a ≠ − 1

2
 x1 2= , x

a

a2

2 1= − +
.

Приклад 3. Знайдіть усі значення параметра a, при яких сума 

коренів рівняння x a a x a2 2 3 5 0− +( ) + − =  дорівнює 4.

Розв’язання Пояснення

Якщо задане квадратне рівнян-
ня має корені x1  і x2 , то за тео-
ремою Вієта

x x a a1 2
2 3+ = + ,

але за умовою x x1 2 4+ = .

Отже, a a2 3 4+ = , a a2 3 4 0+ − = .

Тоді a1 1= , a2 4= − .

Перевіримо, чи дійсно при 
знайдених значеннях a рівнян-
ня має корені

Щоб задане квадратне рівняння 
мало корені, потрібно, щоб його 
дискримінант був невід’ємним: 

D a a a= +( ) − −( )2 2
3 4 5 0 .

Тоді x
a a a a a

1 2

2 2 2

3 3 4 5

2
, =

( ) ( )+ ± + − −
 

і за умовою x x1 2 4+ = .
Але можна не записувати всі ці 
громіздкі формули, a просто ско-
ристатися теоремою Вієта: якщо 
рівняння x px q2 0+ + =  має корені 

x1  і x2 , то x x p1 2+ = − ; x x q1 2⋅ =

Закінчення таблиці
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Розв’язання Пояснення

При a = 1  одержуємо рівняння 
x x2 4 4 0− − = , у якого D = >32 0  
і яке має корені.
При a = −4  одержуємо рів-
няння x x2 4 9 0− + = , у якого 
D = − <20 0  і яке не має коренів

Для того щоб мати право викорис-
тати теорему Вієта, потрібно впев-
нитися, що задане рівняння має 
корені, тобто D  0

Відповідь: a = 1.

Тренувальні вправи

Розв’яжіть рівняння відносно змінної x.

1.	 а) x ax a2 5 25 0− + − = ;		  б) ax x a2 9 3 0− − + = ;

	 в) a x x a−( ) + − =2 2 02 ;		  г) ax x a2 2 4 4 0− − + = .

2.	 а) a x x a+( ) − − =1 2 4 02 ;		 б) ax x a2 1 0− − − = ;

	 в) a x x a+( ) + − =2 4 4 02 ;		 г) ax x a2 9 3 0− − − = .

3.	 а) ax
a

x
+ = +

1
9 3

;		  б) ax
a

x
− = +

1
4 2

;

	 в) ax
a

x
+ = +

−
1

6 2

1
;		  г) 2 1

4 1

1
ax

a

x
− = −

−
.

4.	 а) 3 5
9 5

2
ax

a

x
− = −

−
;		  б) ax

a

x
+ = +

3
9 9

;

	 в) ax
a

x
− = −

+
1

3 3

2
;			  г) ax

a

x
+ = +

2
16 8

.

5.	З найдіть усі значення параметра a, при яких має тільки один 
корінь задане рівняння:

	 а) ax x2 6 2 0− − = ;
	 б) ( ) ( )a x a x+ + + − =2 5 1 02 ;
	 в) ( ) ( )a x a a x a+ + + + + =1 1 02 2 .

Закінчення таблиці
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Тренувальні вправи

	 В к а з і в к а. Врахувати, що задане рівняння може мати єдиний 
корінь тільки в двох випадках: 1) якщо це буде лінійне рівняння; 
2) якщо це буде квадратне рівняння, у якого D = 0.

6.	 Число 3 є коренем рівняння x x a2 4 0− + = . Знайдіть другий корінь 
рівняння і коефіцієнт a.

7.	 Число (–2) є коренем рівняння  x ax2 2 8 0+ + = .  Знайдіть значення a 
і другий корінь рівняння.

8.	 Корені рівняння x px q2 0+ + =  дорівнюють його коефіцієнтам p 
і  q. Знайдіть p і q.

9.	З найдіть усі значення параметра a, при яких сума коренів рів-
няння x a a x a2 2 2 3 0+ + − + =( )  дорівнює 0.

10.	Знайдіть усі цілі значення a, при яких має цілі корені рівняння:
	 а) x ax2 6 0+ − = ;  б) x ax2 12 0+ + = ;  в) x ax2 8 0+ − = .

	 В к а з і в к а. а) Врахувати, що за теоремою Вієта добу-
ток цілих коренів x x1 2 6= − , а число –6 можна подати у ви-
гляді добутку двох цілих чисел тільки чотирма способами: 
− = − ⋅ = ⋅ −( ) = − ⋅ = ⋅ −( )6 1 6 1 6 2 3 2 3 . Також слід пам’ятати, що теоре-
му Вієта можна застосовувати тільки тоді, коли у заданого рів-
няння є дійсні корені D0( ) .

11.	Корені x1  і x2  рівняння x ax2 8 0− + =  задовольняють умову 
x

x

x

x
1

2

2

1

5

2
+ = − . Знайдіть значення a.

12.	Знайдіть усі значення параметра a, при яких сума квадратів 
коренів рівняння x ax a2 2 2 0+ − − =  дорівнює 9.
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Довідковий матеріал 
(з курсу математики 5–6 класів  
та алгебри 7 класу)

Таблиця 1. Числові множини

Позна-
чення Назва Зміст Приклад

N
Множина нату-
ральних чисел

Числа, які використову-
ють для лічби

1; 2; 3; 4; 13; 
1001 

Z
Множина цілих 
чисел

Натуральні числа, чис-
ла їм протилежні (цілі 
від’ємні) та число нуль

–25; 0; 13; 2002

Q
Множина раціо-
нальних чисел

Цілі й дробові числа.
Раціональні числа мож-

на подати у вигляді не-

скоротного дробу 
m

n
,  

де m — ціле число,  
n — натуральне число

– 5; 2,7; − 2

7
; 0;

2; 2
1

3

Таблиця 2. Дії над числами

Дії Запис Назви компонентів

Додавання a + b = c a і b — доданки, c — сума

Віднімання a – b = c
a — зменшуване, b — від’ємник, 
c — різниця

Множення a · b = c або a × b = c a і b — множники, c — добуток

Ділення a : b = c або 
a

b
c= a — ділене, b — дільник,  

c — частка
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Опорні таблиці

Таблиця 3. Закони додавання і множення

Додавання Множення Назва

a + b = b + a ab = ba Переставні закони

(a + b) + c = a + (b + c) (ab)c = a(bc) Сполучні закони

(a + b)c = ac + bc Розподільний закон

Якщо a = b і c — будь-яке 
число, то a + c = b + c

Якщо a = b  
і c ≠ 0, то ac = bc

Таблиця 4. �Означення і властивості віднімання та ділення

Символічний запис Назва Приклад
1.	 Якщо a – b = c,  

то a = b + c
Означення різниці

8 – 5 = 3,  
отже, 8 = 5 + 3 

2.	 a – b = a + (– b)
Заміна віднімання 
додаванням

8 – 5 = 8 + (–5)

3.	 a + (b – c) = a + b – c: 
якщо перед дужками 
стоїть знак «+», 
то при розкритті 
дужок знаки не змі-
нюються

Правила розкрит-
тя дужок

5 + (7 – 2) = 5 + 7 – 2

4.	 a – (b – c) = a – b + c: 
якщо перед дужками 
стоїть знак «–», 
то при розкритті 
дужок знаки змі-
нюються на проти
лежні

5 – (7 – 2) = 5 – 7 + 2

5.	 Якщо a : b = c, то  
a = bc, (b ≠ 0)

Означення частки
15 : 5 = 3,  

отже, 15 = 5 · 3
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Таблиця 5. Відсотки

Означення

Відсотком називається сота частина цілого (яке береться за одиницю):

1% від числа a a= 1

100

Основні задачі на відсотки

1. Знаходження відсотка від числа

p % від числа a дорівнює
p

a
100

Приклад. Знайти 7 % від числа 300

Розв’язання. 
7

100
300 21⋅ =

2. Знаходження числа за заданим значенням його відсотка

Якщо p % від якогось числа 
дорівнює b, то все число до-
рівнює 

b
p b

p
:

100

100= ⋅

Приклад. Знайти число, 30 % якого 
становить 24.

Розв’язання. Шукане число x 

є розв’язком рівняння 
30

100
24⋅ =x , 

звідки x = =24 80
30

100
:

3. Знаходження відсоткового відношення двох чисел

Число a становить 
a

b
⋅100 % 

від числа b

Приклад. Скільки відсотків становить 
число 26 від числа 65?

Розв’язання. Шукане число відсотків 
x задовольняє рівняння

x

100
65 26⋅ = ,

звідки x = ⋅ =26

65
100 40  (%)
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Опорні таблиці

Таблиця 6. Пропорції

Означення

Пропорцією називається рівність двох числових відношень  
(відношенням називають частку від ділення одного числа на інше)

a

b

c

d
= , або a b c d: :=  

a b c d, , , 0( )

a і d — крайні члени пропорції;
b і c — середні члени пропорції.
Кожний член пропорції називається 
четвертим пропорційним відносно 
інших трьох

Властивості

1.  ad bc= Добуток крайніх членів пропорції до-
рівнює добутку її середніх членів

2.	 a
bc

d
= ; d

bc

a
=

Кожний крайній член пропорції до-
рівнює добутку її середніх членів, по-
діленому на інший крайній член

3.	 b
ad

c
= ; c

ad

b
=

Кожний середній член пропорції 
дорівнює добутку її крайніх членів, 
поділеному на інший середній член

4.	 Одночасно справджують-
ся такі пропорції:

a

b

c

d
= ; 

a

c

b

d
= ; 

d

c

c

a
= ; 

d

c

b

a
=

У кожній пропорції можна поміняти 
місцями або лише середні члени, або 
лише крайні, або і ті, й інші одночасно

Похідні пропорції

Якщо 
a

b

c

d
=  — правильна пропорція, то правильними є і такі про

порції:
a b

b

c d

d

+ += ; 
a b

b

c d

d

− −= ; 
a

a b

c

c d+ +
= ; 

a

a b

c

c d− −
= ; 

a b

a b

c d

c d

+

−

+

−
= ; 

a b

a b

c d

c d

−

+

−

+
=
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Таблиця 7. Умови рівності нулю добутку і частки

Символічний запис Формулювання

1.	ab = 0, якщо  
	 a = 0 або 
	 b = 0 

Добуток дорівнює нулю тоді і тільки тоді, 
коли хоча б один із множників дорівнює нулю

2.	
a

b
= 0, якщо 

	 a = 0 (b ≠ 0)

Дріб дорівнює нулю тоді і тільки тоді, коли 
чисельник дорівнює нулю (а знаменник не до-
рівнює нулю)

Таблиця 8. Модуль числа

Означення Приклади

Модулем додатного числа називається само це 
число, модулем від’ємного числа називається 
число, йому протилежне, модуль нуля дорівнює 
нулю:

a

a a

a

a a

= =
−








при

при

при





0

0 0

0
 = 

a a

a a

при

при



0

0−




 =

= 
a a

a a

при

при



0

0−




 = 
a a

a a

при

при



0

0−




− =3 3 ;  5 5= ;

0 0= ;  a a4 4=  

(оскільки a4 0 )

Геометричний зміст модуля

На координатній прямій модуль числа — 
це відстань від початку координат до 
точки, що зображує дане число

a OA= ; b OB= ;

a b AB− =

Модуль різниці двох чисел a і b — це від-
стань між точками a і b на координатній 
прямій

OB A
b a

x
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Опорні таблиці

Властивості Формулювання Приклади

1. a 0
Модуль будь-якого чис-
ла — невід’ємне число −5 0

2. − =a a
Модулі протилежних чисел 
рівні − =13 13

3. a a
Число не перевищує свого 
модуля − − =8 8 8

4. a b a b⋅ = ⋅
Модуль добутку дорівнює 
добутку модулей множни-
ків

−( )⋅ −( ) = − ⋅ −2 3 2 3

5. �
a

b

a

b
=  

b 0( )

Модуль дробу дорівнює мо-
дулю чисельника, поділе-
ному на модуль знаменника 
(якщо знаменник не дорів-
нює нулю)

2

3

2

3

2

3
= = , 

−

−

−

−
= =7

12

7

12

7

12

6. a an n= ;

	 a a2 2= ;

	 a ak k2 2=

Модуль степеня числа до-
рівнює тому самому степе-
ню модуля даного числа. 
Модуль парного степеня 
будь-якого числа дорівнює 
тому самому степеню дано-
го числа

−( ) = − = =2 2 2 8
3 3 3 ; 

−( ) = − = =5 5 5 25
2 2 2 ;

−( ) = − = =2 2 2 16
4 4 4

7. a b a b+ +
Модуль суми не перевищує 
суми модулів доданків

8. a b a b a b− ± + 

Закінчення таблиці 8
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Таблиця 9. � Дії над числами з однаковими  
та різними знаками

Правило Приклад

Додавання і віднімання

При додаванні чисел з однаковими знаками 
їх модулі додаються, а перед сумою ста-
виться їх спільний знак

15 + 23 = 38,

–18 + (–11) =
= –(18 + 11) = –39

При додаванні двох чисел з різними зна-
ками знаходять їх модулі і від більшого мо-
дуля віднімають менший, а перед резуль-
татом ставлять знак того числа, у якого 
модуль більший 

–15 + 23 = 23 – 15 = 8,

18 – 31 = 18 + (–31) =
= –(31 – 18) = –13

Віднімання двох чисел з різними знаками 
замінюється додаванням зменшуваного 
і числа, протилежного від’ємнику

16 – (–7) = 16 + 7 = 23;

– 9 – (+5) = – 9 + (–5) =
= –14

Множення і ділення

При множенні двох чисел їх модулі 
перемножують, а знак ставлять за вказа-
ною схемою:

(+) · (+) = + ;  (–) · (–) = + ;

(+) · (–) = – ;   (–) · (+) = –

6 · (–4) = –24,

–7 · (–3) = 21,

–9 · 2 = – 18

При діленні двох чисел модуль першого 
числа (діленого) ділять на модуль другого 
числа (дільника), а знак ставлять за такою 
схемою: 

+( ) +( ) = +: ;  (–) : (–) = +;

+( ) −( ) = −: ;   (–) : (+) = –

–30 : (–2) = 15,

–55 : 11 = 5,

72 : (–8) = –9
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Таблиця 10. Подільність цілих чисел і ознаки подільності 

Означення Приклад

Ціле число a ділиться на ціле число b  
(b ≠ 0), якщо існує таке ціле c, що a = bc.
Подільність можна позначати так: a e b

24 e 8, оскільки існує таке 
ціле число 3, що 24 = 8 · 3

Властивості
1.	 Якщо a e b і b e c, то a e c  

(транзитивність подільності)
48 e 12 і 12 e 6, отже, 48 e 6

2.	 Якщо a e c і b e c, m і n — будь-які цілі 
числа, то (ma + nb) e c

	 Частковий випадок (m = 1, n = ±1).
	 Якщо a e c і b e c, то (a ± b) e c

Якщо кожний доданок ділиться на c, 
то їх алгебраїчна сума також ділить-
ся на c

77 e 11 і 22 e 11, тоді
77 + 22 = 99 e 11;
77 – 22 = 55 e 11

3.	 Якщо a e b і k ≠ 0, то ak e bk
6 e 3, тоді (6 · 5) e (3 · 5), 
тобто 30 e 15

4.	 Якщо a e b і a e c, причому b і c — вза-
ємно прості числа (тобто їх НСД до-
рівнює одиниці), то a e bc

48 ділиться на 3 і на 8  
(3 і 8 — взаємно прості 
числа), тоді 48 ділиться  
на 3 · 8 = 24

Ознаки подільності
На яке чис-
ло ділимо Ознака Приклад

На 2

Остання цифра числа ділиться  
на 2 (парна).
Ціле число n, що ділиться на 2, 
називається парним, і його можна 
подати у вигляді n = 2k, де k ∈Z .
Ціле число n, що не ділиться на 2, 
називається непарним, і його 
можна подати у вигляді 

n = 2k + 1, де k ∈Z .

956 e 2, оскільки 
остання цифра 6 — 
парна (6 e 2) ;  

2003   2, оскільки 
остання цифра 3 не-
парна
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Ознаки подільності
На яке чис-
ло ділимо Ознака Приклад

На 5
Остання цифра числа дорівнює 0 
або 5 375 e 5 ; 8500 e 5

На 10 k Число закінчується на k нулів 482 900 000 e 105

На 4
Число, виражене двома останніми 
цифрами заданого числа, ділиться 
на 4

35 724 e 4,
оскільки

24 e 4

На 8
Число, виражене трьома останні-
ми цифрами заданого числа, ді-
литься на 8

17 328 e 8, оскільки 
328 e 8

На 3 Сума цифр числа ділиться на 3 9822 e 3, оскільки  
9 + 8 + 2 + 2 = 21 e 3

На 9 Сума цифр числа ділиться на 9
15 732 e 9, оскільки 

1 + 5 + 7 + 3 + 2 =
= 18 e 9

На 11

Різниця між сумою цифр, що сто-
ять на непарних місцях (рахуючи 
справа наліво), і сумою цифр, що 
стоять на парних місцях, ділиться 
на 11

24 836 273 e 11,
оскільки

(3 + 2 + 3 +
+ 4) – (7 + 6 + 8 + 2) =

= –11 e 11

Таблиця 11. Прості й складені числа

Означення Приклад

Натуральне число р називається простим, 
якщо в нього тільки два натуральні дільни-
ки — 1 і саме число р

2, 3, 5, 7, 11, 13, 17, 
19, 23 ... — прості чис-
ла

Натуральне число називається складеним, 
якщо воно має більше двох натуральних 
дільників

6, 15, 130, 998 — скла-
дені числа (наприклад, 
6, крім дільників 1 і 6, 
ще має дільники 2 і 3)1 не є ні простим числом, ні складеним

Закінчення таблиці 10
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Таблиця 12.  Рівняння

Означення Приклад

Рівняння — це рівність із змін-
ною 2 12x =  — рівняння

Корінь (або розв’язок) рівнян-
ня — це таке значення змінної, 
при якому рівняння перетворю-
ється на правильну числову рів-
ність

x = 6  — корінь рівняння 2 12x = , 
оскільки 2 · 6 = 12 — правильна 
рівність

Розв’язати рівняння означає 
знайти всі його корені або довес-
ти, що їх немає

0 12⋅ =x  — рівняння, у якого не-
має коренів, оскільки добуток 
0 0⋅ =x  не може дорівнювати 12

Рівносильні рівняння — це рів-
няння, які мають ті ж самі ко-
рені. Якщо рівняння не мають 
коренів, то їх також вважають 
рівносильними

2 12x =  та x − =6 0  — рівносиль-
ні рівняння (обидва мають тіль-
ки один корінь x = 6 )

Найпростіші властивості  
рівносильних рівнянь Приклад

1.	 Якщо з однієї частини рівнян-
ня перенести в іншу будь-який 
член і змінити його знак на 
протилежний, то одержимо 
рівняння, рівносильне даному

6 2 3 16x x− = + ;

6 3 16 2x x− = + ;

3 18x =

2.	 Якщо обидві частини рівнян-
ня помножити або поділити 
на те ж саме число (яке не до-
рівнює нулю), то одержимо 
рівняння, рівносильне даному

Поділимо обидві частини рів-
няння на 3 (3 ≠ 0). Маємо:

x = 6  —

рівняння, рівносильне даному.
Відповідь: 6
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Таблиця 13. Лінійні рівняння з однією змінною

Означення Приклад

Рівняння виду ax b= , де a і b — деякі числа, 
називається лінійним рівнянням із змінною x

− =3 10x  —  
лінійне рівняння

Розв’язування лінійного рівняння ax b=

Схеми розв’язування Приклади

1. a 0
Єдиний корінь 

x
b

a
=  

5 20x = . Єдиний ко-

рінь — x = 20

5
,  

тобто x = 4

2. a = 0 0 ⋅ =x b

а) b 0 Коренів немає 0 5⋅ =x .  
Коренів немає

б) b = 0
x — будь-яке 

число
0 0⋅ =x .  

x — будь-яке число

Розв’язування рівнянь, які зводяться до лінійних

Схема розв’язування Приклад

1)	 Розкриваємо дужки (якщо вони є)
2 3 1 5 8x x x−( ) + = + ;

6 2 5 8x x x− + = + ;

2)	 Переносимо члени із змінною в одну части-
ну рівняння, а без змінної — в іншу 6 5 8 2x x x+ − = + ;

3)	З водимо подібні доданки 2 10x = ;

4)	 Розв’язуємо одержане лінійне рівняння 
ax b= x = 5 .



95

Нелін Є. П. Алгебра. Т6488У     95

Опорні таблиці

Таблиця 14. Степінь з натуральним показником

Означення Приклад

a a1 = 51 = 5; (–6)1 = –6

a a a an

n

= ⋅ ⋅ ⋅...
 разів

  

( a  — будь-яке число, n ∈N , n2 )

33 = 3 · 3 · 3 = 27;
(–2)4 = (–2)⋅(–2) · (–2)⋅(–2) = 16;

 1n = 1, 0n = 0, n ∈ N

Властивості степенів

Властивість Приклад
Використання для 

зміни форми подан-
ня степенів

1.	 am · an = am + n 33 · 32 = 35 = 243   am + n = am · an

2.	 am : an = am – n 76 : 74 = 76–4 = 72 = 49    am – n = am : an

3.	 (am)n = amn (25)2 = 25 · 2 = 210 = 1024    amn = (am)n 

4.	 (ab)n = anbn (2 · 3)3 = 23 · 33 = 8 · 27 = 216 anbn = (ab)n 

5.	
a

b

a

b

n n

n





 =

3

4

3

4

27

64

3 3

3







= = a

b

a

b

n n

n





 =

6.	 При піднесенні додатного чис-
ла до степеня завжди одержу-
ємо додатне число

5 625
5 125

4

3

=
=  додатні числа

7.	 Якщо від’ємне число під-
нести до парного степеня, 
то одержимо додатне число 
(знак «+»)

( )
( )
− = =
− =

5 5 625
1 1

4 4

20  додатні числа

8.	 Якщо від’ємне число піднести 
до непарного степеня, то одер-
жимо від’ємне число 

( )
( )
− = − = −
− = −

5 5 125
1 1

3 3

11  від’ємні числа
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Таблиця 15. Одночлени та дії над ними

Означення Приклад

Одночленом називається скінчен-
ний добуток чисел, букв та їхніх 
натуральних степенів, а також 
самі числа, букви та їхні степені.

Число 0 називається нульовим  
одночленом

0; 3 2a x ; − 2

3

3ab ; 5; y ; x6  —  

одночлени

Степенем одночлена назива-
ється сума показників букв, що 
входять в одночлен. Якщо одно-
членом є число, що не дорівнює 
нулю, то його степінь вважається 
рівним нулю

Число 0 степеня не має

3 3 2a b c  — одночлен шостого сте-
пеня 
	 (3 + 2 + 1 = 6);
5 3ax  — одночлен четвертого сте-
пеня 
	 (1 + 2 = 4);
7 — одночлен нульового степеня 

Якщо до запису одночлена вхо-
дить змінна х у степені k (xk), то 
говорять, що цей одночлен має по 
x  (або відносно x ) степінь k

5 3ax  — одночлен третього степе-
ня відносно змінної x

Одночлен записано у стандарт-
ному вигляді, якщо перший його 
множник є число, що назива-
ється коефіцієнтом одночлена, 
а далі стоять букви в деяких сте-
пенях, розташовані за алфавітом 
(латинським або грецьким)

7 5 3 6a b c ; −4 3 2xy z ; 3 2 3α βγ  — 
одночлени стандартного вигляду 

Одночлени називаються подібни-
ми, якщо вони рівні між собою 
або розрізняються лише своїми 
коефіцієнтами

4 3 2a b ; −7 3 2a b ; 
2

3

3 2a b  —  

подібні одночлени
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Означення Приклад

Дії над одночленами

Додавання і віднімання 3 5 3 8 22 2 2 2 2a ab b a ab a ab b+ + + − = − +

Множення 4 2 83 2 4 7 3a b c a bd a b cd( ) ⋅ −( ) = −

Піднесення до степеня 2 2 82 3 3 2 3 3 6 3x y x y x y( ) = ⋅( ) ⋅ =

Ділення 18 3
18

3
66 4 3 2

6 4

3 2
3 2a b c a b c

a b c

a b c
a b( ) ( ) = =:

Таблиця 16. Многочлени

Означення і зміст Приклади

Многочленом називається 
алгебраїчна сума декількох 
одночленів (кожний із них 
називається членом многочлена).
Одночлени також вважаються 
многочленами, що складаються 
з одного члена.
Число 0 називається нульовим 
многочленом

5a2b + аb + 3; 2x3 – 5x2 + 1 —
многочлени (у другому многочле-
ні: –5x2 = + (–5x2));

0; 2ax2; 7; x — многочлени, що 
складаються з одного члена

Якщо всі члени многочлена за-
писано в стандартному вигляді 
і виконано зведення подібних 
доданків, то одержуємо много
член стандартного вигляду

3x2 – 7x2 + 2; 2ab + b2 – 9а2 
— много-члени стандартного 
вигляду

Степенем ненульового много
члена називається найбільший 
степінь із степенів його членів 
(одночленів).
Нульовий многочлен (0) степеня 
не має

a2 + abc – c2 — многочлен третьо-
го степеня (оскільки найбільший 
степінь у члена abc — третій)

Закінчення таблиці 15
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Означення і зміст Приклади

Дії над многочленами

Додавання і віднімання многочленів

При додаванні і відніманні мно-
гочленів використовують прави-
ла розкриття дужок (якщо роз-
кривають дужки, перед якими 
стоїть знак «–», знаки всіх чле-
нів, що були в дужках, зміню-
ються на протилежні)

(2a2 + 3ab – 5b) + (7a2 – 4ab + 5b) = 
= 2a2 + 3ab – 5b + 7a2 – 4ab + 5b = 

= 9a2 – ab;

(4x – 3y) – (2x – 5y) =
= 4x – 3y – 2x + 5y = 2x + 2y

Множення і ділення многочленів

Щоб помножити многочлен на 
одночлен, потрібно кожний член 
многочлена помножити на цей 
одночлен і результати додати

(x2 – 4x)⋅3x3 = x2 · 3x3 – 4x · 3x3 =
= 3x5 –12x4 

Щоб помножити многочлен на 
многочлен, потрібно кожний 
член першого многочлена помно-
жити на кожний член другого 
многочлена і отримані добутки 
додати

(a + 5b)(a – 2b) = a2 – 2ab + 5ab –
– 10b2 = a2 + 3ab – 10b2 

Щоб поділити многочлен на од-
ночлен, потрібно розділити на 
цей одночлен кожний член мно-
гочлена і отримані частки додати

12 6

3

12

3

6

3

2 2 2 2

4 2 2a b ab

a

a b

a

ab

a
ab b

+ = + = +

Закінчення таблиці 16
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Опорні таблиці

Таблиця 17. Формули скороченого множення

Формула Словесне формулювання

(a + b)2 = a2 + 2аb + b2

Квадрат суми двох виразів дорівнює ква-
драту першого виразу плюс подвоєний 
добуток першого виразу на другий плюс 
квадрат другого виразу

(a – b)2 = a2 – 2аb + b2

Квадрат різниці двох виразів дорівнює 
квадрату першого виразу мінус подво-
єний добуток першого виразу на другий 
плюс квадрат другого виразу

a2 – b2 = (a – b)(a + b) 
Різниця квадратів двох виразів дорівнює 
добутку різниці цих виразів і їх суми

a3 + b3 =
= (a + b)(a2 – аb + b2) 

Сума кубів двох виразів дорівнює добут-
ку суми цих виразів на неповний квадрат 
різниці цих виразів

a3 – b3 =
= (a – b)(a2 + аb + b2)

Різниця кубів двох виразів дорівнює до-
бутку різниці цих виразів на неповний 
квадрат суми цих виразів

(a + b)3 =
a3 + 3a2b + 3ab2 + b3;

(a + b)3 =
= a3 + b3 + 3ab (a + b)

Куб суми двох виразів дорівнює кубу 
першого виразу плюс потроєний добуток 
квадрата першого виразу на другий плюс 
потроєний добуток першого виразу на 
квадрат другого і плюс куб другого виразу

(a – b)3 =
a3 – 3a2b + 3a b2 – b3;

(a – b)3 =
= a3 – b3 – 3ab (a – b)

Куб різниці двох виразів дорівнює кубу 
першого виразу мінус потроєний добуток 
квадрата першого виразу на другий плюс 
потроєний добуток першого виразу на ква-
драт другого і мінус куб другого виразу

(a + b + c)2 =
= a2 + b2 + c2 +

+ 2ab + 2ac + 2 bc

Квадрат суми кількох виразів дорівнює 
сумі квадратів усіх доданків плюс усі по-
двоєні добутки кожного виразу на кож-
ний наступний
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Таблиця 18. Розкладання многочленів на множники

Розкласти многочлен на множники означає замінити даний многочлен 
на тотожно рівний йому добуток кількох многочленів (серед яких 
може бути і одночлен).
Найчастіше використовують три основні способи: винесення спіль-
ного множника за дужки, застосування тотожностей скороченого 
множення, групування

Спосіб План Приклади

Винесення 
спільного 
множника 
за дужки

1.	 Перевіряємо, чи не ма-
ють усі одночлени, які 
входять до многочлена, 
спільного множника.

2.	 Якщо мають, то виносимо 
його за дужки (щоб одер-
жати вираз у дужках, 
можна поділити кож-
ний член многочлена 
на спільний множник).

Якщо спільний множник ви-
носиться із знаком «–», то 
знаки всіх доданків у дужках 
змінюються на протилежні

1)	 10x4y3 – 15x 6y = 
= 5x 4y(2y2 – 3x2);

2)	 – 24a3b2c – 16a2c2 = 
= – 8a2c (3ab2 + 2c)

Застосування 
тотожностей 
скороченого 
множення

Перевіряємо, чи не є зада-
ний многочлен виразом, до 
якого безпосередньо можна 
застосувати одну з тотож-
ностей скороченого мно-
ження (різницею квадратів, 
квадратом суми або різниці, 
різницею або сумою кубів, 
кубом суми або різниці)

1)	 a a4 2 2 216 4− = ( ) − =

= −( ) +( ) =a a2 24 4

= −( ) +( ) =a a2 2 2 22 2

= −( ) +( ) +( )a a a2 2 42 ;

2)	 x x x x6 3 3 2 3 24 4 2 2 2+ + = ( ) + ⋅ ⋅ + =

x x x x6 3 3 2 3 24 4 2 2 2+ + = ( ) + ⋅ ⋅ + =

= +( )x3 2
2 ;
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Спосіб План Приклади

3)	 b b6 2 3 327 3− = ( ) − =

= −( ) ( ) + ⋅ +( ) =b b b2 2 2 2 23 3 3 ×

× = −( ) ( ) + ⋅ +( ) =b b b2 2 2 2 23 3 3

= b b b2 4 23 3 9−( ) − +( )
Групування 
членів

1)	 Розбиваємо многочлен на 
декілька (дві чи більше) 
груп.

2)	 До кожної з цих груп на-
магаємося застосувати 
перші два методи.

3)	 Якщо всі групи мають 
спільний множник, то 
виносимо його за дужки

1)	 a b a ab+ + +3 32

I група II група  
  

 =

= (a + 3b) + a (a+ 3b) =

= (a + 3b)(1 + a);

2)	 x y x y xy2 2 2 2− − −
I II група група
    

 =

= (x – y)(x + y) –

– xy(x + y) =

= (x + y)(x – y – xy)

Таблиця 19. Поняття функції та її графіка

Означення та зміст Приклад

Функцією називають відповід-
ність, при якій кожному значенню 
змінної x з деякої множини D від-
повідає єдине значення змінної y.
У цьому випадку залежна змін-
на y також називається функцією 
від x.
Змінна x називається незалеж-
ною змінною або аргументом.
Множина D — область визначен­
ня функції

Таблиця

x 0 1 2 3 4 5 6 7 8 9

y 0 1 4 9 16 25 36 49 64 81

задає функцію з областю визна-
чення, яка складається з десяти 
чисел:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Цю саму функцію можна задати 
так: y = x2, де x — цифра (у десят-
ковій системі числення)

Закінчення таблиці 18
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Означення та зміст Приклад

Якщо функцію задають форму-
лою і нічого не говорять про об-
ласть її визначення (D), то вважа-
ють, що ця область — множина 
всіх значень змінної, при яких 
задана формула має зміст

1.	 Для функції y = x2 область  
визначення — множина всіх 
чисел.

2.	 Для функції y
x

= 1
 область  

визначення — множина всіх 
чисел, які не дорівнюють 
нулю (D : x ≠ 0)

Область значень функції — це 
множина тих значень, яких може 
набувати сама функція при всіх 
значеннях аргументу з області 
визначення

Для функції y = x2 область зна-
чень — y0 , оскільки квадрат 
будь-якого числа завжди більше 
або дорівнює нулю

Графік функції

Графіком функції 
називається множи-
на всіх точок коор-
динатної площини, 
абсциси яких до-
рівнюють значенню 
аргументу, а орди-
нати — відповідним 
значенням функції

Графік функції y = x2 скла-
дається з усіх точок коорди-
натної площини з координа-
тами:

x –1 0
1

2
1 2 ...

y 1 0
1

4
1 4 ...

Графік функції y = x2  
називається параболою

Таблиця 20. Лінійна функція

Означення Приклад

Лінійною функцією називається 
функція виду y = kx + b, де k і b — 
деякі числа

y = 2x + 5, y = –3x – 1,

y = 2,5x, y x=
2

3
,

y = 4 — лінійні функції

0 x

y

–1–2–3 1 2 3

1

4

9

y 
= 

x
2

Закінчення таблиці 19



103

Нелін Є. П. Алгебра. Т6488У     103

Опорні таблиці

Продовження таблиці 20

Властивості
1.	 Область визна-

чення
x — будь-яке число

2.	 Область значень
1) При k ≠ 0  y — будь-яке число;
2) при k = 0  y = b

3.	 Точки перетину 
з осями коорди-
нат

Вісь Ox,
y = 0

1)	 При k ≠ 0 x
b

k
= −  — абсциса точки 

перетину, тобто точка перетину 

з віссю Ox:  −





b

k
; 0 ;

2)	 при k = 0 y = b — пряма, яка пара-
лельна осі Ox при b ≠ 0 
і збігається з віссю Ox при b = 0

Вісь Oy,
x = 0

y = b — ордината точки перетину, 
тобто точка перетину з віссю Oy: 

0; b( )
5.	 Графіком ліній

ної функції зав
жди є пряма 
(число k назива
ється кутовим 
коефіцієнтом 
цієї прямої)

1) � При b = 0 y = kx — пряма, що проходить че-
рез початок координат;

2) � при b ≠ 0 y = kx + b — пряма, що не прохо-
дить через початок координат

Графіки лінійних функцій

b = 0
y = kx

b ≠ 0 (y = kx + b)

k > 0 k < 0 k = 0

O x

y

y = kx

y = kx

(k < 0)

(k > 0)

x

y

y = kx +
 b b

O x

y

y = kx + b

b

O x

y

y = bb

O
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	 Взаємне розміщення графіків лінійних функцій

Умова перетину Умова паралельності

y = k
1
x + b

1
 — пряма l,

y = k
2
x + b

2
 — пряма m

x

y

ml

O

Якщо k
1
 ≠ k

2
, то прямі l і m пере-

тинаються в одній точці

x

y

m
l

O

Прямі l і m паралельні тоді і тіль-
ки тоді, коли їх кутові коефіцієн-
ти рівні: k

1
= k

2
, а b

1
 ≠ b

2
.

Ці графіки корисно пам’ятати

y = x

x

y

O

y = –x

x

y

O

y x=

x

y

O

Закінчення таблиці 20
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Таблиця 21. Лінійні рівняння з двома змінними 

Означення і властивості Приклади

Лінійним рівнянням з двома 
змінними x і y називається рів-
няння виду ax + by = c  
(або виду ax + by + c = 0)

2 3 4
2 3 4 0

x y
x y

− =
− − =  

 лінійні рівняння

Якщо в лівій частині рівняння  
a ≠ 0 і b ≠ 0, то це рівняння пер-
шого степеня з двома змінними

0x – 2y = 3 — лінійне рівняння;
x – 5y = 4 — рівняння першого 
степеня з двома змінними

Розв’язком рівняння з двома 
змінними x і y називається кож-
на пара чисел (x; y), яка пере-
творює це рівняння на правильну 
числову рівність

Для рівняння 5x + 2y = 9
пара (1; 2) є розв’язком, оскільки 
при x = 1 і y = 2 одержуємо 

5 · 1 + 2 · 2 = 9;
9 = 9 — правильна рівність.

Пара (0; 1) не є розв’язком зада-
ного рівняння, оскільки при x = 0 
і y = 1 одержуємо 5 · 0 + 2 · 1 = 9;
2 = 9 — неправильна рівність

Два рівняння з двома змінними 
називаються рівносильними, 
якщо вони мають одні й ті самі 
розв’язки або обидва рівняння 
не мають розв’язків

Рівняння
x – y = 0 і x = y —

рівносильні

	 Властивості рівносильних рівнянь з двома змінними

Якщо обидві частини рівняння 
з двома змінними помножити або 
поділити на одне й те саме число, 
яке не дорівнює нулю, то одержи-
мо рівняння, рівносильне даному

Рівняння
x + 3y = 2 і 2x + 6y = 4 —

рівносильні (друге можна одер-
жати з першого множенням на 2)

Якщо будь-який член рівнян-
ня з двома змінними перенести 
з однієї частини рівняння в іншу 
з протилежним знаком, то одержи-
мо рівняння, рівносильне даному

Рівняння
x + 5y = 6 і x + 5y – 6 = 0 —

рівносильні
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	 Графік лінійного рівняння з двома змінними

Означення і властивості Приклад

На координатній площині графі-
ком лінійного рівняння

ax + by = c
є множина точок, координати 
яких задовольняють дане 
рівняння

Графіком рівняння
x – y = 0 є пряма (y = x)

x

y

OЯкщо a ≠ 0 чи b ≠ 0, графіком за-
даного рівняння є пряма, і для її 
побудови досить отримати будь-
які дві точки цієї прямої

Якщо a = 0 і b ≠ 0, графіком зада-
ного рівняння є пряма, паралель-
на осі Ox

Графіком рівняння 
0x + y = 3 є пряма y = 3

x

y

O

3

Якщо b = 0 і a ≠ 0, графіком зада-
ного рівняння є пряма, паралель-
на осі Oy

Графіком рівняння 
x + 0y = 4 є пряма x = 4

x

y

O 4

Закінчення таблиці 21
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Таблиця 22. Системи лінійних рівнянь з двома змінними 

Означення Приклади
Системою рівнянь називають 
два або декілька рівнянь, для 
яких потрібно знайти спільні 
розв’язки

x y
x y
− =

+ ={ 5
2 1

;
   — система двох рівнянь

з двома зміннимиДля запису системи рівняння 
об’єднують фігурною дужкою

Розв’язком системи рів-
нянь називається спільний 
розв’язок усіх її рівнянь

Пара (2; –3), тобто 
x
y

=
= −{ 2

3
,

 

є розв’язком системи 
x y

x y

− =
+ =





5

2 1

,

,
 

оскільки 2 3 5
2 2 3 1

− − =
⋅ + − ={ ( ) ,

( )
 — правильні 

рівності

Розв’язати систему рівнянь озна-
чає знайти всі її розв’язки або 
довести, що розв’язків немає.
Якщо система не має розв’яз
ків, то її називають несумісною

x y
x y

+ =
+ ={ 3

5
, — несумісна система

Дві системи називаються рів-
носильними, якщо вони ма-
ють ті самі розв’язки

Системи 
x y

x y
− =

+ ={ 0
2 3 0

,
 і 

x y
x y
=
+ ={ ,

2 3 0
 рівносильні

Графічне розв’язування систем лінійних рівнянь з двома змінними
План Приклад

1.	 Будуємо в одній 
системі коор-
динат графіки 
обох рівнянь 
системи.

2.	З находимо 
координати 
спільних точок 
графіків.

Розв’язати графічно систему
2 2

4
x y

x y
− =

+ ={ ,
.

Розв’язання
Побудуємо графіки рівнянь 
системи. Для цього на кож-
ній прямій вкажемо по дві 
точки.

x

y

0

4

1 2

2 A (2;2)
3

–2



108 Додатковий матеріал

108     Нелін Є. П. Алгебра. Т6488У

План Приклад

3.	 Координати 
цих спільних 
точок і є роз
в’язками си
стеми

Для рівняння 2 2x y− = :

x 0 1
y –2 0

Для рівняння x y+ = 4 :

x 0 1
y 4 3

Графіки перети
наються в точці  
з координатами 
(2; 2).

Відповідь: Сис-
тема має єдиний 
розв’язок (2; 2)

Таблиця 23. � Розв’язування систем рівнянь способом  
підстановки та способом додавання

Спосіб підстановки

Розв’яжіть систему рівнянь 
2 4
3 5 13

x y
x y

+ =
+ ={ ,

.

План Розв’язання

1.	 Виражаємо з якогось рівняння 
одну змінну через іншу

З першого рівняння

y = 4 – 2x

2.	 Підставляємо одержаний вираз 
в інше рівняння

Підставляємо замість y вираз 
4 2− x  в друге рівняння:

3x + 5(4 – 2x) = 13

3.	 Розв’язуємо одержане рівняння

3x + 20 – 10x = 13;

3x – 10x = 13 – 20;

–7x = –7;  x = 1

4.	З находимо відповідне значення 
другої змінної

y = 4 – 2x = 2

5.	З аписуємо відповідь
Відповідь: 

x
y

=
={ 1

2
;

Відповідь: (1; 2)

Закінчення таблиці 22
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Спосіб додавання

Способом додавання зручно розв’язувати системи, у яких коефіці-
єнти при одній із змінних — протилежні числа

Приклад. Розв’яжіть систему 
2 3 9
5 3 12

x y
x y

+ =
− ={ ;

План Розв’язання

1.	 Додаємо рівняння системи 
(в цій системі коефіцієнти при 
змінній y — протилежні числа).

2.	 Розв’язуємо одержане 
рівняння.

3.	 Підставляємо одержане значен-
ня змінної в будь-яке рівняння 
системи і знаходимо відповідне 
значення другої змінної.

4.	З аписуємо відповідь

Додаємо рівняння системи 
і одержуємо

7x = 21;

x = 3.

Тоді з першого рівняння маємо:

2 · 3 + 3y = 9;

3y = 3;

y = 1.

Відповідь: (3; 1)

Закінчення таблиці 23
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