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Д  

Людей, которые желают пользоваться или которым приходится
пользоваться автомобилем, телефоном, таблицей умножения или
даже письменностью, много больше тех, кто все это создает.

Если уж случилось, что вы написали подробный учебник студен-
там-математикам, вы с чистой совестью1 можете себе позволить те-
перь уже без сурового, дотошного, порой изнуряющего, неуместно-
го здесь педантизма показать кое-что базовое и эффективное также
и непрофессионалам хотя бы с высоты и в темпе птичьего полета.

М, ,     

К чудесам люди привыкают быстро и «Не может быть???» вскоре
незаметно превращается в «Не может быть иначе!!!».

Мы уже настолько свыклись с тем, что 2+ 3= 5, что не видим
тут никакого чуда. А ведь тут не сказано, что два яблока и еще три
яблока будет пять яблок, а сказано, что это так и для яблок, и для
слонов, и для всего прочего.

Потом мы свыкаемся с тем, что a+ b= b+a, где теперь уже сим-
волы a и b могут означать и 2, и 3, и любые целые числа.

Функция, или функциональная зависимость, — это очередное
математическое чудо. Оно сравнительно молодо: ему как научному
понятию всего три с небольшим сотни лет, хотя в природе и даже
в быту мы с ним сталкиваемся никак не реже, чем со слонами или
даже с теми же яблоками.

Каждая наука или область человеческой деятельности относит-
ся к какой-то конкретной сфере объектов и их взаимосвязей. Эти

1 С чистой совестью перед студентами-математиками, которым все доказыва-
лось, и перед нематематиками, которым надо уметь рулить и, не открывая
капот, быть уверенными, что под капотом есть что-то и оно надежно.
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связи, зависимости, законы математика описывает и изучает в от-
влеченном и потому общеполезном виде, объединяя их термином
функция, или функциональная зависимость y= f (x) состояния (зна-
чения) одной величины (y) от состояния (значения) другой (x).

Особенно важно то, что теперь уже речь не о постоянных, а о
переменных величинах x и y, связанных законом f . Функция при-
способлена к описанию развивающихся процессов и явлений, к опи-
санию характера изменения их состояний и вообще к описанию за-
висимостей переменных величин.

Иногда закон f связи известен (дан) (например, государством
или технологическим процессом), и тогда в условиях действия за-
кона f мы, например, часто стараемся так выбрать стратегию, т. е.
состояние (значение) доступной нашему выбору независимой пере-
менной x, чтобы получить наиболее благоприятное для нас в том
или ином отношении состояние (значение) нужной нам величины
y (учитывая, что y= f (x)).

В других случаях (и это даже интереснее) ищется сам закон при-
роды f , связывающий явления. И хотя это дело конкретных наук,
математика и здесь бывает удивительно полезна потому, что часто
по, казалось бы, очень малой исходной конкретной информации,
которой располагают те или иные профессионалы, она, подобно
Шерлоку Холмсу, способна сама дальше найти закон f (решая или
исследуя некоторые новые, так называемые дифференциальные,
уравнения, которых не было у древних математиков и которые
возникли с появлением дифференциального и интегрального исчис-
ления на рубеже XVII—XVIII веков усилиями Ньютона, Лейбница, их
предшественников и последователей).

Итак, открываем букварь современной математики. Как и поло-
жено, научимся сначала читать и писать.

Г 
Учимся читать и формулировать желания, когда у нас есть выбор.

Наглядным заданием зависимости y= f (x) является ее график (см.
рис. 1). По графику, конечно, можно при каждом конкретном значе-
нии независимой переменной x из области определения функции f
найти ее значение y= f (x). Собственно говоря, график функции f
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и есть совокупность точек координатной плоскости с координатами
(x, y)= (x, f (x)). Но для вычислительных целей обычно используют
компьютер, а не график.

График же лучше использовать для получения представления о
характере зависимости y = f (x) в целом, о специфике поведения
функции на различных участках изменения переменной x. Вид
графика, как взгляд на панораму, позволяет сориентироваться и
сразу направиться к тем местам, которые нам представляются бла-
гоприятными, желанными, и, наоборот, избегать каких-то других
областей значений параметра x.

y
M

m

0 a x1 x2 x3

xM xm

x4 x5 x6 x7 b x

Рис. 1

Что мы видим сразу? На участках [a, x1], [x2, xM ], [xm, x5], [x6, x7]
рост x сопровождается ростом y, т. е. функция монотонно возрас-
тает, а на участках [x1, x2], [xM , xm], [x5, x6], [x7, b] увеличение
значения переменной x приводит к уменьшению значения y, т. е.
функция убывает.

В точке xM функция принимает максимальное значение и оно
положительно. В точке xm она достигает своего абсолютного мини-
мума m, причем m<0.

Помимо указaнных абсолютного максимума и абсолютного ми-
нимума у функции есть локальные экстремумы: локальные макси-
мумы при x= x1, x5, x7 и локальные минимумы в точках a, x2, x6, b.
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(Локальность здесь означает рассмотрение только в пределах неко-
торой окрестности точки.)

В точках x3 и x4 функция обращается в нуль: f (x3)= f (x4)=0.
Теперь обратим внимание на некоторые дальнейшие детали.

Участки роста и убывания заметно отличаются скоростью изме-
нения значений функции. Как этим словам придать какую-то ко-
личественную и явно полезную характеристику, подумаем позже,
а сейчас только скажем, что график где-то идет полого, а где-то
поднимается или опускается круто.

На что это может влиять? Ну, например, нельзя полному людей
автобусу резко тормозить или слишком быстро набирать скорость.
Ракету с космонавтом тоже нельзя запускать без учета допустимых
перегрузок. Или пусть, например, на нашем графике y — это доход
от вклада, сделанного в момент x. Конечно, мы постараемся подга-
дать так, чтобы сделать вклад в момент xM . Но это довольно риско-
ванно, поскольку очень малая ошибка по времени может, как вид-
но из графика, привести к катострофическим потерям. Тут функция
очень быстро меняется, и можно угодить в окрестность точки xm,
которая близка к xM . В этом отношении куда более устойчива и на-
дежна ситуация в окрестности точки x7. Мы не получим здесь мак-
симально возможного выигрыша M, но выигрыш заведомо будет,
будет устойчив и по порядку величины даже сопоставим с M.

На этом первый урок чтения закончим, отметив про себя, что
полезно уметь находить экстремумы функции, участки ее монотон-
ности (возрастания, убывания), а также надо бы научиться как-то
адекватно характеризовать скорость изменения функции.

М  
Дифференциальное уравнение, или учимся писать.

Одним из наиболее ярких и долго сохраняющихся впечатлений от
школьной математики, конечно, является маленькое чудо, когда
что-то вам неизвестное вы заколдовываете буквой x или буквами
x, y, потом пишете что-то вроде a · x= b или какую-нибудь систему
уравнений �

2x+ y = 1,
x− y = 2,
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после чего парой математических заклинаний открываете то, что
было неизвестно: x=1, y=−1.

Конечно, немало времени ушло еще на решение одного только
квадратного уравнения и всего, что с этим связано. Но о решении
уравнений разговор особый.

Давайте попробуем научиться хотя бы писать уравнения в новой
ситуации, когда нам надо найти не какое-то одно число, а неизвест-
ный нам закон связи важных для нас переменных величин, т. е. ко-
гда мы ищем нужную функцию.

Рассмотрим реальные примеры.
Для определенности мы сначала будем говорить о биологии (раз-

множении микроорганизмов, росте биомассы, взаимовлиянии по-
пуляций, хищниках и жертвах, экологических ограничениях и т. п.),
но будет ясно, что при желании все это можно перенести в другие
сферы и говорить о росте капитала, о ядерной реакции или об атмо-
сферном давлении.

1. Известно, что в благоприятных условиях скорость размно-
жения микроорганизмов, т. е. скорость роста биомассы, пропор-
циональна (с некоторым коэффициентом пропорциональности k)
наличному количеству биомассы. Надо найти закон x= x(t) изме-
нения биомассы во времени, если известно ее начальное состояние
x(0)= x0.

По нашим представлениям, знай мы сам закон x= x(t) измене-
ния величины x, мы бы знали и скорость ее изменения в любой мо-
мент времени t. Не вдаваясь пока в обсуждение того, как именно
по x(t) находить эту скорость, обозначим ее через x′(t). Поскольку
функция x′= x′(t) порождается функцией x= x(t), ее в математике
называют производной от функции x= x(t). (Как находить производ-
ную функции и многому другому учит дифференциальное исчисле-
ние. Оно еще впереди.)

Теперь можно коротко записать, что нам дано:

x′(t)= k · x(t), (1)

причем x(0)= x0. Хотим же мы найти саму зависимость x= x(t).
Мы написали первое дифференциальное уравнение (1). Вооб-

ще, дифференциальными называют уравнения, содержащие про-
изводные (некоторые оговорки и уточнения здесь пока неуместны).
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Кстати, для упрощения текста в записи уравнения независимую
переменную часто опускают. Например, уравнение (1) пишут в
виде x′ = k · x. Если бы искомая функция была обозначена буквой
f или u, то то же уравнение имело бы вид f ′ = k · f или u′ = k · u
соответственно.

Уже сейчас ясно, что если мы научимся не только писать, но и ре-
шать или исследовать дифференциальные уравнения, то мы сможем
многое узнать и предвидеть. Именно поэтому сакраментальная фра-
за Ньютона, относившаяся к новому исчислению, звучала примерно
так: «Полезно решать дифференциальные уравнения».

Попробуем по горячим следам записать уравнением еще несколь-
ко конкретных вопросов.

2. Допустим теперь, как это всегда и случается, что еды не бес-
конечно много и среда может прокормить не более чем K особей
или биомассу, не превышающую значения K. Тогда, надо полагать,
скорость роста биомассы будет уменьшаться, например, пропор-
ционально остающимся возможностям среды. За меру остающихся
возможностей можно взять разность K − x(t) или лучше взять без-
размерную величину 1− x(t)

K . Этой ситуации вместо уравнения (1),
очевидно, отвечает уравнение

x′ = k · x ·�1− x
K

�
, (2)

которое переходит в (1) на стадии, когда x(t) еще много меньше K .
Наоборот, когда x(t) близко к K , скорость роста становится близ-
кой к нулю, т. е. рост прекращается, что естественно. Как именно
выглядит закон x = x(t) в этом случае, мы найдем позже, овладев
кое-какими навыками.

3. Рассмотрим теперь другую классическую ситуацию. Предпо-
ложим, что на какой-то территории живут зайцы и волки. Первые
питаются травой и имеют ее вдоволь. В отсутствие волков скорость
прироста зайцев с учетом естественной смертности пропорциональ-
на их количеству, которое мы обозначим через x (или x(t)). Если
есть волки в количестве y (или y(t)), то убыль зайцев пропорцио-
нальна вероятности встречи зайца с волком, т. е. пропорциональ-
на произведению xy. Скорость роста численности волков пропор-
циональна количеству съеденной пищи, т. е. пропорциональна xy,
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а смертность пропорциональна их численности. В математической
записи сказанное, очевидно, равносильно следующей системе диф-
ференциальных уравнений:�

x′ = ax − bxy,
y′ = cxy−dy.

Если при этом из наблюдений или еще из каких-то соображений
кроме коэффициентов a, b, c, d нам известны также начальные со-
стояния x(0)= x0, y(0)= y0, то эти данные уже вполне однозначно
определят интересующие нас зависимости x= x(t) и y= y(t).

У. В отличие от микроорганизмов, разнополые попу-
ляции размножаются со скоростью, пропорциональной количеству
встреч между особями. Как изменится уравнение (1) в этом случае,
если никакие другие факторы не принимать во внимание? (Все это
можно отнести, например, и к некоторым химическим реакциям.)

Рассмотрим теперь несколько физических примеров.
4. Фундаментальный закон Ньютона ma= F устанавливает связь

между силой F, действующей на тело массы m, и величиной вызван-
ного ею ускорения a тела. Для простоты мы рассматриваем сейчас
движения вдоль прямой, когда векторы a и F фактически задаются
как числа.

Пусть x(t) — положение тела (его координата) в момент време-
ни t. Тогда x′(t) — его скорость в этот же момент. Но ускорение есть
скорость изменения скорости. Значит a= a(t) есть производная от
функции x′(t), т. е. (x′)′(t). Ее записывают как x′′(t) и, естественно,
называют второй производной исходной функции x= x(t).

В этих обозначениях закон Ньютона имеет вид

mx′′ = F. (3)

Если воздействие F = F(t) как функция времени известно, то мы
здесь имеем дифференциальное уравнение (второго порядка, по-
скольку оно уже содержит вторую производную x′′) относительно
неизвестной функции x = x(t). Если задать начальные условия в
виде начального положения x(0)= x0 тела и его начальной скорости
x′(0)= v0, то закон движения x= x(t) определится полностью.

Рассмотрим несколько специальных ситуаций.
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5. Пусть тело на пружинке, один конец которой закреплен в на-
чале координат, а другой на подвижном теле. На тело, отклоненное
от начала координат в точку x, будет действовать возвращающая
сила, которую при малых отклонениях можно в первом приближе-
нии считать пропорциональной величине отклонения, F=−kx. Ко-
эффициент k здесь называется коэффициентомжесткости пружины.
В рассматриваемом случае уравнение движения (3) конкретизиру-
ется и приобретает вид

mx′′ = −kx. (4)

6. Пусть теперь тело падает на Землю под действием силы тяже-
сти. Если все происходит у поверхности Земли, то гравитационную
силу можно считать практически постоянной и пропорциональной
массе тела: F=mg. Тогда постоянно и ускорение такого свободного
падения, т. е. x′′= g (на вертикальной оси мы здесь выбрали направ-
ление к центру Земли). Если в начальный момент тело было в точке
x0 и имело скорость v0, то решением уравнения x′′ = g при таких
начальных условиях, как мы скоро проверим, и как вам по совету Га-
лилея, наверное, сказали в школе, будет функция x= 1

2 gt2+v0t+ x0.
7. И в заключение попробуем принять во внимание, что у Земли

есть атмосфера, которая оказывает сопротивление движущемуся в
ней телу. Для не слишком больших скоростей (например, при сво-
бодном падении) можно считать, что эта сила сопротивления про-
порциональна скорости движения. Сам же коэффициент пропорци-
ональности зависит от индивидуального тела (для человека и пара-
шюта он, слава Богу, разный). Значит, если в предыдущем примере
мы захотим учесть влияние атмосферы, то мы получим уравнение
mx′′=mg−kx′. Присутствие нового члена−kx′ в правой части урав-
нения, т. е. наличие сопротивления воздуха, приводит к тому, что
скорость свободного падения нарастает не бесконечно, а выходит
на некоторый предельный уровень, зависящий от массы и формы
тела. Для парашютиста средней комплекции в затяжном прыжке это
порядка 200 км/час, т. е. порядка 60 м/с.

Первый урок письма закончен. Мы еще не умеем решать диф-
ференциальные уравнения, но получили представление о том, как
их можно или нужно создавать и писать. Эти уравнения являются
математической моделью рассматриваемого конкретного явления.
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Мера, в которой они отражают явление, всецело зависит от того,
насколько правильно понимает явление тот, кто составляет уравне-
ние. Отбросил ли он второстепенные детали или уже выплеснул с
водой и ребенка. В последнем случае дальнейшие труды напрасны.
Более того, в одних масштабах, как мы видели, можно пренебрегать
тем, чем в других масштабах пренебрегать абсолютно недопустимо.
Но это уже вопрос квалификации специалиста.

Итак, худо-бедно вы уже можете написать нужное вам уравне-
ние. Если вы пока не в состоянии его решить, то по крайней мере
теперь уже сможете обратиться с конкретным вопросом за советом
к математикам.

После «урока чтения» и «урока письма» наши ближайшие мате-
матические цели прояснились:

) Надо научиться дифференцировать, т. е. по данной функции F
находить ее производную F ′= f .

) Надо научиться решать хотя бы простейшее уравнение F ′ = f ,
когда по известной производной f ищется исходная функция F.
Эта функция F называется первообразной функции f . Операция
отыскания первообразной, как видно, обратна операции диффе-
ренцирования. Она называется интегрированием2.

Д  

Итак, будем решать поставленные выше задачи  и .

. Скорость и производная. Рассмотрим сначала знакомую конкрет-
ную ситуацию, где мы можем обратиться к нашей интуиции.

Пусть точка движется вдоль числовой оси, s(t) — ее координата
в момент t, а v(t)= s′(t) — ее скорость в тот же момент t. За проме-
жуток времени h, прошедший после момента t, точка сместится в
положение s(t+h). По нашим представлениям о скорости, величина
s(t+h)− s(t) перемещения точки за малый промежуток времени h,
прошедший после момента t, и ее скорость v(t) в момент t связаны

2 Неопределенным интегрированием, если быть более точным. Почему — разъ-
ясним чуть позже.
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соотношением
s(t+h)− s(t)≈ v(t) ·h (5)

или иначе, v(t)≈ s(t+h)− s(t)
h , и это приближенное равенство тем

точнее, чем меньше промежуток времени h, прошедший после мо-
мента t.

Значит, надо полагать

v(t) := lim
h→0

s(t+h)− s(t)
h ,

т. е. мы определяем v(t) как предел отношения приращения функ-
ции к приращению ee аргумента, когда последнее стремится к нулю.

Теперь нам ничего не стоит, копируя этот пример, дать общее
определение значения f ′(x) производной f ′ функции f в точке x:

f ′(x) := lim
h→0

f (x+h)− f (x)
h , (6)

т. е. f ′(x) есть предел отношения приращения Δ f = f (x+ h)− f (x)
функции к приращению Δx= (x+h)− x ee аргумента, когда послед-
нее стремится к нулю.

Соотношение (6) можно переписать в подобной (5) другой и,
быть может, самой удобной и полезной форме:

f (x+h)− f (x)= f ′(x)h+ o(h), (7)

где o(h) — некоторая величина (поправка), малая по сравнению с
h при стремлении h к нулю. (Последнее означает, что отношение
o(h)/h стремится к нулю при стремлении h к нулю.)

Проделаем несколько пробных расчетов.
1. Пусть f — постоянная, т. е. f (x)≡ c. Тогда, очевидно, Δ f =

= f (x+ h)− f (x)≡0 и f ′(x)≡0, что естественно: скорость измене-
ния равна нулю, если изменений нет.

2. Если f (x)= x, то f (x+h)− f (x)=h, поэтому f ′(x)≡1. А если
f (x)=kx, то f (x+h)− f (x)=kh и f ′(x)≡k.

3. Кстати, тут можно сделать два очевидных, но весьма полезных
общих наблюдения: если функция f имеет своей производной f ′, то
функция cf , где c — числовой множитель, имеет своей производной
cf ′, т. е. (cf )′= cf ′; в этом же смысле ( f + g)′= f ′+ g′, т. е. производ-
ная суммы функций равна сумме их производных, если последние
определены.

12



✐
✐

✐
✐

✐
✐

✐
✐

4. Пусть f (x)= x2. Тогда f (x+h)− f (x)=(x+h)2− x2=2xh+h2=
=2xh+ o(h), поэтому f ′(x)=2x.

5. Аналогично, если f (x)= x3, то f (x+h)− f (x)= (x+h)3− x3=
=3x2h+3xh2+h3=3x2h+ o(h), поэтому f ′(x)=3x2.

6. Теперь понятно, что вообще, если f (x)= xn, имеем f ′(x)=
=nxn−1, поскольку f (x+h)− f (x)= (x+h)n− xn=nxn−1h+ o(h),

7. Значит, если имеем многочлен P(x) = a0 xn + a1 xn−1 + ... +
+an−1 x+an, то P′(x)=na0 xn−1+ (n−1)a1 xn−2+ ...+an−1.

Пробное прощупывание определения производной сделали. Раз-
рабатывать и осваивать технику и практику дифференцирования
надо будет отдельно, и к этому мы, конечно, еще вернемся. А сейчас
пора хотя бы так же в идейном плане подойти ко второй намечен-
ной цели.

. Интеграл и первообразная. Теперь мы хотим по производной на-
ходить ее первообразную.

Давайте опять начнем с чего-то, где работает наша интуиция.
Опять рассмотрим ту же движущуюся точку. Но теперь предполо-
жим, что мы знаем положение s(t0) точки в некоторый момент t0
и к нам поступают данные о ее скорости v(t). Располагая ими, мы
хотим вычислить s(t) для любого фиксированного значения t> t0.

Если считать скорость v(t) меняющейся непрерывно, то смеще-
ние точки за малый промежуток времени приближенно можно вы-
числить как произведение v(τ)Δt скорости в произвольный момент
τ, относящийся к этому промежутку времени, на величинуΔt само-
го промежутка. Учитывая это замечание, разобьем отрезок [t0, t],
отметив некоторые моменты ti (i= 0, ..., n) так, что t0 < t1 < ...<
< tn = t, и так, что промежутки [ti−1, ti] малы. Пусть Δti = ti − ti−1
и τi ∈ [ti−1, ti], тогда, суммируя элементарные перемещения s(ti)−− s(ti−1)≈ v(τi)Δti, имеем приближенное равенство

s(t)− s(t0)≈ n∑
i=1

v(τi)Δti.

По нашим представлениям, это приближенное равенство будет
уточняться, если переходить к разбиениям отрезка [t0, t] на все бо-
лее мелкие промежутки. Таким образом, надо полагать, что в преде-
ле, когда величина λ наибольшего из промежутков разбиения стре-
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мится к нулю, получим точное равенство

lim
λ→0

n∑
i=1

v(τi)Δti = s(t)− s(t0). (8)

Это равенство, с точностью до обозначений, которые вскоре появят-
ся, есть не что иное, как фундаментальная для всего анализа фор-
мула Ньютона—Лейбница. Она позволяет, с одной стороны, числен-
но находить первообразную s(t) по ее производной v(t), а с другой
стороны — по найденной каким-либо способом первообразной s(t)

функции v(t) найти стоящий слева предел сумм
n∑

i=1
v(τi)Δti.

Такие суммы, называемые интегральными суммами, встречают-
ся в самых разнообразных случаях.

x1xi+1xi

y

1

0

Рис. 2

Попробуем, например, следуя Архимеду,
найти площадь под параболой y = x2 над
отрезком [0, 1] (рис. 2). Не останавлива-
ясь здесь на подробном обсуждении поня-
тия площади фигуры, мы, как и Архимед,
будем действовать методом исчерпания фи-
гуры посредством простейших фигур — пря-
моугольников, площади которых мы вычис-
лять умеем. Разбив отрезок [0, 1] точками
0= x0 < x1 < ...< xn = 1 на мелкие отрезки
[xi−1, xi], мы, очевидно, можем приближен-
но вычислить искомую площадьσ как сумму

площадей изображенных на рисунке прямоугольников:

σ ≈ n∑
i=1

x2
i−1Δxi;

здесь Δxi = xi − xi−1. Полагая f (x)= x2 и ξi = xi−1, мы перепишем
полученную формулу в виде

σ ≈ n∑
i=1

f (ξi)Δxi.

В этих обозначениях в пределе будем иметь

lim
λ→0

n∑
i=1

f (ξi)Δxi = σ, (9)
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где, как и выше, λ — длина наибольшего из отрезков [xi−1, xi] раз-
биения.

Формула (9) только обозначениями отличается от формулы (8).
Забыв на миг о геометрическом смысле f (ξi),Δxi и считая x време-
нем, а f (x) скоростью, найдем первообразную F(x) функции f (x) и
тогда по формуле (8) получим, что σ= F(1)− F(0).

В нашем случае f (x)= x2, поэтому F(x)= 1
3 x3 + c и σ= F(1)−

− F(0)= 1
3 . Это и есть результат Архимеда, который он получил пря-

мым вычислением предела в (9).
Обратите внимание: вы сейчас одним движением нашли то, что

в свое время потребовало изобретательности гения. (Ну, правда,
эдак мимоходом поэксплуатировали красивую идею исчерпания
фигуры простыми фигурами, площади которых легко находятся.)
Более того, вы с той же легкостью могли бы найти площадь не толь-
ко под параболой, но и под любой кривой вида f (x)= xn или даже
под любой кривой, являющейся графиком некоторого многочлена.
Это уже замечательно, если вспомнить, сколько времени пришлось
в школе вычислять площади всего нескольких типов фигур: пря-
моугольников, треугольников, параллелограммов, трапеций... и,
наконец, круга.

Предел интегральных сумм называется интегралом3.
Интеграл от функции f (x) по отрезку [a, b] обозначается симво-

лом
b∫

a
f (x) dx,

в котором числа a и b называются нижним и верхним пределом
интегрирования соответственно; f — подынтегральная функция,
f (x) dx — подынтегральное выражение, x — переменная интегри-
рования.

Итак, по определению

b∫
a

f (x) dx := lim
λ→0

n∑
i=1

f (ξi)Δxi. (10)

3 Точнее, определенным интегралом.
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Теперь мы могли бы вместо (8) написать
t∫

t0

v(τ) dτ= s(t)− s(t0) ,

а решение задачи Архимеда с площадью под параболой на отрезке
[0, 1] записать так:

1∫
0

x2 dx = 1
3 .

Таким образом, формуле (8) Ньютона—Лейбница, связывающей
интеграл и первообразную, интегрирование и дифференцирование,
теперь можно придать ее канонический вид

b∫
a

f (x) dx = F(b)− F(a). (11)

Здесь F ′= f , т. е. F — первообразная функции f .
Обратите внимание: наряду с F любая функция F + c, отличаю-

щаяся от F на постоянную, тоже является первообразной для f . Но
на разности F(b)− F(a) это не сказывается.

Если формулу Ньютона—Лейбница (11) записать в других обо-
значениях

x∫
a

f (t) dt = F(x)− F(a) (12)

и рассматривать интеграл с переменным верхним пределом x, то,
умея численно находить интеграл как предел сумм (а это легко де-
лается на современном компьютере), мы можем находить величину
F(x)− F(a) и тем самым первообразную функции f .

Таким образом, формула (11) полезна в обоих направлениях.
Одно направление мы уже продемонстрировали в задаче Архимеда.
Другое продемонстрируем ниже на примере желтой подводной лод-
ки, в которой, как утверждали эстрадные классики, мы все живем.

Кстати, после разобранной задачи Архимеда понятно, что стоя-
щий слева в формуле (11) интеграл можно интерпретировать как
площадь фигуры — криволинейной трапеции, образованной отрез-
ком [a, b] оси x, графиком функции f над этим отрезком и парой
боковых сторон, параллельных второй координатной оси. В частно-
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сти, если в соответствии с формулой (12) рассматривать эту пло-
щадь как функцию S(x) конца x отрезка интегрирования [a, x], то
эта функция окажется первообразной подынтегральной функции f .
Полезно в этом убедиться и непосредственно, нарисовав картинку и
заметив, что S(x+h)−S(x)≈ f (x)h, где f (x) — высота, а h — осно-
вание приближающего прирост фигуры прямоугольника. При такой
интерпретации интеграла надо, конечно, принять во внимание, что
площади частей фигуры, лежащих под осью переменной интегриро-
вания, естественно, оказываются отрицательными.

У, , , 

Дифференциал. Определяя производную (см. c. 12), мы написали
ключевое соотношение

f (x+h)− f (x)= f ′(x)h+ o(h). (7)

В его левой части стоит величина Δ f (x, h)= f (x+ h)− f (x) прира-
щения значения функции f в точке x при смещении от x на величи-
ну Δx= (x+ h)− x= h. При фиксированном значении x величина
Δ f (x, h) зависит только от h, и эта зависимость, вообще говоря, мо-
жет быть весьма сложной. В правой же стороне равенства (7) стоит
простейшая линейная по переменной h функция f ′(x)h с довеском
o(h), малым по сравнению с величиной h, когда h стремится к нулю.
Это значит, что при малых h зависимость Δ f (x, h)= f (x+h)− f (x)
можно с малой относительной погрешностью заменить линейной
по h функцией df (x)(h) := f ′(x)h. Она называется дифференциалом
исходной функции f в рассматриваемой точке x.

Короче, дифференциал функции в точке — это линейная часть
приращения функции в этой точке.

А если поподробнее и поточнее, то дифференциал df (x) функ-
ции f в точке x — это функция, определенная на смещениях h от
точки x, линейная по h, и такая, что с точностью до поправки o(h),
малой по сравнению с h, при малых h справедливо приближенное
равенство

f (x+h)− f (x)=Δ f (x, h)≈ df (x)(h)= f ′(x)h.

Приостановимся и «пощупаем» это определение.
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1. Пусть f (x)= xα. Тогда f ′(x)=αxα−1 (что для натуральных αмы
уже даже сами проверили выше). Значит, (x+h)α− xα≈αxα−1h, или
(x+h)α≈ xα+αxα−1h при малых h. В частности, при x=1 находим,
что (1+h)α≈1+αh, когда величина h близка к нулю. Но тогда легко
найти приближенные значения, например, для

p
1,04, 0,995, 5p0,99:

p
1,04≈ 1+ 1

2 ·0,04= 1,02; 0,995 ≈ 1−5 ·0,01= 0,95;

5p0,99≈ 1− 1
5 ·0,01= 0,998.

2. Пусть f (x)= x. Тогда f ′(x)≡ 1. Далее, Δ f (x, h)= f (x + h)−
− f (x)= (x+h)− x=h и df (x)(h)= dx(h)=1 ·h, т. е. в случае, когда
f (x)= x, имеет место равенство Δ f (x, h)=df (x)(h) и dx(h)=h.

Но тогда в общем случае выражение df (x)(h)= f ′(x)h можно пе-
реписать в виде df (x)(h)= f ′(x) dx(h). Это значит, что действующая
на смещения h функция df (x) — дифференциал функции f в точ-
ке x, представм в виде f ′(x)dx, где dx — дифференциал независи-
мой переменной.

Мы приходим к выражению df (x)= f ′(x) dx, означающему, в
частности, что

f ′(x)=
df (x)

dx .

Именно это и было исходным обозначением Лейбница для произ-
водной f ′(x). Обозначение f ′(x) было введено позднее Лагранжем.
Ньютон обозначал производную точкой над знаком функции. Это и
сейчас принято делать, когда речь идет о производных переменной
величины, зависящей от времени. Например, если x= x(t), то вме-

сто x′(t) или dx
dt пишут ẋ(t). Отметим еще, что вместо

df (x)
dx чаще

пишут
df
dx (x) или даже

df
dx .

Обозначения Лейбница широко используются и в целом ряде
случаев удобны не только тем, что напоминают об исходном пред-
ставлении (6) производной как предела отношения приращения
функции к приращению аргумента, но и часто подсказывают пра-
вильный порядок действий в дифференциальном исчислении.

Касательная. Геометрический смысл производной и дифференциала.
Вернемся еще раз к основному соотношению (7) и перепишем его
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применительно к фиксированной точке x0 в форме

f (x)= f (x0)+ f ′(x0)(x− x0)+ o(x− x0), (7′)

где теперь вместо h стоит x− x0.
Изобразим график зависимости y = f (x) и прямую, заданную

уравнением y = f (x0)+ f ′(x0)(x − x0). Эта прямая проходит через
точку P0= (x0, f (x0)) графика.

f (x0 +h)

f (x0)

y= f (x)

y− f (x0)=
f (x0+h)− f (x0)

h
(x−x0)

y− f (x0)= f ′(x0)(x−x0)

∆ f (x0; h)

df (x0)(h)

P

P0

df (x0)(h)

h

∆x(h)

xx0 x0 +h

y

0

Рис. 3

Соотношение (7′) говорит, что в окрестности точки P0 график
функции с точностью до поправки o(x − x0), малой по сравнению
с величиной h= x − x0 отклонения от x0, совпадает с указанной
прямой. Легко видеть, что прямая с такими свойствами единствен-
на. Она лучше всех иных прямых воспроизводит поведение нашей
функции f в окрестности точки x0 и лучше других прямых прибли-
жает график функции в окрестности точки P0.

По этой причине прямая

y = f (x0)+ f ′(x0)(x− x0) (13)

называется касательной к графику функции f в точке (x0, f (x0)).
Величина f ′(x0), т. е. значение производной функции f в точке

x0 имеет, таким образом, геометрический смысл углового коэффи-
циента или тангенса угла наклона касательной к графику функции
в соответствующей точке P0= (x0, f (x0)).
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Заметьте, если на графике функции f наряду с P0 взять еще неко-
торую точку P=(x0+h, f (x0+h)), провести через эти точки прямую
(ее называют секущей по отношению к графику), затем, устремляя
h к нулю, заставить точку P вдоль графика стремиться к P0, то се-
кущая будет стремиться к предельному положению, которое и есть
касательная к графику функции f в точке P0.

Рисунок 3 иллюстрирует все основные понятия, связанные с диф-
ференцируемостью вещественнозначной функции в точке, которые
мы к настоящему моменту ввели: приращение аргумента и соответ-
ствующие ему приращение функции и значение дифференциала; на
рисунке изображены график функции, касательная к графику в точ-
ке P0= (x0, f (x0)) и, для сравнения, секущая, проходящая через P0 и
некоторую точку P 6= P0 графика функции.

Заметим (см. рис. 3), что если отображение h 7→Δ f (x0, h) дает
приращение ординаты графика функции y= f (x) при переходе ар-
гумента из точки x0 в точку x0 + h, то дифференциал df (x0) дает
приращение ординаты касательной к графику функции при том же
приращении h аргумента.

Отчасти поэтому дифференциал df (x0) называют также каса-
тельным отображением к отображению f в соответствующей точке.

Тут мы должны остановиться. Дифференциал, конечно, — цен-
тральное понятие, ядро. Как и каждое ядро, оно имеет свою структу-
ру. Ее очень важно и полезно знать и понимать. Но сейчас, сохраняя
гармонию масштабов и возможностей, пока не станем в нее более
углубляться, оставив это на момент, когда в дальнейших уточнениях
появится необходимость.

Пожнем некоторые плоды уже проделанной работы.
3. Для освежения памяти поэкспериментируем сначала с пря-

мой, заданной уравнением y=kx. При k=0 прямая горизонтальна.
Если k>0, она «идет в гору» при росте x, и тем круче, чем больше
угловой коэффициент k. Аналогично, при k<0 она «идет под гору»;
значения y= kx убывают с ростом x, и спад идет тем быстрее, чем
меньше величина k.

Учитывая это обстоятельство и принимая во внимание геомет-
рический смысл производной функции, можно заключить, что там,
где производная положительна, функция растет, а на участках,
где производная отрицательна, функция убывает. При этом рост
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или убывание функции происходит тем быстрее, чем больше (со-
ответственно меньше) значения ее производной. Это, конечно,
можно было бы заметить и глядя на само определение (6) или (7)
производной.

Ну а если производная тождественно равна нулю на целом про-
межутке? Надо полагать (и это тоже можно доказать), что функция
постоянна на таком промежутке. При всей своей простоте и очевид-
ности это очень важный и широко используемый факт.

А что с экстремумами? А внутренние экстремумы у дифференци-
руемой функции, очевидно, могут быть только там, где касательная
к ее графику горизонтальна, т. е. там, где производная функции об-
ращается в нуль.

При этом ясно, что если f ′(x0)= 0, а в окрестности этой точки
f ′(x)<0, когда x< x0, и f ′(x)>0, когда x> x0, то при переходе через
точку x0 локальное убывание функции f сменяется ее ростом, по-
этому в такой точке x0 функция должна иметь локальный минимум.
При противоположной смене знака производной по тем же соображе-
ниям можно утверждать, что в точке x0 функция f имеет локальный
максимум f (x0).

Ну а если смены знака производной не было, то характер моно-
тонности функции f в окрестности точки x0 не менялся и никако-
го экстремума в этой точке у функции заведомо нет. Простейшим
примером тому может служить функция f (x)= x3, производная ко-
торой f ′(x)= 3x2 всюду положительна, кроме точки x= 0, где она
равна нулю.

Вот мы в первом приближении и выполнили задачу, которую се-
бе поставили после первого урока чтения графика функции.

4. Давайте посмотрим на примере функции f (x)= 1
3 x3− x + 1,

как это действует. В рассматриваемом случае f ′(x)= x2−1. Произ-
водная положительна при |x|>1, отрицательна при |x|<1, а в точ-
ках −1 и 1 обращается в нуль. Значит, когда x растет от −∞ до −1
функция возрастает, причем, как видно, от −∞ до f (−1)= 5

3 . Далее,

на отрезке [−1, 1] она убывает до значения f (1)= 1
3 . Наконец, на

участке от 1 до +∞ функция монотонно возрастает от 1
3 до +∞. За-

метим еще, что f (0)= 1. Этих данных уже достаточно, например,
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чтобы нарисовать эскиз графика этой функции (сделайте это). Кста-
ти, эта функция имеет локальный максимум в точке−1 и локальный
минимум в точке 1, но у нее нет ни абсолютного максимума, ни
наименьшего значения.

И последний штрих. Если вычислить производную ( f ′)′(x) =
= f ′′(x) = 2x от производной f ′(x) = x2 − 1 нашей функции, то,
учитывая, что она отрицательна при x < 0 и положительна при
x > 0, можем сказать, что на промежутке от −∞ до 0 функция f ′,
т. е. производная исходной функции f , убывает, а на промежутке от
0 до +∞ функция f ′ возрастает. Вспоминая, что f ′(x) есть угловой
коэффициент касательной к графику функции f в точке (x, f (x)),
можем сказать, что указанное поведение f ′(x) означает, что на
промежутке от −∞ до 0 график функции f имеет выпуклость вверх,
а на промежутке от 0 до +∞ имеет выпуклость вниз. Изменение ха-
рактера выпуклости происходит в точке (x, y)= (0, 1). Такая точка,
где меняется характер выпуклости кривой, называется точкой пе-
региба. В такой точке кривая неизбежно переходит с одной стороны
своей касательной на другую. Типичным тому простым примером
может служить начало координат как точка перегиба графика уже
упоминавшейся функции f (x)= x3.

Интеграл. Если сопоставить определения дифференциала и инте-
грала, то становится понятно, что интеграл (см., например, фор-
мулу (11)) действует именно на дифференциалы dF(x)= f (x) dx,
объединяя (интегрируя) их и восстанавливая по ним величину
F(b)− F(a).

Это обстоятельство часто отражают явно в следующей записи
формулы Ньютона—Лейбница

b∫
a

dF = F|ba. (11′)

Здесь F|ba обозначает F(b)− F(a), а переменная x в записи функции
F и ее дифференциала dF опущена по той простой причине, что от
того, какой ее буквой обозначить, ничего в формуле не меняется.

Стоящее справа выражение, точнее вертикальная черта с преде-
лами a и b, напоминает стилизованный интеграл, в котором, од-
нако, участвуют только граничные точки отрезка интегрирования,
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причем в определенном порядке, или, если угодно, со своими зна-
ками {+, b}, {−, a}, чтобы получить именно F(b)− F(a).

Давайте договоримся считать интегралом от функции по точке
значение функции в этой точке, причем взятое с тем знаком, кото-
рый приписан самой точке. Если же имеется несколько таких точек,
то под интегралом будем понимать алгебраическую сумму значе-
ний функции в этих точках, взятых с соответствующими знаками.

При таком соглашении величину F(b)− F(a) и в самом деле
можно интерпретировать как интеграл от функции F по множеству
{+b,−a}, образованному двумя наделенными знаками точками.

А откуда все-таки в формуле (11) вдруг появилось различие
между a и b? Дело в том, что оно незаметно присутствовало уже
на стадии формирования интегральных сумм. Точка a была на-
чальной, а точка b — конечной. Если их роли поменять, то все
члены интегральной суммы одновременно изменят знак (вернитесь
к определению интеграла, первому наводящему примеру с движе-
нием и непременно убедитесь в этом).

Таким образом, мы имеем дело с интегралом не просто по како-
му-то отрезку I, а по ориентированному отрезку I+, когда сказано,
какой его конец считается началом (его и ставят внизу в обозначе-
нии интеграла), а какой в этом смысле является концом.

Поэтому естественно появляется следующее важное соотноше-
ние b∫

a
f (x) dx = −

a∫
b

f (x) dx.

Сделаем теперь еще несколько элементарных геометрических
наблюдений. Пусть нам дан отрезок I. Его граница состоит из
двух точек — концов отрезка I. Обозначим ее через ∂I. Отрезок I
можно ориентировать двумя противоположными способами, по-
ставив на нем стрелку. Если это сделано, то отрезок будем считать
ориентированным и обозначать символом I+. (Противоположно
ориентированный отрезок тогда естественно обозначать I−.) Стрел-
ка на отрезке может показывать, в каком направлении, т. е. от
какого конца к какому, надо двигаться и, тем самым, который из
концов считается отправной, начальной точкой, а какой — конеч-
ной. Договоримся конечной точке приписывать знак+, а начальной
знак −. (Из начальной точки убываем, а в конечную прибываем.)
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Приписывание точке знака будем считать заданием ориентации
этой точки. Тогда получается, что в этом смысле ориентация отрезка
порождает вполне определенную согласованную ориентацию его
границы. Если ориентированный отрезок обозначен через I+, то со-
гласованно ориентированную его границу естественно обозначить
как ∂I+.

Если принять эти соглашения, то формулу Ньютона—Лейбница
можно записать совсем красиво и, как выяснится, очень содержа-
тельно: ∫

I+

dF =
∫

∂I+

F (11′′)

Замечательно интересно наблюдаемое здесь взаимодействие опера-
ций d и ∂. Это современный, сравнительно недавний вид формулы
Ньютона—Лейбница. В таком виде ее можно было бы уже имено-
вать формулой Ньютона—Лейбница—Грина—Гаусса—Остроград-
ского—Стокса—Пуанкаре..., поскольку при соответствующей ин-
терпретации ее элементов она содержит в себе все прочие важней-
шие специальные интегральные формулы анализа.

Эта формула объединяет анализ, геометрию, алгебру и имеет са-
мое широкое применение во всех разделах математики, от тополо-
гии до математической физики.

Теперь, обсудив определение интеграла и формулу Ньютона—
Лейбница, мы остановимся и опробуем это в действии.

5. Пусть на числовом отрезке a¶ x¶b задана функция f с неотри-
цательными значениями y= f (x) и построен график этой функции.
Мы уже знаем, что интеграл от такой функции по отрезку [a, b] да-
ет площадь возникающей здесь фигуры, традиционно называемой
криволинейной трапецией. Представим себе, что эта криволиней-
ная трапеция вращается вокруг отрезка [a, b] как оси вращения. Она
зачертит некоторое тело (винную бочку, шар, или еще что-нибудь),
форма которого зависит от формы графика функции f . Нам надо
найти объем этого тела.

Формула (11′) Ньютона—Лейбница учит: чтобы написать нуж-
ный интеграл, полезно сначала найти дифференциал искомой ве-
личины. Поясним это. Давайте обозначим через V(x) объем такого
же тела, когда вместо фиксированного отрезка [a, b] будет рассмат-
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риваться переменный отрезок [a, x]. Нас интересует значение V(b).
Очевидно, V(a)=0, поэтому V(b)−V(a)=V(b).

Значит, учитывая формулу (11′) Ньютона—Лейбница, нам надо
найти дифференциал dV и потом уже подсчитать получаемый слева
интеграл.

Итак, рассмотрим приращение V(x+h)−V(x) объема тела, вы-
званное увеличением x на малую величину h. Если h мало, а все
значения функции f на малом отрезке [x, x+ h] почти одинаковы
и близки к f (x), то прирост тела можно приближенно считать рав-
носильным добавлению к нему кругового цилиндра высоты h, в ос-
новании которого круг радиуса f (x). Объем такого цилиндра мы
знаем: π f 2(x)h. Таким образом, V(x+ h)− V(x)=π f 2(x)h+ o(h) и
dV(x)=π f 2(x)dx.

Значит, объем V тела в нашей задаче надо вычислять по формуле

V = π
b∫

a
f 2(x) dx.

Найдем, например, объем шара радиуса r. Для этого вокруг от-
резка [−r, r] повращаем полукруг, ограниченный полуокружностью
радиуса r. Поскольку уравнение окружности имеет вид x2+ y2= r2,
то верхняя полуокружность задается в виде y=

p
r2− x2. Значит, со-

гласно найденной выше формуле,

V = π
r∫
−r

(r2− x2) dx.

Первообразная r2 x− 1
3 x3 функции r2− x2 находится сразу. Остается

воспользоваться формулой (11) Ньютона—Лейбница и после ариф-
метических действий получить знакомое V = 4

3πr3.

У. Если продифференцировать функцию V = 4
3πr3, да-

ющую объем шара, то получим формулу V ′=4πr2 площади поверх-
ности сферы, а если продифференцировать функцию S=πr2, даю-
щую площадь круга, то получим формулу S′=2πr длины окружно-
сти. Объясните это.

6. Рассмотрим теперь обещанный пример с желтой подводной
лодкой и действием формулы Ньютона—Лейбница в обратном на-
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правлении, когда интеграл (12) позволяет найти приращение пер-
вообразной.

Давайте рассмотрим лифт. Возможность обобщения на лодку
станет после этого очевидной.

На цокольном этаже небоскреба вас сажают в лифт, задвигаются
глухие двери, и... поехали. Вы чувствуете перегрузки, пропорцио-
нальные ускорению лифта. По прошествии некоторого времени T
лифт где-то останавливается, но дверь задраена, указателей нет.
Сколько проехали, где остановились?

Если бы в лифте на пружинке висела гирька, то можно было бы
соорудить самописец, который, фиксируя вертикальные перемеще-
ния гирьки, дал бы нам график ускорения a=a(t) как функцию вре-
мени. Если x = x(t) — закон движения лифта, то ẍ(t)= a(t), где ẍ
обозначает вторую производную функции x по времени. Зная зави-
симость a= a(t) и начальные условия x(0)= 0, ẋ(0)= 0, нам надо
найти x(T).

Сначала заставим компьютер посчитать интегралы от функции
v̇=a по отрезкам [0, t] и по формуле Ньютона—Лейбница (12) вос-
становить скорость ẋ(t)= v(t) движения как функцию времени на
промежутке [0, T]. После этого остается попросить его проинтегри-
ровать скорость v(t) по отрезку [0, T] и получить ответ x(T).

У. a) Проделайте все это вручную применительно к си-
туации, когда лифт (ракета) не останавливается, а поднимается с
постоянным ускорением a, и вам надо знать ваш закон движения
x(t). Кстати, если вы помните, как находить площадь прямоуголь-
ника, а затем даже и треугольника, то можете воспользоваться гео-
метрическим смыслом интеграла.

b) Положение тела в пространстве, как известно, характеризу-
ется тремя координатами. Если знать изменение каждой из них по
времени, то будет известен весь закон движения тела, т. е. его место-
нахождение в любой момент времени. Подумайте теперь, как мож-
но историю с лифтом использовать для определения координат под-
водной лодки.

Интеграл определенный и неопределенный. Когда мы впервые заго-
ворили о решении уравнения F ′= f , т. е. об отыскании функции F,
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первообразной по отношению к функции f , то мы еще даже не зна-
ли, разрешима ли эта задача для любой функции f . Ответ, вообще
говоря, отрицательный. Но для огромного класса практически нуж-
ных функций ответ, к счастью, положительный и дается как раз фор-
мулой Ньютона—Лейбница, представленной соотношением (12).

Эта формула восстанавливает функцию F с точностью до посто-
янного слагаемого. Мы уже вскользь отметили, что если на некото-
ром промежутке производная какой-то функции тождественно рав-
на нулю, то сама функция постоянна. Воспользуемся сейчас этим
фактом. Если F1 и F2 — две первообразные одной и той же функции
f на некотором промежутке, то (F1−F2)′=F ′1−F ′2= f − f =0, т. е. две
первообразные одной и той же функции на некотором промежутке
могут отличаться только постоянным слагаемым. Именно поэтому
в формуле Ньютона—Лейбница можно использовать любую перво-
образную подынтегральной функции.

Если же вы хотите выделить конкретную первообразную, вы мо-
жете, например, указать ее значение в некоторой точке. Именно это
мы всюду и делали, когда формулировали задачи, связанные с реше-
нием дифференциальных уравнений. Мы всюду говорили о тех или
иных начальных условиях.

Совокупность всех первообразных некоторой функции f обозна-
чают символом ∫

f (x) dx,

называемым неопределенным интегралом в отличие от интеграла,
где указаны пределы интегрирования и который поэтому иногда
именуют определенным интегралом.

Если известна одна какая-то первообразная F функции f на про-
межутке, то любая другая первообразная функции f на том же про-
межутке имеет вид F+ c, где c — постоянная. Поэтому можно напи-
сать, что ∫

f (x) dx = F(x)+ c,

где c — произвольная постоянная.
Постижение техники дифференцирования и интегрирования и

приобретение каких-то навыков в этом деле, разумеется, требуют
некоторой серии рутинных упражнений. Нельзя научиться плавать,
не поплавав.
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Метод ломаных Эйлера (и заодно о числе e, функции exp и нату-
ральных логарифмах). Пользуясь определением интеграла (10) как
предела сумм (которые поддаются прямому вычислению), а также
формулой (12) Ньютона—Лейбница, мы научились восстанавли-
вать первообразную по ее производной, чем и воспользовались в
последнем примере 6 для определения координат лифта, ракеты,
подводной лодки, ...

В качестве полезного примера использования понятия диф-
ференциала функции и почти всего приобретенного выше опыта
попробуем теперь решить самое первое из написанных нами (на
первом «уроке письма») уравнений, моделировавших размножение
бактерий, рост капитала, ядерную реакцию, изменение атмосфер-
ного давления с высотой ... и многое другое.

Рассмотрим сначала простейшую конкретную ситуацию, когда
ищется функция f , удовлетворяющая уравнению

f ′(x)= f (x) (14)

и начальному условию f (0)=1.
Мы хотим при любом фиксированном значении x знать значе-

ние f (x). Будем вслед за Эйлером рассуждать так. Пройдем отрезок
[0, x] от начальной точки 0 до точки x маленькими шажками вели-
чины h= x

n , где n — большое натуральное число.
Если x0=0, xk+1= xk+ h, а шаг h мал, то, вспомнив о скорости,

производной, приращении функции, дифференциале, будем иметь

f (xk+1)≈ f (xk)+ f ′(xk)h.

Учитывая (14) и условие f (0)=1, последовательно находим, что

f (x)= f (xn)≈ f (xn−1)+ f ′(xn−1)h = f (xn−1)+ f (xn−1)h =

= f (xn−1)(1+h)≈ ( f (xn−2)+ f ′(xn−2)h)(1+h)=

= ( f (xn−2)+ f (xn−2)h)(1+h)= f (xn−2)(1+h)2 ≈ ...

...≈ f (x0)(1+h)n = f (0)(1+h)n =
�

1+ x
n

�n
.

Представляется естественным (и это можно доказать), что чем
мельчешаг h= x

n , тем точнее приближенная формула f (x)≈�1+ x
n

�n
.

Таким образом, мы приходим к тому, что

f (x)= lim
n→∞

�
1+ x

n

�n
.
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Для величины f (1)= lim
n→∞

�
1+ 1

n

�n
вслед за Эйлером введем спе-

циальное обозначение

e := lim
n→∞

�
1+ 1

n

�n
= lim

t→0
(1+ t)1/t. (15)

На любом калькуляторе можно легко найти значение величины e
с любым нужным числом десятичных знаков. Выпишем несколько
первых: e=2,7182818284590... Число e так же тесно связано с ана-
лизом, как число π с геометрией.

В этих обозначениях, после замены x
n = t и простых преобразо-

ваний, получаем

f (x)= lim
n→∞

�
1+ x

n

�n
= lim

t→0
(1+ t)x/t = lim

t→0

�
(1+ t)1/t�x = ex . (16)

Итак, мы нашли, что решение нашей задачи имеет вид f (x)= ex .
Это показательная функция с основанием e. Подобно синусу

и косинусу, она имеет свое специальное обозначение exp и часто
называется экспонентой. Иногда и функцию ax записывают в виде
expa(x). Когда a= e обычно вместо expe пишут просто exp.

Заодно мы теперь знаем, что если f (x)= ex , то f ′(x)= ex .
Функция, обратная к показательной функции expa, как известно,

называется логарифмом и обозначается log. Когда a= e, т. е. лога-
рифм по основанию e, называют натуральным логарифмом и для
него часто используют специальное обозначение ln.

Метод численного решения дифференциального уравнения (14),

h 2h0

1

x

y

Рис. 4

позволивший нам получить форму-
лу (16), был предложен еще Эйлером
и называется методом ломаных Эй-
лера. Такое название связано с тем,
что проведенные выкладки геомет-
рически означают замену решения
f (x), точнее его графика, некото-
рой аппроксимирующей график ло-
маной (см. рис. 4), звенья которой на
соответствующих участках [xk, xk+1]
(k= 0, ..., n− 1) задаются уравнения-
ми y=αk+βk(x− xk), заменяющими
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уравнения y= f (xk)+ f ′(xk)(x− xk) касательных к графику функции
f в точках xk (k=0, ..., n−1).

Повторив изложенную процедуру, теперь уже легко найти ре-
шение и общего уравнения f ′(x)= kf (x) при начальном условии
f (x0)= c (сделайте это). Решением будет функция f (x)= cek(x−x0).

Заодно мы находим, что если f (x)= ek(x−x0), то f ′(x)=kek(x−x0).
Метод ломаных Эйлера по существу не использует ничего, кроме

связи приращения функции с ее дифференциалом и производной.
Поэтому он применим не только к рассмотренному уравнению. Бо-
лее того, он применим и к системам уравнений. Например, можно
заставить компьютер исследовать модель хищник-жертва. Если на
координатной плоскости (x, y) компьютер будет отмечать состо-
яния x(t), y(t) популяций в момент времени t, то можно будет
наблюдать удивительные явления типа периодического колеба-
тельного цикла, когда одна величина растет, другая убывает, а
потом наоборот. Но могут быть экологически опасные, даже ката-
строфические необратимые ситуации, когда популяции погибают.
Решение одной такой задачи, наблюдение за эволюцией системы
при различных начальных условиях, доставляет большие впечатле-
ния. Часто оказывается, что накопленный опыт можно применить
и в совсем иной сфере. На то она и математика.

С 
На ней вы сами почувствуете, чему научились, что пропустили,

что освоили, а что надо перечитать и переосмыслить.

Предположим, что, следуя Ньютону, мы хотим решить кеплерову за-
дачу двух тел, т. е. хотим объяснить закон движения одного небес-

M

m

Рис. 5

ного тела m (планета) относительно другого
тела M (звезда). Выберем в плоскости движе-
ния декартову систему координат с началом
в M (рис. 5). Тогда положение m в момент
времени t можно охарактеризовать числен-
но координатами (x(t), y(t)) точки m в этой
системе координат. Мы хотим найти функ-
ции x(t), y(t). Движением m относительно M
управляют два знаменитых закона Ньютона:
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общий закон движения
ma = F, (17)

связывающий вектор силы с вектором вызванного ею ускорения
через коэффициент пропорциональности m — инертную массу
тела, и

закон всемирного тяготения, позволяющий найти гравитационное
воздействие тел m и M друг на друга по формуле

F = G mM
|r|3 r, (18)

где r — вектор с началом в теле приложения силы и концом в
другом теле, |r|—длина вектора r, или расстояние между m и M.

Зная массы m, M, по формуле (18) без труда выражаем правую
часть уравнения (17) через координаты x(t), y(t) тела m в момент t,
чем исчерпываем всю специфику данного движения.

Чтобы получить теперь соотношения на x(t), y(t), заключенные
в уравнении (17), надо выразить левую часть уравнения (17) через
функции x(t), y(t).

Если r(t)= (x(t), y(t)) — радиус-вектор движущейся точки m в
момент t, ṙ(t)= (ẋ(t), ẏ(t))=v(t) — вектор скорости изменения r(t)
в момент t, а r̈(t)= (ẍ(t), ÿ(t))=a(t) — вектор скорости изменения
v(t), или ускорение, в момент t, то уравнение (17) можно записать
в виде

m · r̈(t)= F(t),

откуда для нашего движения в поле тяжести получаем в координат-
ном виде  ẍ(t)=−GM x(t)

(x2(t)+ y2(t))3/2 ,

ÿ(t)=−GM
y(t)

(x2(t)+ y2(t))3/2 .
(19)

Это точная математическая запись нашей исходной задачи.
Если у вас под рукой компьютер, примените метод ломаных Эй-

лера к решению этой системы уравнений. Фиксировав положение
тела M в начале координат, проследите на экране траекторию вто-
рого тела и скорость его движения на различных участках траекто-
рии.
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Меняя начальные данные (координаты и скорость) второго тела,
посмотрите за изменением траектории.

Обратите внимание на то, что со временем вычислительная
ошибка приводит к сходу тела с его законной орбиты. Как с этим
бороться? Кроме того, надо учитывать, что если тела очень сбли-
жаются, то силы, ускорения и скорости растут, и для уменьше-
ния ошибки надо уменьшать размеры шага и проявлять такую же
аккуратность и осторожность, какую вы проявляете, замедляя и
сокращая шаг в местах, где этого требуют обстоятельства. Опыт,
особенно собственный, — великий учитель. Он ведь «сын ошибок
трудных».

З 1. Выше мы нашли производную f ′(x)= ex функции
f (x)= ex . Это позволяет написать следующие полезные соотноше-
ния:

ex+h− ex = exh+ o(h) при h→ 0 или

ex = ex0 + ex0 (x− x0)+ o(x− x0) при x→ x0.

В частности, если x0=0, имеем ex=1+ x+ o(x), когда x→0.
Обратной к функции y = ex является функция x = ln y. Пусть

y0= ex0 , h= x− x0= ln y− ln y0 и t= y− y0. В этих обозначениях из
равенства ex − ex0 = ex0 (x − x0)+ o(x − x0) получаем t= ex0 h+ o(h).
Величины t и h стремятся к нулю одновременно. Более того, по-
скольку t ≈ ex0 h, любая величина o(h), пренебрежимо малая по
сравнению с h при h, стремящемся к нулю, будет бесконечно малой
и по сравнению с t. Значит, вместо h= e−x0 t+ o(h) можно написать
h= e−x0 t+o(t) при t→0. В прежних обозначениях это выглядит так:

ln y− ln y0 = e−x0 ( y− y0)+ o( y− y0) при y→ y0.

Тем самым мы нашли производную функции x= ln y в точке y0
и показали, что она обратна производной функции y= ex в соответ-
ствующей точке x0= ln y0.

(Очень полезно просмотреть заново проведенное рассуждение и
заметить, что оно остается в силе по отношению к любой паре вза-
имно обратных дифференцируемых функций и устанавливает, что
производные взаимно обратных функций взаимно обратны в соот-
ветствующих точках.)
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Поскольку (ex0 )−1= y−1
0 , имеем

ln y− ln y0 = y−1
0 ( y− y0)+ o( y− y0) при y→ y0.

Если независимую переменную обозначать через x, то можно кон-
статировать, что функция f (x) = ln x имеет своей производной
функцию f ′(x)= x−1.

Отсюда, так же как мы это делали выше по отношению к функ-
ции ex , немедленно получаем следующее полезное соотношение:

ln(1+ x)= x+ o(x) при x→ 0.

Потом мы и это уточним, и даже сможем сказать, что

ln(1+ x)= x− 1
2 x2+ o(x2) при x→ 0.

З 2. Посмотрите на формулу (15), определявшую чис-
ло e.

Нам известно, что (1+ x)α=1+αx+o(x) при x→0. А почему бы

не воспользоваться этим и не написать
�

1+ 1
n

�n
= 1+ n 1

n + o
�

1
n

�
при n→∞, или не написать (1+ t)1/t = 1+ (1/t)t+ o(t) при t→ 0?
Тогда бы мы сразу нашли, что e=2!? В чем дело?

Замечательно полезная формула (1+ x)α=1+αx+o(x) при x→0
относится к степенной функции uα, где показатель степени α, по
самому определению степенной функции, постоянен!

У нас же не так. В нашем случае следовало бы действовать иначе:

(1+ t)1/t = e(1/t) ln(1+t) = e(1/t)(t+o(t))→ e1 = e при t→ 0.

Сопоставим следующие две ситуации.
а) Вам важно знать величину

p
x2+ x− x при очень больших зна-

чениях x. Вы вправе действовать так:p
x2+ x− x = x
�q

1+ 1
x −1
�
= x
�

1+ 1
2 · 1x + o
�

1
x

�
−1
�
=

=
�

1
2 + x ·o
�

1
x

��
= 1

2 + o(1).

Здесь o(1) — поправка, стремящаяся к нулю при x→+∞.
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b) А вот если бы при очень больших значениях x вам было важно

знать величину
h

1
e

�
1+ 1

x

�xix
, вы поступали бы иначе:h

1
e

�
1+ 1

x

�xix
= exp
n

x
�

ln
�

1+ 1
x

�x−1
�o
= exp
n

x2 ln
�

1+ 1
x

�
− x
o
=

= exp
n

x2
�

1
x − 1

2x2 + o
�

1
x2

��
− x
o
= exp
n
−1

2 + o(1)
o
→ e−1/2.

Значит, при x→∞ значения интересующей вас величины стаби-
лизируются и, точнее, стремятся к числу e−1/2.

З 3. В замечании 2 мы упомянули полезное соотноше-
ние (1+ x)α=1+αx+o(x) при x→0. Оно было нами доказано рань-
ше только для натурального α. Но теперь его легко получить сразу в
общем виде. В самом деле, при x→0

(1+ x)α = exp{α ln(1+ x)}= exp{α(x+ o(x))}=

= 1+α(x+ o(x))+ o(α(x+ o(x)))= 1+αx+ o(x).

Вспомните смысл символа o(x) при x→0 и проверьте эту выкладку.

Поскольку (x+h)α= xα
�

1+ h
x

�α
, то при h→0 имеем

(x+h)α = xα
�

1+αh
x + o(h)
�
= xα+αxα−1h+ o(h),

и тем самым устанавливаем, что если f (x)= xα, то f ′(x)=αxα−1.

У

. Найдите форму поверхности жидкости, равномерно вращаю-
щейся в стакане.

. Закон преломления света в геометрической оптике (закон
Снеллиуса). Согласно принципу Ферма истинная траектория света
между любыми двумя точками такова, что на ней реализуется ми-
нимум времени, которое необходимо свету, чтобы пройти из одной
точки в другую по любому фиксированному пути, соединяющему
эти точки.

Из принципа Ферма и того, что кратчайшей линией между лю-
быми двумя точками является отрезок прямой с концами в этих точ-
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A2

A1

α1

α2

Рис. 6

y

p
2

n

(x0, y0)

x0

Рис. 7

ках, следует, что в однородной изотропной среде (устроенной оди-
наково как в каждой точке, так и в каждом направлении) свет рас-
пространяется прямолинейно.

Пусть теперь имеются две такие среды и свет распространяется
из точки A1 к A2, как показано на рис. 6.

Найдите траекторию света, отвечающую принципу Ферма, и от-

кройте закон преломления
sin α1

sin α2
=

c1

c2
. Здесь c1 и c2 —скорости света

в каждой из сред.
. Оптическое свойство параболического зеркала. Рассмотрите

параболу y = 1
2p x2 (p > 0), постройте касательную к ней в точке

(x0, y0) =
�

x0, 1
2p x2

0

�
и, учитывая, что «угол падения равен углу

отражения», покажите, что источник света, помещенный в точке�
0,

p
2

�
— в фокусе параболического зеркала, даст пучок, парал-

лельный оси Oy зеркала, а приходящий параллельно оси Oy пучок
зеркало пропустит через фокус (см. рис. 7).

. Покажите, что при x>0

xα−αx+α−1¶ 0, когда 0< α < 1,

xα−αx+α−1¾ 0, когда α < 0 или 1< α.

С помощью элементарных алгебраических преобразований из
этих неравенств получите следующие классические и важные для
анализа неравенства.
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Неравенства Бернулли. Покажите, что при x>−1

(1+ x)α ¶ 1+αx, когда 0< α < 1,

(1+ x)α ¾ 1+αx, когда α < 0 или 1< α.

Неравенства Юнга. Если a> 0 и b> 0, а числа p, q таковы, что
p 6=0, 1, q 6=0, 1 и 1

p +
1
q =1, то

a1/pb1/q ¶ 1
p a+ 1

q b, если p > 1,

a1/pb1/q ¾ 1
p a+ 1

q b, если p < 1,

причем знак равенства в этих неравенствах имеет место только при
a= b.

Неравенства Гёльдера. Пусть xi¾0, yi¾0 (i=1, ..., n) и 1
p +

1
q =1.

Тогда
n∑

i=1
xi yi ¶
� n∑

i=1
x p

i

�1/p� n∑
i=1

yq
i

�1/q
при p > 1;

n∑
i=1

xi yi ¾
� n∑

i=1
x p

i

�1/p� n∑
i=1

yq
i

�1/q
при p < 1, p 6= 0.

В случае p< 0 в последнем неравенстве предполагается, что xi > 0
(i = 1, ..., n). Знак равенства в обоих этих неравенствах возмо-
жен только в случае пропорциональности векторов (x p

1 , ..., x p
n ),

(yq
1 , ..., yq

n ).
Неравенства Минковского. Пусть xi¾0, yi¾0 (i=1, ..., n). Тогда� n∑
i=1

(xi+ yi)
p
�1/p

¶
� n∑

i=1
x p

i

�1/p

+
� n∑

i=1
y p

i

�1/p

при p > 1;� n∑
i=1

(xi+ yi)
p
�1/p

¾
� n∑

i=1
x p

i

�1/p

+
� n∑

i=1
y p

i

�1/p

при p < 1, p 6= 0.

. Средние. В математике, и не только в ней, приходится иметь
дело с различными средними значениями величин. Например, всем
известно среднее арифметическое

x1+ x2+ ...+ xn

n

n чисел x1, x2, …, xn.
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Вообще, средним порядка α этих чисел называют величину

sα(x1, x2, ..., xn)=
� xα1 + xα2 + ...+ xαn

n

�1/α
.

В частности, при α= 1, 2,−1 получаем соответственно среднее
арифметическое, среднее квадратичное и среднее гармоническое
этих чисел (последнее в предположении, что все числа отличны
от нуля).

Будем считать, что все числа x1, x2, ..., xn неотрицательны, а если
степень α<0, то будем предполагать, что они даже положительны.

1. Используя неравенство Гёльдера, покажите, что если α<β , то

sα(x1, x2, ..., xn)¶ sβ(x1, x2, ..., xn),

причем равенство имеет место, лишь когда x1= x2= ...= xn.
2. Конечно, в определении средних порядка α надо что-то ска-

зать о том, как это понимать, когда α=0. Поступают так: смотрят,
как ведет себя величина sα(x1, x2, ..., xn), когда α стремится к нулю.
Используя накопленный опыт отыскания приближенных значе-
ний показательной и логарифмической функций, покажите, что
при стремлении α к нулю величина sα(x1, x2, ..., xn) стремится к
npx1 x2 ... xn, т. е. к среднему геометрическому этих чисел.

С учетом результата задачи 1 отсюда, например, следует клас-
сическое неравенство между средним геометрическим и средним
арифметическим неотрицательных чисел (напишите его).

3. Если α→+∞, то sα(x1, x2, ..., xn)→max(x1, x2, ..., xn), а при
α→−∞ величина sα(x1, x2, ..., xn) стремится к меньшему из рас-
сматриваемых чисел, т. е. к min(x1, x2, ..., xn). Докажите это.

. Выпуклость. Весьма полезным свойством функции, если она
им обладает, является ее выпуклость. Вскользь о выпуклости мы
уже говорили, обсуждая геометрический смысл производной и ее
использование при построении графиков функций. Теперь допол-
ним сказанное там точным определением понятия выпуклости и
укажем некоторые возможности его применения.

Напомним, что в геометрии фигура, тело и вообще множество
называется выпуклым, если вместе с любой парой своих точек оно
содержит и весь соединяющий их отрезок.
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Пусть нам дана вещественнозначная функция f , определенная
на числовом промежутке [a, b]. В плоскости прямоугольных коорди-
нат (x, y) рассмотрим область D+f , лежащую над графиком Γ f функ-
ции f . Точнее, D+f :={(x, y): x∈[a, b], y¾ f (x)}. Эту область называ-
ют надграфиком функции f на промежутке [a, b]. Понятно, чт тогда
следует назвать подграфиком D−f функции f на данном промежутке.

Функция называется выпуклой (вогнутой) на некотором проме-
жутке, если ее надграфик (подграфик) на этом промежутке является
выпуклым множеством.

Например, функция sin вогнута (горб вверх) на промежутке
[0, π] и выпукла (горб вниз) на промежутке [π, 2π]. (В первом
случае тут крыша, с которой вода стекает, а во втором случае, т. е.
в случае выпуклости, тут сосуд, в который воду можно собрать.
Иногда вместо слов вогнутый и выпуклый говорят соответственно
выпуклый вверх и выпуклый вниз.) Поскольку функция sin имеет
период 2π, то теперь уже можно судить о характере ее выпуклости
на любом промежутке числовой оси.

Функция f , задаваемая соотношением f (x)= x2, выпукла на всей
числовой оси. Ee график— парабола— известен каждому со школь-
ной скамьи. Если же положить f (x)=−x2, то получим вогнутую
функцию, графиком которой является парабола, усы которой уходят
вниз, а горб торчит вверх.

Ясно, что замена f на− f и в общем случае обращает выпуклость
и вогнутость функции, поэтому достаточно изучить один из этих
двух случаев, например, случай выпуклой функции f .

1. Вспомните, как связаны графики прямой и обратной функций
f и f−1, и покажите, что на соответствующих друг другу промежут-
ках если одна из функций выпукла (вогнута), то другая вогнута (вы-
пукла).

Рассмотрите графики показательной функции и логарифма при
различных основаниях, а также графики степенной функции при
различных показателях степени.

2. Вспомните геометрический смысл производной и объясните
следующие утверждения:

дифференцируемая функция f выпукла на промежутке тогда и
только тогда, когда ее производная f ′ — неубывающая функция на
этом промежутке;
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если функция f имеет вторую производную f ′′ на промежутке,
то для выпуклости функции f достаточно, чтобы функция f ′′ была
неотрицательна на этом промежутке.

Как выглядят аналогичные утверждения для вогнутых функций?
Обоснуйте теперь характер выпуклости элементарных функций,

которые были перечислены в пункте 1.
3. Пусть функция f выпукла на промежутке [a, b]. Нарисуй-

те график функции f , соедините его концы отрезком, вспомните
определение выпуклой функции и, глядя на рисунок, объясните

важное неравенство f
�

a+ b
2

�
¶ f (a)+ f (b)

2 . Объясните, почему знак

равенства тут может быть только тогда, когда функция линейна на
отрезке [a, b], т. е. имеет вид f (x)= c0+ c1 x.

4. Докажите, что если функция f выпукла на промежутке [a, b],
а x1 и x2 — любые две точки этого промежутка, то

f
� x1+ x2

2

�
¶ f (x1)+ f (x2)

2 ;

и вообще, при любых α1¾0, α2¾0, таких что α1+α2=1,

f (α1 x1+α2 x2)¶ α1 f (x1)+α2 f (x2).

Каждое из этих двух неравенств можно было даже принять за
формальное аналитическое определение функции, выпуклой на
промежутке, a потом найти тот геометрический смысл выпуклости
функции, с которого мы начали.

5. По индукции или иначе докажите теперь, что если функция
f выпукла на промежутке [a, b], а x1, ..., xn — какие-то точки этого
промежутка, то справедливо следующее важное неравенство (обыч-
но называемое неравенством Йенсена)

f (α1 x1+ ...+αn xn)¶ α1 f (x1)+ ...+αn f (xn),

где α1, ...,αn любые неотрицательные числа такие, что α1+ ...+αn=
=1.

Выясните, при каких условиях в этом неравенстве возможен
знак равенства.

6. Область на плоскости или в пространстве называется строго
выпуклой, если отрезок, соединяющий любые две различные точки
границы области всеми своими точками, кроме концов, содержится
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строго внутри области (т. е. неконцевые точки отрезка лежат в об-
ласти, но уже не на ее границе). Например, стандартный круг или
шар строго выпуклы, а треугольник или полуплоскость не строго
выпуклы.

Просмотрите ход предыдущих определений и рассуждений. Дай-
те определение функции, строго выпуклой на промежутке и сфор-
мулируйте аналоги предыдущих неравенств в этом случае.

Как, по-вашему мнению, выглядит критерий строгой выпукло-
сти дифференцируемой функции в терминах строгой монотонности
ее производной на соответствующем промежутке?

7. Проверьте, что функция exp строго выпукла на вещественной
оси, а обратная к ней функция ln строго вогнута (выпукла вверх) на
области своего определения (т. е. для положительных значений ее
аргумента).

8. Напишите неравенство Йенсена для строго вогнутой функции
и, в частности, для функции ln. Получите из последнего неравенство

xα1
1 ... xαn

n ¶ α1 x1+ ...+αn xn,

где числа x1, ..., xn положительны, а α1, ..., αn — неотрицательные
числа, такие что α1 + ...+αn = 1. Укажите, когда это неравенство
обращается в равенство.

В частности, при α1= ...=αn=1/n отсюда получается классиче-
ское соотношение между средним геометрическим и средним ариф-
метическим, о котором было сказано в пункте  о средних. При ка-
ких условиях в нем возможно равенство?

9. Если дифференцируемая функция выпукла на каком-то проме-
жутке, то ее график лежит не ниже любой касательной к графику на
этом промежутке. Если функция к тому же строго выпукла, то все
точки графика, кроме точки касания, лежат строго выше касатель-
ной прямой. Объясните это, исходя из геометрического определе-
ния выпуклой и строго выпуклой функции.

Объясните в этой связи следующие соотношения:

ex¾ x+1, причем ex> x+1, если x 6=0;
ln x¶ x−1 при x>0 и ln x< x−1, если x>0, но x 6=1.
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