
А. В. Гордеев

ОПЕРАЦИОННЫЕ

СИСТЕМЫ
2-е издание

У Ч Е Б Н И К

А. В.Гордеев

ОПЕРАЦИОННЫЕ

СИСТЕМЫ
2-е издание

Допущено Министерством образования Российской Федерации
в качестве учебника для студентов высших учебных заведений, обучающихся

по направлению подготовки бакалавров и магистров «Информатика
и вычислительная техника» и направлению подготовки дипломированных

специалистов «Информатика и вычислительная техника»

300.piter.com

Издательская п р о г р а м м а

300 лучших учебников для высшей школы
в честь 300-летия Санкт-Петербурга
осуществляется при # Щ И в Д д а , Г ^

ф!нанс1в, жформац!йних
систем, менеджменту i б)знесу

Москва • Санкт-Петербург • Нижний Новгород • Воронеж
Ростов-на-Дону • Екатеринбург • Самара • Новосибирск

Киев • Харьков • Минск

2004

http://300.piter.com

Краткое содержание

Введение 8
Глава 1. Основные понятия 11
Глава 2. Управление задачами 50

Глава 3. Управление памятью в операционных системах 72
Глава 4. Особенности архитектуры микропроцессоров

i80x86 для организации мультипрограммных
операционных систем 101

Глава 5. Управление вводом-выводом
в операционных системах 130

Глава 6. Файловые системы 163

Глава 7. Организация параллельных

взаимодействующих вычислений 209

Глава 8. Проблема тупиков и методы борьбы с ними 247

Глава 9. Архитектура операционных систем 278

Глава 10. Краткий обзор современных

операционных систем 311

Глава 1 1 . Операционные системы Windows 361

Список терминов 396

Список литературы 406

Алфавитный указатель 409

Содержание _^___ ^

Сегментная, страничная и сегментно-страничная организация памяти 86
Сегментный способ организации виртуальной памяти 87
Страничный способ организации виртуальной памяти 93
Сегментно-страничный способ организации виртуальной памяти 97

Контрольные вопросы и задачи 99

Глава 4. Особенности архитектуры микропроцессоров
i80x86 для организации мультипрограммных
операционных систем 101
реальный и защищенный режимы работы процессора 101
Новые системные регистры микропроцессоров i80x86 103
Адресация в 32-разрядных микропроцессорах i80x86 при работе

в защищенном режиме 105
Поддержка сегментного способа организации виртуальной памяти 105
Поддержка страничного способа организации виртуальной памяти 110
Режим виртуальных машин для исполнения приложений реального режима 113

Защита адресного пространства задач 115
Уровни привилегий для защиты адресного пространства задач 115
Механизм шлюзов для передачи управления на сегменты кода

с другими уровнями привилегий 118
Система прерываний 32-разрядных микропроцессоров i80x86 122

Работа системы прерываний в реальном режиме 122
Работа системы прерываний в защищенном режиме 124

Контрольные вопросы и задачи 128

Глава 5. Управление вводом-выводом
в операционных системах 130
Основные концепции организации ввода-вывода в операционных системах 131

Режимы управления вводом-выводом 134
Закрепление устройств, общие устройства ввода-вывода 136
Основные системные таблицы ввода-вывода 138
Синхронный и асинхронный ввод-вывод 143
Организация внешней памяти на магнитных дисках 145

Основные понятия 145
Логическая структура магнитного диска 146
Системный загрузчик Windows NT/2000/XP 155

Кэширование операций ввода-вывода при работе с накопителями
на магнитных дисках '. 156

Контрольные вопросы и задачи 161
Вопросы для проверки 161
Задания 162

Глава 6. Файловые системы 1 6 3
Функции файловой системы и иерархия данных 163
Файловая система FAT 166

Таблица размещения файлов 167
Структура загрузочной записи DOS 170
Файловые системы VFAT и FAT32 171

Файловая система HPFS 177
Файловая система NTFS 188

Основные возможности файловой системы NTFS 189
Структура тома с файловой системой NTFS 190
Разрешения NTFS 194

Содержание

Введение 8
От издательства 10

Глава 1. Основные понятия 11
Назначение и функции операционных систем 11
Понятие операционной среды 16
Прерывания 18
Понятия вычислительного процесса и ресурса 25

Мультипрограммирование, многопользовательский режим работы
и режим разделения времени 27

Диаграмма состояний процесса 30
Реализация понятия последовательного процесса в операционных системах 34
Процессы и задачи 36

Основные виды ресурсов и возможности их разделения 42
Классификация операционных систем 46
Контрольные вопросы и задачи 49

Глава 2. Управление задачами 50
Планирование и диспетчеризация процессов и задач 52

Планирование вычислительных процессов и стратегии планирования 53
Дисциплины диспетчеризации 55

Качество диспетчеризации и гарантии обслуживания 63
Диспетчеризация задач с использованием динамических приоритетов 65
Контрольные вопросы и задачи 71

Глава 3. Управление памятью в операционных
системах 72
Память и отображения, виртуальное адресное пространство 73
Простое непрерывное распределение и распределение с перекрытием 76

Общие принципы управления памятью в однопрограммных операционных системах 76
Распределение оперативной памяти в MS DOS 78

Распределение памяти статическими и динамическими разделами 82
Разделы с фиксированными границами 82
Разделы с подвижными границами 85

6 - Содержание

Контрольные вопросы и задачи 207
Вопросы для проверки 207
Задания 208

Глава 7. Организация параллельных
взаимодействующих вычислений 209
Независимые и взаимодействующие вычислительные процессы 209
Средства синхронизации и связи взаимодействующих вычислительных процессов 215

Использование блокировки памяти при синхронизации параллельных процессов.... 215
Семафорные примитивы Дейкстры 224
Мьютексы 229
Использование семафоров при проектировании взаимодействующих

вычислительных процессов 230
Мониторы Хоара 236
Почтовые ящики 240
Конвейеры и очереди сообщений 242

Конвейеры 242
Очереди сообщений 244

Контрольные вопросы и задачи 246

Глава 8. Проблема тупиков и методы борьбы с ними .. 247
Понятие тупиковой ситуации при выполнении параллельных

вычислительных процессов 247
Примеры тупиковых ситуаций и причины их возникновения 249

Пример тупика на ресурсах типа CR 250
Пример тупика на ресурсах типа CR и SR 251
Пример тупика на ресурсах типа SR 252

Формальные модели для изучения проблемы тупиковых ситуаций 254
Сети Петри .- 254
Модель пространства состояний системы 259

Методы борьбы с тупиками 263
Предотвращение тупиков 263
Обход тупиков 264
Обнаружение тупика 267

Контрольные вопросы и задачи 277

Глава 9. Архитектура операционных систем 278
Основные принципы построения операционных систем 279

Принцип модульности 279
Принцип особого режима работы 280
Принцип виртуализации 281
Принцип мобильности 283
Принцип совместимости 285
Принцип генерируемости 286
Принцип открытости 287
Принцип обеспечения безопасности вычислений 287

Микроядерные операционные системы 289
Макроядерные операционные системы 292
Требования к операционным системам реального времени 293

Мультипрограммностьи мультизадачность 294
Приоритеты задач 294
Наследование приоритетов 295
Сихронизация процессов и задач 295
Предсказуемость 296

Интерфейсы операционных систем 296

Содержание _ _ _ _ _ _ _ _ _ _ _ _ _ _ ^ _ _ Z

Интерфейс прикладного программирования 298
Реализация функций API на уровне модулей операционной системы 299
Реализация функций API на уровне системы программирования 300
Реализация функций API с помощью внешних библиотек 302

Интерфейс POS1X 304
Примеры программирования для разных интерфейсов API 307
Контрольные вопросы и задачи 310

Глава 10. Краткий обзор современных
операционных систем 311
Семейство операционных систем UNIX 312

Общая характеристика и особенности архитектуры 312
Основные понятия 314
Функционирование 320
Файловая система 323
Взаимодействие между процессами 329
Операционная система Linux 336
Операционная система FreeBSD 339

Сетевая операционная система реального времени QNX 340
Архитектура системы QNX 342
Основные механизмы организации распределенных вычислений 345

Семейство операционных систем OS/2 Warp компании IBM 351
Особенности архитектуры и основные возможности 354
Особенности интерфейсов 357
Серверная операционная система OS/2 Warp 4.5 359

Контрольные вопросы и задачи 360

Глава 1 1 . Операционные системы Windows 361
Операционные системы Windows 9x 363

Краткая историческая справка 363
Общие сведения 365
Организация многозадачности 369
Распределение оперативной памяти 373

Операционные системы Windows NT/2000/XP 378
Краткая историческая справка 378
Основные особенности архитектуры 382
Модель безопасности 387
Распределение оперативной памяти 390

Контрольные вопросы и задачи 394
Вопросы для проверки 394
Задания 395

Список терминов 396

Список литературы 406

Алфавитный указатель 409

Введение У

ствий, предлагаемых системой, взаимодействуют с компьютером и своими про­
граммами. Такое взаимодействие осуществляется исключительно через операци­
онную систему. Помимо выполнения этой важнейшей функции операционные
системы отвечают за эффективное распределение вычислительных ресурсов и орга­
низацию надежных вычислений.

Знание основ организации операционных систем и принципов их функциониро­
вания позволяет использовать компьютеры более эффективно. Глубокое изуче­
ние операционных систем позволяет применить эти знания прежде всего при со­
здании программного обеспечения. Если, к большому сожалению, в нашей стране
в последние годы практически не создаются новые операционные системы, то раз­
работки сложных информационных систем, комплексов программ и отдельных
приложений, предназначенных для работы в широко распространенных операци­
онных системах, ведутся достаточно интенсивно, причем большим числом орга­
низаций. И здесь знание операционных систем, принципов их функционирования,
методов организации вычислений является не только желательным, но обязатель­
ным.

Дисциплина «Операционные системы» является одной из важнейших. Она вклю­
чена в Государственный образовательный стандарт по направлению 654600 —
«Информатика и вычислительная техника» и отнесена к блоку общепрофессио­
нальных дисциплин. В рамках этого направления имеется несколько специально­
стей, в том числе 220100 — «Вычислительные машины, комплексы, системы и сети»,
220200 — «Автоматизированные системы обработки информации и управления»,
220300 — «Системы автоматизированного проектирования», 220400 — «Программ­
ное обеспечение вычислительной техники и автоматизированных систем». Имен­
но для студентов вузов, обучающихся по этим специальностям, и предназначается
настоящая книга. Однако она может быть востребована и студентами других спе­
циальностей, изучающих информатику и вычислительную технику, а также обыч­
ными подготовленными пользователями, желающими углубить свои познания в
области операционных систем, ибо сегодня уже мало просто уметь работать на
компьютере, а желательно понимать, как он работает, как организуются в нем вы­
числения. Знания основных принципов организации вычислительных процессов,
понимание проблем, которые при этом возникают, и методов их решения позволя­
ют обдуманно подходить к использованию компьютера, предусмотреть и предотв­
ратить нежелательные явления. Помимо общетеоретических в книге рассмотрены
и отдельные практические вопросы, описаны конкретные реализации отдельных
модулей и подсистем.

Учебный материал, ставший основой для настоящей книги, уже в течение несколь­
ких лет читается студентам специальности 220100 в Санкт-Петербургском госу­
дарственном университете аэрокосмического приборостроения. Материал пост­
роен с учетом упомянутого Государственного образовательного стандарта по
направлению «Информатика и вычислительная техника», регламентирующего
содержание дисциплины «Операционные системы». В основу издания легла пере­
работанная первая часть учебника «Системное программное обеспечение», вышед­
шего в издательстве «Питер» в 2001 году и используемого в учебном процессе во

Введение

Как известно, процесс проникновения информационных технологий практически
во все сферы человеческой деятельности продолжает развиваться и углубляться.
Помимо уже привычных и широко распространенных персональных компьюте­
ров, общее число которых достигло многих сотен миллионов, становится все боль­
ше и встроенных средств вычислительной техники. Пользователей всей этой раз­
нообразной вычислительной техники становится все больше, причем наблюдается
развитие двух вроде бы противоположных тенденций. С одной стороны, инфор­
мационные технологии все усложняются, и для их применения, и тем более даль­
нейшего развития, требуется иметь очень глубокие познания. С другой стороны,
упрощаются интерфейсы взаимодействия пользователей с компьютерами. Ком­
пьютеры и информационные системы становятся все более дружественными и
понятными даже для человека, не являющегося специалистом в области инфор­
матики и вычислительной техники. Это стало возможным прежде всего потому,
что пользователи и их программы взаимодействуют с вычислительной техникой
посредством специального (системного) программного обеспечения — через опе­
рационную систему.

Операционная система предоставляет интерфейсы и для выполняющихся прило­
жений, и для пользователей. Программы пользователей, да и многие служебные
программы запрашивают у операционной системы выполнение тех операций, ко­
торые достаточно часто встречаются практически в любой программе. К таким
операциям, прежде всего, относятся операции ввода-вывода, запуск или останов
какой-нибудь программы, получение дополнительного блока памяти или его ос­
вобождение и многие другие. Подобные операции невыгодно каждый раз програм­
мировать заново и непосредственно размещать в виде двоичного кода в теле про­
граммы, их удобнее собрать вместе и предоставлять для выполнения по запросу из
программ. Это и есть одна из важнейших функций операционных систем. При­
кладные программы, да и многие системные обрабатывающие программы (такие,
например, как системы программирования или системы управления базами дан­
ных), не имеют непосредственного доступа к аппаратуре компьютера, а взаимо­
действуют с ней только через обращения к операционной системе. Пользователи
также путем ввода команд операционной системы или выбором возможных дей-

10 Введение

многих вузах. При работе над рукописью автор постарался учесть те советы и за­
мечания от коллег по цеху, которые были получены после выхода в свет книги
«Системное программное обеспечение».

Напоследок хочется высказать самые теплые слова благодарности всем тем, кто
принял участие в подготовке этой книги к изданию. Это и Андрей Васильев, кото­
рого, к сожалению, уже больше нет среди нас, и его замечательные коллеги — со­
трудники издательства «Питер». Своим кропотливым трудом, вниманием и доб­
рожелательным отношением они помогли преодолеть возникшие трудности. Работа
над книгой — длительный процесс: хочется улучшить то одно, то другое, перепи­
сать или добавить, а времени свободного, да еще в достаточном количестве, как
всегда, нет. В связи с этим хочется также поблагодарить своих родных и близких
за долготерпение, доброжелательность и сердечную заботу в течение всего вре­
мени работы над рукописью. Без их поддержки эта книга, скорее всего, не состоя­
лась бы.

От издательства
Ваши замечания, предложения, вопросы отправляйте по адресу электронной по­

чты comp@piter.com (издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!

Подробную информацию о наших книгах вы найдете на web-сайте издательства
http://www. piter.com.

mailto:comp@piter.com
http://www
http://piter.com

лава 1. Основные понятия

Эта глава является вводной и, пожалуй, самой главной. Любой предмет имеет свои
основные понятия и положения. Не является исключением и дисциплина «Опе­
рационные системы». К основным понятиям, без которых практически невозмож­
но по-настоящему изучить эту дисциплину, понять основные принципы организа­
ции вычислений, взаимодействия прикладных программ с операционной системой
и пользователей с компьютерами, следует, прежде всего, отнести понятия вычис­
лительных процессов и ресурсов, системной программы, супервизора, операцион­
ной среды, прерываний. Мы также рассмотрим относительно новые понятия, к
которым относятся поток выполнения и задача; они дополняют понятие вычисли­
тельного процесса и позволяют более эффективно организовать работу компьюте­
ра. Поскольку абсолютное большинство операционных систем обеспечивают воз­
можность параллельного выполнения нескольких программ, мы познакомимся с
понятием мультипрограммирования. Завершается глава обзором основных обще­
принятых классификаций.

Назначение и функции
операционных систем
Операционные системы относятся к системному программному обеспечению. Как
известно, все программное обеспечение разделяется на системное и прикладное.
К системному программному обеспечению принято относить такие программы
и комплексы программ, которые являются общими, без которых невозможно вы­
полнение или создание других программ. История появления и развития систем­
ного программного обеспечения началась с того момента, когда люди осознали,
что любая программа требует операций ввода-вывода данных. Это произошло в да­
лекие 50-е годы прошлого столетия. Собственно операционные системы появи­
лись чуть позже.

Действительно, если мы не будем иметь возможности изменять исходные данные
и получать результаты вычислений, то зачем вообще эти вычисления? Очевидно,
что исходные данные могут вводиться различными способами. На практике ис­
пользуются самые разнообразные устройства и методы. Например, мы можем вво-

12 Глава 1. Основные понятия

дить исходные значения с клавиатуры, задавать нужные действия или функции с
помощью указателя мыши» считывать записи из файла, снимать оцифрованные
значения с датчиков и т. д. Часть исходных данных может быть передана в про­
грамму через область памяти, в которую предварительно другая программа занес­
ла свои результаты вычислений. Способов много. Главное — выполнить в програм­
ме некоторые действия, связанные с получением исходных данных.

Аналогично, и вывод результатов может быть организован, например, на соот­
ветствующие устройства и в форме, удобной для восприятия ее человеком. Либо
результаты расчетов будут отправляться программой на какие-нибудь испол­
нительные устройства, которые управляются компьютером. Наконец, мы можем
организовать запись полученных значений на некие устройства хранения данных
(с целью их дальнейшей обработки).

Программирование операций ввода-вывода относится к одной из самых трудоем­
ких областей создания программного обеспечения. Здесь речь идет не об исполь­
зовании операторов типа READ или WRITE в языках высокого уровня. Речь идет о
необходимости создать подпрограмму в машинном виде, уже готовую к выполне­
нию на компьютере, а не написанную с помощью некоторой системы программи­
рования (систем программирования тогда еще не было), подпрограмму, вместо
обычных вычислений управляющую тем устройством, которое должно участво­
вать в операциях ввода исходных данных или вывода результатов. При наличии
такой подпрограммы программист может обращаться к ней столько раз, сколько
операций ввода-вывода с этим устройством ему требуется. Для выполнения этой
работы программисту недостаточно хорошо знать архитектуру вычислительного
комплекса и уметь создавать программы на языке ассемблера. Он должен отлично
знать и интерфейс, с помощью которого устройство подключено к центральной
части компьютера, и алгоритм функционирования устройства управления устрой­
ства ввода-вывода.

Очевидно, что имело смысл создать набор подпрограмм управления операциями
ввода-вывода и использовать его в своих программах, чтобы не заставлять програм­
мистов каждый раз заново программировать все эти операции. С этого и началась
история системного программного обеспечения. Впоследствии набор подпрограмм
ввода-вывода стали организовывать в виде специальной библиотеки ввода-выво­
да, а затем появились и сами операционные системы. Основной причиной их по­
явления было желание автоматизировать процесс подготовки вычислительного
комплекса к выполнению программы.

В 50-е годы взаимодействие пользователей с вычислительным комплексом было
совершенно иным, чем нынче, Программист-кодер (от англ. coder — кодировщик) —
специально подготовленный специалист, знающий архитектуру компьютера и язык(и)
программирования, — по заказу составлял текст программы, часто по уже готово­
му алгоритму, разработанному программистом-алгоритмистом. Текст этой програм­
мы затем отдавался оператору, который набирал его на специальных устройствах
и переносил на соответствующие носители. Чаще всего в качестве носителей ис­
пользовались перфокарты или перфолента. Далее колода с перфокартами (перфо­
лента) передавалась в вычислительный зал, где для вычислений по этой програм­
ме требовалось выполнить следующие действия.

Назначение и функции операционных систем • о

1 Оператор вычислительного комплекса с пульта вводил в рабочие регистры цен­
трального процессора и в оперативную память компьютера ту первоначальную
программу, которая позволяла считать в память программу для трансляции
исходных кодов и получения машинной (двоичной) программы (проще гово­
ря, транслятор, который тоже хранился на перфокартах или перфоленте).

2. Транслятор считывал исходную программу, осуществлял лексический разбор
исходного текста, и промежуточные результаты процесса трансляции зачастую
так же выводили на перфокарты (перфоленту). Трансляция — сложный про­
цесс, часто требующий нескольких проходов. Порой для выполнения очеред­
ного прохода приходилось в память компьютера загружать с перфокарт и сле­
дующую часть транслятора, и промежуточные результаты трансляции. Ведь
результат трансляции выводился также на носители информации, поскольку
объем оперативной памяти был небольшим, а задача трансляции — это очень
сложная задача.

3. Оператор загружал в оперативную память компьютера полученные двоичные
коды оттранслированной программы и подгружал двоичные коды тех систем­
ных подпрограмм, которые реализовывали управление операциями ввода-вы­
вода. После этого готовая программа, расположенная в памяти, могла сама счи­
тывать исходные данные и осуществлять необходимые вычисления.

В случае обнаружения ошибок на одном из этих этапов или после анализа полу­
ченных результатов весь цикл необходимо было повторить.

Для автоматизации труда программиста (кодера) стали разрабатывать специаль­
ные алгоритмические языки высокого уровня, а для автоматизации труда опера­
тора вычислительного комплекса была разработана специальная управляющая
программа, загрузив которую в память один раз оператор мог ее далее использо­
вать неоднократно и более не обращаться к процедуре программирования ЭВМ
через пульт оператора. Именно эту управляющую программу и стали называть
операционной системой. Со временем на нее стали возлагать все больше и больше
задач, она стала расти в объеме. Прежде всего разработчики стремились к тому,
чтобы операционная система как можно более эффективно распределяла вычис­
лительные ресурсы компьютера, ведь в 60-е годы операционные системы уже по­
зволяли организовать параллельное выполнение нескольких программ. Помимо
задач распределения ресурсов появились задачи обеспечения надежности вычис­
лений. К началу 70-х годов диалоговый режим работы с компьютером стал преоб­
ладающим, и у операционных систем стремительно начали развиваться интерфейс­
ные возможности. Напомним, что термином интерфейс (interface) обозначают
целый комплекс спецификаций, определяющих конкретный способ взаимодей­
ствия пользователя с компьютером.

На сегодняшний день можно констатировать, что операционная система (ОС) пред­
ставляет собой комплекс системных1 управляющих и обрабатывающих программ,
которые, с одной стороны, выступают как интерфейс между аппаратурой компью-

Системными принято называть такие программы, которые используются всеми остальными про­
граммами.

14 Глава 1. Основные понятия

тера и пользователем с его задачами, а с другой стороны, предназначены для наи­
более эффективного расходования ресурсов вычислительной системы и организа­
ции надежных вычислений.

Можно попробовать перечислить основные функции операционных систем.

• Прием от пользователя (или от оператора системы) заданий, или команд, сфор­
мулированных на соответствующем языке, и их обработка. Задания могут пе­
редаваться в виде текстовых директив (команд) оператора или в форме указа­
ний, выполняемых с помощью манипулятора (например, с помощью мыши).
Эти команды связаны, прежде всего, с запуском (приостановкой, остановкой)
программ, с операциями над файлами (получить перечень файлов в текущем
каталоге, создать, переименовать, скопировать, переместить тот или иной файл
и др.), хотя имеются и иные команды.

• Загрузка в оперативную память подлежащих исполнению программ.

Q Распределение памяти, а в большинстве современных систем и организация
виртуальной памяти.

Q Запуск программы (передача ей управления, в результате чего процессор ис­
полняет программу).

• Идентификация всех программ и данных.

Q Прием и исполнение различных запросов от выполняющихся приложений.
Операционная система умеет выполнять очень большое количество системных
функций (сервисов), которые могут быть запрошены из выполняющейся про­
граммы. Обращение к этим сервисам осуществляется по соответствующим пра­
вилам, которые и определяют интерфейс прикладного программирования (Ap­
plication Program Interface, API) этой операционной системы.

• Обслуживание всех операций ввода-вывода.

Q Обеспечение работы систем управлений файлами (СУФ) и/или систем управ­
ления базами данных (СУБД), что позволяет резко увеличить эффективность
всего программного обеспечения.

• Обеспечение режима мультипрограммирования, то есть организация параллель­
ного выполнения двух или более программ на одном процессоре, создающая
видимость их одновременного исполнения.

• Планирование и диспетчеризация задач в соответствии с заданными стратеги­
ей и дисциплинами обслуживания.

Q Организация механизмов обмена сообщениями и данными между выполняю­
щимися программами.

Q Для сетевых операционных систем характерной является функция обеспече­
ния взаимодействия связанных между собой компьютеров.

• Защита одной программы от влияния другой, обеспечение сохранности дан­
ных, защита самой операционной системы от исполняющихся на компьютере
приложений.

Q Аутентификация и авторизация пользователей (для большинства диалоговых
операционных систем). Под аутентификацией понимается процедура проверки

имени пользователя и его пароля на соответствие тем значениям, которые хра­
нятся в его учетной записи1. Очевидно, что если входное имя (login2) пользовате­
ля и его пароль совпадают, то, скорее всего, это и будет тот самый пользователь.
Термин авторизация означает, что в соответствии с учетной записью пользова­
теля, который прошел аутентификацию, ему (и всем запросам, которые будут
идти к операционной системе от его имени) назначаются определенные права
(привилегии), определяющие, что он может, а что не может делать на компьютере.

О Удовлетворение жестким ограничениям на время ответа в режиме реального
времени (характерно для операционных систем реального времени).

О Обеспечение работы систем программирования, с помощью которых пользова­
тели готовят свои программы.

Q Предоставление услуг на случай частичного сбоя системы.

Операционная система изолирует аппаратное обеспечение компьютера от приклад­
ных программ пользователей. И пользователь, и его программы взаимодействуют
с компьютером через интерфейсы операционной системы. Это можно проиллюст­
рировать, например, рис. 1.1.

Программы

^^И^^^ш*
• . *

Рис. 1.1. Взаимодействие пользователя и его программ с компьютером
через операционную систему

Если операционная система не поддерживает механизм учетных записей, как это имеет место, на­
пример, в семействе операционных систем Windows 9x компании Microsoft, то пароль сверяется по
специальному файлу, где он хранится в зашифрованном виде.
В 70-е годы пользователи за терминалом писали tog in, и это означало процедуру регистрации. Были
системы, в которых требовалось набрать команду log on, что означало то же самое.

16 Глава 1. Основные понятия

Понятие операционной среды
Итак, операционная система выполняет функции управления вычислениями в ком­
пьютере, распределяет ресурсы вычислительной системы между различными вы­
числительными процессами и образует ту программную среду, в которой выполня­
ются прикладные программы пользователей. Такая среда называется операционной.
Последнее следует понимать в том плане, что при запуске программы она будет
обращаться к операционной системе с соответствующими запросами на выполне­
ние определенных действий, или функций. Эти функции операционная система
выполняет, запуская специальные системные программные модули, входящие в ее
состав.

Итак, при создании двоичных машинных программ прикладные программисты
могут вообще не знать многих деталей управления конкретными ресурсами вы­
числительной системы, а должны только обращаться к некоторой программной
подсистеме с соответствующими вызовами и получать от нее необходимые функ­
ции и сервисы. Эта программная подсистема и есть операционная система, а набор
ее функций и сервисов, а также правила обращения к ним как раз и образуют то
базовое понятие, которое мы называем операционной средой. Таким образом, мож­
но сказать, что термин «операционная среда» означает, прежде всего, соответству­
ющие интерфейсы, необходимые программам и пользователям для обращения к
управляющей (супервизорной) части операционной системы с целью получить
определенные сервисы.

Системных функций бывает много, они определяют те возможности, которые опера­
ционная система предоставляет выполняющимся под ее управлением приложени­
ям. Такого рода системные запросы (вызовы системных операций, или функций)
либо явно прописываются в тексте программы программистами, либо подстав­
ляются автоматически самой системой программирования на этапе трансляции
исходного текста разрабатываемой программы. Каждая операционная система
имеет свое множество системных функций; они вызываются соответствующим
образом, по принятым в системе правилам. Совокупность системных вызовов и пра­
вил, по которым их следует использовать, как раз и определяет уже упомянутый
нами интерфейс прикладного программирования (API). Очевидно, что програм­
ма, созданная для работы в некоторой операционной системе, скорее всего не бу­
дет работать в другой операционной системе, поскольку API у этих операционных
систем, как правило, различаются. Стараясь преодолеть это ограничение, разра­
ботчики операционных систем стали создавать так называемые программные сре­
ды. Программную (системную) среду следует понимать как некоторое системное
программное окружение, позволяющее выполнить все системные запросы от при­
кладной программы. Та системная программная среда, которая непосредственно
образуется кодом операционной системы, называется основной, естественной, или
нативной (native). Помимо основной операционной среды в операционной систе­
ме могут быть организованы (путем эмуляции иной операционной среды) допол­
нительные программные среды. Если в операционной системе организована рабо­
та с различными операционными средами, то в такой системе можно выполнять
программы, созданные не только для данной, но и для других операционных систем.

Понятие операционной среды 1 7

Можно сказать, что программы создаются для работы в некоторой заданной опе­
рационной среде. Например, можно создать программу для работы в среде DOS.
Если такая программа все функции, связанные с операциями ввода-вывода и с за­
просами памяти, выполняет не сама, а за счет обращения к системным функциям
DOS, то она будет (в абсолютном большинстве случаев) успешно выполняться и в
MS DOS, и в PC DOS, и в Windows 9x, и в Windows 2000, и в OS/2, и даже в Linux.
Итак, параллельное существование терминов «операционная система» и «опера­
ционная среда» вызвано тем, что операционная система (в общем случае) может
поддерживать несколько операционных сред. Почти все современные 32-разряд­
ные операционные системы, созданные для персональных компьютеров, поддер­
живают по нескольку операционных сред. Так, операционная система OS/2 Warp,
которая в свое время была одной из лучших в этом отношении, может выполнять

Цл следующие программы:

ct Q основные программы, созданные с учетом соответствующего «родного» 32-раз-
^ ряднго программного интерфейса этой операционной системы;

<?>• Q 16-разрядные программы, созданные для систем OS/2 первого поколения;

Q 16-разрядные приложения, разработанные для выполнения в операционной
среде MS DOS или PC DOS;

Q 16-разрядные приложения, созданные для операционной среды Windows 3.x;

Q саму операционную оболочку Windows 3.x и уже в ней — созданные для нее
программы.

А операционная система Windows XP позволяет выполнять помимо основных
приложений, созданных с использованием Win32API, 16-разрядные приложения
для Windows 3.x, 16-разрядные DOS-приложения, 16-разрядные приложения для
первой версии OS/2.

Операционная среда может включать несколько интерфейсов: пользовательские
и программные. Если говорить о пользовательских, то, например, система Linux
имеет для пользователя как интерфейсы командной строки (можно использовать
различные «оболочки» — shell), наподобие Norton Commander, например Midnight
Commander, так и графические интерфейсы, например X-Window с различными
менеджерами окон — KDE, Gnome и др. Если же говорить о программных интер­
фейсах, то в тех же операционных системах с общим названием Linux программы
могут обращаться как к операционной системе за соответствующими сервисами и
функциями, так и к графической подсистеме (если она используется). С точки зре­
ния архитектуры процессора (и персонального компьютера в целом) двоичная
программа, созданная для работы в среде Linux, использует те же команды и фор­
маты данных, что и программа, созданная для работы в среде Windows NT. Однако
в первом случае мы имеем обращение к одной операционной среде, а во втором —
к другой. И программа, созданная непосредственно для Windows, не будет выпол­
няться в Linux; однако если в операционной системе Linux организовать полно­
ценную операционную среду Windows, то наша Windows-программа может быть
выполнена. Завершая этот раздел, можно еще раз сказать, что операционная сре­
да — это то системное программное окружение, в котором могут выполняться про­
граммы, созданные по правилам работы

* 1 о е в # Ш & й с ь к и й ушверситет
ф1нанс1в, ЫформацШних

систем, менеджменту i 6i3Hecy
ВЩокремлений п1дроздш

v М Ж И Т Й М И Ы

18 Глава 1. Основные понятия

Прерывания
Прерывания представляют собой механизм, позволяющий координировать парал­
лельное функционирование отдельных устройств вычислительной системы и реа­
гировать на особые состояния, возникающие при работе процессора, то есть пре­
рывание — это принудительная передача управления от выполняемой программы
к системе (а через нее — к соответствующей программе обработки прерывания),
происходящая при возникновении определенного события.

Идея прерывания была предложена также очень давно — в середине 50-х годов, —
и можно без преувеличения сказать, что она внесла наиболее весомый вклад в раз­
витие вычислительной техники. Основная цель введения прерываний — реализа­
ция асинхронного режима функционирования и распараллеливание работы отдель­
ных устройств вычислительного комплекса.

Механизм прерываний реализуется аппаратно-программными средствами. Струк­
туры систем прерывания (в зависимости от аппаратной архитектуры) могут быть
самыми разными, но все они имеют одну общую особенность — прерывание непре­
менно влечет за собой изменение порядка выполнения команд процессором.

Механизм обработки прерываний независимо от архитектуры вычислительной
системы подразумевает выполнение некоторой последовательности шагов.

1. Установление факта прерывания (прием сигнала запроса на прерывание) и
идентификация прерывания (в операционных системах идентификация пре­
рывания иногда осуществляется повторно, на шаге 4).

2. Запоминание состояния прерванного процесса вычислений. Состояние процесса
выполнения программы определяется, прежде всего, значением счетчика ко­
манд (адресом следующей команды, который, например, в i80x86 определяется
регистрами CS и IP — указателем команды [1,8, 48]), содержимым регистров
процессора, и может включать также спецификацию режима (например, режим
пользовательский или привилегированный) и другую информацию.

3. Управление аппаратно передается на подпрограмму обработки прерывания.
В простейшем случае в счетчик команд заносится начальный адрес подпро­
граммы обработки прерываний, а в соответствующие регистры — информация
из слова состояния. В более развитых процессорах, например в 32-разрядных
микропроцессорах фирмы Intel (начиная с i80386 и включая последние про­
цессоры Pentium IV) и им подобных, осуществляются достаточно сложная про­
цедура определения начального адреса соответствующей подпрограммы обра­
ботки прерывания и не менее сложная процедура инициализации рабочих
регистров процессора (подробно эти вопросы рассматриваются в разделе «Си­
стема прерываний 32-разрядных микропроцессоров i80x86» главы 4).

4. Сохранение информации о прерванной программе, которую не удалось спасти
на шаге 2 с помощью аппаратуры. В некоторых процессорах предусматривает­
ся запоминание довольно большого объема информации о состоянии прерван­
ных вычислений.

5. Собственно выполнение программы, связанной с обработкой прерывания. Эта
работа может быть выполнена той же подпрограммой, на которую было переда-

Прерывания 19

но управление на шаге 3, но в операционных системах достаточно часто она
реализуется путем последующего вызова соответствующей подпрограммы.

6. Восстановление информации, относящейся к прерванному процессу (этап, об­

ратный шагу 4).

7. Возврат на прерванную программу.

Шаги 1-3 реализуются аппаратно, шаги 4-7 — программно.

На рис. 1.2 показано, что при возникновении запроса на прерывание естественный
ход вычислений нарушается и управление передается на программу обработки
возникшего прерывания. При этом средствами аппаратуры сохраняется (как пра­
вило, с помощью механизмов стековой памяти) адрес той команды, с которой следу­
ет продолжить выполнение прерванной программы. После выполнения программы
обработки прерывания управление возвращается на прерванную ранее программу
посредством занесения в указатель команд сохраненного адреса команды, кото­
рую нужно было бы выполнить, если бы не возникло прерывание. Однако такая
схема используется только в самых простых программных средах. В мультипро­
граммных операционных системах обработка прерываний происходит по более
сложным схемам, о чем будет более подробно написано ниже.

Итак, главные функции механизма прерываний — это:

Q распознавание или классификация прерываний;

Q передача управления соответствующему обработчику прерываний;

Q корректное возвращение к прерванной программе.

Переход от прерываемой программы к обработчику и обратно должен выполнять­
ся как можно быстрей. Одним из самых простых и быстрых методов является ис­
пользование таблицы, содержащей перечень всех допустимых для компьютера
прерываний и адреса соответствующих обработчиков. Для корректного возвраще­
ния к прерванной программе перед передачей управления обработчику прерыва­
ний содержимое регистров процессора запоминается либо в памяти с прямым до­
ступом, либо в системном стеке (system stack).

Прерывания, возникающие при работе вычислительной системы, можно разделить
на два основных класса: внешние (их иногда называют асинхронными) и внутрен­
ние (синхронные).

Внешние прерывания вызываются асинхронными событиями, которые происходят
вне прерываемого процесса, например:

• прерывания от таймера;

• прерывания от внешних устройств (прерывания по вводу-выводу);

• прерывания по нарушению питания;

• прерывания с пульта оператора вычислительной системы;

Q прерывания от другого процессора или другой вычислительной системы.

Внутренние прерывания вызываются событиями, которые связаны с работой про­

цессора и являются синхронными с его операциями. Примерами являются следу­

ющие запросы на прерывания:

20 Глава 1. Основные понятия

Q при нарушении адресации (в адресной части выполняемой команды указан зап­
рещенный или несуществующий адрес, обращение к отсутствующему сегменту
или странице при организации механизмов виртуальной памяти);

• при наличии в поле кода операции незадействованной двоичной комбинации;

• при делении на ноль;

Q вследствие переполнения или исчезновения порядка;

Q от средств контроля (например, вследствие обнаружения ошибки четности,
ошибок в работе различных устройств).

Отключение
прерываний,сохранение

контекста прерванной
программы, установка

режима работы системы
прерываний

Собственно тело
программы обработки

прерывания

Восстановление
контекста прерванной

ранее программы,
установка прежнего

режима работы
системы прерываний

Рис. 1.2. Обработка прерывания

Могут еще существовать прерывания в связи с попыткой выполнить команду, ко­
торая сейчас запрещена. Во многих компьютерах часть команд должна выполняться
только кодом самой операционной системы, но не прикладными программами. Это
делается с целью повышения защищенности выполняемых на компьютере вычис­
лений. Соответственно в аппаратуре предусмотрены различные режимы работы,
и пользовательские программы выполняются в режиме, в котором некоторое под-

Исполняемая
программа

Прерывания 2 1

множество команд, называемых привилегированными, не исполняется. К приви­
легированным командам помимо команд ввода-вывода относятся и команды пе­
реключения режима работа центрального процессора, и команды инициализации
некоторых системных регистров процессора. При попытке использовать команду,
запрещенную в данном режиме, происходит внутреннее прерывание, и управле­
ние передается самой операционной системе.

Наконец, существуют собственно программные прерывания. Эти прерывания про­
исходят по соответствующей команде прерывания, то есть по этой команде про­
цессор осуществляет практически те же действия, что и при обычных внутренних
прерываниях. Этот механизм был специально введен для того, чтобы переключе­
ние на системные программные модули происходило не просто как переход на
подпрограмму, а точно таким же образом, как и обычное прерывание. Этим, преж­
де всего, обеспечивается автоматическое переключение процессора в привилеги­
рованный режим с возможностью исполнения любых команд.
Сигналы, вызывающие прерывания, формируются вне процессора или в самом
процессоре, они могут возникать одновременно. Выбор одного из них для обра­
ботки осуществляется на основе приоритетов, приписанных каждому типу преры­
вания. Так, со всей очевидностью, прерывания от схем контроля процессора долж­
ны обладать наивысшим приоритетом (действительно, если аппаратура работает
неправильно, то не имеет смысла продолжать обработку информации). На рис. 1.3
изображен обычный порядок (приоритеты) обработки прерываний в зависимости
от типа прерываний. Учет приоритета может быть встроен в технические средства,
а также определяться операционной системой, то есть кроме аппаратно реализо­
ванных приоритетов прерывания большинство вычислительных машин и комп­
лексов допускают программно-аппаратное управление порядком обработки сигна­
лов прерывания. Второй способ, дополняя первый, позволяет применять различные
дисциплины обслуживания прерываний.

Средства контроля процессора

Системный таймер

Внешние устройства <

Рис. 1.3. Распределение прерываний по уровням приоритета

Наличие сигнала прерывания не обязательно должно вызывать прерывание ис­
полняющейся программы. Процессор может обладать средствами защиты от пре­
рываний: отключение системы прерываний, маскирование (запрет) отдельных сиг-

Магнитные диски

Сетевое оборудование

Терминалы

ммные прерывания

22 Глава 1. Основные понятия

налов прерывания. Программное управление этими средствами (существуют спе­
циальные команды для управления работой системы прерываний) позволяет опе­
рационной системе регулировать обработку сигналов прерывания, заставляя про­
цессор обрабатывать их сразу по приходу; откладывать обработку на некоторое
время; полностью игнорировать прерывания. Обычно операция прерывания вы­
полняется только после завершения выполнения текущей команды. Поскольку
сигналы прерывания возникают в произвольные моменты времени, то на момент
прерывания может существовать несколько сигналов прерывания, которые могут
быть обработаны только последовательно. Чтобы обработать сигналы прерывания
в разумном порядке, им (как уже отмечалось) присваиваются приоритеты. Сигнал
с более высоким приоритетом обрабатывается в первую очередь, обработка осталь­
ных сигналов прерывания откладывается.

Программное управление специальными регистрами маски (маскирование сигна­
лов прерывания) позволяет реализовать различные дисциплины обслуживания.

• С относительными приоритетами, то есть обслуживание не прерывается даже
при наличии запросов с более высокими приоритетами. После окончания об­
служивания данного запроса обслуживается запрос с наивысшим приоритетом.
Для организации такой дисциплины необходимо в программе обслуживания
данного запроса наложить маски на все остальные сигналы прерывания или
просто отключить систему прерываний.

О С абсолютными приоритетами, то есть всегда обслуживается прерывание с
наивысшим приоритетом. Для реализации этого режима необходимо на время
обработки прерывания замаскировать все запросы с более низким приорите­
том. При этом возможно многоуровневое прерывание, то есть прерывание про­
грамм обработки прерываний. Число уровней прерывания в этом режиме изме­
няется И зависит от приоритета запроса.

• По принципу стека, или, как иногда говорят, по дисциплине LCFS (Last Come
First Served — последним пришел, первым обслужен), то есть запросы с более
низким приоритетом могут прерывать обработку прерывания с более высоким
приоритетом. Дли этого необходимо не накладывать маску ни на один из сиг­
налов прерывания и не выключать систему прерываний.

Следует особо отметить, что для правильной реализации последних двух дисцип­
лин нужно обеспечить полное маскирование системы прерываний при выполне­
нии шагов 1-4 и 6-7. Это необходимо для того, чтобы не потерять запрос и пра­
вильно его обслужить. Многоуровневое прерывание должно происходить на этапе
собственно обработки прерывания, а не на этапе перехода с одного процесса вы­
числений на другой.

Управление ходом выполнения задач со стороны операционной системы заключа­
ется в организации реакций на прерывания, в организации обмена информацией
(данными и программами), в предоставлении необходимых ресурсов, в динамике
выполнения задачи и в организации сервиса. Причины прерываний определяет
операционная система (модуль, который называют супервизором прерываний), она
же и выполняет действия, необходимые при данном прерывании и в данной ситуа­
ции. Поэтому в состав любой операционной системы реального времени прежде

Прерывания 2 3

всего входят программы управления системой прерываний, контроля состояний
задач и событий, синхронизации задач, средства распределения памяти и управле­
ния ею, а уже потом средства организации данных (с помощью файловых систем
и т. д. Следует однако заметить, что современная операционная система реального
времени должна вносить в аппаратно-программный комплекс нечто большее, не­
жели просто обеспечение быстрой реакции на прерывания.

Как мы уже знаем, при появлении запроса на прерывание система прерываний
идентифицирует сигнал и, если прерывания разрешены, то управление передает­
ся на соответствующую подпрограмму обработки. Из рис. 1.2 видно, что в под­
программе обработки прерывания имеется две служебные секции. Это — первая
секция, в которой осуществляется сохранение контекста прерываемых вычисле­
ний, который не смог быть сохранен на шаге 2, и последняя, заключительная сек­
ция, в которой, наоборот, осуществляется восстановление контекста. Для того что­
бы система прерываний не среагировала повторно на сигнал запроса на прерывание,
она обычно автоматически «закрывает» (отключает) прерывания, поэтому необ­
ходимо потом в подпрограмме обработки прерываний вновь включать систему пре­
рываний. В соответствии с рассмотренными режимами обработки прерываний
(с относительными и абсолютными приоритетами и по правилу LCFS) установка
этих режимов осуществляется в конце первой секции подпрограммы обработки.
Таким образом, на время выполнения центральной секции (в случае работы в ре­
жимах с абсолютными приоритетами и по дисциплине LCFS) прерывания разре­
шены. На время работы заключительной секции подпрограммы обработки систе­
ма прерываний вновь должна быть отключена и после восстановления контекста
опять включена. Поскольку эти действия необходимо выполнять практически
в каждой подпрограмме обработки прерываний, во многих операционных систе­
мах первые секции подпрограмм обработки прерываний выделяются в уже упо­
минавшийся специальный системный программный модуль, называемый супер­
визором прерываний.

Супервизор прерываний прежде всего сохраняет в дескрипторе текущей задачи ра­
бочие регистры процессора, определяющие контекст прерываемого вычислитель­
ного процесса. Далее он определяет ту подпрограмму, которая должна выполнить
действия, связанные с обслуживанием настоящего (текущего) запроса на преры­
вание. Наконец, перед тем, как передать управление на эту подпрограмму, супер­
визор прерываний устанавливает необходимый режим обработки прерывания.
После выполнения подпрограммы обработки прерывания управление вновь пере­
дается ядру операционной системы. На этот раз уже на тот модуль, который зани­
мается диспетчеризацией задач (см. раздел «Планирование и диспетчеризация
процессов и задач» в главе 2). И уже диспетчер задач, в свою очередь, в соответ­
ствии с принятой дисциплиной распределения процессорного времени (между
выполняющимися вычислительными процессами) восстановит контекст той за­
дачи, которой будет решено выделить процессор. Рассмотренную нами схему ил­
люстрирует рис. 1.4.

Как мы видим из рисунка, здесь отсутствует возврат в прерванную ранее програм­
му непосредственно из самой подпрограммы обработки прерывания. Для прямого

24 Глава 1. Основные понятия

возврата достаточно адрес возврата сохранить в стеке, что и делает аппаратура
процессора. При этом стек легко обеспечивает возможность возврата в случае вло­
женных прерываний, поскольку он всегда реализует дисциплину LCFS.

Выполнение кода
подпрограммы

обработки прерывания

Эта подпрограмма
уже не заботится

о сохранении
контекста прерванного

процесса

Диспетчер задач

Выбор готовой
к выполнению

задачи (на основе
принятой дисциплины

обслуживания)

Восстановление
контекста задачи,

установка прежнего
режима работы

системы прерываний
и передача
управления
этой задаче

Рис. 1.4. Обработка прерывания при участии супервизоров ОС

Однако если бы контекст вычислительных процессов сохранялся просто в стеке,
как это обычно реализуется аппаратурой, а не в специальных структурах данных,
называемых дескрипторами, о чем будет подробно изложено чуть позже, то у нас
не было бы возможности гибко подходить к выбору той задачи, которой нужно
передать процессор после завершения работы подпрограммы обработки прерыва­
ния. Естественно, что это только общий принцип. В конкретных процессорах и в
конкретных операционных системах могут существовать некоторые отступления
от рассмотренной схемы и/или дополнения. Например, в современных процессо­
рах часто имеются специальные аппаратные возможности для сохранения контек­
ста прерываемого вычислительного процесса непосредственно в его дескрипторе,
то есть дескриптор процесса (по крайней мере его часть) становится структурой
данных, которую поддерживает аппаратура.

Исполняемая
программа

1

Супервизор прерываний

Отключение
прерываний, сохранение

контекста прерванной
программы в ее

дескрипторе,установка
режима работы системы

прерываний
(маскирование)

Определение адреса
программного модуля,

обслуживающего запрос
на прерывание,

и передача управления
на него

Для полного понимания принципов создания и механизмов реализации рассмат­
риваемых далее современных операционных систем необходимо знать архитекту­
ру и, в частности, особенности системы прерывания персональных компьютеров.
Этот вопрос более подробно рассмотрен в главе 4, посвященной архитектуре мик­
ропроцессоров i80x86.

Понятия вычислительного процесса
и ресурса
Понятие последовательного1 вычислительного процесса, или просто процесса,
является одним из основных при рассмотрении операционных систем. Как поня­
тие процесс является определенным видом абстракции, и мы будем придерживаться
следующего неформального определения, приведенного в [47]. Последовательный
процесс, иногда называемый задачей2 (task), — это отдельная программа с ее дан­
ными, выполняющаяся на последовательном процессоре. Напомним, что под
последовательным мы понимаем такой процессор, в котором текущая команда
выполняется после завершения предыдущей. В современных процессорах мы стал­
киваемся с ситуациями, когда возможно параллельное выполнение нескольких
команд. Это делается для повышения скорости вычислений. В этих процессорах
параллелизм достигается двумя основными способами — организацией конвейер­
ного механизма выполнения команды и созданием нескольких конвейеров. Одна­
ко в подобных процессорах аппаратными решениями обязательно достигается ло­
гическая последовательность в выполнении команд, предусмотренная программой.
Необходимость этого объясняется в главе 7, посвященной организации параллель­
ных вычислительных процессов.

Концепция процесса предполагает два аспекта: во-первых, он является носителем
данных и, во-вторых, он собственно и выполняет операции, связанные с обработ­
кой этих данных.

В качестве примеров процессов (задач) можно назвать прикладные программы
пользователей, утилиты и другие системные обрабатывающие программы. Про­
цессом может быть редактирование какого-либо текста, трансляция исходной про­
граммы, ее компоновка, исполнение. Причем трансляция какой-нибудь исходной
программы является одним процессом, а трансляция следующей исходной про­
граммы — другим процессом, поскольку транслятор как объединение программ­
ных модулей здесь выступает как одна и та же программа, но данные, которые он
обрабатывает, являются разными.

Слово «последовательный» в большинстве случаев опускается. Считается, что речь идет о вычисле­
ниях, осуществляемых на обычных «последовательных» процессорах, которые выполняют команду
за командой, а не параллельно несколько команд за один такт.
" концепции, которая получила наибольшее распространение в 70-е годы, задача — это совокуп­
ность связанных между собой и образующих единое целое программных модулей и данных, требую­
щая ресурсов вычислительной системы для своей реализации. В последующие годы задачей стали
называть единицу работы, для выполнения которой предоставляется центральный процессор. Вы­
числительный процесс может включать в себя несколько задач.

26 Глава 1. Основные понятия

Концепция процесса преследует цель выработать механизмы распределения и уп­
равления ресурсами. Понятие ресурса, так же как и понятие процесса, является,
пожалуй, основным при рассмотрении операционных систем. Термин ресурс обыч­
но применяется по отношению к многократно используемым, относительно ста­
бильным и часто недостающим объектам, которые запрашиваются, задействуются
и освобождаются в период их активности. Другими словами, ресурсом называется
всякий объект, который может распределяться внутри системы.
Ресурсы могут быть разделяемыми, когда несколько процессов используют их одно­
временно (в один и тот же момент времени) или параллельно (попеременно в тече­
ние некоторого интервала времени), а могут быть и неделимыми (рис. 1.5).

Рис. 1.5. Классификация ресурсов

При разработке первых систем ресурсами считались процессорное время, память,
каналы ввода-вывода и периферийные устройства [22, 53]. Однако очень скоро
понятие ресурса стало гораздо более универсальным и общим. Различного рода
программные и информационные ресурсы также могут быть определены для сис­
темы как объекты, которые могут разделяться и распределяться и доступ к кото­
рым необходимо соответствующим образом контролировать. В настоящее время
понятие ресурса превратилось в абстрактную структуру с целым рядом атрибутов,
характеризующих способы доступа к этой структуре и ее физическое представле­
ние в системе. Более того, помимо системных ресурсов, о которых мы сейчас гово­
рили, ресурсами стали называть и такие объекты, как сообщения и синхросигна­
лы, которыми обмениваются задачи.

В первых вычислительных системах любая программа могла выполняться только
после полного завершения предыдущей. Поскольку эти первые вычислительные
системы были построены в соответствии с принципами, изложенными в извест­
ной работе Яноша Джона фон Неймана, все подсистемы и устройства компьютера
управлялись исключительно центральным процессором. Центральный процессор
осуществлял и выполнение вычислений, и управление операциями ввода-вывода
данных. Соответственно, пока осуществлялся обмен данными между оперативной
памятью и внешними устройствами, процессор не мог выполнять вычисления.

Понятия вычислительного процесса и ресурса 2 7

Введение в состав вычислительной машины специальных контроллеров позволи­
ло совместить во времени (распараллелить) операции вывода полученных данных
и последующие вычисления на центральном процессоре. Однако все равно процес­
сор продолжал часто и долго простаивать, дожидаясь завершения очередной опера­
ции ввода-вывода. Поэтому было предложено организовать так называемый муль­
типрограммный, или мультизадачный, режим работы вычислительной системы.

Мультипрограммирование,
многопользовательский режим работы
и режим разделения времени
Вкратце суть мультипрограммного режима работы заключается в том, что пока
одна программа (один вычислительный процесс, как мы теперь говорим) ожидает
завершения очередной операции ввода-вывода, другая программа (а точнее, дру­
гая задача) может быть поставлена на решение (рис. 1.6). Это позволяет более полно
использовать имеющиеся ресурсы (например, центральный процессор начинает
меньше простаивать, как это видно из рисунка) и уменьшить общее (суммарное)
время, необходимое для решения некоторого множества задач.

C P U

Задач а А

• ' • -;• \

Задача В

В в

C P U

C P U

''- •

•*

Задача А

Задача В

--|

• •

Рис. 1.6. Пример выполнения двух программ в мультипрограммном режиме

На рисунке в качестве примера изображена такая гипотетическая ситуация, при
которой благодаря совмещению во времени двух вычислительных процессов об-

28 Глава 1. Основные понятия

щее время их выполнения получается меньше, чем если бы их выполняли по оче­
реди (запуск одного начинался бы только после полного завершения другого). Из
этого же рисунка видно, что время выполнения каждого процесса в общем случае
больше, чем если бы мы выполняли каждый из них как единственный.

При мультипрограммировании повышается пропускная способность системы, но
отдельный процесс никогда не может быть выполнен быстрее, чем если бы он вы­
полнялся в однопрограммном режиме (всякое разделение ресурсов замедляет ра­
боту одного из участников за счет дополнительных затрат времени на ожидание
освобождения ресурса).

Мультипрограммирование стало применяться все чаще и шире в 60-х годах XX ве­
ка, когда крупные компании получили, наконец, возможность приобретать в соб­
ственность вычислительную технику и использовать ее для решения своих задач.
До этого времени вычислительная техника была доступна, прежде всего, для воен­
ных целей и решения отдельных задач общегосударственного масштаба. А посколь­
ку стоимость компьютеров в то время была чрезвычайно большой, то компании,
вложив свои капиталы в вычислительную технику, захотели за счет продажи ма­
шинного времени не только покрыть те расходы, которые сопутствовали ее приоб­
ретению и использованию, но и зарабатывать дополнительные деньги, то есть по­
лучать прибыль. Машинное время стали активно продавать, сдавая в аренду
имеющиеся компьютеры, и потенциальная возможность решать в единицу време­
ни большее количество задач, возможно от разных клиентов, стала выступать ос­
новным стимулом в развитии способов организации вычислений и операционных
систем.

Задачи пользователей ставились в очередь на решение, и распределение времени
центрального процессора и других ресурсов компьютера между несколькими вы­
полняющимися вычислительными процессами позволяло организовать параллель­
ное выполнение сразу нескольких задач. Эти задачи могли относиться и к одному
пользователю, и к нескольким. Однако ставил их на решение оператор вычисли­
тельной системы.

Приблизительно в то же время, может быть чуть позже, стали активно развивать­
ся всевозможные устройства ввода и вывода данных. Не стояло на месте и систем­
ное программное обеспечение. Появилась возможность пользователю самому вво­
дить исходные данные и тут же получать результаты вычислений, причем в удобном
для него виде. Упрощение пользовательского интерфейса и развитие интерфейс­
ных функций операционных систем позволило реализовать диалоговый режим
работы. Как известно, диалоговый режим предполагает, что пользователь может
сам, без посредника, взаимодействовать с компьютером — готовить и запускать свои
программы, вводить исходные данные, получать результаты, приостанавливать
вычисления и вновь их возобновлять и т. д.

Очевидно, что диалоговый режим работы может быть реализован и без мульти­
программирования. Наглядное тому доказательство — многочисленные дисковые
операционные системы, начиная от СР-М и кончая PC-DOS 7.0, которые долгие
годы устанавливались на персональные компьютеры и обеспечивали только одно-
программный режим. Однако эти однопрограммные диалоговые системы появи-

Понятия вычислительного процесса и ресурса 2 9

лись гораздо позже мультипрограммных. Как это ни кажется странным, им пред­
шествовали многочисленные и разнообразные операционные системы, позволяю­
щие одновременно работать с компьютером большому количеству пользователей
и параллельно решать множество задач. Основная причина тому — стоимость ком­
пьютера. Только с удешевлением компьютеров появилась возможность иметь свой
персональный компьютер, и первое время считалось, что однопрограммного ре­
жима работы вполне достаточно. Главным для персональных компьютеров до сих
пор считается удобство работы, причем именно в диалоговом режиме, простота
интерфейса и его интуитивная понятность.

Совмещение диалогового режима работы с компьютером и режима мультипрог­
раммирования привело к появлению мулътитерминалъных, или многопользова­
тельских, систем. Организовать параллельное выполнение нескольких задач можно
разными способами (более подробно об этом см. в главе 2). Если это осуществля­
ется таким образом, что на каждую задачу поочередно выделяется некий квант
времени, после чего процессор передается другой задаче, готовой к продолжению
вычислений, то такой режим принято называть режимом разделения времени (time
sharing). Системы разделения времени активно развивались в 60-70 годы, и сам
термин означал именно мультитерминальную и мультипрограммную систему.

Итак, операционная система может поддерживать мультипрограммирование (мно-
гопроцессность). В этом случае она должна стараться эффективно использовать
имеющиеся ресурсы путем организации к ним очередей запросов, составляемых
тем или иным способом. Это требование достигается поддерживанием в памяти
более одного вычислительного процесса, ожидающего процессор, и более одного
процесса, готового использовать другие ресурсы, как только последние станут до­
ступными.

Общая схема выделения ресурсов такова. При необходимости использовать ка­
кой-либо ресурс (оперативную память, устройство ввода-вывода, массив данных
и т. п.) вычислительный процесс (задача) путем обращения к супервизору1 (su­
pervisor) операционной системы посредством специальных вызовов (команд, ди­
ректив) сообщает о своем требовании. При этом указывается вид ресурса и, если
надо, его объем. Например, при запросе оперативной памяти указывается количе­
ство адресуемых ячеек, необходимое для дальнейшей работы.

Команда обращения к операционной системе передает ей управление, переводя
процессор в привилегированный режим работы (см. раздел «Прерывания»), если
такой существует. Большинство компьютеров имеют два (и более) режима рабо­
ты: привилегированный (режим супервизора) и пользовательский. Кроме того, мо­
гут быть режимы для эмуляции какой-нибудь другой ЭВМ или для организации
виртуальной машины, защищенной от остальных вычислений, осуществляемых
на этом же компьютере, и т. д. Мы уже говорили об этом, затрагивая вопрос орга­
низации прерываний.

Супервизор — центральный (главный) управляющий модуль операционной системы. Может состо­
ять из нескольких модулей, например супервизора ввода-вывода, супервизора прерываний, супер­
визора программ, диспетчера задач и т. д. В последние годы термин «супервизор» применяется все
реже и реже.

30 Глава 1. Основные понятия

Ресурс может быть выделен вычислительному процессу (задаче), обратившемуся
к операционной системе с соответствующим запросом, если:

Q ресурс свободен и в системе нет запросов от задач более высокого приоритета к
этому же ресурсу;

Q текущий запрос и ранее выданные запросы допускают совместное использова­
ние ресурсов;

Q ресурс используется задачей низшего приоритета и может быть временно ото­
бран (разделяемый ресурс).

Получив запрос, операционная система либо удовлетворяет его и возвращает уп­
равление задаче, выдавшей данный запрос, либо, если ресурс занят, ставит задачу
в очередь к ресурсу, переводя ее в состояние ожидания (блокируя). Очередь к ре­
сурсу может быть организована несколькими способами, но чаще всего она реали­
зуется с помощью списковой структуры.

После окончания работы с ресурсом задача опять с помощью специального вызова
супервизора (посредством соответствующей команды) сообщает операционной сис­
теме об отказе от ресурса, либо операционная система забирает ресурс сама, если уп­
равление возвращается супервизору после выполнения какой-либо системной функ­
ции. Супервизор операционной системы, получив управление по этому обращению,
освобождает ресурс и проверяет, имеется ли очередь к освободившемуся ресурсу. Если
очередь есть, то в зависимости от принятой дисциплины обслуживания1 и приоритетов
заявок он выводит из состояния ожидания задачу, ждущую ресурс, и переводит ее в
состояние готовности к выполнению, после чего либо передает управление ей, либо
возвращает управление задаче, только что освободившей ресурс.

При выдаче запроса на ресурс задача может указать, хочет ли она владеть ресурсом
монопольно или допускает совместное использование с другими задачами. Напри­
мер, с файлом можно работать монопольно, а можно и совместно с другими задачами.

Если в системе имеется некоторая совокупность ресурсов, то управлять их исполь­
зованием можно на основе некоторой стратегии. Стратегия подразумевает четкую
формулировку целей, следуя которым можно добиться эффективного распреде­
ления ресурсов.

При организации управления ресурсами всегда требуется принять решение о том, что
в данной ситуации выгоднее: быстро обслуживать отдельные наиболее важные запро­
сы, предоставлять всем процессам равные возможности или обслуживать максималь­
но возможное количество процессов и наиболее полно использовать ресурсы [46].

Диаграмма состояний процесса
Необходимо отличать системные управляющие вычислительные процессы, пред­
ставляющие работу супервизора операционной системы и занимающиеся распреде-

Термин «дисциплина обслуживания» следует понимать как некое правило обслуживания, в том числе
и учет каких-либо приоритетов при обслуживании. Например, дисциплина «последний пришедший
обслуживается первым» определяет обслуживание в порядке, обратном очередности поступления
соответствующих запросов.

Понятия вычислительного процесса и ресурса 3 1

лением и управлением ресурсов, от всех других процессов: задач пользователей и
системных обрабатывающих процессов. Последние, хоть и относятся к операци­
онной системе, но не входят в ядро операционной системы и требуют общих ре­
сурсов для своей работы, которые получают от супервизора. Для системных управ­
ляющих процессов, в отличие от обрабатывающих, в большинстве операционных
систем ресурсы распределяются изначально и однозначно. Эти вычислительные
процессы сами управляют ресурсами системы, в борьбе за которые конкурируют
все остальные процессы. Поэтому исполнение системных управляющих программ
не принято называть процессами, и термин «задача» следует употреблять только
по отношению к процессам пользователей и к системным обрабатывающим про­
цессам. Однако это справедливо не для всех операционных систем. Например, в так
называемых «микроядерных» операционных системах (см. главу 9) большинство
управляющих программных модулей самой операционной системы и даже драй­
веры имеют статус высокоприоритетных процессов, для выполнения которых
необходимо выделить соответствующие ресурсы. В качестве примера можно
привести хорошо известную операционную систему реального времени QNX
фирмы Quantum Software Systems. Аналогично и в UNIX-системах, которые хоть
и не относятся к микроядерным, выполнение системных программных модулей
тоже имеет статус системных процессов, получающих ресурсы для своего испол­
нения.

Очевидно, что если некий вычислительный процесс (назовем его первым) в дан­
ный конкретный момент времени не исполняется, поскольку процессор занят ис­
полнением какого-то другого процесса, то операционная система должна знать,
что вычисления в первом процессе приостановлены. Информация об этом зано­
сится в специальную информационную структуру, сопровождающую каждый вы­
числительный процесс. Таких приостановленных процессов может быть несколь­
ко. Они могут образовывать очередь задач, которые возобновят свои вычисления,
как только им будет предоставлен процессор. Некоторые процессы, при своем вы­
полнении требующие ввода или вывода данных, на время выполнения этих запро­
сов могут освобождать процессор. Такие события тоже должны для операционной
системы помечаться соответствующим образом. Говорят, что процесс может нахо­
диться в одном из нескольких состояний. Информация о состоянии процесса со­
держится в упомянутой выше информационной структуре, доступной супервизору.

Если обобщать и рассматривать не только традиционные системы общего назна­
чения и привычные всем нам современные мультизадачные операционные систе­
мы для персональных компьютеров, но и операционные системы реального време­
ни, то можно сказать, что процесс может находиться в активном и пассивном
(не активном) состоянии. В активном состоянии процесс может конкурировать за
ресурсы вычислительной системы, а в пассивном состоянии он известен системе,
но за ресурсы не конкурирует (хотя его существование в системе и сопряжено с пре­
доставлением ему оперативной и/или внешней памяти). В свою очередь, актив­
ный процесс может быть в одном из следующих состояний:

Q выполнения — все затребованные процессом ресурсы выделены (в этом состоя­
нии в каждый момент времени может находиться только один процесс, если
речь идет об однопроцессорной вычислительной системе);

32 Глава 1. Основные понятия

Q готовности к выполнению — ресурсы могут быть предоставлены, тогда процесс
перейдет в состояние выполнения;

Q блокирования, или ожидания, — затребованные ресурсы не могут быть предо­
ставлены, или не завершена операция ввода-вывода.

В большинстве операционных систем последнее состояние, в свою очередь, под­
разделяется на множество состояний ожидания, соответствующих определенно­
му виду ресурса, из-за отсутствия которого процесс переходит в заблокированное
состояние.

В обычных операционных системах, как правило, процесс появляется при запуске
какой-нибудь программы. Операционная система организует (порождает, или
выделяет) для нового процесса уже упомянутую выше информационную структу­
ру — так называемый дескриптор процесса, и процесс (задача) начинает выпол­
няться. Поэтому пассивного состояния в большинстве систем не существует. В опе­
рационных системах реального времени (ОСРВ) ситуация иная. Обычно при
проектировании системы реального времени состав выполняемых ею программ
(задач) известен заранее. Известны и многие их параметры, которые необходимо
учитывать при распределении ресурсов (например, объем памяти, приоритет, сред­
няя длительность выполнения, открываемые файлы, используемые устройства и
проч.). Поэтому для них заранее заводят дескрипторы задач с тем, чтобы впослед­
ствии не тратить драгоценное время на организацию дескриптора и поиски для
него необходимых ресурсов. Таким образом, в ОСРВ многие процессы (задачи)
могут находиться в состоянии бездействия, что мы и отобразили на рис. 1.7, отде­
лив это состояние от остальных состояний пунктиром.

Бездействие
(пассивное
состояние)

Ч У

Готовность
к выполнению

Ожидание
(состояние

блокирования)

Рис. 1.7. Граф состояний процесса

За время своего существования процесс может неоднократно совершать переходы
из одного состояния в другое, обусловленные обращениями к операционной сис­
теме с запросами ресурсов и выполнения системных функций, которые предо­
ставляет операционная система, взаимодействием с другими процессами, появле-

Понятия вычислительного процесса и ресурса 33

1ем сигналов прерывания от таймера, каналов и устройств ввода-вывода, других
стройств. Возможные переходы процесса из одного состояния в другое отобра­
жены на рисунке в виде графа состояний. Рассмотрим эти переходы из одного со-
тряния в другое более подробно.

роцесс из состояния бездействия может перейти в состояние готовности в следу-
щих случаях.

По команде оператора (пользователя). Имеет место в тех диалоговых операци­
онных системах, где программа может иметь статус задачи, даже оставаясь пас­
сивной, а не просто быть исполняемым файлом и получать статус задачи толь­
ко на время исполнения (как это имеет место в большинстве современных
операционных систем, в том числе и для персональных компьютеров).

Q При выборе из очереди планировщиком (характерно для операционных сис­
тем, работающих в пакетном режиме).

При вызове из другой задачи (посредством обращения к супервизору один про­
цесс может создать, инициировать, приостановить, остановить, уничтожить
другой процесс).

По прерыванию от внешнего инициативного устройства1 (сигнал о свершении
некоторого события может запускать соответствующую задачу).

При наступлении запланированного времени запуска программы.

[оследние два способа запуска задачи, при которых процесс из состояния бездей­
ствия переходит в состояние готовности, наиболее характерны для операционных
истем реального времени.

Процесс, который может исполняться, как только ему будет предоставлен процес­
сор (а для диск-резидентных задач в некоторых системах и оперативная память),
находится в состоянии готовности. Считается, что такому процессу уже выделены
все необходимые ресурсы за исключением процессора.

Из состояния выполнения процесс может выйти по одной из следующих при­
чин.

• Процесс завершается, при этом он посредством обращения к супервизору пере­
дает управление операционной системе и сообщает о своем завершении. В ре­
зультате этих действий супервизор либо переводит его в список бездействую­
щих процессов (процесс переходит в пассивное состояние), либо уничтожает.
Уничтожается, естественно, не сама программа, а именно задача, которая соот­
ветствовала исполнению этой программы. В состояние бездействия процесс
может быть переведен принудительно: по команде оператора или путем обра­
щения к супервизору операционной системы из другой задачи с требованием
остановить данный процесс. Само собой, что действие по команде оператора
реализуется системным процессом, который «транслирует» эту команду в за­
прос к супервизору с требованием перевести указанный процесс в состояние
бездействия.

Устройство называется инициативным, если по сигналу запроса на прерывание от него должна за­
пускаться некоторая задача.

3 4 Глава 1. Основные понятия

О Процесс переводится супервизором операционной системы в состояние готов­
ности к исполнению в связй-с появлением более приоритетной задачи или в свя­
зи с окончанием выделенного ему кванта времени.

• Процесс блокируется (переводится в состояние ожидания) либо вследствие
запроса операции ввода-вывода (которая должна быть выполнена прежде, чем
он сможет продолжить исполнение), либо в силу невозможности предоставить
ему ресурс, запрошенный в настоящий момент (причиной перевода в состоя­
ние ожидания может быть отсутствие сегмента или страницы в случае органи­
зации механизмов виртуальной памяти — см. раздел «Сегментная, страничная
и сегментно-страничная организация памяти» в главе 3), либо по команде опе­
ратора на приостанов задачи, либо по требованию через супервизор от другой
задачи.

При наступлении соответствующего события (завершилась операция ввода-вы­
вода, освободился затребованный ресурс, в оперативную память загружена необ­
ходимая страница виртуальной памяти и т. д.) процесс деблокируется и перево­
дится в состояние готовности к исполнению.

Таким образом, движущей силой, меняющей состояния процессов, являются со­
бытия. Одним из основных видов событий являются уже рассмотренные нами
прерывания.

Реализация понятия последовательного
процесса в операционных системах
Для того чтобы операционная система могла управлять процессами, она должна
располагать всей необходимой для этого информацией. С этой целью на каждый
процесс заводится специальная информационная структура, называемая дескрип­
тором процесса (описателем задачи, блоком управления задачей). В общем случае
дескриптор процесса, как правило, содержит следующую информацию:
Q идентификатор процесса (Process Identifier, PID);

Q тип (или класс) процесса, который определяет для супервизора некоторые пра­
вила предоставления ресурсов;

• приоритет процесса, в соответствии с которым супервизор предоставляет ре­
сурсы (в рамках одного класса процессов в первую очередь обслуживаются бо­
лее приоритетные процессы);

О переменную состояния, которая определяет, в каком состоянии находится про­
цесс (готов к работе, выполняется, ожидает устройства ввода-вывода и т. д.);

Q контекст задачи, то есть защищенную область памяти (или адрес такой обла­
сти), в которой хранятся текущие значения регистров процессора, когда про­
цесс прерывается, не закончив работы;

• информацию о ресурсах, которыми процесс владеет и/или имеет право пользо­
ваться (указатели на открытые файлы, информация о незавершенных опера­
циях ввода-вывода и др.);

О место (или его адрес) для организации общения с другими процессами;

Понятия вычислительного процесса и ресурса 3 5

• параметры времени запуска (момент времени, когда процесс должен активизи­
роваться, и периодичность этой процедуры);

р в случае отсутствия системы управления файлами адрес задачи на диске в ее
исходном состоянии и адрес на диске, куда она выгружается из оперативной па­
мяти, если ее вытесняет другая задача (последнее справедливо для диск-резидент­
ных задач, которые постоянно находятся во внешней памяти на системном маг­
нитном диске и загружаются в оперативную память только на время выполнения).

Описатели задач, как правило, постоянно располагаются в оперативной памяти
с целью ускорить работу супервизора, который организует их в списки (очереди)
и отображает изменение состояния процесса перемещением соответствующего опи­
сателя из одного списка в другой. Для каждого состояния (за исключением состо­
яния выполнения для однопроцессорной системы) операционная система ведет
соответствующий список задач, находящихся в этом состоянии. Однако для со­
стояния ожидания обычно имеется не один список, а столько, сколько различных
видов ресурсов могут вызывать состояние ожидания. Например, состояний ожи­
дания завершения операции ввода-вывода может быть столько, сколько устройств
ввода-вывода имеется в системе.

В некоторых операционных системах количество описателей определяется жест­
ко и заранее (на этапе генерации варианта операционной системы или в конфигу­
рационном файле, который используется при загрузке ОС), в других по мере
необходимости система может выделять участки памяти под новые описатели. На­
пример, в уже мало кому известной системе OS/2, которая несколько лет тому
назад многими специалистами считалась одной из лучших ОС для персональных
компьютеров, максимально возможное количество описателей задач указывается
в конфигурационном файле CONFIG.SYS. Например, строка THREADS=1024 в файле
CONFIG.SYS означает, что всего в системе может параллельно существовать и вы­
полняться до 1024 задач, включая вычислительные процессы и их потоки.

В ныне широко распространенных системах Windows NT/2000/XP количество
описателей нигде в явном виде не задается. Это переменная величина, и она опре­
деляется самой операционной системой. Однако посмотреть на текущее количе­
ство таких описателей можно. Если, работая в Windows NT/2000/XP, нажать од­
новременно комбинацию клавиш Ctrl+Shift+Esc, появится окно Диспетчера задач.
На вкладке Быстродействие этой программы мы увидим поле с названием Всего де­
скрипторов и соответствующее число. Тут же указывается количество дескрипто­
ров для управления потоками (задачами) и число полноценных вычислительных
процессов. Более подробно о процессах и потоках см. далее.

В операционных системах реального времени чаще всего количество процессов
фиксируется, и, следовательно, целесообразно заранее определять (на этапе гене­
рации или конфигурирования ОС) количество дескрипторов. Для использования
таких операционных систем в качестве систем общего назначения (что нынче уже
нехарактерно)1 обычно количество дескрипторов бралось с некоторым запасом,

Л

В недалеком прошлом достаточно часто в качестве вычислительных систем общего назначения при­
обретались мини-ЭВМ и устанавливали на них ОС реального времени.

36 Глава 1. Основные понятия

и появление новой задачи связывалось с заполнением этой информационной струк­
туры. Поскольку дескрипторы процессов постоянно располагаются в оперативной
памяти (с целью ускорить работу диспетчера), то их количество не должно быть
очень большим.

Для более эффективной обработки данных в системах реального времени целесо­
образно иметь постоянные задачи, полностью или частично всегда существующие
в системе независимо от того, поступило на них требование или нет. Каждая по­
стоянная задача обладает некоторой собственной областью оперативной памяти
(ОЗУ-резидентная задача, или просто резидентная задача) независимо от того,
выполняется задача в данный момент или нет. Эта область, в частности, может
использоваться для хранения данных, полученных задачей ранее. Данные могут
храниться в ней и тогда, когда задача находится в состоянии ожидания или даже в
состоянии бездействия.

Для аппаратной поддержки работы операционных систем с этими информацион­
ными структурами (дескрипторами задач) в процессорах могут быть реализованы
соответствующие механизмы. Так, например, в микропроцессорах Intel 80x86
(см. главу 4) имеется специальный регистр TR (Task Register), указывающий мес­
тонахождение специальной информационной структуры — сегмента состояния
задачи (Task State Segment, TSS), в котором при переключении с задачи на задачу
автоматически сохраняется содержимое регистров процессора [1,8, 48].

Поскольку между терминами «процесс» и «задача» со временем появилось суще­
ственное различие, мы сейчас подробно рассмотрим этот вопрос.

Процессы и задачи
Хотя понятия мультипрограммного и мультизадачного режимов работы достаточ­
но близки, это все-таки не одно и то же. К сожалению, здесь до сих пор имеется
некоторая путаница. Основные причины тому — не только то, что терминология
еще не устоялась и что многие фирмы-разработчики по-разному предпочитали
называть одни и те же сущности, но и сложность, неоднозначность ситуации.

Мультипрограммный режим предполагает, что операционная система организует
параллельное выполнение нескольких вычислительных процессов на одном ком­
пьютере. И каждый вычислительный процесс может, в принципе, никак не зави­
сеть от другого вычислительного процесса. Разве что они могут задержать выпол­
нение друг друга из-за необходимости поочередно разделять ресурсы или сильно
задерживать выполнение друг друга при владении неразделяемым ресурсом. У них
может не быть ни общих файлов, ни общих переменных. Они вообще могут при­
надлежать разным пользователям. Просто эти процессы, с позиций внешнего на­
блюдателя, выполняются на одном и том же компьютере в одно и то же время.
Хотя могут выполняться и в разное время, и на разных компьютерах. Главное —
это то, что мультипрограммный режим обеспечивает для этих процессов их неза­
висимость. Каждому процессу операционная система выделяет затребованные ре­
сурсы, он выполняется как бы на отдельной виртуальной машине. Средства защиты
системы должны обеспечить невмешательство одного вычислительного процесса
в другой вычислительный процесс. И если такую защиту обеспечить невозможно,

Понятия вычислительного процесса и ресурса 37

то система не может считаться надежной. Немало методов и конкретных способов
было придумано разработчиками для обеспечения надежных вычислений и пре­
дотвращения возможности намеренно или по ошибке повлиять на результаты вы­
числений в другом процессе.

Однако существует и другая потребность: не разделить вычислительные процес­
сы друг от друга, а наоборот совместить их, обеспечить возможность тесного взаи­
модействия между осуществляемыми вычислениями. Например, результаты вы­
числений одного вычислительного процесса могут требоваться для начала или
продолжения работы другого. Существует огромное количество ситуаций, когда
необходимо обеспечить активное взаимодействие между выполняющимися вычис­
лительными процессами. Если нет возможности получить доступ к переменным
другого процесса, ибо операционная система построена надежно и защищает ад­
ресные пространства одного вычислительного процесса от вмешательства другого
вычислительного процесса, то возникают очень серьезные препятствия на пути
передачи каких бы то ни было данных между процессами.

Термин мультизадачный режим работы стали применять как раз для тех случаев,
когда необходимо обеспечить взаимодействие между вычислениями. Мультиза­
дачный режим означает, что операционная система позволяет организовать парал­
лельное выполнение вычислений, и имеются специальные механизмы для передачи
данных, синхросигналов, каких-либо сообщений между этими взаимодействую­
щими вычислениями. Это можно сделать за счет того, что такие вычисления не
должны системой изолироваться друг от друга. Операционная система не должна
для них в обязательном порядке задействовать все механизмы защиты вычисле­
ний от невмешательства друг в друга. При мультизадачном режиме разработчик
программы должен позаботиться о разделении ресурсов между его задачами. Опера­
ционная система будет всего лишь разделять процессорное время между задачами.

Понятие процесса было введено для реализации идей мультипрограммирования.
Термин задача тоже, к сожалению, в большинстве случаев применялся для того
же. В свое время различали термины «мультизадачность» и «мультипрограмми­
рование», но потом они стали заменять друг друга, и это вносило немалую путани­
цу. Таким образом, для реализации мультизадачности в ее исходном толковании
необходимо было ввести соответствующую сущность. Такой сущностью стали лег­
ковесные (thin) процессы, или, как их теперь преимущественно называют, потоки
выполнения1, нити, или треды (threads).

Когда говорят о процессах (process), то тем самым хотят отметить, что операцион­
ная система поддерживает их обособленность: у каждого процесса имеется свое
виртуальное адресное пространство, каждому процессу назначаются свои ресур­
сы — файлы, окна, семафоры и т. д. Такая обособленность нужна для того, чтобы
защитить один процесс от другого, поскольку они, совместно используя все ресур­
сы вычислительной системы, конкурируют друг с другом за доступ к ресурсам.
о общем случае процессы просто никак не связаны между собой и могут принад­
лежать даже разным пользователям, разделяющим одну вычислительную систему.

Поток выполнения (thread) не следует путать с потоком данных (stream).

38 Глава 1. Основные понятия

Другими словами, в случае процессов операционная система считает их совершенно
несвязанными и независимыми. При этом именно операционная система берет на
себя роль арбитра в спорах конкурирующих процессов за ресурсы. Она же и обес­
печивает защиту выполняющихся вычислений.

Однако желательно иметь еще и возможность задействовать внутренний паралле­
лизм, который может быть в самих процессах. Такой внутренний параллелизм
встречается достаточно часто и позволяет ускорить вычисления. Например, неко­
торые операции, выполняемые приложением, могут требовать для своего испол­
нения достаточно длительное использование центрального процессора. В этом
случае при интерактивной работе с приложением пользователь вынужден долго
ожидать завершения заказанной операции и не может управлять приложением до
тех пор, пока операция не выполнится до самого конца. Такие ситуации встреча­
ются достаточно часто, например, при работе с графическими редакторами при
обработке больших изображений с высокой степенью детализации. Если же про­
граммные модули, исполняющие такие длительные операции, оформлять в виде
самостоятельных «подпроцессов» (легковесных процессов, потоков выполнения,
или задач), которые могут выполняться параллельно с другими подпроцессами
(потоками, задачами), то у пользователя появляется возможность параллельно
выполнять несколько операций в рамках одного приложения (процесса). Легко­
весными эти процессы называют потому, что операционная система не должна для
них организовывать полноценную виртуальную машину, то есть эти задачи, преж­
де всего, не имеют своих собственных ресурсов, а развиваются в том же виртуаль­
ном адресном пространстве, могут пользоваться теми же файлами, виртуальными
устройствами и иными ресурсами, выделенными ОС данному процессу. Единствен­
ное, что они имеют свое — это процессорный ресурс. В однопроцессорной системе
потоки выполнения (задачи) разделяют между собой процессорное время так же,
как это делают обычные процессы, а в мультипроцессорной системе они могут
выполняться одновременно, если не встречают конкуренции из-за обращения
к иным ресурсам.

Главное, что обеспечивает многопоточность — это возможность параллельно вы­
полнять несколько видов операций в одной прикладной программе. Параллель­
ные вычисления (а следовательно, и более эффективное использование ресурсов
центрального процессора, и меньшее суммарное время выполнения задач) гораздо
удобнее реализовать не на уровне процессов, но на уровне задач (потоков, тредов).
И программа, разработанная с использованием механизма потоков, представляе­
мая как некоторое множество задач в рамках одного процесса, может быть выпол­
нена быстрее за счет параллельного функционирования ее отдельных частей. Осо­
бенно это выгодно при наличии нескольких процессоров, ибо каждая задача может
выполняться на отдельном процессоре. Например, если электронная таблица, тек­
стовый процессор или графический редактор были разработаны с учетом возмож­
ностей многопоточной обработки, то пользователь может запросить пересчет своего
рабочего листа, слияние нескольких документов или преобразование изображе­
ния и одновременно продолжать заполнять таблицу, открывать для редактирова­
ния следующий документ, изменять другое изображение.

Понятия вычислительного процесса и ресурса 3 9

Особенно эффективно можно использовать многопоточнослъ для выполнения рас­
пределенных приложений. Например, многопоточный сервер может параллельно
выполнять запросы сразу нескольких клиентов. Как известно, операционная сис­
тема OS/2 была одной из первых систем, используемых в персональных компью­
терах, которая поддерживала многопоточность. В середине 90-х годов для этой опе­
рационной системы было создано большое количество приложений, в которых
наличие механизмов многопоточной обработки реально приводило к существен­
ному повышению скорости вычислений. Для систем Windows, с которыми мы все
имеем дело, ярко выраженной многопоточностыо обладают такие продукты, как
SQL Server, Oracle. И хотя те же Word, Excel, Internet Explorer также при своей
работе образуют потоки, явного параллелизма в этих программах почти не под­
держивается. Поэтому при увеличении числа процессоров в компьютере такие
программы не начинают выполняться быстрее.

Итак, сущность «поток выполнения» была введена для того, чтобы именно с помо­
щью этих единиц распределять процессорное время между возможными работа­
ми. Сущность «процесс» предполагает, что при диспетчеризации нужно учиты­
вать все ресурсы, закрепленные за ним. При манипулировании задачами-потоками
можно менять только контекст задачи, если мы переключаемся с одной задачи на
другую в рамках одного процесса. Все остальные вычислительные ресурсы при
этом не затрагиваются. Каждый процесс всегда состоит, по крайней мере, из одно­
го потока выполнения, и только если имеется внутренний параллелизм, програм­
мист может «расщепить» один поток на несколько параллельных. Потребность в
потоках возникла еще в однопроцессорных вычислительных системах, поскольку
они позволяли организовать вычисления более эффективно. Для использования
достоинств многопроцессорных систем с общей памятью потоки уже просто необ­
ходимы, так как позволяют не только реально ускорить выполнение тех задач, ко­
торые допускают их естественное распараллеливание, но и загрузить процессор­
ные элементы работой, с тем чтобы они не простаивали. Заметим, однако, что
желательно, чтобы можно было свести к минимуму взаимодействие потоков меж­
ду собой, ибо ускорение от одновременного выполнения параллельных потоков
может быть сведено к минимуму из-за задержек синхронизации и обмена данными.

Каждый поток выполняется строго последовательно и имеет свой собственный
программный счетчик и стек. Потоки, как и процессы, могут порождать потоки-
потомки, поскольку любой процесс состоит по крайней мере из одного потока.
Подобно традиционным процессам (то есть процессам, состоящим из одного по­
тока), каждый поток может находиться в одном из активных состояний. Пока один
поток заблокирован (или просто находится в очереди готовых к исполнению за­
дач), другой поток того же процесса может выполняться. Потоки разделяют про­
цессорное время так же, как это делают обычные процессы, в соответствии с раз­
личными вариантами диспетчеризации.

Как уже упоминалось, иногда потоки выполнения называют легковесными про­
цессами. Как мы уже знаем, все потоки имеют одно и то же виртуальное адресное
пространство своего процесса. Это означает, что они разделяют одни и те же гло­
бальные переменные. Поскольку каждый поток может иметь доступ к каждому

40 Глава 1. Основные понятия

виртуальному адресу, один поток может использовать стек другого потока. Между
потоками нет полной защиты, потому что, во-первых, это невозможно, а во-вто­
рых, не нужно. Все потоки одного процесса всегда решают общую задачу одного
пользователя, и механизм потоков используется здесь для более быстрого реше­
ния задачи путем ее распараллеливания. При этом программисту очень важно по­
лучить в свое распоряжение удобные средства организации взаимодействия час­
тей одной программы. Повторим, что кроме разделения адресного пространства,
все потоки разделяют также набор открытых файлов, устройства, выделенные про­
цессу, имеют одни и те же наборы сигналов, семафоры и т. п. А что у потоков явля­
ется их собственным? Собственными являются программный счетчик, стек, рабо­
чие регистры процессора, потоки-потомки, состояние.

Вследствие того, что потоки, относящиеся к одному процессу, выполняются в од­
ном и том же виртуальном адресном пространстве, между ними легко организо­
вать тесное взаимодействие, в отличие от процессов, для которых нужны специ­
альные механизмы обмена сообщениями и данными. Более того, программист,
создающий многопоточное приложение, может заранее продумать работу множе­
ства потоков процесса таким образом, чтобы они могли взаимодействовать наибо­
лее выгодным способом, а не конкурировать за ресурсы тогда, когда этого можно
избежать.

Для того чтобы можно было эффективно организовать параллельное выполнение
рассмотренных сущностей (процессов и потоков), в архитектуру современных про­
цессоров включены средства для работы со специальной информационной струк­
турой, описывающей ту или иную сущность. Для этого уже на уровне архитектуры
микропроцессора используется понятие задача (task). Оно как бы объединяет в себе
и обычный процесс, и поток выполнения (тред). Это понятие и поддерживаемая
для него на уровне аппаратуры информационная структура позволяют в дальней­
шем при разработке операционной системы строить соответствующие дескрипто­
ры как для задач, так и для процессов. И отличаться эти дескрипторы будут прежде
всего тем, что дескриптор задачи может хранить только контекст приостановлен­
ного вычислительного процесса, тогда как дескриптор процесса должен содержать
поля, описывающие тем или иным способом ресурсы, выделенные этому процес­
су. Для хранения контекста задачи в микропроцессорах с архитектурой i32 имеет­
ся специальный сегмент состояния задачи (Task State Segment, TSS). А для отобра­
жения информации о процессе используется уже иная информационная структура,
однако она включает в себя TSS. Другими словами, сегмент состояния задачи, по­
дробно рассматриваемый в разделе «Адресация в 32-разрядных микропроцессо­
рах i80x86 при работе в защищенном режиме» главы 4, используется как основа
для дескриптора процесса. Таким образом, дескриптор процесса больше по разме­
ру, чем TSS, и включает в себя такие традиционные поля, как идентификатор про­
цесса, его имя, тип, приоритет и проч.

Каждый поток (в случае использования так называемой «плоской» модели памя­
ти — см. раздел «Сегментная, страничная и сегментно-страничная организация
памяти» в главе 3) может быть оформлен в виде самостоятельного сегмента, что
приводит к тому, что простая (не многопоточная) программа будет иметь всего
один сегмент кода в виртуальном адресном пространстве.

Понятия вычислительного процесса и ресурса 41

Теперь, если вернуться к уже упомянутому файлу CONFIG.SYS, в котором для опера­
ционной системы OS/2 указываются наиболее важные параметры, определяющие
ее работу, стоит заметить, что в этом файле строка THREADS=1024 указывает на ко­
личество не процессов, а именно задач. И под задачей в данном случае понимается
как процесс, так и поток этого процесса.

К большому сожалению, практически невозможно использовать термины «зада­
ча» и «процесс» с однозначным толкованием, чтобы под задачей обязательно по­
нимать поток, в то время как термин «процесс» означал бы множество потоков.
Значение этих терминов по-прежнему сильно зависит от контекста. И это харак­
терно практически для каждой книги, в том числе и для учебной литературы. Гре­
шен этим и автор. Остается надеяться, что со временем все же ситуация изменит­
ся, и толкование этих слов будет более четким и строгим.

В завершение можно привести несколько советов по использованию потоков вы­
полнения при создании приложений, заимствованных из [28].

а В случае однопроцессорной системы множество параллельных потоков часто
не ускоряет работу приложения, поскольку в каждый отдельно взятый проме­
жуток времени возможно выполнение только одного потока. Кроме того, чем
больше у вас потоков, тем больше нагрузки на систему, относящиеся к пере­
ключению между ними. Мультизадачность из более двух постоянно работаю­
щих потоков в вашем проекте не сделает программу быстрее, если каждый из
потоков не будет требовать частого ввода-вывода.

Q Вначале нужно понять, для чего необходим поток. Поток, осуществляющий
обработку, может помешать системе быстро реагировать на запросы ввода-вы­
вода. Потоки позволяют программе отзываться на просьбы пользователя и уст­
ройств, но при этом (в том числе) сильно загружают процессор. Потоки позволя­
ют компьютеру одновременно обслуживать множество устройств, и созданный
вами поток, отвечающий за обработку специфического устройства, как мини­
мум может потребовать столько времени, сколько системе необходимо для об­
работки запросов от всех устройств.

• Потокам можно назначать разные приоритеты для того, чтобы наименее значи­
мые процессы выполнялись в фоновом режиме. Это путь честного разделения
ресурсов процессора. Однако необходимо осознать тот факт, что процессор один
на всех, а потоков много. Если в вашей программе главная процедура передает
нечто для обработки в низкоприоритетный поток, то сама программа становит­
ся просто неуправляемой.

• Потоки хорошо работают, когда они независимы. Но они начинают работать
непродуктивно, когда вынуждены часто синхронизироваться для доступа к об­
щим ресурсам. Взаимные блокировки и критические секции отнюдь не добав­
ляют скорости работы системы, хотя без использования этих механизмов взаи­
модействующие вычисления организовывать нельзя.

Q Помните, что память виртуальна. Механизм виртуальной памяти (см. раз­
дел «Память и отображения, виртуальное адресное пространство» в главе 3) сле­
дит за тем, какая часть виртуального адресного пространства должна находить­
ся в оперативной памяти, а какая должна быть сброшена в файл подкачки.

42 Глава 1. Основные понятия

Потоки усложняют ситуацию, если они обращаются в одно и то же время к раз­
ным адресам виртуального адресного пространства приложения. Это значи­
тельно увеличивает нагрузку на систему, особенно при небольшом объеме кэш­
памяти. Помните, что реально память не всегда «свободна», как это пишут
в информационных окошках «О системе». Всегда отождествляйте доступ к па­
мяти с доступом к файлу на диске и создавайте приложение с учетом вышеска­
занного.

• Всякий раз, когда любой из ваших потоков пытается воспользоваться общим
ресурсом вычислительного процесса, которому он принадлежит, вы обязаны
каким-то образом легализовать и защитить вашу деятельность. Хорошим сред­
ством для этого являются критические секции, семафоры и очереди сообще­
ний (см. главу 7). Если вы протестировали ваше приложение и не обнаружили
ошибок синхронизации, то это еще не значит, что их там нет. Пользователь мо­
жет создавать самые непредсказуемые ситуации. Это очень ответственный мо­
мент в разработке многопоточных приложений.

• Не возлагайте на поток несколько функций. Сложные функциональные отно­
шения затрудняют понимание общей структуры приложения, его алгоритм. Чем
проще и однозначнее каждая из рассматриваемых ситуаций, тем больше веро­
ятность, что ошибок удастся избежать.

Основные виды ресурсов
и возможности их разделения
Рассмотрим кратко основные виды ресурсов вычислительной системы и способы
их разделения (см. рис. 1.5). Прежде всего, одним из важнейших ресурсов являет­
ся сам процессор1, точнее — процессорное время. Процессорное время делится
попеременно (параллельно). Имеется множество методов разделения этого ресур­
са (см. раздел «Планирование и диспетчеризация процессов и задач» в главе 2).

Вторым видом ресурсов вычислительной системы можно считать память. Опера­
тивная память может делиться и одновременно (то есть в памяти одновременно
может располагаться несколько задач или, по крайней мере, текущих фрагментов,
участвующих в вычислениях), и попеременно (в разные моменты оперативная па­
мять может предоставляться для разных вычислительных процессов). Память —
очень интересный вид ресурса. Дело в том, что в каждый конкретный момент вре­
мени процессор при выполнении вычислений обращается к очень ограниченному
числу ячеек оперативной памяти. С этой точки зрения желательно память выде­
лять для возможно большего числа параллельно исполняемых задач. С другой сто­
роны, как правило, чем больше оперативной памяти может быть выделено для
конкретного текущего вычислительного процесса, тем лучше будут условия его
выполнения. Поэтому проблема эффективного разделения оперативной памяти
между параллельно выполняемыми вычислительными процессами является од-

Разговор о процессоре как об одном из ресурсов более характерен для мультипроцессорных систем.
В случае однопроцессорных систем чаще говорят о процессорном времени.

Основные виды ресурсов и возможности их разделения 4 3

ной из самых актуальных. Достаточно подробно вопросы распределения памяти
между параллельно выполняющимися процессами рассмотрены в главе 3.
Внешняя память тоже является ресурсом, который часто необходим для выполне­
ния вычислений. Когда говорят о внешней памяти (например, памяти на магнит­
ных дисках), то собственно память и доступ1 к ней считаются разными видами
ресурса. Каждый из этих ресурсов может предоставляться независимо от другого.
Но для полноценной работы с внешней памятью необходимо иметь оба этих ре­
сурса. Собственно внешняя память может разделяться и одновременно, а вот дос­
туп к ней всегда разделяется попеременно.

Если говорить о внешних устройствах, то они, как правило, могут разделяться па­
раллельно, если используются механизмы прямого доступа. Если же устройство
работает с последовательным доступом, то оно не может считаться разделяемым
ресурсом. Простыми и наглядными примерами внешних устройств, которые не
могут быть разделяемыми, являются принтер и накопитель на магнитной ленте.
Действительно, если допустить, что принтер можно разделять между двумя про­
цессами, которые смогут его использовать (управлять его работой) попеременно,
то результаты печати, скорее всего, окажутся негодными — фрагменты выведен­
ного текста могут перемешаться таким образом, что будет не понятно, что есть что.
Аналогично и для накопителя на магнитной ленте. Если один процесс начнет что-
то читать или писать, а второй при этом запросит перемотку ленты на ее начало, то
оба вычислительных процесса не смогут выполнить свои вычисления. Здесь сле­
дует заметить, что при работе с устройствами печати мы, тем не менее, явно на­
блюдаем возможность печатать из разных программ, выполняющихся параллельно.
Однако необходимо знать, что это реализуется за счет того, что каждый вычисли­
тельный процесс получает свой виртуальный принтер, который он ни с кем не раз­
деляет. А операционная система, получив задания на печать от выполняющихся
задач, сама упорядочивает эти задания и передает очередное задание на принтер
только после полного завершения предыдущего задания.

Очень важным видом ресурсов являются программные модули. Прежде всего, мы
будем рассматривать системные программные модули, поскольку именно они обыч-

.но считаются программными ресурсами и поэтому в принципе могут распреде­
ляться между выполняющимися процессами.

Как известно, программные модули могут быть однократно используемыми и мно­
гократно (или повторно) используемыми. Однократно используемыми называют
такие программные модули, которые могут быть правильно выполнены только один
Раз, то есть в процессе своего выполнения они могут испортить себя: либо повреж­
дается часть кода, либо исходные данные, от которых зависит ход вычислений.
Очевидно, что однократно используемые программные модули являются недели­
мым ресурсом. Более того, их, как правило, вообще не распределяют как ресурс
системы. Системные однократно используемые программные модули, как прави­
ло, задействуются только на этапе загрузки операционной системы. При этом сле­
дует иметь в виду тот очевидный факт, что собственно двоичные файлы, которые

Процесс обращения к данным.

44 Глава 1. Основные понятия

обычно хранятся на системном диске и в которых и записаны эти модули, не пор­
тятся, а потому могут быть повторно использованы при следующем запуске опе­
рационной системы.

Повторно используемые программные модули, в свою очередь, могут быть непри­
вилегированными, привилегированными и реентерабельными. Все они допуска­
ют корректное повторное выполнение программного кода при обращении к нему
из другой программы.

Привилегированные программные модули работают в так называемом привилеги­
рованном режиме, то есть при отключенной системе прерываний (часто говорят,
что прерывания закрыты), когда никакие внешние события не могут нарушить
естественный порядок вычислений. Как результат, программный модуль выпол­
няется до своего конца, после чего он может быть вновь вызван на исполнение из
другой задачи (другого вычислительного процесса). С позиций стороннего наблю­
дателя по отношению к вычислительным процессам, которые попеременно (при­
чем, возможно, неоднократно) в течение срока своей «жизни» вызывают некото­
рый привилегированный программный модуль, такой модуль будет выступать как
попеременно разделяемый ресурс. Структура привилегированных программных
модулей изображена на рис. 1.8. Здесь в первой секции программного модуля вы­
ключается система прерываний. Следовательно, при выполнении вычислений
в первой секции ничто не может их прервать, и беспокоиться о промежуточных
переменных нет необходимости. В последней секции, напротив, система прерыва­
ний включается. Даже если тут же возникнет прерывание и другой процесс запро­
сит этот же привилегированный модуль, все равно все вычисления уже выполне­
ны и ничто не сможет их испортить.

Отключение
прерываний

Собственно тело программного модуля Включение
прерываний

Рис. 1.8. Структура привилегированного программного модуля

Непривилегированные программные модули — это обычные программные модули,
которые могут быть прерваны во время своей работы. Следовательно, такие моду­
ли в общем случае нельзя считать разделяемыми, потому что если после прерывания
выполнения такого модуля, исполняемого в рамках одного вычислительного про­
цесса, запустить его еще раз по требованию другого вычислительного процесса, то
промежуточные результаты для прерванных вычислений могут быть потеряны.
В противоположность этому, реентерабельные программные модули1 допускают
повторное многократное прерывание своего исполнения и повторный их запуск
по обращению из других задач (вычислительных процессов). Для этого реентера­
бельные программные модули должны быть созданы таким образом, чтобы было

1 Реентерабельный — допускающий повторные прерывания (дословный перевод с английского слова
«re-enterable»).

Основные виды ресурсов и возможности их разделения ; 45

обеспечено сохранение промежуточных результатов для прерываемых вычисле­
ний и возврат к ним, когда вычислительный процесс возобновляется с прерванной
ранее точки. Это может быть реализовано двумя способами: с помощью статиче­
ских и динамических методов выделения памяти под сохраняемые значения.
Основным и наиболее часто используемым является динамический способ выде­
ления памяти для сохранения всех промежуточных результатов вычисления, от­
носящихся к реентерабельному программному модулю (рис. 1.9).

Привилегированный
модуль,

заказывающий
в системной области

памяти блок ячеек
памяти для хранения

текущих
(промежуточных)

данных

Основное тело реентерабельного
программного модуля, которое

и может быть прервано. Работает
в непривилегированном режиме

Привилегированный
модуль,

освобождающий
в системной области
памяти блок памяти,

использованный
для хранения

промежуточных
данных

п

Системная область
памяти, используемая

динамическим
образом

для буферированного
ввода/вывода

и реентерабельной
обработки

Блок ячеек памяти
для текущих
переменных

Рис. 1.9. Структура реентерабельного программного модуля

Основная идея построения и работы реентерабельного программного модул* за­
ключается в том, что в первой (головной) своей части путем обращения из систем­
ной привилегированной секции осуществляется запрос на получение в системной
области памяти блока ячеек, необходимого для размещения всех текущих (проме­
жуточных) данных. При этом на вершину стека помещается указатель на начало
области данных и ее объем. Все текущие переменные реентерабельного программ­
ного модуля в этом случае располагаются в системной области памяти. Адресация
этих переменных осуществляется относительно вершины стека. Поскольку в кон­
це привилегированной секции система прерываний включается, то во время рабо­
ты центральной (основной) части реентерабельного модуля возможно ее преры­
вание. Если прерывания не возникает, то в третьей (заключительной) секции

46 Глава 1. Основные понятия

осуществляется запрос на освобождение используемого блока системной области
памяти. При освобождении этой области памяти модифицируется значение стека.
Если же во время работы центральной секции возникает прерывание, и другой
вычислительный процесс обращается к тому же самому реентерабельному про­
граммному модулю, то для этого нового процесса вновь заказывается новый блок
памяти в системной области памяти, и на вершину стека записывается новый указа­
тель. Очевидно, что возможно многократное повторное вхождение в реентерабель­
ный программный модуль до тех пор, пока в области системной памяти, выделяе­
мой специально для реентерабельной обработки, есть свободные области, объема
которых достаточно для выделения нового блока.

Что касается статического способа выделения памяти, то здесь речь может идти,
например, о том, что заранее для фиксированного числа вычислительных процес­
сов резервируются области памяти, в которых будут располагаться переменные
реентерабельных программных модулей: для каждого процесса — своя область
памяти. Чаще всего в качестве таких процессов выступают процессы ввода-выво­
да, и речь идет о реентерабельных драйверах1.

Кроме реентерабельных программных модулей существуют еще повторно входимые
(re-entrance). Этим термином называют программные модули, которые тоже допус­
кают свое многократное параллельное использование, но, в отличие от реентерабель­
ных, их нельзя прерывать. Повторно входимые программные модули состоят из
привилегированных секций, и повторное обращение к ним возможно только после
завершения какой-нибудь из таких секций. После выполнения очередной такой при­
вилегированной секции управление может быть передано супервизору, который
может предоставить возможность выполняться другой задаче, а значит, возможно
повторное вхождение в рассматриваемый программный модуль. Другими словами,
в повторно входимых программных модулях четко предопределены все допусти­
мые (возможные) точки входа. Следует отметить, что повторно входимые программ­
ные модули встречаются гораздо чаще реентерабельных (повторно прерываемых).

Наконец, имеются и информационные ресурсы, то есть в качестве ресурсов могут
выступать данные. Информационные ресурсы могут существовать как в виде пе­
ременных, находящихся в оперативной памяти, так и в виде файлов. Если процессы
используют данные только для чтения, то такие информационные ресурсы можно
разделять. Если же процессы могут изменять информационные ресурсы, то необхо­
димо специальным образом организовывать работу с такими данными. Это одна из
наиболее сложных проблем, достаточно подробно она обсуждается в главах 9 и 10.

Классификация операционных систем
Выше мы уже дали определение операционной системы (ОС). Поэтому просто
повторим, что основным предназначением ОС является организация эффектив­
ных и надежных вычислений, создание различных интерфейсов для взаимодей­
ствия с этими вычислениями и с самой вычислительной системой.

Реентерабельный драйвер может управлять параллельно несколькими однотипными устройствами —
более подробно см. в главе 5.

Классификация операционных систем 4 7

Широко известно высказывание, согласно которому любая наука начинается с
классификации. Само собой, что вариантов классификации может быть очень мно­
го, здесь все будет зависеть от выбранного признака, по которому один объект мы
будем отличать от другого. Однако, что касается ОС, здесь уже давно сформирова­
лось относительно небольшое количество классификаций: по назначению, по ре­
жиму обработки задач, по способу взаимодействия с системой и, наконец, по спо­
собам построения (архитектурным особенностям системы).

Прежде всего, традиционно различают ОС общего и специального назначения. ОС
специального назначения, в свою очередь, подразделяются на ОС для носимых
микрокомпьютеров и различных встроенных систем, организации и ведения баз
данных, решения задач реального времени и т. п. Еще не так давно операционные
системы для персональных компьютеров относили к ОС специального назначе­
ния. Сегодня современные мультизадачные ОС для персональных компьютеров
уже многими относятся к ОС общего назначения, поскольку их можно использо­
вать для самых разнообразных целей — так велики их возможности.

По режиму обработки задач различают ОС, обеспечивающие однопрограммный и
мультипрограммный (мультизадачный) режимы. К однопрограммным ОС отно­
сится, например, всем известная, хотя нынче уже практически и не используемая
MS DOS. Напомним, что под мультипрограммированием понимается способ орга­
низации вычислений, когда на однопроцессорной вычислительной системе созда­
ется видимость одновременного выполнения нескольких программ. Любая задер­
жка в решении программы (например, для осуществления операций ввода-вывода
данных) используется для выполнения других (таких же либо менее важных) про­
грамм. Иногда при этом говорят о мультизадачном режиме, причем, вообще гово­
ря, термины «мультипрограммный режим» и «мультизадачный режим» — это не
синонимы, хотя и близкие понятия. Основное принципиальное отличие этих тер­
минов заключается в том, что мультипрограммный режим обеспечивает параллель­
ное выполнение нескольких приложений, и при этом программисты, создающие
эти программы, не должны заботиться о механизмах организации их параллель­
ной работы (эти функции берет на себя сама ОС; именно она распределяет между
выполняющимися приложениями ресурсы вычислительной системы, осуществ­
ляет необходимую синхронизацию вычислений и взаимодействие). Мультизадач­
ный режим, наоборот, предполагает, что забота о параллельном выполнении и вза­
имодействии приложений ложится как раз на прикладных программистов. Хотя
в современной технической и тем более научно-популярной литературе об этом
различии часто забывают и тем самым вносят некоторую путаницу. Можно, одна­
ко, заметить, что современные ОС для персональных компьютеров реализуют
и мультипрограммный, и мультизадачный режимы.

Если принимать во внимание способ взаимодействия с компьютером, то можно
говорить о диалоговых системах и системах пакетной обработки. Доля последних
Хоть и не убывает в абсолютном исчислении, но в процентном отношении она су­
щественно сократилась по сравнению с диалоговыми системами.

При организации работы с вычислительной системой в диалоговом режиме мож­
но говорить об однопользовательских (однотерминальных) и мультитерминаль-

48 Глава 1. Основные понятия

ных ОС. В мультитерминальных ОС с одной вычислительной системой одновре­
менно могут работать несколько пользователей, каждый со своего терминала. При
этом у пользователей возникает иллюзия, что у каждого из них имеется собствен­
ная вычислительная система. Очевидно, что для организации мультитерминально-
го доступа к вычислительной системе необходимо обеспечить мультипрограммный
режим работы. В качестве одного из примеров мультитерминальных операцион­
ных систем для персональных компьютеров можно назвать Linux. Некая имита­
ция мультитерминальных возможностей имеется и в системе Windows XP. В этой
операционной системе каждый пользователь после регистрации (входа в систему)
получает свою виртуальную машину. Если необходимо временно предоставить
компьютер другому пользователю, вычислительные процессы первого можно не
завершать, а просто для этого другого пользователя система создает новую вирту­
альную машину. В результате компьютер будет выполнять задачи и первого, и вто­
рого пользователя. Количество параллельно работающих виртуальных машин опре­
деляется имеющимися ресурсами.

Основной особенностью операционных систем реального времени (ОСРВ) является
обеспечение обработки поступающих заданий в течение заданных интервалов вре­
мени, которые нельзя превышать. Поток заданий в общем случае не является плано­
мерным и не может регулироваться оператором (характер следования событий можно
предсказать лишь в редких случаях), то есть задания поступают в непредсказуемые
моменты времени и без всякой очередности. В то время как в ОС, не предназначен­
ных для решения задач реального времени, имеются некоторые накладные расходы
процессорного времени на этапе инициирования задач (в ходе которого ОС распоз­
нает все пожелания пользователей относительно решения своих задач, загружает в
оперативную память нужную программу и выделяет другие необходимые для ее
выполнения ресурсы), в ОСРВ подобные затраты могут отсутствовать, так как на­
бор задач обычно фиксирован, и вся информация о задачах известна еще до поступ­
ления запросов. Для подлинной реализации режима реального времени необходима
(хотя этого и недостаточно) организация мультипрограммирования. Мультипро­
граммирование является основным средством повышения производительности вы­
числительной системы, а для решения задач реального времени производительность
становится важнейшим фактором. Лучшие характеристики по производительности
для систем реального времени обеспечиваются однотерминальными ОСРВ. Сред­
ства организации мультитерминального режима всегда замедляют работу системы
в целом, но расширяют функциональные возможности системы. Одной из наиболее
известных ОСРВ для персональных компьютеров является ОС QNX.

По основному архитектурному принципу операционные системы разделяются на
микроядерные и макроядериые {монолитные). В некоторой степени это разделе­
ние тоже условно, однако можно в качестве яркого примера микроядерной ОС
привести ОСРВ QNX, тогда как в качестве монолитной можно назвать Windows
95/98 или ОС Linux. Если ядро ОС Windows мы не можем изменить, нам недо­
ступны его исходные коды и у нас нет программы для сборки (компиляции) этого
ядра, то в случае с Linux мы можем сами собрать то ядро, которое нам необходимо,
включив в него те программные модули и драйверы, которые мы считаем целесо­
образным включить именно в ядро (ведь к ним можно обращаться и из ядра).

Контрольные вопросы и задачи 4 9

Контрольные вопросы и задачи
1. Что такое операционная система? Перечислите основные функции операци­

онных систем.

2. Что означает термин «авторизация»? Что означает термин «аутентификация»?
Какая из этих операций выполняется раньше и почему?

3. Что такое операционная среда? Какие основные, наиболее известные опера­
ционные среды вы можете перечислить?

4. Что такое прерывание? Какие шаги выполняет система прерываний при воз­
никновении запроса на прерывание? Какие бывают прерывания?

5. Перечислите известные дисциплины обслуживания прерываний; объясните,
как можно реализовать каждую из этих дисциплин.

6. С какой целью в операционные системы вводится специальный системный
модуль, иногда называемый супервизором прерываний?

7. Как можно и как следует толковать процесс — одно из основных понятий опе­
рационных систем? Объясните, в чем заключается различие между такими
понятиями, как «процесс» и «задача»?

8. Изобразите диаграмму состояний процесса, поясните все возможные перехо­
ды из одного состояния в другое.

9. Объясните значения терминов «задача», «процесс», «поток выполнения»? Как
они между собой соотносятся?

10. Для чего каждая задача получает соответствующий дескриптор? Какие поля,
как правило, содержатся в дескрипторе процесса (задачи)? Что такое «кон­
текст задачи»?

11. Объясните понятие ресурса. Почему понятие ресурса является одним из фун­
даментальных при рассмотрении операционных систем? Какие виды и типы
ресурсов вы знаете?

12. Как вы считаете, сколько и каких списков дескрипторов задач может быть в си­
стеме? От чего должно зависеть это число?

13. В чем заключается различие между повторно входимыми и реентерабельны­
ми программными модулями? Как они реализуются? •*

14. Что такое привилегированный программный модуль? Почему нельзя создать
мультипрограммную операционную систему, в которой бы не было привиле­
гированных программных модулей?

Глава 2. Управление
задачами

Понятия процесса (process) и потока выполнения (thread) нам уже известны. Мы
теперь знаем, в чем здесь имеется сходство, а в чем — существенное различие. Од­
нако в данной главе при рассмотрении вопросов распределения процессорного
времени мы не всегда будем разделять эти понятия. Дело в том, что по отношению
к этому ресурсу — процессорному времени — оба этих понятия практически экви­
валенты. Они выступают просто как некоторая работа, для выполнения которой
необходимо предоставить центральный процессор. Поэтому мы будем в основном
использовать термин задача (task), который является как бы обобщающим. Ведь
каждый поток выполнения на самом деле получает статус задачи, и для него созда­
ется соответствующий дескриптор. Но мы должны помнить о различиях между
дескриптором процесса и дескриптором задачи. Даже если процесс состоит из един­
ственного потока, мы говорим о дескрипторе процесса, содержащем информацию,
с помощью которой операционная система отслеживает все ресурсы, необходи­
мые процессу для его выполнения. Один из основных модулей супервизора опера­
ционной системы — диспетчер задач — переводит процессы в одно из состояний
в зависимости от того, доступен тот или иной ресурс или не доступен. И посколь­
ку в мультизадачной системе любой процесс содержит хотя бы один поток, то по­
току (то есть задаче) ставится в соответствие дескриптор задачи, в котором сохра­
няется контекст этих вычислений. Сказанное справедливо для мультипрограммных
систем, поддерживающих мультизадачный режим. В мультипрограммных систе­
мах, не поддерживающих мультизадачность, контекст прерванного процесса хра­
нится в дескрипторе этого процесса. Заметим, что повсеместно распространенные
системы Windows 9x/NT/2000/XP являются и мультипрограммными, и мульти­
задачными. Не случайно начиная с Windows NT и Windows 95 компания Microsoft
отказалась от термина «задача» и стала использовать понятия процесса и потока
выполнения (треда, нити). Правда, для изложения вопросов диспетчеризации это
становится неудобным, ибо здесь чаще используется обобщающее понятие.
Еще одним доводом в пользу термина «задача» при рассмотрении вопросов ор­
ганизации распределения процессорного времени между выполняющимися вы­
числениями является аналогичный выбор этой сущности разработчиками про-

Управление задачами 5 1

пессоров. Именно для отображения этой ситуации и обеспечения дополнитель­
ными возможностями системных программистов в решении вопросов распреде­
ления процессорного времени они вводят специальные информационные струк­
туры и аппаратную поддержку для работы с ними. Во многих современных
микропроцессорах, предназначенных для построения на их основе мощных муль­
типрограммных и мультизадачных систем, имеются дескрипторы задач. Приме­
ром, подтверждающим этот тезис, являются микропроцессоры, совместимые с
архитектурой ia32, то есть с 32-разрядными процессорами фирмы Intel. Основ­
ные архитектурные особенности этих микропроцессоров, специально прорабо­
танные для организации мультизадачных операционных систем, рассматрива­
ются достаточно подробно в главе 4. Здесь мы лишь отметим тот факт, что в этих
процессорах имеется специальная аппаратная поддержка организации мульти­
задачного (и мультипрограммного) режима. Речь идет о сегменте состояния за­
дачи (Task State Segment, TSS), который предназначен, прежде всего, для сохра­
нения контекста потока или процесса и который легко позволяет организовать и
мультипрограммный, и мультизадачный режимы. Не случайно был введен тер­
мин «задача», ибо он здесь применим и по отношению к полноценному вычисли­
тельному процессу, и по отношению к легковесному процессу (потоку выполне­
ния, треду, нити). На самом деле этот аппаратный механизм применяется гораздо
реже, чем об этом думали разработчики архитектуры ia32. На практике оказа­
лось, что для сохранения контекста потоков эффективнее использовать программ­
ные механизмы, хотя они и не обеспечивают такой же надежности, как аппарат­
ные.

Итак, операционная система выполняет следующие основные функции, связан­
ные с управлением процессами и задачами:

• создание и удаление задач;

Q планирование процессов и диспетчеризация задач;

• синхронизация задач, обеспечение их средствами коммуникации.

Создание задачи сопряжено с формированием соответствующей информаци­
онной структуры, а ее удаление — с расформированием. Создание и удаление
задач осуществляется по соответствующим запросам от пользователей или от
самих задач. Задача может породить новую задачу. При этом между задачами
появляются «родственные» отношения. Порождающая задача называется «от­
цом», «родителем», а порожденная — «потомком». Отец может приостановить
или удалить свою дочернюю задачу, тогда как потомок не может управлять от­
цом.

Процессор является одним из самых необходимых ресурсов для выполнения вы­
числений. Поэтому способы распределения времени центрального процессора меж-
ДУ выполняющимися задачами сильно влияют и на скорость выполнения отдель­
ных вычислений, и на общую эффективность вычислительной системы.

Основным подходом в организации того или иного метода управления процесса­
ми, обеспечивающего эффективную загрузку ресурсов или выполнение каких-либо
иных целей, является организация очередей процессов и ресурсов. При распреде-

52 Глава 2,Управление задачами

лении процессорного времени между задачами также используется механизм оче­
редей.

Решение вопросов, связанных с тем, какой задаче следует предоставить процес­
сорное время в данный момент, возлагается на специальный модуль операцион­
ный системы, чаще всего называемый диспетчером задач. Вопросы же подбора
вычислительных процессов, которые не только можно, но и целесообразно решать
параллельно, возлагаются на планировщик процессов.

Вопросы синхронизации задач и обеспечение их различными средствами переда­
чи сообщений и данных между ними вынесены в отдельную главу, и сейчас мы их
рассматривать не будем.

Планирование и диспетчеризация
процессов и задач
Когда говорят о диспетчеризации, то всегда в явном или неявном виде подразуме­
вают понятие задачи (потока выполнения). Если операционная система не под­
держивает механизм потоковых вычислений, то можно заменять понятие задачи
понятием процесса. Ко всему прочему, часто понятие задачи используется в таком
контексте, что для его трактовки приходится использовать термин «процесс».

Очевидно, что на распределение ресурсов влияют конкретные потребности тех
задач, которые должны выполняться параллельно. Другими словами, можно столк­
нуться с ситуациями, когда невозможно эффективно распределять ресурсы с тем,
чтобы они не простаивали. Например, пусть всем выполняющимся процессам тре­
буется некоторое устройство с последовательным доступом. Но поскольку, как мы
уже знаем, оно не может разделяться между параллельно выполняющимися про­
цессами, то процессы вынуждены будут очень долго ждать своей очереди, то есть
недоступность одного ресурса может привести к тому, что длительное время не
будут использоваться многие другие ресурсы.

Если же мы возьмем такой набор процессов, что они не будут конкурировать меж­
ду собой за неразделяемые ресурсы при своем параллельном выполнении, то, ско­
рее всего, процессы смогут выполниться быстрее (из-за отсутствия дополнитель­
ных ожиданий), да и имеющиеся в системе ресурсы, скорее всего, будут
использоваться более эффективно. Таким образом, возникает задача подбора та­
кого множества процессов, которые при своем выполнении будут как можно реже
конфликтовать за имеющиеся в системе ресурсы. Такая задача называется плани­
рованием вычислительных процессов.

Задача планирования процессов возникла очень давно — в первых пакетных опе­
рационных системах при планировании пакетов задач, которые должны были вы­
полняться на компьютере и по возможности бесконфликтно и оптимально исполь­
зовать его ресурсы. В настоящее время актуальность этой задачи стала меньше.
На первый план уже очень давно вышли задачи динамического (или краткосроч­
ного) планирования, то есть текущего наиболее эффективного распределения ре­
сурсов, возникающего практически по каждому событию. Задачи динамического

Планирование и диспетчеризация процессов и задач 53

планирования стали называть диспетчеризацией1. Очевидно, что планирование
процессов осуществляется гораздо реже, чем текущее распределение ресурсов меж­
ду уже выполняющимися задачами. Основное различие между долгосрочным и
краткосрочным планировщиками заключается в частоте их запуска, например: крат­
косрочный планировщик может запускаться каждые 30 или 100 мс, долгосрочный —
один раз в несколько минут (или чаще; тут многое зависит от общей длительности
решения заданий пользователей).

Долгосрочный планировщик решает, какой из процессов, находящихся во вход­
ной очереди, в случае освобождения ресурсов памяти должен быть переведен в
очередь процессов, готовых к выполнению. Долгосрочный планировщик выбира­
ет процесс из входной очереди с целью создания неоднородной мультипрограмм­
ной смеси. Это означает, что в очереди готовых к выполнению процессов должны
находиться в разной пропорции как процессы, ориентированные на ввод-вывод,
так и процессы, ориентированные преимущественно на активное использование
центрального процессора.

Краткосрочный планировщик решает, какая из задач, находящихся в очереди го­
товых к выполнению, должна быть передана на исполнение. В большинстве совре­
менных операционных систем, с которыми мы сталкиваемся, долгосрочный пла­
нировщик отсутствует.

Планирование вычислительных процессов
и стратегии планирования
Прежде всего, следует отметить, что при рассмотрении стратегий планирования,
как правило, идет речь о краткосрочном планировании, то есть о диспетчериза­
ции. Долгосрочное планирование, как мы уже отметили, заключается в подборе
таких вычислительных процессов, которые бы меньше всего конкурировали меж­
ду собой за ресурсы вычислительной системы. Иногда используется термин стра­
тегия обслуживания.

Стратегия планирования определяет, какие процессы мы планируем да выполне­
ние для того, чтобы достичь поставленной цели. Известно большое количество
различных стратегий выбора процесса, которому необходимо предоставить про­
цессор. Среди них, прежде всего, можно выбрать следующие:

Q по возможности заканчивать вычисления (вычислительные процессы) в том
же самом порядке, в котором они были начаты;

Q отдавать предпочтение более коротким вычислительным задачам;

Q предоставлять всем пользователям (процессам пользователей) одинаковые
услуги, в том числе и одинаковое время ожидания.

К сожалению, здесь наблюдается терминологическая несогласованность. Собственно модули супер­
визора, отвечающие за диспетчеризацию задач, часто называют планировщиками (scheduler). Одна­
ко фактически, говоря о тех же планировщиках памяти или о каких-нибудь других модулях, отвеча­
ющих за динамическое распределение ресурсов, имеют в виду, что эти планировщики осуществляют
диспетчеризацию. Наконец, иногда диспетчеризацию называют краткосрочным планированием.

54 Глава 2. Управление задачами

Когда говорят о стратегии обслуживания, всегда имеют в виду понятие процесса,
а не понятие задачи, поскольку процесс, как мы уже знаем, может состоять из не­
скольких потоков выполнения (задач).

На сегодняшний день абсолютное большинство компьютеров — это персональные
IBM-совместимые компьютеры, работающие на платформах Windows компании
Microsoft. Это однопользовательские диалоговые мультипрограммные и мульти­
задачные системы. При создании операционных систем для персональных компь­
ютеров разработчики, прежде всего, стараются обеспечить комфортную работу
с системой, то есть основные усилия уходят на проработку пользовательского ин­
терфейса. Что касается эффективности организации вычислений, то она, видимо,
тоже должна оцениваться с этих позиций. Если же считать системы Windows опе­
рационными системами общего назначения, что тоже возможно, ибо эти системы
повсеместно используют для решения самых разнообразных задач автоматизации,
то также следует признать, что принятые в системах Windows стратегии обслужи­
вания приводят к достаточно высокой эффективности вычислений. Некоторым
даже удается использовать системы Windows NT/2000 для решения задач реаль­
ного времени. Однако выбор этих операционных систем для таких задач скорее
всего делается либо вследствие некомпетентности, либо из-за невысоких требова­
ний ко времени отклика и гарантиям обслуживания со стороны самих систем ре­
ального времени, которые реализуются на Windows NT/2000.

Прежде всего, система, ориентированная на однопользовательский режим, долж­
на обеспечить хорошую реакцию системы на запросы от того приложения, с кото­
рым сейчас пользователь работает. Мало пользователей, которые могут параллель­
но работать с большим числом приложений. Поэтому по умолчанию для задачи, с
которой пользователь непосредственно работает и которую называют задачей пе­
реднего плана (foreground task), система устанавливает более высокий уровень
приоритета. В результате процессорное время прежде всего предоставляется теку­
щей задаче пользователя, и он не будет испытывать лишний раз дискомфорт из-за
медленной реакции системы на его запросы. Для обеспечения надлежащей работы
коммуникационных процессов и для возможности выполнять системные функ­
ции приоритет задач пользователя должен быть ниже, чем у тех задач, которые
реализуют операции ввода-вывода и иные управляющие функции.

Например, в Windows 2000 можно открыть окно Свойства системы, перейти на
вкладку Дополнительно, щелчком на кнопке Параметры быстродействия открыть од­
ноименное окно и с помощью переключателя в разделе Отклик приложений уста­
новить режим Оптимизировать быстродействие приложений. Это будет соответство­
вать выбору такой стратегии диспетчеризации задач, в соответствии с которой
приоритет на получение процессорного времени будут иметь задачи пользовате­
ля, а не фоновые служебные вычисления. В предыдущей версии ОС — Windows
NT 4.0 — для выбора нужной ему стратегии пользователь должен был на вкладке
Быстродействие окна Свойства системы установить желаемое значение в поле Уско­
рение приложения переднего плана. Это ускорение можно сделать максимальным
(по умолчанию), а можно его свести к нулю. Последний вариант означал бы, что
все запущенные пользователем приложения будут иметь одинаковый приори-

планирование и диспетчеризация процессов и задач 5 5

тет. Последнее важно, если пользователь часто запускает сразу по нескольку за­
дач, каждая из которых требует длительных вычислений, причем эти приложе­
ния часто используют операции ввода-вывода. Например, если нужно обрабо­
тать несколько десятков музыкальных или графических файлов, причем каждый
файл имеет большие размеры, то выполнение всей этой работы как множества
параллельно исполняющихся задач будет завершено за меньшее время, если ука­
зать стратегию равенства обслуживания. Должно быть очевидным, что любой
другой вариант решения этой задачи потребует больше времени. Например, по­
следовательное выполнение задач обработки каждого файла (то есть обработка
следующего файла может начинаться только по окончании обработки предыду­
щего) приведет к самому длительному варианту. Стратегия предоставления про­
цессорного времени в первую очередь текущей задаче пользователя, которая
установлена в системах Windows по умолчанию, приведет нас к промежуточно­
му (по затратам времени) результату.

Очевидно, что в идеале в очереди готовых к выполнению задач должны находить­
ся в разной пропорции как задачи, ориентированные на ввод-вывод, так и задачи,
ориентированные преимущественно на работу с центральным процессором. Прак­
тически все операционные системы стараются учесть это требование, однако не
всегда оно выполняется настолько удачно, что пользователь получает превосход­
ное время реакции системы на свои запросы и при этом видит, что его ресурсоем­
кие приложения выполняются достаточно быстро.

Дисциплины диспетчеризации
Известно большое количество дисциплин диспетчеризации, то есть правил форми­
рования очереди готовых к выполнению задач, в соответствии с которыми форми­
руется эта очередь (список). Иногда их называют дисциплинами обслуживания,
опуская тот факт, что речь идет о распределении процессорного времени. Одни
дисциплины диспетчеризации дают наилучшие результаты»для одной стратегии
обслуживания, в то время как для другой стратегии они могут быть вовсе непри­
емлемыми. Известно большое количество дисциплин диспетчеризации. Мы же,
несмотря на статус этой книги, рассмотрим далеко не все, а только те, которые
признаны наиболее эффективными и до сих пор имеют применение.
Прежде всего, различают два больших класса дисциплин обслуживания: бесприо­
ритетные и приоритетные. При бесприоритетном обслуживании выбор задач
производится в некотором заранее установленном порядке без учета их относи­
тельной важности и времени обслуживания. При реализации приоритетных дис­
циплин обслуживания отдельным задачам предоставляется преимущественное
право попасть в состояние исполнения. Перечень дисциплин обслуживания и их
классификация приведены на рис. 2.1.
" концепции приоритетов имеем следующие варианты:
а приоритет, присвоенный задаче, является величиной постоянной;

а приоритет изменяется в течение времени решения задачи (динамический прио­
ритет).

56 Глава 2, Управление задачами

Дисциплины диспетчеризации

Бесприоритетные Приоритетные

!

I
со

1
о
ю

о

Рис. 2 . 1 . Дисциплины диспетчеризации

Диспетчеризация с динамическими приоритетами требует дополнительных рас­
ходов на вычисление значений приоритетов исполняющихся задач, поэтому во
многих операционных системах реального времени используются методы диспет­
черизации на основе абсолютных приоритетов. Это позволяет сократить время
реакции системы на очередное событие, однако требует детального анализа всей
системы для правильного присвоения соответствующих приоритетов всем испол­
няющимся задачам с тем, чтобы гарантировать обслуживание. Проблему гарантии
обслуживания мы рассмотрим ниже.

Рассмотрим некоторые основные (наиболее часто используемые) дисциплины
диспетчеризации.

Самой простой в реализации является дисциплина FCFS (First Come First Served —
первым пришел, первым обслужен), согласно которой задачи обслуживаются «в по­
рядке очереди», то есть в порядке их появления. Те задачи, которые были заблоки-

ваны в процессе работы (попали в какое-либо из состояний ожидания, напри-
Р° и з -за операций ввода-вывода), после перехода в состояние готовности вновь
давятся в эту очередь готовности. При этом возможны два варианта. Первый (са­
мый простой) - это ставить разблокированную задачу в конец очереди готовых
к выполнению задач. Этот вариант применяется чаще всего. Второй вариант за­
ключается в том, что диспетчер помещает разблокированную задачу перед теми
задачами, которые еще не выполнялись. Другими словами, в этом случае образу­
ется две очереди (рис. 2.2): одна очередь образуется из новых задач, а вторая оче­
редь — из ранее выполнявшихся, но попавших в состояние ожидания. Такой под­
ход позволяет реализовать стратегию обслуживания «по возможности заканчивать
вычисления в порядке их появления». Эта дисциплина обслуживания не требует
внешнего вмешательства в ход вычислений, при ней не происходит перераспреде­
ления процессорного времени. Про нее можно сказать, что она относится к не вы­
тесняющим дисциплинам1.

Процессор

Выполненные процессы

1

С Блокировани

Очередь задач, вновь готовых к исполнению

D

Очередь новых задач

Рис. 2.2. Дисциплина диспетчеризации FCFS

К достоинствам этой дисциплины прежде всего можно отнести простоту реализа­
ции и малые расходы системных ресурсов на формирование очереди задач.

Однако эта дисциплина приводит к тому, что при увеличении загрузки вычисли­
тельной системы растет и среднее время ожидания обслуживания, причем короткие
задания (требующие небольших затрат машинного времени) вынуждены ожидать

Существующие дисциплины диспетчеризации процессов могут быть разбиты па два класса: вытес­
няющие (preemptive) и не вытесняющие (non-preemptive). В первых пакетных операционных систе­
мах часто реализовывали параллельное выполнение заданий без принудительного перераспределе­
ния процессора между задачами. В большинстве современных ОС для мощных вычислительных
систем, а также в ОС для персональных компьютеров, ориентированных на высокопроизводитель­
ное выполнение приложений (Windows 9x/NT/2000/XP, Linux, OS/2), реализованы вытесняющие
Дисциплины диспетчеризации (вытесняющая многозадачность).

58 Глава 2. Управление задачами

столько же, сколько трудоемкие задания. Избежать этого недостатка позволяют дис- 1
циплины SJN и SRT. Правило FCFS применяется и в более сложных дисциплинах 1
диспетчеризации. Например, в приоритетных дисциплинах диспетчеризации, если I
имеется несколько задач с одинаковым приоритетом, которые стоят в очереди гото­
вых к выполнению задач, то попадают они в эту очередь с учетом времени.

Дисциплина обслуживания SJN(Shortest Job Next — следующим выполняется са­
мое короткое задание) требует, чтобы для каждого задания была известна оценка |
в потребностях машинного времени. Необходимость сообщать операционной сис­
теме характеристики задач с описанием потребностей в ресурсах вычислительной
системы привела к тому, что были разработаны соответствующие языковые сред­
ства. В частности, ныне уже забытый язык]СЬ (Job Control Language — язык уп­
равления заданиями) был одним из наиболее известных. Пользователи вынужде­
ны были указывать предполагаемое время выполнения задачи и для того, чтобы
они не злоупотребляли возможностью указать заведомо меньшее время выполне­
ния (с целью возможности получить результаты раньше других), ввели подсчет
реальных потребностей. Диспетчер задач сравнивал заказанное время и время вы­
полнения и в случае превышения указанной оценки потребности в данном ресур­
се ставил данное задание не в начало, а в конец очереди. Еще в некоторых операци­
онных системах в таких случаях использовалась система штрафов, при которой
в случае превышения заказанного машинного времени оплата вычислительных ре­
сурсов осуществлялась уже по другим расценкам.

Дисциплина обслуживания SJN предполагает, что имеется только одна очередь
заданий, готовых к выполнению. Задания, которые в процессе своего исполнения
были временно заблокированы (например, ожидали завершения операций ввода-
вывода), вновь попадали в конец очереди готовых к выполнению наравне с вновь
поступающими. Это приводило к тому, что задания, которым требовалось очень 1
немного времени для своего завершения, вынуждены были ожидать процессор
наравне с длительными работами, что не всегда хорошо.

Для устранения этого недостатка и была предложена дисциплина SRT (Shortest
Remaining Time) — следующим будет выполняться задание, которому осталось
меньше всего выполняться на процессоре.

Все эти три дисциплины обслуживания могут использоваться для пакетных ре­
жимов обработки, когда пользователю не нужно ждать реакции системы — он про­
сто сдает свое задание и через несколько часов получает результаты вычислений.
Для интерактивных же вычислений желательно прежде всего обеспечить прием­
лемое время реакции системы. Если же система является мультитерминальной, |
то помимо малого времени реакции системы на запрос пользователя желательно,
чтобы она обеспечивала и равенство в обслуживании. Можно сказать, что страте­
гия обслуживания, согласно которой главным является равенство обслуживания
при приемлемом времени обслуживания, является главной для систем разделе-
ния времени. Кстати, UNIX-системы реализуют дисциплины обслуживания, со­
ответствующие именно этой стратегии.

Если же это однопользовательская система, но с возможностью мультипрограмм-
ной обработки, то желательно, чтобы те программы, с которыми непосредственно I

рпанирование и диспетчеризация процессов и задач 5 9

оаботает пользователь, имели лучшее время реакции, нежели фоновые задания.
При этом желательно, чтобы некоторые приложения, выполняясь без непосред­
ственного участия пользователя (например, программа получения электронной
почты, использующая модем и коммутируемые линии для передачи данных), тем
не менее, гарантированно получали необходимую им долю процессорного времени.
Для решения перечисленных проблем используется дисциплина обслуживания,
называемая карусельной (Round Robin, RR), и приоритетные методы обслужи­
вания.

Дисциплина обслуживания RR предполагает, что каждая задача получает процес­
сорное время порциями или, как говорят, квантами времени (time slice) q. После
окончания кванта времени q задача снимается с процессора, и он передается сле­
дующей задаче. Снятая задача ставится в конец очереди задач, готовых к выполне­
нию. Эту дисциплину обслуживания иллюстрирует рис. 2.3. Для оптимальной ра­
боты системы необходимо правильно выбрать закон, по которому кванты времени
выделяются задачам.

Выполненные задачи

•

Очередь готовых к исполнению задач Новые задачи

Рис. 2.3. Карусельная дисциплина диспетчеризации

Величина кванта времени q выбирается как компромисс между приемлемым време­
нем реакции системы на запросы пользователей (с тем, чтобы их простейшие запро­
сы не вызывали длительного ожидания) и накладными расходами на частую смену
Контекста задач. Очевидно, что при прерываниях операционная система вынуждена
выполнять большой объем работы, связанной со сменой контекста. Она должна со­
хранить достаточно большой объем информации о текущем (прерываемом) процес­
се, поставить дескриптор снятой задачи в очередь, занести в рабочие регистры про­
цессора соответствующие значения для той задачи, которая теперь будет выполняться
(ее дескриптор расположен первым в очереди готовых к исполнению задач). Если
Величина q велика, то при увеличении очереди готовых к выполнению задач реак­
ция системы станет медленной. Если же величина q мала, то относительная доля

60 Глава 2. Управление задачами

накладных расходов на переключения контекста между исполняющимися задачами
увеличится, и это ухудшит производительность системы. »
В некоторых операционных системах есть возможность указывать в явном виде
величину кванта времени или диапазон возможных значений, тогда система будет
стараться выбирать оптимальное значение сама. Например, в операционной сис­
теме OS/2 в файле CONFIG.SYS есть возможность с помощью оператора TIMESLICE
указать минимальное и максимальное значения для кванта q. Так, например, стро­
ка TIMESLICE=32,256 указывает, что минимальное значение равно 32 мс, а макси­
мальное — 256. Если некоторая задача прервана, поскольку израсходован выде­
ленный ей квант времени q, то следующий выделенный ей интервал будет увеличен
на время, равное одному периоду таймера (около 32 мс), и так до тех пор, пока
квант времени не станет равным максимальному значению, указанному в операто­
ре TIMESLICE. Этот метод позволяет OS/2 уменьшить накладные расходы на пе­
реключение задач в том случае, если несколько задач параллельно выполняют
длительные вычисления. Следует заметить, что диспетчеризация задач в этой опе­
рационной системе реализована, пожалуй, наилучшим образом с точки зрения ре­
акции системы и эффективности использования процессорного времени.

Дисциплина карусельной диспетчеризации более всего подходит для случая, когда
все задачи имеют одинаковые права на использование ресурсов центрального про­
цессора. Однако как мы знаем, равенства в жизни гораздо меньше, чем неравенства.
Одни задачи всегда нужно решать в первую очередь, тогда как остальные могут по­
дождать. Это можно реализовать за счет того, что одной задаче мы (или диспетчер
задач) присваиваем один приоритет, а другой задаче — другой. Задачи в очереди будут
располагаться в соответствии с их приоритетами. Формирует очередь диспетчер за­
дач. Процессор в первую очередь будет предоставляться задаче с самым высоким
приоритетом, и только если ее потребности в процессоре удовлетворены или она
попала в состояние ожидания некоторого события, диспетчер может предоставить
его следующей задаче. Многие дисциплины диспетчеризации по-разному исполь­
зуют основную идею карусельной диспетчеризации и механизм приоритетов.

Дисциплина диспетчеризации RR — это одна из самых распространенных дисцип­
лин. Однако бывают ситуации, когда операционная система не поддерживает в яв­
ном виде дисциплину карусельной диспетчеризации. Например, в некоторых опе­
рационных системах реального времени используется диспетчер задач, работающий
по принципу абсолютных приоритетов (процессор предоставляется задаче с мак­
симальным приоритетом, а при равенстве приоритетов он действует по принципу
очередности) [7, 11]. Другими словами, причиной снятия задачи с выполнения
может быть только появление задачи с более высоким приоритетом. Поэтому если
нужно организовать обслуживание задач таким образом, чтобы все они получали
процессорное время равномерно и равноправно, то системный оператор может сам
организовать эту дисциплину. Для этого достаточно всем пользовательским зада­
чам присвоить одинаковые приоритеты и создать одну высокоприоритетную зада­
чу, которая не должна ничего делать, но которая, тем не менее, будет по таймеру
(через указанные интервалы времени) планироваться на выполнение. Благодаря
высокому приоритету этой задачи текущее приложение будет сниматься с выпол­
нения и ставиться в конец очереди, а поскольку этой высокоприоритетной задаче

а самом деле ничего делать не надо, то она тут же освободит процессор, и из оче­
реди готовности будет взята следующая задача.
В своей простейшей реализации дисциплина карусельной диспетчеризации пред-

отагает, что все задачи имеют одинаковый приоритет. Если же необходимо ввес­
ти механизм приоритетного обслуживания, то это, как правило, делается за счет
организации нескольких очередей. Процессорное время предоставляется в первую
очередь тем задачам, которые стоят в самой привилегированной очереди. Если она
пустая, то диспетчер задач начинает просматривать остальные очереди. Именно
по такому алгоритму действует диспетчер задач в операционных системах OS/2,
Windows 9x, Windows NT/2000/XP и многих других. Отличия в основном заклю­
чаются в количестве очередей и в правилах, касающихся перемещения задач из
одной очереди в другую.
Известные дисциплины диспетчеризации (мы здесь рассмотрели только основ­
ные) могут применять или не применять еще одно правило, касающееся перерас­
пределения процессора между выполняющимися задачами.

Есть дисциплины, в которых процессор принудительно может быть отобран у те­
кущей задачи. Такие дисциплины обслуживания называют вытесняющими, по­
скольку одна задача вытесняется другой. Другими словами, возможно прину­
дительное перераспределение процессорного времени между выполняющимися
задачами. Оно осуществляется самой операционной системой, отбирающей пери­
одически процессор у выполняющейся задачи.

А есть дисциплины диспетчеризации, в которых ничто не может отобрать у задачи
процессор, пока она сама его не освободит. Освобождение процессора в этом слу­
чае, как правило, связано с тем, что задача попадает в состояние ожидания некото­
рого события.

Итак, диспетчеризация без перераспределения процессорного времени, то есть не
вытесняющая (non-preemptive multitasking), или кооперативная, многозадачность
(cooperative multitasking), — это такой способ диспетчеризации задач, при кото­
ром активная задача выполняется до тех пор, пока она сама, что называется «по
собственной инициативе», не отдаст управление диспетчеру задач для того, чтобы
тот выбрал из очереди другой, готовый к выполнению процесс или поток. Дисцип­
лины обслуживания FCFS, SJN, SRT относятся к не вытесняющим.

Диспетчеризация с перераспределением процессорного времени между задачами,
то есть вытесняющая многозадачность (preemptive multitasking), — это такой спо­
соб, при котором решение о переключении процессора с выполнения одной задачи
на выполнение другой принимается диспетчером задач, а не самой активной зада­
чей. При вытесняющей многозадачности механизм диспетчеризации задач цели­
ком сосредоточен в операционной системе, и программист может писать свое при­
ложение, не заботясь о том, как оно будет выполняться параллельно с другими
задачами (процессами и потоками). При этом операционная система выполняет
следующие функции: определяет момент снятия с выполнения текущей задачи,
сохраняет ее контекст в дескрипторе задачи, выбирает из очереди готовых задач
следующую и запускает ее на выполнение, загружая ее контекст. Дисциплина RR
11 многие другие, построенные на ее основе, относятся к вытесняющим.

62 Глава 2. Управление задачами

При не вытесняющей многозадачности процессорное время распределено между
системой и прикладными программами. Прикладная программа, получив управ­
ление от операционной системы, сама должна определить момент завершения своей
очередной итерации и передачи управления супервизору операционной системы с
помощью соответствующего системного вызова. При этом естественно, что дис­
петчер задач, так же как и в случае вытесняющей мультизадачное™, формирует
очереди задач и выбирает в соответствии с некоторым алгоритмом (например, с уче­
том порядка поступления задач или их приоритетов) следующую задачу на вы­
полнение. Такой механизм создает некоторые проблемы как для пользовате­
лей, так и для разработчиков.

Для пользователей это означает, что управление системой может теряться на не­
который произвольный период времени, который определяется процессом выпол­
нения приложения (а не системой, старающейся всегда обеспечить приемлемое
время реакции на запросы пользователей) [27]. Если приложение тратит слишком
много времени на выполнение какой-либо работы (например, на форматирование
диска), пользователь не может переключиться с этой на другую задачу (например,
на текстовый или графический редактор, в то время как форматирование продол­
жалось бы в фоновом режиме). Эта ситуация нежелательна, так как пользователи
обычно не хотят долго ждать, когда машина завершит свою задачу.

Поэтому разработчики приложений для не вытесняющей операционной среды,
возлагая на себя функции диспетчера задач, должны создавать приложения так,
чтобы они выполняли свои задачи небольшими частями. Так, упомянутая выше
программа форматирования может отформатировать одну дорожку дискеты
и вернуть управление системе. После выполнения других задач система возвратит
управление программе форматирования, чтобы та отформатировала следующую
дорожку. Подобный метод разделения времени между задачами работает, но он
существенно затрудняет разработку программ и предъявляет повышенные требо­
вания к квалификации программиста.

Например, в ныне уже забытой операционной среде Windows 3.x нативные 16-раз­
рядные приложения этой системы разделяли между собой процессорное время
именно таким образом. Й именно программисты должны были обеспечивать «дру­
жественное» отношение своей программы к другим выполняемым одновременно
с ней программам, достаточно часто отдавая управление ядру системы. Крайним
проявлением «недружественности» приложения является его зависание, приво­
дящее к общему краху системы — прекращению всех вычислений. В системах с вы­
тесняющей многозадачностью такие ситуации, как правило, исключены, так как
центральный механизм диспетчеризации, во-первых, обеспечивает все задачи про­
цессорным временем, во-вторых, дает возможность иметь надежные механизмы
мониторинга вычислений и, в-третьих, позволяет снять зависшую задачу с выпол­
нения.

Однако распределение функций диспетчеризации между системой и приложени­
ями не всегда является недостатком, а при определенных условиях может быть
и достоинством, потому что дает возможность разработчику приложений самому
планировать распределение процессорного времени наиболее подходящим для

- -• - -^ • - •••- -• — *• .!„..^^.^^^..^^..^^^.^^^ЛИ

качество диспетчеризации и гарантии обслуживания 6 3

данного фиксированного набора задач образом [27, 44, 46]. Так как разработчик
сам определяет в программе момент времени передачи управления, то при этом
исключаются нерациональные прерывания программ в «неудобные» для них мо­
менты времени. Кроме того, легко разрешаются проблемы совместного использо­
вания данных: задача во время каждой итерации использует их монопольно и уве­
рена, что на протяжении этого периода никто другой их не изменит. Примером
эффективного применения не вытесняющей многозадачности является сетевая
операционная система Novell NetWare, в которой в значительной степени благо­
даря этому достигнута высокая скорость выполнения файловых операций. Менее
удачным оказалось использование не вытесняющей многозадачности в операци­
онной среде Windows 3.x. К счастью, на сегодня эта операционная система уже
нигде не применяется, ее с успехом заменила сначала Windows 95, а затем и Win­
dows 98. Правда, следует заметить, что при выполнении в этих операционных систе­
мах старых 16-разрядных приложений, разработанных в свое время для операци­
онной среды Win 16 API, создается виртуальная машина, работающая по принципам
не вытесняющей многозадачности.

Качество диспетчеризации
и гарантии обслуживания
Одна из проблем, которая возникает при выборе подходящей дисциплины обслу­
живания — это гарантия обслуживания. Дело в том, что в некоторых дисципли­
нах, например в дисциплине абсолютных приоритетов, низкоприоритетные про­
цессы получаются обделенными многими ресурсами и, прежде всего, процессорным
временем. Возникает реальная дискриминация низкоприоритетных задач, в резуль­
тате чего они достаточно длительное время могут не получать процессорное время.
В конце концов, некоторые процессы и задачи вообще могут быть не выполнены к
заданному сроку. Известны случаи, когда вследствие высокой загрузки вычисли­
тельной системы отдельные процессы вообще не выполнились, несмотря на то что
прошло несколько лет (!) с момента их планирования. Поэтому вопрос гарантии
обслуживания является очень актуальным.

Более жестким требованием к системе, чем просто гарантированное завершение
процесса, является его гарантированное завершение к указанному моменту време­
ни или за указанный интервал времени. Существуют различные дисциплины дис­
петчеризации, учитывающие жесткие временные ограничения, но не существует
Дисциплин, которые могли бы предоставить больше процессорного времени, чем
может быть в принципе выделено.

Планирование с учетов жестких временных ограничений легко реализовать, орга­
низуя очередь готовых к выполнению задач в порядке возрастания их временных
ограничений. Основным недостатком такого простого упорядочения является то,
что задача (за счет других задач) может быть обслужена быстрее, чем это ей реаль­
но необходимо. Чтобы избежать этого, проще всего процессорное время выделять
Все-таки квантами. А после получения задачей своего кванта времени операцион­
ная система, оценив некоторое множество факторов (важных с точки зрения опти-

л

64 • Глава 2. Управление задачами

мизации распределения процессорного времени и гарантий обслуживания к за­
данному сроку), может переназначить приоритет задаче. Это позволит ей более
гибко использовать механизм приоритетов и иметь механизмы гарантии обслу­
живания.

Гарантировать обслуживание можно, например, следующими тремя способами.

• Выделять минимальную долю процессорного времени некоторому классу про­
цессов, если по крайней мере один из них готов к исполнению. Например, можно
отводить 20 % от каждых 10 мс процессам реального времени, 40 % от каждых
2 с — интерактивным процессам и 10 % от каждых 5 мин — пакетным (фоно­
вым) процессам.

• Выделять минимальную долю процессорного времени некоторому конкретно­
му процессу, если он готов к выполнению.

О Выделять столько процессорного времени некоторому процессу, чтобы он мог
выполнить свои вычисления к сроку.

Для сравнения алгоритмов диспетчеризации обычно используются некоторые кри­
терии.

Q Загрузка центрального процессора (CPU utilization). В большинстве персональ­
ных систем средняя загрузка процессора не превышает 2-3 %, доходя в момен­
ты выполнения сложных вычислений и до 100 %. В реальных системах, где
компьютеры (например, серверы) выполняют очень много работы, загрузка про­
цессора колеблется в пределах от 15-40 % (для легко загруженного процессо­
ра) до 90-100 % (для тяжело загруженного процессора).

• Пропускная способность центрального процессора (CPU throughput). Пропус­
кная способность процессора может измеряться количеством процессов, кото­
рые выполняются в единицу времени.

Q Время оборота (turnaround time). Для некоторых процессов важным критери­
ем является полное время выполнения, то есть интервал от момента появления
процесса во входной очереди до момента его завершения. Это время названо
временем оборота и включает время ожидания во входной очереди, время ожи­
дания в очереди готовых процессов, время ожидания в очередях к оборудова­
нию, время выполнения в процессоре и время ввода-вывода.

• Время ожидания (waiting time). Под временем ожидания понимается суммар­
ное время нахождения процесса в очереди готовых процессов.

• Время отклика (response time). Для интерактивных программ важным показа­
телем является время отклика, или время, прошедшее от момента попадания
процесса во входную очередь до момента первого обращения к терминалу.

Очевидно, что простейшая стратегия краткосрочного планировщика должна быть
направлена на максимизацию средних значений загруженности и пропускной спо­
собности, времени ожидания и времени отклика.

Правильное планирование процессов в значительной степени влияет на произво­
дительность всей системы. Можно выделить следующие главные причины, при­
водящие к снижению производительности системы.

Диспетчеризация задач с использованием динамических приоритетов 65

• Накладные расходы на переключение процессора. Они определяются не толь­
ко переключениями контекстов задач, но и (при переключении на потоки друго­
го приложения) перемещениями страниц виртуальной памяти, а также необхо­
димостью обновления данных в кэше (коды и данные одной задачи, находящиеся
в кэше, не нужны другой задаче и будут заменены, что приведет к дополнитель­
ным задержкам).

• Переключение на другую задачу в тот момент, когда текущая задача выполняет
критическую секцию, а другие задачи активно ожидают входа в свою критичес­
кую секцию (см. главу 7). В этом случае потери будут особо велики (хотя веро­
ятность прерывания выполнения коротких критических секций мала).

В случае мультипроцессорных систем применяются следующие методы повыше­
ния производительности системы:

• совместное планирование, при котором все потоки одного приложения (небло-
кированные) одновременно ставятся на выполнение процессорами и одновре­
менно снимаются с выполнения (для сокращения переключений контекста);

• планирование, при котором находящиеся в критической секции задачи не пре­
рываются, а активно ожидающие входа в критическую секцию задачи не ста­
вятся на выполнение до тех пор, пока вход в секцию не освободится;

Q планирование с учетом так называемых подсказок (hints) программы (во время
ее выполнения), например, в известной своими новациями ОС Mach имелось
два класса таких подсказок: во-первых, указания (разной степени категорично­
сти) о снятии текущего процесса с процессора, во-вторых, указания о том про­
цессе, который должен быть выбран взамен текущего.

Одним из основных методов гарантии обслуживания является использование ди­
намических приоритетов.

Диспетчеризация задач с использованием
динамических приоритетов
При выполнении программ, реализующих какие-нибудь задачи контроля и управ­
ления (что характерно, прежде всего, для систем реального времени), может слу­
читься такая ситуация, когда одна или несколько задач не могут быть реализова­
ны (решены) в течение длительного промежутка времени из-за возросшей нагрузки
в вычислительной системе. Потери, связанные с невыполнением таких задач, могут
оказаться больше, чем потери от невыполнения программ с более высоким прио­
ритетом. При этом оказывается целесообразным временно изменить приоритет
«аварийных» задач (для которых истекает отпущенное для них время обработки).
После выполнения этих задач их приоритет восстанавливается. Поэтому почти в лю­
бой операционной системе реального времени (ОС РВ) имеются средства для дина­
мического изменения приоритета (dynamic priority variation) задачи. Есть такие сред­
ства и во многих операционных системах, которые не относятся к классу ОС РВ.

Рассмотрим, например, как реализован механизм динамических приоритетов в опе­
рационной системе UNIX, которая, как известно, не относится к ОС РВ. Операцион-

V

66 Глава 2, Управление задачами

ные системы класса UNIX относятся к мультитерминальным диалоговым системам.
Основная стратегия обслуживания, применяемая в UNIX-системах, — это равенство
в обслуживании и обеспечение приемлемого времени реакции системы. Реализует­
ся эта стратегия за счет дисциплины диспетчеризации RR с несколькими очередями
и механизма динамических приоритетов. Приоритет процесса вычисляется следую­
щим образом [39]. Во-первых, в вычислении участвуют значения двух полей деск­
риптора процесса — p_nice и р_сри. Первое из них назначается пользователем явно
или формируется по умолчанию с помощью системы программирования. Второе
поле формируется диспетчером задач (планировщиком разделения времени) и на­
зывается системной составляющей или текущим приоритетом. Другими словами,
каждый процесс имеет два атрибута приоритета. С учетом этого приоритета и рас­
пределяется между исполняющимися задачами процессорное время: текущий при­
оритет, на основании которого происходит планирование, и заказанный относи­
тельный приоритет (называемый nice number, или просто nice).

Схема нумерации текущих приоритетов различна для различных версий UNIX.
Например, более высокому значению текущего приоритета может соответствовать
более низкий фактический приоритет планирования. Разделение между приори­
тетами режима ядра и задачи также зависит от версии. Рассмотрим частный слу­
чай, когда текущий приоритет процесса варьируется в диапазоне от 0 (низкий при­
оритет) до 127 (наивысший приоритет). Процессы, выполняющиеся в режиме
задачи, имеют более низкий приоритет, чем в режиме ядра. Для режима задачи
приоритет меняется в диапазоне 0-65, для режима ядра — 66-95 (системный диа­
пазон). Процессы, приоритеты которых лежат в диапазоне 96-127, являются про­
цессами с фиксированным приоритетом, не изменяемым операционной системой,
и предназначены для поддержки приложений реального времени.

Процессу, ожидающему недоступного в данный момент ресурса, система опреде­
ляет значение приоритета сна, выбираемое ядром из диапазона системных при­
оритетов и связанное с событием, вызвавшим это состояние. Когда процесс про­
буждается, ядро устанавливает значение текущего приоритета процесса равным
приоритету сна. Поскольку приоритет такого процесса находится в системном
диапазоне и выше, чем приоритет режима задачи, вероятность предоставления
процессу вычислительных ресурсов весьма велика. Такой подход позволяет, в ча­
стности, быстро завершить системный вызов, в ходе выполнения которого могут
блокироваться некоторые системные ресурсы.

После завершения системного вызова перед возвращением в режим задачи ядро
восстанавливает приоритет режима задачи, сохраненный перед выполнением сис­
темного вызова. Это может привести к понижению приоритета, что, в свою оче­
редь, вызовет переключение контекста.

Текущий приоритет процесса в режиме задачи p_priuser, как мы только что отмеча­
ли, зависит от значения относительного приоритета p_nice и степени использова­
ния вычислительных ресурсов р_сри:

p_pri user = а х p_nice - b х p_cpu
Задача планировщика разделения времени — справедливо распределить вычис­
лительный ресурс между конкурирующими процессами. Для принятия решения о

Пигпйтчеризация задач с использованием динамических приоритетов 67

ыборе следующего запускаемого процесса планировщику необходима информа-
В

и я об использовании процессора. Эта составляющая приоритета уменьшается
бработчиком прерываний таймера каждый тик. Таким образом, пока процесс вы-

по1Няется в режиме задачи, его текущий приоритет линейно уменьшается.
Каждую секунду ядро пересчитывает текущие приоритеты процессов, готовых к за­
пуску (приоритеты которых меньше некоторого порогового значения; в нашем
примере эта величина равна 65), последовательно увеличивая их за счет последо­
вательного уменьшения отрицательного компонента времени использования про­
цессора. Как результат, эти действия приводят к перемещению процессов в более
приоритетные очереди и повышению вероятности их последующего выполнения.
Возможно использование следующей формулы:

p_cpu = р__сри/2
В этом правиле проявляется недостаток нивелирования приоритетов при повы­
шении загрузки системы. Происходит это потому, что в таком случае каждый про­
цесс получает незначительный объем вычислительных ресурсов и, следовательно,
имеет малую составляющую р_сри, которая еще более уменьшается благодаря фор­
муле пересчета величины р_сри. В результате загрузка процессора перестает ока­
зывать заметное влияние на приоритет, и низкоприоритетные процессы (то есть
процессы с высоким значением nice number) практически «отлучаются» от вычис­
лительных ресурсов системы.

В некоторых версиях UNIX для пересчета^значения р_сри используется другая
формула:

p__cpu = p_cpu х (2 х load)/(2 х load + 1)
Здесь параметр load равен среднему числу процессов, находившихся в очереди на
выполнение за последнюю секунду, и характеризует среднюю загрузку системы за
этот период времени. Этот алгоритм позволяет частично избавиться от недостатка
планирования по формуле p_cpu = p_cpu/2, поскольку при значительной загрузке
системы уменьшение р_сри при пересчете будет происходить медленнее.

Описанные алгоритмы диспетчеризации позволяют учесть интересы низкоприо­
ритетных процессов, так как в результате длительного ожидания очереди на за­
пуск приоритет таких процессов увеличивается, соответственно повышается и ве­
роятность их запуска. Эти алгоритмы также обеспечивают более вероятный выбор
планировщиком интерактивных процессов по отношению к сугубо вычислитель­
ным (фоновым). Такие задачи, как командный интерпретатор или редактор, боль­
шую часть времени проводят в ожидании ввода, имея, таким образом, высокий
приоритет (приоритет сна). При наступлении ожидаемого события (например,
пользователь осуществил ввод данных) им сразу же предоставляются вычисли­
тельные ресурсы. Фоновые процессы, потребляющие значительные ресурсы про­
цессора, имеют высокую составляющую р_сри и, как следствие, более низкий прио­
ритет.

"алогичные механизмы имеют место и в таких операционных системах, как OS/2
ли Windows NT/2000/XP. Правда, алгоритмы изменения приоритета задач в этих

' 5стемах иные. Например, в Windows NT/2000/XP каждый поток выполнения
1 е е т базовый уровень приоритета, который лежит в диапазоне от двух уровней

68 Глава 2, Управление задачами

ниже базового приоритета процесса, его породившего, до двух уровней выше этого
приоритета, как показано на рис. 2.4. Базовый приоритет процесса определяет, сколь
сильно могут различаться приоритеты потоков этого процесса и как они соотно­
сятся с приоритетами потоков других процессов. Поток наследует этот базовый
приоритет и может изменять его так, чтобы он стал немного больше или немного
меньше. В результате получается приоритет планирования, с которым поток и на­
чинает исполняться. В процессе исполнения потока его приоритет может откло­
няться от базового.

15
14
13
12
11
10

9
8
7
6
5
4 -
3
2
1

А Приоритет

Базовый приоритет
процесса

Базовый приоритет
потока

Диапазон
значений

динамического
приоритета

потока

Рис. 2.4. Схема динамического изменения приоритетов в Windows NT/2000/XP

На рисунке также показан динамический приоритет потока, нижней границей ко­
торого является базовый приоритет потока, а верхняя зависит от вида работ, ис­
полняемых потоком. Например, если поток обрабатывает текущие результаты опе­
раций ввода пользователем своих данных, диспетчер задач Windows поднимает
его динамический приоритет; если же он выполняет вычисления, то диспетчер за­
дач постепенно снижает его приоритет до базового. Снижая приоритет одной за­
дачи и поднимая приоритет другой, подсистемы могут управлять относительной
приоритетностью потоков внутри процесса.

Для определения порядка выполнения потоков диспетчер задач использует систе­
му приоритетов, направляя на выполнение задачи с высоким приоритетом раньше
задач с низким приоритетом. Система прекращает исполнение, или вытесняет
(preempts), текущий поток, если становится готовым к выполнению другой поток
с более высоким приоритетом.

Имеется группа очередей — по одной для каждого приоритета. В операционных
системах Windows NT/2000/XP используется один и тот же диспетчер задач. Он
поддерживает 32 уровня приоритета. Задачи делятся на два класса: реального вре­
мени и переменного приоритета. Задачи реального времени, имеющие приорите­
ты от 16 до 31, — это высокоприоритетные потоки, используемые программами,

п,,г-пятчеризация задач с использованием динамических приоритетов 6 9

итическими по времени выполнения, то есть требующими немедленного вни­

мания системы (по терминологии Microsoft).

Диспетчер задач просматривает очереди, начиная с самой приоритетной. При этом
ли очередь пустая, то есть в ней нет готовых к выполнению задач с таким при­

оритетом, то осуществляется переход к следующей очереди. Следовательно, если

е с ть задачи, требующие процессор немедленно, они будут обслужены в первую
очередь. Для собственно системных модулей, функционирующих в статусе зада­
чи, зарезервирована очередь с номером 0.

Большинство задач в системе относятся к классу переменного приоритета с уров­
нями приоритета (номером очереди) от 1 до 15. Эти очереди используются зада­
чами с переменным приоритетом (variable priority), так как диспетчер задач для
оптимизации отклика системы корректирует их приоритеты по мере выполне­
ния. Диспетчер приостанавливает исполнение текущей задачи, после того как та
израсходует свой квант времени. При этом если прерванная задача — это поток
переменного приоритета, то диспетчер задач понижает приоритет этого потока
выполнения на единицу и перемещает в другую очередь. Таким образом, прио­
ритет задачи, выполняющей много вычислений, постепенно понижается (до зна­
чения его базового приоритета). С другой стороны, диспетчер повышает при­
оритет задачи после ее освобождения из состояния ожидания. Обычно добавка
к приоритету задачи определяется кодом исполнительной системы, находя­
щимся вне ядра операционной системы, однако величина этой добавки зависит
от типа события, которого ожидала заблокированная задача. Так, например,
поток, ожидавший ввода очередного байта с клавиатуры, получает большую
добавку к значению своего приоритета, чем поток ввода-вывода, работавший
с дисковым накопителем. Однако в любом случае значение приоритета не мо­
жет достигнуть 16.

В операционной системе OS/2 схема динамической приоритетной диспетчериза­
ции несколько иная, хоть и похожа1. В OS/2 также имеется четыре класса задач.
И для каждого класса задач имеется своя группа приоритетов с интервалом значе­
ний от 0 до 31. Итого, 128 различных уровней и, соответственно, 128 возможных
очередей готовых к выполнению задач (потоков).

Задачи, имеющие самые высокие значения приоритета, называются критически­
ми по времени (time critical). В этот класс входят задачи, которые мы в обиходе
называем задачами реального времени, то есть для них должен быть обязательно
предоставлен определенный минимум процессорного времени. Наиболее часто
встречающимися задачами этого класса являются задачи коммуникаций (напри­
мер, задача управления последовательным портом, на который приходят биты по
коммутируемой линии с подключенным модемом, или задачи управления сете­
вым оборудованием). Если такие задачи не получат управление в нужный момент
времени, то сеанс связи может прерваться.

Как известно, одно время компания Microsoft принимала активное участие в разработке OS/2 со­
вместно с IBM. Поэтому после прекращения совместных работ над этой операционной системой и
начале нового проекта многие решения из OS/2 были унаследованы в варианте OS/2 ver. 3.0, назван­
ной впоследствии Windows NT.

70 Глава 2. Управление задачами

Следующий класс задач имеет название приоритетного. Поскольку к этому клас­
су относят задачи, которые выполняют по отношению к остальным задачам функ­
ции сервера (о модели клиент-сервер, по которой строятся современные операци­
онные системы с микроядерной архитектурой, см. главы 9 и 10), то его еще иногда
называют серверным. Приоритет таких задач должен быть выше, поскольку это
позволяет гарантировать, что запрос на некоторую функцию со стороны обычных
задач выполнится сразу, а не будет дожидаться, пока до него дойдет очередь на
фоне других пользовательских приложений.

Большинство задач относят к обычному классу, его еще называют регулярным
(regular), или стандартным. По умолчанию система программирования порожда­
ет задачу, относящуюся именно к этому классу.

Наконец, существует еще класс фоновых задач, называемый в OS/2 остаточным.
Программы этого класса получают процессорное время только тогда, когда нет задач
из других классов, требующих процессор. В качестве примера такой задачи можно
привести программу обновления индексного файла, используемого при поиске
файлов, или программу проверки электронной почты.

Внутри каждого из вышеописанных классов задачи, имеющие одинаковый уро­
вень приоритета, выполняются в соответствии с дисциплиной RR. Переход от од­
ного потока к другому происходит либо по окончании отпущенного ему кванта
времени, либо по системному прерыванию, передающему управление задаче с бо­
лее высоким приоритетом (таким образом система вытесняет задачи с более низ­
ким приоритетом для выполнения задач с более высоким приоритетом и может
обеспечить быструю реакцию на важные события).

OS/2 самостоятельно изменяет приоритет выполняющихся программ независимо
от уровня, установленного самим приложением. Этот механизм называется повы­
шением приоритета (priority boost). Операционная система изменяет приоритет
задачи в трех случаях [26].

Q Повышение приоритета активной задачи (foreground boost). Приоритет задачи
автоматически повышается, когда она становится активной. Это снижает вре­
мя реакции активного приложения на действия пользователя по сравнению с
фоновыми программами.

Q Повышение приоритета ввода-вывода (Input/Output boost). По завершении
операции ввода-вывода задача получает самый высокий уровень приоритета ее
класса. Таким образом обеспечивается завершение всех незаконченных опера­
ций ввода-вывода.

• Повышение приоритета «забытой» задачи (starvation boost). Если задача не по­
лучает управление в течение достаточно долгого времени (этот промежуток вре­
мени задает оператор MAXWAIT в файле CONFIG.SYS1), диспетчер задач OS/2 вре­
менно присваивает ей уровень приоритета, не превышающий критический.
В результате переключение на такую «забытую» программу происходит быст­
рее. После выполнения приложения в течение одного кванта времени его при-

Строка MAXWAIT - 1 означает, что приоритет задачи при переключении на нее будет поднят до
максимального не позже чем через одну секунду.

Кпитрольные вопросы и задачи 7 1

оритет вновь снижается до остаточного. В сильно загруженных системах этот
механизм позволяет программам с остаточным приоритетом работать хотя бы
в краткие интервалы времени. В противном случае они вообще никогда бы не
получили управление.

ели нет необходимости использовать метод динамического изменения приори-
ета, то с помощью оператора PRI0PITY = ABSOLUTE в файле CONFIG.SYS можно ввести
исциплину абсолютных приоритетов; по умолчанию оператор Р RI0PITY имеет зна-

ение DYNAMIC.

онтрольные вопросы и задачи
Перечислите и поясните основные функции операционных систем, которые
связаны с управлением задачами.

В чем заключается основное различие между планированием процессов и дис­
петчеризацией задач?

Что такое стратегия обслуживания? Перечислите известные вам стратегии об­
служивания.

Какие дисциплины диспетчеризации задач вы знаете? Поясните их основные
идеи, перечислите достоинства и недостатки.

5. Расскажите, какие дисциплины диспетчеризации следует отнести к вытесняю­
щим, а какие — к не вытесняющим.

Как можно реализовать механизм разделения времени, если диспетчер задач

работает только по принципу предоставления процессорного времени задаче с

максимальным приоритетом?

Что такое «гарантия обслуживания»? Как ее можно реализовать?

8. Опишите механизм динамической диспетчеризации, реализованный в UNIX-
системах.

Сравните механизмы диспетчеризации задач в операционных системах Windows
NT и OS/2. В чем они похожи друг на друга и в чем заключаются основные
различия?

78 Глава 3. Управление памятью в операционных системах

мент не нужно сохранить во внешней памяти в его текущем состоянии) обращает­
ся к операционной системе с указанием, какой сегмент должен быть загружен в па­
мять следующим; либо он возвращает управление главному сегменту задачи, и уже
тот обращается к операционной системе с указанием, какой сегмент сохранить (если
это нужно), а какой сегмент загрузить в оперативную память, и вновь отдает управ­
ление одному из сегментов, располагающихся в памяти. Простейшие схемы сег­
ментирования предполагают, что в памяти в каждый конкретный момент времени
может располагаться только один сегмент (вместе с главным модулем). Более слож­
ные схемы, используемые в больших вычислительных системах, позволяют рас­
полагать в памяти несколько сегментов. В некоторых вычислительных комплек­
сах могли существовать отдельно сегменты кода и сегменты данных. Сегменты кода,
как правило, не претерпевают изменений в процессе своего исполнения, поэтому
при загрузке нового сегмента кода на место отработавшего последний можно не
сохранять во внешней памяти, в отличие от сегментов данных, которые сохранять
необходимо.

Первоначально программисты сами должны были включать в тексты своих про­
грамм соответствующие обращения к операционной системе (их называют сис­
темными вызовами) и тщательно планировать, какие сегменты могут находиться
в оперативной памяти одновременно, чтобы их адресные пространства не пересе­
кались. Однако с некоторых пор такого рода обращения к операционной системе
системы программирования стали подставлять в код программы сами, автомати­
чески, если в том возникает необходимость. Так, в известной и популярной в неда­
леком прошлом системе программирования Turbo Pascal программист просто
указывал, что данный модуль является оверлейным. И при обращении к нему
из основной программы модуль загружался в память и получал управление. Все
адреса определялись системой программирования автоматически, обращения
к DOS для загрузки оверлеев тоже генерировались системой Turbo Pascal.

Распределение оперативной памяти в MS DOS
Как известно, MS DOS 1 — это однопрограммная операционная система для персо­
нального компьютера типа IBM PC. В ней, конечно, можно организовать запуск
резидентных, или TSR-задач2, в результате которого в памяти будет находиться не
одна программа, но в целом система MS DOS предназначена для выполнения толь­
ко одного вычислительного процесса. Поэтому распределение памяти в ней по­
строено по схеме простого непрерывного распределения. Система поддерживает
механизм распределения памяти с перекрытием (оверлейные структуры).
Как известно, в IBM PC использовался 16-разрядный микропроцессор i8088,
который за счет введения сегментного способа адресации позволял указывать

1 Версий однопрограммпых дисковых операционных систем (Disks Operating System, DOS) для пер­
сональных компьютеров было много. Одних только MS DOS (систем от Microsoft) более 10. Однако
несмотря на существенные различия все их чаще всего именуют одинаково — MS DOS.

2 TSR (Terminate and Stay Resident) - резидентная в памяти программа, которая благодаря измене­
ниям в таблице векторов прерываний позволяет перехватывать прерывания и в случае обращения К
ней выполнять необходимые действия. Подробно об этом можно прочесть, например, в [3, 23, 24,35J.

CI ростов непрерывное распределение и распределение с перекрытием /Л»

адрес ячейки памяти в пространстве объемом до 1 Мбайт. В последующих пер­
сональных компьютерах (IBM PC AT, AT386 и др.) было принято решение под­
держивать совместимость с первыми, поэтому при работе в DOS прежде всего
рассматривают первый мегабайт. Вся эта память разделялась на несколько об­
ластей, что иллюстрирует рис. 3.2. На этом рисунке показано, что памяти мо­
жет быть и больше, чем 1 Мбайт, но более подробное рассмотрение этого во­
проса мы здесь опустим, отослав желающих изучить данную тему глубже
к монографии [2].

Если не вдаваться в детали, можно сказать, что в состав MS DOS входят следую­
щие основные компоненты.

О Подсистема BIOS (Base Input-Output System — базовая подсистема ввода-вы­
вода), включающая в себя помимо программы POST (Power On Self Test — са­
мотестирование при включении компьютера)' программные модули обработки
прерываний, с помощью которых можно управлять основными контроллерами
на материнской плате компьютера и устройствами ввода-вывода. Эти модули
часто называют обработчиками прерываний. По своей функциональной сути
они представляют собой драйверы. BIOS располагается в постоянном запоми­
нающем устройстве компьютера. В конечном итоге почти все остальные моду­
ли MS DOS обращаются к BIOS. Если и не напрямую, то через модули более
высокого уровня иерархии.

а Модуль расширения BIOS — файл I0.SYS (в других DOS-системах он может
называться иначе, например _BI0.COM).

• Основной, или базовый, модуль обработки прерываний DOS — файл MSDOS.SYS.
Именно этот модуль в основном реализует работу с файловой системой.

О Командный процессор (интерпретатор команд) — файл C0MMAND.COM.

• Утилиты и драйверы, расширяющие возможности системы.

• Программа загрузки MS DOS — загрузочная запись (Boot Record, BR), распо­
ложенная на дискете или на жестком диске (подробнее о загрузочной записи и
о других загрузчиках см. главу 6).

Вся память в соответствии с архитектурой IBM PC условно может быть разбита
на следующие три части.

• В самых младших адресах памяти (первые 1024 ячейки) размещается таблица
векторов прерывания (см. раздел «Система прерываний 32-разрядных микро­
процессоров i80x86» в главе 4). Это связано с аппаратной реализацией процес­
сора i8088. В последующих процессорах (начиная с i80286) адрес таблицы пре­
рываний определяется через содержимое соответствующего регистра, но для
обеспечения полной совместимости с первым процессором при включении или
аппаратном сбросе в этот регистр заносятся нули. При желании, однако, в слу­
чае использования современных микропроцессоров i80x86 вектора прерыва­
ний можно размещать и в других областях.

После выполнения программы POST, входящей в состав ROM BIOS, опрашиваются устройства,
которые могут содержать программы для загрузки операционной системы.

http://_BI0.COM
http://C0MMAND.COM

80 Глава 3. Управление памятью в операционных системах

0000-003FF 1 Кбайт

00400-005FF 512 байт

00600-ОАООО

35-60 Кбайт

580 Кбайт

18 Кбайт

A0000-C7FFF

160 Кбайт

С8000-Е0000
96 Кбайт

F0000-FFFF

64 Кбайт

Более 100000

Таблица векторов прерываний

В ранних версиях здесь
Глобальные переменные BIOS; располагались глобальные
глобальные переменные DOS переменные интерпретатора

Бейсик

Модуль Ю. SYS;
Модуль MSDOS. SYS:

- обслуживающие функции;
- буферы, рабочие

и управляющие области;
- устанавливаемые драйверы;

Резидентная часть Размер этой области зависит
COMMAND. COM: от версии MSDOS и, главное,

- обработка программных от конфигурационного файла
прерываний; CONFJG. SYS

- системная программа
загрузки;

- программа загрузки транзитной
части COMMAND. COM

Область памяти для
выполнения программ
пользователя и утилит
MS DOS. В эту область
попадают программы

типа *.СОМ и *.ЕХЕ Объем этой области

очень зависит от объема,
занимаемого ядром ОС.

Программа может перекрывать
транзитную область

COMMAND. COM

Область расположения стека Стек «растет» снизу вверх
исполняющейся программы

Транзитная часть командного Собственно командный
процессора COMMAND. COM интерпретатор

Видеопамять. Область и размер При работе в текстовом
используемого видеобуфера режиме область памяти
зависят от текущего режима A0000-B0000 свободна

и может быть использована
в программе

Зарезервировано
для расширения BIOS

Обычно объем этой области
равен 32 Кбайт, но может

Область ROM BIOS достигать и 128 Кбайт, занимая
(System BIOS) младшие адреса

High Memory Area.

При наличии драйвера HIMEM. SYS М о ж е т И С П О Л Ь З о в а т ь с я
здесь можно расположить п р и н а л и ч и и специальных
основные системные файлы драйверов. Используются
MS DOS, освобождая тем самым спецификации XMS и EMS
область основной памяти
в первом мегабайте

Рис. 3.2. Распределение оперативной памяти в MS DOS

Q Вторая часть памяти отводится для программных модулей самой системы
MS DOS и для программ пользователя. Эту область памяти мы рассмотрим чуть

Простое непрерывное распределение и распределение с перекрытием И1

позже, здесь только заметим, что она называется основной, или стандартной,
памятью (conventional memory).

• Наконец, третья часть адресного пространства отведена для постоянных запо­
минающих устройств и функционирования некоторых устройств ввода-выво­
да. Эта область памяти получила название UMA (Upper Memory Area — об­
ласть памяти, адрес которой выше основной).

В младших адресах основной памяти размещается то, что можно условно назвать
ядром этой операционной системы — системные переменные, основные программные
модули, блоки данных для буферизации операций ввода-вывода. Для управления
устройствами, драйверы которых не входят в базовую подсистему ввода-вывода,
загружаются так называемые загружаемые, или устанавливаемые, драйверы.
Перечень устанавливаемых драйверов определяется специальным конфи­
гурационным файлом CONFIG.SYS. После загрузки расширения BIOS — файла I0.SYS —
последний (загрузив модуль MSDOS.SYS) считывает файл CONFIG.SYS и уже в соот­
ветствии с ним подгружает в память необходимые драйверы. Кстати, в конфи­
гурационном файле CON FIG.SYS могут иметься операторы, указывающие на количество
буферов, отводимых для ускорения операций ввода-вывода, и на количество файлов,
которые могут обрабатываться (для работы с файлами необходимо зарезервировать
место в памяти для хранения управляющих структур, с помощью которых
выполняются операции с записями файла). В случае использования микропроцессоров
i80x86 и наличия в памяти драйвера HIMEM.SYS модули I0.SYS и MSDOS.SYS могут быть
размещены за пределами первого мегабайта в области, которая получила название
НМЛ (High Memory Area — область памяти с большими адресами).

Память с адресами, большими чем lOFFFFh, может быть использована в DOS-
программах при выполнении их на микропроцессорах, имеющих такую возможность
(например, микропроцессор i80286 имел 24-разрядную шину адреса, а i80386 —
уже 32-разрядную). Но для этого с помощью специальных драйверов необходимо
переключать процессор в другой режим работы, при котором он сможет
использовать адреса выше lOFFFFh. Широкое распространение получили две
основные спецификации: XMS (Extended Memory Specification) и EMS (Expanded
Memory Specification). Последние годы система MS DOS практически перестала
применяться. Теперь ее используют в основном для запуска некоторых утилит,
с помощью которых подготавливают дисковые устройства, или для установки
других операционных систем. И поскольку основным утилитам, необходимым для
обслуживания персонального компьютера, спецификации EMS и XMS, как правило,
не нужны, мы не будем здесь их рассматривать.

Остальные программные модули MS DOS (в принципе, большинство из них
является утилитами) оформлены как обычные исполняемые файлы. Например,
утилита форматирования диска представляет собой и двоичный исполняемый
файл, и команду операционной системы. В основном такого рода утилиты являются
транзитными модулями, то есть загружаются в память только на время своей
работы, хотя среди них имеются и TSR-программы.

Для того чтобы предоставить больше памяти программам пользователя, в MS DOS
применено то же решение, что и во многих других простейших операционных

82 Глава 3, Управление памятью в операционных системах

системах, — командный процессор C0MMAND.COM состоит Из двух частей. Первая
часть является резидентной и размещается в области ядра, вторая часть транзитная
и размещается в области старших адресов раздела памяти, выделяемой для
программ пользователя. И если программа пользователя перекрывает собой
область, в которой была расположена транзитная часть командного процессора, то
последний при необходимости восстанавливает в памяти свою транзитную часть,
поскольку после выполнения программы она возвращает управление резидентной
части C0MMAND.COM.

Поскольку размер основной памяти относительно небольшой, то очень часто
системы программирования реализуют оверлейные структуры. Для этого в MS DOS
поддерживаются специальные вызовы.

Распределение памяти статическими
и динамическими разделами
Для организации мультипрограммного и/или мультизадачного режима необхо­
димо обеспечить одновременное расположение в оперативной памяти нескольких
задач (целиком или частями). Память задаче может выделяться одним сплошным
участком (в этом случае говорят о методах неразрывного распределения памяти)
или несколькими порциями, которые могут быть размещены в разных областях
памяти (тогда говорят о методах разрывного распределения).

Начнем с методов неразрывного распределения памяти. Самая простая схема рас­
пределения памяти между несколькими задачами предполагает, что память, не за­
нятая ядром операционной системы, может быть разбита на несколько непрерыв­
ных частей — разделов (partitions, regions). Разделы характеризуются именем,
типом, границами (как правило, указываются начало раздела и его длина).

Разбиение памяти на несколько непрерывных (неразрывных) разделов может быть
фиксированным (статическим) либо динамическим (то есть процесс выделения
нового раздела памяти происходит непосредственно при появлении новой зада­
чи). Вначале мы кратко рассмотрим статическое распределение памяти на разделы.

Разделы с фиксированными границами
Разбиение всего объема оперативной памяти на несколько разделов может осуще­
ствляться единовременно (то есть в процессе генерации варианта операционной
системы, который потом и эксплуатируется) или по мере необходимости операто­
ром системы. Однако и во втором случае при разбиении памяти на разделы вычис­
лительная система более ни для каких целей в этот момент не используется. При­
мер разбиения памяти на несколько разделов приведен на рис. 3.3.
В каждом разделе в каждый момент времени может располагаться по одной про­
грамме (задаче). В этом случае по отношению к каждому разделу можно применить
все те методы создания программ, которые используются для однопрограммных
систем. Возможно использование оверлейных структур, что позволяет создавать
большие сложные программы и в то же время поддерживать коэффициент мульти-

http://C0MMAND.COM
http://C0MMAND.COM

Распределение памяти статическими и динамическими разделами 8 3

программирования1 на должном уровне. Первые мультипрограммные операционные
системы строились по этой схеме. Использовалась эта схема и много лет спустя при
создании недорогих вычислительных систем, поскольку является несложной и обес­
печивает возможность параллельного выполнения программ. Иногда в некотором
разделе размещалось по нескольку небольших программ, которые постоянно в нем
и находились. Такие программы назывались ОЗУ-резидентными (или просто рези­
дентными). Та же схема используется и в современных встроенных системах; прав­
да, для них характерно, что все программы являются резидентными, и внешняя па­
мять во время работы вычислительного оборудования не используется.

Ядро операционной системы

Транзитная область ОС

Задача А

Неиспользуемая область

Задача Б

Неиспользуемая область

Задача В

Неиспользуемая область

)> Раздел № О

> Раздел № 1

> Раздел № 2

> Раздел № 3

Рис. 3.3. Распределение памяти разделами с фиксированными границами

Под коэффициентом мультипрограммирования (т) понимают количество параллельно выполняе­
мых программ. Обычно на практике для загрузки центрального процессора до уровня 90 % необхо­
димо, чтобы коэффициент мультипрограммирования был не менее 4-5. А для того чтобы наиболее
полно использовать и остальные ресурсы системы, желательно иметь m на уровне 10-15.

84 Глава 3, Управление памятью в операционных системах

При небольшом объеме памяти и, следовательно, небольшом количестве разделов
увеличить число параллельно выполняемых приложений (особенно когда эти при­
ложения интерактивны и во время своей работы фактически не используют про­
цессорное время, а в основном ожидают операций ввода-вывода) можно за счет
замены их в памяти, или свопинга (swapping). При свопинге задача может быть
целиком выгружена на магнитный диск (перемещена во внешнюю память), а на ее
место загружается либо более привилегированная, либо просто готовая к выпол­
нению другая задача, находившаяся на диске в приостановленном состоянии. При
свопинге из основной памяти во внешнюю (обратно) перемещается вся програм­
ма, а не ее отдельная часть.

Серьезная проблема, которая возникает при организации мультипрограммного
режима работы вычислительной системы, — защита как самой операционной сис­
темы от ошибок и преднамеренного вмешательства процессов в ее работу, так и са­
мих процессов друг от друга.

В самом деле, программа может обращаться к любым ячейкам в пределах своего
виртуального адресного пространства. Если система отображения памяти не со­
держит ошибок, и в самой программе их тоже нет, то возникать ошибок при вы­
полнении программы не должно. Однако в случае ошибок адресации, что случает­
ся не так уж и редко, исполняющаяся программа может начать «обработку» чужих
данных или кодов с непредсказуемыми последствиями. Одной из простейших, но
достаточно эффективных мер является введение регистров защиты памяти. В эти
регистры операционная система заносит граничные значения области памяти раз­
дела текущего исполняющегося процесса. При нарушении адресации возникает
прерывание, и управление передается супервизору операционной системы. Обра­
щения задач к операционной системе за необходимыми сервисами осуществляют­
ся не напрямую, а через команды программных прерываний, что обеспечивает пе­
редачу управления только в предопределенные входные точки кода операционной
системы и в системном режиме работы процессора, при котором регистры защиты
памяти игнорируются. Таким образом, выполнение функции защиты требует введе­
ния специальных аппаратных механизмов, используемых операционной системой.

Основным недостатком рассматриваемого способа распределения памяти является
наличие порой достаточно большого объема неиспользуемой памяти (см. рис. 3.3).
Неиспользуемая память может быть в каждом из разделов. Поскольку разделов не­
сколько, то и неиспользуемых областей получается несколько, поэтому такие потери
стали называть фрагментацией памяти. В отдельных разделах потери памяти могут
быть очень значительными, однако использовать фрагменты свободной памяти при
таком способе распределения не представляется возможным. Желание разработчи­
ков сократить столь значительные потери привело их к следующим двум решениям:

• выделять раздел ровно такого объема, который нужен под текущую задачу;

• размещать задачу не в одной непрерывной области памяти, а в нескольких об­
ластях.

Второе решение было реализовано в нескольких способах организации виртуаль­
ной памяти. Мы их обсудим в следующем разделе, а сейчас кратко рассмотрим
первое решение.

ределение памяти статическими и динамическими разделами 85

разделы с подвижными границами
Чтобы избавиться от фрагментации, можно попробовать размещать в оператив­
ной памяти задачи плотно, одну за другой, выделяя ровно столько памяти, сколь­
ко задача требует. Одной из первых операционных систем, в которой был реализо­
ван такой способ распределения памяти, была OS MVT1 (Multiprogramming with
a Variable number of Tasks — мультипрограммирование с переменным числом за­
дач). В этой операционной системе специальный планировщик (диспетчер памя­
ти) ведет список адресов свободной оперативной памяти. При появлении новой
задачи диспетчер памяти просматривает этот список и выделяет для задачи раз­
дел, объем которой либо равен необходимому, либо чуть больше, если память вы­
деляется не ячейками, а некими дискретными единицами. При этом модифициру­
ется список свободных областей памяти. При освобождении раздела диспетчер
памяти пытается объединить освобождающийся раздел с одним из свободных уча­
стков, если таковой является смежным.

При этом список свободных участков памяти может быть упорядочен либо по ад­
ресам, либо по объему. Выделение памяти под новый раздел может осуществлять­
ся одним из трех основных способов:

а первый подходящий участок;

Q самый подходящий участок;

О самый неподходящий участок.

В первом случае список свободных областей упорядочивается по адресам (напри­
мер, по возрастанию адресов). Диспетчер просматривает список и выделяет задаче
раздел в той области, которая первой подойдет по объему. В этом случае, если та­
кой фрагмент имеется, то в среднем необходимо просмотреть половину списка.
При освобождении раздела также необходимо просмотреть половину списка. Пра­
вило «первый подходящий» приводит к тому, что память для небольших задач
преимущественно будет выделяться в области младших адресов, и, следовательно,
это увеличит вероятность того, что в области старших адресов будут образовы­
ваться фрагменты достаточно большого объема.

Способ «самый подходящий» предполагает, что список свободных областей упо­
рядочен по возрастанию объема фрагментов. В этом случае при просмотре списка
Для нового раздела будет использован фрагмент свободной памяти, объем которой
наиболее точно соответствует требуемому. Требуемый раздел будет определяться
по-прежнему в результате просмотра в среднем половины списка. Однако остав­
шийся фрагмент оказывается настолько малым, что в нем уже вряд ли удастся раз­
местить еще какой-либо раздел. При этом получается, что вновь образованный
Фрагмент попадет в начало списка, и в последующем его придется каждый раз про­
верять на пригодность, тогда как его малый размер вряд ли окажется подходящим.
Поэтому в целом такую дисциплину нельзя назвать эффективной.

Как ни странно, самым эффективным способом, как правило, является последний,
по которому для нового раздела выделяется «самый неподходящий» фрагмент сво-

Эта операционная система была одной из самых распространенных в больших ЭВМ класса IBM
360 (370).

86 Глава 3. Управление памятью в операционных системах

бодной памяти. Для этой дисциплины список свободных областей упорядочива­
ется по убыванию объема свободного фрагмента. Очевидно, что если есть такой
фрагмент памяти, то он сразу же и будет найден, и, поскольку этот фрагмент явля­
ется самым большим, то, скорее всего, после выделения из него раздела памяти
для задачи оставшуюся область памяти можно будет использовать в дальнейшем.
Однако очевидно, что при любой дисциплине обслуживания, по которой работает
диспетчер памяти, из-за того что задачи появляются и завершаются в произволь­
ные моменты времени и при этом имеют разные объемы, в памяти всегда будет
наблюдаться сильная фрагментация. При этом возможны ситуации, когда из-за
сильной фрагментации памяти диспетчер задач не сможет образовать новый раз­
дел, хотя суммарный объем свободных областей будет больше, чем необходимо I
для задачи. В этой ситуации можно организовать так называемое уплотнение па­
мяти. Для уплотнения памяти все вычисления приостанавливаются, и диспетчер
памяти корректирует свои списки, перемещая разделы в начало памяти (или, на­
оборот, в область старших адресов). При определении физических адресов задачи
будут участвовать новые значения базовых регистров, с помощью которых и осу­
ществляется преобразование виртуальных адресов в физические. Недостатком
этого решения является потеря времени на уплотнение и, что самое главное, не­
возможность при этом выполнять сами вычислительные процессы.

Данный способ распределения памяти, тем не менее, применялся достаточно дли­
тельное время в нескольких операционных системах, поскольку в нем для задач
выделяется непрерывное адресное пространство, а это упрощает создание систем
программирования и их работу. Применяется этот способ и ныне при создании
систем на базе контроллеров с упрощенной (по отношению к мощным современ­
ным процессорам) архитектурой. Например, при разработке операционной систе­
мы для современных цифровых АТС, которая использует 16-разрядные микро­
процессоры Intel.

Сегментная, страничная
и сегментно-страничная организация памяти
Методы распределения памяти, при которых задаче уже может не предоставлять­
ся сплошная (непрерывная) область памяти, называют разрывными. Идея выде­
лять память задаче не одной сплошной областью, а фрагментами позволяет умень­
шить фрагментацию памяти, однако этот подход требует для своей реализации
больше ресурсов, он намного сложнее. Если задать адрес начала текущего фраг­
мента программы и величину смещения относительно этого начального адреса, то
можно указать необходимую нам переменную или команду. Таким образом, вир­
туальный адрес можно представить состоящим из двух полей. Первое поле будет
указывать на ту часть программы, к которой обращается процессор, для определе­
ния местоположения этой части в памяти, а второе поле виртуального адреса по­
зволит найти нужную нам ячейку относительно найденного адреса. Программист
может либо самостоятельно разбивать программу на фрагменты, либо можно ав­
томатизировать эту задачу, возложив ее на систему программирования.

.. , 1 i in „•.1,..гш.т1...~-« MiiriHHirriiii •"•'•"- ' —

Сегментная, страничная и сегментно-страничная организация памяти 87

Сегментный способ организации
виртуальной памяти
Первым среди разрывных методов распределения памяти был сегментный. Для
этого метода программу необходимо разбивать на части и уже каждой такой части
выделять физическую память. Естественным способом разбиения программы на
части является разбиение ее на логические элементы — так называемые сегменты.
В принципе, каждый программный модуль (или их совокупность, если мы того
пожелаем) может быть воспринят как отдельный сегмент, и вся программа тогда
будет представлять собой множество сегментов. Каждый сегмент размещается в па­
мяти как до определенной степени самостоятельная единица. Логически обраще­
ние к элементам программы в этом случае будет состоять из имени сегмента и сме­
щения относительно начала этого сегмента. Физически имя (или порядковый
номер) сегмента будет соответствовать некоторому адресу, с которого этот сегмент
начинается при его размещении в памяти, и смещение должно прибавляться к это­
му базовому адресу.

Преобразование имени сегмента в его порядковый номер осуществит система про­
граммирования. Для каждого сегмента система программирования указывает его
объем. Он должен быть известен операционной системе, чтобы она могла выде­
лять ему необходимый объем памяти. Операционная система будет размещать сег­
менты в памяти и для каждого сегмента она должна вести учет о местонахождении
этого сегмента. Вся информация о текущем размещении сегментов задачи в памя­
ти обычно сводится в таблицу сегментов, чаще такую таблицу называют таблицей
дескрипторов сегментов задачи. Каждая задача имеет свою таблицу сегментов.
Достаточно часто эти таблицы называют таблицами дескрипторов сегментов, по­
скольку по своей сути элемент таблицы описывает расположение сегмента.

Таким образом, виртуальный адрес для этого способа будет состоять из двух по­
лей — номера сегмента и смещения относительно начала сегмента. Соответствую­
щая иллюстрация приведена на рис. 3.4 для случая обращения к ячейке, виртуаль­
ный адрес которой равен сегменту с номером 11 со смещением от начала этого
сегмента, равным 612. Как мы видим, операционная система разместила данный
сегмент в памяти, начиная с ячейки с номером 19700.

Итак, каждый сегмент, размещаемый в памяти, имеет соответствующую информа­
ционную структуру, часто называемую дескриптором сегмента. Именно операци­
онная система строит для каждого исполняемого процесса соответствующую табли­
цу дескрипторов сегментов, и при размещении каждого из сегментов в оперативной
или внешней памяти отмечает в дескрипторе текущее местоположение сегмента.
Если сегмент задачи в данный момент находится в оперативной памяти, то об этом
Делается пометка в дескрипторе. Как правило, для этого используется бит при­
сутствия Р (от слова «present»). В этом случае в поле адреса диспетчер памяти
записывает адрес физической памяти, с которого сегмент начинается, а в поле дли­
ны сегмента (limit) указывается количество адресуемых ячеек памяти. Это поле
используется не только для того, чтобы размещать сегменты без наложения друг
на друга, но и для того, чтобы контролировать, не обращается ли код исполняю­
щейся задачи за пределы текущего сегмента. В случае превышения длины сегмен-

88 Глава 3, Управление памятью в операционных системах

та вследствие ошибок программирования мы можем говорить о нарушении адре­
сации и с помощью введения специальных аппаратных средств генерировать сиг­
налы прерывания, которые позволят фиксировать (обнаруживать) такого рода
ошибки.

Регистр таблицы сегментов
(таблицы дескрипторов

сегментов)

31500

Виртуальный адрес

11 612

S (Segment) D (Destination)

+ и-

31511

Р

1

Таблица дескрипторов текущей заде

Адрес начала
сегмента

19700
/

/

TZ

Длина,
сегмента

1300 --.

Права
доступа

R-X

" • \

Рис. 3.4. Сегментный способ организации виртуальной памяти

Если бит присутствия в дескрипторе указывает, что сегмент находится не в опера­
тивной, а во внешней памяти (например, на жестком диске), то названные поля

Пигментная, страничная и сегментно-страничная организация памяти 89

адреса и длины используются для указания адреса сегмента в координатах внеш­
ней памяти. Помимо информации о местоположении сегмента, в дескрипторе сег­
мента, как правило, содержатся данные о его типе (сегмент кода или сегмент дан­
ных), правах доступа к этому сегменту (можно или нельзя его модифицировать,
предоставлять другой задаче), отметка об обращениях к данному сегменту (ин­
формация о том, как часто или как давно этот сегмент используется или не ис­
пользуется, на основании которой можно принять решение о том, чтобы предоста­
вить место, занимаемое текущим сегментом, другому сегменту).

При передаче управления следующей задаче операционная система должна занес­
ти в соответствующий регистр адрес таблицы дескрипторов сегментов этой зада­
чи. Сама таблица дескрипторов сегментов, в свою очередь, также представляет со­
бой сегмент данных, который обрабатывается диспетчером памяти операционной
системы.

При таком подходе появляется возможность размещать в оперативной памяти не
все сегменты задачи, а только задействованные в данный момент. Благодаря это­
му, с одной стороны, общий объем виртуального адресного пространства задачи
может превосходить объем физической памяти компьютера, на котором эта задача
будет выполняться; с другой стороны, даже если потребности в памяти не превос­
ходят имеющуюся физическую память, можно размещать в памяти больше задач,
поскольку любой задаче, как правило, все ее сегменты единовременно не нужны.
А увеличение коэффициента мультипрограммирования р., как мы знаем, позволя­
ет увеличить загрузку системы и более эффективно использовать ресурсы вычис­
лительной системы. Очевидно, однако, что увеличивать количество задач можно
только до определенного предела, ибо если в памяти не будет хватать места для
часто используемых сегментов, то производительность системы резко упадет. Ведь
сегмент, находящийся вне оперативной памяти, для участия в вычислениях дол­
жен быть перемещен в оперативную память. При этом если в памяти есть свобод­
ное пространство, то необходимо всего лишь найти нужный сегмент во внешней
памяти и загрузить его в оперативную память. А если свободного места нет, при­
дется принять решение — на место какого из присутствующих сегментов будет за­
гружаться требуемый. Перемещение сегментов из оперативной памяти на жест­
кий диск и обратно часто называют свопингом сегментов.

Итак, если требуемого сегмента в оперативной памяти нет, то возникает прерыва­
ние, и управление передается через диспетчер памяти программе загрузки сегмен­
та. Пока происходит поиск сегмента во внешней памяти и загрузка его в оператив­
ную, диспетчер памяти определяет подходящее для сегмента место. Возможно, что
свободного места нет, и тогда принимается решение о выгрузке какого-нибудь сег­
мента и выполняется его перемещение во внешнюю память. Если при этом еще
остается время, то процессор передается другой готовой к выполнению задаче.
После загрузки необходимого сегмента процессор вновь передается задаче, вы­
звавшей прерывание из-за отсутствия сегмента. Всякий раз при считывании сег­
мента в оперативную память в таблице дескрипторов сегментов необходимо уста­
новить адрес начала сегмента и признак присутствия сегмента.
При

поиске свободного места используется одна из вышеперечисленных дисцип­
лин работы диспетчера памяти (применяются правила «первого подходящего»

90 Глава 3. Управление памятью в операционных с и сте м ах

и «самого неподходящего» фрагментов). Если свободного фрагмента памяти дос­
таточного объема нет, но, тем не менее, сумма этих свободных фрагментов превы­
шает требования по памяти для нового сегмента, то в принципе может быть при­
менено «уплотнение памяти», о котором мы уже говорили в подразделе «Разделы
с фиксированными границами» раздела «Распределение памяти статическими
и динамическими разделами».

В идеальном случае размер сегмента должен быть достаточно малым, чтобы его
можно было разместить в случайно освобождающихся фрагментах оперативной
памяти, но достаточно большим, чтобы содержать логически законченную часть
программы с тем, чтобы минимизировать межсегментные обращения.

Для решения проблемы замещения (определения того сегмента, который должен
быть либо перемещен во внешнюю память, либо просто замещен новым) исполь­
зуются следующие дисциплины1:

• правило FIFO (First In First Out — первый пришедший первым и выбывает);

• правило LRU (Least Recently Used — дольше других неиспользуемый);

Q правило LFU (Least Frequently Used — реже других используемый);

• случайный (random) выбор сегмента.

Первая и последняя дисциплины являются самыми простыми в реализации, но
они не учитывают, насколько часто используется тот или иной сегмент, и, следова­
тельно, диспетчер памяти может выгрузить или расформировать тот сегмент, к ко­
торому в самом ближайшем будущем будет обращение. Безусловно, достоверной
информация о том, какой из сегментов потребуется в ближайшем будущем, в об­
щем случае быть не может, но вероятность ошибки для этих дисциплин много­
кратно выше, чем у второй и третьей, в которых учитывается информация об ис­
пользовании сегментов.

В алгоритме FIFO с каждым сегментом связывается очередность его размещения
в памяти. Для замещения выбирается сегмент, первым попавший в память. Каж­
дый вновь размещаемый в памяти сегмент добавляется в хвост этой очереди. Ал­
горитм учитывает только время нахождения сегмента в памяти, но не учитывает
фактическое использование сегментов. Например, первые загруженные сегменты
программы могут содержать переменные, требующиеся на протяжении всей ее ра­
боты. Это приводит к немедленному возвращению к только что замещенному сег­
менту.

Для реализации дисциплин LRU и LFU необходимо, чтобы процессор имел до­
полнительные аппаратные средства. Минимальные требования — достаточно, что­
бы при обращении к дескриптору сегмента для получения физического адреса,
с которого сегмент начинает располагаться в памяти, соответствующий бит обра­
щения менял свое значение (скажем, с нулевого, которое устанавливает операци­
онная система, в единичное). Тогда диспетчер памяти может время от времени
просматривать таблицы дескрипторов исполняющихся задач и собирать для соот­
ветствующей обработки статистическую информацию об обращениях к сегмен-

Их называют «дисциплинами замещения».

там. В результате можно составить список, упорядоченный либо по длительности
простоя (для дисциплины LRU), либо по частоте использования (для дисципли­
ны LFU).

Важнейшей проблемой, которая возникает при организации мультипрограммно­
го режима, является защита памяти. Для того чтобы выполняющиеся приложения
не смогли испортить саму операционную систему и другие вычислительные про­
цессы, необходимо, чтобы доступ к таблицам сегментов с целью их модификации
был обеспечен только для кода самой ОС. Для этого код операционной системы
должен выполняться в некотором привилегированном режиме, из которого мож­
но осуществлять манипуляции дескрипторами сегментов, тогда как выход за пре­
делы сегмента в обычной прикладной программе должен вызывать прерывание по
защите памяти. Каждая прикладная задача должна иметь возможность обращать­
ся только к собственным и к общим сегментам.

При сегментном способе организации виртуальной памяти появляется несколько
интересных возможностей.

Во-первых, при загрузке программы на исполнение можно размещать ее в памяти
не целиком, а «по мере необходимости». Действительно, поскольку в подавляю­
щем большинстве случаев алгоритм, по которому работает код программы, явля­
ется разветвленным, а не линейным, то в зависимости от исходных данных неко­
торые части программы, расположенные в самостоятельных сегментах, могут быть
не задействованы; значит, их можно и не загружать в оперативную память.

Во-вторых, некоторые программные модули могут быть разделяемыми. Посколь­
ку эти программные модуля являются сегментами, относительно легко организо­
вать доступ к таким общим сегментам. Сегмент с разделяемым кодом располагает­
ся в памяти в единственном экземпляре, а в нескольких таблицах дескрипторов
сегментов исполняющихся задач будут находиться указатели на такие разделяе­
мые сегменты.

Однако у сегментного способа распределения памяти есть и недостатки. Прежде
всего (см. рис. 3.4), для доступа к искомой ячейке памяти приходится тратить много
времени. Мы должны сначала найти и прочитать дескриптор сегмента, а уже по­
том, используя полученные данные о местонахождении нужного нам сегмента,
вычислить конечный физический адрес. Для того чтобы уменьшить эти потери,
используется кэширование — те дескрипторы, с которыми мы имеем дело в дан­
ный момент, могут быть размещены в сверхоперативной памяти (специальных
регистрах, размещаемых в процессоре).

Несмотря на то что рассмотренный способ распределения памяти приводит к су­
щественно меньшей фрагментации памяти, нежели способы с неразрывным рас­
пределением, фрагментация остается. Кроме того, много памяти и процессорного
времени теряется на размещение и обработку дескрипторных таблиц. Ведь на каж­
дую задачу необходимо иметь свою таблицу дескрипторов сегментов. А при опре­
делении физических адресов приходится выполнять операции сложения, что тре­
бует дополнительных затрат времени.

Поэтому следующим способом разрывного размещения задач в памяти стал спо-
с°б, при котором все фрагменты задачи считаются равными (одинакового разме-

92 Глава 3. Управление памятью в операционных системах

ра), причем длина фрагмента в идеале должна быть кратна степени двойки, чтобы
операции сложения можно было заменить операциями конкатенации (слияния).
Это — страничный способ организации виртуальной памяти. Этот способ мы де­
тально рассмотрим ниже.

Примером использования сегментного способа организации виртуальной памяти
является операционная система OS/2 первого поколения1, которая была создана
для персональных компьютеров на базе процессора i80286. В этой операционной
системе в полной мере использованы аппаратные средства микропроцессора, ко­
торый специально проектировался для поддержки сегментного способа распреде­
ления памяти.

OS/2 v.l поддерживала распределение памяти, при котором выделялись сегмен­
ты программы и сегменты данных. Система позволяла работать как с именованны­
ми, так и с неименованными сегментами. Имена разделяемых сегментов данных
имели ту же форму, что и имена файлов. Процессы получали доступ к именован­
ным разделяемым сегментам, используя их имена в специальных системных вызо­
вах. Операционная система OS/2 v. 1 допускала разделение программных сегмен­
тов приложений и подсистем, а также глобальных сегментов данных подсистем.
Вообще, вся концепция системы OS/2 была построена на понятии разделения
памяти: процессы почти всегда разделяют сегменты с другими процессами. В этом
состояло существенное отличие системы OS/2 от систем типа UNIX, которые
обычно разделяют только реентерабельные программные модули между процес­
сами.

Сегменты, которые активно не использовались, могли выгружаться на жесткий
диск. Система восстанавливала их, когда в этом возникала необходимость. Так как
все области памяти, используемые сегментом, должны были быть непрерывными,
OS/2 перемещала в основной памяти сегменты таким образом, чтобы максимизи­
ровать объем свободной физической памяти. Такое переразмещение сегментов
называется уплотнением памяти (компрессией). Программные сегменты не вы­
гружались, поскольку они могли просто перезагружаться с исходных дисков. Об­
ласти в младших адресах физической памяти, которые использовались для запус­
ка DOS-программ и кода самой OS/2, в компрессии не участвовали. Кроме того,
система или прикладная программа могла временно фиксировать сегмент в памя­
ти с тем, чтобы гарантировать наличие буфера ввода-вывода в физической памяти
до тех пор, пока операция ввода-вывода не завершится.

Если в результате компрессии памяти не удавалось создать необходимое свобод­
ное пространство, то супервизор выполнял операции фонового плана для пере­
качки достаточного количества сегментов из физической памяти, чтобы дать воз­
можность завершиться исходному запросу.

Механизм перекачки сегментов использовал файловую систему для выгрузки дан­
ных из физической памяти и обратно. Ввиду того что перекачка и компрессия вли­
яли на производительность системы в целом, пользователь мог сконфигурировать
систему'так, чтобы эти функции не выполнялись.

OS/2 v.l начала создаваться в 1984 году и поступила в продажу в 1987 году.

Сегментная, страничная и сегментно-страничная организация памяти 9о

Было организовано в OS/2 и динамическое присоединение обслуживающих про­
грамм. Программы OS/2 используют команды удаленного вызова. Ссылки, гене­
рируемые этими вызовами, определяются в момент загрузки самой программы или
ее сегментов. Такое отсроченное определение ссылок называется динамическим
присоединением. Загрузочный формат модуля OS/2 представляет собой расшире­
ние формата загрузочного модуля DOS. Он был расширен, чтобы поддерживать
необходимое окружение для свопинга сегментов с динамическим присоединени­
ем. Динамическое присоединение уменьшает объем памяти для программ в OS/2,
одновременно делая возможными перемещения подсистем и обслуживающих про­
грамм без необходимости повторного редактирования адресных ссылок к приклад­
ным программам.

Страничный способ организации
виртуальной памяти
Как уже упоминалось, при страничном способе организации виртуальной памяти
все фрагменты программы, на которые она разбивается (за исключением после­
дней ее части), получаются одинаковыми. Одинаковыми полагаются и единицы
памяти, которые предоставляются для размещения фрагментов программы. Эти
одинаковые части называют страницами и говорят, что оперативная память раз­
бивается на физические страницы, а программа — на виртуальные страницы. Часть
виртуальных страниц задачи размещается в оперативной памяти, а часть — во внеш­
ней. Обычно место во внешней памяти, в качестве которой в абсолютном боль­
шинстве случаев выступают накопители на магнитных дисках (поскольку они
относятся к быстродействующим устройствам с прямым доступом), называют фай­
лом подкачки, или страничным файлом (paging file). Иногда этот файл называют
swap-файлом, тем самым подчеркивая, что записи этого файла — страницы — за­
мещают друг друга в оперативной памяти. В некоторых операционных системах
выгруженные страницы располагаются не в файле, а в специальном разделе дис­
кового пространства1.

Разбиение всей оперативной памяти на страницы одинаковой величины, причем
кратной степени двойки, приводит к тому, что вместо одномерного адресного про­
странства памяти можно говорить о двухмерном. Первая координата адресного
пространства — это номер страницы, вторая координата — номер ячейки внутри
выбранной страницы (его называют индексом). Таким образом, физический адрес
определяется парой (Р,„ i), а виртуальный адрес — парой (P v, i), где Pv — номер
виртуальной страницы, Рр — номер физической страницы, i — индекс ячейки внутри
страницы. Количество битов, отводимое под индекс, определяет размер страницы,
а количество битов, отводимое под номер виртуальной страницы, — объем потен­
циально доступной для программы виртуальной памяти. Отображение, осуществ­
ляемое системой во время исполнения, сводится к отображению Pv в Рр и припи­
сыванию к полученному значению битов адреса, задаваемых величиной i. При этом

"NIX-системах для этих целей выделяется специальный раздел, но кроме него могут быть исполь-
ованы и файлы, выполняющие те же функции, если объема раздела недостаточно.

94 Глава 3. Управление памятью в операционных системах

нет необходимости ограничивать число виртуальных страниц числом физических,
то есть не поместившиеся страницы можно размещать во внешней памяти, кото­
рая в данном случае служит расширением оперативной.

Для отображения виртуального адресного пространства задачи на физическую па­
мять, как и в случае сегментного способа организации, для каждой задачи необходи­
мо иметь таблицу страниц для трансляции адресных пространств. Для описания
каждой страницы диспетчер памяти операционной системы заводит соответствую­
щий дескриптор, который отличается от дескриптора сегмента прежде всего тем,
что в нем нет поля длины — ведь все страницы имеют одинаковый размер. По номе­
ру виртуальной страницы в таблице дескрипторов страниц текущей задачи нахо­
дится соответствующий элемент (дескриптор). Если бит присутствия имеет единич­
ное значение, значит данная страница размещена в оперативной, а не во внешней
памяти, и мы в дескрипторе имеем номер физической страницы, отведенной под
данную виртуальную. Если же бит присутствия равен нулю, то в дескрипторе мы
будем иметь адрес виртуальной страницы, расположенной во внешней памяти. Та­
ким образом и осуществляется трансляция виртуального адресного пространства
на физическую память. Этот механизм трансляции иллюстрирует рис. 3.5.
Защита страничной памяти, как и в случае сегментного механизма, основана на
контроле уровня доступа к каждой странице. Как правило, возможны следующие
уровни доступа:

• только чтение;

• чтение и запись;

О только выполнение.

Каждая страница снабжается соответствующим кодом уровня доступа. При транс­
формации логического адреса в физический сравнивается значение кода разре­
шенного уровня доступа с фактически требуемым. При их несовпадении работа
программы прерывается.

При обращении к виртуальной странице, не оказавшейся в данный момент в опера­
тивной памяти, возникает прерывание, и управление передается диспетчеру памя­
ти, который должен найти свободное место. Обычно предоставляется первая же сво­
бодная страница. Если свободной физической страницы нет, то диспетчер памяти
по одной из вышеупомянутых дисциплин замещения (LRU, LFU, FIFO, случайный
доступ) определит страницу, подлежащую расформированию или сохранению во
внешней памяти. На ее месте он разместит новую виртуальную страницу, к которой
было обращение из задачи, но которой не оказалось в оперативной памяти.
Напомним, что алгоритм LFU выбирает для замещения ту страницу, на которую
не было ссылки на протяжении наиболее длительного периода времени. Алгоритм
LRU ассоциирует с каждой страницей время ее последнего использования. Для
замещения выбирается та страница, которая дольше всех не использовалась.
Для использования дисциплин LRU и LFU в процессоре должны быть соответ­
ствующие аппаратные средства. В дескрипторе страницы размещается бит обра­
щения (на рис. 3.5 подразумевается, что этот бит расположен в последнем поле),
который становится единичным при обращении к дескриптору.

Сегментная, страничная и сегментно-страничная организация памяти 9 5

Регистр таблицы страниц Виртуальный адрес

32000 17
I

612
I

Р (Page) i (index)

32017

р

1

Таблица

Номер
физической

страницы или
адрес на диске

23

/

/

страниц текущей зг

Права
доступа

R-X

Рис. 3.5. Страничный способ организации виртуальной памяти

Ьсли объем физической памяти небольшой и даже часто требуемые страницы не
Удается разместить в оперативной памяти, возникает так называемая «пробуксов­
ка». Другими словами, пробуксовка — это ситуация, при которой загрузка нужной
страницы вызывает перемещение во внешнюю память той страницы, с которой мы
т°Же активно работаем. Очевидно, что это очень плохое явление. Чтобы его не до­
пускать, желательно увеличить объем оперативной памяти (сейчас это просто,
поскольку стоимость модуля оперативной памяти многократно снизилась), умень­
шить количество параллельно выполняемых задач или прибегнуть к более эффек­
тивным дисциплинам замещения.

Глава 3. Управление
памятью в операционных
системах

Оперативная память — это важнейший ресурс любой вычислительной системы,
поскольку без нее (как, впрочем, и без центрального процессора) невозможно вы­
полнение ни одной программы. В главе 1 мы уже отмечали, что память является
разделяемым ресурсом. От выбранных механизмов распределения памяти между
выполняющимися процессорами в значительной степени зависит эффективность
использования ресурсов системы, ее производительность, а также возможности,
которыми могут пользоваться программисты при создании своих программ. Же­
лательно так распределять память, чтобы выполняющаяся задача имела возмож­
ность обратиться по любому адресу в пределах адресного пространства той про­
граммы, в которой идут вычисления. С другой стороны, поскольку любой процесс
имеет потребности в операциях ввода-вывода, и процессор достаточно часто пере­
ключается с одной задачи на другую, желательно в оперативной памяти располо­
жить достаточное количество активных задач с тем, чтобы процессор не останав­
ливал вычисления из-за отсутствия очередной команды или операнда. Некоторые
ресурсы, которые относятся к неразделяемым, из-за невозможности их совместно­
го использования делают виртуальными. Таким образом, чтобы иметь возможность
выполняться, каждый процесс может получить некий виртуальный ресурс. Вир-
туализация ресурсов делается программным способом средствами операционной
системы, а значит, для них тоже нужно иметь ресурс памяти. Поэтому вопросы
организации разделения памяти для выполняющихся процессов и потоков явля­
ются очень актуальными, ибо выбранные и реализованные алгоритмы решения
этих вопросов в значительной степени определяют и потенциальные возможно­
сти системы, и общую ее производительность, и эффективность использования
имеющихся ресурсов.

Память и отображения,
виртуальное адресное пространство
Если не принимать во внимание программирование на машинном языке (эта
технология практически не используется уже очень давно), то можно сказать,
что программист обращается к памяти с помощью некоторого набора логичес­
ких имен, которые чаще всего являются символьными, а не числовыми, и для
которого отсутствует отношение порядка. Другими словами, в общем случае
множество переменных в программе не упорядочено, хотя отдельные перемен­
ные могут иметь частичную упорядоченность (например, элементы массива).
Имена переменных и входных точек программных модулей составляют про­
странство символьных имен. Иногда это адресное пространство называют ло­
гическим.

С другой стороны, при выполнении программы мы имеем дело с физической опе­
ративной памятью, собственно с которой и работает процессор, извлекая из нее
команды и данные и помещая в нее результаты вычислений. Физическая память
представляет собой упорядоченное множество ячеек реально существующей опе­
ративной памяти, и все они пронумерованы, то есть к каждой из них можно обра­
титься, указав ее порядковый номер (адрес). Количество ячеек физической памя­
ти ограниченно и фиксированно.

Системное программное обеспечение должно связать каждое указанное пользо­
вателем символьное имя с физической ячейкой памяти, то есть осуществить ото­
бражение пространства имен на физическую память компьютера. В общем слу­
чае это отображение осуществляется в два этапа (рис. 3.1): сначала системой
программирования, а затем операционной системой. Это второе отображение осу­
ществляется с помощью соответствующих аппаратных средств процессора —
подсистемы управления памятью, которая использует дополнительную инфор­
мацию, подготавливаемую и обрабатываемую операционной системой. Между
этими этапами обращения к памяти имеют форму виртуального адреса. При этом
можно сказать, что множество всех допустимых значений виртуального адреса
Для некоторой программы определяет ее виртуальное адресное пространство,
или виртуальную память. Виртуальное адресное пространство программы зави­
сит, прежде всего, от архитектуры процессора и от системы программирования и
практически не зависит от объема реальной физической памяти компьютера.
Можно еще сказать, что адреса команд и переменных в машинной программе,
подготовленной к выполнению системой программирования, как раз и являются
виртуальными адресами.

лак мы знаем, система программирования осуществляет трансляцию и компонов­
ку программы, используя библиотечные программные модули. В результате рабо­
ты системы программирования полученные виртуальные адреса могут иметь как
Двоичную форму, так и символьно-двоичную. Это означает, что некоторые про-
Раммные модули (их, как правило, большинство) и их переменные получают ка-

f

74 Глава 3. Управление памятью в операционных системах

кие-то числовые значения, а те модули, адреса для которых пока ие могут быть
определены, имеют по-прежнему символьную форму, и их окончательная привяз­
ка к физическим ячейкам будет осуществлена на этапе загрузки программы в па­
мять перед ее непосредственным выполнением.

Виртуальное адресное пространство

Виртуальный адрес

Система !
программирования Г

! Операционная
система

Физическая память компьютера

^Ячейка оперативной памяти
(физический адрес)

Рис. 3 . 1 . Память и отображения

Одним из частных случаев отображения пространства символьных имен на физи­
ческую память является полная тождественность виртуального адресного простран­
ства физической памяти. При этом нет необходимости осуществлять второе ото-

мдть иотображения, виртуальное адресное пространство 75

жение. В таком случае говорят, что система программирования генерирует аб-
чютную двоичную программу; в этой программе все двоичные адреса таковы, что

оограмма может исполняться только тогда, когда ее виртуальные адреса будут
П Р

Ч Н о соответствовать физическим. Часть программных модулей любой операци-
Т° ной системы обязательно должна быть абсолютными двоичными программами.
Чти программы размещаются по фиксированным адресам физической памяти,

с их помощью уже можно впоследствии реализовывать размещение остальных
гоограмм, подготовленных системой программирования таким образом, что они

могут работать на различных физических адресах (то есть на тех адресах, на кото-
пые" их разместит операционная система). В качестве примера таких программ
можно назвать программы загрузки операционной системы.

Другим частным случаем этой общей схемы трансляции адресного пространства
является тождественность виртуального адресного пространства исходному логи­
ческому пространству имен. Здесь уже отображение выполняется самой операци­
онной системой, которая во время исполнения использует таблицу символьных
имен. Такая схема отображения используется чрезвычайно редко, так как отобра­
жение имен на адреса необходимо выполнять для каждого вхождения имени (каж­
дого нового имени), и особенно много времени тратится на квалификацию имен.
Данную схему можно было встретить в интерпретаторах, в которых стадии транс­
ляции и исполнения практически неразличимы. Это характерно для простейших
компьютерных систем, в которых вместо операционной системы использовался
встроенный интерпретатор (например, Basic).

Возможны и промежуточные варианты. В простейшем случае транслятор-компиля­
тор генерирует относительные адреса, которые, по сути, являются виртуальными
адресами, с последующей настройкой программы на один из непрерывных разде­
лов. Второе отображение осуществляется перемещающим загрузчиком. После за­
грузки программы виртуальный адрес теряется, и доступ выполняется непосред­
ственно к физическим ячейкам. Более эффективное решение достигается в том
случае, когда транслятор вырабатывает в качестве виртуального адреса относитель­
ный адрес и информацию о начальном адресе, а процессор, используя подготавлива­
емую операционной системой адресную информацию, выполняет второе отображе­
ние не один раз (при загрузке программы), а при каждом обращении к памяти.
Термин виртуальная память фактически относится к системам, которые сохраня­
ют виртуальные адреса во время исполнения. Так как второе отображение осуще­
ствляется в процессе исполнения задачи, то адреса физических ячеек могут изме­
няться. При правильном применении такие изменения улучшают использование
памяти, избавляя программиста от деталей управления ею, и даже повышают на­
дежность вычислений.

если рассматривать общую схему двухэтапного отображения адресов, то с пози­
ции соотношения объемов упомянутых адресных пространств можно отметить
наличие следующих трех ситуаций:

объем виртуального адресного пространства программы Vv меньше объема фи­
зической памяти Vp (Vv < V„);

ооъем виртуального адресного пространства программы Vv равен объему фи­
зической памяти V„ (Vv = Vp);

76 Глава 3. Управление памятью в операционных системах

Q объем виртуального адресного пространства программы Vv больше объема фи­
зической памяти Vp (Vv > Vp).

Первая ситуация (Vv < Vp) ныне практически не встречается, но, тем не менее, это
реальное соотношение. Скажем, не так давно 16-разрядные мини-ЭВМ имели систе­
му команд, в которых пользователи-программисты могли адресовать до 2 | 6 = 64 Кбайт
адресов (обычно в качестве адресуемой единицы выступала ячейка памяти разме­
ром с байт). А физически старшие модели этих мини-ЭВМ могли иметь объем опе­
ративной памяти в несколько мегабайтов. Обращение к памяти столь большого
объема осуществлялось с помощью специальных регистров, содержимое которых
складывалось с адресом операнда (или команды), извлекаемым из поля операнда
или указателя команды (и/или определяемым по значению поля операнда или ука­
зателя команды). Соответствующие значения в эти специальные регистры, высту­
пающие как базовое смещение в памяти, заносила операционная система. Для од­
ной задачи в регистр заносилось одно значение, а для второй (третьей, четвертой
и т. д.) задачи, размещаемой одновременно с первой, но в другой области памяти,
заносилось, соответственно, другое значение. Вся физическая память таким обра­
зом разбивалась на разделы объемом по 64 Кбайт, и на каждый такой раздел осуще­
ствлялось отображение своего виртуального адресного пространства.

Вторая ситуация (Vv = Vp) встречается очень часто, особенно характерна она была
для недорогих вычислительных комплексов. Для этого случая имеется большое
количество методов распределения оперативной памяти.

Наконец, в наше время мы уже достигли того, что ситуация превышения объема
виртуального адресного пространства программы над объемом физической памя­
ти (Vv > Vp) характерна даже для персональных компьютеров, то есть для самых
распространенных и недорогих машин. Теперь это самая обычная ситуация, и для
нее имеется несколько методов распределения памяти, отличающихся как слож­
ностью, так и эффективностью.

Простое непрерывное распределение
и распределение с перекрытием

Общие принципы управления памятью
в однопрограммных операционных системах
Простое непрерывное распределение — это самая простая схема, согласно которой
вся память условно может быть разделена на три области:

• область, занимаемая операционной системой;

Q область, в которой размещается исполняемая задача;

• незанятая ничем (свободная) область памяти.

Изначально являясь самой первой схемой, схема простого непрерывного распреде­
ления памяти продолжает и сегодня быть достаточно распространенной. Эта схема
предполагает, что операционная система не поддерживает мультипрограммирова­
ние, поэтому не возникает проблемы распределения памяти между несколькими

е непрерывное распределение и распределение с перекрытием 77

ячами. Программные модули, необходимые для всех программ, располагаются
лйласти самой операционной системы, а вся оставшаяся память может быть предо-

3 ялена задаче. Эта область памяти получается непрерывной, что облегчает работу
С темы программирования. Поскольку в различных однотипных вычислительных
С мплексах может быть разный состав внешних устройств (и, соответственно, они
одержат различное количество драйверов), для системных нужд могут быть отве-
ены отличающиеся объемы оперативной памяти, и получается, что можно не при­

вязывать жестко виртуальные адреса программы к физическому адресному простран­
ству. Эта привязка осуществляется на этапе загрузки задачи в память.
Для того чтобы для задач отвести как можно больший объем памяти, операцион­
ная система строится таким образом, чтобы постоянно в оперативной памяти рас­
полагалась только самая нужная ее часть. Эту часть операционной системы стали
называть ядром. Прежде всего, в ядро операционной системы входят основные
модули супервизора. Для однопрограммных систем понятие супервизора вырож­
дается в модули, получающие и выполняющие первичную обработку запросов от
обрабатывающих и прикладных программ, и в модули подсистемы памяти. Ведь
если программа по ходу своего выполнения запрашивает некоторое множество
ячеек памяти, то подсистема памяти должна их выделить (если они есть), а после
освобождения этой памяти подсистема памяти должна выполнить действия, свя­
занные с возвратом памяти в систему. Остальные модули операционной системы,
не относящиеся к ее ядру, могут быть обычными диск-резидентными (или тран­
зитными), то есть загружаться в оперативную память только по необходимости,
и после своего выполнения вновь освобождать память.

Такая схема распределения влечет за собой два вида потерь вычислительных ре­
сурсов — потеря процессорного времени, потому что процессор простаивает, пока
задача ожидает завершения операций ввода-вывода, и потеря самой оперативной
памяти, потому что далеко не каждая программа использует всю память, а режим
работы в этом случае однопрограммный. Однако это очень недорогая реализация,
которая позволяет отказаться от многих функций операционной системы. В част­
ности, такая сложная проблема, как защита памяти, здесь почти не стоит. Един­
ственное, что желательно защищать — это программные модули и области памяти
самой операционной системы.

Если есть необходимость создать программу, логическое адресное пространство
которой должно быть больше, чем свободная область памяти, или даже больше,
чем весь возможный объем оперативной памяти, то используется распределение
с перекрытием — так называемые оверлейные структуры (от overlay — перекры­
тие, расположение поверх чего-то). Этот метод распределения предполагает, что
вся программа может быть разбита на части — сегменты. Каждая оверлейная про­
грамма имеет одну главную (main) часть и несколько сегментов (segments), при­
чем в памяти машины одновременно могут находиться только ее главная часть и
°Дин или несколько не перекрывающихся сегментов.

"ока в оперативной памяти располагаются выполняющиеся сегменты, остальные
находятся во внешней памяти. После того как текущий (выполняющийся) сегмент
завершит свое выполнение, возможны два варианта: либо он сам (если данный сег-

96 Глава 3. Управление памятью в операционных системах

Для абсолютного большинства современных операционных систем характерна
дисциплина замещения страниц LRU как самая эффективная. Так, именно эта
дисциплина используется в OS/2 и в Linux. Однако в операционных системах
Windows NT/2000/XP разработчики, желая сделать их максимально независимы­
ми от аппаратных возможностей процессора, отказались от этой дисциплины и при­
менили правило FIFO. А для того чтобы хоть как-то компенсировать неэффектив­
ность правила FIFO, была введена «буферизация» тех страниц, которые должны
быть записаны в файл подкачки на диск1 или просто расформированы. Принцип
буферизации прост. Прежде чем замещаемая страница действительно окажется во
внешней памяти или просто расформированной, она помечается как кандидат на
выгрузку. Если в следующий раз произойдет обращение к странице, находящейся
в таком «буфере», то страница никуда не выгружается и уходит в конец списка
FIFO. В противном случае страница действительно выгружается, а на ее место
в «буфер» попадает следующий «кандидат». Величина такого «буфера» не может
быть большой, поэтому эффективность страничной реализации памяти в Win­
dows NT/2000/XP намного ниже, чем в других операционных системах, и явление
пробуксовки начинается даже при существенно большем объеме оперативной па­
мяти.

В ряде операционных систем с пакетным режимом работы для борьбы с пробук­
совкой используется метод «рабочего множества». Рабочее множество —- это мно­
жество «активных» страниц задачи за некоторый интервал Т, то есть тех страниц,
к которым было обращение за этот интервал времени. Реально количество актив­
ных страниц задачи (за интервал Т) все время изменяется, и это естественно, но,
тем не менее, для каждой задачи можно определить среднее количество ее актив­
ных страниц. Это количество и есть рабочее множество задачи. Наблюдения за
исполнением множества различных программ показали [11,17, 22], что даже если
интервал Т равен времени выполнения всей работы, то размер рабочего множе­
ства часто существенно меньше, чем общее число страниц программы. Таким об­
разом, если операционная система может определить рабочие множества испол­
няющихся задач, то для предотвращения пробуксовки достаточно планировать на
выполнение только такое количество задач, чтобы сумма их рабочих множеств не
превышала возможности системы.

Как и в случае с сегментным способом организации виртуальной памяти, странич­
ный механизм приводит к тому, что без специальных аппаратных средств он суще­
ственно замедляет работу вычислительной системы. Поэтому обычно использует­
ся кэширование страничных дескрипторов. Наиболее эффективным механизмом
кэширования является ассоциативный кэш. Именно такой ассоциативный кэш
и создан в 32-разрядных микропроцессорах i80x86. Начиная с i80386, который под­
держивает страничный способ распределения памяти, в этих микропроцессорах
имеется кэш на 32 страничных дескриптора. Поскольку размер страницы в этих

1 В системе Windows NT файл с выгруженными виртуальными страницами носит название PageFile.sys.
Таких файлов может быть несколько. Их совокупный размер должен быть не менее, чем объем физи­
ческой памяти компьютера плюс 11 Мбайт, необходимых для самой Windows NT. В системах
Windows 2000 размер файла PageFile.sys намного превышает объем установленной физической па­
мяти и часто достигает многих сотен мегабайтов.

микропроцессорах равен 4 Кбайт, возможно быстрое обращение к памяти разме­

ром 128 Кбайт.
Итак, основным достоинством страничного способа распределения памяти явля­
ется минимальная фрагментация. Поскольку на каждую задачу может приходить­
ся по одной незаполненной странице, очевидно, что память можно использовать
достаточно эффективно; этот метод организации виртуальной памяти был бы од­
ним из самых лучших, если бы не два следующих обстоятельства.
Первое — это то, что страничная трансляция виртуальной памяти требует суще­
ственных накладных расходов. В самом деле, таблицы страниц нужно тоже разме­
щать в памяти. Кроме того, эти таблицы нужно обрабатывать; именно с ними рабо­
тает диспетчер памяти.

Второй существенный недостаток страничной адресации заключается в том, что
программы разбиваются на страницы случайно, без учета логических взаимосвя­
зей, имеющихся в коде. Это приводит к тому, что межстраничные переходы, как
правило, осуществляются чаще, нежели межсегментные, и к тому, что становится
трудно организовать разделение программных модулей между выполняющимися
процессами.

Для того чтобы избежать второго недостатка, постаравшись сохранить достоин­
ства страничного способа распределения памяти, был предложен еще один спо­
соб — сегментно-страиичный. Правда, за счет увеличения накладных расходов на
его реализацию.

Сегментно-страничный способ организации
виртуальной памяти
Как и в сегментном способе распределения памяти, программа разбивается на
логически законченные части — сегменты — и виртуальный адрес содержит ука­
зание на номер соответствующего сегмента. Вторая составляющая виртуаль­
ного адреса — смещение относительно начала сегмента — в свою очередь мо­
жет быть представлено состоящим из двух полей: виртуальной страницы и
индекса. Другими словами, получается, что виртуальный адрес теперь состоит
из трех компонентов: сегмента, страницы и индекса. Получение физического
адреса и извлечение из памяти необходимого элемента для этого способа ил­
люстрирует рис. 3.6.

Из рисунка сразу видно, что этот способ организации виртуальной памяти вносит
еще большую задержку доступа к памяти. Необходимо сначала вычислить адрес
Дескриптора сегмента и прочитать его, затем определить адрес элемента таблицы
страниц этого сегмента и извлечь из памяти необходимый элемент и уже только
после этого можно к номеру физической страницы приписать номер ячейки в стра­
нице (индекс). Задержка доступа к искомой ячейке получается, по крайней мере, в
ТРИ раза больше, чем при простой прямой адресации. Чтобы избежать этой непри­
ятности, вводится кэширование, причем кэш, как правило, строится по ассоциа­
тивному принципу. Другими словами, просмотры двух таблиц в памяти могут быть
заменены одним обращением к ассоциативной памяти.

98 Гл ава 3. Управление памятью в операционных систем ах

Регистр таблицы сегментов
(таблицы дескрипторов

сегментов) Виртуальный адрес

32000 17 11 612

S (Segment) P (Page) i (index)

+ и-

32017

Таблица сегментов текущей задачи

Р

1

7J

Адрес начала
сегмента

/ 11000

/
'

Длина
сегмента

20

Права
доступа

R-X

11011

Таблица страниц сегмента задачи

Р

1

/

2

Номер
физической

страницы

/ 23

/

Права
доступа

R-X

_/ / 23000

г -
23612

Страница 23

Рис. 3.6. Сегментно-страничный способ организации виртуальной памяти

Напомним, что принцип действия ассоциативного запоминающего устройстве
предполагает, что каждой ячейке памяти такого устройства ставится в соответ-

|/пнтсюльные вопросы и задачи 9 9

твие ячейка, в которой записывается некий ключ (признак, адрес), позволяющий
однозначно идентифицировать содержимое ячейки памяти. Сопутствующую ячей-
<у с информацией, позволяющей идентифицировать основные данные, обычно
называют полем тега. Просмотр полей тега всех ячеек ассоциативного устройства
памяти осуществляется одновременно, то есть в каждой ячейке тега есть необхо­
димая логика, позволяющая посредством побитовой конъюнкции найти данные
по их признаку за одно обращение к памяти (если они там, конечно, присутству­
ют). Часто поле тегов называют аргументом, а поле с данными — функцией. В дан­
ном случае в качестве аргумента при доступе к ассоциативной памяти выступают
номер сегмента и номер виртуальной страницы, а в качестве функции от этих ар­
гументов получаем номер физической страницы. Остается приписать номер ячей­
ки в странице к полученному номеру, и мы получаем адрес искомой команды или
операнда.

Оценим достоинства сегментно-страничного способа. Разбиение программы на
сегменты позволяет размещать сегменты в памяти целиком. Сегменты разбиты на
страницы, все страницы сегмента загружаются в память. Это позволяет сократить
число обращений к отсутствующим страницам, поскольку вероятность выхода за
пределы сегмента меньше вероятности выхода за пределы страницы. Страницы
исполняемого сегмента находятся в памяти, но при этом они могут находиться не
рядом друг с другом, а «россыпью», поскольку диспетчер памяти манипулирует
страницами. Наличие сегментов облегчает разделение программных модулей меж­
ду параллельными процессами. Возможна и динамическая компоновка задачи.
А выделение памяти страницами позволяет минимизировать фрагментацию.

Однако поскольку этот способ распределения памяти требует очень значитель­
ных затрат вычислительных ресурсов и его не так просто реализовать, использует­
ся он редко, причем в дорогих мощных вычислительных системах. Возможность
реализовать сегментно-страничное распределение памяти заложена и в семейство
микропроцессоров i80x86, однако вследствие слабой аппаратной поддержки, труд­
ностей при создании систем программирования и операционной системы практи­
чески в персональных компьютерах эта возможность не используется.

Контрольные вопросы и задачи
1. Что такое «виртуальный адрес», «виртуальное адресное пространство»? Чем

(в общем случае) определяется максимально возможный объем виртуального
адресного пространства программы?

*• Имеются ли виртуальные адреса в программах, написанных для работы в среде
DOS? Приведите примеры абсолютной двоичной программы для таких опера­
ционных систем, как MS DOS и Windows NT/2000/XP.

• Изложите способ распределения памяти в MS DOS.

• Что дает использование оверлеев при разработке DOS-приложений?

• ^оъясните и сравните алгоритмы «первый подходящий», «самый подходящий»
и «самый неподходящий», используемые при поиске и выделении фрагмента
памяти.

100 Глава 3. Управление памятью в операционных системах

6. Что такое «фрагментация памяти»? Какой метод распределения памяти по­
зволяет добиться минимальной фрагментации и почему?

7. Что такое «уплотнение памяти»? Когда оно применяется?

8. Объясните сегментный способ организации виртуальной памяти. Что пред­
ставляет собой (в общем случае) дескриптор сегмента?

9. Что представляет собой динамическое присоединение программ? Что оно дает?

10. Сравните сегментный и страничный способы организации виртуальной па­
мяти. Перечислите достоинства и недостатки каждого.

11. Какие дисциплины применяются для решения задачи замещения страниц?
Какие из них являются наиболее эффективными и как они реализуются?

12. Что такое «рабочее множество»? Что позволяет разрешить реализация этого
понятия?

13. В каких случаях возникает «пробуксовка»? Почему системы Windows NT/
2000/ХР требуют для своей нормальной работы существенно большего объ­
ема оперативной памяти?

Глава 4- Особенности
архитектуры
микропроцессоров i80x86
для организации
мультипрограммных
операционных систем

В рамках данной книги мы, естественно, не будем рассматривать все многообразие
современных 32-разрядных микропроцессоров, используемых в персональных
компьютерах и иных вычислительных системах, а ограничимся рассмотрением
только архитектурных, а не технических характеристик микропроцессоров, и под
обозначением i80x86 будем понимать любые 32-разрядные микропроцессоры, име­
ющие основной набор команд такой же, как и в первом 32-разрядном микропро­
цессоре Intel 80386, и те же архитектурные решения, что и в микропроцессорах
фирмы Intel. Нас не будут интересовать новые наборы команд типа ММХ или SSE,
не будем мы касаться и архитектурных особенностей микропроцессоров, повыша­
ющих их производительность. Мы опишем только те механизмы, которые позво­
ляют организовать мультипрограммный и мультизадачный режимы, виртуальную
память, обеспечить надежные вычисления.

Реальный и защищенный режимы
работы процессора
Широко известно, что первым микропроцессором, на базе которого был создан
персональный компьютер IBM PC, был Intel 8088. Этот микропроцессор отличал­
ся от первого 16-разрядного микропроцессора фирмы Intel (микропроцессора

"°6), прежде всего, тем, что у него была 8-разрядная шина данных, а не 16-разряд-
Н а я (как у 8086). Оба этих микропроцессора предназначались для создания вы-

1 0 2 Глава 4. Особенности архитектуры микропроцессоров i80x86

числительных устройств, работающих в однозадачном режиме, то есть специаль­
ных аппаратных средств для поддержки надежных и эффективных мультипрог­
раммных операционных систем в них не было.

Однако к тому времени, когда разработчики осознали необходимость включения
специальной аппаратной поддержки мультипрограммных вычислений, уже было
создано очень много программных продуктов. Поэтому для совместимости с пер­
выми компьютерами в последующих версиях микропроцессоров была реализова­
на возможность использовать их в двух режимах: реальном (real mode) — так на­
звали режим работы первых 16-разрядных микропроцессоров — и защищенном
(protected mode), означающем, что параллельные вычисления могут быть защи­
щены аппаратно-программными механизмами.

Подробно рассматривать архитектуру первых 16-разрядных микропроцессоров
i8086/i8088 мы не будем, поскольку этот материал должен изучаться в других
дисциплинах. Итак, мы исходим из того, что читатель знаком с архитектурой про­
цессора i8086/i8088 и с программированием на ассемблере для этих 16-разряд­
ных процессоров Intel. Для тех же, кто с ней незнаком, можно рекомендовать,
например, такие книги, как [12, 24, 40] и многие другие. Однако мы напомним,
что в этих микропроцессорах (а значит, и в остальных микропроцессорах семей­
ства i80x86 при работе их в реальном режиме) обращение к памяти с возможным
адресным пространством в 1 Мбайт осуществляется посредством механизма сег­
ментной адресации (рис. 4.1). Этот механизм был использован для того, чтобы
увеличить с 16 до 20 количество разрядов, участвующих в формировании адреса
ячейки памяти, по которому идет обращение, и тем самым увеличить доступный
объем памяти.

Значение регистра CS

0 0 0 0

15 0

Регистр IP

15 0

Физический адрес | | |

19 0

Рис. 4 . 1 . Схема определения физического адреса для процессора 8086

Для конкретности будем рассматривать определение адреса команд, хотя для ад­
ресации операндов используется аналогичный механизм, только участвуют в этом
случае другие сегментные регистры. Напомним, что для определения физическо­
го адреса команды содержимое регистра сегмента кода (Code Segment, CS) умно­
жается на 16 за счет добавления справа (к младшим битам) четырех нулей, после
чего к полученному значению прибавляется содержимое регистра указателя ко-

Новые системные регистры микропроцессоров J80x86 1 0 3

манд (Instruction Pointer, IP). Получается 20-разрядное значение1, которое и по­
зволяет указать любой байт из 2020.

В защищенном режиме работы определение физического адреса осуществля­
ется совершенно иначе. Прежде всего, используется сегментный механизм для
организации виртуальной памяти. При этом адреса задаются 32-разрядными
значениями. Кроме этого, возможна страничная трансляция адресов, также с
32-разрядными значениями. Наконец, при работе в защищенном режиме, ко­
торый по умолчанию предполагает 32-разрядный код, возможно исполнение
двоичных программ, созданных для работы микропроцессора в 16-разрядном
режиме. Для этого введен режим виртуальной 16-разрядной машины, и 20-раз­
рядные адреса реального режима транслируются с помощью страничного ме­
ханизма в 32-разрядные значения защищенного режима. Наконец, есть еще один
режим — 16-разрядный защищенный, позволяющий 32-разрядным микропро­
цессорам выполнять защищенный 16-разрядный код, который был характерен
для микропроцессора 80286. Правда, следует отметить, что этот последний ре­
жим практически не используется, поскольку программ, созданных для него,
не так уж и много.

Для изучения этих возможностей рассмотрим сначала новые архитектурные воз­
можности микропроцессоров i80x86.

Новые системные регистры
микропроцессоров i80x86
Основные регистры микропроцессора i80x86, знание которых необходимо для по­
нимания защищенного режима работы, приведены на рис. 4.2. На этом рисунке
следует обратить внимание на следующее:

• указатель команды (EIP) — это 32-разрядный регистр, младшие 16 разрядов
которого представляют регистр IP;

• регистр флагов (EFLAGS) — это 32-разрядный регистр, младшие 16 разрядов
которого представляют регистр FLAGS;

Q регистры общего назначения ЕАХ, ЕВХ, ЕСХ, EDX, а также регистры ESP, EBP,
ESI, EDI 32-разрядные, однако их младшие 16 разрядов представляют собой
известные регистры АХ, ВХ, CX.DX, SP, BP, SI, DI;

Q сегментные регистры CS, SS, DS, ES, FS, GS 16-разрядные, при каждом из них
пунктиром изображены скрытые от программистов (недоступные никому, кроме
собственно микропроцессора) 64-разрядные регистры, в которые загружаются
Дескрипторы соответствующих сегментов;

На самом деле, поскольку происходит именно сложение и каждое из слагаемых может иметь значе­
ние в интервале от нуля до 2'с' - 1 = 65 535 = 64 Кбайт, мы можем указать адрес начала сегмента, рав­
нин FFFFFFFF00H, и к нему прибавить смещение FFFFFFFFH. В этом случае мы получим пере­
полнение разрядной сетки, но для современных 32-разрядных процессоров (и для уже забытого
1о0286) имеется возможность указать первые 64 Кбайт выше первого мегабайта.

1 0 4 Глава 4. Особенности архитектуры микропроцессоров i80x86

31

15

EIP

EFLAGS

IP

FLAGS

15 31 16

ЕАХ

ЕВХ

ЕСХ

EDX

АХ

ВХ

СХ

DX

CS

SS

DS

ES

FS

GS

LDTR

TR

ESP

ЕВР

ESI

EDI

SP

ВР

SI

DI

63

Права доступа

48,

47 15

Базовый адрес ; Длина сегмента

16* 0

GDTR

IDTR

Базовый адрес

47 16

Длина сегмента

0

CR3

CR2

CR1

CR0

Рис. 4.2. Основные системные регистры микропроцессоров i80x86

при 16-разрядном регистре-указателе на локальную таблицу дескрипторов (Lo­
cal Descriptor Table Register, LDTR) также имеется «теневой» (скрытый от про­
граммиста) 64-разрядный регистр, в который микропроцессор заносит дескрип­
тор, указывающий на таблицу дескрипторов сегментов задачи, описывающих
ее локальное виртуальное адресное пространство;

16-разрядный регистр задачи (Task Register, TR) указывает на дескриптор в гло­
бальной таблице дескрипторов, который позволяет получить доступ к дескрип-

Адресация в 32-разрядных микропроцессорах i80x86 1 0 5

тору сегмента состояния задачи (Task State Segment, TSS) — информацион­
ной структуре, которую поддерживает микропроцессор для управления зада­
чами;

р 48-разрядный регистр GDTR (Global Descriptor Table Register) глобальной таб­
лицы дескрипторов (Global Descriptor Table, GDT) содержит как дескрипторы
общих сегментов, так и специальные системные дескрипторы, в частности,
в GDT находятся дескрипторы, с помощью которых можно получить доступ
к сегментам TSS;

• 48-разрядный регистр таблицы дескрипторов прерываний (IDTR) содержит
информацию, необходимую для доступа к таблице прерываний (IDT);

О 32-разрядные регистры CR0-CR3 являются управляющими.

Помимо перечисленных имеются и некоторые другие регистры.

Управляющий регистр CRO содержит целый ряд флагов, которые определяют ре­
жимы работы микропроцессора. Подробности об этих флагах можно найти, на­
пример, в [1, 8, 20]. Мы же просто ограничимся тем фактом, что самый младший
бит РЕ (Protect Enable) этого регистра определяет режим работы процессора. При
РЕ = О процессор функционирует в реальном режиме работы, а при единичном
значении микропроцессор переключается в защищенный режим. Самый старший
бит регистра CR0 — бит PG (PaGing) — определяет, включен (PG = 1) или нет
(PG = 0) режим страничного преобразования адресов.

Регистр CR2 предназначен для размещения в нем адреса подпрограммы обработ­
ки страничного исключения, то есть в случае страничного механизма отображения
памяти обращение к отсутствующей странице будет вызывать переход на соот­
ветствующую подпрограмму диспетчера памяти, и для определения этой подпро­
граммы потребуется регистр CR2.

Регистр CR3 содержит номер физической страницы, в которой располагается таб­
лица каталога таблиц страниц текущей задачи. Очевидно, что, приписав к этому
номеру нули, мы попадем на начало этой страницы.

Адресация в 32-разрядных
микропроцессорах i80x86 при работе
в защищенном режиме

Поддержка сегментного способа организации
виртуальной памяти
Как мы уже знаем, для организации эффективной и надежной работы вычис­
лительной системы в мультипрограммном режиме необходимо иметь соответ­
ствующие аппаратные механизмы, поддерживающие независимость адресных
пространств каждой задачи и в то же время позволяющие организовать обмен
Данными и разделение кода. Для этого желательно выполнить следующие два
требования:

1 0 6 Глава 4, Особенности архитектуры микропроцессоров J80x86

• чтобы у каждого вычислительного процесса было собственное (личное, локаль­
ное) адресное пространство, никак не пересекающееся с адресными простран­
ствами других процессов;

• чтобы существовало общее (разделяемое) адресное пространство.

Для удовлетворения этих требований в микропроцессорах i80x86 реализован сегмен­
тный способ распределения памяти. Помимо того в этих микропроцессорах может
быть задействована и страничная трансляция. Поскольку для каждого сегмента ну­
жен дескриптор, устройство управления памятью поддерживает соответствующую
информационную структуру. Формат дескриптора сегмента приведен на рис. 4.3.

Старшее двойное слово дескриптора

31 23 19 15 11 7

База сегмента
(биты 31-24) G D 0 0 Биты 19-16

поля Limit

Базовый адрес сегмента (биты 15-0)

Р DPL S Туре А

Байт прав доступа

Биты 23-16
базы сегмента

Размер (предел - limit) сегмента
(биты 15-0)

31 15 О
Первое (младшее) двойное слово дескриптора

Рис. 4.3. Дескриптор сегмента

Поля дескриптора (базовый адрес, поле предела) размещены в дескрипторе не не­
прерывно, а в разбивку, потому что, во-первых, разработчики постарались мини­
мизировать количество перекрестных соединений в полупроводниковой структуре
микропроцессора, а во-вторых, чтобы обеспечить полную совместимость1 микро­
процессоров (предыдущий микропроцессор i80286 работал с 16-разрядным кодом
и тоже поддерживал сегментный механизм реализации виртуальной памяти). Не­
обходимо заметить, что формат дескриптора сегмента, изображенный на рис. 4.3,
справедлив только для случая нахождения соответствующего сегмента в опера­
тивной памяти. Если же бит присутствия в поле прав доступа равен нулю (сегмент
отсутствует в памяти), то все биты, за исключением поля прав доступа, считаются
неопределенными и могут использоваться системными программистами (для ука­
зания адреса сегмента во внешней памяти) произвольным образом.
Локальное адресное пространство задачи определяется через таблицу LDT (Local
Descriptor Table). У каждой задачи может быть свое локальное адресное простран­
ство. Общее, или глобальное, адресное пространство определяется через таблицу GDT
(Global Descriptor Table). Само собой, что работу с этими таблицами (их заполнение
и последующую модификацию) должна осуществлять операционная система. Дос­
туп к таблицам LDT и GDT со стороны прикладных задач должен быть исключен.
При переключении микропроцессора в защищенный режим он начинает совершен­
но другим образом, чем в реальном режиме, вычислять физические адреса команд и

' Естественно, совместимость обеспечена только «снизу вверх», то есть программы, разработанные
для предыдущих версий микропроцессора, должны выполняться на последующих без какой-либо
переделки.

Адресация в 32-разрядных микропроцессорах J80x86 1 0 7

перандов. Прежде всего, содержимое сегментных регистров начинает интерпрети­
роваться иначе: считается, что там содержится не адрес начала, а номер соответству­
ющего сегмента. Для того чтобы подчеркнуть этот факт, сегментные регистры CS,
с$ DS, ES, FS, GS начинают даже называть иначе — селекторами сегментов. При
этом каждый селекторный регистр разбивается на три поля (рис. 4.4).
р Поле индекса (Index) — старшие 13 битов (3-15) определяет собственно номер

сегмента (его индекс в соответствующей таблице дескрипторов).

• Поле индикатора таблицы сегментов (Table Index, TI) — бит с номером 2 опре­
деляет часть виртуального адресного пространства (общее или принадлежащее
только данной задаче). Если TI = 0, то поле индекса указывает на элемент в
глобальной таблице дескрипторов (GDT), то есть идет обращение к общей па­
мяти. Если TI = 1, то идет обращение к локальной области памяти текущей за­
дачи; это пространство описывается локальной таблицей дескрипторов (LDT).

• Поле уровня привилегий идентифицирует запрашиваемый уровень привилегий
(Requested Privilege Level, RPL).

15 !

Поле индекса (номер дескриптора) TI RPL

Рис. 4.4. Селектор сегмента

Операционная система в процессе своего запуска инициализирует многие регист­
ры, и прежде всего GDTR. Этот регистр содержит начальный адрес глобальной
таблицы дескрипторов (GDT) и ее размер. Как мы уже знаем, в GDT содержатся
дескрипторы глобальных сегментов и системные дескрипторы.

Для манипулирования задачами операционные системы поддерживают информаци­
онную структуру, которую мы уже раньше называли как дескриптор задачи (см. гла­
ву 1). Микропроцессоры с архитектурой IA32 поддерживают работу с наиболее важной
частью дескриптора задачи, которая меньше всего зависит от операционной системы.
Эта инвариантная часть дескриптора, с которой и работает микропроцессор, названа
сегментом, состояния задачи (Task State Segment, TSS). Перечень полей TSS показан
на рис. 4.5. Видно, что этот сегмент содержит в основном контекст задачи. Процессор
получает доступ к этой структуре с помощью регистра задачи (Task Register, TR).
Регистр TR содержит индекс (селектор) элемента в GDT. Этот элемент представ­
ляет собой дескриптор сегмента TSS. Дескриптор заносится в теневую часть реги­
стра (см. рис. 4.2). К рассмотрению TSS мы еще вернемся, а сейчас заметим, что
в одном из полей TSS содержится указатель (селектор) на локальную таблицу де­
скрипторов данной задачи. При переходе процессора с одной задачи на другую
содержимое поля LDTR заносится микропроцессором в одноименный регистр.
Инициализировать регистр TR можно и явным образом.

Итак, регистр LDTR содержит селектор, указывающий на один из дескрипторов
таблицы GDT. Этот дескриптор заносится микропроцессором в теневую часть ре­
гистра LDTR и описывает таблицу LDT для текущей задачи. Теперь, когда у нас

108 Глава 4. Особенности архитектуры микропроцессоров J80x86

определены как глобальная, так и локальная таблица дескрипторов, можно рас­
смотреть процесс определения линейного адреса1. Для примера рассмотрим про­
цесс получения адреса команды. Адреса операндов определяются по аналогии, но
задействованы будут другие регистры.

Поля, определяемые ОС

(их количество и состав
может быть любым)

31 16

Адрес карты ввода/вывода

15 0

LTDR

Сегментные регистры ES, CS, SS, DS, FS, GS
(на каждый регистр отведено по 4 байт,

из которых используется только 2 младших)

Общие регистры (ЕАХ, ЕСХ, EDX, EBX, ESX,
EBP, ESI, EDI)

Регистр флагов EFLAGS

Указатель команд (регистр EIP)

Привилегированные указатели стеков

Link

Л

68п

60h

48h

28h

24h

20h

4

0

Рис. 4.5. Сегмент состояния задачи

Собственно TSS
(108 байт)

J

Микропроцессор анализирует бит TI селектора кода и, в зависимости от его значе­
ния, извлекает из таблицы GDT или LDT дескриптор сегмента кода с номером
(индексом), который равен полю индекса (биты 3-15 селектора на рис. 4.4). Этот
дескриптор заносится в теневую (скрытую) часть регистра CS. Далее микропро­
цессор сравнивает значение регистра EIP (Extended Instruction Pointer — расши­
ренный указатель команды) с полем размера сегмента, содержащегося в извлечен­
ном дескрипторе, и если смещение относительно начала сегмента не превышает
размера предела, то значение EIP прибавляется к значению поля начала сегмента,
и мы получаем искомый линейный адрес команды. Линейный адрес — это одна из
форм виртуального адреса. Исходный двоичный виртуальный адрес, вычисляе-

В микропроцессорах 180x86 линейным называется адрес, полученный в результате преобразования
виртуального адреса формата (S, d) в 32-разрядный адрес.

Адресация в 32-разрядных микропроцессорах i80x86 1 0 9

мый в соответствии с используемой схемой адресации, преобразуется в линейный.
В свою очередь, линейный адрес будет либо равен физическому (если страничное
преобразование отключено), либо путем страничной трансляции преобразуется

физический адрес. Если же смещение из регистра EIP превышает размер сегмен­
та кода, то эта аварийная ситуация вызывает прерывание, и управление должно
передаваться супервизору операционной системы.

Регистр EIP

CS

Искомая команда

Сегмент
кода

Адрес сегмента ! < •

Дескриптор
> LDT

LTDR Адрес LDT |
i

GDTR (адрес GDT)

1

К-
1 '

•

Дескриптор GDT

Рис. 4.6. Процесс получения линейного адреса команды

1 1 0 Глава 4, Особенности архитектуры микропроцессоров J80x86

Рассмотренный нами процесс получения линейного адреса иллюстрирует рис. 4.6.
Стоит отметить, что поскольку межсегментные переходы происходят нечасто,
то, как правило, определение линейного адреса заключается только в сравнении
значения EIP с полем предела сегмента и в прибавлении смещения к началу сег­
мента. Все необходимые данные уже находятся в микропроцессоре, и операция
получения линейного адреса происходит очень быстро.

Итак, линейный адрес может считаться физическим адресом, если не включен ре­
жим страничной трансляции адресов. К сожалению, аппаратных средств микро­
процессора для поддержки рассмотренного способа двойной трансляции виртуаль­
ных адресов в физические явно недостаточно. При наличии большого количества
небольших сегментов, из которых состоят программы, это приводит к заметному
замедлению в работе процессора. В самом деле, теневой регистр при каждом се­
лекторе имеется в единственном экземпляре, и при переходе на другой сегмент
требуется вновь находить и извлекать соответствующий дескриптор сегмента, а. это
отнимает время. Страничный же способ трансляции виртуальных адресов, как мы
знаем, имеет немало достоинств. Поэтому в защищенном режиме работы, при ко­
тором всегда действует описанный выше механизм определения линейных адре­
сов, может быть включен еще и страничный механизм.

Поддержка страничного способа организации
виртуальной памяти
При создании микропроцессора i80386 разработчики столкнулись с очень серьез­
ной проблемой в реализации страничного механизма. Дело в том, что микропро­
цессор имел широкую шину адреса (32 бит), и возник вопрос о разбиении всего
адреса на поле страницы и поле индекса. Если большое количество битов адреса
отвести под индекс, то страницы станут очень большими, что повлечет значитель­
ные потери и на фрагментацию, и на операции ввода-вывода, связанные с замеще­
нием страниц. Хотя количество страниц стало бы при этом меньше, и накладные
расходы на их поддержание тоже уменьшились бы. Если же размер страницы умень­
шить, то большое поле номера страницы привело бы к потенциально громадному
количеству страниц, и пришлось бы либо вводить какие-то механизмы контроля
за номерами страниц (с тем, чтобы они не выходили за размеры таблицы страниц),
либо создавать эти таблицы максимального размера. Разработчики пошли по пути,
при котором размер страницы выбран небольшим (21 2 = 4096 = 4 Кбайт), а поле
номера страницы величиной в 20 бит, в свою очередь, разбивается на два поля и
осуществляется двухэтапная страничная трансляция.

Для описания каждой страницы создается соответствующий дескриптор. Длина
дескриптора выбрана равной 32 бит: 20 бит линейного адреса определяют номер
страницы (по существу — ее адрес, поскольку добавление к нему 12 нулей при­
водит к определению начального адреса страницы), а остальные биты разбиты
на поля, показанные на рис. 4.7. Как видно, три бита дескриптора зарезервирова­
но для использования системными программистами при разработке подсистемы
организации виртуальной памяти. С этими битами микропроцессор сам не рабо­
тает.

Адресация в 32-разрядных микропроцессорах J80xcSb 11

3 1 1 2 1 1 9 8 7 6 5 4 3 2 1 0

ддрес таблицы страниц или адрес страничного кадра Для ОС 00 г
D

itr
y

S
Ш

A
cc

es
s

Б
ит

00 up
er

vi
so

r
U

se
r/

S
 d/

W
rit

e
R

ea
 ss

en
t

f t

Рис. 4.7. Дескриптор страницы

Прежде всего, микропроцессор анализирует самый младший бит дескриптора —
бит присутствия, если он равен нулю, то это означает отсутствие данной страни­
цы в оперативной памяти, и такая ситуация влечет прерывание в работе процессо­
ра с передачей управления на соответствующую программу, которая должна будет
загрузить затребованную страницу. Бит, называемый «грязным» (dirty), показы­
вает, что данную страницу модифицировали, и при замещении этого страничного
кадра следующим ее необходимо сохранить во внешней памяти. Бит обращения
(access) свидетельствует о том, что к данной таблице или странице осуществлялся
доступ. Он анализируется для определения страницы, которая будет участвовать
в замещении при использовании дисциплины LRU или LFU. Наконец, первый и
второй биты требуются для защиты памяти.

Старшие 10 бит линейного адреса определяют номер таблицы страниц (Page Table
Entry, РТЕ), из которой посредством вторых 10 бит линейного адреса выбирается
соответствующий дескриптор виртуальной страницы. И уже из этого дескриптора
выбирается номер физической страницы, если данная виртуальная страница ото­
бражена на оперативную память. Эта схема определения физического адреса из
линейного изображена на рис. 4.8.

Первая таблица, которую мы индексируем первыми (старшими) десятью битами
линейного адреса, названа таблицей каталога таблиц страниц (Page Directory
Entry, PDE). Ее адрес в оперативной памяти определяется старшими двадцатью
битами управляющего регистра CR0.

Каждая из таблиц (PDE и РТЕ) состоит из 1024 элементов (2 1 0 = 1024). В свою
очередь, каждый элемент (дескриптор страницы) имеет длину 4 байт (32 бит), по­
этому размер этих таблиц как раз соответствует размеру страницы.

Оценим теперь эту схему трансляции с позиций расхода памяти. Каждый дескрип­
тор описывает страницу размером 4 Кбайт. Следовательно, одна таблица страниц,
содержащая 1024 дескриптора, описывает пространство памяти в 4 Мбайт. Если за­
дача пользуется виртуальным адресным пространством, например, в 55 Мбайт (пред­
положим, что речь идет о некотором графическом редакторе, который обрабатывает
изображение, состоящее из большого количества пикселов1), то для описания этой
памяти необходимо иметь 14 страниц (14 х 4 Мбайт = 56 Мбайт), содержащих таб­
лицы РТЕ. Кроме того, нам потребуется для этой задачи еще одна таблица PDE (тоже
Размером в одну страницу), в которой 14 дескрипторов будут указывать на место-

Напомшш, что термин «пиксел» происходит от английского Picture Element
мент. Множество пикселов образуют изображение.

графический эле-

1 1 2 Глава 4, Особенности архитектуры микропроцессоров J80x86

нахождение упомянутых таблиц РТЕ. Остальные дескрипторы PDE не требуются.
Итого, для описания 55 Мбайт адресного пространства задачи потребуется всего
15 страниц, то есть 60 Кбайт памяти, что можно считать приемлемым.

Линейный адрес

1023

/

г> °

31

I 31 21

1023

„ о

DTE

11 0

31

•

31

11

РТЕ

\ ' 1 1

\

\

\

(
(')

*
Физический адрес

0

31 11

Регистр CR3

Рис. 4.8. Трансляция линейного адреса в микропроцессорах i80x86

Адресация в 32-разрядных микропроцессорах J80x86 1 1 3

Если бы не был использован такой двухэтапный механизм трансляции, то потери
памяти на описание адресного пространства могли бы составить 4 Кбайт х 2'° =
4 Мбайт! Очевидно, что это уже неприемлемое решение.

Итак, микропроцессор для каждой задачи, для которой у него есть TSS, позволяет
иметь таблицу PDE и некоторое количество таблиц РТЕ. Поскольку это дает воз­
можность адресоваться к любому байту из 232, а шина адреса как раз и позволяет
использовать физическую память с таким объемом, то можно как бы отказаться от
сегментного способа адресации. Другими словами, если считать, что задача состо­
ит из одного единственного сегмента кода и одного сегмента данных, которые,
в свою очередь, разбиты на страницы, то фактически мы получаем только один
страничный механизм работы с виртуальной памятью. Этот подход получил на­
звание плоской модели памяти. При использовании плоской модели памяти упро­
щается создание и операционных систем, и систем программирования, кроме того,
уменьшаются расходы памяти на поддержку системных информационных струк­
тур. Поэтому в абсолютном большинстве современных 32-разрядных операцион­
ных систем, создаваемых для микропроцессоров i80x86, используется плоская
модель памяти. Более того, появление новых 64-разрядных микропроцессоров во
многом определено желанием получить большее адресное пространство, чем его
имеют 32-разрядные процессоры, при сохранении возможности работать только с
плоской моделью памяти.

Режим виртуальных машин для исполнения
приложений реального режима
Разработчики рассматриваемого семейства микропроцессоров в своем стремлении
обеспечить максимально возможную совместимость архитектуры пошли не только
на то, чтобы за счет введения реального режима работы обеспечить возможность
программам, созданным для первых 16-разрядных персональных компьютеров, без
проблем выполняться на компьютерах с более поздними моделями микропроцес­
соров. Они обеспечили возможность выполнения 16-разрядных приложений ре­
ального режима при условии, что сам процессор функционирует в защищенном
режиме работы, и операционная система, используя соответствующие аппаратные
средства микропроцессора, организует мультипрограммный (мультизадачный)
режим. Другими словами, микропроцессоры i80x86 поддерживают возможность
создания операционных сред реального режима при работе микропроцессора в за­
щищенном режиме. Если условно назвать 16-разрядные приложения DOS-прило­
жениями (поскольку в абсолютном большинстве случаев это именно так), то мож­
но сказать, что введена поддержка виртуальных DOS-машин, работающих вместе
с обычными 32-разрядными приложениями защищенного режима. Это нашло от­
ражение в названии такого режима работы микропроцессоров i80x86 (его называ­
ют режимом виртуального процессора i8086, иногда для краткости — режимом V86,
или просто виртуальным режимом), когда в защищенном режиме работы может
исполняться код DOS-приложения. Мультизадачность при выполнении несколь­
ких программ реального режима поддерживается аппаратными средствами защи­
щенного режима.

1 1 4 Глава 4. Особенности архитектуры микропроцессоров i80x86

Переход в виртуальный режим осуществляется посредством изменения бита VM
(Virtual Mode) в регистре EFLAGS. Когда процессор находится в виртуальном
режиме, для адресации памяти используется схема реального режима работы (сег­
мент плюс смещение) с размером сегментов до 64 Кбайт, которые могут распола­
гаться в адресном пространстве размером в 1 Мбайт, однако полученные адреса
считаются не физическими, а линейными. В результате страничной трансляции
осуществляется отображение виртуального адресного пространства 16-разрядно­
го приложения на физическое адресное пространство. Это позволяет организовать
параллельное выполнение нескольких задач, разработанных для реального режи­
ма, да еще совместно с обычными 32-разрядными приложениями, требующими
защищенного режима работы.

Естественно, что для обработки прерываний, возникающих при выполнении 16-раз­
рядных приложений в виртуальном режиме, процессор возвращается из этого ре­
жима в обычный защищенный режим. В противном случае невозможно было бы
организовать полноценную виртуальную машину. Очевидно, что обработчики
прерываний для виртуальной машины должны эмулировать работу подсистемы
прерываний процессора i8086. Другими словами, прерывания отображаются
в операционную систему, работающую в защищенном режиме, и уже основная опе­
рационная система моделирует работу операционной среды выполняемого прило­
жения.

Вопрос, связанный с операциями ввода-вывода, которые недоступны для обыч­
ных приложений (см. следующий раздел), решается аналогично. При попытке
выполнить недопустимые команды (ввода-вывода) возникают прерывания, и не­
обходимые операции выполняются операционной системой, хотя задача об этом и
«не подозревает». При выполнении команд IN, OUT, INS, OUTS, CLI, STI процессор,
находящийся в виртуальном режиме и исполняющий код на уровне привилегий
третьего (самого нижнего) кольца защиты, за счет возникающих вследствие этого
прерываний переводится на выполнение высоко привилегированного кода опера­
ционной системы.

Таким образом, операционная система может полностью виртуализировать ап­
паратные1 и программные ресурсы компьютера, создавая полноценную опера­
ционную среду, отличную от себя самой, ибо существуют так называемые на-
тивные приложения, создаваемые по собственным спецификациям данной
операционной системы. Очень важным моментом для организации полноцен­
ной виртуальной машины является виртуализация не только программных, но
и аппаратных ресурсов. Так, например, в Windows NT эта задача выполнена
явно неудачно, тогда как в OS/2 имеется полноценная виртуальная машина как
для DOS-приложеиий, так и для приложений, работающих в среде специфика­
ций Win 16. Правда, в последнее время это перестало быть актуальным, посколь­
ку появилось большое количество приложений, работающих по спецификаци­
ям Win32 API.

Речь идет о памяти, портах ввода-вывода, системе обработки прерываний и других устройствах.

^яшита адресного пространства задач 1 1 5

Защита адресного пространства задач
Для создания надежных мультипрограммных операционных систем в процессо-

о а х семейства i80x86 имеется несколько механизмов защиты. Это и разделение
адресных пространств задач, и введение уровней привилегий для сегментов кода и
сегментов данных. Это позволяет обеспечить как защиту задач друг от друга, так и
защиту самой операционной системы от прикладных задач, защиту одной части
системы от других ее частей, защиту самих задач от некоторых своих собственных
ошибок.

Защита адресного пространства задач осуществляется относительно легко за счет
того, что каждая задача может иметь свое собственное локальное адресное про­
странство. Операционная система должна корректно манипулировать таблицами
трансляции сегментов (дескрипторными таблицами) и таблицами трансляции стра­
ничных кадров. Сами таблицы дескрипторов как сегменты данных (а соответствен­
но, в свою очередь, и как страничные кадры) относятся к адресному пространству
операционной системы и имеют соответствующие привилегии доступа; исправ­
лять их задачи не могут. Этими информационными структурами процессор пользу­
ется сам на аппаратном уровне без возможности их читать и редактировать из
пользовательских приложений. В плоской модели памяти возможность микропро­
цессора контролировать обращения к памяти только внутри текущего сегмента
фактически не используется, и остается в основном только механизм отображе­
ния страничных кадров. Выход за пределы страничного кадра невозможен, поэто­
му фиксируется только выход за пределы своего сегмента. В этом случае прихо­
дится полагаться только на систему программирования, которая должна корректно
распределять программные модули в пределах единого неструктурированного ад­
ресного пространства задачи. Поэтому создание многопоточных приложений, когда
каждая задача (в данном случае — поток выполнения) может испортить адресное
пространство другой задачи, — очень сложная проблема, особенно если не приме­
нять системы программирования на языках высокого уровня.

Итак, чтобы организовать взаимодействие задач, имеющих разные виртуальные
адресные пространства, необходимо, как мы уже говорили, иметь общее адресное
пространство. И здесь для обеспечения защиты самой операционной системы,
а значит, и для повышения надежности всех вычислений используется механизм
защиты сегментов с помощью уровней привилегий.

Уровни привилегий для защиты адресного
пространства задач
Для того чтобы запретить пользовательским задачам модифицировать области
памяти, принадлежащие самой операционной системе, необходимо иметь специ­
альные средства. Одного разграничения адресных пространств через механизм сег­
ментов мало, ибо можно указывать различные значения адреса начала сегмента
и тем самым получать доступ к чужим сегментам. Другими словами, необходимо
в явном виде отделять системные сегменты данных и кода от сегментов, принадле­
жащих пользовательским программам. Поэтому были введены два основных ре-

1 1 6 Глава 4, Особенности архитектуры микропроцессоров J80x86

жима работы процессора: режим пользователя и режим супервизора. Большин­
ство современных процессоров поддерживают по крайней мере два этих режима.
Так, в режиме супервизора программа может выполнять все действия и иметь дос­
туп по любым адресам, тогда как в пользовательском режиме должны быть ограни­
чения, с тем чтобы обнаруживать и пресекать запрещенные действия, перехватывая
их и передавая управление супервизору операционной системы. Часто в пользо­
вательском режиме запрещается выполнение команд ввода-вывода и некоторых
других, чтобы гарантировать выполнение этих операций только операционной
системой.

В микропроцессорах i80x86 режим супервизора и режим пользователя непосред­
ственно связаны с так называемыми уровнями привилегий, причем имеется не два,
а четыре уровня привилегий. Для указания уровня привилегий используются два
бита, поэтому код 0 обозначает самый высший уровень, а код 3 — самый низший.
Самый высший уровень привилегий предназначен для операционной системы
(прежде всего для ядра ОС), самый низший — для прикладных задач пользовате­
ля. Промежуточные уровни привилегий введены для большей свободы системных
программистов в организации надежных вычислений при создании операционной
системы и иного системного программного обеспечения. Предполагалось, что уро­
вень с номером (кодом) 1 может быть использован, например, для системного сер­
виса — программ обслуживания аппаратуры, драйверов, работающих с портами
ввода-вывода. Уровень привилегий с кодом 2 может быть использован для созда­
ния пользовательских интерфейсов, систем управления базами данных и прочи­
ми, то есть для реализации специальных системных функций, которые по отноше­
нию к супервизору операционной системы ведут себя как обычные приложения.
Так, например, в системе OS/2 доступны три уровня привилегий: с нулевым уров­
нем привилегий исполняется код супервизорной части операционной системы,
на втором уровне исполняются системные процедуры подсистемы ввода-вывода,
на третьем уровне исполняются прикладные задачи пользователей. Однако на прак­
тике чаще всего задействуются только два уровня — нулевой и третий. Таким об­
разом, упомянутый режим супервизора для микропроцессоров i80x86 соответствует
выполнению кода с уровнем привилегий 0, обозначаемый как PLO (Privilege Level 0 —
уровень привилегий 0). Подводя итог, можно констатировать, что именно уровень
привилегий задач определяет, какие команды в них можно использовать и какое
подмножество сегментов и/или страниц в их адресном пространстве они могут
обрабатывать.

Основными системными объектами, которыми манипулирует процессор при ра­
боте в защищенном режиме, являются дескрипторы. Именно дескрипторы сегмен­
тов содержат информацию об уровне привилегий соответствующего сегмента кода
или данных. Уровень привилегий исполняющейся задачи определяется значени­
ем поля привилегий, находящегося в дескрипторе ее текущего кодового сегмента.
Напомним (см. рис. 4.3), что в байте прав доступа каждого дескриптора сегмента
имеется поле DPL (Descriptor Privilege Level — уровень привилегий сегмента, оп­
ределяемый его дескриптором), которое и определяет уровень привилегий связан­
ного с ним сегмента. Таким образом, поле DPL текущего сегмента кода становится
полем текущего уровня привилегий (Current Privilege Level, CPL), илнуровня при-

Защита адресного пространства задач 1 1 7

вилегий задачи. При обращении к какому-нибудь сегменту в соответствующем се­
лекторе указывается (см. рис. 4.4) запрашиваемый уровень привилегий (Requested
privilege Level, RPL)'.

В пределах одной задачи используются сегменты с различными уровнями приви­
легий, и в определенные моменты времени выполняются или обрабатываются сег­
менты с соответствующими им уровнями привилегий. Механизм проверки приви­
легий работает в ситуациях, которые можно назвать межсегментными переходами
(обращениями). К этим ситуациям относятся доступ к сегменту данных или сте­
ковому сегменту, межсегментные передачи управления в случае прерываний
(и особых ситуаций), использование команд CALL, JMP, INT, IRET, RET. В таких меж­
сегментных обращениях участвуют два сегмента: целевой сегмент (к которому мы
обращаемся) и текущий сегмент кода, из которого идет обращение.

Процессор сравнивает упомянутые значения CPL, RPL, DPL и на основе понятия
эффективного уровня привилегий (Effective Privilege Level, EPL) 2 ограничивает
возможности доступа к сегментам по следующим правилам, в зависимости от того,
идет ли речь об обращении к коду или к данным.

При доступе к сегментам данных проверяется условие CPL < EPL. Нарушение этого
условия вызывает так называемую особую ситуацию ошибки защиты, ведущую к
прерыванию. Уровень привилегий сегмента данных, к которому осуществляется
обращение, должен быть таким же, как и текущий уровень, или меньше его. Обра­
щение к сегменту с более высоким уровнем привилегий воспринимается как ошиб­
ка, так как существует опасность изменения данных с высоким уровнем привиле­
гий программой с низким уровнем привилегий. Доступ к данным с меньшим
уровнем привилегий разрешается.

Если целевой сегмент является сегментом стека, то правило проверки имеет вид:

CPL = DPL = RPL

В случае его нарушения также возникает исключение. Поскольку стек может при­
меняться в каждом сегменте кода, и всего имеется четыре уровня привилегий кода,
используется четыре стека. Сегмент стека, адресуемый регистром SS, должен иметь
тот же уровень привилегий, что и текущий сегмент кода.

Правила для передачи управления, когда осуществляется межсегментный пере­
ход с одного сегмента кода на другой сегмент кода, несколько сложнее. Если для
перехода с одного сегмента данных на другой сегмент данных считается допусти­
мым обрабатывать менее привилегированные сегменты, то передача управления
из более привилегированного кода на менее привилегированный код должна кон­
тролироваться дополнительно. Другими словами, код операционной системы не
Должен доверять коду прикладных задач. И обратно, нельзя просто так давать за­
дачам возможность исполнять привилегированный код, хотя потребность в этом
всегда имеется (ведь многие функции, в том числе и функции ввода-вывода, счи-

Иоле RPL определяется программистом (системой программирования). В отличие от поля DPL поле

2 KPL легко может быть изменено.
•значение эффективного уровня привилегий определяется минимальной привилегией, то есть как
Максимальное значение из двух уровней, RPL и DPL.

1 1 8 Глава 4. Особенности архитектуры микропроцессоров 180x86

таются привилегированными и должны выполняться только самой операционной
системой). Для передачи управления в сегменты кода с иными уровнями приви­
легий введен механизм шлюзов, который мы вкратце рассмотрим ниже: Более по­
дробное рассмотрение затронутых вопросов выходит за рамки темы данной книги.
Для получения более детальных сведений по этому и некоторым другим вопросам
особенностей архитектуры микропроцессоров i80x86 рекомендуется обратиться к
таким материалам, как, например, [1, 8].

Механизм шлюзов для передачи управления
на сегменты кода с другими уровнями
привилегий
Поскольку межсегментные переходы контролируются с использованием уровней
привилегий, а потребность в передаче управления с одного уровня привилегий на
другой уровень имеется, в микропроцессорах i80x86 реализован механизм шлюзов,
который мы поясним с помощью рис. 4.9. Шлюзование позволяет организовать
обращение к так называемым подчиненным сегментам кода, которые выполняют
часто встречающиеся функции и должны быть доступны многим задачам, распо­
лагающимся на том же или нижележащем уровне привилегий. Часто уровни при­
вилегий называют кольцами защиты, поскольку это иногда помогает объяснить
принцип действия самого механизма. Часто говорят, что некоторый программный
модуль «исполняется в кольце защиты с номером ...».

Помимо дескрипторов сегментов системными объектами, с которыми работает
микропроцессор, являются специальные системные дескрипторы, названные шлю­
зами (gates). Главное различие между дескриптором сегмента и шлюзом вызова
подчиненного сегмента кода заключается в том, что содержимое дескриптора ука­
зывает на сегмент в памяти, а шлюз обращается к дескриптору. Другими словами,
если дескриптор служит механизмом отображения памяти, то шлюз служит меха­
низмом перенаправления вычислений.

Для доступа к более привилегированному коду задача должна обратиться к нему
не непосредственно (путем указания дескриптора этого кода), а через шлюз этого
сегмента (рис. 4.10).

В этом дескрипторе вместо адреса сегмента указываются селектор, позволяю­
щий найти дескриптор искомого сегмента кода, и адрес (смещение назначения),
с которого будет выполняться подчиненный сегмент, то есть полный 32-разряд­
ный адрес. Формат дескриптора шлюза приведен на рис. 4.11. Адресовать шлюз
вызова можно с помощью команды CALL или FAR CALL (межсегментный вызов про­
цедуры). По существу, дескрипторы шлюзов вызова не являются дескрипторами
сегментов, но могут располагаться среди обычных дескрипторов (в дескриптор-
ных таблицах) процесса. Смещение, указываемое в команде перехода на другой
сегмент (FAR CALL), игнорируется, и фактически осуществляется переход на ко­
манду, адрес которой определяется через смещение из шлюза вызова. Этим га­
рантируется попадание только на разрешенные точки входа в подчиненные сег­
менты.

--- шШ

о а щ и т а адресного пространства задач 119

Уровень привилегий О

Адресное пространство программны)

Запрашиваемый
программный модуль

/\

модулей ОС

Уровень привилегий 1

Уровень привилегий 2

Уровень привилегий 3

Адресное пространство процесса А

Шлюз

Адресное пространство
процесса Б

Рис. 4.9. Механизм шлюзов для перехода на другой уровень привилегий

Введены следующие правила использования шлюзов:

• значение DPL шлюза вызова должно быть больше или равно значению текуще­
го уровня привилегий CPL;

• значение DPL шлюза вызова должно быть больше или равно значению поля
RPL селектора шлюза;

• значение DPL шлюза вызова должно быть больше или равно значению DPL
целевого сегмента кода;

• значение DPL целевого сегмента кода должно быть меньше или равно значе­
нию текущего уровня привилегий CPL.

Требование наличия и доступности шлюза вызова для перехода на более приви­
легированный код ограничивает менее привилегированный код заданным набо­
ром точек входа. Так как шлюзы вызова являются элементами дескрипторных
таблиц (а мы говорили, что их не только можно, но и желательно там распола­
гать), то менее привилегированная программа не может создать дополнитель-
НЬ1х (а значит, и неконтролируемых) шлюзов. Таким образом, рассмотренный
механизм шлюзов дает следующие преимущества в организации среды надеж­
ных вычислений.

1 2 0 Глава 4. Особенности архитектуры микропроцессоров 180x86

Q Привилегированный код надежно защищен, и вызывающие его программы не мо­
гут его разрушить. Естественно, что такой системный код должен быть особенно
тщательно отлаженным, не содержать ошибок, быть максимально эффективным.

• Шлюзы межсегментных переходов для вызова системных функций делают эти
самые системные функции невидимыми для программных модулей, располо­
женных на внешних (более низких) уровнях привилегий.

Q Поскольку вызывающая программа непосредственно адресует только шлюз вызо­
ва, реализуемые вызываемым модулем (сегментным кодом) функции можно изме­
нить или переместить в адресном пространстве, не затрагивая интерфейс со шлюзом.

Q Легко реализуется вызов программных модулей с более привилегированного
уровня.

Сегмент Смещение

CALL

Дескриптор шлюза

Дескриптор сегмента кода

. • • . • • . - , - . • - •

высоким'

Рис. 4.10. Переход на сегмент более привилегированного кода

31 23

Старшее двойное слово дескриптора

19 15 11

Смещение назначения (биты 31-16)

Селектор сегмента назначения

Р DPL 0 1100

Байт прав доступа
000

Счетчик
DWORD

Смещение назначения (биты 15-0)

31 15
Первое (младшее) двойное слово дескриптора

Рис. 4 . 1 1 . Формат дескриптора шлюза

Защита адресного пространства задач 121

Изложенный вкратце аппаратный механизм защиты по привилегиям оказывается
довольно сложным и жестким. Однако поскольку все практические ситуации учесть
в схемах микропроцессора невозможно, то при разработке процедур операцион­
ных систем и иного привилегированного кода следует придерживаться приведен­
ных ниже рекомендаций, заимствованных из [8].

Основной риск связан с передачей управления через шлюз вызова более привиле­
гированной процедуре. Нельзя предоставлять вызывающей программе никаких
преимуществ, вытекающих из-за временного повышения привилегий. Это особенно
важно для процедур нулевого уровня привилегий (PLO-процедур).

Вызывающая программа может нарушить работу процедуры, передавая ей «пло­
хие» параметры. Поэтому целесообразно как можно раньше проконтролировать
передаваемые процедуре параметры. Шлюз вызова сам по себе не проверяет зна­
чений параметров, которые копируются в новый стек, поэтому достоверность каж­
дого передаваемого параметра должна контролировать вызванная процедура. Ниже
перечислены некоторые рекомендации по контролю передаваемых параметров.

• Следует проверять счетчики циклов и повторений на минимальные и макси­
мальные значения.

• Необходимо проверить 8- и 16-разрядные параметры, передаваемые в 32-раз­
рядных регистрах. Когда процедуре передается короткий параметр, его следует
расширить знаковым разрядом или нулем для заполнения всего 32-разрядного
регистра.

• Следует стремиться свести к минимуму время работы процессора с запрещен­
ными прерываниями. Если процедуре требуется запрещать прерывания, необ­
ходимо, чтобы вызывающая программа не могла влиять на время нахождения
процессора с запрещенными прерываниями (флаг IF = 0).

• Процедура никогда не должна воспринимать как параметр код или указатель
на код.

• В операциях процессора следует явно задавать состояние флага направления
DF для цепочечных команд.

Q Заключительная команда RET или RET n в процедуре должна точно соответ­
ствовать полю WC (Word Counter — счетчик слов) шлюза вызова; при этом
п = 4 х WC, так как счетчик задает число двойных слов, а п соответствует байтам.

а Не следует применять шлюзы вызовов для функций, которым передается пере­
менное число параметров (см. предыдущую рекомендацию). При необходимо­
сти нужно воспользоваться счетчиком и указателем параметров.

Q Функции не могут возвращать значения в стеке (см. предыдущую рекоменда­
цию), так как после возврата стеки процедуры и вызывающей программы нахо­
дятся точно в таком состоянии, в каком они были до вызова.

u В Процедуре следует сохранять и восстанавливать все сегментные регистры. Без
этого, если какой-либо сегментный регистр привлекался для адресации дан­
ных, недоступных вызывающей программе, процессор автоматически загрузит
в него пустой селектор.

1 2 2 Глава 4. Особенности архитектуры микропроцессоров i80x86

Рекомендуется контролировать все обращения к памяти. Нетрудно представить себе
ситуацию, когда РЬЗ-программа' передает PLO-процедуре указатель селектор -.сме­
щение и запрашивает считать или записать несколько байтов по этому адресу. Ти­
пичным примером может служить процедура дискового ввода-вывода, которая вос­
принимает как параметр системный номер файла, счетчик байтов и адрес, по которому
записываются данные с диска. Хотя PLO-процедура имеет привилегии для произ­
водства такой операции, у РЬЗ-программы разрешения на это может не быть.

Система прерываний 32-разрядных
микропроцессоров i80x86
В микропроцессорах семейства i80x86 система прерываний построена таким обра­
зом, чтобы, с одной стороны, обеспечить возможность создавать эффективные и на­
дежные мультипрограммные и мультизадачные операционные системы, которые
должны функционировать в защищенном режиме, а с другой стороны, обеспечить
возможность выполнять программы, разработанные для реального режима. Рас­
смотрим вкратце оба режима.

Работа системы прерываний в реальном режиме
В реальном режиме работы в системе прерываний используется понятие вектора
прерывания, поскольку для указания адреса программы обработки прерывания
здесь требуется не одно значение, а два (значение для сегментного регистра кода
и значение для указателя команд), то есть мы имеем дело не со скалярной величи­
ной, а с «векторной», состоящей из двух скалярных.

Итак, каждый вектор прерывания состоит из четырех байтов, или двух слов: пер­
вые два содержат новое значение для регистра IP, а следующие два — новое значе­
ние для регистра CS. Таблица векторов прерывания занимает 1024 байт. Таким об­
разом, в ней может быть задано 256 векторов прерываний. В процессоре i8086 эта
таблица располагается на адресах 00000H-003FFH. Расположение этой таблицы
в процессорах i80286 и в более поздних определяется значением регистра IDTR
(Interrupt Descriptor Table Register — регистр таблицы дескрипторов прерываний).
При включении или сбросе процессора i80x86 этот регистр обнуляется. Однако
при необходимости можно в регистре IDTR указать смещение и таким образом
перейти на новую таблицу векторов прерываний.

Таблица векторов прерываний заполняется (инициализируется) при запуске сис­
темы, но, в принципе, может быть изменена или перемещена.
Каждый вектор прерывания имеет свой номер, называемый номером прерывания,
который указывает его место в таблице. Этот номер, помноженный на четыре (сдвиг
на два разряда влево и заполнение освободившихся битов нулями) и сложенный
с содержимым регистра IDTR, дает абсолютный адрес первого байта вектора пре­
рываний в оперативной памяти.

Программа, имеющая уровень привилегий 3. Иначе говоря, работающая в кольце защиты с номером

система прерываний 32-разрядных микропроцессоров J80x86 1 23

Подобно вызову процедуры прерывание заставляет микропроцессор сохранить в
стеке информацию для последующего возврата, а затем перейти к группе команд,
адрес которых определяется вектором прерывания. Таким образом, прерывание
вызывает косвенный переход к своей подпрограмме обработки за счет получения
ее адреса из вектора прерывания.

В IBM PC, как и в других вычислительных системах, прерывания бывают двух
видов: внутренние и внешние.

Внутренние прерывания, как мы уже знаем, возникают в результате работы про­
цессора в ситуациях, которые нуждаются в специальном обслуживании, или при
выполнении специальных команд (INT, INTO). Это следующие прерывания:

О прерывание при делении на ноль (номер прерывания 0);

• прерывание по флагу TF (Trap Flag — флаг трассировки)1 обычно исполь­
зуется специальными программами отладки типа DEBUG (номер прерыва­
ния 1);

Q прерывания, возникающие при выполнении команд INT (Interrupt — прерыва­
ние) и INTO (Interrupt if Overflow — прерывание по переполнению), называют­
ся программными.

В качестве операнда команды INT указывается номер прерывания, которое нужно
выполнить, например INT 10H. Программные прерывания как средство перехода
на соответствующую процедуру были введены для того, чтобы выполнение этой
процедуры осуществлялось в привилегированном режиме, а не в обычном пользо­
вательском.

Внешние прерывания возникают по сигналу какого-нибудь внешнего устройства.
Существует два специальных внешних сигнала среди входных сигналов процессо­
ра, при помощи которых можно прервать выполнение текущей программы и тем
самым переключить работу центрального процессора. Это сигналы NMI (No Mask
Interrupt — немаскируемое прерывание) и INTR (Interrupt Request — запрос на
прерывание). Соответственно, внешние прерывания подразделяются на немаски­
руемые и маскируемые.

Маскируемые прерывания генерируются контроллером прерываний по заявке оп­
ределенных периферийных устройств2. Контроллер прерываний (его обозначение
18259А) поддерживает восемь уровней (линий) приоритета; к каждому уровню
«привязано» одно периферийное устройство3. Маскируемые прерывания часто
называют аппаратными прерываниями.

Флаг трассировки — специальный бит в регистре PSW (Program Status Word — слово состояния
программы), который в случае равенства единице вызывает приостанов после каждой команды и
генерирует прерывание для организации режима отладки с пошаговым выполнением программы.

2 Чаще всего регистр PSW в микропроцессорах Intel 80x86 называют регистром ([шагов.
Сигнал запроса на прерывание чаще всего является сигналом готовности внешнего устройства (со­
ответствующего контроллера внешнего устройства) па выполнение следующей команды, связанной

3

 с Управлением операциями ввода-вывода.
качестве внешнего периферийного устройства, занимающего одну линию запроса на прерывание,

Может быть использовано специальное управляющее устройство, которое позволяет разделять эту
самую линию запроса между несколькими внешними устройствами.

1 2 4 Глава 4. Особенности архитектуры микропроцессоров J80x86

Как известно, прерывания могут быть инициированы внешним устройством ПЭВМ
или специальной командой прерывания из программы. В любом случае если пре­
рывания разрешены, то выполняется следующая процедура.

1. В стек помещается регистр флагов PSW.

2. Флаг включения-выключения прерываний IF и флаг трассировки TF, находя­
щиеся в регистре PSW, обнуляются для блокировки других маскируемых пре­
рываний и исключения пошагового режима исполнения команд.

3. Значения регистров CS и IP сохраняются в стеке вслед за PSW.

4. Вычисляется адрес вектора прерывания и из вектора, соответствующего номе­
ру прерывания, загружаются новые значения IP и CS.

Когда системная подпрограмма принимает управление, она может разрешить сно­
ва маскируемые прерывания командой STI (Set Interrupt Flag — установить флаг
прерываний), которая переводит флаг IF в состояние 1, что разрешает микропро­
цессору вновь реагировать на прерывания, инициируемые внешними устройства­
ми, поскольку стековая организация допускает вложение прерываний друг в друга.

Закончив работу, подпрограмма обработки прерывания должна выполнить команду
IRET (Interrupt Return), которая извлекает из стека три 16-разрядных значения и
загружает их в указатель команд IP, регистр сегмента команд CS и регистр PSW
соответственно. Таким образом, процессор сможет продолжить работу с того мес­
та, где он был прерван.

В случае внешних прерываний процедура перехода на подпрограмму обработки
прерывания дополняется следующими шагами.

1. Контроллер прерываний получает заявку от определенного периферийного
устройства и, соблюдая схему приоритетов, генерирует сигнал INTR (запрос на
прерывание), который является входным для микропроцессора.

2. Микропроцессор проверяет флаг IF в регистре PSW. Если он установлен в 1, то
переходим к шагу 3. В противном случае работа процессора не прерывается.
Часто говорят, что прерывания замаскированы, хотя правильнее говорить, что
они отключены. Маскируются (запрещаются) отдельные линии запроса на пре­
рывания посредством программирования контроллера прерываний.

3. Микропроцессор генерирует сигнал INTA (подтверждение прерывания). В от­
вет на этот сигнал контроллер прерываний посылает по шипе данных номер
прерывания. После этого выполняется описанная ранее процедура передачи
управления соответствующей программе обработки прерывания.

Номер прерывания и его приоритет устанавливаются на этапе инициализации си­
стемы. После запуска ОС пользователь, как мы уже отмечали, может изменить
таблицу векторов прерываний, поскольку она ему доступна.

Работа системы прерываний
в защищенном режиме
В защищенном режиме работы система прерываний микропроцессора i80x86 ра­
ботает совершенно иначе. Прежде всего, вместо таблицы векторов, о которой МЫ

Пистема прерываний 32-разрядных микропроцессоров J80x86 1 2 5

говорили выше, она имеет дело с таблицей дескрипторов прерываний (Interrupt
Descriptor Table, IDT). Дело здесь не столько в названии таблицы, сколько в том,
что таблица ЮТ представляет собой не таблицу с адресами обработчиков преры­
ваний, а таблицу со специальными системными структурами данных (дескриптора­
ми), доступ к которой со стороны пользовательских (прикладных) программ невоз­
можен. Только сам микропроцессор (его система прерываний) и код операционной
системы могут получить доступ к этой таблице, представляющей собой специаль­
ный сегмент, адрес и длина которого содержатся в регистре IDTR (см. рис. 4.2).
Этот регистр аналогичен регистру GDTR в том отношении, что он инициализиру­
ется один раз при загрузке системы. Интересно заметить, что в реальном режиме
работы регистр IDTR также указывает на адрес таблицы прерываний, но при этом,
как и в процессоре i8086, каждый элемент таблицы прерываний (вектор) занимает
всего 4 байт и содержит 32-разрядный адрес в формате селектор -.смещение (CS:IP).
Начальное значение этого регистра равно нулю, но в него можно занести и другое
значение. В этом случае таблица векторов прерываний будет находиться в другом
месте оперативной памяти. Естественно, что перед тем, как занести в регистр IDTR
новое значение, необходимо подготовить саму таблицу векторов. В защищенном
режиме работы загрузку регистра IDTR может произвести только код с максималь­
ным уровнем привилегий.

Каждый элемент в таблице дескрипторов прерываний, о которой мы говорим уже
в защищенном режиме, представляет собой 8-байтовую структуру, более похожую
на дескриптор шлюза, нежели на дескриптор сегмента.

Как мы уже знаем, в зависимости от причины прерывания процессор автомати­
чески индексирует таблицу прерываний и выбирает соответствующий элемент,
с помощью которого и осуществляется перенаправление в исполнении кода, то есть
передача управления на обработчик прерывания. Однако таблица IDT содержит
только дескрипторы шлюзов, а не дескрипторы сегментов кода, поэтому факти­
чески получается что-то типа косвенной адресации, но с рассмотренным ранее
механизмом защиты с помощью уровней привилегий. Благодаря этому пользова­
тели уже не могут сами изменить обработку прерываний, которая предопределя­
ется системным программным обеспечением.

Дескриптор прерываний может относиться к одному из трех типов:

Q коммутатор прерывания (interrupt gate);

Q коммутатор перехвата (trap gate);

Q коммутатор задачи (t,ask gate).

Нри обнаружении запроса на прерывание и при условии, что прерывания разрешены,
процессор действует в зависимости от типа дескриптора (коммутатора), соответству-
юЩего номеру прерывания. Первые два'типа дескрипторов прерываний вызывают
Переход на соответствующие сегменты кода, принадлежащие виртуальному адресно-
МУ пространству текущего вычислительного процесса. Поэтому про них говорят, что

°работка прерываний по этим дескрипторам осуществляется под контролем (в кон-
ексте) текущей задачи. Последний тип дескриптора (коммутатор задачи) вызывает
°лное переключение процессора на новую задачу со сменой всего контекста в соответ-
вии с сегментом состояния задачи (TSS). Рассмотрим оба варианта.

1 2 6 Глава 4. Особенности архитектуры микропроцессоров i80x86

Обработка прерываний в контексте текущей задачи
Обработку прерывания в контексте текущей задачи поясняет рис. 4.12.

Прерывание (исключение)

1
Регистр EIP Регистр CS

Регистр дескриптора
сегмента

ТаблицаIDT

Дескриптор 225

Дескриптор j

Дескриптор 1

Дескриптор О

Регистр EFLAGS

Стек

2.1

Индекс i

2.3

RPL

2.2

4

Ti=0

— •

•
Ti -1

Таблица GDT

Дескриптор М

Дескриптор i

Дескриптор 0

Таблица LDT

Дескриптор М

Дескриптор i

Дескриптор 0

Рис. 4 . 1 2 . Схема передачи управления при прерывании в контексте текущей задачи

При возникновении прерывания процессор по номеру прерывания индексирует
таблицу IDT, то есть адрес соответствующего коммутатора определяется путем
сложения содержимого поля адреса в регистре IDTR и номера прерывания, умно­
женного на 8 (справа к номеру прерывания добавляется три нуля). Полученный
дескриптор анализируется, и если его тип соответствует коммутатору перехвата
или коммутатору прерывания, то выполняются следующие действия.

1. В стек на уровне привилегий текущего сегмента кода помещаются:

• значения SS и SP, если уровень привилегий в коммутаторе выше уровня
привилегий ранее исполнявшегося кода;

Q регистр флагов EFLAGS;

• регистры CS и IP.

2. Если рассматриваемому прерыванию соответствовал коммутатор прерывания,
то запрещаются прерывания (устанавливается флаг IF = 0 в регистре EFLAGS)-
В случае коммутатора перехвата флаг прерываний не сбрасывается, и обработ­
ка новых прерываний на период обработки текущего прерывания тем самым не
запрещается.

рлгугема прерываний 32-разрядных микропроцессоров J80x86 1 2 7

Я Поле селектора из дескриптора прерывания используется для индексирования
таблицы дескрипторов задачи. Дескриптор сегмента заносится в теневой ре­
гистр, а смещение относительно начала нового сегмента кода определяется по­
лем смещения из дескриптора прерывания.

Таким образом, в случае обработки прерываний, когда дескриптором прерывания яв­
ляется коммутатор перехвата или коммутатор прерывания, мы остаемся в том же вир­
туальном адресном пространстве, и полной смены контекста текущей задачи не про­
исходит. Просто мы переключаемся на исполнение другого (как правило, более
привилегированного) кода, доступного исполняемой задаче. Этот код создается сис­
темными программистами, и прикладные программисты его просто используют. В то
же время механизмы защиты микропроцессора позволяют обеспечить недоступность
этого кода для его исправления (со стороны приложений, его вызывающих) и недо­
ступность самой таблицы дескрипторов прерываний. Удобнее всего код обработчи­
ков прерываний располагать в общем адресном пространстве, то есть селекторы, ука­
зывающие на такой код, должны располагаться в глобальной таблице дескрипторов.

Обработка прерываний с переключением на новую задачу
Совершенно иначе осуществляется обработка прерываний в случае, если дескрип­
тором прерываний является коммутатор задачи. Формат коммутатора задачи от­
личается от формата коммутаторов перехвата и прерывания прежде всего тем, что
в нем вместо селектора сегмента кода, на который передается управление, указы­
вается селектор сегмента состояния задачи (рис. 4.13). В результате осуществля­
ется процедура перехода на новую задачу с полной сменой контекста, ибо сегмент
состояния задачи полностью определяет новое виртуальное пространство и адрес
начала программы, а текущее состояние прерываемой задачи аппаратно (по мик­
ропрограмме микропроцессора) сохраняется в ее собственном сегменте TSS.

При этом происходит полное переключение на новую задачу с вложением, то есть
выполняются следующие действия.

1. Сохраняются все рабочие регистры процессора в текущем сегменте TSS, базовый
адрес этого сегмента берется в регистре TR (см. раздел «Адресация в 32-раз­
рядных микропроцессорах i80x86 при работе в защищенном режиме»).

2. Текущая задача отмечается как занятая.

3. По селектору из коммутатора задачи выбирается новый сегмент TSS (поле се­
лектора помещается в регистр TR) и загружается состояние новой задачи. На­
помним, что загружаются значения регистров LDTR, EFLAGS, восьми регист­
ров общего назначения, регистра EIP и шести сегментных регистров.

4- Устанавливается бит NT (Next Task),.

* В поле обратной связи TSS помещается селектор прерванной задачи.

"• С помощью значений CS:IP, взятых из нового сегмента TSS, обнаруживается
11 выполняется первая команда обработчика прерывания.

аким образом, коммутатор задачи дает указание процессору произвести переклю-
ние задачи, и обработка прерывания осуществляется под контролем отдельной

1ешней задачи. В каждом сегменте TSS имеется селектор локальной таблицы деск-

128 Глава 4. Особенности архитектуры микропроцессоров JSOXRR

рипторов (LDT), поэтому при переключении задачи процессор загружает в регистп
LDTR новое значение. Это позволяет обратиться к сегментам кода, которые абсо­
лютно не пересекаются с сегментами кода любых других задач, поскольку именно
локальные таблицы дескрипторов обеспечивают эффективную изоляцию вирту­
альных адресных пространств. Новая задача начинает свое выполнение на уровне
привилегий, определяемом полем RPL нового содержимого регистра CS, которое
загружается из сегмента TSS. Достоинством этого коммутатора является то, что
он позволяет сохранить все регистры процессора с помощью механизма переклю­
чения задач, тогда как коммутаторы перехвата и прерываний сохраняют только
содержимое регистров IFLAGS, CS и IP, а сохранение других регистров возлагает­
ся на программиста, разрабатывающего соответствующую программу обработки
прерывания.

I— Номер прерывания

IDT

Дескриптор коммутатора задачи

Селектор — •

GDT

Дескриптор сегмента TSS

Адрес

-ЭР

Сегмент TSS

Рис. 4.13. Схема передачи управления при прерывании с переключением на новую задачу

Справедливости ради следует признать, что несмотря на возможности коммутатора
задачи, разработчики современных операционных систем достаточно редко его ис­
пользуют, поскольку переключение на другую задачу требует существен но больших
затрат времени, а полное сохранение всех рабочих регистров часто не требуется. В ос­
новном обработку прерываний осуществляют в контексте текущей задачи, так как
это приводит к меньшим накладным расходам и повышает быстродействие системы-

Контрольные вопросы и задачи
1. Как в реальном режиме работы микропроцессоров i80x86 осуществляется пре

образование виртуального адреса в физический?

т-рппьные вопросы и задачи 1 29

Какие механизмы виртуальной памяти используются в защищенном режиме
работы микропроцессоров i80x86?

Для чего в микропроцессоры i80x86 введен регистр-указатель задачи TR? Ка­

кой он разрядности?

л Как в микропроцессорах i80x86 реализована поддержка сегментного способа

организации виртуальной памяти?

5 Что понимается под термином «линейный адрес»? Как осуществляется пре­
образование линейного адреса в физический? Может ли линейный адрес быть
равным физическому?

6 Что дало введение двухэтапной страничной трансляции в механизме странич­
ного способа реализации виртуальной памяти? Как разработчики микропро­
цессора i80386 решили проблему замедления доступа к памяти, которое при
двухэтапном преобразовании адресов очень существенно?

7. Что означает термин «плоская модель памяти»? В чем заключаются достоин­
ства (и недостатки, если они есть) этой модели?

8. Что дало введение виртуального режима? Как в этом режиме осуществляется
вычисление физического адреса?

9. Что имеется в микропроцессорах i80x86 для обеспечения защиты адресного
пространства задач?

10. Что такое «уровень привилегий»? Сколько уровней привилегий в микропро­
цессорах i80x86? Для каких целей введено такое количество уровней привиле­
гий?

И. Что такое текущий уровень привилегий? Как узнать, чему он равен? Что та­
кое эффективный уровень привилегий?

12. Объясните правила работы с уровнями привилегий для различных типов сег­
ментов.

13. Поясните работу механизма шлюзов. Для чего он предназначен, как осуществ­
ляется передача управления на сегменты кода с другими уровнями привиле­
гий?

14. Опишите работу системы прерываний микропроцессоров i80x86 в реальном
режиме.

15. В чем заключаются принципиальные отличия работы системы прерываний
микропроцессоров i80x86 в защищенном режиме по сравнению с реальным
режимом?

"• Как осуществляется переход на программу обработки прерываний, если де­
скриптор прерываний является коммутатором прерываний?

• Как осуществляется переход на программу обработки прерываний, если де­
скриптор прерываний является коммутатором перехвата?

• Как осуществляется переход на программу обработки прерываний, если дес­
криптор прерываний является коммутатором задачи?

Глава 5. Управление
вводом-выводом
в операционных системах

Побудительной причиной, в конечном итоге приведшей разработчиков к созда­
нию системного программного обеспечения, в том числе операционных систем,
стала необходимость предоставить программам средства обмена данными с внеш­
ними устройствами, которые бы не требовали непосредственного включения в каж­
дую программу двоичного кода, управляющего устройствами ввода-вывода. На­
помним, что программирование ввода-вывода является наиболее сложным
и трудоемким, требующим очень высокой квалификации. Поэтому код, реализу­
ющий операции ввода-вывода, сначала стали оформлять в виде системных биб­
лиотечных процедур, а потом и вовсе вывели из систем программирования, включив
в операционную систему. Это позволило не писать такой код в каждой программе,
а только обращаться к нему — системы программирования стали генерировать об­
ращения к системному коду ввода-вывода. Таким образом, управление вводом-
выводом — это одна из основных функций любой операционной системы.
С одной стороны, организация ввода-вывода в различных операционных системах
имеет много общего. С другой стороны, реализация ввода-вывода в ОС так сильно
отличается от системы к системе, что очень нелегко выделить и описать именно
основные принципы реализации этих функций. Проблема усугубляется еще и тем,
что в большинстве ныне используемых систем эти моменты вообще, как правило,
подробно не описаны (исключением являются только системы Linux и FreeBSD,
для которых имеются комментированные исходные тексты), а детально описыва­
ются только функции API, реализующие ввод-вывод. Другими словами, для тех
же систем Windows от компании Microsoft мы воспринимаем подсистему ввода-
вывода как «черный ящик». Известно, как можно и нужно использовать эту под­
систему, но детали ее внутреннего устройства остаются неизвестными. Поэтому
в данной главе мы рассмотрим только основные идеи и концепции. Наконец, по
скольку такой важный ресурс, как внешняя память, в основном реализуется н
устройствах ввода-вывода с прямым доступом, а к ним, прежде всего, относите
накопители на магнитных дисках, мы также рассмотрим логическую структуру Ди

Основные концепции организации ввода-вывода в операционных системах 131

а начальную стадию процесса загрузки операционной системы, кэширование опе-
ва'ций ввода-вывода, оптимизацию дисковых операций.

Основные концепции организации ввода-
вывода в операционных системах
Как известно, ввод-вывод считается одной из самых сложных областей проекти­
рования операционных систем, в которой сложно применить общий подход и в
которой изобилуют частные методы. В действительности, источником сложности
является огромное число устройств ввода-вывода разнообразной природы, кото­
рые должна поддерживать операционная система. При этом перед создателями
операционной системы встает очень непростая задача — не только обеспечить эф­
фективное управление устройствами ввода-вывода, но и создать удобный и эф­
фективный виртуальный интерфейс устройств ввода-вывода, позволяющий при­
кладным программистам просто считывать или сохранять данные, не обращая
внимание на специфику устройств и проблемы распределения устройств между
выполняющимися задачами. Система ввода-вывода, способная объединить в од­
ной модели широкий спектр устройств, должна быть универсальной. Она должна
учитывать потребности существующих устройств, от простой мыши до клавиатур,
принтеров, графических дисплеев, дисковых накопителей, компакт-дисков и даже
сетей. С другой стороны, необходимо обеспечить доступ к устройствам ввода-вы­
вода для множества параллельно выполняющихся задач, причем так, чтобы они
как можно меньше мешали друг другу.

Поэтому самым главным является следующий принцип: любые операции по уп­
равлению вводом-выводом объявляются привилегированными и могут выполняться
только кодом самой операционной системы. Для обеспечения этого принципа в
большинстве процессоров даже вводятся режимы пользователя и супервизора.
Последний еще называют привилегированным режимом, или режимом ядра. Как
правило, в режиме супервизора выполнение команд ввода-вывода разрешено, а в
пользовательском режиме — запрещено. Обращение к командам ввода-вывода в
пользовательском режиме вызывает исключение1, и управление через механизм
прерываний передается коду операционной системы. Хотя возможны и более слож­
ные схемы, в которых в ряде случаев пользовательским программам может быть
разрешено непосредственное выполнение команд ввода-вывода.
ьще раз подчеркнем, что мы, прежде всего, говорим о мультипрограммных опера­
ционных системах, для которых существует проблема разделения ресурсов, и од­
ним из основных видов ресурсов являются устройства ввода-вывода и соответ­
ствующее программное обеспечение, с помрщью которого осуществляется обмен
Данными между внешними устройствами и оперативной памятью. Помимо разде-

емых устройств ввода-вывода (эти устройства допускают разделение посред-
°м механизма доступа) существуют неразделяемые устройства. Примерами

^ -течение — это определенный вид внутреннего прерывания. Этим термином, во-первых, обозна-
т Некоторое множество синхронных прерываний, а во-вторых, подчеркивают, что ситуация, выз-

•Я запрос на прерывание, является исключительной, то есть отличается от обычной.

1 3 2 Глава 5, Управление вводом-выводом в операционных системах

разделяемого устройства могут служить накопитель на магнитных дисках, устрой­
ство чтения компакт-дисков. Это устройства с прямым доступом. Примеры нераз­
деляемых устройств — принтер, накопитель на магнитных лентах. Это устройства
с последовательным доступом. Операционные системы должны управлять и теми
и другими, предоставляя возможность параллельно выполняющимся задачам их
использовать.

Можно назвать три основные причины, по которым нельзя разрешать каждой от­
дельной пользовательской программе обращаться к внешним устройствам непо­
средственно.

О Необходимость разрешать возможные конфликты в доступе к устройствам
ввода-вывода. Например, пусть две параллельно выполняющиеся программы
пытаются вывести на печать результаты своей работы. Если не предусмотреть
внешнего управления устройством печати, то в результате мы можем получить
абсолютно нечитаемый текст, так как каждая программа будет время от време­
ни выводить свои данные, перемежающиеся с данными от другой программы.
Либо можно взять ситуацию, когда для одной программы необходимо прочи­
тать данные с одного сектора магнитного диска, а для другой записать резуль­
таты в другой сектор того же накопителя. Если операции ввода-вывода не бу­
дут отслеживаться каким-то третьим (внешним) процессом-арбитром, то после
позиционирования магнитной головки для первой задачи может тут же прийти
команда позиционирования головки для второй задачи, и обе операции ввода-
вывода не смогут выполниться корректно.

Q Желание увеличить эффективность использования ресурсов ввода-вывода. На­
пример, у накопителя на магнитных дисках время подвода головки чтения/за­
писи к необходимой дорожке и время обращения к определенному сектору могут
значительно (до тысячи раз) превышать время пересылки данных. В результа­
те, если задачи по очереди обращаются к цилиндрам, далеко отстоящим друг от
друга, то полезная работа, выполняемая накопителем, может быть существен­
но снижена.

Q Необходимость избавить программы ввода-вывода от ошибок. Ошибки в про­
граммах ввода-вывода могут привести к краху всех вычислительных процес­
сов, ибо часть операций ввода-вывода требуются самой операционной системе.
В ряде операционных систем системный ввод-вывод имеет существенно более
высокие привилегии, чем ввод-вывод задач пользователя. Поэтому системный
код, управляющий операциями ввода-вывода, очень тщательно отлаживается
и оптимизируется для повышения надежности вычислений и эффективности
использования оборудования.

Итак, управление вводом-выводом осуществляется компонентом операционной
системы, который часто называют супервизором ввода-вывода. Перечислим основ­
ные задачи, возлагаемые на супервизор.

1. Модуль супервизора операционной системы, иногда называемый супервизором
задач, получает запросы от прикладных задач на выполнение тех или иных опе­
раций, в том числе на ввод-вывод. Эти запросы проверяются на корректность й
если они соответствуют спецификациям и не содержат ошибок, то обрабатыва-

Основные концепции организации ввода-вывода в операционных системах 1 33

ются дальше. В противном случае пользователю (задаче) выдается соответству­
ющее диагностическое сообщение о недействительности (некорректности) за­
проса.

2. Супервизор ввода-вывода получает запросы на ввод-вывод от супервизора за­
дач или от программных модулей самой операционной системы.

3. Супервизор ввода-вывода вызывает соответствующие распределители каналов
и контроллеров, планирует ввод-вывод (определяет очередность предоставле­
ния устройств ввода-вывода задачам, затребовавшим эти устройства). Запрос
на ввод-вывод либо тут же выполняется, либо ставится в очередь на выполне­
ние.

4. Супервизор ввода-вывода инициирует операции ввода-вывода (передает уп­
равление соответствующим драйверам) и в случае управления вводом-выво­
дом с использованием прерываний предоставляет процессор диспетчеру задач
с тем, чтобы передать его первой задаче, стоящей в очереди на выполнение.

5. При получении сигналов прерываний от устройств ввода-вывода супервизор
идентифицирует эти сигналы (см. раздел «Прерывания» в главе 1) и передает
управление соответствующим программам обработки прерываний.

6. Супервизор ввода-вывода осуществляет передачу сообщений об ошибках, если
таковые происходят в процессе управления операциями ввода-вывода.

7. Супервизор ввода-вывода посылает сообщения о завершении операции ввода-
вывода запросившей эту операцию задаче и снимает ее с состояния ожидания
ввода-вывода, если задача ожидала завершения операции.

В случае, если устройство ввода-вывода является инициативным1, управление со
стороны супервизора ввода-вывода будет заключаться в активизации соответству­
ющего вычислительного процесса (перевод его в состояние готовности к выполне­
нию).

Таким образом, прикладные программы (а в общем случае — все обрабатывающие
программы) не могут непосредственно связываться с устройствами ввода-вывода
независимо от того, в каком режиме используются эти устройства (монопольно
или совместно), но, установив соответствующие значения параметров в запросе на
ввод-вывод, определяющие требуемую операцию и количество потребляемых ре­
сурсов, обращаются к супервизору задач. Последний передает управление супер­
визору ввода-вывода, который и запускает необходимые логические и физические
операции.

Инициативным называют такое устройство ввода-вывода, по сигналу прерывания от которого за­
пускается соответствующая ему программа (обычно это не стандартное устройство ввода-вывода, а
набор датчиков). Такая программа, с одной стороны, не является драйвером, поэтому ей не нужно
управлять операциями обмена данными, но, с другой стороны, запуск такой программы осуществля­
ется именно по событиям, связанным с генерацией устройством ввода-вывода соответствующего
сигнала. Разница между драйверами, работающими по прерываниям, и инициативными программа­
ми заключается в их статусе. Драйвер является компонентом операционной системы и часто выпол­
няется не как вычислительный процесс, а как системный объект, а инициативная программа являет­
ся обычным вычислительным процессом, только его запуск осуществляется по инициативе внешнего
устройства.

1 3 4 Глава 5. Управление вводом-выводом в операционных системах

Упомянутый выше запрос на ввод-вывод должен удовлетворять требованиям API
той операционной системы, в среде которой выполняется приложение. Парамет­
ры, которые указываются в запросах на ввод-вывод, передаются не только в вызы­
вающих последовательностях, создаваемых по спецификациям API, но и как дан­
ные, хранящиеся в соответствующих системных таблицах. Все параметры, которые
будут стоять в вызывающей последовательности, предоставляются компилятором
и отражают требования программиста, а также постоянные сведения об операци­
онной системе и архитектуре компьютера в целом. Переменные сведения о вычис­
лительной системе (ее конфигурация, состав оборудования, состав и особенности
системного программного обеспечения) содержатся в специальных системных таб­
лицах. Процессору, каналам прямого доступа в память и контроллерам необходи­
мо передавать конкретную двоичную информацию, с помощью которой и осуще­
ствляется управление оборудованием. Эта конкретная двоичная информация в виде
кодов и данных часто готовится с помощью препроцессоров, но часть ее хранится
в системных таблицах.

Режимы управления вводом-выводом
Как известно, имеется два основных режима ввода-вывода: режим обмена с опро­
сом готовности устройства ввода-вывода и режим обмена с прерываниями (рис. 5.1).

Оперативная память

А /\

l z
Центральный

процессор
или процессор
ввода-вывода

< ^ = ^

Данные

. Команда
ввода-вывода

Устройство
управления
устройством

ввода-вывода
^>

Устройство
ввода-вывода

Сигнал
готовности

Рис. 5 . 1 . Управление вводом-выводом

Пусть для простоты рассмотрения этих вопросов управление вводом-выводом
осуществляет центральный процессор. В этом случае часто говорят о работе про­
граммного канала обмена данными между внешними устройством и оперативной
памятью (в отличие от канала прямого доступа к памяти, при котором управле­
ние вводом-выводом осуществляет специальное дополнительное оборудование).
Итак, пусть центральный процессор посылает команду устройству управления,

режимы управления вводом-выводом 1 3 5

требующую, чтобы устройство ввода-вывода выполнило некоторое действие. Напри­
мер, если мы управляем дисководом, то это может быть команда на включение

двигателя или команда, связанная с позиционированием магнитных головок.
Устройство управления исполняет команду, транслируя сигналы, понятные ему и
центральному устройству, в сигналы, понятные устройству ввода-вывода. После
выполнения команды устройство ввода-вывода (или его устройство управления)
выдает сигнал готовности, который сообщает процессору о том, что можно выдать
новую команду для продолжения обмена данными. Однако поскольку быстродей­
ствие устройства ввода-вывода намного меньше быстродействия центрального
процессора (порой на несколько порядков), то сигнал готовности приходится очень
долго ожидать, постоянно опрашивая соответствующую линию интерфейса на на­
личие или отсутствие нужного сигнала. Посылать новую команду, не дождавшись
сигнала готовности, сообщающего об исполнении предыдущей команды, бессмыс­
ленно. В режиме опроса готовности драйвер, управляющий процессом обмена дан­
ными с внешним устройством, как раз и выполняет в цикле команду «проверить
наличие сигнала готовности». До тех пор пока сигнал готовности не появится, драй­
вер ничего другого не делает. При этом, естественно, нерационально используется
время центрального процессора. Гораздо выгоднее, выдав команду ввода-вывода,
на время забыть об устройстве ввода-вывода и перейти на выполнение другой про­
граммы. А появление сигнала готовности трактовать как запрос на прерывание от
устройства ввода-вывода. Именно эти сигналы готовности и являются сигналами
запроса на прерывание (см. раздел «Прерывания» в главе 1).

Режим обмена с прерываниями по своей сути является режимом асинхронного
управления. Для того чтобы не потерять связь с устройством (после выдачи про­
цессором очередной команды по управлению обменом данными и переключения
его на выполнение других программ), может быть запущен отсчет времени, в тече­
ние которого устройство обязательно должно выполнить команду и выдать-таки
сигнал запроса на прерывание. Максимальный интервал времени, в течение кото­
рого устройство ввода-вывода или его контроллер должны выдать сигнал запроса
на прерывание, часто называют установкой тайм-аута. Если это время истекло
после выдачи устройству очередной команды, а устройство так и не ответило, то
Делается вывод о том, что связь с устройством потеряна и управлять им больше
нет возможности. Пользователь и/или задача получают соответствующее диагно­
стическое сообщение.

Драйверы, работающие в режиме прерываний, представляют собой сложный ком­
плекс программных модулей и могут иметь несколько секций: секцию запуска, одну
или несколько секций продолжения и секцию завершения.

Секция запуска инициирует операцию ввода-вывода. Эта секция запускается для
включения устройства ввода-вывода или просто для инициализации очередной
операции ввода-вывода.

Секция продолжения (их может быть несколько, если алгоритм управления обме­
ном данными сложный, и требуется несколько прерываний для выполнения од­

ой логической операции) осуществляет основную работу по передаче данных.
е1<Ция продолжения, собственно говоря, и является основным обработчиком пре-

1 3 6 Глава 5. Управление вводом-выводом в операционных системах

рывания. Поскольку используемый интерфейс может потребовать для управле­
ния вводом-выводом несколько последовательностей управляющих команд, а сиг­
нал прерывания у устройства, как правило, только один, то после выполнения
очередной секции прерывания супервизор прерываний при следующем сигнале
готовности должен передать управление другой секции. Это делается путем изме­
нения адреса обработки прерывания после выполнения очередной секции, а если
имеется только одна секция продолжения, она сама передает управление в ту или
иную часть кода подпрограммы обработки прерывания.

Секция завершения обычно выключает устройство ввода-вывода или просто за­
вершает операцию.

Управление операциями ввода-вывода в режиме прерываний требует значитель­
ных усилий со стороны системных программистов — такие программы создавать
сложнее. Примером тому может служить существующая ситуация с драйверами
печати. Так, в операционных системах Windows (и Windows 9x, и Windows NT/
2000) печать через параллельный порт осуществляется не в режиме с прерывани­
ями, как это сделано в других ОС, а в режиме опроса готовности, что приводит к
100-процентной загрузке центрального процессора на все время печати. При этом,
естественно, выполняются и другие задачи, запущенные на исполнение, но исклю­
чительно за счет того, что упомянутые операционные системы поддерживают вы­
тесняющую мультизадачность, время от времени прерывая процесс управления
печатью и передавая центральный процессор остальным задачам.

Закрепление устройств,
общие устройства ввода-вывода
Как известно, многие устройства и, прежде всего, устройства с последовательным
доступом не допускают совместного использования. Такие устройства могут стать
закрепленными за процессом, то есть их можно предоставить некоторому вычис­
лительному процессу на все время жизни этого процесса. Однако это приводит
к тому, что вычислительные процессы часто не могут выполняться параллельно —
они ожидают освобождения устройств ввода-вывода. Чтобы организовать совмест­
ное использование многими параллельно выполняющимися задачами тех устройств
ввода-вывода, которые не могут быть разделяемыми, вводится понятие виртуаль­
ных устройств. Принцип виртуализации позволяет повысить эффективность вы­
числительной системы.

Вообще говоря, понятие виртуального устройства шире, нежели понятие спулинга
(spooling — Simultaneous Peripheral Operation On-Line, то есть имитация работы с
устройством в режиме непосредственного подключения к нему). Основное назна­
чение спулинга — создать видимость разделения устройства ввода-вывода, кото­
рое фактически является устройством с последовательным доступом и должно
использоваться только монопольно и быть закрепленным за процессом. Напри­
мер, мы уже говорили, что в случае, когда несколько приложений должны выво­
дить на печать результаты своей работы, если разрешить каждому такому прило­
жению печатать строку по первому же требованию, то это приведет к потоку строк.

не представляющих никакой ценности. Однако если каждому вычислительному
процессу предоставлять не реальный, а виртуальный принтер, и поток выводимых
символов (или управляющих кодов для их печати) сначала направлять в специ­
альный файл на диске (так называемый спул-файл — spool-file) и только потом, по
окончании виртуальной печати, в соответствии с принятой дисциплиной обслу­
живания и приоритетами приложений выводить содержимое спул-файла на прин­
тер, то все результаты работы можно будет легко читать. Системные процессы,
которые управляют спул-файлом, называются спулером чтения (spool-reader) или
спулером записи (spool-writer).

Достаточно рационально организована работа с виртуальными устройствами в си­
стемах Windows 9x/NT/2000/XP компании Microsoft. В качестве примера можно
кратко рассмотреть подсистему печати. Microsoft различает термины «принтер» и
«устройство печати». Принтер — это некоторая виртуализация, объект операци­
онной системы, а устройство печати — это физическое устройство, которое может
быть подключено к компьютеру. Принтер может быть локальным или сетевым.
При установке локального принтера в операционной системе создается новый
объект, связанный с реальным устройством печати через тот или иной интерфейс.
Интерфейс может быть и сетевым, то есть передача управляющих кодов в устрой­
ство печати может осуществляться через локальную вычислительную сеть, одна­
ко принтер все равно будет считаться локальным.

Локальность принтера означает, что-его спул-файл будет находиться на том же
компьютере, что и принтер. Если же некоторый локальный принтер предоставить
в сети в общий доступ с теми или иными разрешениями, то для других компьюте­
ров и их пользователей он может стать сетевым, Компьютер, на котором имеется
локальный принтер, предоставленный в общий доступ, называется принт-серве­
ром.

Для получения управляющих кодов принтера устанавливается программное обес­
печение (компания Microsoft называет его высокоуровневым драйвером, хотя пра­
вильнее было бы называть его иначе: например, препроцессором). Эти управляю­
щие коды посылаются на устройство печати по соответствующему интерфейсу
через назначенные принтеру порты и управляют работой устройства печати. При
получении операционной системой от приложения запроса на печать она выделя­
ет для этого процесса виртуальный принтер. Можно сказать, что операционная
система закрепляет за процессом виртуальный принтер, но никак не устройство
печати. Обработанные драйвером принтера данные, посланные на него из прило­
жения, как правило (по умолчанию), направляются в спул-файл, откуда они затем
передаются на печать по мере освобождения устройства печати и в соответствии с
приоритетом локального принтера. При установке сетевого принтера операцион­
ная система устанавливает для этого объекта высокоуровневый драйвер и связы-

а е т п°лученный объект со спулером того компьютера, на котором установлен со­
ответствующий локальный принтер.

°кальных принтеров, связанных с конкретным устройством печати, на компью-
-Ре Может быть несколько. Каждому локальному принтеру можно назначить тот

11 иной приоритет, который будет учитываться при формировании очереди пе-

1 3 8 Глава 5. Управление вводом-выводом в операционных системау

чати в процессе работы спулера. В результате каждый процесс может послать на
печать свои данные и не связывать реальное выполнение некоторого задания на
печать с занятостью или освобождением самого устройства печати. Приоритет­
ность в печати определяется приоритетом того локального или сетевого принтера,
к которому обратилось приложение.

Основные системные таблицы
ввода-вывода
Для управления всеми операциями ввода-вывода и отслеживания состояния всех
ресурсов, занятых в обмене данными, операционная система должна иметь соот­
ветствующие информационные структуры. Эти информационные структуры, преж­
де всего, призваны отображать следующую информацию:

Q состав устройств ввода-вывода и способы их подключения;

Q аппаратные ресурсы, закрепленные за имеющимися в системе устройствами
ввода-вывода;

• логические (символьные) имена устройств ввода-вывода, используя которые
вычислительные процессы могут запрашивать те или иные операции ввода-
вывода;

• адреса размещения драйверов устройств ввода-вывода и области памяти для
хранения текущих значений переменных, определяющих работу с этими уст­
ройствами;

• области памяти для хранения информации о текущем состоянии устройства
ввода-вывода и параметрах, определяющих режимы работы устройства;

Q данные о текущем процессе, который работает с данным устройством;
Q адреса тех областей памяти, которые содержат данные, собственно и участвую­

щие в операциях ввода-вывода (получаемые при операциях ввода данных и
выводимые на устройство при операциях вывода данных).

Эти информационные структуры часто называют таблицами ввода-вывода, хотя
они, в принципе, могут быть организованы и в виде списков.
Каждая операционная система ведет свои таблицы ввода-вывода, их состав (и ко­
личество, и назначение каждой таблицы) может сильно отличаться. В некоторых
операционных системах вместо таблиц создаются списки, хотя использование ста­
тических структур данных для организации ввода-вывода, как правило, приводит
к более высокому быстродействию. Здесь очень трудно вычленить общие состав­
ляющие, тем более что для современных операционных систем подробной доку­
ментации на эту тему крайне мало, разве что воспользоваться материалами ныне
устаревших ОС. Тем не менее попытаемся это сделать, опираясь на идеи семей­
ства простых, но эффективных операционных систем реального времени, разрабо­
танных фирмой Hewlett Packard для своих мини-ЭВМ.

Исходя из принципа управления вводом-выводом исключительно через суперви­
зор операционной системы и учитывая, что драйверы устройств ввода-вывода ис-

лпновные системные таблицы ввода-вывода 1 3 9

пользуют механизм прерываний для установления обратной связи центральной
части с внешними устройствами, можно сделать вывод о необходимости создания

по крайней мере трех системных таблиц.

Первая таблица (или. список) содержит информацию обо всех устройствах ввода-
вывода, подключенных к вычислительной системе. Назовем ее условно таблицей
оборудования (equipment table), а каждый элемент этой таблицы пусть называется
\]СВ (Unit Control Block — блок управления устройством ввода-вывода). Каждый
элемент UCB таблицы оборудования, как правило, содержит следующую инфор­
мацию об устройстве:

• тип устройства, его конкретная модель, символическое имя и характеристики
устройства;

• способ подключения устройства (через какой интерфейс, к какому разъему,
какие порты и линия запроса прерывания используются и т. д.);

• номер и адрес канала (и подканала), если такие используются для управления
устройством;

Q информация о драйвере, который должен управлять этим устройством, адреса
секции запуска и секции продолжения драйвера;

а информация о том, используется или нет буферизация при обмене данными с
устройством, «имя» (или просто адрес) буфера, если такой выделяется из сис­
темной области памяти;

• установка тайм-аута и ячейки для счетчика тайм-аута;

• состояние устройства;

• поле указателя для связи задач, ожидающих устройство;

• возможно, множество других сведений.

Поясним перечисленное. Поскольку во многих операционных системах драйверы
могут обладать свойством реентерабельности (напомним, это означает, что один
и тот же экземпляр драйвера может обеспечить параллельное обслуживание сразу
нескольких однотипных устройств), то в элементе UCB должна храниться либо
непосредственно сама информация о текущем состоянии устройства и сами пере­
менные для реентерабельной обработки, либо указание на место, где такая инфор­
мация может быть найдена. Наконец, важнейшим компонентом элемента таблицы
оборудования является указатель на дескриптор той задачи, которая в настоящий
момент использует данное устройство. Если устройство свободно, то поле указа­
теля будет иметь нулевое значение. Если же устройство уже занято и рассматрива­
емый указатель не нулевой, то новые запросы к устройству фиксируются посред­
ством образования списка из дескрипторов задач, ожидающих данное устройство.

торая таблица предназначена для реализации еще одного принципа виртуализа­
ции устройств ввода-вывода — принципа независимости от устройства. Желатель-

°> Чтобы программисту не приходилось учитывать конкретные параметры (и/или
0зМожности) того или иного устройства ввода-вывода, которое установлено (или

Установлено) в компьютер. Для него должны быть важными только самые общие
3Можности, характерные для данного класса устройств ввода-вывода. Например,

1 4 0 Глава 5. Управление вводом-выводом в операционных системах

принтер должен уметь выводить (печатать) символы или графические изображе­
ния. А накопитель на магнитных дисках — считывать или записывать порцию дан­
ных по указанному адресу, то есть в координатах C-H-S (Cylinder-Head-Sector —
номера цилиндра, головки и сектора) или по порядковому номеру блока данных.
Хотя чаще всего программист и не использует прямую адресацию при работе с
магнитными дисками, а работает на уровне файловой системы (см. главу 6). Одна­
ко в таком случае уже разработчики системы управления файлами не должны
зависеть от того, каких типа и модели накопитель используется в данном компью­
тере и кто является его производителем (например, HDD IBM IC35L120AVV207-0,
WD1200JB или еще какой-нибудь). Важным должен быть только сам факт су­
ществования накопителя, имеющего некоторое количество цилиндров, головок
чтения-записи и секторов на дорожке магнитного диска. Упомянутые значения
количества цилиндров, головок и секторов должны быть взяты из элемента таб­
лицы оборудования. При этом для программиста также не должно иметь зна­
чения, каким образом то или иное устройство подключено к вычислительной
системе. Поэтому в запросе на ввод-вывод программист указывает именно логи­
ческое имя устройства. Действительное устройство, которое сопоставляется вир­
туальному (логическому), выбирается супервизором с помощью описываемой
таблицы.

Итак, способ подключения устройства, его конкретная модель и соответствующий
ей драйвер содержатся в уже рассмотренной таблице оборудования. Но для того
чтобы связать некоторое виртуальное устройство, использованное программистом,
с системной таблицей, отображающей информацию о том, какое конкретно уст­
ройство и каким образом подключено к компьютеру, требуется вторая системная
таблица. Назовем ее условно таблицей виртуальных логических устройств (Device
Reference Table, DRT). Назначение этой второй таблицы — установление связи
между виртуальными (логическими) устройствами и реальными устройствами,
описанными посредством первой таблицы (таблицы оборудования). Другими сло­
вами, вторая таблица позволяет супервизору перенаправить запрос на ввод-вывод
из приложения в те программные модули и структуры данных, которые (или адре­
са которых) хранятся в соответствующем элементе первой таблицы. Во многих
многопользовательских системах таких таблиц несколько: одна общая и по одной
на каждого пользователя, что позволяет строить необходимые связи между логи­
ческими устройствами (символьными именами устройств) и реальными физичес­
кими устройствами, которые имеются в системе.

Наконец, третья таблица — таблица прерываний — необходима для организации
обратной связи между центральной частью и устройствами ввода-вывода. Эта таб­
лица указывает для каждого сигнала запроса на прерывание тот элемент UCB, ко­
торый сопоставлен данному устройству. Каждое устройство либо имеет свою линию
запроса на прерывание, либо разделяет линию запроса на прерывание с другими
устройствами, но при этом имеется механизм второго уровня адресации устройств
ввода-вывода. Таким образом, таблица прерываний отображает связи между сиг­
налами запроса на прерывания и самими устройствами ввода-вывода. Как и сис­
темная таблица ввода-вывода, таблица прерываний в явном виде может и не при­
сутствовать. Другими словами, можно сразу из основной таблицы прерывании

Основные системные таблицы ввода-вывода 1 4 1

компьютера передать управление на программу обработки (драйвер), связанную

с элементом UCB. Важно наличие связи между сигналами прерываний и табли­
цей оборудования.

В ряде сложных операционных систем, а к ним следует отнести все современные
32-разрядные системы для персональных компьютеров, имеется гораздо больше
системных таблиц или списков, используемых для организации управления опе­
рациями ввода-вывода. Например, одной из возможных и часто реализуемых ин­
формационных структур, сопровождающих практически каждый запрос на ввод-
вывод, является блок управления данными (Data Control Block, DCB). Назначение
DCB — подключение препроцессоров к процессу подготовки данных на ввод-вы­
вод, то есть учет конкретных технических характеристик и используемых преоб­
разований. Это необходимо для того, чтобы имеющееся устройство получало не
какие-то непонятные ему коды или форматы данных, не соответствующие режи­
му его работы, а коды и форматы, созданные специально под данное устройство.
Теперь такие препроцессоры часто называют высокоуровневыми драйверами, или
просто драйверами, хотя изначально под термином «драйвер» подразумевалась
программа управления операциями ввода-вывода.

Взаимосвязи между описанными таблицами изображены на рис. 5.2.

Таблица Таблица Таблица
логических имен оборудования прерываний

1-й элемент

•

i-й элемент

•

j-й элемент

•

1-йисв

.

j-й UCB

•

к-й UCB

•

п-й UCB

1-й элемент

.

h-й элемент

•

g-й элемент

•

Рис. 5.2. Взаимосвязи системных таблиц ввода-вывода

Нам осталось рассмотреть процесс управления вводом-выводом еще раз, теперь с
Учетом изложенных принципов (рис. 5.3).

•запрос на операцию ввода-вывода от выполняющейся программы поступает на
супервизор задач (шаг 1). Этот запрос представляет собой обращение к операци­
онной системе и указывает на конкретную функцию API. Вызов сопровождается
некоторыми параметрами, уточняющими требуемую операцию. Модуль операци­
онной системы, принимающий от задач запросы на те или иные действия, часто

1 4 2 Глава 5. Управление вводом-выводом в операционных системяу

называют супервизором задач. Не следует путать его с диспетчером задач. Супер­
визор задач проверяет системный вызов на соответствие принятым спецификаци­
ям и в случае ошибки возвращает задаче соответствующее сообщение (шаг 1-1)
Если же запрос корректен, то он перенаправляется в супервизор ввода-вывода
(шаг 2). Последний по логическому (виртуальному) имени с помощью таблицы
DRT находит соответствующий элемент UCB в таблице оборудования. Если уст­
ройство уже занято, то описатель задачи, запрос которой обрабатывается суперви­
зором ввода-вывода, помещается в список задач, ожидающих это устройство. Если
же устройство свободно, то супервизор ввода-вывода определяет из UCB тип уст­
ройства и при необходимости запускает препроцессор, позволяющий получить
последовательность управляющих кодов и данных, которую сможет правильно
понять и отработать устройство (шаг 3). Когда «программа» управления операци­
ей ввода-вывода будет готова, супервизор ввода-вывода передает управление со­
ответствующему драйверу на секцию запуска (шаг 4). Драйвер инициализирует
операцию управления, обнуляет счетчик тайм-аута и возвращает управление су­
первизору (диспетчеру задач) с тем, чтобы он поставил на процессор готовую к
исполнению задачу (шаг 5). Система работает своим чередом, но когда устройство
ввода-вывода отработает посланную ему команду, оно выставляет сигнал запроса
на прерывание, по которому через таблицу прерываний управление передается на
секцию продолжения (шаг 6). Получив новую команду, устройство вновь начина­
ет ее обрабатывать, а управление процессором опять передается диспетчеру задач,
и процессор продолжает выполнять полезную работу. Таким образом, получается
параллельная обработка задач, на фоне которой процессор осуществляет управле­
ние операциями ввода-вывода.

Супервизор
ввода-вывода

>

2

2'

'
DRT

Таблица
логических

(виртуальных)
имен

устройств
ввода-вывода

• •

Супервизор
программ

Таблица UCB

Элемент UCB

3
>

i

Г

1

4

Препроцессор
ввода-вывода

1

1-1

'—^

Прикладная
программа

Драйвер
устройства

ввода-вывода
(секция

продолжения)

Устройство
ввода-вывода

i к

Драйвер
устройства

ввода-вывода
(секция

запу ска;

Диспетчер
задач

4 к , i.

5

6

Супервизор
прерываний

Рис. 5.3. Процесс управления вводом-выводом

Синхронный и асинхронный ввод-вывод 1 4 3

Очевидно, что если имеются специальные аппаратные средства для управления
вводом-выводом (речь идет о каналах прямого доступа к памяти), которые позво­
ляют освободить центральный процессор от этой работы, то в функции централь­
ного процессора будут по-прежнему входить все только что рассмотренные шаги,
за исключением последнего — непосредственного управления операциями ввода-
вывода. В случае использования каналов прямого доступа в память последние ис­
полняют соответствующие канальные программы и освобождают центральный
процессор от непосредственного управления обменом данными между памятью
и внешними устройствами.

Синхронный и асинхронный ввод-вывод
Задача, выдавшая запрос на операцию ввода-вывода, переводится супервизором
в состояние ожидания завершения заказанной операции. Когда супервизор полу­
чает от секции завершения сообщение о том, что операция завершилась, он пере­
водит задачу в состояние готовности к выполнению, и она продолжает выполнять­
ся. Эта ситуация соответствует синхронному вводу-выводу. Синхронный ввод-вывод
является стандартным для большинства операционных систем. Чтобы увеличить
скорость выполнения приложений, было предложено при необходимости исполь­
зовать асинхронный ввод-вывод.

Простейшим вариантом асинхронного вывода является так называемый буферизо­
ванный вывод данных на внешнее устройство, при котором данные из приложения
передаются не непосредственно на устройство ввода-вывода, а в специальный си­
стемный буфер — область памяти, отведенную для временного размещения пере­
даваемых данных. В этом случае логически операция вывода для приложения счита­
ется выполненной сразу же, и задача может не ожидать окончания действительного
процесса передачи данных на устройство. Реальным выводом данных из систем­
ного буфера занимается супервизор ввода-вывода. Естественно, что выделение
буфера из системной области памяти берет на себя специальный системный про­
цесс по указанию супервизора ввода-вывода. Итак, для рассмотренного случая
вывод будет асинхронным, если, во-первых, в запросе на ввод-вывод указано на
необходимость буферизации данных, а во-вторых, устройство ввода-вывода до­
пускает такие асинхронные операции, и это отмечено в UCB.

Можно организовать и асинхронный ввод данных. Однако для этого необходимо не
только выделять область памяти для временного хранения считываемых с устрой­
ства данных и связывать выделенный буфер с задачей, заказавшей операцию, но
и сам запрос на операцию ввода-вывода разбивать на две части (на два запроса),
о первом запросе указывается операция на считывание данных, подобно тому как
это делается при синхронном вводе-выводе, однако тип (код) запроса использует­
ся другой, и в запросе указывается еще по крайней мере один дополнительный
Параметр — имя (код) системного объекта, которое получает задача в ответ на за­
прос и которое идентифицирует выделенный буфер. Получив имя буфера (будем

ак условно называть этот системный объект, хотя в различных операционных
истемах используются и другие термины, например «класс»), задача продолжает

1 4 4 Глава 5, Управление вводом-выводом в операционных системах

свою работу. Здесь очень важно подчеркнуть, что в результате запроса на асин­
хронный ввод данных задача не переводится супервизором ввода-вывода в состо­
яние ожидания завершения операции ввода-вывода, а остается в состоянии вы­
полнения или в состоянии готовности к выполнению. Через некоторое время
выполнив необходимый код, который был определен программистом, задача вы­
дает второй запрос на завершение операции ввода-вывода. В этом втором запросе
к тому же устройству, который, естественно, имеет другой код (или имя запроса),
задача указывает имя системного объекта (буфера для асинхронного ввода дан­
ных) и в случае успешного завершения операции считывания данных тут же полу­
чает их из системного буфера. Если же данные еще не успели до конца переписать­
ся с внешнего устройства в системный буфер, супервизор ввода-вывода переводит
задачу в состояние ожидания завершения операции ввода-вывода, и далее все на­
поминает обычный синхронный ввод данных.

Асинхронный ввод-вывод характерен для большинства мультипрограммных опе­
рационных систем, особенно если операционная система поддерживает мультиза-
дачность с помощью механизма потоков выполнения. Однако если асинхронный
ввод-вывод в явном виде отсутствует, его можно реализовать самому, организовав
для вывода данных отдельный поток выполнения.

Аппаратуру ввода-вывода можно рассматривать как совокупность аппаратных
процессоров, которые способны работать параллельно друг другу, а также парал­
лельно центральному процессору (процессорам). На таких «процессорах» выпол­
няются так называемые внешние процессы. Например, для печатающего устрой­
ства (внешнее устройство вывода данных) внешний процесс может представлять
собой совокупность операций, обеспечивающих перевод печатающей головки, про­
движение бумаги на одну позицию, смену цвета чернил или печать каких-то сим­
волов. Внешние процессы, используя аппаратуру ввода-вывода, взаимодействуют
как между собой, так и с обычными «программными» процессами, выполняющи­
мися на центральном процессоре. Важным при этом является обстоятельство, что
скорости выполнения внешних процессов будут существенно (порой на порядок
или больше) отличаться от скорости выполнения обычных {внутренних) процес­
сов. Для своей нормальной работы внешние и внутренние процессы обязательно
должны синхронизироваться. Для сглаживания эффекта значительного несоответ­
ствия скоростей между внутренними и внешними процессами используют упомя­
нутую выше буферизацию. Таким образом, можно говорить о системе параллель­
ных взаимодействующих процессов (см. главу 7).

Буферы (буфер) являются критическим ресурсом в отношении внутренних (про­
граммных) и внешних процессов, которые при параллельном своем развитии ин­
формационно взаимодействуют. Через буферы данные либо посылаются от неко­
торого процесса к адресуемому внешнему (операция вывода данных на внешнее
устройство), либо от внешнего процесса передаются некоторому программному
процессу (операция считывания данных). Введение буферизации как средства
информационного взаимодействия выдвигает проблему управления этими систем­
ными буферами, которая решается средствами супервизорной части операцион­
ной системы. При этом на супервизор возлагаются задачи не только по выделению
и освобождению буферов в системной области памяти, но и по синхронизации

процессов в соответствии с состоянием операций заполнения или освобождения
буферов, а также по их ожиданию, если свободных буферов в наличии нет, а зап­
рос на ввод-вывод требует буферизации. Обычно супервизор ввода-вывода для
решения перечисленных задач использует стандартные средства синхронизации,
принятые в данной операционной системе. Поэтому если операционная система
имеет развитые средства для решения проблем параллельного выполнения взаи­
модействующих приложений и задач, то, как правило, она реализует и асинхрон­
ный ввод-вывод.

Организация внешней памяти
на магнитных дисках
Для организации внешней памяти желательно использовать относительно недо­
рогие, но достаточно быстродействующие и емкие устройства с прямым доступом
К данным. К таким устройствам, прежде всего, относятся накопители на жестких
магнитных дисках (НЖМД). Нынче чаще всего такие накопители называют «вин­
честерами», но мы не будем употреблять это название.

Детальное изучение этих устройств выходит за рамки темы настоящей книги, в ос­
новном их изучают в рамках дисциплины «Устройства ввода-вывода». Однако
поскольку большинство компьютеров имеет накопители на жестких магнитных
дисках и фактически ни одна современная операционная система для повсемест­
но распространенных персональных компьютеров не обходится без дисковой под­
системы, мы ознакомимся с логической организацией хранения и доступа к дан­
ным в этих устройствах, причем применительно к персональным компьютерам.

Действительно, дисковая подсистема для большинства компьютеров является од­
ной из важнейших. Именно на магнитных дисках чаще всего располагается загру­
жаемая в компьютер операционная система, которая и обеспечивает нам удобный
интерфейс для работы. Благодаря использованию систем управления файлами,
данные на магнитных дисках располагаются в виде именованных наборов данных,
называемых файлами. Таким образом, помимо файлов самой операционной сис­
темы, на дисках располагаются многочисленные прикладные программы и разно­
образные файлы пользователей. Наконец, благодаря тому, что по сравнению с дру­
гими устройствами внешней памяти дисковые механизмы обладают большими
быстродействием и вместительностью, а также средствами непосредственной (пря­
мой) адресации блоков данных, дисковую подсистему часто используют для орга­
низации механизмов виртуальной памяти, что существенно расширяет возможно­
сти компьютера.

Основные понятия
W3 оперативной памяти в НЖМД и обратно информация передается байтами, а вот
записывается на диск и считывается с него она уже последовательно (побитно).
И з _ з а того что запись и считывание бита данных не являются абсолютно надежны-

И операциями, информация перед записью кодируется с достаточно большой

1 4 6 Глава 5. Управление вводом-выводом в операционных системах

избыточностью. Для этой цели применяют коды Рида-Соломона. Избыточное
кодирование информации позволяет не только обнаруживать ошибки, но и автома­
тически исправлять их. Следовательно, перед тем как данные, считанные с поверх­
ности магнитного диска, будут переданы в оперативную память, их нужно пре­
дварительно обработать (перекодировать). На эту операцию необходимо время,
поэтому в ходе обработки данных быстро, вращающийся диск успевает повернуть­
ся на некоторый угол, и мы можем констатировать, что на магнитном диске дан­
ные располагаются не сплошь, а порциями (блоками). Говорят, что НЖМД отно­
сится к блочным устройствам. Нельзя прочитать (или записать) байт или несколько
байтов. Можно прочитать сразу только блок данных и уже потом извлекать из него
нужные байты, использовать их в своих вычислениях и изменять. Записать потом
данные обратно тоже можно только сразу блоком.

За счет того что при вращении диска магнитная головка, зафиксированная на не­
которое время в определенном положении, образует окружность {дорожку — track),
блоки данных на таких окружностях называют секторами (sectors). С некоторых
пор размер сектора стал стандартным и в абсолютном большинстве случаев он ра­
вен 512 байт хранимых данных. Все сектора пронумерованы, и помимо данных
пользователя на магнитных дисках размещается и служебная информация, с по­
мощью которой можно находить искомый сектор. Служебная информация (сер-
воинформация), как правило, располагается в межсекторных промежутках.

Группы дорожек (треков) одного радиуса, расположенные на поверхностях маг­
нитных дисков, образуют так называемые цилиндры (cylinders). Современные же­
сткие диски могут иметь но нескольку десятков тысяч цилиндров. Выбор конкрет­
ной дорожки в цилиндре осуществляется указанием порядкового номера той головки
(head) чтения/записи данных, которая и образует эту дорожку. Таким образом,
адрес конкретного блока данных указывается с помощью уже упоминавшихся трех
координат C-H-S — номеров цилиндра, головки и сектора. Устройство управле­
ния НЖМД обеспечивает позиционирование блока головок на нужный цилиндр,
выбирает заданную поверхность и находит требуемый сектор. Этот способ адреса­
ции нынче считается устаревшим и почти не используется. Второй способ адреса­
ции блоков данных основывается на том, что все блоки (секторы) пронумерованы.

Логическая структура магнитного диска
Для того чтобы можно было загрузить с магнитного диска операционную систему,
а уже с ее помощью организовать работу с файлами, были приняты специальные
системные соглашения о структуре диска. Хранение данных на магнитном диске
можно организовать различными способами. Можно поделить все дисковое про­
странство на несколько частей — разделов (partitions), а можно его и не делить.
Деление НЖМД на разделы позволяет организовать на одном физическом уст­
ройстве несколько логических; в этом случае говорят о логических дисках. Следу­
ет, однако, заметить, что не во всех операционных системах используется понятие
логического диска. Так, UNIX-системы не имеют логических дисков.
Разделение всего дискового пространства на разделы полезно по нескольким со­
ображениям. Во-первых, это структурирует хранение данных. Например, выделе-

Организация внешней памяти на магнитных дисках 1 4 7

ние отдельного раздела под операционную систему и программное обеспечение
и ДРУГОГ0 Радела П°Д Данные пользователей позволяет отделить последние от си­
стемных файлов и не только повысить надежность системы, но и сделать более
удобным ее обслуживание. Во-вторых, на каждом разделе может быть организова­
на своя файловая система, что иногда бывает необходимо. Например, при установ­
ке операционной системы Linux нужно иметь не менее двух разделов1, поскольку
файл подкачки (страничный файл) должен располагаться в отдельном разделе. На­
конец, в ряде случаев на компьютере может потребоваться установка более одной
операционной системы.

Для того чтобы системное программное обеспечение получило информацию о том,
как организовано хранение данных на каждом конкретном накопителе, нужно раз­
местить в одном из секторов соответствующие данные. Даже если НЖМД исполь­
зуется как единственный логический диск, все равно нужно указать, что имеется
всего один диск, и его размер. Структура данных, несущая информацию о логичес­
кой организации диска, вместе с небольшой программой, с помощью которой можно
ее проанализировать, а также найти и загрузить в оперативную память программу
загрузки операционной системы, получила название главной загрузочной записи
(Master Boot Record, MBR). MBR располагается в самом первом секторе НЖМД,
то есть в секторе с координатами 0-0-1. Программа, расположенная в MBR, носит
название внесистемного загрузчика (Non-System Bootstrap, NSB).

Вследствие того что сектор состоит только из 512 байт и помимо программы в нем
должна располагаться информация об организации диска, внесистемный загруз­
чик очень прост, а структура данных, называемая таблицей разделов (Partition Table,
РТ), занимает всего 64 байт. Таблица разделов располагается в MBR по смещению
OxlBE и содержит четыре элемента. Структура записи элемента таблицы разделов
приведена в табл. 5.1. Каждый элемент этой таблицы описывает один раздел, при­
чем двумя способами: через координаты C-H-S начального и конечного секторов,
а также через номер первого сектора в спецификации LBA2 (Logical Block Ad­
dressing) и общее число секторов в разделе. Важно отметить, что каждый раздел
начинается с первого сектора на заданных цилиндре и поверхности и имеет размер
не менее одного цилиндра. Поскольку координаты MBR равны 0-0-1, то первый
сектор первого раздела в большинстве случаев получается равным 0-1-1 (в коор­
динатах LBA это будет сектор 64).

Первым байтом в элементе таблицы разделов идет флаг активности раздела Boot
Indicator (значение 0 — не активен, 128 (80(h)) — активен). Он позволяет опреде­
лить, является ли данный раздел системным загрузочным. В результате процесс
загрузки операционной системы осуществляется путем загрузки первого сектора

практика показывает, что Linux и другие UNIX-подобные системы лучше всего устанавливать, раз-
рИв НЖМД на 6 разделов. Раздел подкачки (swap partition) служит для размещения файла нодкач-

и. К основному (корневому) разделу, обозначаемому символом /, монтируются разделы /usr, /home,
Aar и /boot. Такое разбиение диска на разделы считается наиболее технологичным.

Посоо указания блока данных, согласно которому все секторы диска считаются пронумерованны­
ми По бедующему правилу: LBA - c x H + h) x S + s - l . Здесь Н - это максимальное число рабочих
юверхностей в цилиндре; S — количество секторов на одной дорожке; с, h и s — «координаты» иско­

мого сектора.

1 4 8 Глава 5, Управление вводом-выводом в операционных системах

с такого активного раздела и передачи управления на расположенную в нем про­
грамму, которая и продолжает загрузку. Активным может быть только один раз­
дел, и это обычно проверяется программой NSB, расположенной в MBR.

Таблица 5 . 1 . Ф о р м а т элемента таблицы разделов

Название з а п и с и э л е м е н т а таблицы разделов Д л и н а , байт

Ф л а г активности раздела 1

Номер головки начала раздела 1

Номера сектора и цилиндра загрузочного сектора раздела 2

Кодовый идентификатор операционной системы 1

Номер головки конца раздела 1

Номера сектора и цилиндра последнего сектора раздела 2

Младшее и старшее двухбайтовые слова относительного номера
начального сектора 4

Младшее и старшее двухбайтовые слова размера раздела в секторах 4

За флагом активности раздела следует байт номера головки, с которой начинается
раздел. За ним следуют два байта, означающие соответственно номер сектора и но­
мер цилиндра загрузочного сектора, где располагается первый сектор загрузчика
операционной системы. Затем следует кодовый идентификатор System ID (дли­
ной в один байт), указывающий на принадлежность данного раздела к той или иной
операционной системе и на установку в этом разделе соответствующей файловой
системы. Поскольку крайне сложно найти информацию по этим кодовым иденти­
фикаторам, которыми помечаются разделы дисков, в табл. 5.2 приведены не пол­
тора десятка наиболее часто встречающихся, а все известные сигнатуры (кодовые
идентификаторы).

Таблица 5 . 2 . Кодовые идентификаторы разделов диска

Код

OOOh

001h

002h

003h

004h

005h

006h

007h

008h

009h

OOAh

OOBh

О п и с а н и е

Раздел не использован

FAT 12

Xenix root

Xenix/usr

FAT16(<32Mb)

Extended

FAT 16

NTFS, HPFS

AIX Boot

AIX Data

OS/2 Boot Manager

FAT32

Код

085h

086h

087h

08Ah

08Bh

08Ch

08Dh

08Eh

090h

091h

092h

093h

О п и с а н и е

Linux Extended, XOSL

FAT16 volume set

NTFS volume set

AiR-Boot

FAT32 volume set

FAT32 LBA volume set

FreeFDISKFAT12

Linux LVM

Free FDISK FAT16 (<32Mb)

Free FDISK Extended

Free FDISK FAT16

Amoeba native

1-

e
b

a
B

B

о
Е
<

Е
Х

О
Р

С

t
2

см S
lV

d

FD
IS

K

CD
CD

L L

;2
LB

A

FA
TS

FD

IS
K

ш
2 L L

37
6

L U

О
Q

6
LB

A

FA
T1

FD

IS
K

CD
CD

L L

id
e

d
 L

B
A

E

xt
ei

FD

IS
K

• '
2 L L

Q
CO

m

с
о

rn
at

i
op

 h
ib

e
f J J

с
о
"fV!

hi
b

er
n:

о L U

z

CD
CO
CO

IS
D

/:

B
S

D
.E

CD
Ф

L L

n
B

S
D

CD
a

О

S
te

p

X
CD

Z

e
U

F
S

a
a
<

Q
CO
m
CD

Z

ic
e

/e
tt

i s
er

v

• =

О

Ч- ю г^ со
О) ОЗ О} 03
о о о о

о
о
со
_ш
CL
о. <

S Z X Z S Z j z S Z S Z S Z S Z S Z S Z S Z S Z S Z
с п < т и - О т - ю с о г - с о с з > г о хз.
с з з с л а) а) < < < < < < < < <
о о о о о о о о о о о о о

<
ш
_ J
см
со

L L

<
ш
CD

5
L L

< Ш
_ J

ТЗ
ф

тз
с;
Ш
"х
L U

pu
s

О

см

5 L L
С
Ф

id
d

X

3

Ф
со
сг
го
а
Е
о О

z
о
СП

ш

(<
32

М
Ь

;

CD

k L L

С
CD

id
d

X

со

fe?
L L

С
CD

id
d

i

H
P

FS

со'
L L

z
с
a:

id
d

X

S
w

ap

t o

nd
o

w

§

io
<

с
о
о
x: 0 _

см
0 3

fee L L

С
CD

id
d

X

LB
A

см
оз

fee L L

С
CD

id
d

X

LB
A

CD

fee
L L

C
CO

id
d

X

CO

£

o\
I 3 \ ° \ *

x:
о о
о

sz
ш
о
о

sz
u. о
о

х:
о

о

х:
1 —

о

с
см

о

х:
со

о

х:
•ч-

о

JC
CD

о

со о
СП

О О

СО
О о
о
LU
Z

£ £ г Г
Ш О ш о
1- т- т - СМ о о о о

!
ГО J=! _ У

^ П ^2 ~

тз
о
О
со
со

о
о

X)
fee

со
о
о

СП

с

со
о
Ф

SZ

о ч-

г -

CD
ТЗ

< си О

СО

о
Q

СС
Q

СО

О
О
LL­
Cs

О.
3

О
О

- J

с
ш

тз
тз
X

_с
ф

<
о

-С

<
о

SZ

о
со
о

SZ

т~-
со
о

-С
СО

со
о

XI

m
ш
о

SZ
ф

m
о

л
о
о
о

х:
1 —

о
о

£Z
CD

о
о

CD
СО
см
о
со
X
'с

CD >

о
о
m о
CL
Q.

X)

5
см
со
V

CD

h-
< L L

СО
О
а
ее
Q

о о
ф
со

СО
L L

н
z
о

IX
 b

e

>*
со

см
со
н
< L L

со
О
Q
СП
а

<
со
_| см
со
н
< L L

СО

о а
СП

•

CL

Е
3

тз
Е
ш
Е

со
О
h-
о

<
CQ
_ 1

CD

Ь -

< L L

СО
О
Q
сп
D

СП

хз
см
со

_Г
L U
СС

СМ СО М- f~ СО О Q Ф О
O O O O O O O O Q
о о о о о о о о о

_
со

O
S

,
S

F

а
СП

5 ^
г Q

Li
nu

xS

W
in

2
K

D
O

S

СП

а
со

nu
xN

_ i

и

h,
 B

oo
t

СО
Ч;
со
о

L U

um
el

/

ш

х:
CD
"tf
СО
о
СП

U J

um
el

/

L U

j =
N
ч-
со
о
р

Ш

um
el

/

ш

- С
СО

ч-
СО

о
СП

Ш

um
el

/

ш

.

irs

X

ч-
X
Z
о

тз
с
о
о
CD СО
X

ч-
X
Z а

b
er

on

о
тз"

hi
r

X
Ч-
X
Z
а

C M C N J C 0 C O C 0 C 0 C O C 0

х:
о
ч
о

J T

ч-
о

SZ
см
3
о

Х Г
со
ч-о

х:
ю
•ч-
о

SZ
со
3
о

х:
г-
a о

LU LL
•ч ч-
О О

1 50 Глава 5. Управление вводом-выводом в операционных системах

Таблица 5.2 (продолжение)

Код

051h

052h

053h

054h

055h

056h

057h

05Ch

061 h

063h

064h

065h

067h

068h

068h

070h

074h

075h

078h

07Eh

080h

081h

082h

083h

084h

Описание

DM6Aux1,DMR/W

CP/M, Microport System V

OnTrack DM6 Aux3

OnTrack DM6 DDO

EZ-Drive

GoldenBow Vfeature

Drive Pro

Priam Edisk

Speed Stor

Unix

NetWare 2.x, PC-ARMOUR

NetWare 3.x

Novell 67h

Novell 68h

Novell 69h

DiskSecure Multi-Boot

ScramDisk

PC/AX

XOSL

F.I.X

MINIX1.1-1.4a

MINIX1.4b+, ADM

Linux swap, Solaris

Linux native

Hibernation, OS/2 C: Hidden

Код

0D1h

0D4h

0D5h

0D6h

0D8h

ODBh

ODDh

ODFh

OEOh

0E1h

0E3h

0E4h

OEbh

OEeh

OEfh

OFOh

0F1h

0F2h

0F4h

0F5h

OFBh

OFCh

OFDh

OFeh

OFFh

Описание

Multiuser DOS FAT12

Multiuser DOS FAT16 (<32Mb)

Multiuser DOS Extended

Multiuser DOS FAT16

CP/M-86

Concurrent DOS, CTOS

Hidden CTOS memdump

DG/UX

ST AVFS

Speed Stor FAT32

Speed Stor R/O

Speed Stor FAT 16

BeOS»

EFI header

EFI file system

Linux/PA-RISC boot

Storage Dimensions

DOS Secondary

Speed Stor large, Prologue singl

Prologue multi

VMware native

Vmware swap

Linux RAID

Speed Stor (>1024), LanStep

Xenix BBT

Можно сказать, что таблица разделов — одна из наиболее важных структур дан­
ных на жестком диске. Если эта таблица повреждена, то не только не будет загру­
жаться ни одна из установленных на компьютере операционных систем, но станут
недоступными данные, расположенные в НЖМД, особенно если жесткий диск был
разбит на несколько разделов.

Последние два байта MBR имеют значение 55AA(il), то есть чередующиеся значе­
ния 0 и 1. Эта сигнатура выбрана для того, чтобы проверить работоспособность
всех линий передачи данных. Значение 55AA(h), присвоенное последним двум бай­
там, имеется во всех загрузочных секторах.

Разделы диска могут быть двух типов: первичные (primary) и расширенные (ex­
tended). Максимальное число первичных разделов равно четырем. Если первич­
ных разделов несколько, то только один из них может быть активным. Именно
загрузчику, расположенному в активном разделе, передается управление при вклю-

организация внешней памяти на магнитных дисках 1 51

«ении компьютера с помощью внесистемного загрузчика. Для DOS-систем и иных
операционных систем, использующих спецификации DOS, остальные первичные
разделы в этом случае считаются невидимыми (hidden). Так ведут себя и операци­
онные системы Windows 9x.

Согласно принятым спецификациям на одном жестком диске может быть только
один расширенный раздел, который, в свою очередь, может быть разделен на боль­
шое количество подразделов — логических дисков (logical disks). В этом смысле тер­
мин «первичный» можно признать не совсем удачным переводом слова «primary» —
лучше было бы перевести «простейший», или «примитивный». В этом случае ста­
новится понятным и логичным термин «расширенный». Расширенный раздел со­
держит вторичную запись MBR (Secondary MBR, SMBR), в состав которой вмес­
то таблицы разделов входит аналогичная ей таблица логических дисков (Logical
Disks Table, LDT). Таблица LDT описывает размещение и характеристики разде­
ла, содержащего единственный логический диск, а также может специфицировать
следующую запись SMBR. Следовательно, если в расширенном разделе создано
К логических дисков, то он содержит К экземпляров SMBR, связанных в список.
Каждый элемент этого списка описывает соответствующий логический диск и ссы­
лается (кроме последнего) на следующий элемент списка.

Как мы уже сказали, загрузчик NSB служит для поиска с помощью таблицы разде­
лов активного раздела, копирования в оперативную память компьютера систем­
ного загрузчика (System Bootstrap, SB) из выбранного раздела и передачи на него
управления, что позволяет осуществить загрузку ОС.

Вслед за сектором MBR размещаются собственно сами разделы (рис. 5.4). В процес­
се начальной загрузки сектора MBR, содержащего таблицу разделов, работают про­
граммные модули BIOS. Начальная загрузка считается выполненной корректно толь­
ко в том случае, если таблица разделов содержит допустимую информацию.

Рассмотрим еще раз процесс загрузки операционной системы. Процедура началь­
ной загрузки (bootstrap loader) вызывается как программное прерывание (BIOS
INT 19h). Эта процедура определяет первое готовое устройство из списка разре­
шенных и доступных (гибкий или жесткий диск, а в современных компьютерах
это могут быть еще и компакт-диск, привод ZIP-drive компании Iomega, сетевой
адаптер или еще какое-нибудь устройство) и пытается загрузить с него в опера­
тивную память короткую главную программу-загрузчик. Для накопителей на же­
стких магнитных дисках — это уже известный нам главный, или внесистемный,
загрузчик (NSB) из MBR, и ему передается управление. Главный загрузчик опре­
деляет на диске активный раздел, загружает его собственный системный загруз­
чик и передает управление ему. И наконец, этот загрузчик находит и загружает
необходимые файлы операционной системы и передает ей управление. Далее опе­
рационная система выполняет инициализацию подведомственных ей программ­
ных и аппаратных средств. Она добавляет новые сервисы, вызываемые, как прави-
Л о , тоже через механизм программных прерываний, и расширяет (или заменяет)

которые сервисы BIOS. Необходимо отметить, что в современных мультипро-
Раммных операционных системах большинство сервисов BIOS, изначально рас­
суженных в ПЗУ, как правило, заменяются собственными драйверами ОС,

1 5 2 Глава 5, Управление вводом-выводом в операционных системах

поскольку они должны работать в режиме прерываний, а не в режиме сканирова­
ния готовности.

Первичный раздел

Расширенный раздел

Не использован

Не использован

Главная таблица
разделов

Логический диск D:

Адрес таблицы
для диска Е:

Не использован

Не использован

Первая таблица

Логический диск Е:

0 - конец цепочки

Не использован

Не использован

Вторая таблица
логического диска

,---"" \ •

•

\ /

\ /

/ \

•

•

•
•

•

•

Master Boot Record

Загрузочный сектор диска С:

Secondary Master Boot
Record

Загрузочный сектор диска D:

Secondary Master Boot
Record

Загрузочный сектор диска Е:

Нераспределенное
дисковое пространство

Первичный
• раздел DOS

(диск С:)

Расширенний
v раздел DOS

с логическими
дисками D: и Е:

Рис. 5.4. Разбиение диска на разделы

Согласно рассмотренному процессу, каждый раз при запуске компьютера будет
загружаться одна и та же операционная система. Это не всегда нас может устраи­
вать. Так называемые менеджеры загрузки (boot managers) предназначены для того,
чтобы пользователь мог выбрать среди нескольких установленных на компьютере
операционных систем желаемую и передать управление на загрузчик выбранной
ОС. Имеется большое количество таких менеджеров. Одним из наиболее мощных
менеджеров загрузки является OS Selector от фирмы Acronis. Эта программа име­
ет следующие основные особенности:
а поддержка большого количества операционных систем, включая различные

версии DOS (MS DOS, DR-DOS и др.), Windows (9x/ME, NT/2000/XP), OS/2,
Linux, FreeBSD, SCO Unix, BeOS и др.;

прганизация внешней памяти на магнитных дисках 1 5 3

• возможность установки на любой раздел FAT16/FAT32, в том числе и на от­
дельный раздел, недоступный другим операционным системам;

• возможность с помощью меню загрузки, предоставляемого менеджером, осу­
ществить загрузку с дискеты;

р автоматическая идентификация операционных систем как на первичных раз­
делах, так и на логических дисках расширенного раздела всех НЖМД, доступ­
ных через BIOS компьютера;

• поддержка нескольких операционных систем на одном разделе FAT16/FAT32,
при этом предотвращаются конфликты по системным и конфигурационным
файлам для систем, установленных на одном разделе;

• возможность дополнительной настройки конфигураций операционных систем
и легкого их добавления и удаления;

• встроенная защита от загрузочных вирусов;

• легкое восстановление в случае повреждения MBR;

• поддержка больших жестких дисков во всех режимах современных подсистем
BIOS;

• возможность установки паролей отдельно на меню загрузки и на выбранные
конфигурации.

Формирование таблицы разделов осуществляется с помощью специальных ути­
лит. Обычно их называют FDisk (от слов «Form Disk» — формирование диска).
Хотя есть и иные программы, которые могут делать с разделами намного больше,
чем простейшие утилиты FDisk от Microsoft. Надо признать, что в последнее вре­
мя появилось большое количество утилит, которые предоставляют возможность
более наглядно представить разбиение диска на разделы, поскольку в них исполь­
зуется графический интерфейс. Эти программы успешно и корректно работают с
наиболее распространенными типами разделов (разделы под FAT, FAT32, NTFS).
Однако созданы они в основном для работы в среде Win32API, что часто ограни­
чивает возможность их применения. Одной из самых известных и мощных про­
грамм для работы с разделами жесткого диска является Partition Magic фирмы
Power Quest.

Еще одной мощной утилитой такого рода является Администратор дисков, входя­
щий в состав уже упоминавшегося менеджера загрузки OS Selector от Acronis. Эта
Утилита позволяет:
Q создавать разделы любых типов и форматировать их под файловые системы

FAT16, FAT32, NTFS, Ext2FS (Linux), Linux ReiserFS, Linux Swap, при этом
можно выбирать точное или произвольное расположение раздела и указывать
его параметры;

а получать подробную информацию о разделах и о самих жестких дисках;
а Удалять любые разделы;

преобразовывать разделы из FAT16 в FAT32 и обратно;

копировать и перемещать разделы с FAT16, FAT32, NTFS, Linux Ext2FS, Linux
ReiserFS и Linux Swap;

1 5 4 Глава 5. Управление вводом-выводом в операционных системах

• изменять размеры разделов с вышеперечисленными файловыми системами;

• выбирать размер кластера вручную во время любой операции создания, копи­
рования, перемещения или изменения размера раздела;

• посекторно редактировать содержимое жестких дисков и разделов с помощью
встроенного многооконного редактора дисков.

В популярных операционных системах от Microsoft тоже имеются средства для
просмотра и изменения структуры разделов жесткого диска. Так, в Windows NT
4.0 для управления дисками имеется программа Администратор дисков (Disk
Manager), а в Windows 2000 и Windows XP — консоль управления с оснасткой под
названием Управление дисками (Disk Management). Эти средства имеют графи­
ческий интерфейс и позволяют создавать новые разделы, удалять разделы, пере­
определять букву (имя) логического диска и создавать наборы дисков, выступаю­
щие как один логический том.

Утилиты формирования дисков, входящие в состав MS DOS и Windows 95/98,
а также утилита, встроенная в программу установки Windows NT, первым элемен­
том таблицы разделов всегда делают первичный раздел. Вторым элементом стано­
вится расширенный раздел, в котором, в свою очередь, организуется один или не­
сколько логических дисков. При этом создаваемые логические диски помимо
известного буквенного именования (диски С:, D:, Е: и т. д.) получают еще и так на­
зываемые номера разделов. Диск С: получает в этом случае порядковый номер 1,
диск D: — 2, диск Е: — 3, и т. д. Именно номера разделов используются в файле
boot.ini, который указывает системному загрузчику Windows NT/2000/XP, где
находятся файлы выбранной операционной системы.

Следует заметить, что в операционных системах типа Linux логические диски и
разделы нумеруются и обозначаются иным способом. Жесткий диск с IDE-интер­
фейсом, подключенный к первому контроллеру как главный (master), имеет имя
hda. Если это второй диск на том же шлейфе, то его именуют hdb1. Соответственно,
имя hdc будет соответствовать диску, подключенному ко второму порту контрол­
лера и имеющему адрес 0, то есть главному. И так далее. Если раздел диска указан
посредством таблицы из MBR, то он имеет номер элемента таблицы разделов. Если
же речь идет о логических дисках, созданных в пределах расширенного раздела, то
их номера уже начинаются с 5. Тем самым указывается, что раздел описан в следу­
ющей (вторичной) записи MBR, то есть в SMBR.

Так, для рассматриваемого нами примера (см. рис. 5.4), раздел с номером 1 в Linux
тоже будет иметь номер 1. Если мы имеем единственный накопитель, подключен­
ный к первому порту контроллера, то этот раздел обозначается как hdal. А вот ло­
гический диск, по умолчанию именуемый в Windows диском D: и имеющий номер
раздела 2, в Linux будет обозначаться как hda5. Логический диск Е:, имеющий
в Windows номер раздела 3, станет в Linux диском с номером раздела 6 и будет
обозначаться hda6. Чтобы понять причину такой нумерации, рассмотрим рис. 5.

Главным является тот накопитель, который имеет адресацию 0 на IDE-интерфейсе, тогда как д
адресом 1 обозначается как вспомогательный (slave). Адресация выставляется на одной из л
ШЕ-шлейфа (26 линия).

организация внешней памяти на магнитных дисках 155

более внимательно. Вслед за сектором с MBR размещаются собственно сами раз­
делы. Поскольку на рисунке это в явном виде не показано, напомним, что любой
раздел начинается с первого сектора. В таблице разделов имеется 4 элемента, но
только два из них задействованы. Первый элемент описывает раздел с номером 1

и ему соответствует логический диск С:. Второй элемент указывает на запись SMBR,
в которой первый элемент в таблице логических дисков описывает логический
диск D:. И этот элемент является уже пятым элементом, если учесть четыре эле­
мента в MBR. А далее нумерация разделов в Linux отходит от этой идеи. Диск Е:
получает порядковый номер 6, а не 9, как следовало бы ожидать, если подсчиты­
вать все имеющиеся элементы в таблицах разделов. И это логично, поскольку в каж­
дой таблице дисков логический диск описывает только один элемент — первый.
Таким образом, если бы расширенный раздел был разбит не на два, а на три логиче­
ских диска, то последний подраздел (в системе Windows он именовался бы диском F:)
получил бы номер 7.

Системный загрузчик Windows NT/2000/XP
Операционные системы класса Windows NT имеют возможность загружать не одну
операционную систему, а несколько, то есть системный загрузчик Windows NT/
2000/ХР является менеджером загрузки. Для указания установленных операци­
онных систем и выбора одной из них используется файл boot.ini. Этот файл явля­
ется текстовым. Он обрабатывается программой ntldr, которая, собственно, и явля­
ется системным загрузчиком и на которую передается управление из внесистемного
загрузчика.

Файл bootini состоит из двух секций. Пример такого файла приведен в листин­
ге 5.1.

Листинг 5 . 1 . Файл boot.ini

[boot loader]
timeout=10
default=multi(0)disk(0)rdisk(0)partitTon(2)\WINNT
[operating systems]
multi(0)disk(0)rdisk(0)part1tion(2)\WINNT="IT.MTC.EDU Microsoft Windows 2000 Server RUS"
/fastdetect
multi(0)disk(0)rdisk(l)partition(2)\WIN2KP="Staff.MTC.EDU Microsoft Windows 2000
Professional RUS" /fastdetect
multi(0)disk(0)rdisk(0)partition(4)\WIN2K_S="SQL server on M$ Windows 2000 Server RUS" /

•fastdetect
multi(0)disk(0)rdisk(2)partition(2)\WIN2K.PRO"Microsoft Windows 2000 Professional RUS"
/fastdetect
C:\="Microsoft Windows 98"
C:\CMDC0NS\B00TSECT.DAT="Recovery Console Microsoft Windows 2000" /cmdcons

первой секции этого файла, названной [boot loader], строка timeout задает время
секундах, по истечении которого будет загружаться операционная система, ука-

анная в строке default этой секции. Как мы видим, для выбора одной из операци-
нных систем пользователю дается 10 с. Если бы значение timeout равнялось нулю
Л и В о второй секции была бы прописана только одна операционная система,

У пользователя не было бы выбора. В этом случае будет загружаться система,

http://MTC.EDU
http://MTC.EDU
file://C:/CMDC0NS/B00TSECT

1 5 6 Глава 5. Управление вводом-выводом в операционных системах

указанная в строке default. Если же значение timeout равняется - 1 , то загрузка не
будет происходить до тех пор, пока пользователь явно не выберет в меню одну из
операционных систем и не нажмет клавишу Enter.

Инструкция default указывает, где (на каком накопителе и в каком разделе этого
накопителя) располагается операционная система, загружаемая по умолчанию
В большинстве случаев мы можем увидеть там примерно такую строку:

default=multi(0)disk(0)rdisk(0)part1tion(2)\WINNT
Слово multi в этой строке означает, что при работе программы ntldr должны ис­
пользоваться драйверы из BIOS компьютера (используется прерывание intl3h).
Номер в скобках должен быть равен 0.

Слово disk на персональных компьютерах с подключением накопителей на маг­
нитных дисках через IDE-интерфейс фактически не несет никакой информации,
однако оно должно быть записано, а в скобках должен стоять ноль. В случае SCSI-
дисков это слово задает идентификатор SCSI ID диска.

Слово rdisk определяет порядковый номер накопителя. Всего при использовании
IDE-интерфейса может быть до 4 накопителей на жестких дисках; они нумеруют­
ся от 0 до 3.

Наконец, слово partition определяет номер раздела, на который установлена опера­
ционная система. После указания раздела записывается имя каталога, в котором
расположены файлы этой операционной системы.

Во второй секции, обозначенной как [operating systems], построчно перечисляются
пути к установленным операционным системам с текстовыми полями, заключен­
ными в кавычки. Именно тот текст мы и видим при работе загрузчика ntldr, когда
он выводит меню с операционными системами. Если на компьютере установлены
помимо систем Windows NT/2000/XP еще какие-нибудь операционные системы
(например, DOS, Windows 9x, Linux и т. д.), то их можно будет также загрузить.
Для этого в секции необходимо указать полный путь к файлу, в котором должен
содержаться соответствующий системный загрузчик (загрузочный сектор). Этот
файл обязательно должен располагаться на том же диске С:, иначе программа ntldr
не сможет его найти. Следует отметить, что для MS DOS и Windows 9x можно не
указывать имя файла с загрузочным сектором, а указать только сам корневой ката­
лог диска С:. Но это возможно только в том случае, если имя файла, содержащего
системный загрузчик, будет стандартным — bootsect.dos.

Кэширование операций ввода-вывода
при работе с накопителями
на магнитных дисках
Как известно, накопители на магнитных дисках обладают крайне низким быстро­
действием по сравнению с процессорами и оперативной памятью. Разница состав­
ляет несколько порядков. Например, современные процессоры за один такт рабо­
ты, а они работают уже с частотами в несколько гигагерц, могут выполнять по ДВ
операции, и, таким образом, время выполнения операции (с позиции внешнего на-

Кэширование операций ввода-вывода 1 57

блюдателя, который не видит конвейеризации при выполнении машинных команд,
позволяющей увеличить производительность в несколько раз) может составлять
менее 0,5 не (!). В то же время переход магнитной головки с дорожки на дорожку
занимает несколько миллисекунд; подобная же задержка требуется и на поиск нуж­
ного сектора данных. Как известно, в современных приводах средняя длительность
на чтение случайным образом выбранного сектора данных составляет около 20 мс,
что существенно медленнее, чем выборка команды или операнда из оперативной
памяти и уж тем более из кэш-памяти. Правда, после этого данные читаются боль­
шим пакетом (сектор, как мы уже говорили, имеет размер 512 байт, а при операци­
ях с диском часто читаются или записываются сразу несколько секторов). Таким
образом, средняя скорость работы процессора с оперативной памятью на 2-3 по­
рядка выше, чем средняя скорость передачи данных из внешней памяти на маг­
нитных дисках в оперативную память.

Для того чтобы сгладить такое сильное несоответствие в производительности
основных подсистем, используется буферизация и/или кэширование данных в дис­
ковом кэше (disk cache). Простейшим вариантом ускорения дисковых операций
чтения данных можно считать использование двойной буферизации. Ее суть за­
ключается в том, что пока в один буфер заносятся данные с магнитного диска, из
второго буфера ранее считанные данные могут быть прочитаны и переданы в за­
просившую их задачу. Аналогично и при записи данных. Буферизация использу­
ется во всех операционных системах, но помимо буферизации применяется и кэ­
ширование. Кэширование исключительно полезно в том случае, когда программа
неоднократно читает с диска одни и те же данные. После того как они один раз
будут помещены в кэш, обращений к диску больше не потребуется, и скорость ра­
боты программы значительно возрастет.

Упрощая, можно сказать, что под дисковым кэшем можно понимать некий пул
буферов, которыми мы управляем с помощью соответствующего системного про­
цесса. Если считывается какое-то множество секторов, содержащих записи того
или иного файла, то эти данные, пройдя через кэш, там остаются (до тех пор, пока
другие секторы не заменят эти буферы). Если впоследствии потребуется повтор­
ное чтение, то данные могут быть извлечены непосредственно из оперативной па­
мяти без фактического обращения к диску. Ускорить можно и операции записи:
Данные помещаются в кэш, и для запросившей эту операцию задачи получается,
что фактически они уже записаны. Задача может продолжить свое выполнение, а
системные внешние процессы через некоторое время запишут данные на диск. Это
называется отложенной записью (lazy write1). Если режим отложенной записи от­
ключен, только одна задача может записывать на диск свои данные. Остальные
приложения должны ждать своей очереди. Это ожидание подвергает информацию
риску не меньшему (если не большему), чем сама отложенная запись, которая к то­
му же и более эффективна по скорости работы с диском.

интервал времени, после которого данные будут фактически записываться, с од-
1 0 1 1 стороны, желательно выбрать большим, поскольку это позволило бы не чи-
а т ь (если потребуется) эти данные заново, так как они уже и так фактически на-

Досл овио — «ленивая» запись.

1 58 Глава 5. Управление вводом-выводом в операционных системах

ходятся в кэше. И после их модификации эти данные опять же помещаются в бы­
стродействующий кэш. С другой стороны, для большей надежности, желательно
поскорее отправить данные во внешнюю память, поскольку она энергонезависи­
ма, и в случае какой-нибудь аварии (например, нарушения питания) данные в опе­
ративной памяти пропадут, в то время как на магнитном диске они с большой ве­
роятностью останутся в безопасности.

Поскольку количество буферов, составляющих кэш, ограничено, может возник­
нуть ситуация, когда считываемые или записываемые данные потребуют замены
данных в этих буферах. При этом возможны различные дисциплины выделения
буферов под вновь затребованную операцию кэширования.

Кэширование дисковых операций может быть существенно улучшено за счет упреж­
дающего чтения (read ahead), которое основано на чтении с диска гораздо больше­
го количества информации, чем на самом деле запрошено приложением или опе­
рационной системой. Когда некоторой программе требуется считать с диска только
один сектор, программа кэширования читает несколько дополнительных блоков
данных. При этом, как известно, операции последовательного'чтения нескольких
секторов фактически несущественно замедляют операцию чтения затребованного
сектора с данными. Поэтому, если программа вновь обратится к диску, вероятность
того, что нужные ей данные уже находятся в кэше, будет достаточно высока. По­
скольку передача данных из одной области памяти в другую происходит во много
раз быстрее, чем чтение их с диска, кэширование существенно сокращает время
выполнения операций с файлами.

Итак, путь информации от диска к прикладной программе пролегает как через
буфер, так и через дисковый кэш. Когда приложение запрашивает с диска данные,
программа кэширования перехватывает этот запрос и читает вместе с необходи­
мыми секторами еще и несколько дополнительных. Затем она помещает в буфер
требующуюся задаче информацию и ставит об этом в известность операционную
систему. Операционная система сообщает задаче, что ее запрос выполнен, и дан­
ные с диска находятся в буфере. При следующем обращении приложения к диску
программа кэширования прежде всего проверяет, не находятся ли уже в памяти
затребованные данные. Если это так, то она копирует их в буфер, если же их в кэше
нет, то запрос на чтение диска передается операционной системе. Когда задача из­
меняет данные в буфере, они копируются в кэш.

Важно заметить, что простое увеличение объема памяти, отводимого под кэширо­
вание файлов, может и не привести к росту быстродействия системы. Другими
словами, наблюдается далеко не прямо пропорциональная.зависимость ускорения
операций с файлами от размера кэша. Кривая этой зависимости достаточно скоро
перестает расти, а затем и вовсе эффективность кэширования начинает снижать­
ся. Объяснение этому заключается в том, что поиск нужного фрагмента данных
в буферах кэша осуществляется путем их полного перебора. Поэтому с ростом числа
буферов кэша затраты на их перебор становятся значительными. И поскольку не­
возможно обеспечить 100-процентного кэш-попадания искомых данных, то есте­
ственно наступает момент, когда среднее время доступа к данным перестает сни­
жаться с увеличением кэша. Очевидно, что оптимальный размер дискового кэша

[Лаширование операций ввода-вывода 1 5 9

в И С И Т от очень многих факторов, в том числе и от частоты повторных обраще­
ний к недавно прочитанным данным, и от среднего объема обрабатываемых фай­
лов, и от разницы в быстродействии центральной части компьютера и дисковой
подсистемы.

В ряде операционных систем имеется возможность указать в явном виде парамет­
ры кэширования, в то время как в других за эти параметры отвечает сама операци­
онная система.

Так, в системах семейства Windows 9x мы можем указать и объем памяти, отводи­
мый для кэширования, и объем порции (chunk1) данных, из которых набирается
кэш, и предельное количество имен файлов, и параметры кэширования каталогов.
В файле SYSTEM.INI, расположенном в основном каталоге такой операционной сис­
темы (обычно это каталог Windows), в секции [vcache] есть возможность прописать,
например, следующие значения:

[vcache]
MinFileCache=4096
MaxFileCache=32768

ChunkSize=512
Здесь указано, что минимально под кэширование данных зарезервировано 4 Мбайт
оперативной памяти, максимальный объем кэша может достигать 32 Мбайт, а раз­
мер данных, которыми манипулирует менеджер кэша, равен одному сектору. Следу­
ет заметить, что поскольку в современных компьютерах нередко устанавливается
большой объем оперативной памяти, порой существенно превосходящий 256 Мбайт,
то для обеспечения корректной работы подсистемы кэширования обязательно нуж­
но указывать в явном виде значение MaxFUeCache. Оно ни в коем случае не должно
превышать величину 262 144 Кбайт. Это ограничение следует из-за особенностей
программной реализации подсистемы кэширования2 — при превышении этого зна­
чения происходят нарушения в работе подсистемы памяти и вычислительные про­
цессы могут быть разрушены.

Во всех операционных системах от Microsoft принята стратегия активного кэши­
рования файлов, при которой для кэширования отводится вся свободная память.
Поэтому без явного ограничения объема памяти, отводимой под кэширование фай­
лов, мы можем столкнуться с ситуацией, когда рост дискового кэша приводит к зна­
чительному росту числа страниц памяти, «сброшенных» в файл подкачки. По­
следнее может привести к заметному замедлению работы системы, несмотря на то
что кэширование имеет целью именно ускорение в работе дисковой подсистемы.
В операционных системах Windows NT 4.0, Windows 2000 и Windows XP также
имеется возможность управлять некоторыми параметрами кэширования. Правда,
сделать это можно только путем редактирования реестра.

Например, если в разделе [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControLSet\Control\Ses-
1 0 n Manager\Memory Management] реестра найти параметр IOPageLockLimit и присво-
1 Т Ь е м У значение 163777216, то это будет означать, что 16 384 Кбайт будут отведе-

! ^ О с ловно - «кусочек».
Раивер VCACHE разрабатывался в то время, когда объем памяти в 256 Мбайт казался недостижи­

мым.

1 6 0 Глава 5. Управление вводом-выводом в операционных системау

ны в физической памяти для хранения буферов дискового кэша. Эта память не
может быть выгружена в файл подкачки. Дело в том, что, к большому сожалению
разработчики из Microsoft приняли решение, согласно которому кэшируемые фай­
лы отображаются на виртуальное адресное пространство, а не на физическую па­
мять компьютера, как это сделано в других операционных системах. Это означает
что некоторые страничные кадры этого виртуального адресного пространства мо­
гут быть отображены не на реальную оперативную память компьютера, а размеще­
ны во внешней памяти (попасть в страничный файл подкачки). Очевидно, что это
может сильно замедлять работу рассматриваемой подсистемы. Поэтому блокиро­
вание некоторого числа страниц файлового кэша от перемещения их во внешнюю
память должно приводить к повышению эффективности кэширования. В качестве
рекомендации можно заметить, что упомянутое значение в 16 Мбайт можно выде­
лять для компьютеров с объемом памяти более 128 Мбайт.

В других операционных системах можно указывать больше параметров, определя­
ющих работу подсистемы кэширования (см., например, раздел «Файловая систе­
ма HPFS» в главе 6).

Помимо описанных действий, связанных с кэшированием файлов, операционная
система может оптимизировать перемещение головок чтения/записи данных, свя­
занное с выполнением запросов от параллельно выполняющихся задач. Время,
необходимое на получение данных с магнитного диска, складывается из времени
перемещения магнитной головки на требуемый цилиндр и времени поиска задан­
ного сектора; а временем считывания найденного сектора и временем передачи этих
данных в оперативную память мы можем пренебречь. Таким образом, основные
затраты времени уходят на поиск данных. В мультипрограммных операционных
системах при выполнении многих задач запросы на чтение и запись данных могут
идти таким потоком, что при их обслуживании образуется очередь. Если выпол­
нять эти запросы в порядке поступления их в очередь, то вследствие случайного
характера обращений к тому или иному сектору магнитного диска потери времени
на поиск данных могут значительно возрасти. Напрашивается очевидное реше­
ние: поскольку переупорядочивание запросов с целью минимизации затрат вре­
мени на поиск данных можно выполнить очень быстро (практически этим време­
нем можно пренебречь, учитывая разницу в быстродействии центральной части
компьютера и устройств ввода-вывода), то необходимо найти метод, позволяю­
щий выполнить такое переупорядочивание оптимальным образом. Изучение этой
проблемы позволило найти наиболее эффективные дисциплины планирования.
Перечислим известные дисциплины, в соответствии с которыми можно перестра­
ивать очередь запросов на операции чтения/записи данных [11].
Q SSTF (Shortest Seek Time First — запрос с наименьшим временем позициони­

рования выполняется первым). В соответствии с этой дисциплиной при пози­
ционировании магнитных головок следующим выбирается запрос, для которо­
го необходимо минимальное перемещение с цилиндра на цилиндр, даже если
этот запрос не был первым в очереди на ввод-вывод. Однако для этой дисцип­
лины характерна сильная дискриминация некоторых запросов, а ведь они м°'
гут идти от высокоприоритетных задач. Обращения к диску проявляют те! -

Контрольные вопросы и задачи 1 6 1

денцию концентрироваться, в результате чего запросы на обращение к самым
внешним и самым внутренним дорожкам могут обслуживаться существенно
дольше, и нет никакой гарантии обслуживания. Достоинством такой дисцип­
лины является максимально возможная пропускная способность дисковой под­
системы,

a Scan (сканирование). При сканировании головки поочередно перемещаются то
в одном, то в другом «привилегированном» направлении, обслуживая «по пути»
подходящие запросы. Если при перемещении головок чтения/записи более нет
попутных запросов, то движение начинается в обратном направлении.

• Next-Step Scan (отложенное сканирование). Отличается от предыдущей дис­
циплины тем, что на каждом проходе обслуживаются только те запросы, кото­
рые уже существовали на момент начала прохода. Новые запросы, появляющи­
еся в процессе перемещения головок чтения/записи, формируют новую очередь
запросов, причем таким образом, чтобы их можно было оптимально обслужить
на обратном ходу.

a C-Scan (циклическое сканирование). По этой дисциплине головки перемеща­
ются циклически с самой наружной дорожки к внутренним, по пути обслужи­
вая имеющиеся запросы, после чего вновь переносятся к наружным цилиндрам.
Эту дисциплину иногда реализуют таким образом, чтобы запросы, поступаю­
щие во время текущего прямого хода головок, обслуживались не попутно, а при
следующем проходе, что позволяет исключить дискриминацию запросов к са­
мым крайним цилиндрам. Эта дисциплина характеризуется очень малой дис­
персией времени ожидания обслуживания [11]. Ее часто называют «элеватор­
ной».

Контрольные вопросы и задачи

Вопросы для проверки
1. Почему создание подсистемы ввода-вывода считается одной из самых слож­

ных областей проектирования операционных систем?

*•• Почему операции ввода-вывода в операционных системах объявляются при­
вилегированными?

J- Перечислите основные задачи, возлагаемые на супервизор ввода-вывода?
4- В каких случаях устройство ввода-вывода называется инициативным?
5- Какие режимы управления вводом-выводом вы знаете? Опишите каждый из них.

"• Что означает термин «spooling» и что означает термин «swapping»?

• Чем обеспечивается независимость пользовательских программ от устройств
ввода-вывода, подключенных к компьютеру?

• "то такое синхронный и асинхронный ввод-вывод?

• Опишите структуру магнитного диска (разбиение дисков на разделы). Сколь­
ко (и каких) разделов может быть на магнитном диске?

Глава 6. Файловые системы

Система управления файлами является основной в абсолютном большинстве со­
временных операционных систем. Например, операционные системы UNIX ни­
как не могут функционировать без файловой системы, ибо понятие файла для них
является одним из самых фундаментальных. Все современные операционные сис­
темы используют файлы и соответствующее программное обеспечение для рабо­
ты с ними. Дело в том что, во-первых, через файловую систему связываются по
данным многие системные обрабатывающие программы. Во-вторых, с помощью
этой системы решаются проблемы централизованного распределения дискового
пространства и управления данными. Наконец, пользователи получают более про­
стые способы доступа к своим данным, которые они размещают на устройствах
внешней памяти.

Существует большое количество файловых систем, созданных для разных уст­
ройств внешней памяти и разных операционных систем. В них используются,
соответственно, разные принципы размещения данных на носителе. В данной
главе мы ограничимся рассмотрением наиболее распространенных файловых
систем, с которыми мы сталкиваемся при работе на персональных компьютерах.
Это системы FAT, FAT32 и NTFS. Знание основных принципов их построения
необходимо не только специалисту в области вычислительной техники, но и обыч­
ному пользователю. Особенно актуальными становятся знания возможностей
файловой системы NTFS, которая сегодня получает все большее распростране­
ние.

Функции файловой системы
и иерархия данных
Напомним, что под файлом обычно понимают именованный набор данных, орга­
низованных в виде совокупности записей одинаковой структуры. Для управления
этими данными создаются соответствующие файловые системы. Файловая систе­
ма предоставляет возможность иметь дело с логическим уровнем структуры дан­
ных и операций, выполняемых над данными в процессе их обработки. Именно
Файловая система определяет способ организации данных на диске или на каком-

1 6 4 Глава 6. Файловые системц

нибудь ином носителе. Специальное системное программное обеспечение, реали­
зующее работу с файлами по принятым спецификациям файловой системы, часто
называют системой управления файлами. Именно системы управления файлами
отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и
перемещение файловой информации, а также за управление доступом к файлам и
за управление ресурсами, которые используются файлами. Назначение системы
управления файлами — предоставление более удобного доступа к данным, орга­
низованным как файлы, то есть вместо низкоуровневого доступа к данным с ука­
занием конкретных физических адресов нужной нам записи используется логи­
ческий доступ с указанием имени файла и записи в нем.

Благодаря системам управления файлами пользователям предоставляются следу­
ющие возможности:

• создание, удаление, переименование (и другие операции) именованных набо­
ров данных (файлов) из своих программ или посредством специальных управ­
ляющих программ, реализующих функции интерфейса пользователя с его дан­
ными и активно использующих систему управления файлами;

• работа с недисковыми периферийными устройствами как с файлами;

Q обмен данными между файлами, между устройствами, между файлом и уст­
ройством (и наоборот);

• работа с файлами путем обращений к программным модулям системы управ­
ления файлами (часть API ориентирована именно на работу с файлами);

Q защита файлов от несанкционированного доступа.

Как правило, все современные операционные системы имеют соответствующие
системы управления файлами. А некоторые операционные системы имеют возмож­
ность работать с несколькими файловыми системами (либо с одной из нескольких,
либо сразу с несколькими одновременно). В этом случае говорят о монтируемьа
файловых системах (монтируемую систему управления файлами можно устано­
вить как дополнительную), и в этом смысле они самостоятельны.
Очевидно, что система управления файлами, будучи компонентом операционной
системы, не является независимой от нее, поскольку активно использует соответ­
ствующие вызовы API. С другой стороны, системы управления файлами сами до­
полняют API новыми вызовами. Можно сказать, что основное назначение файловой
системы и соответствующей ей системы управления файлами — предоставление
удобного доступа к данным, организованным в виде файлов, то есть вместо низко­
уровневого доступа к данным с указанием конкретных физических адресов нуж­
ной нам записи используется логический доступ с указанием имени файла и запи­
си в нем.

Следует заметить, что любая система управления файлами не существует сама по
себе — она разрабатывается для работы в конкретной операционной системе. В ка­
честве примера можно сказать, что всем известная файловая система FAT (г]

Allocation Table — таблица размещения файлов) имеет множество реализаций как
система управления файлами. Так, система, получившая это название и разраоо
тайная для первых персональных компьютеров, называлась просто FAT (нынче

функции Файловой системы и иерархия данных 1 6 5

ывают FAT121)- Хотя ее разрабатывали для работы с дискетами, некоторое время
Н а 3 использовалась при работе с жесткими дисками. Потом ее доработали для ра-
Тты с жесткими дисками большего объема, и новая реализация получила назва-

°е FAT 16. Это название файловой системы мы употребляем и по отношению
• подсистеме управления файлами самой системы MS DOS, однако реализацию

1 цстемы управления файлами для OS/2, которая использует основные принципы
системы FAT, называют super-FAT; основное отличие - возможность поддержи­
вать для каждого файла расширенные атрибуты. Есть версия системы управления
файлами с принципами FAT и для Windows 95/98, есть реализация для Win­
dows NT и т. д. Другими словами, для работы с файлами, организованными в соот­
ветствии с некоторой файловой системой, для каждой операционной системы
должна быть разработана соответствующая система управления файлами. И эта
система управления файлами будет работать только в той операционной системе,
для которой создана, но при этом обеспечит доступ к файлам, созданным с помо­
щью системы управления файлами другой операционной системы, но работаю­
щей по тем же основным принципам файловой системы.

В качестве примера снова можно привести всем известную файловую систему FAT,
поддерживаемую абсолютным большинством операционных систем, работающих
на современных персональных компьютерах. В MS DOS, OS/2, Windows 95/98/
ME, Windows NT/2000/XP, Linux, FreeBSD и других можно работать с файлами,
организованными по принципам FAT. Однако программные модули соответству­
ющих систем управления файлами не взаимозаменяемы. Кроме того, все эти сис­
темы управления файлами имеют свои индивидуальные особенности и ограниче­
ния. Иногда только из контекста ясно, о чем идет речь — о принципах работы
файловой системы или о ее конкретной реализации. Другими словами, для работы
с файлами, организованными в соответствии с некоторой файловой системой, для
каждой операционной системы должна быть разработана соответствующая систе­
ма управления файлами; и эта система управления файлами будет работать толь­
ко в той операционной системе, для которой она и создана. Таким образом, файло­
вая система — это множество именованных наборов данных, организованное по
принятым спецификациям, которые определяют способы получения адресной
информации, необходимой для доступа к этим файлам.

1аким образом, термин файловая система определяет, прежде всего, принципы
Доступа к данным, организованным в файлы. Тот же термин используют и по от­
ношению к конкретным файлам, расположенным на том или ином носителе дан­
ных. А термин система управления файлами следует употреблять по отношению
к конкретной реализации файловой системы, то есть это — комплекс программ-

ых модулей, обеспечивающих работу с файлами в конкретной операционной си­
стеме.

нформация, с которой работает человек, обычно структурирована. Это, прежде
е г о, позволяет более эффективно организовать хранение данных, облегчает их

с к . предоставляет дополнительные возможности в именовании. Аналогично,

4ис то 1 о
„ " " в имени этой файловой системы означает, что для указания адреса данных, составляющих
И л ' Исгюльзуется 12 двоичных разрядов.

1 6 6 Глава 6. Файловые системм

и при работе с файлами желательно ввести механизмы структурирования. Проще

всего организовать иерархические отношения. Для этого достаточно ввести поня­
тие каталога (directory). Каталог содержит информацию о данных, организован­
ных в виде файлов. Другими словами, в каталоге должны содержаться дескрипто­
ры файлов. Если файлы организованы на блочном устройстве, то именно с помощью
каталога система управления файлами-будет находить адреса тех блоков, в кото­
рых размещены искомые данные. Причем очевидно, что каталогом может быть не
только специальная системная информационная структура, которую часто назы­
вают корневым каталогом, но и сам файл. Такой файл-каталог должен иметь спе­
циальное системное значение; система управления файлами должна его выделять
на фоне обычных файлов. Файл-каталог часто называют подкаталогом (subdi­
rectory). Если файл-каталог содержит информацию о других файлах, то посколь­
ку среди них также могут быть файлы-каталоги, мы получаем возможность стро­
ить почти ничем не ограниченную иерархию.

Более того, введение таких файловых объектов, как файлы-каталоги, позволяет не
только структурировать файловую систему, но и решить проблему ограниченного
количества элементов в корневом каталоге. Ограничений на количество элемен­
тов в файле-каталоге нет, поэтому можно создавать каталоги чрезвычайно боль­
шого размера.

Файловая система FAT
Файловая система FAT (File Allocation Table — таблица размещения файлов) по­
лучила свое название благодаря простой таблице, в которой указываются:

Q непосредственно адресуемые участки логического диска, отведенные для раз­
мещения в них файлов или их фрагментов;

Q свободные области дискового пространства;

Q дефектные области диска (эти области содержат дефектные участки и не га­
рантируют чтение и запись данных без ошибок).

В файловой системе FAT дисковое пространство любого логического диска де­
лится на две области (рис. 6.1): системную область и область данных.

BR RSec FAT, FAT2 RDir Каталоги и файлы

Системная область Область данных

Рис. 6 . 1 . Структура логического диска в FAT

Системная область логического диска создается и инициализируется при форма­
тировании, а в последующем обновляется при работе с файловой структурой. О
ласть данных логического диска содержит обычные файлы и файлы-каталоги; эт
объекты образуют иерархию, подчиненную корневому каталогу. Элемент катало

^ ^ п п в а я система FAT 1 6 7

писывает файловый объект, который может быть либо обычным файлом, либо

Г йлом-каталогом. Область данных, в отличие от системной области, доступна

ерез пользовательский интерфейс операционной системы. Системная область

стоит из следующих компонентов (расположенных в логическом адресном про­

странстве друг за другом):

а загрузочной записи (Boot Record, BR);

р зарезервированных секторов (Reserved Sectors, ResSec);

а таблицы размещения файлов (File Allocation Table, FAT);

p корневого каталога (Root Directory, RDir).

Таблица размещения файлов
Таблица размещения файлов является очень важной информационной структу­
рой. Можно сказать, что она представляет собой адресную карту области данных,
в которой описывается и состояние каждого участка области данных, и принад­
лежность его к тому или иному файловому объекту.

Всю область данных разбивают на так называемые кластеры. Кластер представля­
ет собой один или несколько смежных секторов в логическом дисковом адресном
пространстве (точнее — только в области данных). Кластер — это минимальная
адресуемая единица дисковой памяти, выделяемая файлу (или некорневому ката­
логу). Кластеры введены для того, чтобы уменьшить количество адресуемых еди­
ниц в области данных логического диска.

Каждый файл занимает целое число кластеров. Последний кластер при этом мо­
жет быть задействован не полностью, что при большом размере кластера может
приводить к заметной потере дискового пространства. На дискетах кластер зани­
мает один или два сектора, а на жестких дисках его размер зависит от объема раз­
дела (табл. 6.1). В таблице FAT кластеры, принадлежащие одному файлу (или
файлу-каталогу), связываются в цепочки. Для указания номера кластера в файло­
вой системе FAT 16 используется 16-разрядное слово, следовательно, можно иметь
до 2'6 = 65 536 кластеров (с номерами от 0 до 65 535).

Таблица 6 . 1 . Соотношения между размером раздела и размером кластеров в FAT16

Емкость раздела, Мбайт Количество секторов в кластере Размер кластеров, Кбайт

16-127 4 2
128-255 8 4

256-511 1 6 8

512-1023 32 16

1?_24-2047 64 32

аметим, что в Windows NT/2000/XP разделы файловой системы FAT могут иметь
Размер до 4097 Мбайт. В этом случае кластер будет объединять уже 128 секторов.

°мер кластера всегда относится к области данных диска (пространству, зарезер-
ВиРованному для файлов и подкаталогов). Номера кластеров соответствуют эле-

168 Глава 6. Файловые системк!

ментам таблицы размещения файлов. Первый допустимый номер кластера всегда
начинается с 2.

Логическое разбиение области данных на кластеры как совокупности секторов
взамен использования одиночных секторов имеет следующий смысл:

Q прежде всего, уменьшается размер самой таблицы FAT;

Q уменьшается возможная фрагментация файлов;

Q ускоряется доступ к файлу, так как в несколько раз сокращается длина цепочек
фрагментов дискового пространства, выделенных для него.

Однако слишком большой размер кластера ведет к неэффективному использова­
нию области данных, особенно в случае большого количества маленьких файлов.
Как мы только что заметили, в среднем на каждый файл теряется около половины
кластера. Из табл. 6.1 следует, что при размере кластера в 32 сектора (объем разде­
ла при этом — от 512 до 1023 Мбайт), то есть 16 Кбайт, средняя величина потерь
на файл равняется 8 Кбайт, и при нескольких тысячах файлов' потери могут со­
ставлять более 100 Мбайт. Поэтому в современных файловых системах размеры
кластеров ограничиваются (обычно от 512 байт до 4 Кбайт), либо предоставляет­
ся возможность выбирать размер кластера.

Достаточно наглядно идею файловой системы, использующей таблицу размеще­
ния файлов, иллюстрирует рис. 6.2.

Directory Entry Начальный номер кластера

MYFILE ТХТ
I I I I I I I

time data 08

00

00 01 02 03 04 05

ID FF 0 3 . ^ . 0 4 . ^ . 0 5 . ^ K F F

06

00

07 08

00

09 0A 0B

09. j.OA^.OB. 15

10 00 00 00 00 00

0C 0D 0E OF

00 00 00

16 17. 19 F7 1A 1B. 1С. ID. FF 00 00

Рис. 6.2. Иллюстрация основной концепции FAT

Из рисунка видно, что файл MYFILE.TXT размещается, начиная с восьмого кластера.
Всего файл MYFILE.TXT занимает 12 кластеров. Цепочка (chain) кластеров для на­
шего примера может быть записана следующим образом: 8, 9, 0А, 0В, 15,16,17,1 >

Например, число 10 000-15 000 файлов (или даже более, особенно когда файлы небольшого разме
ра) на логическом диске с объемом в 1000 Мбайт встречается достаточно часто.

файловая система FAT 1 6 9

ч д 1В, 1С, ID. Кластер с номером 18 помечен специальным кодом F7 как плохой
(bad), он не может быть использован для размещения данных. При форматирова­
нии обычно проверяется поверхность магнитного диска, и те сектора, при КОНТ­
РОЛЬНОМ чтении с которых происходили ошибки, помечаются в FAT как плохие.
Кластер ID помечен кодом FF как конечный (последний в цепочке) кластер,
принадлежащий данному файлу. Свободные (незанятые) кластеры помечаются
кодом 00; при выделении нового кластера для записи файла берется первый сво­
бодный кластер. Возможные значения, которые могут приписываться элементам
таблицы FAT, приведены в табл. 6.2.

Таблица 6 . 2 . Значения элементов FAT

Значение Описание

OOOOh Свободный кластер

fff0h-fff6h Зарезервированный кластер

fff7h Плохой кластер

fff8h-ffffh Последний кластер в цепочке

0002h-ffefh . Номер следующего кластера в цепочке

Поскольку файлы на диске изменяются (удаляются, перемещаются, увеличива­
ются или уменьшаются), то упомянутое правило выделения первого свободного
кластера для новой порции данных приводит к фрагментации файлов, то есть дан­
ные одного файла могут располагаться не в смежных кластерах, а порой в очень
удаленных друг от друга, образуя сложные цепочки. Естественно, что это приво­
дит к существенному замедлению работы с файлами.

В связи с тем, что таблица FAT используется при доступе к диску очень интенсив­
но, она обычно загружается в оперативную память (в буферы ввода-вывода или в
кэш) и остается там настолько долго, насколько это возможно. Если таблица боль­
шая, а файловый кэш, напротив, относительно небольшой, в памяти размещаются
только фрагменты этой таблицы, к которым обращались в последнее время.
В связи с чрезвычайной важностью таблицы FAT она обычно хранится в двух иден­
тичных экземплярах, второй из которых непосредственно следует за первым. Об­
новляются копии FAT одновременно, используется же только первый экземпляр.
Если он по каким-либо причинам окажется разрушенным, то произойдет обраще­
ние ко второму экземпляру. Так, например, утилита проверки и восстановления
файловой структуры ScanDisk из ОС Windows 9x при обнаружении несоответствия
первичной и резервной копии FAT предлагает восстановить главную таблицу, ис­
пользуя данные из копии.

рневой к а т а л о г отличается от обычного файла-каталога тем, что он помимо раз-
еЩения в фиксированном месте логического диска имеет еще и фиксированное
пело элементов. Для каждого файла и каталога в файловой системе хранится ин-

Р°рмация в соответствии со структурой, представленной в табл. 6.3.

работы с данными на магнитных дисках в системах DOS, которые имеют файло-
У систему FAT, удобно использовать широко известную утилиту Disk Editor из

1 7 0 Глава 6, Файловые с и с т е м ^

комплекта утилит Питера Нортона. У нее много достоинств. Прежде всего, она ком*
пактна, легко размещается на системной дискете с MS DOS, снабжена встроенной
системой подсказок и необходимой справочной информацией. Используя ее, можно
сохранять, модифицировать и восстанавливать загрузочную запись, восстанавливать
таблицу FAT в случае ее повреждения, а также выполнять много других операций
Основными недостатками этой программы на сегодняшний день являются ограниче­
ния на размеры диска и разделов и отсутствие поддержки работы с такими распрост­
раненными файловыми системами, как FAT32 и NTFS. Вместо нее теперь часто ис­
пользуют утилиту Partition Magic, однако наилучшей альтернативой этой программе
на сегодняшний день можно считать утилиту Администратор дисков от Acronis.

Таблица 6 . 3 . Структура элемента каталога

Размер поля данных, байт Содержание поля

11 Имя файла или каталога

1 Атрибуты файла

1 Резервное поле

3 Время создания

2 Дата создания

2 Дата последнего доступа

2 Зарезервировано

2 Время последней модификации

2 Дата последней модификации

2 Номер начального кластера в FAT

4 Размер файла

Структура загрузочной записи DOS
Сектор, содержащий системный загрузчик DOS, является самым первым на логи­
ческом диске С:. Напомним, что на дискете системный загрузчик размещается в са­
мом первом секторе; его физический адрес равен 0-0-1. Загрузочная запись состо­
ит, как мы уже знаем, из двух частей: блока параметров диска (Disk Parameter Block,
DPB) и системного загрузчика (System Bootstrap, SB). Блок параметров диска слу­
жит для идентификации физического и логического форматов логического диска,
а системный загрузчик играет существенную роль в процессе загрузки DOS. Эта
информационная структура приведена в табл. 6.4.

Первые два байта загрузочной записи занимает команда безусловного перехода
(JMP) на программу SB. Третий байт содержит код 90Н (NOP — нет операции). Д а"
лее располагается восьмибайтовый системный идентификатор, включающий ив
формацию о фирме-разработчике и версии операционной системы. Затем следуе

блок параметров диска, а после него — системный загрузчик.
Для работы с загрузочной записью DOS, как и с другими служебными инфор^ 3

ционными структурами, удобно использовать уже упомянутую программу Dis

^ м п о в а я система FAT 1 7 1

Fditor из комплекта утилит Питера Нортона. Используя ее, можно сохранять, мо-
ифицировать и восстанавливать загрузочную запись, а также выполнять много

Других операций. Достаточно подробно работа с этой утилитой описана в [2].

Таблица 6 . 4 . Структура загрузочной записи для FAT16

Смещение поля, Длина поля, Обозначение Содержимое поля

байт 6 ^ 1 ^ И
Безусловный переход на начало
системного загрузчика

Системный идентификатор

Размер сектора, байт

Число секторов в кластере

Число зарезервированных секторов

Число копий FAT

Максимальное число элементов Rdir

Число секторов на логическом диске,
если его размер не превышает
32 Мбайт; иначе 0000Н

Дескриптор носителя

Размер FAT, секторов

Число секторов на дорожке

Число рабочих поверхностей

Число скрытых секторов

Число секторов на логическом диске,
если его размер превышает 32 Мбайт

Тип логического диска (ООН — гибкий,
80Н — жесткий)

Зарезервировано

Маркер с кодом 29Н

Серийный номер тома1

Метка тома

Имя файловой системы

Системный загрузчик

Сигнатура (слово АА55Н)

ом (volume) представляет собой единое логическое адресное пространство. Томом может быть обыч­
ный логический диск либо несколько дисковых, пространств.

00Н(0)

ОЗН (3)

ОВН (11)

0DH(13)

0ЕН(14)

10Н(16)

11Н(17)

13Щ19)

15Щ21)

16Н(22)

18Н(24)

1АН(26)

1СН(28)

20Н (32)

3

8

2

1

2

1

2

2

1

2

2

2

4

4

JUMP3EH

SectSize

ClastSize

ResSecs

FATcnt

RootSize

TotSecs

Media

FATsize

TrkSecs

HeadCnt

HidnSecs

24H (36)

25H (37)

26H(38)

27H (39)

2BH(43)

36H (54)

3EH (62)

1FEH(510)

1

1

4

11

8

2

Файловые системы VFAT и FAT32
Дной из важнейших характеристик исходной файловой системы FAT было ис-

ользование имен файлов формата 8.3. К стандартной системе FAT (имеется в виду
Режде всего реализация FAT16) добавились еще две разновидности, используе-

172 Глава 6. Файловые системы

мые в широко распространенных ОС от Microsoft (конкретно — в Windows 95
и Windows NT): VFAT (виртуальная система FAT) и система FAT32, используе­
мая в одной из редакций ОС Windows 95 и Windows 98. Ныне файловая система
FAT32 поддерживается и такими последними системами, как Windows Millennium
Edition, Windows 2000 и Windows XP. Имеются реализации FAT32 и для Windows
NT, и для Linux.

Файловая система VFAT впервые появилась в Windows 3.11 (Windows for Work­
groups). С выходом Windows 95 в VFAT добавилась поддержка длинных имен
файлов (Long File Name, LFN). Тем не менее, VFAT сохраняет совместимость с ис­
ходным вариантом FAT; это означает, что наряду с длинными именами в ней под­
держиваются имена формата 8.3, а также существует специальный механизм для
преобразования имен 8.3 в длинные имена, и наоборот. Именно файловая система
VFAT поддерживается исходными версиями Windows 95, Windows NT 4, Windows
2000 и Windows XP. При работе с VFAT крайне важно использовать файловые
утилиты, обслуживающие VFAT вообще и длинные имена в частности. Дело в том,
что более ранние файловые утилиты DOS запросто модифицируют то, что кажет­
ся им исходной структурой FAT. Это может привести к потере или порче длинных
имен из таблицы размещения файлов, поддерживаемой VFAT (или FAT32). Сле­
довательно, для томов VFAT необходимо пользоваться файловыми утилитами,
которые понимают и сохраняют файловую структуру VFAT.

Основными недостатками файловых систем FAT и VFAT, которые привели к
разработке новой реализации файловой системы, основанной на той же идее (таб­
лице размещения файлов), являются большие потери на кластеризацию при боль­
ших размерах логического диска и ограничения на сам размер логического дис­
ка. Поэтому в Microsoft Windows 95 OEM Service Release 21 на смену системе
VFAT пришла файловая система FAT32, которая является полностью самостоя­
тельной 32-разрядной файловой системой и содержит многочисленные усовер­
шенствования и дополнения по сравнению с предыдущими реализациями FAT.
Самое принципиальное отличие заключается в том, что FAT32 намного эффек­
тивнее расходует дисковое пространство. Прежде всего, кластеры в этой системе
меньше, чем кластеры в предыдущих версиях, в которых могло быть не более
65 535 кластеров на логический диск (соответственно с увеличением размера
диска приходилось увеличивать и размер кластеров). Следовательно, даже для
дисков размером до 8 Гбайт FAT32 может использовать 4-килобайтные класте­
ры. В результате по сравнению с дисками FAT16 экономится значительное дис­
ковое пространство (в среднем 10-15 %). В FAT32 проблема решается за счет
того, что собственно сама таблица размещения файлов в этой файловой системе
может содержать до 228 кластеров2.

FAT32 также может перемещать корневой каталог и использовать резервную ко­
пию FAT вместо стандартной. Расширенная загрузочная запись FAT32 позволяет

1 Эту версию Windows 95 часто называют Windows 95 OSR2.
2 В 32-разрядном слове FAT32, используемом для представления номера кластера, фактически уЧ '

тываются только 28 разрядов, что приводит к тому, что размер таблицы размещения файлов в это
системе не может превышать 228 элементов.

файловая система FAT 1 7 3

создавать копии критически важных структур данных; это повышает устойчивость
дисков FAT32 к нарушениям структуры таблицы размещения файлов по сравне­
нию с предыдущими версиями. Корневой каталог в FAT32 представлен в виде обыч­
ной цепочки кластеров, следовательно, он может находиться в произвольном месте
лиска, что снимает действовавшее ранее ограничение на размер корневого катало­
га (512 элементов).
Системы Windows 95 OSR2 и Windows 98 могут работать и с разделами VFAT,
созданными Windows NT. To, что говорилось ранее об использовании файловых
утилит VFAT с томами VFAT, относится и к FAT32. Поскольку прежние утили­
ты FAT (для FAT32 в эту категорию входят обе файловые системы, FAT и VFAT)
могут повредить или уничтожить важную служебную информацию, для томов
FAT32 нельзя пользоваться никакими файловыми утилитами, кроме утилит
FAT32.

[7[р I 2 I 3 U I 5 I 6 I 7 I 8 I 9 110111|12|13|14Ц5|16|17|18|19|20|21|22|23|24|25|26|27|28|29130|311

Элемент каталога для короткого имени файла (FAT16 и

Имя файла
(8 символов имени

и 3 символа - расширение)

га
С

ф
ай

иб

ут
ь

А
тр

Зарезервировано

>s
Ф

1* 3 У
g г с го
К СО

S

В
ре

FAT12)

>s

пе
дн

си

Я?
Г"
k

ог
о

X
с го
га ш

£ 1-га о
х го

Н
ом

го

ф
ай

л
та

х

О- го
Ф (о

2
Элемент католога для короткого имени файла (FAT32)

Имя файла
(8 символов имени

и 3 символа - расширение)

*

иб
ут

ы

А
тр

Z
[X

ов
ан

о
 д

л
ез

ер
ви

р

З
ар

со
зд

ан
ия

зй

ла

1 *
ш
О.

S3

оз
да

ни
я

зй
ла

I Д
ат

а
по

сл
ед

не
гс

д

ос
ту

па

га
о . га
ф О.

ло
во

 н
ом

го

 к
ла

ст
е

ар

ш
ее

 с

ач
ал

ьн
о

5х

ос
ле

д
не

пи

си

Вр
ем

я
г

за
 эс

ле
дн

ей

пи
си

Д

ат
а

п

за

га
о. го
О Q.

ло
во

 H
O

W

го
 к

ла
ст

е
ад

ш
ее

с

ач
ал

ьн
о

1 *

р
 ф

ай
ла

ай

та
х

Ф ю

1*
го

0 .

га

4 I!
CS :-:
а *

s

Элемент каталога для длинного имени файла (FAT12, FAT6 и FAT32)

Символы 1-5 имени
файла в Unicode

S T 3 I 4 I 5 I 6 I 7 I 819110

бу
ть

1
к

11

за
но

о
S

а.

ф

З
ар

12

ум
м

а

га
л
о
о
и
X

&

13

Символы 6-11 имени
файла в Unicode

14115|16| 17118|19|20|21|22|23|24|25

£ 9
-° Б

* 9

о го

ч °-

26|27

Символы
12-13

имени
файла

в
Unicode

28|29|30|31

Рис. 6.3. Элементы каталогов для FAT, VFAT и FAT32

1 7 4 Глава 6. Файловые системы

Помимо повышения максимального объема логического диска и уменьшения эф­
фекта кластеризации, файловая система FAT32 вносит ряд необходимых усовер­
шенствований в структуру корневого каталога. Предыдущие реализации требова­
ли, чтобы вся информация корневого каталога FAT находилась в одном дисковом
кластере. При этом корневой каталог мог содержать не более 512 файлов. Необхо­
димость представлять длинные имена и обеспечить совместимость с прежними
версиями FAT привела разработчиков компании Microsoft к компромиссному ре­
шению: для представления длинного имени они стали использовать элементы
каталога, в том числе и корневого. По этой причине для того, чтобы компенсиро­
вать сокращение элементов главного каталога при использовании длинных имен
в FAT32 было увеличено их количество с 512 до 2048. Более того, чтобы не испы­
тывать возможных проблем из-за расходования элементов активного каталога на
описания файлов с длинными именами, компания Microsoft не рекомендует да­
вать файлам слишком длинные имена.

Рассмотрим способ представления в VFAT длинного имени файла (рис. 6.3).

Первые 11 байт элемента каталога DOS используются для хранения имени файла.
Каждое такое имя разделяется на две части: в первых восьми байтах хранятся сим­
волы собственно имени, а в последних трех — символы так называемого расшире­
ния, с помощью которого реализуются механизмы предопределенных типов. Были
введены соответствующие системные соглашения, и файлы определенного типа
желательно именовать с оговоренным расширением. Например, исполняемые фай­
лы с расширением СОМ определяют исполняемую двоичную программу с про­
стейшей односех'ментной структурой1. Более сложные программы имеют расши­
рение ЕХЕ. Определены расширения для большого количества типов файлов и
эти расширения используются для ассоциированного запуска программ, обраба­
тывающих эти файлы.

Если имя файла состоит менее чем из восьми символов, то в элементе каталога оно
дополняется символами пробела, чтобы полностью заполнить все восемь байтов
соответствующего поля. Аналогично и расширение может содержать от нуля до
трех символов. Остальные (незаполненные) позиции в элементе каталога, опреде­
ляющие расширение имени файла, заполняются символами пробела. Поскольку
при работе с именем файла учитываются все одиннадцать свободных мест, то не­
обходимость в отображении точки, которая обычно вводится между именем фай­
ла и его расширением, отпадает. В элементе каталога она просто подразумевается.
В двенадцатом байте элемента каталога хранятся атрибуты файла. Шесть из вось­
ми указанных разрядов используются DOS2. Они перечислены ниже.
• A (Archive — архив). Показывает, что файл был открыт программой таким об­

разом, чтобы у нее была возможность изменить содержимое этого файла. DOb
устанавливает этот разряд при открытии файла. Программы резервного копи­
рования (или, как часто говорят, архивирования, то есть составления архивов

1 Для программных модулей, имеющих такую структуру, может использоваться и расширение ьи
2 В некоторых операционных системах, В частности в Novell Netware, используется один или два

полпнтельных разряда атрибутов.

,ряйловая система FAT 1 7 5

данных) нередко сбрасывают его в ходе резервного копирования файла. Если
применяется подобная методика, то в следующую создаваемую по порядку ре­
зервную копию будут добавлены только те файлы, в которых данный разряд
установлен.

п D (Directory — каталог). Показывает, что данный элемент каталога указывает
на подкаталог, а не на файл.

р V (Volume — том). Применяется только к одному элементу каталога в корне­
вом каталоге. В нем собственно и хранится имя дискового тома. Этот атрибут
также применяется в случае длинных имен файлов, о чем можно будет узнать
из следующего раздела.

Q S (System — системный). Показывает, что файл является частью операционной
системы или специально отмечен подобным образом прикладной программой,
что иногда делается для защиты от копирования.

а Н (Hidden — скрытый). К скрытым относятся также файлы с установленным
атрибутом S (системный), которые не отображаются по команде DIR.

• R (Read only — только для чтения). Показывает, что данный файл не подле­
жит изменению. Разумеется, поскольку это лишь разряд байта, хранящего­
ся на диске, то любая программа может изменить этот разряд и, значит,
разрешить изменение соответствующего файла. Этот атрибут в основном ис­
пользуется для примитивной защиты от пользовательских ошибок, то есть
он помогает избежать неумышленного удаления или изменения ключевых

. файлов.

Следует отметить, что файл, помеченный одним или более из указанных выше ат­
рибутов, может иметь вполне определенный смысл. Например, большинство фай­
лов, отмечаемых в качестве системных, отмечаются также атрибутами «скрытый»
и «только для чтения».

На дисках FAT 12 или FAT 16 следующие за именем 10 байт не используются. Обык­
новенно они заполняются нулями и считаются резервными значениями. А на дис­
ке с файловой системой FAT32 эти 10 байт содержат самую разную информацию
о файле. При этом байт, отмеченный как зарезервированный для NT, представля­
ет собой, как подразумевает его название, поле, не используемое в DOS или Win­
dows 9х, но применяемое в Windows NT.

Из соображений совместимости поля, которые встречаются в элементах каталога
Для коротких имен формата FAT 12 и FAT 16, находятся на тех же местах и в эле­
ментах каталога для коротких имен формата FAT32. Остальные поля, которые
встречаются только в элементах каталога для коротких имен формата FAT32, со­
ответствуют зарезервированной области длиной 10 байт в элементах каталога для
коротких имен форматов FAT12 и FAT16.

^ак видно из рис. 6.3, для длинного имени файла используется несколько элемен­
тов каталога. Таким образом, появление длинных имен фактически привело к даль­
нейшему уменьшению количества файлов, находящихся в корневом каталоге. По-
кольку длинное имя может содержать до 256 символов, всего один файл с полным

Длинным именем занимает до 25 элементов FAT (1 для имени 8.3 и еще 24 для

1 7 6 Глава 6, Файловые системы

самого длинного имени). Таким образом, количество элементов корневого катало­
га VFAT уменьшается до 21. Очевидно, что это не вполне красивое решение, по­
этому компания Microsoft советует избегать длинных имен в корневых каталогах
при отсутствии системы FAT32, у которой количество элементов каталога просто
требуемым образом увеличено1.

Загрузочная запись для системы FAT32 несколько отличается от загрузочной записи
FAT 16. Так, например, в загрузочном секторе для тома с FAT32 в блоке DPB содер­
жатся дополнительные поля, а те поля, что находятся в привычном для системы FAT 16
месте, перенесены. Поэтому операционная система, в которой есть возможность рабо­
тать с файловой системой FAT 16, но нет системы управления файлами, понимающей
спецификации FAT32, не может читать данные с томов, отформатированных под фай­
ловую систему FAT32. В загрузочном секторе для файловой системы FAT32 по-пре­
жнему байты с ООН по ОАН содержат команду перехода и OEM ID, а в байтах с ОВН
по 59Н содержатся данные блока параметров диска (PDB). Отличие заключается
именно в несколько иной структуре блока DPB (табл. 6.5).

Таблица 6 . 5 . Структура загрузочной записи для FAT32

Смещение поля,
байт

Длина поля,
байт

Обозначение
поля

Содержимое поля

00Н(0)

ОЗН (3)

ОВН (11)

0DH(13)

0ЕН(14)

ЮН (16)

11Н (17)

13Щ19)

15Н (21)

16Щ22)

18Щ24)

1АЩ26)

1СЩ28)

8

2

1

2

1

2

2

1

2

2

2

4

JUMP3EH

SectSize

ClastSize

ResSecs

FATcnt

RootSize

TotSecs

Media

FATsize

TrkSecs

HeadCnt

HidnSecs

Безусловный переход на начало
системного загрузчика

Системный идентификатор

Размер сектора, байт

Число секторов в кластере

Число зарезервированных секторов,
для FAT32 равно 32

Число копий FAT

0000Н

0000Н

Дескриптор носителя

0000Н

Число секторов на дорожке

Число рабочих поверхностей

Число скрытых секторов
(располагаются перед загрузочным
сектором). Используется при загрузке
для вычисления абсолютного смещения
корневого каталога и данных

Помните и о том, что длина полной файловой спецификации, включающей путь и имя файла (длин­
ное или в формате 8.3), тоже ограничивается 260 символами. FAT32 успешно справляется с пробле­
мой длинных имен в корневом каталоге, но проблема с ограничением длины полной файловой спе­
цификации остается. По этой причине Microsoft рекомендует ограничивать длинные имена
75-80 символами, чтобы оставить достаточно места для пути (180-185 символов).

гЬяйловая система HPFS 1 7 7

Смещение поля, Длина поля, Обозначение Содержимое поля
байт байт

20Н (32)

24Н (36)

28Н (37)

2АН (38)

2СН (39)

34Н (43)

36Н (54)

4

4

2

2

4

2

12

Число секторов на логическом диске

Число секторов в таблице FAT

Расширенные флаги

Версия файловой системы

Номер кластера для первого кластера
корневого каталога

Номер сектора с резервной копией
загрузочного сектора

Зарезервировано

Заметим, что загрузочная запись для диска с FAT32 занимает не один сектор, как
в FAT16 и FAT12, а три. Резервная загрузочная запись, как правило, располагает­
ся в секторах 7-9.

Файловая система HPFS
Файловая система HPFS (High Performance File System - высокопроизводитель­
ная файловая система) впервые появилась в операционных системах OS/2 1.2 и
LAN Manager. Она была разработана совместными усилиями лучших специалис­
тов компаний IBM и Microsoft на основе опыта IBM по созданию файловых сис­
тем MVS, VM/CMS и виртуального метода доступа1. Архитектура HPFS начала
создаваться как файловая система для многозадачного режима и была призвана
обеспечить высокую производительность при работе с файлами на дисках боль­
шого размера.

HPFS стала первой файловой системой для персональных компьютеров, в кото­
рой была реализована поддержка длинных имен [26]. HPFS, как и FAT, как и мно­
гие другие файловые системы, обладает структурой каталогов, но в ней также пре­
дусмотрены автоматическая сортировка каталогов и специальные расширенные
атрибуты (Extended Attributes, EAs)2, упрощающие обеспечение безопасности на
файловом уровне и создание множественных имен. Помимо расширенных атри­
бутов, каждый из которых концептуально подобен переменной окружения, HPFS
по историческим причинам поддерживает те же самые атрибуты, что и файловая
система FAT. Но самым главным отличием этой системы все же являются базовые
принципы хранения информации о местоположении файлов.
Принципы размещения файлов на диске, положенные в основу HPFS, увеличива­
ют как производительность файловой системы, так и ее надежность и отказо­
устойчивость. Для достижения этих целей предложено несколько идей:

ак, со стороны компании Microsoft проектом руководил известный системщик Гордон Литвин
2 (Gordon Letwin).

асширенные атрибуты позволяют хранить дополнительную информацию о файле. Например, каж­
дому файлу может быть сопоставлено его уникальное графическое изображение (значок, миниатю-
Ра), описание файла, комментарий, сведения о владельце файла и т. д.

1 7 8 Глава 6. Файловые систем^

Q размещение каталогов в середине дискового пространства;

Q использование методов бинарных сбалансированных деревьев для ускорения
поиска информации о файле;

• рассредоточение информации о местоположении файловых записей по всему
диску, при том что записи каждого конкретного файла размещаются (по возмож­
ности) в смежных секторах и поблизости от данных об их местоположении.

Действительно, прежде всего, HPFS пытается расположить файл в смежных клас­
терах или, если такой возможности нет, поместить его на диск таким образом, что­
бы экстенты (extents)1 файла физически были как можно ближе друг к другу. Та­
кой подход существенно сокращает время позиционирования (seek time) головок
записи/чтения жесткого диска и время ожидания (rotational latency)2. Можно ска­
зать, что файловая система HPFS имеет, по сравнению с FAT, следующие основ­
ные преимущества:

Q высокая производительность;

Q надежность;

• поддержка расширенных атрибутов, позволяющих более гибко управлять до­
ступом к файлам и каталогам;

Q эффективное использование дискового пространства.

Все эти преимущества обусловлены структурой диска HPFS. Рассмотрим ее более
подробно (рис. 6.4).

о

.ь

>,
u.
СО

СО

о

Л
J3

с;

О
П

О
Л

о.

«
ё
i
ш
а
ш
а>

а.

Полоса 1

т -

р
та

го
гс

о

ш

см

р
та

го 2£
К
го
ш
о
t S

LQ

Полоса 2

• •• • • '

Полоса 3

со

р
та

к
го
ш
о
S
ш

м-

р
та

к
го
ш
о
S
Ш

Полоса 4

Рис. 6.4. Структура раздела HPFS

В начале диска расположено несколько управляющих блоков. Все остальное диско­
вое пространство в HPFS разбито на множество областей из смежных секторов, или
полос (bands). В каждой такой области располагаются и собственно сами данные
файлов, и вспомогательная служебная информация о свободных или занятых сек­
торах в этой области. Каждая полоса занимает на диске пространство в 8 Мбайт и
имеет собственную битовую карту (bit map) распределения секторов, которая, с од­
ной стороны, напоминает таблицу размещения файлов FAT, но, с другой, суше"

' Экстент — фрагмент файла, располагающийся в смежных секторах диска. Файл имеет, по крайне
мере, один экстент, если он не фрагментирован, в противном случае — несколько экстентов.

2 Время ожидания — это задержка между установкой головки чтения/записи на нужную дорожку дис
и началом чтения данных с диска. Эта задержка обусловлена тем, что система вынуждена ждать, пок
диск не повернется таким образом, чтобы нужный сектор оказался под головкой чтения/записи.

ственно от нее отличается. Эти битовые карты показывают, какие секторы данной
полосы заняты, а какие свободны. Каждому сектору полосы данных соответствует
один бит в ее битовой карте.

Если бит имеет значение 1, то соответствующий сектор занят, если 0 — свободен.
Битовые карты двух полос располагаются на диске рядом, также располагаются и
сами полосы. То есть последовательность полос и карт выглядит следующим об­
разом: битовая карта, битовая карта, полоса данных, полоса данных, битовая кар­
та битовая карта и т. д. Такое расположение полос и битовых карт позволяет не­
прерывно разместить на жестком диске файл размером до 16 Мбайт и в то же время
не удалять от самих файлов информацию об их местонахождении.
Очевидно, что если бы на весь логический диск была бы только одна адресная струк­
тура данных, как это сделано в FAT, то для работы с ней приходилось бы переме­
щать головки чтения/записи в среднем через половину диска. Именно для того,
чтобы избежать таких потерь, в HPFS диск разбит на полосы. Получается как бы
распределенная структура данных (в данном случае — битовая карта) с информа­
цией об используемых и свободных блоках.

Дисковое пространство в HPFS выделяется не кластерами, как в FAT, а блоками.
В имеющейся на сегодня реализации размер блока равен одному сектору, но, в прин­
ципе, он мог бы быть и иного размера. По сути дела, блок — это и есть кластер.
Размещение файлов в таких небольших блоках позволяет более эффективно ис­
пользовать пространство диска, так как непроизводительные потери свободного
места составляют в среднем всего 256 байт на каждый файл. Вспомните, чем боль­
ше размер кластера, тем больше места на диске расходуется напрасно. Например,
кластер па отформатированном под FAT диске объемом от 512 до 1023 Мбайт имеет
размер 16 Кбайт. Следовательно, непродуктивные потери свободного простран­
ства на таком разделе в среднем составляют 8 Кбайт (8192 байт) на один файл, в то
время как на разделе HPFS эти потери всегда будут составлять всего 256 байт на
файл. Таким образом, на каждый файл экономится почти 8 Кбайт.
На рис. 6.4 показано, что помимо полос с записями файлов и битовых карт на томе
(volume)' с HPFS имеются еще три информационные структуры. Это так называ­
емый загрузочный блок (boot block), дополнительный блок (super block) и резерв­
ный блок (spare block). Загрузочный блок OS/2 располагается в секторах с 0 по 15;
он содержит имя тома, его серийный номер, блок параметров BIOS2 и программу
начальной загрузки. Программа начальной загрузки находит программу 0S2LDR,
считывает ее в память и передает управление на эту программу загрузки операци­
онной системы, которая, в свою очередь, загружает с диска в память ядро OS/2 —
программу 0S2KRNL И уже 0S2KRNL с помощью сведений из файла CONFIG.SYS за­
гружает в память все необходимые программные модули и блоки данных.

Дополнительном блоке содержится указатель на список битовых карт (bitmap
'lock list). В этом списке перечислены все блоки на диске, в которых расположены

' п
г ° СУ'ГИ Дела, том — это не что иное, как раздел, или логический диск.

В*К параметров BIOS содержит информацию о жестком диске — количестве цилиндров и головок
(ска, числе секторов на дорожке. Эта информация используется программными модулями HPFS для

'ска конкретного сектора (блока), поскольку все блоки пронумерованы 32-разрядными числами.

1 8 0 Глава 6, Файловые системы

битовые карты, используемые для обнаружения свободных секторов. Также в до­
полнительном блоке хранится указатель на список дефектных блоков (bad block
list), указатель на полосу каталогов (directory band), указатель на файловый узел
(File node, F-node) корневого каталога, а также дата последней проверки раздела
программой CHKDSK. В списке дефектных блоков перечислены все поврежденные
секторы (блоки) диска. Когда система обнаруживает поврежденный блок, он вно­
сится в этот список и для хранения информации больше не используется. Кроме
того, в дополнительном блоке содержится информация о размере полосы. Напом­
ним, что в имеющейся реализации HPFS размер полосы равен 8 Мбайт. В принци­
пе, его можно было бы сделать и больше. Дополнительный блок размещается в сек­
торе с номером 16 логического диска, на котором установлена файловая система
HPFS.

Резервный блок содержит указатель на карту (HotFix map), или области (HotFix
areas), аварийного замещения, указатель на список свободных запасных блоков ка­
талогов (directory emergency free block list), используемых для операций на почти
переполненном диске, и ряд системных флагов и дескрипторов. Резервный блок
размещается в 17-м секторе диска и обеспечивает высокую отказоустойчивость
файловой системы HPFS, позволяя восстанавливать поврежденные данные на
диске и перемещать их в надежное место.

Файлы и каталоги в HPFS базируются на фундаментальном объекте, уже упоми­
навшемся файловом узле1. Эта структура характерна для HPFS, и аналога в фай­
ловой системе FAT у нее нет. Каждый файл и каталог диска имеет свой файловый
узел. Каждый файловый узел занимает один сектор и всегда располагается побли­
зости от своего файла или каталога (обычно — непосредственно перед файлом или
каталогом). Файловый узел содержит размер файла и первые 15 символов имени
файла, специальную служебную информацию, статистику по доступу к файлу,
расширенные атрибуты файла и список управления доступом (Access Control List,
ACL) или только часть этого списка, если он очень большой, ассоциативную ин­
формацию о расположении и подчинении файла и т. д. Структура распределения
информации в файловом узле может иметь несколько форм, в зависимости от раз­
мера каталога или файлов. HPFS рассматривает файл как совокупность одного
или более секторов. Из прикладной программы этого не видно; файл прикладной
программе представляется как непрерывный поток байтов. Если расширенные ат­
рибуты слишком велики для файлового узла, то в него записывается указатель на
них.

Сокращенное имя файла (в формате 8.3) используется, когда файл с длинным име­
нем копируется или перемещается на диск с системой FAT, которая не допускает
подобных имен. Сокращенное имя образуется из первых 8 символов оригинально­
го имени файла, точки и первых 3 символов расширения имени, если расширение
имеется. Если в имени файла присутствует несколько точек, что не противоречит
правилам именования файлов в HPFS, то для расширения сокращенного имени
используются 3 символа после самой последней из этих точек.

Файловый узел — это структура, в которой содержится информация о расположении файла
расширенных атрибутах.

Файловая система HPFS 1 8 1

Так как HPFS при размещении файла на диске стремится избежать его фрагмен­
тации, то структура информации, содержащаяся в файловом узле, достаточно про­
ста. Если файл непрерывен, то его размещение на диске описывается двумя 32-
разрядными числами. Первое число представляет собой указатель на первый блок
файла, а второе — длину экстента, то есть число следующих друг за другом блоков,
принадлежащих файлу1. Если файл фрагментирован, то размещение его экстентов
описывается в файловом узле дополнительными парами 32-разрядных чисел,
фрагментация происходит, когда на диске нет непрерывного свободного участка,
достаточно большого, чтобы разместить файл целиком. В этом случае файл прихо­
дится разбивать на несколько экстентов и располагать их на диске раздельно. Фай­
ловая система HPFS старается разместить экстенты фрагментированного файла
как можно ближе друг к другу, чтобы сократить время позиционирования головок
чтения/записи жесткого диска. Для этого HPFS использует статистику, а также
старается условно резервировать хотя бы 4 Кбайт места в конце файлов, которые
растут. Еще один способ снижения фрагментации файлов — это размещение в раз­
ных полосах диска файлов, растущих навстречу друг другу, а также файлов, от­
крытых разными потоками выполнения или процессами.

В файловом узле можно разместить информацию максимум о 8 экстентах файла.
Если файл имеет больше экстентов, то в его файловый узел записывается указа­
тель на блок размещения (allocation block), который может содержать до 40 ука­
зателей на экстенты, или, по аналогии с блоком дерева каталогов, на другие бло­
ки размещения. Таким образом, двухуровневая структура блоков размещения
может хранить информацию о 480 секторах, что позволяет работать с файлами
размером до 7,68 Гбайт. На практике размер файла не может превышать 2 Гбайт,
но это обусловлено текущей реализацией интерфейса прикладного программи­
рования [26].

Упоминавшаяся выше полоса каталогов находится в центре диска и используется
для хранения каталогов. Как и все остальные полосы, она имеет размер 8 Мбайт.
Однако если она будет полностью заполнена, HPFS начинает располагать катало­
ги файлов в других полосах. Расположение этой информационной структуры в се­
редине диска значительно сокращает среднее время позиционирования головок
чтения/записи, тем более что обращения к корневому каталогу достаточно часты.
Действительно, для перемещения головок чтения/записи из произвольного места
Диска в его центр требуется в два раза меньше времени, чем для перемещения к краю
Диска, где находится корневой каталог в случае файловой системы FAT. Уже толь­
ко одно это обеспечивает существенно более высокую производительность фай­
ловой системы HPFS по сравнению с FAT. Аналогичное замечание справедливо и
Для системы NTFS, которая тоже располагает свою главную таблицу файлов в на­
чале дискового пространства, а не в его середине (см. раздел «Файловая система
N TFS»), Тестирование показывает, что HPFS является самой быстрой файловой
системой.

Однако существенно больший вклад в производительность HPFS (по сравнению
с Размещением полосы каталогов в середине логического диска) дает использова-

Из этого следует, что максимальный объем диска может составить (23 2 - 1) х 512 — 2 Тбайт.

182 Глава 6. Файловые с и с т е м ^

ние метода сбалансированных двоичных деревьев для хранения и поиска информа­
ции о местонахождении файлов. Как известно, в файловой системе FAT каталог
имеет линейную неупорядоченную специальным образом структуру, поэтому прИ

поиске файла требуется последовательно просматривать его с самого начала
В HPFS структура каталога представляет собой сбалансированное дерево с запи­
сями, расположенными в алфавитном порядке (рис. 6.5). Каждая запись, входя­
щая в состав двоичного дерева (Binary Tree, B-Tree), содержит атрибуты файла
указатель на соответствующий файловый узел, информацию о времени и дате со­
здания файла, о времени и дате последнего обновления и обращения, об объеме
данных, содержащих расширенные атрибуты, счетчик обращений к файлу, инфор­
мацию о длине имени файла и само имя, другую информацию.

Root Block

Leaf Block Leaf Block

Leaf Block Leaf Block

Рис. 6.5. Сбалансированное двоичное дерево

Файловая система HPFS при поиске файла в каталоге просматривает только не­
обходимые ветви двоичного дерева, отбрасывая те записи каталога, про которые
заведомо известно, что они не относятся к искомому файлу. Например, если имя
файла начинается с символа, расположенного в первой части используемого ал­
фавита, то незачем искать его среди записей каталога, описывающих файлы, име­
на которых начинаются с символов, расположенных во второй части этого алфа­
вита. Далее, если искомый элемент каталога расположен во второй половине первой
части (то есть во второй четверти), то незачем перебирать имена файлов, располо­
женных в первой четверти каталога. И так далее. Очевидно, что такой метод во
много раз эффективнее, чем последовательное чтение всех записей в каталоге, что
имеет место в системе FAT. Для того чтобы найти искомый файл в каталоге (точ­
нее, указатель на его информационную структуру F-node), организованном на прин­
ципах сбалансированных двоичных деревьев, большинство записей вообще читать
не нужно. В результате для поиска информации о файле необходимо выполнить
существенно меньшее количество операций чтения с диска.
Действительно, если, например, каталог содержит 4096 файлов, то файловая сис­
тема FAT потребует чтение в среднем 64 секторов для поиска нужного файла внутри
такого каталога, в то время как HPFS осуществит чтение всего только 2-4 секто­
ров (в среднем) и найдет искомый файл. Несложные расчеты позволяют увидеть
явные преимущества HPFS над FAT. Так, например, при использовании 40 вхо­
дов на блок блоки дерева каталогов с двумя уровнями могут содержать 1640 вхо

Файловая система HPFS 1 8 3

дов, а дерева каталогов с тремя уровнями — уже 65 640 входов. Другими словами,
некоторый файл может быть найден в типичном каталоге из 65 640 файлов макси­
мум за три обращения. Это намного лучше файловой системы FAT, где в самом
плохом случае для нахождения файла нужно прочитать более чем 4000 секторов.
Размер каждого из блоков, в терминах которых выделяются каталоги в текущей
реализации HPFS, равен 2 Кбайт. Размер записи, описывающей файл, зависит от
размера имени файла. Если имя занимает 13 байт (для формата 8.3) то 2-килобай-
товый блок вмещает до 40 дескрипторов файлов. Блоки связаны друг с другом по­
средством списковой структуры (как и дескрипторы экстентов) для облегчения
последовательного обхода.

При переименовании файлов может возникнуть так называемая перебалансиров­
ка дерева. Фактически, попытка переименования может потерпеть неудачу из-за
недостатка дискового пространства, даже если файл непосредственно в размерах
не увеличился. Во избежание этого «бедствия» HPFS поддерживает маленький
пул свободных блоков, которые могут использоваться при «аварии». Эта опера­
ция может потребовать выделения дополнительных блоков на заполненном дис­
ке. Указатель на этот пул свободных блоков сохраняется в резервном блоке.

Важное значение для повышения скорости работы с файлами имеет снижение их
фрагментации. В HPFS считается, что если файл содержит больше одного экстен­
та, он считается фрагментированным. Снижение фрагментации файлов сокраща­
ет время позиционирования и время ожидания за счет уменьшения количества
перемещений головок, необходимых для доступа к данным файла. Алгоритмы ра­
боты файловой системы HPFS функционируют таким образом, чтобы по возмож­
ности размещать файлы в последовательных смежных секторах диска, что в по­
следующем обеспечит максимально быстрый доступ к данным. В системе FAT,
наоборот, запись следующей порции данных в первый же свободный кластер не­
избежно приводит к фрагментации файлов. То есть HPFS записывает данные не в
первый попавшийся сектор, а, если это предоставляется возможным, в смежные
секторы диска. Это позволяет несколько снизить число перемещений головок чте­
ния/записи от дорожки к дорожке. Когда данные дописываются в существующий
файл, HPFS сразу же резервирует как минимум 4 Кбайт непрерывного простран­
ства на диске. Если же часть этого пространства не потребовалась, то после закры­
тия файла она высвобождается для дальнейшего использования. Файловая систе­
ма HPFS равномерно размещает непрерывные файлы по всему диску для того,
чтобы впоследствии без фрагментации обеспечить их возможное увеличение. Если
Же файл не может быть увеличен без нарушения его непрерывности, HPFS опять-
таки резервирует 4 Кбайт смежных блоков как можно ближе к основной части
файла с целью сократить время позиционирования головок чтения/записи и вре­
мя поиска соответствующего сектора.

Очевидно, что степень фрагментации файлов на диске зависит как от числа распо­
ложенных на нем файлов, их размеров и размеров самого диска, так и от характера
11 интенсивности самих дисковых операций. Незначительная фрагментация фай-
Лов практически не сказывается на быстродействии операций с файлами. Файлы,
с°стоящие из 2-3 экстентов, практически не снижают производительности HPFS,

1 8 4 Глава 6. Файловые система

так как эта файловая система следит за тем, чтобы области данных, принадлежа­
щие одному и тому же файлу, располагались как можно ближе друг к другу. Файл
из трех экстентов имеет только два нарушения непрерывности, и, следовательно
для его чтения потребуется всего лишь два небольших перемещения головки дис­
ка. Программы (утилиты) дефрагментации, имеющиеся для этой файловой систе­
мы по умолчанию, считают наличие двух-трех экстентов у файла нормой'. Прак­
тика показывает, что в среднем на диске имеется не более 2 % файлов, имеющих
три и более экстентов [26]. Даже общее количество фрагментированных файлов,
как правило, не превышает 3 %. Такая ничтожная фрагментация оказывает пре­
небрежимо малое влияние на общую производительность системы.

Теперь кратко рассмотрим вопрос надежности хранения данных в HPFS. Любая
файловая система должна обладать средствами исправления ошибок, возникаю­
щих при записи информации на диск. Система HPFS для этого использует меха­
низм аварийного замещения (HotFix),

Если файловая система HPFS сталкивается с проблемой в процессе записи дан­
ных на диск, она выводит на экран соответствующее сообщение об ошибке. Затем
HPFS сохраняет информацию, которая должна была быть записана в дефектный
сектор, в одном из запасных секторов, заранее зарезервированных на этот случай.
Список свободных запасных блоков хранится в резервном блоке HPFS. При обна­
ружении ошибки во время записи данных в нормальный блок HPFS выбирает один
из свободных запасных блоков и сохраняет эти данные в нем. Затем файловая си­
стема обновляет карту аварийного замещения в резервном блоке. Эта карта пред­
ставляет собой просто пары двойных слов, каждое из которых является 32-разряд­
ным номером сектора. Первый номер указывает на дефектный сектор, а второй —
на тот сектор среди имеющихся запасных секторов, который и был выбран для
замены плохого. После замены дефектного сектора запасным карта аварийного
замещения записывается на диск, и на экране появляется всплывающее окно, ин­
формирующее пользователя о произошедшей ошибке записи на диск. Каждый раз,
когда система выполняет запись или чтение сектора диска, она просматривает карту
аварийного замещения и подменяет все номера дефектных секторов номерами за­
пасных секторов с соответствующими данными. Следует заметить, что это преоб­
разование номеров существенно не влияет на производительность системы, так
как оно выполняется только при физическом обращении к диску, а не при чтении
данных из дискового кэша. Очистка карты аварийного замещения автоматически
выполняется программой CHKDSK при проверке диска HPFS. Для каждого за­
мещенного блока (сектора) программа CHKDSK выделяет новый сектор в наибо­
лее подходящем для файла (которому принадлежат данные) месте жесткого диска.
Затем программа перемещает данные из запасного блока в этот сектор и обновля­
ет информацию о положении файла, что может потребовать новой балансировки
дерева блоков размещения. После этого CHKDSK вносит поврежденный сектор

1 Например, программа HPFSOPT из набора утилит GammaTech по умолчанию не дефрагментируе*
файлы, состоящие из трех и менее экстентов, а файлы, которые имеют большее количестве эксте
тов, приводятся к 2 пли 3 экстентам, ежели это возможно (файлы объемом в несколько десятк
мегабайтов всегда будут фрагментнровапы, ибо максимально возможный размер экстента, как
помните, составляет 8 Мбайт).

файловая система HPFS 185

список дефектных блоков, который хранится в дополнительном блоке HPFS,
возвращает освобожденный сектор в список свободных запасных секторов ре-

ервного блока. Затем удаляет запись из карты аварийного замещения и записы­
вает отредактированную карту на диск.

gce основные файловые объекты в HPFS, в том числе файловые узлы, блоки раз­
мещения и блоки каталогов, имеют уникальные 32-разрядные идентификаторы
« указатели на свои родительские и дочерние блоки. Файловые узлы, кроме того,
содержат сокращенное имя своего файла или каталога. Избыточность и взаимо­
связь файловых структур HPFS позволяют программе CHKDSK полностью восста­
навливать файловую структуру диска, последовательно анализируя все файловые
узлы, блоки размещения и блоки каталогов. Руководствуясь собранной инфор­
мацией, CHKDSK реконструирует файлы и каталоги, а затем заново создает бито­
вые карты свободных секторов диска. Запуск программы CHKDSK следует осу­
ществлять с соответствующими ключами. Так, например, один из вариантов работы
этой программы позволяет найти и восстановить удаленные файлы.
HPFS относится к так называемым монтируемым файловым системам. Это озна­
чает, что она не встроена в операционную систему, а добавляется к ней при необ­
ходимости. Файловая система HPFS монтируется оператором IFS (Installable File
System — монтируемая файловая система) в файле CONFIG.SYS. Оператор IFS всегда
помещается в первой строке этого конфигурационного файла. В приводимом да­
лее примере оператор IFS устанавливает (монтирует) файловую систему HPFS с
кэшем в 2 Мбайт, длиной записи кэша в 8 Кбайт и автоматической процедурой
проверки дисков С: и D:.

IFS=E:\0S2\HPFS.IFS /CACHE:2048 /CRECL:4 /AUTOCHECKrCD

Для запуска программы управления процессом кэширования следует прописать

в файле CONFIG.SYS еще одну строку:

RUN=E:\0S2\CACHE.EXE /Lazy:On /Bufferldle:2000 /Dlskldle:4000 /MaxAge:8000 /DirtyMax:256
/ReadAhead:On

В этой строке включается режим отложенной записи, устанавливаются парамет­
ры работы этого режима, а также включается режим упреждающего чтения дан­
ных, что в целом позволяет существенно сократить количество обращений к диску
и ощутимо повысить быстродействие файловой системы. Так, ключ Lazy с пара­
метром On включает отложенную запись, а с параметром Off — выключает. Ключ
Bufferldle определяет время в миллисекундах, в течение которого буфер кэша дол­
жен оставаться в неактивном состоянии, чтобы стало возможным осуществить за­
пись данных из кэша на диск. По умолчанию (то есть если не прописывать этот
ключ явным образом) это время равно 500 мс. Ключ Diskldle задает время (в мил­
лисекундах), по истечении которого диск должен оставаться в неактивном состоя­
нии, чтобы стало возможным осуществить запись данных из кэша на диск. По умол-

анию это время равно 1 с. Этот параметр позволяет избежать записи из кэша на
1 с к в о время выполнения других операций с диском.

1юч МахАде задает время (тоже в миллисекундах), по истечении которого часто
с°хРаняемые в кэше данные помечаются как «устаревшие» и при переполнении
' Ша Могут быть замещены новыми. По умолчанию это время равно 5 с.

file:///0S2/CACHE

186 Глава 6. Файловые системы

Остальные подробности установки параметров и возможные значения ключей име­
ются в файлах помощи операционной системы OS/2 Warp. Однако здесь следует ска-
зать и еще об одной системе управления файлами — речь идет о реализации HPFS для
работы на серверах, функционирующих под управлением OS/2. Эта система управ­
ления файлами получила название HPFS386.IFS. Ее принципиальные отличия от
системы управления файлами HPFS.IFS, прежде всего, заключаются в том, что она
позволяет посредством более полного использования технологии расширенных атри­
бутов организовать ограничения на доступ к файлам и каталогам с помощью соответ­
ствующих списков управления доступом (ACL). Эта технология, как известно, ис­
пользуется в файловой системе NTFS. Кроме того, в системе управления файлами
HPFS386.IFS, в отличие от HPFS.IFS, нет ограничений на объем памяти, выделяемой
для кэширования файловых записей. Иными словами, при наличии достаточного объ­
ема оперативной памяти объем файлового кэша может составлять несколько десят­
ков мегабайтов, в то время как для обычной HPFS.IFS этот объем не может превы­
шать двух мегабайтов, что по сегодняшним понятиям безусловно мало. Наконец, при
установке режимов работы файлового кэша HPFS386.IFS есть возможность явным
образом указать алгоритм упорядочивания запросов на запись. Наиболее эффектив­
ным алгоритмом можно считать так называемый «элеваторный», при котором опера­
ции записи данных из кэша на диск предварительно упорядочиваются таким образом,
чтобы минимизировать время, отводимое на позиционирование головок чтения/за­
писи. Головки чтения/записи при этом перемещаются от внешних цилиндров к внут­
ренним и по ходу своего движения осуществляют запись и чтение данных в соответ­
ствии со специальным образом упорядочиваемых списков запросов на дисковые
операции. Напомним, что такой алгоритм управления запросами на дисковые опера­
ции имеет название циклического сканирования (C-Scan).

Приведем пример записи строк в конфигурационном файле CONFIG.SYS, в которых
устанавливается система HPFS386.IFS и определяются параметры работы ее под­
системы кэширования:

IFS=E:\IBM386FS\HPFS386.IFS /AUTOCHECK:EGH
RUN=E:\IBM386FS\CACHE386.EXE /Lazy:0n /Buffer ld le:4000 /MaxAge:20000

Эти записи следует понимать следующим образом. При запуске операционной сис­
темы в случае обнаружения флага, означающего, что не все файлы были закрыты в
процессе предыдущей работы, система управления файлами HPFS386.IFS сначала
запустит программу проверки целостности файловой системы для томов Е:, G: и Н:.
Для кэширования файлов при работе этой системы управления файлами устанав­
ливается режим отложенной записи со временем жизни буферов до 20 с. Остальные
параметры и, в частности, алгоритм обслуживания запросов, устанавливаются в
файле HPFS386.INI, который в данном случае располагается в каталоге E:\IBM386FS.
Опишем кратко некоторые наиболее интересные параметры, управляющие раоо-
той кэша. Прежде всего, отметим, что файл HPFS386.INI разбит на несколько сек­
ций. В настоящий момент мы рассмотрим секцию [ULTIMEDIA]:

[ULTIMEDIA]
QUEUES0RT»{FIF01ELEVATOR|DEFAULT | CURRENT}
QUEUEMETH0D={PRIORITY|N0PRI0RITY|DEFAULT!CURRENT}
QUEUEDEPTH={1... 2551 DEFAULT|CURRENT}

file:///IBM386FS/HPFS386
file:///IBM386FS/CACHE386.EXE
file://E:/IBM386FS

[файловая система HPFS 1 8 7

Параметр QUEUESORT задает способ ведения очереди запросов к диску. Он может
принимать значения FIFO, ELEVATOR, DEFAULT и CURRENT. Если задано значение FIFO,

то каждый новый запрос просто добавляется в конец очереди, то есть запросы вы­
полняются в том порядке, в котором они поступают в систему. Однако можно упо­
рядочить некоторое количество запросов по возрастанию номеров дорожек. Если
задано значение ELEVATOR, то включается режим поддержки упорядоченной очере­
ди запросов. При этом запросы начинают обрабатываться по алгоритму ELEVATOR
(он же C-SCAN, или «режим циклического сканирования» [11, 26]). Напомним,
что этот алгоритм подразумевает, что головка чтения/записи сканирует диск в
выбранном направлении (например, в направлении возрастания номеров дорожек),
останавливаясь для выполнения запросов, находящихся на пути следования.

Если для параметра QUEUESORT задано значение DEFAULT, то выбирается значение
по умолчанию, которым является ELEVATOR. Если задано значение CURRENT, то оста­
ется в силе тот алгоритм, который был выбран при инициализации менеджером
дисковых операций (DASD-manager).

Параметр QUEUEMETHOD определяет, должны ли учитываться приоритеты запросов
при построении очереди. Он может принимать значения PRIORITY, NOPRIORITY, DEFAULT
и CURRENT. Если задано значение NOPRIORITY, то все запросы включаются в общую
очередь, а их приоритеты игнорируются. Если задано значение PRIORITY, то менед­
жер дисковых операций будет поддерживать несколько очередей запросов, по од­
ной на каждый приоритет. Когда менеджер дисковых операций передает запросы на
исполнение драйверу диска, он сначала выбирает запросы из самой приоритетной
очереди, потом из менее приоритетной и т. д. Приоритеты назначает система управ­
ления файлами HPFS386.IFS, а распределены они следующим образом.

1. Останов операционной системы с закрытием всех файлов или экстренная за­
пись из-за сбоя питания. Это самый высокий приоритет.

2. Страничный обмен.

3. Обычные запросы активного сеанса (foreground session), то есть задачи, с кото­
рой в данный момент работает пользователь и окно которой является актив­
ным.

4. Обычные запросы фонового сеанса (background session), то есть задачи, запу­
щенной пользователем, с которой он в данный момент непосредственно не ра­
ботает (говорят, что эта задача выполняется на фоне текущих активных вычис­
лений). Приоритеты 3 и 4 равны, если в файле CONFIG.SYS имеется строка:
RI0RITY_DISK_IO=NO

Р< Опережающее чтение и низкоприоритетные запросы страничного обмена (пред­
варительная выборка страниц).

"• Отложенная запись и прочие запросы, не требующие немедленной реакции.

• Предварительная выборка. Это самый низкий приоритет.
с л и для параметра QUEUEMETHOD задано значение DEFAULT, то выбирается значе-

Че по умолчанию, которым является PRIORITY. Если задано значение CURRENT, то
Стается в силе тот метод, который был выбран менеджером дисковых операций

пРи инициализации.

1 8 8 Глава 6. Файловые система

Параметр QUEUEDEPTH задает глубину просмотра очереди при выборке запросов
Он может принимать значения из диапазона (1...255), а также DEFAULT и CURRENT
Если в качестве значения параметра QUEUEDEPTH задано число, то оно определяет
количество запросов, которые должны находиться в очереди дискового адаптера
одновременно. Например, для SCSI-адаптеров имеет смысл поддерживать такую
длину очереди, при которой они смогут загрузить все запросы в свои аппаратные
структуры. Если очередь запросов к адаптеру будет слишком короткой, то аппара­
тура будет работать с неполной загрузкой, а если она будет слишком длинной, драй­
вер SCSI-адаптера окажется перегруженным «лишними» запросами. Поэтому ра­
зумным значением для QUEUEDEPTH является число, немного превышающее длину
аппаратной очереди команд адаптера. Если для параметра QUEUEDEPTH задано зна­
чение DEFAULT, то глубина просмотра очереди определяется автоматически на ос­
новании значения, которое рекомендовано драйвером дискового адаптера. Если
задано значение CURRENT, то глубина просмотра очереди не изменяется. В текущей
реализации значение CURRENT эквивалентно значению DEFAULT.

Итак, текущие умолчания для системы управления файлами HPFS386.IFS имеют вид:

QUEUES0RT=FIF0
QUEUEMETHOD=DEFAULT
QUEUEDEPTH=2

А текущие умолчания для менеджера дисковых операций таковы:

QUEUESORT=ELEVATOR
QUEUEMETHOD=PRIORITY
0иЕЮЕРТН=<зависит от адаптера диска>

Значения, устанавливаемые для менеджера дисковых операций по умолчанию,
можно поменять с помощью параметра/QF:

BASEDEV=0S2DASD.DMD /QF:{1|2|3}

Здесь: 1 соответствует выражению QUEUES0RT=FIF0, 2 — выражению QUEUEME-
TH0D=N0PRI0RITY, 3 - выражениям QUEUESORT=FIFO и QUEUEMETHOD=NOPRIORITY.

Наконец, скажем еще несколько слов о монтируемых системах управления файла­
ми (Installable File System, IFS), представляющих собой специальное системное про­
граммное обеспечение («драйверы») для доступа к разделам, отформатированным
под другую файловую систему. Это очень удобный и мощный механизм добавления
в ОС новых файловых систем и замены одной системы управления файлами на дру­
гую. Сегодня, например, для OS/2 уже реально существуют IFS-модули для файло­
вой системы VFAT (FAT с поддержкой длинных имен), FAT32, Ext2FS (файловая
система Linux), NTFS (правда, пока только для чтения). Для работы с данными на
компакт-дисках имеется система CDFS.IFS. Есть и система управления файлами
FTP.IFS, позволяющая монтировать ftp-архивы как локальные диски. Механизм
монтируемых систем управления файлами был перенесен и в систему Windows N1 •

Файловая система NTFS
В название файловой системы NTFS (New Technology File System - файловая си­
стема новой технологии) входят слова «новая технология». Действительно, фай
ловая система NTFS по сравнению с широко известной FAT16 (и даже FAT3 ;

ftp://FTP.IFS

(Сайловая система NTFS 1 8 9

содержит ряд значительных усовершенствований и изменений. С точки зрения
пользователей файлы по-прежнему хранятся в каталогах, ныне при работе в среде
Windows часто называемых папками (folders). Однако в ней появилось много но­
вых особенностей и возможностей.

Основные в о з м о ж н о с т и файловой с и с т е м ы NTFS
При проектировании NTFS особое внимание было уделено надежности, механиз­
мам ограничения доступа к файлам и каталогам, расширенной функциональнос­
ти, поддержке дисков большого объема и пр. Начала разрабатываться эта система
в рамках проекта OS/2 v.3, поэтому она переняла многие интересные особенности
файловой системы HPFS.

Надежность
Высокопроизводительные компьютеры и системы совместного использования
должны обладать повышенной надежностью, которая является ключевым элемен­
том структуры и функционирования NTFS. Система NTFS обладает определен­
ными средствами самовосстановления. Она поддерживает различные механизмы
проверки целостности системы, включая ведение журналов транзакций, позволя­
ющих воспроизвести файловые операции записи по специальному системному
журналу. При протоколировании файловых операций система управления фай­
лами фиксирует в специальном служебном файле (журнале) происходящие изме­
нения. В начале операции, связанной с изменением файловой структуры, делается
соответствующая пометка. Если во время файловых операций происходит какой-
нибудь сбой, то из-за упомянутой отметки операция остается помеченной как не­
завершенная. При выполнении процедуры проверки целостности файловой сис­
темы после перезагрузки машины эти незавершенные операции отменяются, и
файлы возвращаются в исходное состояние. Если же операция изменения данных
в файлах завершается нормальным образом, то в файле журнала эта операция от­
мечается как завершенная.

Поскольку NTFS разрабатывалась как файловая система для серверов, для кото­
рых очень важно обеспечить бесперебойную работу без перезагрузок, в ней, как и в
HPFS, для повышения надежности был введен механизм аварийной замены де­
фектных секторов резервными. Другими словами, если обнаруживается сбой при
чтении данных, то система постарается прочесть эти данные, переписать их в спе­
циально зарезервированное для этой цели пространство диска, а дефектные секто­
ра пометить как плохие и более к ним не обращаться.

Ограничения доступа к файлам и каталогам
аиловая система NTFS поддерживает объектную модель безопасности операци-

нНой системы Windows NT и рассматривает все тома, каталоги и файлы как само­
д е л ь н ы е объекты. Система NTFS обеспечивает безопасность на уровне фай-
в и каталогов. Это означает, что разрешения доступа к томам, каталогам и файлам
ГУТ зависеть от учетной записи пользователя и тех групп, к которым он принад-
*ит. Каждый раз, когда пользователь обращается к объекту файловой системы,

190 Глава 6. Файловые системы

его разрешения на доступ проверяются по уже упоминавшемуся списку управле­
ния доступом (ACL) для данного объекта. Если пользователь обладает необходи­
мым уровнем разрешений, его запрос удовлетворяется; в противном случае запрос
отклоняется. Эта модель безопасности (см. подраздел «Модель безопасности Win­
dows NT/2000/XP» в главе 11) применяется как при локальной регистрации поль­
зователей на компьютерах с Windows NT, так и при удаленных сетевых запросах.

Расширенная функциональность
Система NTFS проектировалась с учетом возможного расширения. В ней были
воплощены многие дополнительные возможности — повышенная отказоустойчи­
вость, эмуляция других файловых систем, мощная модель безопасности, парал­
лельная обработка потоков данных и создание файловых атрибутов, определяе­
мых пользователем. Эта система также позволяет сжимать как отдельные файлы,
так и целые каталоги. В последней, пятой, версии NTFS введена возможность шиф­
рования хранимых файлов. Здесь следует, однако, заметить, что у шифрующей
файловой системы пока больше недостатков, чем достоинств, поэтому на практи­
ке ее применять не рекомендуется.

Наконец, в системах Windows 2000/XP в случае использования файловой систе­
мы NTFS можно включить квотирование, при котором пользователи могут хра­
нить свои файлы только в пределах отведенной им квоты на дисковое простран­
ство.

Поддержка дисков большого объема
Система NTFS создавалась с расчетом на работу с большими дисками. Она уже
достаточно хорошо проявляет себя при работе с томами объемом 300-400 Мбайт
и выше. Чем больше объем диска и чем больше на нем файлов, тем больший
выигрыш мы получаем, используя NTFS вместо FAT16 или FAT32. Максималь­
но возможные размеры тома (и размеры файла) составляют 16 Эбайт (один экза-
байт равен 204 байт, или приблизительно 16 000 млрд гигабайт), в то время как
при работе под Windows NT/2000/XP диск с FAT16 не может иметь размер бо­
лее 4 Гбайт, а с FAT32 — 32 Гбайт. Количество файлов в корневом и некорневом
каталогах при использовании NTFS не ограничено. Поскольку в основу структу­
ры каталогов NTFS заложена эффективная структура данных, называемая «дво­
ичным деревом», время поиска файлов в NTFS не связано линейной зависимо­
стью с их количеством (в отличие от систем на базе FAT). Наконец, помимо
немыслимых размеров томов и файлов, система NTFS также обладает встроен­
ными средствами сжатия, что позволяет экономить дисковое пространство и раз­
мещать в нем больше файлов. Напомним, что сжатие можно применять как к
отдельным файлам, так и целым каталогам и даже томам (и впоследствии отме­
нять или назначать их по своему усмотрению).

Структура т о м а с файловой с и с т е м о й NTFS
Рассмотрим теперь структуру файловой системы NTFS. Наиболее полно она опй"
сана в [16] и [42]. Мы же здесь опишем только основные моменты.

файловая система NTFS 191

Прежде всего, одним из основных понятий, используемых при работе с NTFS, яв­
ляется понятие тома (volume). Том означает логическое дисковое пространство,
которое может быть воспринято как логический диск, то есть том может иметь
букву (буквенный идентификатор) диска. Частным случаем тома является логи­
ческий диск. Возможно также создание отказоустойчивого тома, занимающего
несколько разделов, то есть поддерживается использование RAID-технологии.
RAID — это сокращение от Redundant Array of Inexpensive Disks, что дословно
переводится как «избыточный массив недорогих дисков». RAID-технология по­
зволяет получать дисковые подсистемы из нескольких обычных дисков, которые
обладают либо существенно более высоким быстродействием, либо более высо­
кой надежностью, либо тем и другим одновременно. К сожалению, в файловой си­
стеме NTFS5, применяемой в Windows 2000/XP, для использования RAID-техноло­
гии в случае, когда эти системы устанавливаются не поверх старой системы Windows
NT 4.0, а заново, требуются так называемые динамические диски. Это фирменный за­
крытый стандарт распределения дискового пространства, не имеющий ничего об­
щего с тем промышленным стандартом, который использует главную загрузочную
запись и был описан в предыдущей главе. Основным недостатком нового стандар­
та от Microsoft является абсолютная несовместимость с другими операционными
системами. Другими словами, если жесткий диск с помощью оснастки Управле­
ние дисками был преобразован в динамический, то на этот компьютер более не
удастся установить никакую операционную систему, а установленные ранее сис­
темы, отличные от Windows 2000/XP/2003, не смогут даже запуститься. Кроме
этого, обратное преобразование динамического диска до так называемой «базовой
модели» (так компания Microsoft назвала промышленный стандарт описания ло­
гической структуры диска) невозможно без полной потери данных. Единствен­
ным достоинством динамической модели дисков является возможность преобра­
зования томов или изменения размера логического диска прямо «на лету», то есть
бея последующей обязательной перезагрузки операционной системы. Технологию
изменения размеров дисковых томов «на лету» разработала фирма Veritas Software.
Компания Microsoft лицензировала эту технологию, ввела дополнительные огра­
ничения на ее использование и назвала динамическими дисками.

Как и многие другие файловые системы, NTFS делит все полезное дисковое про­
странство тома на кластеры — блоки данных, адресуемые как единицы данных.
Файловая система NTFS поддерживает размеры кластеров от 512 байт до 64 Кбайт;
неким стандартом же считается кластер размером 2 или 4 Кбайт. К сожалению,
при увеличении размера кластера свыше 4 Кбайт становится невозможным сжи­
мать файлы и каталоги.

осе дисковое пространство в NTFS делится на две неравные части (рис. 6.6). Пер­
вые 12 % диска отводятся под так называемую зону MFT (Master File Table — глав-

ая таблица файлов). Эта зона предназначена для таблицы MFT (с учетом ее буду­
щего роста), представляющей собой специальный файл со служебной информацией,

з воляющей определять местонахождение всех остальных файлов. Запись каких-
0 Данных в зону MFT невозможна — она всегда остается пустой, чтобы при

сте MFT по возможности не было фрагментации. Остальные 88 % тома пред-
вляют собой обычное пространство для хранения файлов.

1 9 2 Глава 6. Файловые системы

!Г
s

t
2

З
он

а

Зона для размещения
файлов и каталогов

за
пи

се
й

 M
FT

CD

I
К

оп
ия

 п
ер

вы
х

' Зона для размещения
файлов и каталогов

Рис. 6.6. Структура тома NTFS

Очевидно, что структуру данных, называемую главной таблицей файлов, можно
рассматривать как файл. В этом файле MFT хранится информация обо всех ос­
тальных файлах диска, в том числе и о самом файле MFT. Таблица MFT поделена
на записи фиксированного размера в 1 Кбайт, и каждая запись соответствует како­
му-либо файлу (в общем смысле этого слова). Первые 16 файлов носят служеб­
ный характер и недоступны через интерфейс операционной системы — они назы­
ваются метафайлами, причем самый первый метафайл — это сам файл MFT. Часть
диска с метафайлами — единственная часть диска, имеющая строго фиксирован­
ное положение. Копия этих же 16 записей таблицы MFT (для надежности, посколь­
ку они очень важны) хранится в середине тома. Оставшаяся часть файла MFT
может располагаться, как и любой другой файл, в произвольных местах диска —
восстановить его положение можно с помощью самого файла MFT. Для этого до­
статочно взять первую запись таблицы MFT.

Упомянутые первые 16 файлов NTFS (метафайлы) являются служебными; каж­
дый из них отвечает за какой-либо аспект работы системы. Метафайлы находятся
в корневом каталоге тома NTFS. Их имена начинаются с символа «$», хотя полу­
чить какую-либо информацию о них стандартными средствами сложно. В табл. 6.6
приведены основные метафайлы и указано их назначение. Таким образом, можно
узнать, например, сколько операционная система тратит на каталогизацию тома,
посмотрев размер файла SMFT.

Таблица 6 . 6 . Метафайлы NTFS

Имя метафайла Описание

SMFT

$MFTmirr

SLogFile

$Volume

$AttrDef

$
SBitmap

$Boot

Сам файл с таблицей MFT

Копия первых 16 записей таблицы MFT, размещенная посередине тома

Файл журнала

Служебная информация — метка тома, версия файловой системы т. Д.

Слисок стандартных атрибутов файлов на томе

Корневой каталог

Битовая карта свободного места тома

Загрузочный сектор (если раздел загрузочный)

файловая система NTFS Т У З

Имя метафайла Описание

$Quota Файл, в котором записаны права пользователей на использование
дискового пространства (этот файл начал использоваться лишь
в Windows 2000 с системой NTFS 5.0)

$Upcase Файл с таблицей соответствия строчных и прописных букв в именах файлов.
В NTFS имена файлов записываются в кодировке Unicode (всего доступно
65 тысяч различных символов, поэтому искать сточные и прописные
эквиваленты символов — нетривиальная задача)

Итак, все файлы тома представлены в таблице MFT. За исключением собственно
данных, в этой структуре хранится вся информация о файлах: имя файла, размер,
положение на диске отдельных фрагментов и т. д. Если для информации не хвата­
ет одной записи MFT, то используются несколько записей, причем не обязательно
последовательных. Если файл имеет не очень большой размер, тогда в ход идет
довольно удачное решение: данные файла хранятся прямо в соответствующей за­
писи таблицы MFT в оставшемся от служебных данных месте. Таким образом,
файлы, занимающие не более сотни байтов, обычно не имеют своего «физическо­
го» воплощения в основной файловой области — все данные таких файлов хра­
нятся прямо в таблице MFT.

Файл на томе в системе NTFS идентифицируется так называемой файловой ссыл­
кой (file reference), которая представляется как 64-разрядное число. Файловая ссыл­
ка состоит из номера файла, который соответствует позиции его файловой записи
в таблице MFT, и номера последовательности. Последний увеличивается всякий
раз, когда данная позиция в MFT используется повторно, что позволяет файловой
системе NTFS выполнять внутренние проверки целостности.
Каждый файл на диске в системе NTFS представлен с помощью потоков данных
(streams)1, то есть у файла нет «просто данных», а есть «потоки данных». Чтобы
правильнее понять эту сущность (поток данных), достаточно знать, что один из
потоков имеет привычный нам смысл — это собственно данные файла. Кстати,
большинство атрибутов файла (за исключением основных) — это тоже потоки дан­
ных. Таким образом, получается, что основой файла является номер записи в таб­
лице MFT, а все остальное, включая его потоки данных, не обязательно. Данный
подход довольно удобен. Так, файлу можно назначить еще один поток данных, за­
писав в него любые данные, например информацию об авторе и содержании фай­
ла, как это сделано в Windows 2000 (эта информация представлена на одной из
вкладок диалогового окна свойств файла). Здесь имеется определенная аналогия
с Расширенными атрибутами в HPFS. Интересно, что эти дополнительные потоки
не видны стандартными средствами для работы с файлами операционной систе­
мы, наблюдаемый размер файла — это лишь ^размер потока основных (традицион­
ных) данных. Можно, к примеру, удалить файл нулевой длины, и при этом освобо-

ИТся несколько мегабайтов свободного места — просто потому, что какая-нибудь
итрая» программа или технология назначила ему поток дополнительных (аль-

еРнативных) данных такого большого размера. Однако на самом деле опасаться

' н "
утать с потоками выполнения (threads).

1 9 4 Глава 6 . Файловые системы

подобных ситуаций не следует (хотя гипотетически они возможны), поскольку
пока механизм потоков данных в полной мере не используются. Просто необходи­
мо иметь в виду, что файл в системе NTFS — это более глубокое и глобальное по­
нятие, чем мы себе представляем.

Стандартные атрибуты файлов и каталогов на томе NTFS имеют фиксированные
имена и коды типа (табл. 6.7).

Таблица 6 . 7 . Атрибуты файлов в системе NTFS

Системный атрибут Описание атрибута

Стандартная
информация о файле

Список атрибутов

Имя файла

Дескриптор защиты

Данные

Корень индекса,
размещение индекса,
битовая карта (только
для каталогов)

Расширенные
атрибуты HPFS

Традиционные атрибуты («только для чтения», «скрытый»,
«архивный», «системный»), отметки времени, включая время
создания или последней модификации, число каталогов,
ссылающихся на файл

Список атрибутов файла и файловая ссылка на запись в таблице MFT,
в которой расположен каждый из атрибутов. Файловая ссылка
используется, если файлу необходимо более одной записи в MFT

Имя файла в кодировке Unicode. Файл может иметь несколько имен,
подобно тому как это имеет место в UNIX. Это случается, когда
имеется связь POSIX к данному файлу или если у файла есть
автоматически сгенерированное имя в формате 8.3

Структура данных, соответствующая списку управления доступом
(ACL) и предохраняющая файл от несанкционированного доступа.
Дескриптор защиты определяет, кто владелец файла и кто имеет те
или иные разрешения доступа к нему

Собственно данные файла, его содержимое. В NTFS у файла
по умолчанию есть один безымянный атрибут данных и могут быть
дополнительные именованные атрибуты данных. У каталога нет
атрибута данных по умолчанию, но он может иметь необязательные
именованные атрибуты данных

Атрибуты, используемые для индексов имен файлов в больших
каталогах

Атрибуты, используемые для реализации расширенных атрибутов
HPFS для подсистемы OS/2, а также OS/2-клиентов файл-серверов
Windows NT

Разрешения NTFS
Разрешения NTFS (NTFS permissions) — это набор специальных расширенных ат­
рибутов файла или каталога (папки), заданных для ограничения доступа пользо­
вателей к этим объектам. Они имеются только на томах, где установлена файловая
система NTFS. Разрешения обеспечивают гибкую защиту, так как их можно при­
менять и к каталогам, и к отдельным файлам; они распространяются как на ло
кальных пользователей (работающих на компьютерах, где находятся защищеннЫ
папки и файлы), так и на пользователей, подключающихся к ресурсам по сет

гВайловая система NTFS 1 9 5

Не следует путать разрешения с правами. Это совершенно разные понятия; по­
дробнее об этом написано в подразделе «Модель безопасности Windows NT/2000/
ХР». К сожалению, в технической литературе да и в обиходе часто путают эти тер­
мины. Истоком этого прежде всего являются ошибки перевода оригинальных анг­
лоязычных материалов.

Разрешения NTFS служат, прежде всего, для защиты ресурсов от локальных пользо­
вателей, работающих за компьютером, на котором располагается ресурс. Однако
их можно использовать и для удаленных пользователей, подключающихся к об­
щей папке по сети. Очевидно, что в этом случае на пользователей действуют два
механизма ограничения в доступе к ресурсам: сначала сетевой, а уже затем локаль­
ный, файловый. Поэтому итоговые разрешения на доступ будут определяться как
минимальные из сетевых и файловых разрешений. Здесь необходимо сказать, что
итоговые сетевые разрешения на доступ к ресурсам, которыми будет обладать
пользователь при работе в сети, вычисляются как максимум разрешений в списке
разрешений доступа, поскольку пользователь может быть членом нескольких групп,
которые упомянуты в списке. Аналогично и для разрешений NTFS: пользователь
получает максимальные разрешения, перечисленные в списке управления досту­
пом, и только разрешение No Access (нет доступа)1 может перечеркнуть все осталь­
ные разрешения.

Разрешения NTFS обеспечивают высокую избирательность защиты: для каждого
файла в папке можно установить свои разрешения. Например, одному пользо­
вателю можно позволить считывать и изменять содержимое файла, другому толь­
ко считывать, третьему вообще запретить доступ. Заметим, однако, что настоя­
тельно рекомендуется устанавливать разрешения в списках ACL, используя не
учетные записи отдельных пользователей, а учетные записи групп пользовате­
лей.

Итак, каждый файловый объект имеет свой список управления доступом. Этот
список имеет приоритет над списком управления доступом того каталога, в кото­
ром находится файловый объект. Подобно корневому каталогу файл-каталог, в от­
личие от простого файла, является объектом контейнерного типа, то есть он мо­
жет содержать другие файловые объекты. При создании НСРОГО файлового объекта
он наследует разрешения NTFS. Поэтому при копировании файловых объектов
они получают разрешения доступа, совпадающие с родительскими. Однако при,
перемещении файлов и каталогов в пределах одного диска списки управления до­
ступом не меняются. Объясняется этот факт просто. Списки управления доступом
являются одним из потоков данных файлового объекта, и доступ к ним осуществ­
ляется через элемент каталога. Поэтому изменение информации о местонахожде­
нии файла никак не должно влиять ни на один из потоков данных файла. Если же
файлы (и подкаталоги) переместить с одного диска с NTFS на другой, то на новом
Диске создаются новые элементы каталогов и они должны унаследовать разреше­
ния доступа того контейнера, в котором они создаются. Это очень важное обстоя-
ельство, и при работе с разрешениями NTFS не следует о нем забывать.

Windows 2000/XP вместо ста1Гдартного разрешения No Access устанавливается запрет (deny) на
соответствующее разрешение.

1 9 6 Глава 6. Файловые системы

Мы уже упоминали про списки ACL. Они могут быть у многих объектов. В NTFS
у каждого файлового объекта на самом деле имеется два списка. Первый называ­
ется DACL (Discretionary ACL— дискреционный список управления доступом)
Именно этот список описывает ограничения на доступ к файловому объекту, пе­
речисляя группы и пользователей и указывая те операции, которые разрешены и
запрещены. Этот список может изменить любой пользователь, имеющий разреше­
ние на изменение разрешений (change permissions) для данного файлового объек­
та. Такое разрешение обычно обозначается буквой Р (от permissions — разреше­
ния).

Второй список называется SACL (System ACL — системный список управления
доступом). Этот список предназначен для аудита, и его могут составлять и редак­
тировать только администраторы системы. Изначально списки SACL пусты, но их
можно сформировать. В зависимости от того, успех или отказ в той или иной опе­
рации над файловым объектом необходимо проконтролировать, администратор
формирует список SACL Элементами такого списка являются записи типа:

SI0 - разрешение - успех/отказ

Здесь аббревиатура SID означает Security Identifier (идентификатор безопасно­
сти). Напомним, что во многих операционных системах для аутентификации и ав­
торизации пользователей используются учетные записи (см. главы 1 и 11). Учетные
записи бывают групповыми и пользовательскими. В системах класса Windows NT
(2000/ХР) каждой учетной записи поставлен в однозначное соответствие ее иден­
тификатор (в данном случае — SID).

Обрабатываться элементы списка SACL будут только в том случае, если в системе
включен аудит на доступ к файловым объектам. Если в системе разрешен аудит
файловых операций, то операционная система при их выполнении сравнивает за­
писи в SACL с запросом и с записями в списке DACL и фиксирует в журнале
безопасности соответствующие события.

Нас, прежде всего, должны интересовать списки DACL, которые и определяют
разрешения на доступ к файлам и каталогам.

Каждый файловый объект имеет так называемую маску доступа (access mask).
Маска доступа включает стандартные (standard), специфичные (specific) и родо­
вые (generic) права доступа. Мы называем их здесь правами, чтобы отличать от тех
разрешений, которые перечисляются в пользовательском интерфейсе,
а Стандартные права доступа определяют операции, которые являются общи­

ми для всех защищенных объектов. Право Read_Control позволяет прочитать
информацию из дескриптора безопасности объекта. Право Write_DAC дает
возможность изменить дискреционный список прав доступа. Право Write J3wner
позволяет записать (изменить) владельца объекта. Право Synchronize дае
возможность использовать объект для синхронизации. Наконец, есть пра­
во Delete, которое позволяет удалить объект.

• Специфичные права доступа указывают основные права, характерные ДЛ
файловых объектов. Так, например, специфичные права Read_Data, Write_Da
и Append_Data позволяют прочитать данные, записать информацию и, соот
ветственно, добавить данные к файлу. Права Read_Attributes, Write_Attributes

файловая система NTFS 1 9 7

и Read_EA, Write_EA позволяют, соответственно, прочитать или записать ат­
рибуты или расширенные атрибуты файла или каталога. Наконец, такое
специфичное право доступа, как Execute, позволяет запустить файл на вы­
полнение.

• Родовые права доступа используются системой; они определяют комби­
нации стандартных и специфичных прав. Например, родовое право досту­
па Generic_Read, примененное к файлу, включает в себя следующие специ­
фичные и стандартные права: Read_Control, File_Read_Data, File_Read_Attributes,
File_Read_EA, Synchronize.

На основе рассмотренных выше прав доступа, которые используются при програм­
мировании, для пользователей, работающих с файлами, создан механизм разре­
шений. Дело в том, что управлять доступом пользователей к файлам и каталогам
на основе маски доступа, то есть путем указания соответствующих битов, неудоб­
но. Поэтому для практического администрирования применяются разрешения
NTFS, которые позволяют скрыть от пользователя низкоуровневый механизм прав
доступа.

Поскольку операционные системы Windows 2000/XP нынче становятся основны­
ми для персональных компьютеров, а в дисциплинах учебного плана многие очень
важные вопросы, касающиеся практической работы в этих системах, к сожалению,
не изучаются, мы изложим не только основные теоретические вопросы работы с
разрешениями NTFS, но и осветим некоторые детали интерфейса.

Итак, разрешения NTFS по-разному представлены в операционных системах Win­
dows NT 4.0 и семействе систем Windows 2000/XP. Отличия эти, прежде всего,
касаются интерфейса, то есть программа Проводник (Explorer) по-разному ото­
бражает те разрешения, которые на самом деле присвоены файловому объекту в
виде разрешений доступа и обрабатываются на программном уровне. Разрешения
в Windows 2000/XP ближе к тем специфичным, стандартным и родовым правам
доступа, о которых мы говорили выше, однако для управления доступом к файлам
они не так удобны, как разрешения Windows NT 4.0.

Для начала рассмотрим механизм разрешений NTFS для систем Windows NT 4.0.
Во многих отношениях он является более простым и, соответственно, более по­
нятным.

Разрешения NTFS в Windows NT 4.0
В NTFS для Windows NT 4.0 разрешения на доступ к файлам и каталогам бывают
индивидуальными, стандартными и специальными.

индивидуальные разрешения. Под индивидуальными разрешениями понимают
набор прав, позволяющий предоставлять пользователю доступ того или иного типа.
& Windows NT 4.0 этих разрешений всего шесть: Read (чтение), Write (запись),
execute (выполнение), Delete (удаление), Change Permissions (смена разрешений) и
ake Ownership (смена владельца). В табл. 6.8 описаны разрешенные пользователю

°перации с файлом или каталогом при предоставлении одного из индивидуаль-
Н Ь 1 Х Разрешений NTFS на файловый объект.

198 Глава 6. Файловые системщ

Таблица 6 . 8 . Индивидуальные разрешения на файлы и каталоги

Индивидуальное
разрешение NTFS

Разрешенные операции
с каталогом

Разрешенные операции
с файлом

Чтение (R — Read)

Запись (W — Write)

Выполнение
(X — execute)

Удаление (D — Delete)

Смена разрешений
(Р — change
Permissions)

Смена владельца
(О — take Ownership)

Просмотр имен каталога,
файлов в нем, разрешений
на доступ к нему, атрибутов
каталога и сведений
о его владельце

Добавление в каталог файлов
и папок; изменение атрибутов
каталога; просмотр атрибутов
каталога, сведений о владельце
и разрешений на доступ к нему

Просмотр атрибутов каталога;
изменения во вложенных папках;
просмотр разрешений на доступ
к каталогу и сведений
о его владельце

Удаление каталога

Изменение разрешений

на доступ к каталогу

Назначение себя владельцем
каталога

Просмотр содержимого файла,
разрешений на доступ к нему, его
атрибутов и сведений о его
владельце

Просмотр разрешений на доступ
к файлу и сведений о владельце;
изменение атрибутов файла;
изменение и добавление данных
файла

Просмотр разрешений на доступ
к файлу, его атрибутов и сведений
о его владельце; запуск файла
(если он является исполняемым)

Удаление файла

Изменение разрешений

на доступ к файлу

Назначение себя владельцем
файла

Индивидуальные разрешения по отдельности дают весьма ограниченные возмож­
ности на доступ к файлам и каталогам и управление ими в разделах NTFS. Обыч­
но же для выполнения над файлами или папками действий определенного уровня
требуются наборы индивидуальных разрешений. Такие наборы в файловой систе­
ме NTFS называются стандартными разрешениями. Именно они доступны в списке
Type of Access (Тип доступа) диалоговых окон File Permissions и Directory Permissions
программы Explorer (Проводник) в Windows NT.

Стандартные разрешения. Для того чтобы не использовать каждый раз сочетания
индивидуальных разрешений, введены так называемые стандартные разрешения
NTFS, которыми все и пользуются в большинстве случаев. Они представляют со­
бой наиболее применяемые (с точки зрения разработчиков Microsoft) комбинации
индивидуальных разрешений. Одновременное назначение нескольких индиви­
дуальных разрешений для файла или каталога значительно упрощает админи­
стрирование.

Приведем таблицу стандартных разрешений на файлы и каталоги системе N ГгЬ
(табл. 6.9). В таблице перечислены стандартные разрешения для папок и указаны
соответствующие им индивидуальные разрешения NTFS.
Теперь поясним эти разрешения. Далее первыми в скобках записаны разрешен
на каталог, вторыми — разрешения на файлы в этом каталоге.
• List (RX, разрешения не указаны) - просмотр. Пользователь может только пр<^

смотреть содержимое папки (список файлов и вложенных папок) И пере

Файловая система NTFS 1 9 9

ти во вложенную папку, но не может получить доступ к новым файлам, со­
зданным в этой папке.

п Add (WX, разрешения не указаны) — добавление. Пользователь может создать
в папке новые файлы и вложенные папки, но не может просмотреть ее теку­
щее содержимое.

р Add & Read (RWX, RX) — чтение и запись. Пользователь может создавать в папке
новые файлы или вложенные папки, читать содержимое самой папки и со­
держащихся в ней файлов и вложенных папок, а также запускать прило­
жения, которые находятся в этой папке, но не может изменить содержимое
файлов в этой папке.

• Change (RWXD, RWXD) — изменение. Пользователь может прочитать, создавать и
удалять файлы и вложенные папки, а также запускать находящиеся в этой
папке приложения.

Q Full Control (все разрешения, все разрешения) — полный доступ. Пользователь мо­
жет читать, создавать и изменять файлы и вложенные папки, изменять раз­
решения на папку и файлы внутри нее, а также стать владельцем папки и
содержащихся в ней файлов.

Таблица 6 . 9 . Стандартные разрешения на файлы и каталоги

Стандартные разрешения Комбинации индивидуальных разрешений

Каталоги Файлы

No Access Нет доступа Нет разрешений Нет разрешений

List Просмотр (RX) Не указано

Read Чтение (RX) (RX)

Add Добавление (WX) Не указано

Add & Read Чтение и запись (RWX) (RX)

Change Изменение (RWXD) (RWXD)

Full Control Полный доступ Все разрешения Все разрешения

Разрешение No Access (нет доступа) является самым сильным в том плане, что оно
запрещает любой доступ к файлу или папке, даже если пользователь является чле­
ном группы, которой дано разрешение на доступ. Стандартное разрешение No Access
устанавливается, когда снимают все индивидуальные разрешения NTFS. Имейте
в виду: оно обозначает не отсутствие разрешений, а явный запрет на доступ и от­
меняет для пользователя все разрешения, установленные в остальных строках спис­
ка управления доступом.

"азрешения Full Control (полный доступ) и Change (изменение) отличаются тем, что
второе не позволяет менять разрешения и владельца объекта, то есть среди состав­
ляющих его индивидуальных разрешений отсутствуют разрешения на смену раз­
решений (Р) и смену владельца (0).

^ПеЦиалъные разрешения. И наконец, специальные разрешения. Это комбинации
чдивпдуальных разрешений R, W, X, D, Р и 0, не совпадающие ни с одним из разреше-

200 Глава 6. Файловые системы

ний стандартного набора. Установить специальные разрешения NTSF в диалоговом
окне разрешений (File Permissions или Directory Permissions) можно только правкой
существующих разрешений для пользователя или группы. Иными словами, чтобы
установить для кого-нибудь специальное разрешение NTFS, вам придется устано­
вить сначала какое-либо из стандартных разрешений и лишь затем преобразовать
его в специальное. При этом для папок можно отдельно регулировать доступ как к
самой папке (Special Directory Access), так и к находящимся в ней файлам (Special File
Access). Таким образом, удается весьма дифференцированно управлять доступом
пользователей к файлам и папкам на томах с файловой системой NTFS.

Применение разрешений NTFS
Разрешения NTFS присваиваются учетным записям пользователей и групп так
же, как и разрешения доступа к общим сетевым ресурсам. Пользователь может
получить разрешение либо непосредственно, либо являясь членом одной или не­
скольких групп, имеющих разрешение.

Применение разрешений NTFS для каталогов сходно с применением разрешений
доступа к общим ресурсам. Управление разрешениями на каталог или файл осу­
ществляется, как правило, через Проводник. Для этого необходимо щелкнуть на
объекте правой кнопкой мыши, выбрать в контекстном меню команду Properties
(Свойства) и в открывшемся окне перейти на вкладку Security (Безопасность). На этой
вкладке имеется три раздела. Первый (верхний) с кнопкой Permissions (Разреше­
ния) как раз и позволяет просмотреть и/или изменить разрешения, то есть управ­
лять списком DACL. Второй (средний) с кнопкой Audit (Аудит) предназначен для
управления списком S ACL. Наконец, последний (нижний) раздел с кнопкой Owner
(Владелец) предназначен для просмотра и/или смены владельца файлового объекта.

Кроме того, имеется возможность устанавливать и/или изменять списки разреше­
ний NTFS через интерфейс командной строки. Для этого используется следую­
щая команда:

CACLS ИмяФайла [/Т] [/Е] [/С] [/G ИмяПользователя:доступ] [/R ИмяПользователя [...]] [/Р
ИмяПользователя:доступ [...]] [/D ИмяПользователя [...]]

Здесь:

а ИмяФайла — имя файла со списком управления доступом;

Q /Т — замена списка управления доступом для указанных файлов в текущем ка­

талоге и всех подкаталогах;

• /Е — изменение списка управления доступом вместо его замены;

О /С — продолжение выполнения при ошибках отказа в доступе;

• /G ИмяПользователя:доступ — определение разрешений для указанных пользо­
вателей, где параметр доступ равен:

• R — чтение,

• С — изменение (запись),

• F — полный доступ;

Q /R ИмяПользователя — отзыв разрешений для пользователя (только вместе с клю
чом/Е);

/Р ИмяПользователя:доступ — замена разрешений для указанного пользователя,

где параметр доступ равен:

• N — отсутствует,

• R — чтение,

• С — изменение (запись),

• F — полный доступ;

• /D ИмяПользователя — запрет на доступ для указанного пользователя.

Для выбора нескольких файлов используются подстановочные знаки. В команде
можно указать несколько пользователей.

У каждого файлового объекта имеется его владелец и создатель. Пользователь,
создавший файл или папку на томе NTFS, становится владельцем этого файла или
папки. Владелец всегда имеет право назначать и изменять разрешения на доступ к
своему файлу или папке, даже если у него нет соответсвующего разрешения. Если
этот пользователь является членом группы Administrators (Администраторы), фак­
тическим владельцем становится вся группа Administrators.

Изначально все пользователи имеют все разрешения на файлы и каталоги. Оче­
видно, что при этом они могут изменять эти разрешения, которые оформляются в
виде списка. Напомним, что такой список называют списком ACL, хотя на самом
деле, как уже упоминалось, речь идет о списке DACL. Список DACL состоит из
записей АСЕ (Access Control Entry — запись списка управления доступом); в каж­
дой из них указывается идентификатор безопасности (SID)1 и соответствующая
ему маска доступа, которая строится на основе заданных пользователем разреше­
ний. Другими словами, каждому идентификатору безопасности ставится в соот­
ветствие перечень индивидуальных разрешений. Например, список на некий ка­
талог может выглядеть следующим образом:

• Everyone — List;

• Engineers —Add & Read;

• Managers — Change;

• Administrators-Full Control.

Этот список следует понимать так: все имеют разрешение на просмотр содержи­
мого данного каталога, члены группы Engineers имеют разрешение на чтение со­
держимого каталога и запись в него новых файлов, члены группы Managers могут
изменять свободно каталог и его содержимое, а члены группы Administrators имеют
все разрешения.

в отличие от разрешений доступа к общим (сетевым) ресурсам, разрешения NTFS
защищают локальные ресурсы. В частности, файлы и папки, содержащиеся в дан­
ном каталоге, могут иметь иные разрешения, нежели он сам.

•это уникальная 128-разрядная кодовая запись, на основании которой операционная система может
Идентифицировать пользователей. Именно SID сопровождает все запросы к операционной системе
На получение того или иного ресурса, в результате чего она может вычислить и разрешения, и нрава
Пользователей на запрашиваемый ресурс.

2 0 2 Глава 6. Файловые система

Напомним, что в системе Windows NT 4.0 разрешения NTFS для файла превали­
руют над разрешениями для каталога, в котором он содержится. Например^ если
пользователь имеет разрешения Read (чтение) для каталога и Write (запись) для вло­
женного в него файла, то он сможет записать данные в файл, но не сможет создать
новый файл в этом каталоге.

Как и разрешения доступа к общим (сетевым) ресурсам, фактические разрешения
NTFS для пользователя — это комбинация разрешений пользователя и групп, чле­
ном которых он является. Единственное исключение — разрешение No Access (нет
доступа): оно отменяет все остальные разрешения.

При указании разрешений в соответствующем окне, в которое мы попадаем после
выбора в контекстном меню команды Properties (Свойства), перехода на вкладку
Security (Безопасность) и щелчка на кнопке Permissions (Разрешения), следует обра­
тить внимание на информацию, указанную в списке Type of Access (Тип доступа)
в скобках рядом с типом разрешения. В первой паре скобок представлены индиви­
дуальные разрешения на доступ к самой папке, во второй — на доступ к файлам,
создаваемым в этой папке. Некоторые разрешения для папки не меняют разреше­
ний для файлов (Not Specified). При этом пользователь не сможет обращаться к фай­
лам в этой папке, если только разрешения на доступ для него не заданы как-ни­
будь иначе (например, через разрешения, устанавливаемые на отдельные файлы).
Если при форматировании тома на него устанавливается файловая система NTFS,
группе Everyone (все) автоматически присваивается разрешение Full Control (пол­
ный доступ) на этот том. Папки и файлы, создаваемые на этом томе, по умолчанию
наследуют это разрешение.

Разрешения, установленные для пользователя, складываются (аккумулируются)
с разрешениями, установленными для групп, к которым он принадлежит. Напри­
мер, если на доступ к какому-либо файлу для пользователя установлено разреше­
ние Read, а для группы Everyone — разрешение Change, пользователь сможет изме­
нить содержимое файла или удалить его, поскольку любой пользователь всегда
входит в эту группу. Из этого правила есть исключение, когда одним из установ­
ленных разрешений доступа является разрешение No Access. При этом не важно,
кому именно это разрешение предоставлено, пользователю или группе. Разреше­
ние No Access всегда имеет приоритет, поэтому пользователь не сможет получить
доступ к файлу или папке.

Пользователи, имеющие разрешение Full Control на папку, могут удалять файлы
в этой папке независимо от разрешений, установленных на файл (даже если разре­
шением на файл является разрешение No Access). Это следствие того, что система
NTFS удовлетворяет-стандарту POSIX.1. Чтобы решить проблему (если полный
набор разрешений доступа к папке действительно необходим), надо установить
для папки специальный тип доступа, включающий все индивидуальные разреше­
ния R, W, X, D, Р и 0. При этом пользователи получают тот же набор разрешенных
действий, что и при разрешении Full Control, но теряют возможность несанкциони­
рованного удаления файлов в этой папке.

Также важно отметить, что, имея одно только разрешение Change Permission, позво­
ляющее изменять разрешения, пользователь может установить любые разреше­
ния на доступ к файлу или папке.

Пользователь, создающий папку или файл на разделах с файловой системой NTFS,
становится владельцем созданного объекта. Кроме того, владельцем папки или
файла может стать любой пользователь, обладающий стандартным разрешением
Full Control или специальным разрешением Take Ownership. Владелец всегда имеет
возможность прочитать информацию о разрешениях на доступ к папке или файлу
и изменить их, даже если ему ничего не разрешено или ему предоставлено разре­
шение No Access. Отсюда следует, что достаточно дать пользователю разрешение
Take Ownership и он, в конечном счете, сможет получить доступ к файлу или папке
на разделе NTFS.

Разрешения NTFS в Windows 2000/XP
В семействе операционных систем Windows 2000 и Windows XP были существен­
но переработаны и сама система управления файлами, получившая название
NTFS5, и интерфейс, посредством которого можно управлять разрешениями NTFS.
Вместо описанных выше индивидуальных, стандартных и специальных разреше­
ний Windows NT 4.0 теперь в пользовательском интерфейсе имеется перечень из
13 разрешений, которые можно (по аналогии с предыдущей системой) назвать
индивидуальными, хотя Microsoft более этот термин не употребляет1 и называет
их специальными разрешениями. Опишем кратко эти индивидуальные (специаль­
ные) разрешения.

р Traverse Folder/Execute File (Обзор папок/Выполнение файлов):

• Traverse Folder — разрешает (или запрещает) перемещение по папке в поис­
ках файлов или вложенных папок, даже если пользователь не обладает раз­
решением на доступ к просматриваемой папке (это разрешение применимо
только к папкам и только если группа или пользователь не обладает правом
перекрестной проверки, а по умолчанию группа Everyone наделена правом
перекрестной проверки);

• Execute File — разрешает (или запрещает) запуск программ (применимо толь­
ко к файлам).

• List Folder/Read Data (Содержание папки/Чтение данных):

• List Folder — разрешает (или запрещает) просмотр имен файлов и вложен­
ных папок внутри папки (применимо только к папкам);

• Read Data — разрешает (или запрещает) чтение данных из файлов (примени­
мо только к файлам).

Q Read Attributes (Чтение атрибутов). Разрешает (или запрещает) просмотр атрибу­
тов файла или папки, таких как «только для чтения» или «скрытый». Атрибуты
определяются файловой системой NTFS.

0 Read Extended Attributes (Чтение дополнительных атрибутов). Разрешает (или за­
прещает) просмотр дополнительных атрибутов файла или папки. Дополнитель­
ные атрибуты определяются программами и зависят от них. Атрибуты сжатия
файлов NTFS и шифрования относятся к дополнительным.

Целях преемственности терминологии и удобства изложения материала мы тем не менее будем
использовать этот термин.

2 0 4 Глава 6. Файловые системы

Q Create Files/Write Data (Создание файлов/Запись данных):

• Create Files — разрешает (или запрещает) создание файлов в папке (приме­
нимо только к папкам);

• Write Data — разрешает (или запрещает) внесение изменений в файл и заме­
ну имеющегося содержимого (применимо только к файлам).

Q Create Folders/Append Data (Создание папок/Дозапись данных):

• Create Folders — разрешает (или запрещает) создание папок в папке (приме­
нимо только к папкам);

• Append Data — разрешает (или запрещает) внесение изменений в конец фай­
ла, но не изменение, удаление и замену имеющихся данных (применимо толь­
ко к файлам).

Q Write Attributes (Запись атрибутов). Разрешает (или запрещает) смену атрибутов
файла или папки, таких как «только для чтения» или «скрытый». Атрибуты
определяются файловой системой NTFS.

Q Write Extended Attributes (Запись дополнительных атрибутов). Разрешает (или за­
прещает) смену дополнительных атрибутов файла или папки. Дополнитель­
ные атрибуты определяются программами и зависят от них.

Q Delete Subfolders and Files (Удаление подпапок и файлов). Разрешает (или запреща­
ет) удаление вложенных папок и файлов даже при отсутствии разрешения Delete.

Q Delete (Удаление). Разрешает (или запрещает) удаление файла или папки. При
отсутствии этого разрешения требуемый объект (файл или папку) все же мож­
но удалить при наличии разрешения Delete Subfolders and Files для родительской
папки.

a Read Permissions (Чтение разрешений). Разрешает или запрещает чтение разреше­
ний на доступ к файлу или папке, таких как Full Control, Read и Write.

• Change Permissions (Смена разрешений). Разрешает или запрещает чтение разре­
шений на доступ к файлу или папке, таких как Full Control, Read и Write.

• Take Ownership (Смена владельца). Разрешает или запрещает возможность стать
владельцем файла или папки. Владелец файла или папки всегда может изме­
нить разрешения на доступ к ним независимо от любых разрешений, защищаю­
щих файл или папку.

Из перечисленных выше «индивидуальных» разрешений формируются так назы­
ваемые основные разрешения. Они являются аналогом стандартных разрешении
в NTFS4. Принципиальное отличие между стандартными и индивидуальными раз­
решениями в NTFS4 и NTFS5 заключается в том, что теперь имеется 6 основных
разрешений на каталог и 5 основных разрешений на файл. Причем каждое из этих
разрешений может быть в явном виде разрешено или запрещено. То есть каждое
основное разрешение пользователь может разрешить (allow) или запретить (deny)-
Если разрешение не отмечено как разрешенное или запрещенное, то считается, что
оно не запрещено. Таким образом, конкретное разрешение может быть задано тре­
мя способами: разрешено (в явном виде), не запрещено, запрещено. Напомним, что
итоговые разрешения для конкретного пользователя вычисляются как сумма всех

файловая система NTFS 2 0 5

о азрешений по записям АСЕ, образующим список DACL. Например, если в спис­
ке DACL у пользователя имеется разрешение на запись, а членам группы, в кото­
рую он входит, присвоено разрешение на чтение, то этот пользователь будет иметь

иТоговое разрешение и на чтение, и на запись.

Запрет имеет большую силу, нежели явное разрешение. Другими словами, если
встречается АСЕ с явным запретом на некоторое разрешение для конкретного
пользователя или группы, в которую он входит, то это разрешение всегда будет
запрещено для данного пользователя и его группы, даже если в остальных записях
данное разрешение будет помечено как разрешенное.

Если вас не устраивают основные разрешения, то можно сформировать специаль­
ные разрешения как конкретную комбинацию «индивидуальных» разрешений. Для
этого необходимо щелкнуть на кнопке Advanced (Дополнительно). При этом откры­
вается окно управления разрешениями, в котором они перечислены. В этом окне
есть кнопки Add (Добавить), Change (Изменить) и Delete (удалить), которые позволя­
ют добавлять, изменять или удалять выбранные разрешения.

Если в окне свойств безопасности объекта флажки затенены, значит, разрешения
на доступ к данному объекту унаследованы от родительского объекта. Существу­
ют три способа изменения унаследованных разрешений.

• Внесите в разрешения на доступ к родительскому объекту изменения, которые
будут унаследованы данным объектом.

• Явно разрешите (если оно было помечено как запрещенное) или запретите (если
оно было помечено как разрешенное) данное унаследованное разрешение.

а Снимите флажок Inherit from parent the permission entries that apply to child objects.
Include these with entries explicity defined here (Переносить наследуемые от роди­
тельского объекта разрешения на этот объект). В появившемся диалоговом окне
будет предложено выбрать одну из трех альтернатив: скопировать разрешения
родительского объекта (к ним можно будет впоследствии добавить новые), уда­
лить разрешения и сформировать их заново или ничего не трогать и вернуться
к исходному состоянию разрешений. После снятия флажка можно изменять
список разрешений: изменять сами разрешения, удалять пользователей или
группы из списка разрешений, поскольку данный объект больше не будет на­
следовать разрешения на доступ к родительскому объекту.

Разрешения на доступ к файловым объектам должны быть максимально строги­
ми. Это снизит вероятность случайного удаления или изменения важной инфор­
мации. Рекомендуется всегда, когда возможно, назначать разрешения для групп,
а не для отдельных пользователей. Другими словами, следует создавать группы
безопасности, исходя из требований уровня доступа к файлам, и именно этим груп­
пам предоставлять необходимые разрешения. Отдельным пользователям следует
предоставлять разрешения на доступ только в исключительных случаях, когда это
Действительно требуется.

Ри назначении разрешений для папок, в которых расположены приложения или
Н Н ы е справочного характера, то есть практически неизменяемые при рядовой

раооте пользователей, следует заменить стандартное разрешение Full Contorol (пол-

206 Глава 6. Файловые системщ

ный доступ) для группы Everyone (все) на разрешение Read & Execute (чтение и выпол­
нение). Это позволит предотвратить случайное удаление файлов или заражение
их вирусами. Тем пользователям, которые ответственны за обновление хранящих­
ся в папке файлов, можно дать разрешения Change (изменение), Read & Execute (чте­
ние и выполнение), Read (чтение) и Write (запись). Имея их, они смогут выполнять
порученную им работу, но не смогут изменять разрешения. Право на изменение
разрешений следует оставлять за членами группы Администраторы.

В качестве примера управления разрешениями NTFS при работе в Windows 2000/
ХР рассмотрим следующую несложную задачу. Пусть требуется создать папку
Контрольные работы, в которой члены группы Студенты должны иметь возможность
размещать свои файлы и при необходимости даже исправлять их, но чтобы они не
имели возможности читать чужие контрольные работы и удалять файлы. Для груп­
пы Преподаватели должно быть разрешение на чтение этих файлов. Администраторы
должны иметь разрешение Full Control (Полный доступ), чтобы иметь возможность
управлять разрешениями и удалять старые ненужные файлы и панки. После­
довательность действий, которые нужно выполнить для решения этой задачи, мо­
жет быть следующей.

1. Создаем папку Контрольные работы. Переходим на вкладку Security (Безопасность)
в окне Properties (Свойства папки).

2. Снимаем в левом нижнем углу этого окна флажок Inherit from parent the permission
entries that apply to child objects (Переносить наследуемые от родительского объекта
разрешения на этот объект) и копируем разрешения родительского каталога.

3. Щелкаем на кнопке Add (Добавить), в открывшемся окне находим группу Адми­
нистраторы, щелкаем на кнопке Add (Добавить), после чего щелкаем на кнопке 0К
в окне добавления. В окне Security (Безопасность) для каждой новой учетной
записи по умолчанию устанавливается разрешение Read & Execute (Чтение и вы­
полнение), которое предполагает наличие разрешений List (Список содержимого
папки) и Read (Чтение).

4. Устанавливаем для группы Администраторы разрешение Full Control (Полный дос­
туп), для чего достаточно установить соответствующий флажок. Флажки для
остальных разрешений установятся автоматически.

5. Добавляем группу Преподаватели. В окне безопасности для них автоматически
устанавливается разрешение Read & Execute (Чтение и выполнение), что нас впол­
не устраивает.

6. Добавляем группу Студенты. В окне безопасности снимаем флажки для разре­
шений Read & Execute (Чтение и выполнение) и Read (Чтение), оставив разрешение
на получение списка содержимого папки.

7. Поскольку члены группы Студенты должны иметь возможность поместить в пап­
ку Контрольные работы свои файлы, в окне безопасности устанавливаем флажок
для разрешения Write (Запись).

8. Чтобы студенты могли читать и исправлять только свои файлы, добавляем спе­
циальную учетную запись СОЗДАТЕЛЬ-ВЛАДЕЛЕЦ. Поля с разрешениями для нее
окажутся пустыми, однако это не должно нас смущать. Если щелкнуть на кноп

контрольные вопросы и задачи 2 0 7

ке Advanced (Дополнительно), то в открывшемся окне Advanced security settings for
Контрольные работы (Параметры управления доступом для Контрольные работы) мы
увидим, что для учетной записи СОЗДАТЕЛЬ-ВЛАДЕЛЕЦ имеется разрешение Full
Control (Полный доступ).

9 Для того чтобы запретить студентам удалять файлы (и папки) в папке Конт­
рольные работы, необходимо в окне Advanced security settings for Контрольные ра­
боты (Параметры управления доступом для Контрольные работы) выделить группу
Студенты. Далее, щелкнув на кнопке Edit (Показать/Изменить), в открывшемся окне
специальных разрешений установить флажок в столбце Deny (Запретить) для
разрешений, связанных с удалением.

По умолчанию выставленные нами разрешения будут действовать для этой пап­
ки, ее вложенных папок и файлов. Если бы нас не устраивало такое положение
вещей, то, щелкнув на кнопке Edit (Показать/Изменить), в открывшемся окне Per­
mission Entry for Контрольные работы (Элемент разрешения для Контрольные работы)
можно было бы с помощью переключателей Apply onto (Применять) указать, к ка­
ким объектам должны относиться установленные разрешения.

*В качестве дополнительной рекомендации можно посоветовать при просмотре
существующих разрешений NTFS на папки не закрывать окно безопасности
щелчком на кнопке ОК и не щелкать без необходимости на кнопке Apply (Приме­
нить), поскольку в этом случае с достаточно большой вероятностью будут измене­
ны существующие разрешения на файлы и вложенные папки. После просмотра
разрешений, если ничего не нужно менять, следует щелкнуть на кнопке Cancel (От­
мена).

Контрольные вопросы и задачи

Вопросы для проверки
1. Что такое «файловая система»? Что дает использование той или иной файло­

вой системы? Какие файловые системы применяются на персональных компь­
ютерах?

2. Объясните общие принципы устройства файловой системы FAT. Что представ­
ляет собой таблица FAT? Что такое кластер, от чего зависит его размер?

3. Сравните файловые системы FAT16 и FAT32. В чем их достоинства и недо­
статки?

4. Изложите основные принципы работы системы HPFS. За счет чего в файловой
системе HPFS обеспечена высокая производительность?

э- Что означает протоколирование файловых операций? Что оно дает?

"• Перечислите основные возможности файловой системы NTFS. Объясните по­
нятие потока данных в NTFS.

• Расскажите о правилах, которые определяют состояние разрешений на доступ
ПРИ перемещении и копировании файловых объектов на томах с файловой си­
стемой NTFS.

2 0 8 . Глава 6. Файловые системы

8. Что такое стандартные, индивидуальные и специальные разрешения на дос­
туп? Перечислите их и постройте таблицы соответствия стандартных и инди­
видуальных разрешений для NTFS4.

9. Постройте таблицы соответствия стандартных и индивидуальных разрешений
для NTFS5. Не забудьте, что индивидуальные разрешения в Windows 2000/XP
стали называть специальными.

Задания
1. Используя персональный компьютер с установленной на нем ОС Windows NT

или Windows 2000/XP, проверьте правила, которые определяют состояние раз­
решений доступа при перемещении или копировании объектов при использо­
вании NTFS. Расскажите о полученных результатах.

2. Создайте папку с двумя программами (для простоты можно взять Блокнот
и Калькулятор) и обеспечьте, чтобы можно было запускать эти программы, но
нельзя было бы их скопировать, переместить, удалить.

3. Создайте папку Examen, в которую пользователи — члены группы Students — мог­
ли бы записать результаты своей работы, но не смогли бы прочитать чужую
работу и, соответственно, исправить ошибки в своей.

Глава 7. Организация
параллельных
взаимодействующих
вычислений

Мультипрограммные и мультизадачные операционные системы позволяют орга­
низовать не только независимые, но взаимодействующие вычисления. Сама опе­
рационная система как комплекс управляющих и обрабатывающих программных
модулей также функционирует как множество взаимодействующих вычислений.
Проблема синхронизации взаимодействия параллельных вычислительных процес­
сов, обмена данными между ними является одной из важнейших. Существующие
методы синхронизации вычислений и обмена сообщениями различаются по та­
ким параметрам, как удобство программирования параллельных процессов, сто­
имость реализации, эффективность функционирования созданных приложений
и всей вычислительной системы в целом. Операционные системы имеют в своем
составе различные средства синхронизации. Знание этих средств и их правильное
использование позволяет создавать программы, которые при работе осуществля­
ют корректный обмен информацией, а также исключают возможность возникно­
вения тупиковых ситуаций.

В этой главе рассматриваются основные понятия и проблемы, характерные для
параллельных процессов. Описываются основные механизмы синхронизации, да­
ется их сравнительный анализ, приводятся характерные примеры программ, ис­
пользующих данные механизмы.

Независимые и взаимодействующие
вычислительные процессы
Основной особенностью мультипрограммных операционных систем является то,
что в их среде параллельно развивается несколько (последовательных) вычисли­
тельных процессов. С точки зрения внешнего наблюдателя эти последовательные

2 1 0 Глава 7. Организация параллельных взаимодействующих вычислений

вычислительные процессы выполняются одновременно, мы же будем говорцТь

«параллельно». При этом под параллельными понимаются не только процессы
одновременно развивающиеся на различных процессорах, каналах и устройствах
ввода-вывода, но и те последовательные процессы, которые разделяют централь­
ный процессор и в своем выполнении хотя бы частично перекрываются во време­
ни. Любая мультизадачная операционная система вместе с параллельно выполня­
ющимися в ней задачами может быть логически представлена как совокупность
последовательных вычислений, которые, с одной стороны, состязаются за ресурсы
переходя из одного состояния в другое, а с другой — действуют почти независимо
один от другого, но при этом образуя единую систему посредством установления
разного рода связей между собой (путем пересылки сообщений и синхронизирую­
щих сигналов).

Итак, параллельными мы будем называть такие последовательные вычислитель­
ные процессы, которые одновременно находятся в каком-нибудь активном состо­
янии. Два параллельных процесса могут быть независимыми (independed processes)
либо взаимодействующими (cooperating processes).

Независимыми являются процессы, множества переменных которых не пересека­
ются. Под переменными в этом случае понимают файлы данных, а также области
оперативной памяти, сопоставленные промежуточным и определенным в програм­
ме переменным. Независимые процессы не влияют на результаты работы друг дру­
га, так как не могут изменять значения переменных друг у друга. Они могут только
явиться причиной в задержках исполнения друг друга, так как вынуждены разде­
лять ресурсы системы.

Взаимодействующие процессы совместно используют некоторые (общие) перемен­
ные, и выполнение одного процесса может повлиять на выполнение другого. Как мы
уже говорили, при выполнении вычислительные процессы разделяют ресурсы сис­
темы. Подчеркнем, что при рассмотрении вопросов синхронизации вычислитель­
ных процессов из числа разделяемых ими ресурсов исключаются центральный про­
цессор и программы, реализующие эти процессы, то есть с логической точки зрения
каждому процессу соответствуют свои процессор и программа, хотя в реальных си­
стемах обычно несколько процессов разделяют один процессор и одну или несколь­
ко программ. Многие ресурсы вычислительной системы могут совместно использо­
ваться несколькими процессами, но в каждый момент времени к разделяемому
ресурсу может иметь доступ только один процесс. Ресурсы, которые не допускают
одновременного использования несколькими процессами, называются критическими.
Если несколько вычислительных процессов хотят пользоваться критическим ре"
сурсом в режиме разделения, им следует синхронизировать свои действия таким
образом, чтобы ресурс всегда находился в распоряжении не более чем одного И
них. Если один процесс пользуется в данный момент критическим ресурсом, я
все остальные процессы, которым нужен этот ресурс, должны ждать, пока он
освободится. Если в операционной системе не предусмотрена защита от одновр
менного доступа процессов к критическим ресурсам, в ней могут возникать он»
ки, которые трудно обнаружить и исправить. Основной причиной возникновен ^
этих ошибок является то, что процессы в мультипрограммных операционных с

темах развиваются с различными скоростями и относительные скорости развития
каждого из взаимодействующих процессов не подвластны и не известны ни одно­
му из них. Более того, на их скорости могут влиять решения планировщиков, каса­
ющиеся других процессов, с которыми ни одна из этих программ не взаимодей­
ствует. Кроме того, содержание и скорость исполнения одного из них обычно не
известны другому процессу. Поэтому влияние, которое оказывают друг на друга
взаимодействующие процессы, не всегда предсказуемо и воспроизводимо.
Взаимодействовать могут либо конкурирующие процессы, либо процессы, обра­
батывающие информацию совместно. Конкурирующие процессы действуют отно­
сительно независимо друг от друга, однако они имеют доступ к некоторым общим
переменным. Их независимость заключается в том, что они могут работать друг
без друга, поодиночке. Но при своем выполнении они могут работать и параллель­
но, и тогда они иногда начинают конкурировать при обращении к этим общим пе­
ременным. Таким образом, их независимость относительна.

Приведем несколько наиболее известных примеров конкурирующих процессов и
продемонстрируем появление ошибок. В качестве первого примера рассмотрим
работу двух процессов Р1 и Р2 с общей переменной X. Пусть оба процесса асин­
хронно, независимо один от другого, изменяют (например, увеличивают) значе­
ние переменной X, считывая ее значение в локальную область памяти Ri1, при этом
каждый процесс выполняет во времени некоторые последовательности операций
(табл. 7.1). Здесь мы рассмотрим не все операторы каждого из процессов, а только
те, в которых осуществляется работа с общей переменной X. Каждому из операто­
ров мы присвоили некоторый условный номер.

Таблица 7 . 1 . Пример конкурирующих процессов

Номер оператора

1

2

3

Процесс Р1

R1 :=Х

R1 :=R1 + 1

X:=R1

Номер оператора

4

5

6

Процесс Р2

R2:=X

R2:=R2 + 1

X:=R2

Поскольку при мультипрограммировании процессы могут иметь различные ско­
рости исполнения, то может иметь место любая последовательность выполнения
операций во времени. Например, если сначала будут выполнены все операции про­
цесса Р1, а уже потом — все операции процесса Р2 (рис. 7.1) или, наоборот, снача­
ла — операции 4-6, а затем — операции 1-3, то в итоге переменная X получит зна­
чение, равное X + 2.

Р1: (1) R1:=X; (2) R1:=R1+1; (3) X:=R1;

Р2: (4) R2:=X; (5) R2:=R2+1; (6)X:=R2;

, •
Время

Рис. 7 . 1 . Первый вариант развития событий при выполнении процессов

это просто имя переменной для процесса с номером i.

2 1 2 Глава 7. Организация параллельных взаимодействующих вычислений

Однако если в промежуток времени между выполнением операций 1 и 3 буде т

выполнена хотя бы одна из операций 4-6 (рис. 7.2), то значение переменной X пос­
ле выполнения всех операций будет не (X + 2),а(Х + 1).

P1:(1)R1:=X; (2)R1:=R1+1; (3)X:=R1;

Р2: (4)R2:=X; (5)R2:=R2+1; (6)X:=R2;
•

Время

Рис. 7.2. Второй вариант развития событий при выполнении процессов

Понятно, что это очень серьезная ошибка. Например, если бы процессы Р1 и Р2
осуществляли продажу билетов и переменная X фиксировала количество уже про­
данных, то в результате некорректного взаимодействия было бы продано несколь­
ко билетов на одно и то же место. К сожалению, такого рода ошибки трудноулови­
мы, поскольку они иногда возникают, иногда нет.

В качестве второго примера рассмотрим ситуацию, которая еще совсем недавно
была достаточно актуальной для первых персональных компьютеров. Пусть на
персональном компьютере с простейшей однопрограммной операционной систе­
мой (типа MS DOS) установлена некоторая резидентная программа с условным
названием TIME, которая по нажатию комбинации клавиш (например, Ctrl+T) вос­
производит на экране дисплея время в виде 18:20:59, и допустим, что значения
переменных, обозначающих час, минуты и секунды, равны 18,20 и 59 соответствен­
но, причем вывод на дисплей осуществляется справа налево (сначала секунды, за­
тем минуты и, наконец, часы). Пусть сразу же после передачи программой TIME
на дисплей информации «59 секунд» генерируется прерывание от таймера, и зна­
чение времени обновляется: 18:21:00.

После этого программа TIME, прерванная таймером, продолжит свое выполне­
ние, и на дисплей будут выданы значения: минуты (21), часы (18). В итоге на экра­
не мы увидим: 18:21:59.

Рассмотрим теперь несколько иной случай развития событий обновления значе­
ний времени по сигналу таймера. Если программа ведения системных часов после
вычислений количества секунд 59 + 1 = 60 и замены его на 00 прерывается от на­
жатия клавиш Ctrl+T, то есть программа не успевает осуществить пересчет количе­
ства минут, то время, индицируемое на дисплее, станет равным 18:20:00. И в этом
случае мы получим неверное значение времени.

Наконец, в качестве третьего примера приведем пару процессов, которые изменя­
ют различные поля записей служащих какого-либо предприятия [17]. Пусть про­
цесс АДРЕС изменяет домашний адрес служащего, а процесс СТАТУС — его долж­
ность и зарплату. Пусть каждый процесс для выполнения своей функции копиру^
всю запись СЛУЖАЩИЙ в свою рабочую область. Предположим, что каждый
процесс должен обработать некоторую запись ИВАНОВ. Предположим также, что
после того как процесс АДРЕС скопировал запись ИВАНОВ в свою рабочую об­
ласть, но до того как он записал скорректированную запись обратно, процесс С
ТУС скопировал первоначальную запись ИВАНОВ в свою рабочую область.

цазависимые и взаимодействующие вычислительные процессы 2 1 3

Изменения, выполненные тем из процессов, который первым запишет скорректи­
рованную запись назад в файл СЛУЖАЩИЕ, будут утеряны, и, возможно, никто

0б этом не узнает.
Чтобы предотвратить некорректное исполнение конкурирующих процессов вслед­
ствие нерегламентированного доступа к разделяемым переменным, необходимо
ввести понятие взаимного исключения, согласно которому два процесса не должны
одновременно обращаться к разделяемым переменным.

Процессы, выполняющие общую совместную работу таким образом, что результа­
ты вычислений одного процесса в явном виде передаются другому, то есть они
обмениваются данными и именно на этом построена их работа, называются со­
трудничающими. Взаимодействие сотрудничающих процессов удобнее всего рас­
сматривать в схеме производитель-потребитель (produces-consumer), или, как ча­
сто говорят, поставщик-потребитель.

Кроме реализации в операционной системе средств, организующих взаимное ис­
ключение и, тем самым, регулирующих доступ процессов к критическим ресур­
сам, в ней должны быть предусмотрены средства, синхронизирующие работу вза­
имодействующих процессов. Другими словами, процессы должны обращаться друг
к другу не только ради синхронизации с целью взаимного исключения при обра­
щении к критическим ресурсам, но и ради обмена данными.

Допустим, что «поставщик» — это процесс, который отправляет порции информа­
ции (сообщения) другому процессу, имя которого — «потребитель». Например,
некоторая задача пользователя, порождающая данные для вывода их на печать,
может выступать как поставщик, а системный процесс, который выводит эти стро­
ки на устройство печати, — как потребитель. Один из методов, применяемых при
передаче сообщений, состоит в том, что заводится пул (pool)1 свободных буферов,
каждый из которых может содержать одно сообщение. Заметим, что длина сооб­
щения может быть произвольной, но ограниченной размером буфера.

В этом случае между процессами «поставщик» и «потребитель» будем иметь оче­
редь заполненных буферов, содержащих сообщения. Когда поставщик хочет по­
слать очередное сообщение, он добавляет в конец этой очереди еще один буфер.
Потребитель, чтобы получить сообщение, забирает из очереди буфер, который стоит
в ее начале. Такое решение, хотя и кажется тривиальным, требует, чтобы постав­
щик и потребитель синхронизировали свои действия. Например, они должны сле­
дить за количеством свободных и заполненных буферов. Поставщик может пере­
давать сообщения только до тех пор, пока имеются свободные буферы. Аналогично,
потребитель может получать сообщения, только если очередь не пуста. Ясно, что
Для учета заполненных и свободных буферов нужны разделяемые переменные,
поэтому, так же как и для конкурирующих процессов, для сотрудничающих про­
цессов тоже возникает необходимость во взаимном исключении.

а к им образом, до окончания обращения одной задачи к общим переменным сле-
Ует исключить возможность обращения к ним другой задачи. Эта ситуация и на-

°вокупность однородных динамически распределяемых объектов, например блоков памяти одина­
ковой длины.

214 Глава 7. Организация параллельных взаимодействующих вычислений

зывается взаимным исключением. Другими словами, при организации различно­
го рода взаимодействующих процессов приходится организовывать взаимное ис­
ключение и решать проблему корректного доступа к общим переменным (крити­
ческим ресурсам). Те места в программах, в которых происходит обращение
критическим ресурсам, называются критическими секциями (Critical Section, CS)
Решение проблемы заключается в организации такого доступа к критическому
ресурсу, при котором только одному процессу разрешается входить в критичес­
кую секцию. Данная задача только на первый взгляд кажется простой, ибо крити­
ческая секция, вообще говоря, не является последовательностью операторов про­
граммы, а является процессом, то есть последовательностью действий, которые
выполняются этими операторами. Другими словами, несколько процессов могут
выполнять критические секции, использующие одну и ту же последовательность
операторов программы.

Когда какой-либо процесс находится в своей критической секции, другие процес­
сы могут, конечно, продолжать свое исполнение, но без входа в их критические
секции. Взаимное исключение необходимо только в том случае, когда процессы
обращаются к разделяемым (общим) данным. Если же они выполняют операции,
которые не ведут к конфликтным ситуациям, процессы должны иметь возмож­
ность работать параллельно. Когда процесс выходит из своей критической секции,
то одному из остальных процессов, ожидающих входа в свои критические секции,
должно быть разрешено продолжить работу (если в этот момент действительно
есть процесс в состоянии ожидания входа в свою критическую секцию).

Обеспечение взаимного исключения является одной из ключевых проблем парал­
лельного программирования. При этом можно перечислить требования к крити­
ческим секциям [17, 54].

Q В любой момент времени только один процесс должен находиться в своей кри­
тической секции.

• Ни один процесс не должен бесконечно долго находиться в своей критической

секции.

• Ни один процесс не должен бесконечно долго ожидать разрешение на вход в
свою критическую секцию. В частности:

• никакой процесс, бесконечно долго находящийся вне своей критической
секции (что допустимо), не должен задерживать выполнение других про­
цессов, ожидающих входа в свои критические секции (другими словами,
процесс, работающий вне своей критической секции, не должен блокиро­
вать критическую секцию другого процесса);

• если два процесса хотят войти в свои критические секции, то принятие р
шения о том, кто первым войдет в критическую секцию, не должно о
бесконечно долгим.

Q Если процесс, находящийся в своей критической секции, завершается естеств ^
ным или аварийным путем, то режим взаимного исключения должен быть ^
менен, с тем чтобы другие процессы получили возможность входить в свои Щ
тические секции.

Иьедства синхронизации и связи взаимодействующих процессов 2 1 5

было предложено несколько способов решения этой проблемы: программных и

япаратных; локальных низкоуровневых и глобальных высокоуровневых; предус­
матривающих свободное взаимодействие между процессами и требующих строго-

V- то соблюдения протоколов.

Средства синхронизации
и связи взаимодействующих
вычислительных процессов
gee известные средства решения проблемы взаимного исключения основаны на
использовании специально введенных аппаратных возможностей. К этим аппарат­
ным возможностям относятся: блокировка памяти, специальные команды типа
«проверка и установка» и механизмы управления системой прерываний, которые
позволяют организовать такие средства, как семафорные операции, мониторы, по­
чтовые ящики и др. С помощью перечисленных средств можно разрабатывать вза­
имодействующие процессы, при исполнении которых будут корректно решаться
все задачи, связанные с проблемой критических секций. Рассмотрим эти средства
в следующем порядке по мере их усложнения, перехода к функциям операцион­
ной системы и увеличения предоставляемых ими удобств, опираясь на уже древ­
нюю, но все же еще достаточно актуальную работу Дейкстры [10]. Заметим, что
этот материал позволяет в полной мере осознать проблемы, возникающие при орга­
низации параллельных взаимодействующих вычислений. Эта работа Дейкстры по­
лезна, прежде всего, с методической точки зрения, поскольку она позволяет по­
нять наиболее тонкие моменты в этой проблематике.

Использование блокировки памяти
при синхронизации параллельных процессов
Все вычислительные машины и системы (в том числе и с многопортовыми блока­
ми оперативной памяти) имеют средство для организации взаимного исключения,
называемое блокировкой памяти. Блокировка памяти запрещает одновременное
исполнение двух (и более) команд, которые обращаются к одной и той же ячейке
памяти. Блокировка памяти имеет место всегда, то есть это обязательное условие
Функционирования компьютера. Соответственно, поскольку в некоторой ячейке
памяти хранится значение разделяемой переменной, то получить доступ к ней
Может только один процесс, несмотря на возможное совмещение выполнения ко-
Манд во времени на различных процессорах (или на одном процессоре, но с кон-
Веиерной организацией параллельного выполнения команд).

"Механизм блокировки памяти предотвращает одновременный доступ к разделяе­
мой переменной, но не предотвращает чередование доступа. Таким образом, если
кРитические секции исчерпываются одной командой обращения к памяти, данное
РеДство может быть достаточным для непосредственной реализации взаимного
сключенпя. Если же критические секции требуют более одного обращения к па-
Ч т и, то задача становится сложной, но алгоритмически разрешимой. Рассмотрим

2 1 6 Глава 7. Организация параллельных взаимодействующих вычисляй

различные попытки использования механизма блокировки памяти для организ
ции взаимного исключения при выполнении критических секций и покажем н
которые важные моменты, пренебрежение которыми приводит к неприемлемьа
или даже к ошибочным решениям.

Возможные проблемы при организации
взаимного исключения при условии
использования только блокировки памяти
Пусть имеется два или более циклических процессов с абстрактными критически­
ми секциями, то есть каждый процесс состоит из двух частей: некоторой критиче­
ской секции и оставшейся части кода, которая не работает с общими (критическими)
переменными. Пусть эти два процесса асинхронно разделяют во времени единствен­
ный процессор либо выполняются на отдельных процессорах, то есть каждый из
них имеет доступ к некоторой общей области памяти, с которой и работают крити­
ческие секции. Проиллюстрируем эту ситуацию с помощью рис. 7.3.

> '

CS1

(Критическая секция
процесса 1)

PR1

(Оставшаяся часть
процесса 1)

V

CS2

(Критическая секция
процесса 2)

PR2

(Оставшаяся часть
процесса 2)

Рис. 7.3. Модель взаимодействующих процессов

Задача вроде бы легко решается, если потребовать, чтобы процессы ПР1 и ПР/ в

дили в свои критические секции попеременно. Для этого одна общая перемени'
может хранить указатель на тот процесс, чья очередь войти в критическую секШ
Текст этого решения на языке, близком к Паскалю, приведен в листинге 7.1.

Листинг 7 . 1 . Текст программы для первого решения

Var перекл : integer;
Begin перекл := 1; {при перекл=1 в критической секции находится процесс ПР1}
Parbegin

й Д С т в а синхронизации и связи взаимодействующих процессов 217

While true do
Begin
while перекл = 2 do begin end:
CS1; { критическая секция процесса ПР1 }
перекл := 2:
PR1: { оставшаяся часть процесса ПР1 }

End
And
While true do

Begin
while перекл = 1 do begin end:
CS2; { критическая секция процесса ПР2 }
перекл := 1:

PR2; { оставшаяся часть процесса ПР2 }
End

Parend
End.

Здесь и далее языковая конструкция следующего типа означает параллельность
выполнения К описываемых последовательных процессов:

p a r b e g 1 n . . . S l l ; S12: . . . : S1N1
a n d . . . S21: S22: . . . : S2N2

a n d . . . SKI: SK2: . . . : SKNlk

parend

Конструкция из операторов Sll; S12; ...; S1N1 выполняется последовательно (опе­
ратор за оператором), о чем свидетельствует наличие точки с запятой между ними.

Следующая языковая конструкция означает, что каждый процесс может выпол­
няться неопределенно долгое время фактически бесконечное количество раз:

while t r u e do
begin S I : S2: SN end

Наконец, конструкция типа begin end означает просто «пустой» оператор.
Итак, решение, представленное в листинге 7.1, обеспечивает нам взаимное ис­
ключение в работе критических секций. Однако если бы фрагмент программы
PR1 был намного длиннее, чем фрагмент PR2, или если бы процесс ПР1 был за­
блокирован в секции PR1, или если бы процессор для ПР2 обладал более высо­
ким быстродействием, то процесс ПР2 вскоре вынужден был бы ждать входа
в свою критическую секцию CS2, хотя процесс ПР1 и был бы вне CS1. Такое ожи­
дание могло бы оказаться слишком долгим, то есть для этого решения один про­
цесс вне своей критической секции может помешать другому войти в свою кри­
тическую секцию.

опробуем устранить это блокирование с помощью двух общих переменных, ко-
рые будут использоваться как флаги, указывая, находится или нет соответству-
ши процесс в своей критической секции. То есть с каждым из процессов ПР1 и

будет связана переменная, которая принимает значение true, когда процесс
родится в своей критической секции, и false — в противном случае. Прежде чем

11 в свою критическую секцию, процесс проверит значение флага другого про-

т

 Э' ли э т о значение равно true, процессу не разрешается входить в свою кри­
в у ю секцию. В противном случае процесс установит собственный флаг и вой-

2 1 8 Глава 7, Организация параллельных взаимодействующих вычислены*

дет в критическую секцию. Этот алгоритм взаимного исключения представлен в
листинге 7.2.

Листинг 7.2. Второй вариант реализации взаимного исключения
Var перекл1.перекл2.: boolean:
begin nepemil:=false;

перекл2:-false;
parbegin

while true do
begin
while перекл2 do

begin
end;

nepeKJil:=true:
CS1 { критическая секция процесса ПР1 }
перекл1:-false:
PR1 { процесс ПР1 после критической секции }

end
and

while true do
begin
while перекл! do

begin
end:

перекл2:Чгие:

CS2 { Критическая секция процесса ПР2 }
nepei<r2:=false;

PR2 { процесс ПР2 после критической секции }
end

pa rend
end.

Данный алгоритм, увы, не гарантирует полного выполнения условия нахождения
только одного процесса внутри критической секции. Отсутствие гарантий связано
с различными, в общем случае, скоростями развития процессов. Поэтому, напри­
мер, между проверкой значения переменной перекл2 процессом ПР1 и последую­
щей установкой им значения переменной перекл1 параллельно выполняющийся
процесс ПР2 может установить перекл2 в значение true, так как переменная пе­
рекл! еще не успела установиться в значение true. Отсюда следует, что оба процес­
са могут войти в свои критические секции одновременно.

Следующий (третий) вариант решения этой задачи (листинг 7.3) усиливает вза­
имное исключение, так как в процессе ПР1 проверка значения переменной перекл^
выполняется только после установки переменной перекл1 в значение true (анало­
гично для ПР2).

Листинг 7.3. Третий вариант реализации взаимного исключения
var перекл1, перекл2 : boolean;
begin перекл!:=false; nepeKn2:=false; ,
parbegin

ПР1: while true do
begin

перекл!:=true:

грндства синхронизации и связи взаимодействующих процессов 219

while перекл2 do
begin end;

CS1 { критическая секция процесса ПР1 }
перекл1:-false:
PR1 { ПР1 после критической секции }

end
and
ПР2: while true do

begin
nepewi2:=true;
while перекл1 do

begin end;
CS2 { критическая секция процесса ПР2 }
перекл2:-false;
PR2 { ПР2 после критической секции }

end
pa rend
end.

Алгоритм, приведенный в листинге 7.3, также имеет свои недостатки. Действи­
тельно, возможна ситуация, когда оба процесса одновременно установят свои флаги
в значение true и войдут в бесконечный цикл. В этом случае будет нарушено требо­
вание отсутствия бесконечного ожидания входа в свою критическую секцию. То
есть, предположив, что скорости исполнения процессов произвольны, мы получи­
ли такую последовательность событий, при которой процессы вообще перестанут
нормально выполняться.

Все рассмотренные попытки решить задачу взаимного исключения при выполне­
нии критических секций иллюстрируют нам некоторые тонкие моменты, лежа­
щие в основе этой проблемы, и показывают, что не все так просто.

Последний рассматриваемый вариант решения задачи взаимного исключения,
опирающийся только на блокировку памяти, — это известный алгоритм, предло­
женный математиком Деккером.

Алгоритм Деккера
Алгоритм Деккера основан на использовании трех переменных (листинг 7.4): пе-
рекл1, перекл2 и ОЧЕРЕДЬ. Пусть по-прежнему переменная перекл1 устанавливает­
ся в true тогда, когда процесс ПР1 хочет войти в свою критическую секцию (для
ПР2 аналогично), а значение переменной ОЧЕРЕДЬ указывает, чье сейчас право сде­
лать попытку входа при условии, что оба процесса хотят выполнить свои крити­
ческие секции.

Листинг 7.4. Алгоритм Деккера
label 1. 2;
v a r перекл1. перекл2: boolean;

ОЧЕРЕДЬ : integer;
Begin nepe^l:=false: nepew2:=false:

ОЧЕРЕДЬ:=1;
Parbegin

while true do
begin перекл!: =true; продолжение &

220 Глава 7. Организация параллельных взаимодействующих вычислении

Листинг 7.4 (продолжение)

1: if перекл2=1гие then
if 0ЧЕРЕДЬ=1 then go to 1

else begin nepewil:=false;
while 0ЧЕРЕДЬ=2 do

begin end
end

else begin
CS1 { критическая секция ПР1 }
ОЧЕРЕДЬ: =2; nepeiuil:=false

end
end

and
while true do

begin перекл2:=1;
2: if rtepeitfil=true then

if 0ЧЕРЕДЬ=2 then go to 2
else begin nepeiui2:=false;

while 0ЧЕРЕДЬ=1 do
begin end

end
else begn'n

CS2 { критическая секция ПР2 }
ОЧЕРЕДЬ:=1: перекл2-false

end
end

pa rend
end.

Если перекл2 = true и перекл1 = false, то выполняется критическая секция процес­
са ПР2 независимо от значения переменной ОЧЕРЕДЬ. Аналогично для случая пе-
рекл2 = false и перекл1 = true.

Если же оба процесса хотят выполнить свои критические секции, то есть перекл2 =
= true и перекл1 = true, то выполняется критическая секция того процесса, на кото­
рый указывает значение переменной ОЧЕРЕДЬ, независимо от скоростей развития
обоих процессов. Использование переменной ОЧЕРЕДЬ совместно с переменными
перекл1 и перекл2 в алгоритме Деккера позволяет гарантированно решать пробле­
му критических секций. То есть переменные перекл1 и перекл2 гарантируют, что
взаимное выполнение не может иметь места; переменная ОЧЕРЕДЬ гарантирует, что
не может быть взаимной блокировки, так как переменная 04 ЕРЕДЬ не меняет свое­
го значения во время выполнения программы принятия решения о том, кому же
сейчас проходить свою критическую секцию.

Тем не менее реализаций критических секций на основе описанного алгоритма
практически не встречается из-за их чрезмерной сложности, особенно тогда, когд
требуется обобщить алгоритм Деккера с двух до N процессов.

Синхронизация процессов с помощью операции
проверки и установки
Операция проверки и установки является, так же как и блокировка памяти, од№ -
из аппаратных средств, которые могут быть использованы для решения задачи в I

,,пйаства С Инхронизации и связи взаимодействующих процессов 2 2 1

того исключения при выполнении критической секции. Данная операция реа-
"изована во многих компьютерах. Так, в знаменитой машине IBM 360 (370) эта
оманда называлась TS (Test and Set — проверка и установка). Команда TS являет-

я двухадресной (двухоперандной). Ее действие заключается в том, что процессор
присваивает значение второго операнда первому, после чего второму операнду
присваивается значение, равное единице. Команда TS является неделимой опера­
цией, то есть между ее началом и концом не могут выполняться никакие другие
команды.

Чтобы использовать команду TS для решения проблемы критической секции, свя­
жем с ней переменную common, которая будет общей для всех процессов, исполь­
зующих некоторый критический ресурс. Данная переменная будет принимать еди­
ничное значение, если какой-либо из взаимодействующих процессов находится
в своей критической секции. Кроме того, с каждым процессом свяжем свою ло­
кальную переменную, которая принимает значение, равное единице, если данный
процесс хочет войти в свою критическую секцию. Операция TS будет присваивать
значение common локальной переменной и устанавливать common в единицу. Со­
ответствующая программа решения проблемы критической секции на примере двух
параллельных процессов приведена в листинге 7.5.

Листинг 7 . 5 . Взаимное исключение с помощью операции проверки и установки

vaг common, l o c a l l , I o c a l 2 : i n t e g e r ;
begin

common:=0;
parbegin

ПР1: whi le t r u e do
begin

l o c a l 1 : - 1 :

w h i l e local 1=1 do TSOocall.common);
CS1; { критическая секция процесса ПР1 }
common;=0;
PR1; { ПР1 после критической секции }

end
and
ПР2: w h i l e t r u e do

begin
l o c a l 2 : = l :

w h i l e l o c a l 2 = l do TS(local2.common);
CS2; { критическая секция процесса ПР2 }
common:=0;

PR2; { ПР2 после критической секции }
end

parend
end.

Редположим, что первым хочет войти в свою критическую секцию процесс ПР1.
' э т °м случае значение LocaLl сначала установится в единицу, а после цикла про­
б к и с помощью команды TS(locall,common) — в нуль. При этом значение common
анет равным единице. Процесс ПР1 войдет в свою критическую секцию. После
полнения критической секции переменная common примет значение, равное
ю, что даст возможность второму процессу ПР2 войти в свою критическую сек-

222 Глава 7. Организация параллельных взаимодействующих вычисли -

Безусловно, мы предполагаем, что в компьютере реализована блокировка па.мят
то есть операция common := 0 неделима. Команда проверки и установки зиачител '
но упрощает решение проблемы критических секций. Главная черта этой коман
ды — ее неделимость.

Основной недостаток использования команд типа проверки и установки состоит R
следующем: находясь в цикле проверки переменной common, процессы впустую
потребляют время центрального процессора и другие ресурсы. Действительно, ее аи
предположить, что произошло прерывание процесса ПР1 во время выполнения
своей критической секции в соответствии с некоторой дисциплиной обслужива­
ния, и начал выполняться процесс ПР2, то он войдет в цикл проверки, впустую
тратя процессорное время. В этом случае, до тех пор пока диспетчер супервизора
не поставит на выполнение процесс ПР1 и не даст ему закончиться, процесс ПР2
не сможет войти в свою критическую секцию.

В микропроцессорах архитектуры ia32, с которыми мы теперь сталкиваемся по­
стоянно, работая на персональных компьютерах, имеются специальные команды
ВТС, BTS, BTR, которые как раз и являются вариантами реализации команды провер­
ки и установки. Рассмотрим одну из них — BTS.

Команда BTS (Bit Test and Reset — проверка и установка бита) является двухадрес­
ной [20]. По этой команде процессор сохраняет значение бита из первого операнда
со смещением, указанным вторым операндом, во флаге CF (Carry Flag — флаг пе­
реноса)1 регистра флагов, а затем устанавливает указанный бит в 1. Значение ин­
декса выбираемого бита может быть представлено постоянным непосредственным
значением в команде BTS или значением в общем регистре. В этой команде исполь­
зуется только 8-разрядное непосредственное значение. Значение этого операнда
берется по модулю 32, таким образом, смещение битов находится в диапазоне от 0
до 31. Это позволяет выбрать любой бит внутри регистра. Для битовых строк в
памяти это поле непосредственного значения дает только смещение внутри слова
или двойного слова.

С учетом изложенного можно привести фрагмент кода, в котором данная команда
используется для решения проблемы взаимного исключения (листинг 7.6).

Л и с т и н г 7 . 6 . Фрагмент программы с критической секцией на ассемблере

L: ВТС МЛ
JC L

; критическая секция

AND M.OB

Однако здесь следует заметить, что некоторые ассемблеры поддерживают
ния битовых смещений больше 31, используя поле непосредственного зна1

значе-

Располагается в слове состояния программы.

с т в а синхронизации и связи взаимодействующих процессов 2 2 3

мбинации с полем смещения операнда в памяти. В этом случае младшие 3 или
\ битов (3 - для 16-разрядных операндов, 5 - для 32-разрядных операндов), оп-

л я ю Щ И е смещение бита (второй операнд команды), сохраняются в поле не-
* педственного операнда, а старшие биты сдвигаются и комбинируются с полем

П°ешения. Процессор же игнорирует ненулевые значения старших битов поля вто-
•о операнда [20]. При доступе к памяти процессор обращается к четырем байтам

\ я 32-разрядного операнда), начинающимся по полученному следующим обра­
зом адресу:

Effective Address + (4 х (BitOffset DIV 32))

Либо (для 16-разрядного операнда) процессор обращается к двум байтам, начина­

ющимся по адресу:

Effective Address + (2 х (BitOffset DIV 16))

Такое обращение происходит, даже если необходим доступ только к одному байту.
Поэтому избегайте ссылок к областям памяти, близким к «пустым» адресным про­
странствам. В частности, избегайте ссылок на распределенные в памяти регистры
ввода-вывода. Вместо этого используйте команду M0V для загрузки и сохранения
значений по таким адресам и регистровую форму команды BTS для работы с дан­
ными.

Несмотря на то, что и алгоритм Деккера, основанный только на блокировке памя­
ти, и операция проверки и установки пригодны для реализации взаимного исклю­
чения, оба эти приема очень неэффективны. Всякий раз, когда один из процессов
выполняет свою критическую секцию, любой другой процесс, который пытается
войти в свою критическую секцию, попадает в цикл проверки соответствующих
переменных-флагов, регламентирующих доступ к критическим переменным. При
таком неопределенном пребывании в цикле, которое называется активным ожи­
данием, напрасно расходуется процессорное время, поскольку процесс имеет дос­
туп к тем общим переменным, которые и определяют возможность или невозмож­
ность входа в критическую секцию. При этом процесс отнимает ценное время
центрального процессора, на самом деле ничего реально не выполняя. Как резуль­
тат мы получаем общее замедление работы вычислительной системы.
До тех пор пока процесс, занимающий в данный момент критический ресурс, не
решит его уступить, все другие процессы, ожидающие этого ресурса, могли бы во­
обще не конкурировать за процессорное время. Для этого их нужно перевести в
состояние ожидания (заблокировать). Когда вход в критическую секцию снова

свободится, можно будет опять перевести заблокированный процесс в состояние
оговности к выполнению и дать ему возможность получить процессорное время.
амьщ простой способ предоставить процессорное время только одному вычис-
тельному процессу — отключить систему прерываний, поскольку тогда никакое
еШнее событие не сможет прервать выполняющийся процесс. Однако это, как

Уже знаем, приведет к тому, что система не сможет реагировать на внешние
события.

эт e^T° Т 0 Г° ч т о ^ ы связывать с каждым процессом собственную переменную, как
Ь1ло в рассмотренных нами решениях, можно со всем множеством конкури-

2 2 4 Глава 7. Организация параллельных взаимодействующих вычислена

рующих критических секций связать одну переменную, которую Дейкстра пред­
ложил рассматривать как некоторый «ключ». Вначале доступ к критической сек­
ции открыт. Однако перед входом в свою критическую секцию процесс забирает
ключ и тем самым блокирует другие процессы. Покидая критическую секцию, про­
цесс открывает доступ, возвращая ключ на место. Если процесс, который хочет
войти в свою критическую секцию, обнаруживает отсутствие ключа, он должен
быть переведен в состояние блокирования до тех пор, пока процесс, имеющий ключ
не вернет его. Таким образом, каждый процесс, входящий в критическую секцию
должен вначале проверить, доступен ли ключ, и если это так, то сделать его недо­
ступным для других процессов. Причем самым главным должно быть то, что эти
два действия должны быть неделимыми, чтобы два или более процессов не могли
одновременно получить доступ к ключу. Более того, проверку возможности входа
в критическую секцию лучше всего выполнять не самим конкурирующим процес­
сам, так как это приводит к активному ожиданию, а возложить эту функцию на
операционную систему. Таким образом, мы подошли к одному из самых главных
механизмов решения проблемы взаимного исключения — семафорам Дейкстры.

Семафорные примитивы Дейкстры
Понятие семафорных механизмов было введено Дейкстрой [10]. Семафор (sema­
phore) — это переменная специального типа, которая доступна параллельным процес­
сам только для двух операций — закрытия и открытия, названных соответственно
операциями Р и V1. Эти операции являются примитивами относительно семафора,
который указывается в качестве параметра операций. Здесь семафор играет роль
вспомогательного критического ресурса, так как операции Р и V неделимы при сво­
ем выполнении и взаимно исключают друг друга.

Семафорный механизм работает по схеме, в которой сначала исследуется состоя­
ние критического ресурса, идентифицируемое значением семафора, а затем уже
осуществляется допуск к критическому ресурсу или отказ от него на некоторое
время. При отказе доступа к критическому ресурсу используется режим пассивно­
го ожидания. Поэтому в состав механизма включаются средства формирования и
обслуживания очереди ожидающих процессов. Эти средства реализуются супер­
визором операционной системы. Необходимо отметить, что в силу взаимного ис­
ключения примитивов попытка в различных параллельных процессах одновремен­
но выполнить примитив над одним и тем же семафором приведет к тому, что она
окажется успешной только для одного процесса. Все остальные процессы на вре­
мя выполнения примитива будут взаимно исключены.

Основным достоинством семафорных операций является отсутствие состояв!
активного ожидания, что может существенно повысить эффективность работ
мультизадачной системы.

В настоящее время на практике используется много различных видов семафор
ных механизмов [41]. Варьируемыми параметрами, которые отличают различи
виды примитивов, являются начальное значение и диапазон изменения значен!

• голландского Proberen (проверить), V — от голландского Verhogen (увеличить).

ррйпства синхронизации и связи взаимодействующих процессов 2 2 5

мафора, логика действий семафорных операций, количество семафоров, доступ­
ных для обработки при исполнении отдельного примитива.

Обобщенный смысл примитива P(S) состоит в проверке текущего значения сема­
фора S. Если оно не меньше нуля, то осуществляется переход к следующей за при­
митивом операции. В противном случае процесс снимается на некоторое время с
выполнения и переводится в состояние пассивного ожидания. Находясь в списке
заблокированных, ожидающий процесс не проверяет семафор непрерывно, как в
случае активного ожидания. Вместо него процессор может исполнять другой про­
цесс, реально выполняющий какую-то полезную работу.

Операция V(S) связана с увеличением значения семафора на единицу и переводом
одного или нескольких процессов в состояние готовности к исполнению централь­
ным процессором.

Отметим еще раз, что операции Р и V выполняются операционной системой в ответ
на запрос, выданный некоторым процессом и содержащий имя семафора в каче­
стве параметра.

Рассмотрим первый вариант алгоритма работы семафорных операций (листинг 7.7).
Допустимыми значениями семафоров являются только целые числа. Двоичным
семафором будем называть семафор, максимально возможное значение которого
равно единице. Двоичный семафор1 либо открыт, либо закрыт. В случае, когда се­
мафор может принимать более двух значений, его называют N-ичным. Есть реали­
зации, в которых семафорные переменные не могут быть отрицательными, а есть и
такие, где отрицательное значение указывает на длину очереди процессов, стоящих
в состоянии ожидания открытия семафора.

Листинг 7.7. Вариант реализации семафорных примитивов

P(S): S:-S-l:
if S<0 then { остановить процесс и поместить его в очередь ожидания к семафору S };

V(s): if S<0 then { поместить один из ожидающих процессов очереди семафора S в очередь
готовности };

S:-S+l:

Заметим, что для работы с семафорными переменными необходимо еще иметь опе­
рацию инициализации самого семафора, то есть задания ему начального значения.
Обычно эту операцию называют InitSem; как правило, она имеет два параметра —
имя семафорной переменной и ее начальное значение, то есть обращение имеет вид

InitSem (Имя_семафора. Начальное_значение_семафора):
Попытаемся на нашем примере двух конкурирующих процессов ПР1 и ПР2 про­
анализировать использование данных семафорных примитивов для решения про­
блемы критической секции. Программа, иллюстрирующая это решение, представ­
лена в листинге 7.8.

•истинг 7.8. Взаимное исключение с помощью семафорных операций

* i r S:semafor;
begin InitSem(S.l); продолжение J

' д
Ичные семафоры иногда называют мыотексами (см. далее).

2 2 6 Глава 7, Организация параллельных взаимодействующих вычислены,-.

Листинг 7.8 (продолжение)

parbegin
ПР1: while true do

begin
PCS);
CS1 : { критическая секция процесса ПР1 }
V(S)

end
and

ПР2: while true do
begin

PCS):
CS2 ; { критическая секция процесса ПР2 }
V(S)

end
parend
end.

Семафор S имеет начальное значение, равное 1. Если процессы ПР1 и ПР2 попы­
таются одновременно выполнить примитив P(S), то это удастся успешно сделать
только одному из них. Предположим, это сделал процесс ПР2, тогда он закрывает
семафор S, после чего выполняется его критическая секция. Процесс ПР1 в рас­
сматриваемой ситуации будет заблокирован на семафоре S. Тем самым гарантиру­
ется взаимное исключение.

После выполнения примитива V(S) процессом ПР2 семафор S открывается, указы­
вая на возможность захвата каким-либо процессом освободившегося критическо­
го ресурса. При этом производится перевод процесса ПР1 из заблокированного
состояния в состояние готовности.

На уровне реализации возможно одно из двух решений в отношении процессов,
которые переводятся из очереди ожидания в очередь готовности при выполнении
примитива V:
Q процесс при его активизации (выборка из очереди готовности) вновь пытается

выполнить примитив Р, считая предыдущую попытку неуспешной;
Q процесс при помещении его в очередь готовности отмечается как успешно вы­

полнивший примитив Р, тогда при его активизации управление будет передано
не на повторное выполнение примитива Р, а на команду, следующую за ним.

Рассмотрим первый способ реализации. Пусть процесс ПР2 в некоторый момент
времени выполняет операцию P(S). Тогда семафор S становится равным нулю. Пусть
далее процесс ПР1 пытается выполнить операцию P(S). Процесс ПР1 в этом слу­
чае блокируется на семафоре S, так как значение семафора S равнялось нулю, а те
перь станет равным - 1 . После выполнения критической секции процесс ПР2 вы
полняет операцию V(S), при этом значение семафора S становится равным пул
а процесс ПР1 переводится в очередь готовности. Пусть через некоторое врем
процесс ПР1 будет активизирован, то есть выведен из состояния ожидания, и CN
жет продолжить свое исполнение. Он повторно попытается выполнить операни
P(S), однако это ему не удастся, так как S=0. Процесс ПР1 блокируется на семафору
а его значение становится равным - 1 . Если через некоторое время процесс
попытается выполнить P(S), то он тоже заблокируется. Таким образом, возник

ррйдства синхронизации и связи взаимодействующих процессов 2 2 7

аК называемая тупиковая ситуация, так как разблокировать процессы ПР1 и ПР2

некому-

При втором способе реализации тупика не будет. Действительно, пусть все проис-
•одит так же до момента окончания исполнения процессом ПР2 примитива V(S).
Пусть примитив V(S) выполнен, и S=0. Через некоторое время процесс ПР1 активи­
зируется. Согласно данному способу реализации он сразу же попадет в свою крити­
ческую секцию. При этом никакой другой процесс не попадет в свою критическую
секцию, так как семафор остается закрытым. После исполнения своей критической
секции процесс ПР1 выполнит V(S). Если за время выполнения критической секции
процесса ПР1 процесс ПР2 не сделает попыток выполнить операцию P(S), семафор S
установится в единицу. В противном случае значение семафора будет не больше
нуля. Но в любом варианте после завершения операции V(S) процессом ПР1 доступ
к критическому ресурсу со стороны процесса ПР2 будет разрешен.

Заметим, что возникновение тупиков возможно в случае несогласованного выбо­

ра механизма извлечения процессов из очереди, с одной стороны, и выбора алго­

ритмов семафорных операций, с другой.

Возможен другой алгоритм работы семафорных операций:

P(S): if S>-1 then S:=S-1
else WAIT(S){ остановить процесс и поместить в очередь ожидания к семафору S }

V(S): if S<0 then RELEASE(S){ поместить один из ожидающих процессов очереди семафора S
в очередь готовности };

S:=S+1.

Здесь вызов WAIT(S) означает, что супервизор ОС должен перевести задачу в состо­
яние ожидания, причем очередь процессов связана с семафором S. Вызов RELEASE(S)
означает обращение к диспетчеру задач с просьбой перевести первый из процес­
сов, стоящих в очереди S, в состояние готовности к исполнению.

Использование семафорных операций, выполненных подобным образом, позволя­
ет решать проблему критических секций на основе первого способа реализации, при­
чем без опасности возникновения тупиков. Действительно, пусть ПР2 в некоторый
момент времени выполнит операцию P(S). Тогда семафор S становится равным нулю.
Пусть далее процесс ПР1 пытается выполнить операцию P(S). Процесс ПР1 в этом
случае блокируется на семафоре S, так как S=0, причем значение S не изменится. После
выполнения своей критической секции процесс ПР2 выполнит операцию V(S), при
этом значение семафора S станет равным единице, а процесс ПР1 переведется в оче­
редь готовности. Если через некоторое время процесс ПР1 продолжит свое испол­
нение, он успешно выполнит примитив P(S) и войдет в свою критическую секцию.

" однопроцессорной вычислительной системе неделимость операций Р и V можно
обеспечить с помощью простого запрета прерываний. Сам же семафор S можно
Реализовать в виде записи с двумя полями (листинг 7.9.). В одном поле будет хра­
ниться целое значение S, во втором — указатель на список процессов, заблокиро­
ванных на семафоре S.

•Листинг 7.9. Реализация операций Р и V для однопроцессорной системы

type Semaphore = record
счетчик :integer;
указатель :pointer; продолжение •&

2 2 8 Глава 7. Организация параллельных взаимодействующих вычисление

Листинг 7.9 (продолжение)

end;
var S : Semaphore:

procedure P (var S : Semaphore):
begin ЗАПРЕТИТЬ_ПРЕРЫВАНИЯ;

Б.счетчик:= Б.счетчик-З.:
if S.счетчик < 0 then

WAIT(S): { вставить обратившийся процесс в список no S.указатель и передать
на процессор готовый к выполнению процесс }

РАЗРЕШИТЬ_ПРЕРЫВАНИЯ
end:

procedure V (var S : Semaphore);
begin ЗАПРЕТИТЬ ПРЕРЫВАНИЯ:

5.счетчик:= Б.счетчик+1;
if S.счетчик <= 0 then

RELEASE (S); { деблокировать первый процесс из списка no S.указатель }
РАЗРЕШИТЬ_ПРЕРЫВАНИЯ

end;

procedure InitSem (var S : Semaphore);
begin

S . C 4 e T 4 H K : = l :

5.указатель:=пП;
end;

Реализация семафоров в мультипроцессорных системах сложнее, чем в однопро­
цессорных. Одновременный доступ к семафору S двух процессов, выполняющих­
ся на однопроцессорной вычислительной системе, предотвращается запретом пре­
рываний. Однако этот механизм не подходит для мультипроцессорных систем, так
как он не препятствует двум или более процессам одновременно обращаться к од­
ному семафору. В силу того что такой доступ должен реализовываться через кри­
тическую секцию, необходимо дополнительное аппаратное взаимное исключение
доступа для различных процессоров. Одним из решений является использование
уже знакомых нам неделимых команд проверки и установки (TS). Двухкомпонент-
ный семафор в этом случае расширяется включением третьего компонента — ло­
гического признака взаимоискл (листинг 7.10).

Л и с т и н г 7 . 1 0 . Реализация операций Р и V для мультипроцессорной системы

type Semaphore = record
счетчик : i n t e g e r :
указатель : p o i n t e r :
взаимоискл : boolean;

end:
var S : Semaphore;

procedure InitSem (var S : Semaphore);
begin
With S do

begin
счетчик:=1;
у к а з а т е л ь : = n i l ;
взаимоискл:=true;

end;
end:

пг-тва синхронизации и связи взаимодействующих процессов 2 2 9

procedure Р (var S : Semaphore);
у

а Г
 разрешено : boolean;

begin
ЗАПРЕТИТЬ_ПРЕРЫВАНИЯ;
repeat ТБСразрешено. Б.взаимоискл) until разрешено;
5 счетчике.счетчик-1;
if S счетчик < 0 then WAIT(S): { вставить обратившийся процесс в список по S.указатель

и передать на процессор готовый к выполнению процесс }
S взаимоискл:Чгие;
РАЗРЕШИТЬ_ПРЕРЫВАНИЯ

end:

procedure V (var S : Semaphore);
var разрешено : boolean;

begin
ЗАПРЕТИТЬ_ПРЕРЫВАНИЯ:
repeat ТЗфазрешено.З.взаимоискл) u n t i l разрешено:
S.счетчик:=S.C4eT4MK+l:
if S.счетчик <= 0 then RELEASE(S); { деблокировать первый процесс из списка

по S.указатель }
5.взаимоискл:Чгие: t, ,

РАЗРЕШИТЬ_ЛРЕРЫВАНИЯ:

end;

Обратите внимание, что в данном тексте команда проверки и установки — TS(pa3-
решенсБ.взаимоискл) — работает не с целочисленными, а с булевыми значениями.
Практически это ничего не меняет, ибо текст программы и ее машинная (двоич­
ная) реализация — это разные вещи.

Мьютексы
Одним из вариантов реализации семафорных механизмов для организации вза­
имного исключения является так называемый мъютекс (mutex). Термин «mutex»
произошел от словосочетания «mutual exclusion semaphore», что дословно перево­
дится с английского как «семафор взаимного исключения». Мьютексы реализова­
ны во многих операционных системах, их основное назначение — организация вза­
имного исключения для задач (потоков выполнения) одного или нескольких
процессов. Мьютексы — это простейшие двоичные семафоры, которые могут на­
ходиться в одном из двух состояний — отмеченном и неотмеченном (открыт и за­
крыт соответственно). Когда какая-либо задача, принадлежащая любому процес­
су, становится владельцем объекта мыотекс, последний переводится в неотмеченное
остояние. Если задача освобождает мыотекс, его состояние становится отмечен­

ным.

рганизация последовательного (а не параллельного) доступа к ресурсам с по­
льзованием мьютексов становится несложной, поскольку в каждый конкрет-

1 момент только одна задача может владеть этим объектом. Для того чтобы
Текс стал доступен задачам (потокам выполнения), принадлежащим разным
Цессам, при создании ему необходимо присвоить имя, впоследствии переда-

1е «по наследству» задачам, которые должны его использовать для взаимо-
Кот В И Я ' ^ля э т о г о вводятся специальные системные вызовы (CreateMutex), в

Pbix указываются начальное значение мьютекса, его имя и, возможно, атри-

2 3 0 Глава 7. Организация параллельных взаимодействующих вычисляниг.

буты защиты. Если начальное значение мыотекса равно true, считается, что зада­
ча, создающая этот объект, сразу будет им владеть. Можно указать в качестве
начального значение false — в этом случае мыотекс не будет принадлежать ни
одной из задач, и только специальным обращением к нему удастся изменить его
состояние.

Для работы с мьютексом имеется несколько функций. Помимо уже упомянутой
функции создания такого объекта (CreateMutex), есть функции открытия (OpenMu-
tex), ожидания событий (WaitForSingleObject и WaitForMultipleObjects) и, наконец, ос­
вобождения этого объекта (ReleaseMutex).

Конкретные обращения к этим функциям и перечни передаваемых и получае­
мых параметров имеются в документации на соответствующую операционную
систему.

Использование семафоров при проектировании
взаимодействующих вычислительных процессов
Семафорные примитивы чрезвычайно широко используются при проектиро­
вании разнообразных вычислительных процессов. При этом некоторые задачи
являются настолько «типичными», что их детальное рассмотрение уже стало
классическим в соответствующих учебных пособиях. Не будем делать исклю­
чений и мы.

Задача «поставщик-потребитель»
Решение задачи «поставщик-потребитель» является характерным примером ис­
пользования семафорных операций. Содержательная постановка этой задачи уже
была нами описана в начале этой главы. Разделяемыми переменными здесь явля­
ются счетчики свободных и занятых буферов, которые должны быть защищены со
стороны обоих процессов, то есть действия по посылке и получению сообщении
должны быть синхронизированы.
Использование семафоров для решения данной задачи иллюстрирует листинг 7.11

Листинг 7 . 1 1 . Решение задачи «поставщик-потребитель»

var 5_свободно.5_заполнено.5_взаимоискл : semaphore;
begin

InitSem(S_CBo6oflHO.N):
InitSem(S_3anojiHeHo,0):
InitSem(S_B3aHM0ncKji,l):

parbegin
ПОСТАВЩИК: while true do

begin

{ подготовить сообщение }
Р(Б_свободно);
Р(5_взаимоискл):

{ послать сообщение }
\/(5_заполнено):
У(5_взаимоискл);

end
and

пства синхронизации и связи взаимодействующих процессов 2 3 1

ПОТРЕБИТЕЛЬ: while true do
begi n

Р(5_заполнено);
Р(5_взаимоискл);

{ получить сообщение }
V(S_CBo6oflHO):
\КБ_взаимоискл):

{ обработать сообщение }
end

parend
end.

Здесь переменные 5_свободно, Б_заполнено являются числовыми семафорами,
S взаимоискл — двоичный семафор. Переменная Б_свободно имеет начальное зна­
чение, равное N, где N — количество буферов, с помощью которых процессы со­
трудничают. Предполагается, что в начальный момент количество свободных бу­
феров равно N; соответственно, количество занятых равно нулю. Двоичный семафор
S взаимоискл гарантирует, что в каждый момент только один процесс сможет рабо­
тать с критическим ресурсом, выполняя свою критическую секцию. Семафоры
Б_свободно и Б_заполнено используются как счетчики свободных и заполненных
буферов.

Действительно, перед посылкой сообщения поставщик уменьшает значение S_CBO-
бодно на единицу в результате выполнения операции Р(Б_свободно), а после по­
сылки сообщения увеличивает значение Б_заполнено на единицу в результате вы­
полнения операции \/(Б_заполнено). Аналогично, перед получением сообщения
потребитель уменьшает значение 5_заполнено в результате выполнения операции
Р(Б_заполнено), а после получения сообщения увеличивает значение Б_свободно в
результате выполнения операции V(S_CBO6OAHO). Семафоры Б_заполнено, Б_свободно
могут также использоваться для блокировки соответствующих процессов. Если
пул буферов оказывается пустым, и к нему первым обратится процесс «потреби­
тель», он заблокируется на семафоре 5_заполнено в результате выполнения опе­
рации Р(5_заполнено). Если пул буферов заполнится и к нему обратится процесс
«поставщик», то он будет заблокирован на семафоре 5_свободно в результате вы­
полнения операции Р(Б_свободно).

о решении задачи о поставщике и потребителе общие семафоры применены для
учета свободных и заполненных буферов. Их можно также применить и для рас­
пределения иных ресурсов.

Синхронизация взаимодействующих процессов
с помощью семафоров

ожно использовать семафорные операции для решения таких задач, в которых
У пешное завершение одного процесса связано с ожиданием завершения другого.

Редположим, что существуют два процесса ПР1 и ПР2. Необходимо, чтобы про­
се IIP l запускал процесс ПР2 с ожиданием его выполнения, то есть ПР1 не бу-

продолжать свое выполнение до тех пор, пока процесс ПР2 до конца не выпол-
свою работу. Программа, реализующая такое взаимодействие, представлена в

листинге 7.12.

232 Глава 7. Организация параллельных взаимодействующих вычислений

Листинг 7.12. Пример синхронизации процессов

var S : Semaphore;
begin

InitSem(S.O):

ПР1: begin
ПРИ; { первая часть ПР1 }
ON (ПР2); { поставить на выполнение ПР2 }
P(S);
ПР12; { оставшаяся часть ПР1 }
STOP

end;

ПР2: begin
ПР2; { вся работа программы ПР2 }
VCS):
STOP

end
end

Начальное значение семафора S равно нулю. Если процесс ПР1 начал выполнять­
ся первым, то через некоторое время он поставит на выполнение процесс ПР2, после
чего выполнит операцию P(S) и «заснет» на семафоре, перейдя в состояние пассив­
ного ожидания. Процесс ПР2, осуществив все необходимые действия, выполнит
примитив V(S) и откроет семафор, после чего процесс ПР1 будет готов к дальней­
шему выполнению.

Задача «читатели-писатели»
Другой важной и часто встречающейся задачей, решение которой также требует син­
хронизации, является задача «читатели-писатели». Эта задача имеет много вариан­
тов. Наиболее характерная область ее использования — построение систем управле­
ния файлами и базами данных, информационно-справочных систем. Два класса
процессов имеют доступ к некоторому ресурсу (области памяти, файлам). «Читате­
ли» — это процессы, которые могут параллельно считывать информацию из некото­
рой общей области памяти, являющейся критическим ресурсом. «Писатели» — это
процессы, записывающие информацию в эту область памяти, исключая друг друга.
а также процессы «читатели». Имеются различные варианты взаимодействия между
писателями и читателями. Наиболее широко распространены следующие условия.
Устанавливается приоритет в использование критического ресурса процессам «чи­
татели». Это означает, что если хотя бы один читатель пользуется ресурсом, то он
закрыт для всех писателей и доступен для всех читателей. Во втором варианте,
наоборот, больший приоритет у процессов «писатели». При появлении запроса
писателя необходимо закрыть дальнейший доступ всем тем читателям, которы
запросят критический ресурс после него.

Помимо системы управления файлами другим типичным примером решения
дачи «читатели-писатели» может служить система автоматизированной прода
билетов. Процессы «читатели» обеспечивают нас справочной информацией о
личии свободных билетов на тот или иной рейс. Процессы «писатели» запуска!

г п р п р т в а с и н х р о н и з а ц и и и связи взаимодействующих процессов <соо

а с пульта кассира, когда он оформляет для нас тот или иной билет. Имеется боль­
ше количество как читателей, так и писателей.

Пример программы, реализующей решение данной задачи в первой постановке,
дставлен в л и с т и н г е 7.13. Процессы «читатели» и «писатели» описаны в виде

соответствующих процедур.

Листинг 7.13. Решение задачи «читатели-писатели» с приоритетом в доступе
к критическому ресурсу читателей

v a r R. W : semaphore:
N_R : integer:

procedure ЧИТАТЕЛЬ;
begin

P(R):
Inc(NR): { NR:=NR +1 }
if NR = 1 then P(W):
V(R):
Read_0ata; { критическая секция }
P(R);
Dec(NR);
if N_R = 0 then V(W);
V(R)

end;

procedure ПИСАТЕЛЬ;
begin

P(W);
Write_Data; { критическая секция }
V(W)

end

begin
1
 NR:=0:

InitSem(S.l): InitSem(W,l);
parbegin
while true do ЧИТАТЕЛЬ

and
while true do ЧИТАТЕЛЬ

and

while true do ЧИТАТЕЛЬ
and
while true do ПИСАТЕЛЬ

and

while true do ПИСАТЕЛЬ
and

while true do ПИСАТЕЛЬ
pa rend

end.

РИ решении данной задачи используются два семафора R и W, а также перемен-
зд NR, предназначенная для подсчета текущего числа процессов типа «читатели»,
Годящихся в критической секции. Доступ к разделяемой области памяти осу-

234 Глава 7. Организация параллельных взаимодействующих вычисл^нн"

ществляется через семафор W. Семафор R требуется для взаимного исключена
процессов типа «читатели».

Если критический ресурс не используется, то первый появившийся процесс пои
входе в критическую секцию выполнит операцию P(W) и закроет семафор. Если
процесс является читателем, то переменная NR увеличится на единицу, и последу­
ющие читатели будут обращаться к ресурсу, не проверяя значения семафора W
что обеспечит параллельность их доступа к памяти. Последний читатель, покида­
ющий критическую секцию, является единственным, кто выполнит операцию V(W)
и откроет семафор W. Семафор R предохраняет от некорректного изменения значе­
ния NR, а также от выполнения читателями операций P(W) и V(W). Если в критичес­
кой секции находится писатель, то на семафоре W может быть заблокирован толь­
ко один читатель, все остальные будут блокироваться на семафоре R. Другие
писатели блокируются на семафоре W.

Когда писатель выполняет операцию V(W), неясно, какого типа процесс войдет в
критическую секцию. Чтобы гарантировать получение читателями наиболее све­
жей информации, необходимо при постановке в очередь готовности использовать
дисциплину обслуживания, учитывающую более высокий приоритет писателей.
Однако этого оказывается недостаточно, ибо если в критической секции продол­
жает находиться по крайней мере один читатель, то он не даст обновить данные, но
и не воспрепятствует вновь приходящим процессам «читателям» войти в свою
критическую секцию. Необходим дополнительный семафор. Пример правильного
решения этой задачи приведен в листинге 7.14.

Листинг 7.14. Решение задачи «читатели-писатели» с приоритетом в доступе
к критическому ресурсу писателей

var S, W, R : semaphore;
NR : integer:

procedure ЧИТАТЕЛЬ;
begin

PCS): PCR):
Inc(NR);
if NR = 1 then P(W):
VCS): VCR):
Read_Data; { критическая секция }
PCR):
Dec(NR);
if NR = 0 then VCW);
VCR)

end;

procedure ПИСАТЕЛЬ;
begin

PCS): P(W);
Write_Oata: { критическая секция }
VCS): VCW)

end;

begin
NR:=0;
InitSem(S.l): InitSem(W.l); InitSem(R.l);
parbegin

while true do ЧИТАТЕЛЬ

and

while true do ЧИТАТЕЛЬ

and

while true do ЧИТАТЕЛЬ

and

while true do ПИСАТЕЛЬ

and

while true do ПИСАТЕЛЬ

and

while true do ПИСАТЕЛЬ
parend

end.
Как можно заметить, семафор S блокирует приход новых читателей, если появил­
ся хотя бы один писатель. Обратите внимание, что в процедуре ЧИТАТЕЛЬ исполь­
зование семафора S имеет место только при входе в критическую секцию. После
выполнения чтения уже категорически нельзя использовать этот семафор, ибо он
тут же заблокирует первого же читателя, если хотя бы один писатель захочет вой­
ти в свою критическую секцию. И получится так называемая тупиковая ситуация,
ибо писатель не сможет войти в критическую секцию, поскольку в ней уже нахо­
дится читатель. А читатель не сможет покинуть критическую секцию, потому что
писатель желает войти в свою критическую секцию.

Обычно программы, решающие проблему «читатели-писатели», используют как
семафоры, так и мониторные схемы с взаимным исключением, то есть такие, кото­
рые блокируют доступ к критическим ресурсам для всех остальных процессов, если
один из них модифицирует значения общих переменных. Взаимное исключение
требует, чтобы писатель ждал завершения всех текущих операций чтения. При
условии, что писатель имеет более высокий приоритет, чем читатель, такое ожида­
ние в ряде случаев весьма нежелательно. Кроме того, реализация принципа взаим­
ного исключения в многопроцессорных системах может вызвать определенную
избыточность. Поэтому схема, представленная в листинге 7.15 и применяемая
иногда для решения задачи «читатели-писатели», в случае одного писателя допус­
кает одновременное выполнение операций чтения и записи. После чтения данных
процесс «читатель» проверяет, мог ли он получить неправильное значение, некор­
ректные данные (вследствие того, что параллельно с ним процесс «писатель» мог их
изменить), и если обнаруживает, что это именно так, то операция чтения повторяется.

Листинг 7.15. Синхронизация процессов «читатели» и «писатель» без взаимного исключения
var VI, V2 : integer:

Procedure ПИСАТЕЛЬ;
Begin

I n c (V l) ;

Write Data-
V2:=V1

E n d : продолжение ё>

2 3 6 Глава 7 , Организация параллельных взаимодействующих в ы ч и с л е н ^

Листинг 7.15 (продолжение)

Procedure ЧИТАТЕЛЬ;
Var V: i n t e g e r
Begin

Repeat V:= V2;
Read_Data

U n t i l VI = V
End;

Begin
VI := 0:
V2 := 0:
Parbegin

w h i l e t r u e do ЧИТАТЕЛЬ
and

w h i l e t r u e do ЧИТАТЕЛЬ
and

w h i l e t r u e do ЧИТАТЕЛЬ
and

w h i l e t r u e do ПИСАТЕЛЬ
pa rend

end.

Этот алгоритм использует для данных два номера версий, которым соответствуют
переменные VI и V2. Перед записью порции новых данных процесс «писатель» уве­
личивает на 1 значение переменной VI, а после записи — переменной V2. Читатель
обращается к V2 перед чтением данных, а к VI — после. Если при этом переменные
VI и V2 равны, то очевидно, что получена правильная версия данных. Если же дан­
ные обновлялись за время чтения, то операция повторяется. Этот алгоритм может
быть использован в случае, если нежелательно заставлять процесс «писатель»
ждать, пока читатели закончат операцию чтения, или если вероятность повторе­
ния операции чтения достаточно мала и обусловленное повторными операциями
снижение эффективности системы меньше потерь, связанных с избыточностью
решения с помощью взаимного исключения. Однако необходимо иметь в виду не­
нулевую вероятность зацикливания чтения при высокой интенсивности операции
записи. Наконец, если само чтение представляет собой достаточно длительную
операцию, то оператор V := V2 для процесса «читатель» может быть заменен следу­
ющим оператором:

Repeat V := V2 Until VI = V
Это предотвратит выполнение читателем операции чтения, если писатель уже на­
чал запись.

Мониторы Хоара
Анализ рассмотренных задач показывает, что, несмотря на очевидные достоинст
(простота, независимость от количества процессов, отсутствие активного ожйД
ния), семафорные механизмы имеют и ряд недостатков. Эти механизмы являют
слишком примитивными, так как семафор не указывает непосредственно на син

(^тниторы Хоара *±L

онизирующее условие, с которым он связан, или на критический ресурс. Поэто­
му при построении сложных схем синхронизации алгоритмы решения задач по-
оой получаются весьма непростыми, ненаглядными и трудными для доказатель­
ства их правильности.

Необходимо иметь очевидные решения, которые позволят прикладным програм­
мистам без лишних усилий, связанных с доказательством правильности алгорит­
мов и отслеживанием большого числа взаимосвязанных объектов, создавать па­
раллельные взаимодействующие программы. К таким решениям можно отнести
так называемые мониторы, предложенные Хоаром [52].

В параллельном программировании монитор — это пассивный набор разделяемых
переменных и повторно входимых процедур доступа к ним, которым процессы
пользуются в режиме разделения, причем в каждый момент им может пользовать­
ся только один процесс.

Рассмотрим, например, некоторый ресурс, который разделяется между процесса­
ми каким-либо планировщиком [17]. Каждый раз, когда процесс желает получить
в свое распоряжение какие-то ресурсы, он должен обратиться к программе-плани­
ровщику. Этот планировщик должен иметь переменные, с помощью которых можно
отслеживать, занят ресурс или свободен. Процедуру планировщика разделяют все
процессы, и каждый процесс может в любой момент захотеть обратиться к плани­
ровщику. Но планировщик не в состоянии обслуживать более одного процесса
одновременно. Такая процедура-планировщик и представляет собой пример мо­
нитора.

Таким образом, монитор — это механизм организации параллелизма, который со­
держит как данные, так и процедуры, необходимые для динамического распреде­
ления конкретного общего ресурса или группы общих ресурсов. Процесс, желаю­
щий получить доступ к разделяемым переменным, должен обратиться к монитору,
который либо предоставит доступ, либо откажет в нем. Необходимость входа
в монитор с обращением к какой-либо его процедуре (например, с запросом на
выделение требуемого ресурса) может возникать у многих процессов. Однако вход
в монитор находится под жестким контролем — здесь осуществляется взаимное
исключение процессов, так что в каждый момент времени только одному процессу
разрешается войти в монитор. Процессам, которые хотят войти в монитор, когда
он уже занят, приходится ждать, причем режимом ожидания автоматически управ­
ляет сам монитор. При отказе в доступе монитор блокирует обратившийся к нему
процесс и определяет условие ожидания. Проверка условия выполняется самим
монитором, который и деблокирует ожидающий процесс. Поскольку механизм
монитора гарантирует взаимное исключение процессов, исключаются серьезные

проблемы, связанные с организацией параллельных взаимодействующих процес­
сов.

нутренние данные монитора могут быть либо глобальными (относящимися ко
В с е м процедурам монитора), либо локальными (относящимися только к одной
онкретной процедуре). Ко всем этим данным можно обращаться только изнутри
°нитора; процессы, находящиеся вне монитора и, по существу, только вызываю­

щие его процедуры, просто не могут получить доступ к данным монитора. При

2 3 8 Глава 7. Организация параллельных взаимодействующих вычисление

первом обращении монитор присваивает своим переменным начальные значения
При каждом последующем обращении используются те значения переменных
которые остались от предыдущего обращения.

Если процесс обращаете^ к некоторой процедуре монитора, а соответствующий
ресурс уже занят, эта процедура выдает команду ожидания WAIT с указанием усло­
вия ожидания. Процесс мог бы оставаться внутри монитора, однако, если в мони­
тор затем войдет другой процесс, это будет противоречить принципу взаимного
исключения. Поэтому процесс, переводящийся в режим ожидания, должен вне
монитора ждать того момента, когда необходимый ему ресурс освободится.
Со временем процесс, который занимал данный ресурс, обратится к монитору, что­
бы возвратить ресурс системе. Соответствующая процедура монитора при этом
может просто принять уведомление о возвращении ресурса, а затем ждать, пока не
поступит запрос от другого процесса, которому потребуется этот ресурс. Однако
может оказаться, что уже имеются процессы, ожидающие освобождения данного
ресурса. В этом случае монитор выполняет команду извещения (сигнализации)
SIGNAL, чтобы один из ожидающих процессов мог получить данный ресурс и поки­
нуть монитор. Если процесс сигнализирует о возвращении (иногда называемом
освобождением) ресурса и в это время нет процессов, ожидающих данного ресур­
са, то подобное оповещение не вызывает никаких других последствий, кроме того,
что монитор, естественно, вновь внесет ресурс в список свободных. Очевидно, что
процесс, ожидающий освобождения некоторого ресурса, должен находиться вне
монитора, чтобы другой процесс имел возможность войти в монитор и возвратить
ему этот ресурс.

Чтобы гарантировать, что процесс, находящийся в ожидании некоторого ресурса,
со временем получит этот ресурс, считается, что ожидающий процесс имеет более
высокий приоритет, чем новый процесс, пытающийся войти в монитор. В против­
ном случае новый процесс мог бы перехватить ожидаемый ресурс до того, как ожи­
дающий процесс вновь войдет в монитор. Если допустить многократное повторение
подобной нежелательной ситуации, то ожидающий процесс мог бы откладываться
бесконечно. Для систем реального времени можно допустить использование дис­
циплины обслуживания на основе абсолютных или динамически изменяемых при­
оритетов.

В качестве примера рассмотрим простейший монитор для выделения одного ре­

сурса (листинг 7.16).

Листинг 7.16. Пример монитора Хоара

monitor Resourse;
condition free: { условие - свободный }
var busy : boolean: { занят }

procedure REQUEST: { запрос }
begin

if busy then WAIT (free):
busy :=t rue:
TakeOff: { выдать ресурс }

end:

fi/jnHMjopbi Xoapa <£.з»

procedure RELEASE:

begin
TakeOn; { взять ресурс }

busy:=fa1se;

SIGNAL (free)

end;

begin
busy:=false;

end
Единственный ресурс динамически запрашивается и освобождается процессами,
которые обращаются к процедурам REQUEST (запрос) и RELEASE (освободить). Если
процесс обращается к процедуре REQUEST в тот момент, когда ресурс используется,
значение переменной busy (занято) будет равно true, и процедура REQUEST выпол­
нит операцию монитора WAIT(free). Эта операция блокирует не процедуру REQUEST,
а обратившийся к ней процесс, который помещается в конец очереди процессов,
ожидающих, пока не будет выполнено условие free (свободно).

Когда процесс, использующий ресурс, обращается к процедуре RELEASE, операция
монитора SIGNAL деблокирует процесс, находящийся в начале очереди, не позво­
ляя исполняться никакой другой процедуре внутри того же монитора. Этот дебло­
кированный процесс будет готов возобновить исполнение процедуры REQUEST сразу
же после операции WAIT (free), которая его и блокировала. Если операция SIGNAL(free)
выполняется в то время, когда нет процесса, ожидающего условия free, то никаких
действий не выполняется.

Использование монитора в качестве основного средства синхронизации и связи
освобождает процессы от необходимости явно разделять между собой информа­
цию. Напротив, доступ к разделяемым переменным всегда ограничен телом монито­
ра, и, поскольку мониторы входят в состав ядра операционной системы, разделяемые
переменные становятся системными переменными. Это автоматически исключа­
ет необходимость в критических секциях (так как в каждый момент монитором
может пользоваться только один процесс, то два процесса никогда не смогут полу­
чить доступ к разделяемым переменным одновременно).

Монитор является пассивным объектом в том смысле, что это не процесс; его про­
цедуры выполняются только по требованию процесса.

Хотя по сравнению с семафорами мониторы не представляют собой существенно
более мощного инструмента для организации параллельных взаимодействующих
вычислительных процессов, у них есть некоторые преимущества перед более при­
митивными синхронизирующими средствами. Во-первых, мониторы очень гибки.
В форме мониторов можно реализовать не только семафоры, но и многие другие
синхронизирующие операции. Например, разобранный в разделе «Средства синх­
ронизации и связи взаимодействующих вычислительных процессов» механизм
Решения задачи «поставщик-потребитель» легко запрограммировать в виде мо­
нитора. Во-вторых, локализация всех разделяемых переменных внутри тела мо­
нитора позволяет избавиться от малопонятных конструкций в синхронизируемых
процессах — сложные взаимодействия процессов можно синхронизировать нагляд­
ным образом. В-третьих, мониторы дают процессам возможность совместно не-

2 4 0 Глава 7. Организация параллельных взаимодействующих вычислений

пользовать программные модули, представляющие собой критические секции. Если
несколько процессов совместно используют ресурс и работают с ним совершенно
одинаково, то в мониторе достаточно только одной процедуры, тогда как решение
с семафорами требует, чтобы в каждом процессе имелся собственный экземпляр
критической секции. Таким образом, мониторы по сравнению с семафорами по­
зволяют значительно упростить организацию взаимодействующих вычислитель­
ных процессов и дают большую наглядность при совсем незначительной потере
в эффективности.

Почтовые ящики
Тесное взаимодействие между процессами предполагает не только синхрони­
зацию — обмен временными сигналами, но также передачу и получение про­
извольных данных, то есть обмен сообщениями. В системе с одним процессором
посылающий и получающий процессы не могут работать одновременно. В мульти­
процессорных системах также нет никакой гарантии их одновременного испол­
нения. Следовательно, для хранения посланного, но еще не полученного сооб­
щения необходимо место. Оно называется буфером сообщений, или почтовым
ящиком1.

Если процесс Р1 хочет общаться с процессом Р2, то Р1 просит систему предоста­
вить или образовать почтовый ящик, который свяжет эти два процесса так, чтобы
они могли передавать друг другу сообщения. Для того чтобы послать процессу Р2
какое-то сообщение, процесс Р1 просто помещает это сообщение в почтовый ящик,
откуда процесс Р2 может его в любое время получить. При применении почтового
ящика процесс Р2 в конце концов обязательно получит сообщение, когда обратит­
ся за ним (если вообще обратится). Естественно, что процесс Р2 должен знать о
существовании почтового ящика. Поскольку в системе может быть много почто­
вых ящиков, необходимо обеспечить доступ процессу к конкретному почтовому
ящику. Почтовые ящики являются системными объектами, и для пользования та­
ким объектом необходимо получить его у операционной системы, что осуществ­
ляется с помощью соответствующих запросов.

Если объем передаваемых данных велик, то эффективнее не передавать их непос­
редственно, а отправлять в почтовый ящик сообщение, информирующее процесс-
получатель о том, где можно их найти.

Почтовый ящик может быть связан с парой процессов, только с отправителем, толь­
ко с получателем, или его можно получить из множества почтовых ящиков, кото­
рые используют все или несколько процессов. Почтовый ящик, связанный с про­
цессом-получателем, облегчает посылку сообщений от нескольких процессов в
фиксированный пункт назначения. Если почтовый ящик не связан жестко с про
цессами, то сообщение должно содержать идентификаторы и процесса-отправите
ля, и процесса-получателя.

Название «почтовый ящик» происходит от обычного приспособления для отправки почты.

рпчтовые ящики гч!

Итак, почтовый ящик — это информационная структура, поддерживаемая опера­
ционной системой. Она состоит из головного элемента, в котором находится ин­
формация о данном почтовом ящике, и нескольких буферов (гнезд), в которые
помещают сообщения. Размер каждого буфера и их количество обычно задаются
при образовании почтового ящика.

Правила работы почтового ящика могут быть различными в зависимости от его
сложности [17]. В простейшем случае сообщения передаются только в одном на­
правлении. Процесс Р1 может посылать сообщения до тех пор, пока имеются сво­
бодные гнезда. Если все гнезда заполнены, то Р1 может либо ждать, либо заняться
другими делами и попытаться послать сообщение позже. Аналогично процесс Р2
может получать сообщения до тех пор, пока имеются заполненные гнезда. Если
сообщений нет, то он может либо ждать сообщений, либо продолжать свою работу.
Эту простую схему работы почтового ящика можно усложнять в нескольких на­
правлениях и получать более хитроумные системы общения — двунаправленные
и миоговходовые почтовые ящики.

Двунаправленный почтовый ящик, связанный с парой процессов, позволяет под­
тверждать прием сообщений. При наличии множества гнезд каждое из них хранит
либо сообщение, либо подтверждение. Чтобы гарантировать передачу подтверж­
дений, когда все гнезда заняты, подтверждение на сообщение помещается в то же
гнездо, в котором находится сообщение, и это гнездо уже не используется дл? дру­
гого сообщения до тех пор, пока подтверждение не будет получено. Из-за того, что
некоторые процессы не забрали свои сообщения, связь может быть приостановле­
на. Если каждое сообщение снабдить пометкой времени, то управляющая програм­
ма может периодически удалять старые сообщения.

Процессы могут быть также остановлены в связи с тем, что другие процессы не
смогли послать им сообщения. Если время поступления каждого остановленного
процесса в очередь заблокированных процессов регистрируется, то управляющая
программа может периодически посылать им пустые сообщения, чтобы они не
ждали чересчур долго.

Реализация почтовых ящиков требует использования примитивных операторов
низкого уровня, таких как операции Р и V или каких-либо других, но пользовате­
лям может дать средства более высокого уровня (наподобие мониторов Хоара),
например, такие, как представлены ниже.

SEND_MESSAGE (Получатель, Сообщение. Буфер)

Эта операция переписывает сообщение в некоторый буфер, помещает его
адрес в переменную Буфер и добавляет буфер к очереди Получатель. Процесс,
выдавший операцию SEND_MESSAGE, продолжит свое исполнение.

WAITJCSSAGE (Отправитель. Сообщение. Буфер)
Эта операция блокирует процесс, выдавший операцию, до тех пор, пока в его
очереди не появится какое-либо сообщение. Когда процесс передается на
процессор, он получает имя отправителя с помощью переменной Отправитель,
текст сообщения через переменную Сообщение и адрес буфера в переменной
Буфер. Затем буфер удаляется из очереди, и процесс может записать в него
ответ отправителю.

2 4 2 Глава 7, Организация параллельных взаимодействующих вычислений

SEND_ANSWER (Результат, Ответ, Буфер)

Эта операция записывает информацию, определяемую через переменную Ответ
в тот буфер, номер которого указывается переменной Буфер (из этого буфера
было получено сообщение), и добавляет буфер к очереди отправителя. Если
отправитель ждет ответ, он деблокируется.

WAIT_ANSWER (Результат, Ответ, Буфер) .

Эта операция блокирует процесс, выдавший операцию, до тех пор, пока в буфер
не поступит ответ; доступ к нему возможен через переменную Буфер. После того
как ответ поступил и процесс передан на процессор, ответ, доступ к которому
определяется через переменную Ответ, переписывается в память процессу, а
буфер освобождается. Значение переменной Результат указывает, является ли
ответ пустым, то есть выданным операционной системой, так как сообщение
было адресовано несуществующему (или так и не ставшему активным) процессу.

Основные достоинства почтовых ящиков:

• процессу не нужно знать о существовании других процессов до тех пор, пока он
не получит сообщения от них;

Q два процесса могут обменяться более чем одним сообщением за один раз;

а операционная система может гарантировать, что никакой иной процесс не вме­
шается во взаимодействие процессов, ведущих между собой «переписку»;

• очереди буферов позволяют процессу-отправителю продолжать работу, не об­
ращая внимания на получателя.

Основным недостатком буферизации сообщений является появление еще одного
ресурса, которым нужно управлять. Этим ресурсом являются сами почтовые ящики.

К другому недостатку можно отнести статический характер этого ресурса: количество
буферов для передачи сообщений через почтовый ящик фиксировано. Поэтому есте­
ственным стало появление механизмов, подобных почтовым ящикам, но реализован­
ных на принципах динамического выделения памяти под передаваемые сообщения.
В операционных системах компании Microsoft тоже имеются почтовые ящики
(mailslots). В частности, они достаточно часто используются при создании распре­
деленных приложений для сети. При работе с ними в приложении, которое долж­
но отправить сообщение другому приложению, необходимо указывать класс дос­
тавки сообщений. Различают два класса доставки. Первый класс (first-class delivery)
гарантирует доставку сообщений; он ориентирован на сеансовое взаимодействие
между процессами и позволяет организовать посылки типа «один к одному» и «один
ко многим». Второй класс (second-class delivery) основан на механизме датаграмм,
и он уже не гарантирует доставку сообщений получателю.

Конвейеры и очереди сообщений

Конвейеры
Программный канал связи (pipe), или, как его иногда называют, конвейер, транс
портер, является средством, с помощью которого можно обмениваться данны

между процессами. Принцип работы конвейера основан на механизме ввода-вы-
яода файлов в UNIX, то есть задача, передающая информацию, действует так, как
будто она записывает данные в файл, в то время как задача, для которой предна­
значается эта информация, читает ее из этого файла. Операции записи и чтения
осуществляются не записями, как это делается в обычных файлах, а потоком бай­
тов, как это принято в UNIX-системах. Таким образом, функции, с помощью кото­
рых выполняется запись в канал и чтение из него, являются теми же самыми, что и
при работе с файлами. По сути, канал представляет собой поток данных между
двумя (или более) процессами. Это упрощает программирование и избавляет про­
граммистов от использования каких-то новых механизмов. На самом деле конвей­
еры не являются файлами на диске, а представляют собой буферную память, рабо­
тающую по принципу FIFO, то есть по принципу обычной очереди. Однако не
следует путать конвейеры с очередями сообщений; последние реализуются иначе
и имеют другие возможности.

Конвейер имеет определенный размер1, который не может превышать 64 Кбайт и
работает циклически. Вспомните реализацию очереди на массивах, когда имеются
указатели начала и конца очереди, которые перемещаются циклически по массиву.
То есть имеется некий массив и два указателя: один показывает на первый элемент
(указатель на начало — head), а второй — на последний (указатель на конец — tail).

В начальный момент оба указателя равны нулю. Добавление самого первого эле­
мента в пустую очередь приводит к тому, что указатели на начало и на конец при­
нимают значение, равное 1 (в массиве появляется первый элемент). В последую­
щем добавление нового элемента вызывает изменение значения второго указателя,
поскольку он отмечает расположение именно последнего элемента очереди. Чте­

н и е (и удаление) элемента (читается и удаляется всегда первый элемент из со­
зданной очереди) приводит к необходимости модифицировать значение указате­
ля на ее начало. В результате операций записи (добавления) и чтения (удаления)
элементов в массиве, моделирующем очередь элементов, указатели будут переме­
щаться от начала массива к его концу. При достижении указателем значения ин­
декса последнего элемента массива значение указателя вновь становится единич­
ным (если при этом не произошло переполнение массива, то есть количество
элементов в очереди не стало большим числа элементов в массиве). Можно ска­
зать, что мы как бы замыкаем массив в кольцо, организуя круговое перемещение
указателей на начало и на конец, которые отслеживают первый и последний эле­
менты в очереди. Сказанное иллюстрирует рис. 7.4. Именно так функционирует
конвейер.

Как информационная структура конвейер описывается идентификатором, разме­
ром и двумя указателями. Конвейеры представляют собой системный ресурс. Чтобы
начать работу с конвейером, процесс сначала должен заказать его у операционной
системы и получить в свое распоряжение. Процессы, знающие идентификатор кон-
ВеНера, могут через него обмениваться данными.

Механизм конвейеров, впервые введенный в UNIX-системах, имеет максимальный размер 64 Кбайт,
оскольку в 16-разрядных мини-ЭВМ, для которых создавалась эта ОС, нельзя было иметь массив

ванных большего размера.

2 4 4 Глава 7. Организация параллельных взаимодействующих вычисление

А

Указатель на начало

А

Указатель на конец

I — ^ — й
Указатель на конец Указатель на начало

Рис. 7.4. Организация очереди в массиве

В качестве иллюстрации приведем основные системные запросы для работы с кон­
вейерами, которые имеются в API OS/2.

• Функция создания конвейера:

OosCreatePipe (SReadHandle, &WriteHandle. PipeSize):
Здесь ReadHandle — дескриптор чтения из конвейера, Write На nd le —
дескриптор записи в конвейер, PipeSize — размер конвейера.

• Функция чтения из конвейера:

"DosRead (SReadHandle. (PVOID)&Inform. sizeof(Inform), SBytesRead):
Здесь ReadHandle — дескриптор чтения из конвейера, Inform — переменная
любого типа, sizeof(Inform) — размер переменной Inform, BytesRead —
количество прочитанных байтов. Данная функция при обращении к
пустому конвейеру будет ожидать, пока в нем не появится информация
для чтения.

• Функция записи в конвейер:

DosWrite (SWriteHandle, (PVOID)SInform. sizeof(Inform). SBytesWrite):
Здесь WriteHandle — дескриптор записи в конвейер, BytesWrite — количество
записанных байтов.

Читать из конвейера может только тот процесс, который знает идентификатор со­
ответствующего конвейера. При работе с конвейером данные непосредственно
помещаются в него. Еще раз отметим, что из-за ограничения на размер конвейера
программисты сталкиваются и с ограничениями на размеры передаваемых через
него сообщений.

Очереди сообщений
Очереди (queues) сообщений предлагают более удобный метод связи между взаи­
модействующими процессами по сравнению с каналами, но в своей реализаЦИ
они сложнее. С помощью очередей также можно из одной или нескольких задач
независимым образом посылать сообщения некоторой задаче-приемнику. При это*
только процесс-приемник может читать и удалять сообщения из очереди, а про

конвейеры и очереди сообщений 2 4 Э

цессы-клиенты имеют право лишь помещать в очередь свои сообщения. Таким
образом, очередь работает только в одном направлении. Если же необходима
двухсторонняя связь, то можно создать две очереди.

работа с очередями сообщений отличается от работы с конвейерами. Во-первых,

оЧереди сообщений предоставляют возможность использовать несколько дисцип­

лин обработки сообщений:

р FIFO — сообщение, записанное первым, будет первым и прочитано;

• LIFO — сообщение, записанное последним, будет прочитано первым;

р приоритетный доступ — сообщения читаются с учетом их приоритетов;

р произвольный доступ — сообщения читаются в произвольном порядке.

Тогда как канал обеспечивает только дисциплину FIFO.

Во-вторых, если при чтении сообщения оно удаляется из конвейера, то при чтении
сообщения из очереди этого не происходит, и сообщение при желании может быть
прочитано несколько раз.

В-третьих, в очередях присутствуют не непосредственно сами сообщения, а толь­
ко их адреса в памяти и размер. Эта информация размещается системой в сег­
менте памяти, доступном для всех задач, общающихся с помощью данной оче­
реди.

Каждый процесс, использующий очередь, должен предварительно получить раз­
решение на доступ в общий сегмент памяти с помощью системных запросов API,
ибо очередь — это системный механизм, и для работы с ним требуются системные
ресурсы и, соответственно, обращение к самой ОС. Во время чтения из очереди
задача-приемник пользуется следующей информацией:

Q идентификатор процесса (Process Identifier, PID), который передал сообщение;

• адрес и длина переданного сообщения;

• признак необходимости ждать, если очередь пуста;

• приоритет переданного сообщения;

• номер освобождаемого семафора, когда сообщение передается в очередь.

Наконец, приведем перечень основных функций, управляющих работой очереди
(без подробного описания передаваемых параметров, поскольку в различных ОС

обращения к этим функциям могут существенно различаться):
Q CreateQueue — создание новой очереди;
Q OpenQueue — открытие существующей очереди;
а ReadQueue — чтение и удаление сообщения из очереди;
u PeekQueue — чтение сообщения без его последующего удаления из очереди;

WriteQueue — добавление сообщения в очередь;

CbseQueue — завершение использования очереди;
Q purgeQue ue — удаление из очереди всех сообщений;

UueryQueue — определение числа элементов в очереди.

2 4 6 Глава 7. Организация параллельных взаимодействующих вычислений

Контрольные вопросы и задачи
1. Какие последовательные вычислительные процессы мы называем параллель­

ными и почему? Какие параллельные процессы называются независимыми
а какие — взаимодействующими?

2. Изложите алгоритм Деккера, позволяющий разрешить проблему взаимного
исключения путем использования одной только блокировки памяти.

3. Объясните, как действует команда проверки и установки. Расскажите о рабо­
те команд BTS и BTR, которые имеются в процессорах с архитектурой ia32.

4. Расскажите о семафорах Дейкстры. Чем обеспечивается взаимное исключе­
ние при выполнении примитивов Р и V?

5. Изложите, как могут быть реализованы семафорные примитивы для мульти­
процессорной системы?

6. Что такое мыотекс?

7. Изложите алгоритм решения задачи «поставщик-потребитель» при исполь­
зовании семафоров Дейкстры.

8. Изложите алгоритм решения задачи «читатели-писатели» при использова­
нии семафоров Дейкстры.

9. Что такое «монитор Хоара»? Приведите пример такого монитора.

10. Что представляют собой почтовые ящики?

11. Что представляют собой конвейеры (программные каналы)?

12. Что представляют собой очереди сообщений? Чем отличаются очереди сооб­
щений от почтовых ящиков?

Глава 8. Проблема тупиков
и методы борьбы с ними

Рассмотрим одну из самых серьезных и трудноразрешимых проблем, возникаю­
щих при организации мультипрограммного режима работы, — проблему тупиков
и основные подходы при борьбе с ними. В этой главе представлены некоторые
модели параллельных вычислительных процессов, позволяющие проводить их
анализ в аспекте корректного решения указанных проблем.

Понятие тупиковой ситуации
при выполнении параллельных
вычислительных процессов

*»
При организации параллельного выполнения нескольких вычислительных про­
цессов одной из главных функций операционной системы является решение слож­
ной задачи корректного распределения ресурсов между выполняющимися процес­
сами и обеспечение последних средствами взаимной синхронизации и обмена
данными.
При параллельном исполнении процессов могут возникать тупиковые ситуации,
когда два или более процесса блокируют друг друга, вынуждая ожидать наступле­
ния события, связанного с освобождением ресурса. Самым простым является слу­
чай, когда каждый из двух процессов ожидает ресурс, занятый другим процессом.
Из-за такого ожидания ни один из процессов не может продолжить исполнение
и освободить в конечном итоге ресурс, необходимый другому процессу. Эта ситу­
ация называется тупиком, дедлоком (dead lock1), или клинчем. Говорят, что в муль­
типрограммной системе процесс находится в состоянии тупика, если он ждет
события, которое никогда не произойдет. Тупики чаще всего возникают из-за кон­
куренции несвязанных параллельных процессов за ресурсы вычислительной сис­
темы, но иногда к тупикам приводят и ошибки программирования взаимодейству­
ющих вычислений.

Uead lock (англ.) — смертельное объятие.

2 4 8 Глава 8. Проблема тупиков и методы борьбы с нимц

При рассмотрении проблемы тупиков целесообразно понятие ресурсов системы
обобщить и разделить их все на два класса:

Q повторно используемые (Reusable Resource, RR), или системные (System Re­
source, SR), ресурсы;

• потребляемые, или расходуемые, ресурсы (Consumable Resource, CR).

Системные ресурсы (SR) есть конечное множество идентичных единиц некоторо­
го вида ресурсов, обладающих следующими свойствами [54]:

• число единиц ресурса в системе неизменно;

• каждая единица ресурса либо доступна, либо выделена одному и только одно­
му процессу (разделение отсутствует или не принимается во внимание, так как
не оказывает влияния на распределение ресурсов, а значит, и на возникновение
тупиковой ситуации);

• процесс может освободить единицу ресурса (сделать ее доступной), только если
он ранее получил эту единицу, то есть никакой процесс не может оказывать
влияние на ресурс, если этот ресурс ему не принадлежит.

Данное определение выделяет существенные для изучения проблемы тупика свой­
ства системных ресурсов, к которым мы относим компоненты аппаратуры, такие
как основная память, вспомогательная (внешняя) память, периферийные устрой­
ства и, возможно, процессоры, а также программное и информационное обеспече­
ние, такое как файлы данных, таблицы и «разрешение войти в критическую сек­
цию».

Расходуемые ресурсы (CR) отличаются от ресурсов типа SR в нескольких важных
отношениях [17].

Q Число доступных единиц некоторого ресурса типа CR изменяется по мере того,
как выполняющимися процессами они расходуются (приобретаются) и осво­
бождаются (производятся). В общем случае число единиц расходуемых ресурсов
является потенциально неограниченным, поскольку некий процесс «произ­
водитель» может достаточно долго увеличивать число единиц ресурса, осво­
бождая одну или более единиц, которые он «создал».

Q Процесс «потребитель» уменьшает число единиц ресурса, сначала запрашивая
и затем приобретая (потребляя) одну или более единиц. Единицы ресурса, ко­
торые приобретены, в общем случае не возвращаются ресурсу, а потребляются
(расходуются). Эти свойства потребляемых ресурсов присущи многим синхро­
низирующим сигналам, сообщениям и данным, порождаемым как аппаратурой,
так и программным обеспечением, и могут рассматриваться как ресурсы типа
CR при изучении тупиков. В их число входят: прерывания от таймера и уст­
ройств ввода-вывода; сигналы синхронизации процессов; сообщения, содержа
щие запросы на различные виды обслуживания или данные, а также соответ­
ствующие ответы.

Для исследования параллельных процессов и, в частности, проблемы тупиков было
разработано несколько моделей. Одной из них является модель повторно использу
мых ресурсов Холта [54]. Согласно этой модели система представляется как на о
(множество) процессов и набор ресурсов, причем каждый из ресурсов состоит

Ппимеры тупиковых ситуаций и причины их возникновения 2 4 9

, состояние системы фиксированного числа единиц. Любой процесс может изменять <
путем выдачи запроса на получение или освобождение единицы ресурса.
В графической форме процессы и ресурсы представляются квадратами и кружка­
ми соответственно. Каждый кружок содержит некоторое количество маркеров
(фишек) в соответствии с существующим количеством единиц этого ресурса. Дуга,
указывающая из «процесса» на «ресурс», означает запрос одной единицы этого
ресурса. Дуга, указывающая из «ресурса» на «процесс», представляет выделение
ресурса процессу. Поскольку каждая единица любого ресурса типа SR может быть
выделена одновременно не более чем одному процессу, то число дуг, исходящих
из ресурса к различным процессам, не может превышать общего числа единиц это­
го ресурса. Такая модель называется графом повторно используемых ресурсов.
Пример одного из состояний системы из двух процессов с ресурсами типа SR пред­
ставлен на рис. 8.1.

Пр2

Пр1 R2

Рис. 8.1. Пример модели Холта

Пусть процесс Пр1 запрашивает две единицы ресурса R1 и одну единицу ресурса
R2. Процессу Пр2 принадлежат две единицы ресурса R1, и ему нужна одна едини­
ца R2. Предположим, что процесс Пр1 получил запрошенную им единицу R2. Если
принято правило, по которому процесс должен получить все запрошенные им ре­
сурсы прежде, чем освободить хотя бы один из них, то удовлетворение запроса
Пр1 приведет к тупиковой ситуации: Пр1 не сможет продолжиться до тех пор, пока
Пр2 не освободит единицу ресурса R1, а процесс Пр2 не сможет продолжиться до
тех пор, пока Пр1 не освободит единицу R2. Причиной этого тупика являются не­
упорядоченные попытки процессов войти в критическую секцию, связанную с вы­
делением соответствующей единицы ресурса.

Примеры тупиковых ситуаций
и причины их возникновения

я понимания основных причин возникновения тупиков рассмотрим несколько
Р°стых характерных примеров.

250 Глава 8. Проблема тупиков и метЬды б о р ь б ы с ними

Пример тупика на ресурсах типа CR
Пусть имеется три процесса Пр1, Пр2 и ПрЗ, которые вырабатывают сообщения
Ml, M2 и МЗ соответственно. Эти сообщения представляют собой ресурсы типа
CR. Пусть процесс Пр1 является потребителем сообщения МЗ, процесс Пр2 дол­
жен получить сообщение Ml, а ПрЗ ожидает сообщение М2 от процесса Пр2. Та­
ким образом, каждый из этих трех процессов является и поставщиком, и потреби­
телем одновременно, и вместе они образуют кольцевую систему (рис. 8.2) передачи
сообщений через почтовые ящики (ПЯ).

Рис. 8.2. Кольцевая схема взаимодействия процессов

Если связь с помощью этих сообщений со стороны каждого процесса устанавлива­
ется в порядке, представленном в листинге 8.1, то никаких проблем не возникает.
Однако перестановка этих двух процедур в каждом из процессов вызывает тупик
(листинг 8.2).

Листинг 8 . 1 . Вариант псевдокода без тупиковой ситуации
Пр1:

ПОСЛАТЬ СООБЩЕНИЕ (Пр2. Ml. ПЯ2):
ЖДАТЬ СООБЩЕНИЕ (ПрЗ. МЗ. ПЯ1);

Пр2:
ПОСЛАТЬ СООБЩЕНИЕ (ПрЗ. М2. ПЯЗ):
ЖДАТЬ СООБЩЕНИЕ (Пр1. Ml, ПЯ2);

ПрЗ:
ПОСЛАТЬ СООБЩЕНИЕ (Пр1. МЗ. ПЯ1):
ЖДАТЬ СООБЩЕНИЕ (Пр2. М2. ПЯЗ):

Примеры тупиковых ситуаций и причины их возникновения 2 5 1

Листинг 8.2. Вариант псевдокода с тупиковой ситуацией

Пр1:
ЖДАТЬ СООБЩЕНИЕ (ПрЗ. МЗ. ПЯ1):
ПОСЛАТЬ СООБЩЕНИЕ (Пр2, Ml. ПЯ2);

Пр2:
ЖДАТЬ СООБЩЕНИЕ (Пр1, Ml. ПЯ2);
ПОСЛАТЬ СООБЩЕНИЕ (ПрЗ. М2. ПЯЗ);

ПрЗ:
ЖДАТЬ СООБЩЕНИЕ (Пр2. М2. ПЯЗ);
ПОСЛАТЬ СООБЩЕНИЕ (Пр1. МЗ. ПЯ1):

В самом деле, во втором варианте ни один из процессов не сможет послать сообще­
ние до тех пор, пока сам его не получит, а это событие никогда не произойдет, по­
скольку ни один процесс не может этого сделать.

Пример тупика на ресурсах типа CR и SR
Пусть некоторый процесс Пр1 должен обменяться сообщениями с процессом Пр2
и каждый из них запрашивает некоторый ресурс R, причем Пр1 требует три едини­
цы этого ресурса для своей работы, а Пр2 — две единицы и только на время обра­
ботки сообщения. Всего же имеется только четыре единицы ресурса R. Запрос
и освобождение ресурса можно реализовать через соответствующий монитор с про­
цедурами REQUESTER, N) — запрос N единиц ресурса R, и RELEASE(R, N) —освобожде­
ние (возврат) N единиц ресурса R. Обмен сообщениями будем осуществлять через
почтовый ящик MB. Фрагменты программ Пр1 и Пр2 приведены в листинге 8.3.

Листинг 8.3. Пример тупика на ресурсах CR и SR

Пр1: REQUEST (R, 3):

SEND_MESSAGE (Пр2. сообщение, MB):
WAIT_ANSWER (ответ. MB);

RELEASE (R. 3);

WAIT_MESSAGE (Пр1, сообщение. MB);
REQUEST (R. 2):
ОБРАБОТКА СООБЩЕНИЯ:
RELEASE (R, 2): продолжение ti>

2 5 2 Глава 8. Проблема тупиков и методы борьбы с нимы

Листинг 8.3 {продолжение)

SEND_ANSWER-(ответ. MB):

Увы, эти два процесса всегда будут попадать в состояние тупика. Действительно
процесс Пр2, выполняясь первым, сначала будет ожидать сообщения от процесса
Пр1, после чего будет заблокирован при запросе ресурса R, часть которого окажется
уже отданной процессу Пр1. Процесс Пр1, завладев частью ресурса R, будет забло­
кирован ожиданием ответа от Пр2, которого никогда не получит, так как для этого
Пр2 нужно получить ресурс R, находящийся в распоряжении Пр1. Тупика можно
избежать лишь при условии, что на время ожидания ответа от Пр2 процесс Пр1 от­
даст хотя бы одну из единиц ресурса R, которыми он владеет. В данном примере, как
и в предыдущем, причиной тупика являются ошибки программирования.

Пример тупика на ресурсах типа SR
Предположим, что существуют два процесса Пр1 и Пр2, разделяющих два ресурса
типа SR: R1 и R2. Пусть взаимное исключение доступов к этим ресурсам реализует­
ся с помощью семафоров S1 и S2 соответственно. Процессы Пр1 и Пр2 обращаются
к ресурсам так, как показано на рис. 8.3 [17].

Процесс Пр 1 Процесс Пр 2

1: PCS2): (5) : PCS1);

2: PCS1): (6) : P(S2);

3: VCS1); (7) : V(S1);

4: V(S2); (8) : V(S2):

Рис. 8.3. Пример последовательности операторов для двух процессов,
которые могут привести к тупиковой ситуации

Здесь несущественные детали (с точки зрения обращения к ресурсам) опущены.
Считаем, что оба семафора первоначально установлены в единицу. Пространство
возможных состояний приведено на рис. 8.4.

Горизонтальная ось задает выполнение процесса Пр1, вертикальная — процесс
Пр2. Вертикальные линии, пронумерованные от 1 до 4, соответствуют операторам
1-4 процесса Пр1; аналогично горизонтальные линии, пронумерованные от 5 до •
соответствуют операторам 5-8 программы Пр2. Точка на плоскости онределя
состояние вычислений в некоторый момент времени. Так, точка А соответству
ситуации, при которой процесс Пр1 начал исполнение, но не достиг оператора ^
а процесс Пр2 выполнил оператор 6, но не дошел до оператора 7. По мере выпо

рримеры тупиковых ситуаций и причины их возникновения 2 5 3

нения точка будет двигаться горизонтально вправо, если исполняется процесс Пр1,
и вертикально вверх, если исполняется процесс Пр2.

Г 7

Пр2

• А

ч

! А 1

1

Г ! !

Y I
D

!

"1 ""; тнгг-j
! !

С

1

— •

^ 5

Пр1
1 2 3 4

Рис. 8.4. Пространство состояний системы двух параллельных конкурирующих процессов

Интервалы исполнения, во время которых ресурсы R1 и R2 используются каж­
дым процессом, показаны с помощью фигурных скобок. Линии 1-8 делят простран­
ство вычислений на 25 областей, каждая из которых соответствует определенному
состоянию в распределении ресурсов в процессе вычислений. Закрашенные се­
рым цветом состояния являются недостижимыми из-за взаимного исключения
процессов Пр1 и Пр2 при доступе к ресурсам R1 и R2.

Рассмотрим последовательность исполнения 1-2-5-3-6-4-7-8, представленную тра­
екторией Т1. Когда процесс Пр2 запрашивает ресурс R1 (оператор 5), ресурс недо­
ступен (оператор выполнен, семафор закрыт). Поэтому процесс Пр2 заблокиро­
ван в точке В. Как только процесс Пр1 достигнет оператора 3, процесс Пр2
Деблокируется по ресурсу R1. Аналогично в точке С процесс Пр2 будет заблоки­
рован при попытке доступа к ресурсу R2 (оператор 6). Как только процесс Пр1
Достигнет оператора 4, процесс Пр2 деблокируется по ресурсу R2.
Если же, например, выполняется последовательность 1-5-2-6, то процесс ПР1 за-
олокируется в точке X при выполнении оператора 2, а процесс Пр2 заблокируется в
Точке Y при выполнении оператора 6. При этом процесс ПР1 ждет, когда процесс Пр2
выполнит оператор 7, а Пр2 ждет, когда Пр1 выполнит оператор 4. Оба процесса бу-
ДУт находиться в тупике, ни Пр1, ни Пр2 не смогут закончить выполнение. При этом
В се ресурсы, которые получили оба процесса, становятся недоступными для других

254 Глава 8. Проблема тупиков и методы борьбы с ними

процессов, что резко снижает возможности вычислительной системы по их обслужи­
ванию. Отметим одно очень важное обстоятельство: тупик будет неизбежным, если
вычисления зашли в прямоугольник D, являющийся опасным состоянием.
Исследования проблемы тупиков показали, что для возникновения тупиковой
ситуации необходимо одновременное выполнение следующих четырех условий [17
54]:

• условия взаимного исключения, при котором процессы осуществляют моно­
польный доступ к ресурсам;

• условия ожидания, при котором процесс, запросивший ресурс, ждет до тех пор,
пока запрос не будет удовлетворен, при этом удерживая ранее полученные ре­
сурсы;

• условия отсутствия перераспределения, при котором ресурсы нельзя отобрать
у процесса, если они ему уже выделены;

Q условия кругового ожидания, при котором существует замкнутая цепь процес­

сов, каждый из которых ждет ресурс, удерживаемый его предшественником в цепи.

Проанализировав содержательный смысл этих четырех условий, легко убедиться,

что все они выполняются в точке Y (см. рис. 8.4).

Формальные модели для изучения
проблемы тупиковых ситуаций
Проблема борьбы с тупиками становится все более актуальной ^сложной по мере
развития и внедрения параллельных вычислительных систем и сетей. При проек­
тировании таких систем разработчики стараются проанализировать возможные
негативные ситуации, используя специальные модели и методы.
К настоящему времени разработано несколько десятков различных моделей, пред­
назначенных для анализа и моделирования систем с параллельными асинхронны­
ми процессами, для которых возможность возникновения тупиковых ситуаций
является очень серьезной проблемой. Изложение и сравнительный анализ этих
моделей может составить большую монографию, поэтому здесь мы лишь кратко
рассмотрим только три из них — сети Петри, модель пространства состояний и уже
упомянутую нами модель Холта.

Сети Петри
Среди многих существующих методов описания и анализа параллельных систем уже
более 35 лет значительное место занимают сетевые модели, восходящие к сетям спе
циального вида, предложенным в 1962 году Карлом Петри для моделирования асин­
хронных информационных потоков в системах преобразования данных [36].
Взаимодействие событий в параллельных асинхронных дискретных системах IIN
ет, как правило, сложную динамическую структуру. Эти взаимодействия опис
ваются проще, если указывать не непосредственные связи между событиями, а
ситуации, при которых данное событие может реализоваться. При этом глооа

формальные модели для изучения проблемы тупиковых ситуаций 2 5 5

н Ы е ситуации в системе формируются с помощью локальных операций, называе­
мых условиями возникновения событий. Определенные сочетания условий допус-

' ают возникновение некоторого события {предусловия события), а реализация
обытия изменяет некоторые условия {постусловия события), то есть события вза­

имодействуют с условиями, а условия — с событиями. Таким образом, предпола­
гается, что для решения задач достаточно представить системы как структуры, об­
разованные из элементов двух типов: событий и условий. Удобное обобщение этого,
предложенное Петри, было развито А. Холтом, который назвал его сетью Петри,
В сетях Петри события и условия представлены абстрактными символами из двух
непересекающихся алфавитов, называемых соответственно множеством переходов
и множеством позиций. Имеется несколько формальных представлений сетей Петри:
О теоретико-множественное представление;

а графово-бихроматический (двудольный ориентированный) граф и, соответ­
ственно, графическое представление;

• матричное представление.

При использовании теоретико-множественного подхода к описанию сети Петри
(поскольку эта модель представляет и структуру, и функционирование системы)
она формально может быть определена как двойка вида N = <S, М0>. Здесь 5 — это
структура сети, которая представляется двудольным ориентированным мульти-
графом S=(V, U), где V— вершины этого графа, U— его дуги. М0 — это начальное
состояние сети Петри, которое также называется начальной маркировкой. Сеть
Петри может функционировать и соответственно изменять свое состояние.

В силу того что граф 5 является двудольным, можно перейти к формальному опи­
санию структуры сети Петри в виде тройки:

5 = < Р , Т, Y>.

Здесь Р — конечное множество позиций, Р = {р;}, i = l,n; Г— конечное множество
переходов, Т = {tt}, j = 1, m; Т U P = V, Т П Р = 0 , то есть Г и Р - это два типа вер­
шин биграфа S\Y — конечное множество дуг, заданное отношениями между вер­
шинами графа 5:

Ye{P-T)\j{T-P). .

Посколькутгвудольный мультиграф 5 является ориентированным, то любой пере­
ход tj, j = \,m, соединяется с позициями pt e P через входные и выходные дуги,
которые задаются через функцию предшествования В : {Р • Т) —> {0,1, 2,...} и функ­
цию следования Е :{Т • Р) —> {0,1, 2,...}, являющиеся отображениями из множества
переходов в комплекты позиций [36] (синонимом термина «комплект» является

онятие мультимножества). Эти функции определяют комплекты позиций
iPii&P, связанных с переходом ^ е Г через множество дуг {(р,-/7-)/}>

 г Д е

~ l'(Pi>f;)/ : i,j - const} < W, и комплекты позиций {рк}£ Р , связанных с перехо­
дом tj G Г через множестводуг {(tj,pk)l), где 1 < \{{tj,pk)t : j,k = const}| < W. Здесь

~ мультичисло графа 5; Р — пространство комплектов, заданное на множестве Р
Функциями Ей В; {pj,tj)v — v-я дуга, выходящая из позициир, и входящая в пере-

2 5 6 Глава 8, Проблема тупиков и методы борьбы с ними

ход t;, (tp pk)v — v-я дуга, выходящая из перехода t; и входящая в позициюрк. Таким
образом, теперь структура S сети Петри Сможет быть представлена как четверка:

5 = <Р, Т, В, Е>.

Представим далее множество позиций Р как объединение двух пересекающихся
множеств: P = I\JO; If)O*0. Здесь мы через 1ч О обозначили следующие мно­
жества:

m m

Здесь

I(tj) = {Pi : B(pt,tj) > 1, i = Гя}, j = t m ; 0(£ ;) = {A : £ (f J , A) £ U = u } , .7 = t m ;

где (pj, ^.) —дугасвесом да< U7, выходящая из вершины/?, и входящая в вершину ц
(tj<Pk) ~ ДУга с весом w < W, выходящая из вершины t} и входящая в вершинурк,
то есть I(tj) и 0(tj) — комплекты входных и выходных позиций перехода ^соот­
ветственно .

Элементы множества Г обычно представляют собой те возможности (возможные
ситуации, условия), при которых могут быть реализованы интересующие нас про­
цессы (действия).

Начальная маркировка М0 (как и текущая маркировка М, которая соответствует
некоторому состоянию сети в текущий момент модельного времени) определяет­
ся одномерной матрицей (вектором), число компонентов которой равно числу по­
зиций сети п, п = \Р\, а значение i-го компонента (1 < i < п) есть натуральное чис­
ло тп(р{), которое определяет количество маркеров (меток) в позиции р;.

М0 =(ш0(р1),тл0(/з2),...,т0(/?„));

М = (m(pt),m(p2),...,m(p„)).

Здесь mu(/j,), m(/?,) e Z ; Z — множество неотрицательных целых чисел. Ее же (мар­
кировку М) можно также представлять как множество или комплект с той разни­
цей, что отсутствие некоторого элемента в множестве будем обозначать специаль­
ным элементом — нулем. В этом случае запись вида М; = М(_, - I(t) означает
разность множеств и такое изменение маркировки, при котором на соответствую­
щих местах вектора М, будут уменьшенные значения.

Передвижение маркеров по сети осуществляется посредством срабатывания ее
переходов. При срабатывании перехода изменяется маркировка в его входных и вы­
ходных позициях. Получается, что срабатывание возбужденного перехода, являю­
щееся локальным актом, в целом ведет к изменению маркировки сети, то есть к из­
менению ее состояния. Таким образом, если в сети задана начальная маркировка
М0, при которой хотя бы один переход возбужден, то в сети начинается движение
маркеров, отображающее смену состояний сети. Переход tj может сработать, если

^ррмальные модели для изучения проблемы тупиковых ситуаций 2 5 7

р, € Щ) : m(Pi) > #{Pi, I(tj)) - w .

Переход, для которого выполняется это условие, называется возбужденным. Здесь

п И сь вида #(pi,I(t)) означает число появлений позиций р, во входном комп­
акте перехода t/, оно, естественно, равно весу w соответствующей дуги, если вме­

сто мультиграфа рассматривать взвешенный граф. При срабатывании перехода Ц
маркировка М0 изменяется на маркировку М{ следующим образом:

Иначе говоря:

\/Pi е Р : Щ(р,) = т0(р,) - #{р„ /(£,)) + #(р„ Щ)) •

Из последнего выражения видно, что количество маркеров, которое переход tj изы­
мает из своих входных позиций, может не равняться количеству маркеров, кото­
рое этот переход помещает в свои выходные позиции, так как совсем не факт, что
число входных дуг перехода равняется числу его выходных дуг.
В графическом представлении сетей (оно наиболее наглядно и легко интер­
претируемо) переходы изображаются вертикальными или горизонтальными
планками (черточками), а позиции — кружками (см. далее). Условия-позиции
и события-переходы связаны отношением непосредственной зависимости (не­
посредственной причинно-следственной связи), которое изображается с помо­
щью направленных дуг, ведущих из позиций в переходы и из переходов в позиции.
Позиции, из которых ведут дуги на данный переход, называются его входными
позициями, а позиции, на которые ведут дуги из данного перехода, — выходны­
ми позициями.

Выполнение условия представляется разметкой соответствующей позиции, а имен­
но помещением числа п в это место или изображением там п маркеров (фишек),
где п — емкость условия (п > 0).

Говорят, что некоторый переход £• для разметки М является живым, если для всех
разметок М\ достижимых из разметки М, существует последовательность сраба­
тывания переходов, приводящая к маркировке М', при которой переход tj может
сработать. Сеть Петри называется живой, если живы все ее переходы; живучая раз­
метка — это разметка, при которой каждый из ее переходов сможет запускаться
бесконечное число раз. Когда достигнута такая разметка, при которой ни один из
переходов не может быть запущен, говорят, что сеть Петри завершилась (достиг­
нута желаемая конечная маркировка) или же зависла (то есть имеет место тупико­
вая ситуация).

Сети Петри очень удобны для описания процессов синхронизации и альтернатив.
Например, семафор может быть представлен входной позицией, связанной с пе-
Колькими взаимоисключающими переходами (критическими секциями). Сети

е тРИ позволяют моделировать асинхронность и недетерминизм параллельных
езависимых событий, параллелизм конвейерного типа, конфликтные взаимодей-

Т в и я Между процессами. Говорят, что два перехода конфликтуют, если они вза-
Но исключают друг друга, то есть они не могут быть запущены оба одновременно.

258 Глава 8. Проблема тупиков и методы борьбы с ними

Два перехода, готовые к срабатыванию, находятся в конфликте, если они связаны
с общей входной позицией.

В качестве примера рассмотрим рис. 8.5.

О,

ЛЭ5 О Р 1 3

Рис. 8.5. Сеть Петри для системы двух взаимодействующих процессов

Эта сеть соответствует примеру тупиковой ситуации, которая возникает при
взаимодействии процессов Пр1 и Пр2 во время передачи сообщений и потреб­
лении ресурса R каждым из процессов (см. листинг 8.3). Начальная маркиров­
ка для сети, показанной на рис. 8.5, будет равна (1, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0).
Здесь позиция р2 означает, что процесс Пр1 получил три единицы ресурса R-
Дуга, соединяющая позицию рй (число маркеров в ней соответствует количе­
ству доступных единиц ресурса R), имеет вес 3, и при срабатывании перехода ц
процесс Пр1 получает затребованные три единицы ресурса. Переход t2 пред­
ставляет посылку процессом Пр1 сообщения для Пр2; переход t5 — прием этого
сообщения. Появление маркера в позиции р7 означает, что процесс Пр2 обра­
ботал сообщение и послал ответ процессу Пр1. Срабатывание перехода tA преД"
ставляет возврат в систему трех единиц ресурса, которыми владел процесс Пр
Рассмотренная сеть не является живой, так как в ней всегда будут мертвы п
реходы t3, L, tr„ t7 и t&.

Примеру тупиковой ситуации, возникающей при работе с ресурсами типа о
(см. рис. 8.3), соответствует сеть Петри, показанная на рис. 8.6.

реальные модели для изучения проблемы тупиковых ситуаций 2 5 9

Рис. 8.6. Сеть Петри для тупиковой ситуации на ресурсах типа SR

В этой сети номера переходов соответствуют отмеченным номерам операторов,
которые выполняют процессы Пр1 и Пр2, а позиции р, и р 2

 — семафорам S1 и S2,
над которыми выполняются операции Р и V. Сеть на рис. 8.6 также не является
живой, хотя для нее и существуют последовательности срабатывания переходов,
не ведущие к тупиковой ситуации.

Сети Петри могут быть использованы для анализа системы на возможность воз­
никновения в ней тупиковых ситуаций. При таком анализе исследуется простран­
ство возможных состояний сети Петри, под которым понимается множество воз­
можных маркировок сети. Для анализа сетей посредством матричных методов
характерно множество проблем, поэтому в основном используется подход, осно­
ванный на построении редуцированного до дерева1 графа возможных маркировок
121]. В таком дереве вершины графа — это состояния (маркировки) сети, а ветви
Дерева, помеченные соответствующими переходами сети, — это возможные изме­
нения состояний сети, то есть срабатывания ее переходов.

Модель пространства состояний системы
Приведем еще одну формальную модель (она подробно рассмотрена в работе [54]).
та модель очень проста, однако она позволяет сформулировать, что нам нужно

а т ь> чтобы не попасть в тупиковое состояние.

Нал °Мпим, что деревом в теории графов называют граф, не имеющий циклов.

260 Глава 8. Проблема тупиков и методы борьбы с ними

Пусть состояние операционной системы сводится к состоянию различных ресур­
сов в системе (свободны они или выделены какому-нибудь процессу). Состояние
системы изменяется процессами, когда они запрашивают, приобретают или осво­
бождают ресурсы — это единственно возможные действия (точнее, мы принимаем
во внимание только такие действия). Если процесс не блокирован в данном состо­
янии, он может изменить это состояние на новое. Однако так как в общем случае
невозможно знать априори, какой путь может избрать произвольный процесс в
своей программе (это неразрешимая проблема!), то новое состояние может быть
любым из конечного числа возможных. Следовательно, процессы нами будут трак­
товаться как недетерминированные объекты. Введенные ограничения на извест­
ные понятия приводят нас к нескольким формальным определениям.
О Система есть пара <о, п>, где

а — множество состояний системы { S,, S2, S3,..., S„};

я — множество процессов { Р (, Р2, Р3, -, Рк }•

Q Процесс Р, есть частичная функция, отображающая состояние системы в непу­
стые подмножества ее же состояний. Это обозначается так:

Р,: G ^ { Q } .

Если процесс Р: определен на состоянии S, то область значений Р: обозначается
как Pj(S). Если Sk e Pj(Sc), то мы говорим, что Pj может изменить состояние S(, в
состояние Sk посредством операции, и используем обозначение Sc —-—> Sk.
Наконец, запись Sc. —-—> S„, означает, что Se = Sw, или St, — - — > Sw для некоторо­
го i, или Sc —-—> Sk для некоторых i и Sk, причем Sk —-—> S„..
Другими словами, система может быть переведена посредством п > 0 операций
с помощью m > 0 различных процессов из состояния Sc в состояние Sw.
Мы говорим, что процесс заблокирован в данном состоянии, если он не может из­
менить состояние, то есть в этом состоянии процесс не может ни требовать, ни
получать, ни освобождать ресурсы. Поэтому справедливо следующее.
Процесс Р; заблокирован в состоянии St„ если не существует ни одного состояния
Sk, такого что Sc —2—> Sk, причем Pj(Sc) = 0.

Далее, мы говорим, что процесс Pi находится в тупике в данном состоянии Sc, если
он заблокирован в состоянии SL. и если вне зависимости от того, какие операции
(изменения состояний) произойдут в будущем, процесс Pj остается заблокирован­
ным. Поэтому дадим еще одно определение.
Процесс Р; находится в тупике в состоянии Sc, если для всех состояний Sk, таких
что Sc —-—> Sk, процесс Р, блокирован в состоянии Sk.
Приведем пример. Определим систему <а, я>:

a = {S1,S2,S3,S4}; тг = {Р 1 ,Р 2 };

P1(S,) = {S2,S3}; P2(S,) = {S3};

P I(S2) = 0; P2(S2) - { S,, S4};

P,(S3) - { S 4); P2(S3) = 0;

P,(S.) = { S3}; P2(S4) = 0.

формальные модели для изучения проблемы тупиковых ситуаций 2 6 1

Некоторые возможные последовательности изменений для этой системы таковы:

S . - -> S3; S2
-> S4; S, •*s 4 .

Последовательность S, —-—> S4 может быть реализована, например, следующим
образом: S(— ^ — * S2; S2 — й — * S4 или же S, —3—> S3; S3 —S—> S4.
Заметим, что процесс Р2 находится в тупике как в состоянии S3, так и в состоянии
S • для последнего случая S2 — s — > S4 или S2 —> Su и процесс Р, не оказыва­
ется заблокированным ни в S4, ни в S,.
Диаграмма переходов этой системы изображена на рис. 8.7.

Рис. 8.7. Пример системы <<т, п> на четыре состояния

Состояние S называется тупиковым, если существует процесс Р;, находящийся в ту­
пике в состоянии S.

Теперь мы можем сказать, что, по определению, тупик предотвращается при вве­
дении такого ограничения на систему, чтобы каждое ее возможное состояние не
было тупиковым состоянием.

Введем еще одно определение.

Состояние Sj есть безопасное состояние, если для всех Sk, таких что S, —-—> Sk, Sk

не является тупиковым состоянием.

Рассмотрим еще один пример системы <о, it>. Граф ее состояний приведен на
Рис. 8.8. Здесь состояния S2 и S3 являются безопасными; из них система никогда не
сможет попасть в тупиковое состояние. Состояния S, и S4 могут привести как к
безопасным состояниям, так и к опасному состоянию S5. Состояния S6 и S7 явля­
ется тупиковыми.

Наконец, в качестве еще одной простейшей системы вида <а, п> приведем пример
тупика с ресурсами типа SR, уже рассмотренный нами ранее и проиллюстриро­
ванный рис. 8.3. Для этого определим состояния процессов Р(и Р2, которые ис­
пользуют ресурсы Rl и R2 (табл. 8.1).

*Усть состояние системы Sy означает, что процесс Р! находится в состоянии S,,
процесс Р2 — в состоянии Sj. Возможные изменения в пространстве состояний

262 Глава 8. Проблема тупиков и методы борьбы с\н\лмц

этой системы изображены на рис. 8.9. Вертикальными стрелками показаны воз­
можные переходы из одного состояния в другое для процесса Р,, а горизонтальны­
ми — для процесса Р2. В данной системе имеется три опасных состояния: S22, S23 и
S32. Попав в любое из них, мы неминуемо перейдем в тупиковое состояние S33.

Рис. 8.8. Пример системы <а, п> с безопасными, опасными и тупиковым состояниями

Рис. 8.9. Модель системы из двух процессов

2 6 3

Таблица 8 . 1 . Состояния процессов Р, и Р г

р Описание

Не держит никаких ресурсов

1 Запросил ресурс R2, не держит
никаких ресурсов

2 Держит ресурс R2

3 Запросил ресурс R,, держит ресурс R2

4 Держит ресурсы R, и R2

5 Держит ресурс R2 после освобождения
ресурса R,

при использовании ресурсов R, и R2

Р2

0

1

2

3

4

5

Описание

Не держит никаких ресурсов

Запросил ресурс R,, не держит
никаких ресурсов

Держит ресурс R,

Запросил ресурс R2, держит ресурс R,

Держит ресурсы R, и R2

Держит ресурс R2 после освобождения
ресурса R,

Теперь, когда мы знаем понятия надежного, опасного и безопасного состояний,
можно рассмотреть методы борьбы с тупиками.

Методы борьбы с тупиками
Проблема тупиков является чрезвычайно серьезной и сложной. Разработано не­
сколько подходов к разрешению этой проблемы, однако ни один из них нельзя
считать панацеей. В некоторых случаях цена, которую приходится платить за то,
чтобы освободить систему от тупиков, слишком высока. Кстати, именно по этой
причине нам не так уж редко приходится сталкиваться с тупиковыми ситуациями.
В других случаях, например в системах управления процессами реального време­
ни, просто нет иного выбора, как идти на значительные затраты, поскольку воз­
никновение тупика может привести к катастрофическим последствиям.

Проблема борьбы с тупиками становится все более актуальной и сложной по мере
развития и внедрения параллельных вычислительных систем. При проектирова­
нии таких систем разработчики стараются проанализировать возможные тупико­
вые ситуации, используя специальные модели и методы. Борьба с тупиковыми
ситуациями основывается на одной из трех стратегий:

• предотвращение тупика;

• обход тупика;

Q распознавание тупика с последующим восстановлением.

Предотвращение тупиков
Предотвращение тупика основывается на предположении о чрезвычайно высокой
е г° стоимости, поэтому лучше потратить дополнительные ресурсы системы, что-
оы исключить вероятность его возникновения при любых обстоятельствах. Этот
подход используется в наиболее ответственных системах, обычно в системах ре­
ального времени.

Редотвращение можно рассматривать как запрет существования опасных состо-
нИи. Поэтому подсистема распределения ресурсов, предотвращающая тупик,

окна гарантировать, что ни одного из четырех условий, необходимых для его
вступления, не возникнет.

2 6 4 Глава 8. Проблема тупиков и методы борьбы с нимц

Q Условие взаимного исключения можно подавить путем разрешения неограничен­
ного разделения ресурсов. Это удобно для повторно входимых программ и ряда
драйверов, но совершенно неприемлемо для совместно используемых перемен­
ных в критических секциях.

• Условие ожидания можно подавить, предварительно выделяя ресурсы. При этом
процесс может начать исполнение, только получив все необходимые ресурсы
заранее. Следовательно, общее число затребованных параллельными процес­
сами ресурсов должно быть не больше возможностей системы. Поэтому пред­
варительное выделение может привести к снижению эффективности работы
вычислительной системы в целом. Необходимо также отметить, что предвари­
тельное выделение ресурсов зачастую невозможно, так как реально необходи­
мые ресурсы становятся известны процессу только в ходе исполнения.

• Условие отсутствия перераспределения можно исключить, позволяя операци­
онной системе отнимать у процесса ресурсы. Для этого в операционной систе­
ме должен быть предусмотрен механизм запоминания состояния процесса с
целью последующего восстановления хода вычислений. Перераспределение
процессора реализуется достаточно легко, в то время как перераспределение
устройств ввода-вывода крайне нежелательно.

Q Условие кругового ожидания можно исключить, предотвращая образование цепи
запросов. Это можно обеспечить с помощью принципа иерархического выделе­
ния ресурсов. Все ресурсы образуют некоторую иерархию. Процесс, затребовав­
ший ресурс на одном уровне, может затем потребовать ресурсы только на более
высоком уровне. Он может освободить ресурсы на данном уровне, только пос­
ле освобождения всех ресурсов на всех более высоких уровнях. После того как
процесс получил, а потом освободил ресурсы данного уровня, он может запро­
сить ресурсы на три же самом уровне. Пусть имеются процессы Пр1 и Пр2,
которые могут иметь доступ к ресурсам R1 и R2, причем R2 находится на более
высоком уровне иерархии. Если процесс Пр1 захватил ресурс R1, то процесс
Пр2 не может захватить ресурс R2, так как доступ к нему проходит через дос­
туп к ресурсу R1, который уже захвачен процессом Пр1. Таким образом, созда­
ние замкнутой цепи исключается. Иерархическое выделение ресурсов часто не
дает никакого выигрыша, если порядок использования ресурсов, определенный
в описании процессов, отличается от порядка уровней иерархии. В этом случае
ресурсы будут расходоваться крайне неэффективно.

В целом стратегия предотвращения тупиков — это очень дорогое решение пробле­
мы тупиков, и эта стратегия используется нечасто.

Обход тупиков
Обход тупика можно интерпретировать как запрет входа в опасное состояние. Если
ни одно из упомянутых четырех условий не исключено, то вход в опасное состоя­
ние можно предотвратить при наличии у системы информации о последователь
ности запросов, связанных с каждым параллельным процессом. Доказано [54J, ч
если вычисления находятся в любом неопасном состоянии, то существует, по кра -
ней мере, одна последовательность состояний, которая обходит опасное состо

M p l ° g b l б ° Р ь б ы с тупиками 2 6 5

ие. Следовательно, достаточно проверить, не приведет ли выделение затребован-

о Г о ресурса сразу же к опасному состоянию. Если да, то запрос отклоняется, если

еТ его можно выполнить. Определение того, является состояние опасным или
нет', требует анализа последующих запросов от процессов.

Рассмотрим следующий пример. Пусть имеется система из трех вычислительных
процессов, потребляющих некоторый ресурс R типа SR; который выделяется дис­
кретными взаимозаменяемыми единицами, причем существует всего десять еди­
ниц этого ресурса. В табл. 8.2 приведены сведения о текущем распределении про­
цессами этого ресурса R, об их текущих запросах на этот ресурс и о максимальных
потребностях процессов в ресурсе R.

Таблица 8 . 2 . Пример распределения ресурсов

Имя процесса Выделено Запрос Максимальная Остаток
потребность потребностей

2 3 6 1

3 2 7 2

2 3 5 О

Последний столбец в таблице показывает нам, сколько еще единиц ресурса может
затребовать каждый из процессов, если бы он получил ресурс на свой текущий
запрос.

Если запрос процесса А будет удовлетворен первым, то он в принципе может за­
просить еще одну единицу ресурса R, и уже в этом случае мы получим тупиковую
ситуацию, поскольку ни один из наших процессов не сможет продолжить свои
вычисления. Следовательно, при выполнении запроса процесса А мы попадаем в
ненадежное1 состояние.

Если первым будет выполнен запрос процесса В, то у нас останется свободной еще
одна единица ресурса R. Однако если процесс В запросит еще две, а не одну едини­
цу ресурса R, а он может это сделать, то мы опять получим тупиковую ситуацию.

Если же мы сначала выполним запрос процесса С и выделим ему не две (как про­
цессу В), а все три единицы ресурса R, то у нас не останется никакого резерва, но
процесс С сможет благополучно завершиться и вернуть системе все свои ресурсы,
поскольку на этом его потребности в ресурсах заканчиваются. Это приведет к тому,
что свободное количество ресурса R станет равно пяти. После этого уже можно
будет удовлетворить запрос либо процесса В, либо процесса А, но не обоих сразу.
Часто бывает так, что последовательность запросов, связанных с каждым процес­
сом, заранее не известна. Но если заранее известен общий запрос на ресурсы каж-
Д°! о типа, то выделение ресурсов можно контролировать. В этом случае необходи-

0 Для каждого требования, в предположении, что оно удовлетворено, определить,
УЩествует ли среди общих запросов от всех процессов некоторая последователь-

Рмин «ненадежное состояние» не предполагает, что в данный момент существует пли в какое-то
Ремя обязательно возникнет тупиковая ситуация. Он просто говорит о том, что в случае некоторой

лагоприятпой последовательности событий система может зайти в тупик.

2 6 6 Глава 8. Проблема тупиков и методы борьбыс ниц и

ность требований, которая может привести к опасному состоянию. Данный под.
ход является примером контролируемого выделения ресурса.
Классическое решение этой задачи предложено Дейкстрой и известно как алго­
ритм банкира [53]. Алгоритм банкира напоминает процедуру принятия решения
о том, может ли банк безопасно для себя дать взаймы денег. Принятие решения
основывается на информации о потребностях клиента (нынешних и максимально
возможных в принципе) и учете текущего баланса банка. Хотя этот алгоритм прак­
тически нигде не используется, рассмотрим его, так как он интересен с методичес­
кой и академической точек зрения.

Пусть существует N процессов, для каждого из которых известно максимальное
количество потребностей в некотором ресурсе R (обозначим эти потребности че­
рез Max(i)). Ресурсы выделяются не сразу все, а в соответствии с текущим запро­
сом. Считается, что все ресурсы i-ro процесса будут освобождены по его завершении.
Количество полученных ресурсов для i-ro процесса обозначим Получ '̂). Остаток
в потребностях i-ro процесса на ресурс R обозначим через Остаток '̂). Признак того,
что процесс может не завершиться, — это значение false для переменной Заверши).
Наконец, переменная Своб_рес будет означать количество свободных единиц ре­
сурса R, а максимальное количество ресурсов в системе определено значением Все-
го_рес. Текст программы алгоритма банкира приведен в листинге 8.4.

Листинг 8.4. Алгоритм банкира Дейкстры

Begin
Своб_рес := Всего_рес;
For i := 1 to N do

Begin
Своб_рес := Своб_рес - ПолучШ;
ОстатокП) := Max(i) - ПолучО);
ЗавершО) := false; { процесс может не завершиться }

End:
f lag := true: { признак продолжения анализа }
while flag do

begin
flag := false;
for i := 1 to N do

begin
if (not (ЗавершП))) and (ОстатокО) <= Своб_рес)

then begin
Заверш(i) := true;
Своб_рес := СвоО_рес + ПолучП);
Flag := true

End
End

End;
If СвоО_рес = Bcero_pec

then Состояние системы безопасное.
и можно выдать ресурс

else Состояние небезопасное.
и выдавать ресурс нельзя

end.
Каждый раз, когда что-то может быть выделено из числа остающихся незанять ^
ресурсов, предполагается, что соответствующий процесс работает, пока не о

1\/1ЙТОДЫ борьбы с тупиками 2 6 7

чптся, а затем его ресурсы освобождаются. Если в конце концов все ресурсы осво­
бождаются, значит, все процессы могут завершиться и система находится в безопас­
ном состоянии. Другими словами, согласно алгоритму банкира система удовлет­
воряет только те запросы, при которых ее состояние остается надежным. Новое
состояние безопасно тогда и только тогда, когда каждый процесс может окончить­
ся Именно это условие и проверяется в алгоритме банкира. Запросы процессов,
приводящие к переходу системы в ненадежное состояние, не выполняются и от­
кладываются до момента, когда их можно будет выполнить.

Алгоритм банкира позволяет продолжать выполнение таких процессов, которым
в случае системы с предотвращением тупиков пришлось бы ждать. Хотя алгоритм
банкира относительно прост, его реализация может обойтись довольно дорого.
Основным накладным расходом стратегии обхода тупика с помощью контролиру­
емого выделения ресурса является время выполнения алгоритма, так как он вы­
полняется при каждом запросе. Причем, алгоритм работает наиболее медленно,
когда система близка к тупику. Необходимо отметить, что обход тупика неприме­
ним при отсутствии информации о требованиях процессов на ресурсы.
Рассмотренный алгоритм примитивен, в нем учитывается только один вид ресур­
са, тогда как в реальных системах количество различных типов ресурсов бывает
очень большим. Были опубликованы варианты этого алгоритма для большого числа
различных типов системных ресурсов. Однако все равно алгоритм не получил рас­
пространения. Причин тому несколько.

Q Алгоритм исходит из того, что количество распределяемых ресурсов в системе
фиксировано. Иногда это не так, например вследствие неисправности отдель­
ных устройств.

Q Алгоритм требует, чтобы пользователи заранее указывали свои максимальные
потребности в ресурсах. Это чрезвычайно трудно реализовать. Часть таких све­
дений, конечно, могла бы предоставлять система программирования, но все
равно оставшуюся часть информации о потребностях в ресурсах должны
давать пользователи. Однако чем более дружественными по отношению к
пользователям становятся компьютеры, тем чаще встречаются пользователи,
которые не имеют ни малейшего представления о том, какие ресурсы им потре­
буются.

Q Алгоритм требует, чтобы число работающих процессов оставалось постоянным.
Очевидно, что это требование также, в общем, нереалистично, особенно в муль-
титерминальных системах и в условиях, когда пользователь запускает несколько
параллельных процессов.

Обнаружение тупика
"тобы распознать тупиковое состояние, необходимо для каждого процесса опре­
делить, сможет ли он когда-либо снова развиваться, то есть изменять свои состоя­
ния. Так как нас интересует возможность развития процесса, а не сам процесс сме­
ны состояния, то достаточно рассмотреть только самые благоприятные изменения
состояния.

268 Глава 8. Проблема тупиков и методы борьбы с ними

Очевидно, что незаблокированный процесс (имеющий все необходимые ресурсы
или только что получивший ресурс и поэтому пока незаблокированный) через не­
которое время освобождает все свои ресурсы и затем благополучно завершается
Освобождение ранее занятых ресурсов может «разбудить» некоторые ранее за­
блокированные процессы, которые, в свою очередь, развиваясь, смогут освободить
другие ранее занятые ресурсы. Это может продолжаться до тех пор, пока либо не
останется незаблокированных процессов, либо какое-то количество процессов все
же останется заблокированными. В последнем случае (если существуют заблоки­
рованные процессы при завершении указанной последовательности действий)
начальное состояние S является состоянием тупика, а оставшиеся процессы нахо­
дятся в тупике в состоянии S. В противном случае S не есть состояние тупика.

Обнаружение тупика посредством редукции графа
повторно используемых ресурсов
Наиболее благоприятные условия для незаблокированного процесса Р; могут быть
представлены редукцией (сокращением) графа повторно используемых ресурсов
(см. описание модели Холта ранее в разделе «Понятие тупиковой ситуации при
выполнении параллельных вычислительных процессов»). Редукция графа может
быть описана Следующим образом.

• Граф повторно используемых ресурсов сокращается процессом Р;, который не
является ни заблокированной, ни изолированной вершиной, путем удаления
всех ребер, входящих в вершину Р; и выходящих из Р;. Эта процедура является
эквивалентной приобретению процессом Р(неких ресурсов, на которые он ра-~
нее выдавал запросы, а затем освобождению всех его ресурсов. Тогда Pj стано­
вится изолированной вершиной.

Q Граф повторно используемых ресурсов несокращаем (не редуцируется), если
он не может быть сокращен ни одним процессом.

• Граф ресурсов типа SR является полностью сокращаемым, если существует
последовательность сокращений, которая удаляет все дуги графа.

Лемма: для ресурсов типа SR порядок сокращений дуг графа повторно используе­
мых ресурсов несуществен; все последовательности ведут к одному и тому же не­
сокращаемому графу.

Допустим, что лемма неверна. Тогда должно существовать некоторое состояние S,
которое сокращается до некоторого несокращаемого состояния S, с помощью пос­
ледовательности seq, и до несокращаемого состояния S2 с помощью последователь­
ности seq2 так, что S, Ф S2 (то есть все процессы в состояниях S, и S2 или заблокиро­
ваны, или изолированы).

Если сделать такое предположение, то мы приходим к противоречию, которое
устраняется только при условии, что S, = S2. Действительно, предположим, что
последовательность seq, состоит из упорядоченного списка процессов (Pi, Рг< ••"
Рк). Тогда последовательность seq, должна содержать процесс Р, который не содер­
жится в последовательности seq2. В противном случае S, = S2, потому что редукШ1Я

графа только удаляет дуги, уже существующие в состоянии S, а если последо
вательности seq! и seq2 содержат одно и то же множество процессов (пусть и в раз-

Методы борьбы с тупиками «го»

яичном порядке), то должно быть удалено одно и то же множество дуг. И доказа­
тельство по индукции покажет, что Р Ф Р;, (i = 1,2,.... к) приводит к нашему проти­
воречию.

а Имеет место соотношение Р Ф Р„ так как вершина S может быть редуцирована
процессом Р[, а состояние S2 должно, следовательно, также содержать процесс Р,.

р Пусть Р Ф Р|, (i = 1, 2, ..., j). Однако поскольку после редукции процессами Р„
(i - 1, 2,..., j) возможно еще сокращение графа процессом P j+1, это же самое дол­
жно быть справедливо и для последовательности seq, независимо от порядка
следования процессов. То же самое множество ребер графа удаляется с помо­
щью процесса Р :. Таким образом, Р Ф P j+1.

Следовательно, Р Ф Р: для i = 1,2,..., к и Р не может существовать, а это противоре­
чит нашему предположению, что Sj Ф S2. Следовательно, S, = S2.
Теорема о тупике: Состояние S есть состояние тупика тогда и только тогда, когда
граф повторно используемых ресурсов в состоянии S не является полностью со­
кращаемым.

Q Для доказательства предположим, что состояние S есть состояние тупика, и
процесс Pi находится в тупике в S. Тогда для всех S» таких что S •—> Sj про­
цесс Р| заблокирован в состоянии Sj (по определению). Так как сокращения гра­
фа идентичны для серии операций процессов, то конечное несокращаемое
состояние в последовательности сокращений должно оставить процесс Р, бло­
кированным. Следовательно, граф не является полностью сокращаемым.

• Предположим теперь, что состояние S не является полностью сокращаемым.
Тогда существует процесс Р„ который остается заблокированным при всех воз­
можных последовательностях операций редукции в соответствии с леммой
(см. выше). Так как любая последовательность операций редукции графа по­
вторно используемых ресурсов, оканчивающаяся несокращаемым состоянием,
гарантирует, что все ресурсы типа SR, которые могут когда-либо стать доступ­
ными, в действительности освобождены, то процесс Р; навсегда заблокирован
и, следовательно, находится в тупике.

Первое следствие: процесс Р, не находится в тупике тогда и только тогда, когда

серия сокращений приводит к состоянию, в котором Р| не заблокирован.

Второе следствие: если S есть состояние тупика (по ресурсам типа SR), то по край­

ней мере два процесса находятся в тупике в S.

Из теоремы о тупике непосредственно следует и алгоритм обнаружения тупиков.
Нужно просто попытаться сократить граф по возможности эффективным спосо­
бом; если граф полностью не сокращается, то начальное состояние было состояни­
ем тупика для тех процессов, вершины которых остались в несокращенном графе.
Рассмотренная нами лемма позволяет предложить алгоритмы обнаружения тупи­
ка. Например, можно представить систему посредством графа повторно использу­
емых ресурсов и попробовать выполнить его редукцию, причем делать это следу­
ет, стараясь упорядочивать сокращения удобным образом.

Раф повторно используемых ресурсов может быть представлен матрицами или
Писками. В обоих случаях экономия памяти может быть достигнута за счет взве-

2 7 0 Глава 8. Проблема тупиков и методы борьбы с ними

шенных ориентированных мультиграфов (слиянием определенных дуг получения
или дуг запроса между конкретным ресурсом и данным процессом в одну дугу с

соответствующим весом, определяющим количество единиц ресурса).

Рассмотрим вариант с матричным представлением. Поскольку граф двудольный
он представляется двумя матрицами размером n x m. Одна матрица — матрица
распределения D = ||су|, в которой элемент d,, отражает количество единиц R. ре_
сурса, выделенного процессу P i ; то есть с1у = |(R|, Р,)|, где (R,, Р,) — это дуга между
вершинами R(и Pj, ведущая из Rj в Pj. Вторая матрица — матрица запросов N = |jn|
где п„ = |(Р,, R,)|.

В случае использования связанных списков для отображения той же структуры
можно построить две группы списков. Ресурсы, выделенные некоторому процессу
Р;, связаны с Р; указателями:

Р: » (Rx> dx) > (Ry, dy) > ... > (R, dz).

Здесь Rj — вершина, представляющая ресурс, d, — вес дуги, то есть d| = |(R|, Pj)|.

Подобным образом и ресурсы, запрошенные процессом Pj, связаны вместе.

Аналогичные списки создаются и для ресурсов (списки распределенных и запро­
шенных ресурсов):

Ri > (Р„. п„) > (Р¥. О > > (p „> n J-

Здесь п, = KPj, R:)|.

Для обоих представлений удобно также иметь одномерный массив доступных еди­
ниц ресурсов (г,, г2, ..., г,„), где Г; обозначает число доступных (нераспределенных
единиц) ресурса Rj, то есть г, = |Rj - £|(Rj, Pk)|.

Простой метод прямого обнаружения тупика заключается в просмотре по порядку
списка (или матрицы) запросов, причем, где возможно, производятся сокращения
дуг графа до тех пор, пока нельзя будет сделать более ни одного сокращения. При
этом самая плохая ситуация возникает, когда процессы упорядочены в некоторой
последовательности Р (, Р2,..., Р„, а единственно возможным порядком сокращений
является обратная последовательность, то есть Р,„ Р„.„ ..., Р2, Р„ а также в случае,
когда процесс запрашивает все m ресурсов. Тогда число проверок процессов равно:

n + (n - l) + ...+ l = n - (n + l)/2.

Таким образом, время выполнения такого алгоритма в наихудшем случае пропор­
ционально m х п2, поскольку каждая проверка требует испытания m ресурсов.
Более эффективный алгоритм может быть получен за счет хранения некоторой
дополнительной информации о запросах. Для каждой вершины процесса Р, опре­
деляется так называемый счетчик ожиданий Wj, отображающий количество ресур­
сов (не число единиц ресурса), которые в какое-то время вызывают блокировку
процесса. Кроме того, можно сохранять для каждого ресурса запросы, упорядо­
ченные по размеру (числу единиц ресурса). Тогда следующий алгоритм сокраще­
ний, записанный на псевдокоде, имеет максимальное время выполнения, нропор
циональное m x п.

з Т 0 п ы б о р ^ б ы £ т у п и ками

ail Pe L do
£ и п for a l l R,3 |CR,.P>| > 0 d o
Be9irl

Begin r- •= г + |(R,.P)|
For a l l P, э 0 < | CP,.RP I <= ^ do

Begin wt := w, - 1:
If w, = 0 then L := L U {Pi}

End

End

j g d l o c k :=N0t (L - {PL P2 Pn}):

L — это текущий список процессов, которые могут выполнять редукцию гра-
Можпо сказать, что L = {Р(| w,- = 0}. Программа выбирает процесс Р из списка L,
цесс Р сокращает граф, увеличивая число доступных единиц ij всех ресурсов Rj?

определенных процессу Р, обновляет счетчик ожидания w(каждого процесса Pf,
который сможет удовлетворить свой запрос на частный ресурс Щ, и добавляет Р-, к L,
если счетчик ожидания становится нулевым.

Методы обнаружения тупика по наличию
замкнутой цепочки запросов
Структура графа обеспечивает простое необходимое (но не достаточное) условие
для тупика. Для любого графа G = <Х, Е> и вершины х I X пусть Р(х) обозначает
множество вершин, достижимых из вершины х, то есть

Р(х) = { у | (х, у) I Е } U { z | (у, z) I Е & у I Р(х) }.

Можно сказать, что в ориентированном графе потомством вершины х, обозначен­
ным как Р(х), называется множество всех вершин, в которые ведут пути из х.

Тогда если существует некоторая вершина х I X: х I Р(х), то в графе G имеется
цикл.

Первая теорема: цикл в графе повторно используемых ресурсов является необхо­
димым условием тупика.

Для доказательства этой теоремы (которое мы опустим1) можно воспользоваться
следующим свойством ориентированных графов: если ориентированный граф не
содержит цикла, то существует линейное упорядочение вершин такое, что если
существует путь от вершины i к вершине], то i появляется перед] в этом упорядо­
чении.

торая теорема: если S не является состоянием тупика и S —2—> ST, где ST есть
остояние тупика, в том и только в том случае, когда операция процесса Р: есть

запрос и Р; находится в тупике в S,,

следует понимать таким образом, что тупик может быть вызван только при
Р°се, который не удовлетворен немедленно. Учитывая эту теорему, можно сде-

, В Ь 1 вод, что проверка на тупиковое состояние может быть выполнена более
ективно, если она проводится непрерывно, то есть по мере развития процес-

огДа надо применять редукцию графа только после запроса от некоторого

Р" Ж е л а н и и его можно найти в [54].

2 7 2 Глава 8, Проблема тупиков и методы борьбы с ними

процесса Р| и на любой стадии необходимо сначала попытаться сократить граф с
помощью процесса Р(. Если процесс Р; смог провести сокращение графа, то ника­
кие дальнейшие сокращения не являются необходимыми.

Ограничения, накладываемые на распределители, на число ресурсов, запрошен­
ных одновременно, и на количество единиц ресурсов, приводят к более простым
условиям для тупика.

Пучок, или узел, в ориентированном графе G = <Х, Е> — это подмножество вер­
шин Z I X, таких что V х I Z, Р(х) = Z, то есть потомством каждой вершины из Z
является само множество Z. Каждая вершина в узле достижима из каждой другой
вершины этого узла, и узел есть максимальное подмножество с этим свойством.
Поясним сказанное рис. 8.10.

Рис. 8.10. Пример узла в модели Холта

Следует заметить, что наличие цикла — это необходимое, но не достаточное
условие для узла. Так, на рис. 8.11 изображены два подграфа. Подграф а пред­
ставляет собой пучок (узел), тогда как подграф б представляет собой цикл, но
узлом не является. В узел должны входить дуги, но они не должны из него вы­
ходить.

Если состояние системы таково, что удовлетворены все запросы, которые мо­
гут быть удовлетворены, то существует простое достаточное условие существо­
вания тупика. Эта ситуация возникает, если распределители ресурсов не от­
кладывают запросы, которые могут быть удовлетворены, а выполняют их по
возможности немедленно (большинство распределителей следуют именно этой
дисциплине).

Состояние называется фиксированньш, если каждый процесс, выдавший запрос,

заблокирован.

Третья теорема: если состояние системы фиксированное (все процессы, имею­
щие запросы, удовлетворены), то наличие узла в соответствующем графе повтор
но используемых ресурсов является достаточным условием тупика.

Методы борьбы с тупиками ZYIS

y3enZ = {Z1,Z2,Z3,Z4}

Цикл Z = {Zb Z2, Z3, Z4}, но не узел

Рис. 8 . 1 1 . Узел и цикл в ориентированном графе

2 7 4 Глава 8. Проблема тупиков и методы борьбы с ними

Для доказательства предположим, что граф содержит узел Z. Тогда все процессы в
этом узле должны быть заблокированы только по ресурсам, принадлежащим Z
так как никакие ребра не могут выходить из Z по определению. Аналогично, по той
же самой причине все распределенные ресурсы узла Z принадлежат процессам из Z.
Наконец, все процессы в Z должны быть заблокированы согласно условию фикси­
рованное™ и определению узла. Следовательно, все процессы в узле Z должны
быть в тупике.

Допустим, что каждый ресурс имеет единичную емкость (по одной единице ресур­
са), то есть IRJ = 1, (i = l, 2, ..., m). При этом ограничении наличие цикла также
становится достаточным условием тупика.

Четвертая теорема: граф повторно используемых ресурсов с единичной емкос­
тью указывает на состояние тупика тогда и только тогда, когда он содержит цикл.

Необходимость цикла доказывает первая теорема. Для доказательства достаточ­
ности допустим, что граф содержит цикл, и рассмотрим только лишь процессы и
ресурсы, принадлежащие циклу. Так как каждая вершина-процесс должна иметь
входящее и исходящее ребра, она должна выдать запрос на некоторый ресурс, при­
надлежащий циклу, и должна удерживать некоторый ресурс, принадлежащий тому
же циклу. Аналогично, каждый ресурс единичной емкости в цикле должен быть
захвачен некоторым процессом. Следовательно, каждый процесс в цикле блоки­
руется на ресурсе, который может быть освобожден только некоторым процессом
из этого цикла; поэтому процессы в цикле находятся в тупике.

Чтобы обнаружить тупик в случае ресурса единичной емкости, мы должны просто
проверить граф повторно используемых ресурсов на наличие циклов.

Алгоритм обнаружения тупика по наличию
замкнутой цепочки запросов
Итак, распознавание тупика может быть основано на анализе модели распределе­
ния ресурсов. Один из алгоритмов, основанный на методе обнаружения замкну­
той цепи запросов, был разработан сотрудниками фирмы IBM и применялся в од­
ной из ОС этой компании. Он использует информацию о состоянии системы,
содержащуюся в двух таблицах: таблице текущего распределения (назначения)
ресурсов RATBL и таблице заблокированных процессов PWTBL (для каждого вида
ресурса может быть свой список заблокированных процессов). При каждом за­
просе на получение или освобождение ресурсов содержимое этих таблиц модифи­
цируется, а запрос анализируется в соответствии со следующим алгоритмом [22].

1. Начало алгоритма. Приходит запрос от процесса с номером J на занятый ресурс
с номером I.

2. Поместить номер ресурса I в таблицу PWTBL в строке с номером процесса J.

3. Использовать I в качестве смещения в таблице RATBL, чтобы найти номер про­

цесса К, который владеет ресурсом.

4. Использовать К в качестве смещения в таблице PWTBL.

5. Проверить, ждет ли процесс с номером К освобождения какого-либо ресурса с
номером Г. Если нет, то перейти к шагу 6, в противном случае — к шагу 7.

6 Перевести процесс с номером J в состояние ожидания и выйти из алгоритма.

7 Использовать Г в качестве смещения в таблице RATBL, чтобы найти помер К'
блокирующего его процесса.

8 Проверить, что К' = J. Если нет, перейти к шагу 9, в противном случае — к ша-

' гу П.
9. Проверить, вся ли таблица PWTBL просмотрена. Если да, то перейти к шагу

6, в противном случае — к шагу 10.

10. Присвоить К := К' и перейти к шагу 4.

П. Сделать вывод о наличии тупика с последующим восстановлением.

12. Конец алгоритма.
Для иллюстрации описанного алгоритма распознавания тупика рассмотрим сле­
дующую последовательность событий.

1. Процесс Р1 занимает ресурс R1.

2. Процесс Р2 занимает ресурс R3.

3. Процесс РЗ занимает ресурс R2.

4. Процесс Р2 занимает ресурс R4.

5. Процесс Р1 занимает ресурс R5.

В результате таблица распределения ресурсов (RATBL) принимает такой вид,
как показано в табл. 8.3.

Таблица 8 . 3 . Таблица распределения ресурсов

Ресурсы Процессы

R1 Р1

R2 РЗ

R3 Р2

R4 Р2

R5 PJ

6. Пусть процесс Р1 пытается занять ресурс R3, поэтому в соответствии с описан­
ным алгоритмом J = 1,1 = 3, К = 2. Процесс К не ждет никакого ресурса, поэто­
му процесс Р1 блокируется по ресурсу R3.

7. Далее, пусть процесс Р2 пытается занять ресурс R2: J = 3,1 = 2, К = 3. Процесс
с номером К=3 не ждет никакого ресурса, поэтому процесс Р2 блокируется по
ресурсу R2.

о- И наконец, пусть процесс РЗ пытается обратиться к ресурсу R5: J = 3, I = 5,
К = 1, Г = 3, К' - 2, К' <> J, поэтомуберем К = 2, Г = 2, К" = 3.

& этом случае К' = J, то есть тупик определен. Таблица заблокированных процес­
сов (PWTBL) теперь будет выглядеть так, как показано в табл. 8.4.
Равенство J = К' означает, что существует замкнутая цепь взаимоисключающих
и 0 5 кидающих процессов, то есть выполняются все четыре условия существования
тУпика.

276 Глава 8. Проблема тупиков и методы борьбы с ними

Таблица 8.4. Таблица заблокированных ресурсов

Процесс Ресурс

Р1 R3)

Р2 R2

РЗ R5

Для описанного нами примера можно построить модель Холта, как показано на
рис. 8.12. Здесь пронумерованы дуги запросов, которые процессы последователь­
но генерировали в соответствии с нашим примером. Из рисунка сразу видно, что
в результате такой последовательности запросов образовалась замкнутая цепоч­
ка: (8, 5, 6, 2, 7, 3), что и говорит о существовании тупика.

R5 Ri

Рис. 8.12. Граф распределения ресурсов

Распознавание тупика требует дальнейшего восстановления вычислений.

Восстановление можно интерпретировать как запрет постоянного пребывания

в опасном состоянии. Существуют следующие методы восстановления:

а принудительный перезапуск системы, характеризующийся потерей информа­

ции обо всех процессах, существовавших до перезапуска;

• принудительное завершение процессов, находящихся в тупике;

Q принудительное последовательное завершение процессов, находящихся в ту­
пике, с последующим вызовом алгоритма распознавания после каждого завер­
шения до исчезновения тупика;

• перезапуск процессов, находящихся в тупике, с некоторой контрольной точки,
то есть из состояния, предшествовавшего запросу на ресурс;

Q перераспределение ресурсов с последующим последовательным перезапуск

процессов, находящихся в тупике.

Контрольные вопросы и задачи 2 7 7

Основные издержки восстановления составляют потери времени на повторные
вычисления, которые могут оказаться весьма существенными. К сожалению, в ряде
случаев восстановление может стать невозможным, например исходные данные,
поступившие с каких-либо датчиков, могут измениться, тогда предыдущие значе­
ния будут безвозвратно потеряны.

Контрольные вопросы и задачи
1. Что такое тупиковое состояние? Приведите несколько примеров возникнове­

ния тупиковой ситуации.

2. Что является причиной возникновения тупиков на ресурсах типа SR? Пере­
числите условия, при которых возникает тупик.

3. Приведите пример графа повторно используемых ресурсов. Что позволяет сде­
лать эта модель Холта?

4. Приведите пример теоретико-множественного описания сети Петри.

5. Что такое маркировка сети Петри? Что представляет собой пространство воз­
можных состояний сети Петри?

6. Приведите пример графического представления сети Петри.

7. Что следует предпринять для реализации стратегии предотвращения тупико­
вых ситуаций? Какие реальные проблемы при этом возникают?

8. Что представляет собой «обход тупика»? Приведите алгоритм банкира Дейк-
стры. Почему на практике невозможно воспользоваться алгоритмом банкира
для борьбы с тупиковыми ситуациями?

9. Что такое «опасное состояние»? Приведите пример опасного состояния на мо­
дели состояний системы.

10. Опишите метод обнаружения тупика посредством редукции графа повторно
используемых ресурсов.

И. Опишите алгоритм обнаружения тупика по наличию замкнутой цепочки за­
просов.

Глава 9. Архитектура
операционных систем

Как комплекс системных управляющих и обрабатывающих программ (см. главу 1),
операционная система представляет собой очень сложный конгломерат взаимо­
связанных программных модулей и структур данных, которые должны обеспечи­
вать надежное и эффективное выполнение вычислений. Большинство потенци­
альных возможностей операционной системы, ее технические и потребительские
параметры — все это во многом определяется архитектурой системы — ее структу­
рой и основными принципами построения.

В-главе 1 мы упомянули несколько наиболее распространенных классификаций.
Очевидно, что системы, ориентированные на диалог, должны иметь иные страте­
гию обслуживания и дисциплину диспетчеризации, чем системы пакетной обра­
ботки. Диалоговое взаимодействие предполагает реализацию развитой интерфей­
сной подсистемы, обеспечивающей взаимодействие пользователя с компьютером.
Это отличие сказывается и на особенностях построения систем. Очевидно, что для
диалоговых операционных систем необходимо предусмотреть множество механиз­
мов, которые позволят пользователям эффективно управлять своими вычислени­
ями.

Аналогично, и системы, реализующие мультизадачный режим работы, отличают­
ся по своему строению от однозадачных систем. Если система допускает работу
нескольких пользователей, то желательно иметь достаточно развитую подсистем,
информационной безопасности. А это, в свою очередь, налагает определенные тр
бования и на идеологию построения операционной системы, и на выбор конкре

ных механизмов, помогающих реализовать защиту информационных ресурсов
ввести ограничения на доступ к другим видам ресурсов. Поскольку операционн
системы помимо функций организации вычислений и организации интерфе

пользователя предоставляют интерфейсы для взаимодействия программ с °п е р

о

ционной системой, мы в этой главе рассмотрим и интерфейсы прикладного г
граммирования.

о-

Основные принципы построения операционных систем 2 7 9

Основные принципы построения
операционных систем
Среди множества принципов построения операционных систем перечислим несколь­
ко наиболее важных: принцип модульности, принцип виртуализации, принципы
мобильности (переносимости) и совместимости, принцип открытости, принцип ге­
нерации операционной системы из программных компонентов и некоторые другие.

Принцип модульности
Операционная система строится из множества программных модулей. Под моду­
лем в общем случае понимают функционально законченный элемент системы,
выполненный в соответствии с принятыми межмодульными интерфейсами. По
своему определению модуль предполагает легкий способ его замены другим при
наличии заданных интерфейсов. Способы обособления составных частей опера­
ционной системы в отдельные модули могут быть существенно разными, но чаще
всего разделение происходит именно по функциональному признаку. В значитель­
ной степени разделение системы на модули определяется используемым методом
проектирования системы (снизу вверх или наоборот).

Особо важное значение при построении операционных систем имеют привилеги­
рованные, повторно входимые и реентерабельные модули, ибо они позволяют бо­
лее эффективно использовать ресурсы вычислительной системы. Как мы уже зна­
ем (см. главу 1), свойство реентерабельности может быть достигнуто различными
способами, но чаще всего используются механизмы динамического выделения па­
мяти под переменные для нового вычислительного процесса (задачи). В некото­
рых системах реентерабельность программы получают автоматически. Этого можно
достичь благодаря неизменяемости кодовых частей программ при исполнении, а
также автоматическому распределению регистров, автоматическому отделению
кодовых частей программ от данных и помещению последних в системную область
памяти, которая распределяется по запросам от выполняющихся задач. Естествен­
но, что для этого необходима соответствующая аппаратная поддержка. В других
случаях это достигается программистами за счет использования специальных си­
стемных модулей.

Принцип модульности отражает технологические и эксплуатационные свойства
системы. Наибольший эффект от его использования достижим в случае, когда прин­
цип распространен одновременно на операционную систему, прикладные програм­
мы и аппаратуру. Принцип модульности является одним из основных в UNIX-
системах.

0 всех операционных системах можно выделить некоторую часть наиболее важ­
ных управляющих модулей, которые должны постоянно находиться в оператив-

°и памяти для более скорой реакции системы на возникающие события и более
Ффективной организации вычислительных процессов. Эти модули вместе с не-

торьгми системными структурами данных, необходимыми для функционирова-
я операционной системы, образуют так называемое ядро операционной систе-
' Т а к как это действительно ее самая главная, центральная часть, основа системы.

2 8 0 Глава 9, Архитектура операционных СИСТЙИ.

При формировании состава ядра требуется удовлетворить двум противоречивым
требованиям. В состав ядра должны войти наиболее часто используемые систем­
ные модули. Количество модулей должно быть таким, чтобы объем памяти, зани­
маемый ядром, был не слишком большим. В его состав, как правило, входят мо­
дули по управлению системой прерываний, средства по переводу программ из
состояния счета в состояние ожидания, готовности и обратно, средства по распре­
делению основных ресурсов, таких как оперативная память и процессор. В главе 1
мы уже упоминали, что операционные системы могут быть микроядерными и мак-
роядерными (монолитными). В микроядерных операционных системах само ядро
очень компактно, а остальные модули вызываются из ядра как сервисные. При этом
сервисные модули могут размещаться и в оперативной памяти. В противополож­
ность микроядерным в макроядерных операционных системах главная суперви-
зорная часть включает в себя большое количество модулей. Более подробно о мик­
роядерных и макроядерных операционных системах см. далее.
Помимо программных модулей, входящих в состав ядра и постоянно располагаю­
щихся в оперативной памяти, может быть много других системных программных
модулей, которые получают название транзитных. Транзитные программные мо­
дули загружаются в оперативную память только при необходимости и в случае
отсутствия свободного пространства могут быть замещены другими транзитными
модулями. В качестве синонима термина «транзитный» можно использовать тер­
мин «диск-резидентный».

Принцип особого режима работы
Ядро операционной системы и низкоуровневые драйверы, управляющие работой
каналов и устройств ввода-вывода, должны работать в специальном режиме рабо­
ты процессора. Это необходимо по нескольким причинам. Во-первых, введение
специального режима работы процессора, в котором должен исполняться только
код операционной системы, позволяет существенно повысить надежность выпол­
нения вычислений. Это касается выполнения как управляющих функций самой
операционной системы, так и прикладных задач пользователей. Категорически
нельзя допускать, чтобы какая-нибудь прикладная программа могла вмешиваться
(преднамеренно или в связи с появлением ошибок вычислений) в вычисления,
связанные с супервизорной частью операционной системы. Во-вторых, ряд функ­
ций должен выполняться исключительно централизованно, под управлением опе­
рационной системы. К этим функциям мы, прежде всего, должны отнести функции,
связанные с управлением процессами ввода-вывода данных. Вспомните основные
принципы организации ввода-вывода (см. главу 5): все операции ввода-вывода дан
ных объявляются привилегированными. Это легче всего сделать, если процессор
может работать, как минимум, в двух режимах: привилегированном (режим су
первизора) и пользовательском. В первом режиме процессор может выполнять вс£
команды, тогда как в пользовательском набор разрешенных команд ограниче
Естественно, что помимо запрета на выполнение команд ввода-вывода в пользов
тельском режиме работы процессор не должен позволять обращаться к своим сП
циальным системным регистрам — эти регистры должны быть доступны тольк

псновные принципы построения операционных систем 2 8 1

в привилегированном режиме, то есть исключительно супервизорному коду самой
операционной системы. Попытка выполнить запрещенную команду или обратиться
к запрещенному регистру должна вызывать прерывание (исключение), и централь-

н Ы й процессор должен быть предоставлен супервизорной части операционной
системы для управления выполняющимися вычислениями.

Поскольку любая программа требует операций ввода-вывода, прикладные програм­
мы для выполнения этих (и некоторых других) операций обращаются к суперви­
зорной части операционной системы (модуль супервизора иногда называют су­
первизором задач) с соответствующим запросом. При этом процессор должен
переключиться в привилегированный режим работы. Чтобы программы не могли
произвольным образом обращаться к супервизорному коду, который работает в
привилегированном режиме, им предоставляется возможность обращаться к нему
в строгом соответствии с принятыми правилами. Каждый запрос имеет свой иден­
тификатор и должен сопровождаться соответствующим количеством параметров,
уточняющих запрашиваемую у операционной системы функцию (операцию). По­
этому супервизор задач при получении запроса сначала его тщательно проверяет.
Если запрос корректный и программа имеет право с ним обращаться, то запрос на
выполнение операции, как правило, передается соответствующему модулю опера­
ционной системы. Множество запросов к операционной системе образует соот­
ветствующий системный интерфейс прикладного программирования (Application
Program Interface, API).

Принцип виртуализации
В наше время уже не требуется пояснять значение слова «виртуальный», ибо о
виртуальных мирах, о виртуальной реальности знают даже дети. Принцип виртуа­
лизации нынче используется практически в любой операционной системе. Вирту­
ализация ресурсов позволяет не только организовать разделение тех ресурсов меж­
ду вычислительными процессами, которые не должны разделяться. Виртуализация
позволяет абстрагироваться от конкретных ресурсов, максимально обобщить их
свойства и работать с некоторой абстракцией, вобравшей в себя наиболее значи­
мые особенности. Этот принцип позволяет представить структуру системы в виде
определенного набора планировщиков процессов и распределителей ресурсов (мо­
ниторов) и использовать единую централизованную схему распределения ресур­
сов.

Следует заметить, что сама операционная система существенно изменяет наши
представления о компьютере. Она виртуализирует его, добавляя ему функциональ­
ности, удобства управления, предоставляя средства организации параллельных
вычислений и т. д. Именно благодаря операционной системе мы воспринимаем
Компьютер совершенно иначе, чем без нее.

наиболее законченным и естественным проявлением концепции виртуальности
вляется понятие виртуальной машины. По сути, любая операционная система,
вляясь средством распределения ресурсов и организуя по определенным прави-

м Управление процессами, скрывает от пользователя и его приложений реаль-
1е аппаратные и иные ресурсы, заменяя их некоторой абстракцией. В результате

282 Глава 9. Архитектура операционных систем

пользователи видят и используют виртуальную машину как некое устройство, спо­
собное воспринимать их программы, написанные на определенном языке програм­
мирования, выполнять их и выдавать результаты на виртуальные устройства, к 0 .
торые связаны с реально существующими в данной вычислительной системе. При
таком языковом представлении пользователя совершенно не интересует реальная
конфигурация вычислительной систейы, способы эффективного использования
ее компонентов и подсистем. Он мыслит и работает с машиной в терминах исполь­
зуемого им языка.

Чаще виртуальная машина, предоставляемая пользователю, воспроизводит архи­
тектуру реальной машины, но архитектурные элементы в таком представлении
выступают с новыми или улучшенными характеристиками, часто упрощающими
работу с системой. Характеристики могут быть произвольными, но чаще всего
пользователи желают иметь собственную «идеализированную» по архитектурным
характеристикам машину в следующем составе.

Q Единообразная по логике работы память (виртуальная) достаточного для вы­
полнения приложений объема. Организация работы с информацией в такой
памяти производится в терминах работы с сегментами данных на уровне вы­
бранного пользователем языка программирования.

• Произвольное количество процессоров (виртуальных), способных работать
параллельно и взаимодействовать во время работы. Способы управления про­
цессорами, в том числе синхронизация и информационные взаимодействия,
реализованы и доступны пользователям с уровня используемого языка в тер­
минах управления процессами.

• Произвольное количество внешних устройств (виртуальных), способных ра­
ботать с памятью виртуальной машины параллельно или последовательно, асин­
хронно или синхронно по отношению к работе того или иного виртуального
процессора, которые инициируют работу этих устройств. Информация, пере­
даваемая или хранимая на виртуальных устройствах, не ограничена допусти­
мыми размерами. Доступ к такой информации осуществляется на основе либо
последовательного, либо прямого способа доступа в терминах соответствую­
щей системы управления файлами. Предусмотрено расширение информаци­
онных структур данных, хранимых на виртуальных устройствах.

Степень приближения к «идеальной» виртуальной машине может быть большей
или меньшей в каждом конкретном случае. Чем больше виртуальная машина, реа­
лизуемая средствами операционной системы на базе конкретной аппаратуры ком­
пьютера, приближена к «идеальной» по характеристикам машине и, следователь­
но, чем больше ее архитектурно-логические характеристики отличны от реальн
существующих, тем больше степень ее виртуальности.

Одним из важнейших результатов принципа виртуализации является возможное!
организации выполнения в операционной системе приложений, разработанных Д
другой операционной системы, имеющей совсем другой интерфейс прикладног
программирования. Другими словами, речь идет об организации нескольких on ^
рационных сред, о чем мы уже говорили в главе 1. Реализация этого принципа п
зволяет операционной системе иметь очень сильное преимущество перед дрУгИ

Основные принципы построения операционных систем 2 8 3

операционными системами, не имеющими такой возможности. Примером реали­
зации принципа виртуализации может служить VDM-машина (Virtual DOS Ma­
chine) — защищенная подсистема, предоставляющая полную среду типа MS DOS
и консоль для выполнения DOS-приложений. Как правило, параллельно может
выполняться практически произвольное число DOS-приложений, каждое в своей
VDM-машине. Такие VDM-машины имеются и в операционных системах Win­
dows1 компании Microsoft, в OS/2, в Linux.

Одним из аспектов общего принципа виртуализации является независимость про­
грамм от внешних устройств, хотя иногда эту особенность выделяют особенно и на­
зывают принципом. Она заключается в том, что связь программ с конкретными
устройствами производится не в процессе создания программы, а в период плани­
рования ее исполнения. В результате перекомпиляция при работе программы с но­
вым устройством, на котором располагаются данные, не требуется. Этот принцип
позволяет одинаково осуществлять операции управления внешними устройствами
независимо от их конкретных физических характеристик. Например, программе,
содержащей операции обработки последовательного набора данных, безразлично,
на каком носителе эти данные будут располагаться. Смена носителя и данных, раз­
мещаемых на них (при неизменности структурных характеристик данных), не при­
внесет каких-либо изменений в программу, если в системе реализован принцип
независимости программ от внешних устройств. Независимость программ от вне­
шних устройств реализуется в подавляющем большинстве операционных систем
общего применения. Ярким примером такого подхода являются операционные си­
стемы с общим названием UNIX. Реализована такая независимость и в большин­
стве современных операционных систем для персональных компьютеров.

Например, в системах Windows все аппаратные ресурсы полностью виртуализи-
рованы, и прямой доступ к ним со стороны прикладных (и системных обрабатыва­
ющих) программ однозначно запрещен. В системах Windows NT/2000/XP даже
были введены понятия HAL (Hardware Abstraction Layer — уровень абстрагирова­
ния аппаратуры) и HEL (Hardware Emulation Layer — уровень эмуляции аппара­
туры), и этот шаг очень помогает в реализации идей переносимости (мобильнос­
ти) операционной системы.

Принцип мобильности
Мобильность, или переносимость, означает возможность и легкость переноса опе­
рационной системы на другую аппаратную платформу. Мобильная операционная
система обычно разрабатывается с помощью специального языка высокого уров­
ня, предназначенного для создания системного программного обеспечения. Такой
язык помимо поддержки высокоуровневых операторов, типов данных и модуль­
ных конструкций должен позволять непосредственно использовать аппаратные
возможности и особенности процессора. Кроме этого, такой язык должен быть
широко распространенным и реализованным в виде систем программирования,

Не все операционные системы компании Microsoft, в названии которых слово Windows является ос­
новным, поддерживают VDM-машины. В частности, такой возможности нет в системе Windows ME.

2 8 4 Глава 9. Архитектура операционных СИСТРИ»

которые либо уже имеются на целевой платформе, либо позволяют получать про­
граммные коды для целевого компьютера. Другими словами, этот язык системно­
го программирования должен быть достаточно распространенным и технологич­
ным. Одним из таких языков является язык С. В последние годы язык C++ также
стал использоваться для этих целей, поскольку идеи объектно-ориентированного
программирования оказались плодотворными не только для прикладного, но и для
системного программирования. Большинство современных операционных систем
были созданы именно как объектно-ориентированные.

Обеспечить переносимость операционной системы достаточно сложно. Дело в том
что архитектуры разных процессоров могут очень сильно различаться. У них мо­
жет быть разное количество рабочих регистров, причем часть регистров может
оказаться контекстно-зависимыми, как это имеет место в процессорах с архи­
тектурой ia32. Различия могут быть и в реализации адресации. Более того, для
операционной системы важной является не только архитектура центрального
процессора, но и архитектура компьютера в целом, ибо важнейшую роль играет
подсистема ввода-вывода, а она строится на дополнительных (по отношению к цен­
тральному процессору) аппаратных средствах. В таких условиях сделать эффек­
тивным код операционной системы при условии создания его на языке типа C/C++
невозможно. Поэтому часть программных модулей, которые более всего зависят
от аппаратных особенностей процессора, от типов поддерживаемых данных, спо­
собов адресации, системы команд и других важнейших моментов, разрабатывает­
ся на языке ассемблера. Очевидно, что модули, написанные на языке ассемблера,
при переносе операционной системы на процессор с иной архитектурой должны
быть написаны заново. Зато остальная (большая) часть кода операционной систе­
мы может быть просто перекомпилирована под целевой процессор. Именно по это­
му принципу в свое время была создана операционная система UNIX. Относи­
тельная легкость переноса этой системы на другие компьютеры позволила сделать
ее одной из самых распространенных. Для обеспечения мобильности был даже
создан стандарт на интерфейс прикладного программирования, названный POSIX
(Portable Operating System Interface for Computer Environments — интерфейс при­
кладного программирования для переносимых операционных систем).
К сожалению, на самом деле далеко не все операционные системы семейства UNIX
допускают относительно простую переносимость созданного для них программ­
ного обеспечения, хотя сами они и поддерживают такую переносимость. Основ­
ная причина тому — отход от единого стандарта API — POSIX. Очевидно, что пла­
той за универсальность, прежде всего, является потеря производительности при
выполнении операций ввода-вывода и вычислений, связанных с этими операция­
ми. Поэтому ряд разработчиков шли и до сих пор идут на отказ от принципа мо­
бильности, поскольку не всегда следование этому принципу экономически опра)
дано.

Если при разработке операционной системы сразу не следовать принципу мобиль
ности, то в последующем очень трудно обеспечить перенос на другую платформ У
как самой операционной системы, так и программного обеспечения, созданно
для нее. Например, компания IBM потратила долгие годы на перенос своей опера^
ционной системы OS/2, созданной для персональных компьютеров с процессор

п^-яовные принципы построения операционных систем 2 8 5

архитектуры ia32, на платформу PowerPC. Но даже если изначально в специ­
фикации на операционную систему заложить требование легкой переносимости,
то не значит, что его в последующем будет просто реализовать. Подтверждением

т о му является тот же проект OS/2-WindowsNT. Как известно, проект Windows
NT обеспечивал работу этой операционной системы на процессорах с архитекту­
рой ia32, MIPS, Alpha (DEC), PowerPC. Однако в последующем трудности с реа­
лизацией этого принципа привели к тому, что нынешние версии операционных
систем класса Windows NT (Windows 2000/XP) уже создаются только для про­
цессоров с архитектурой ia32 и не поддерживают MIPS, Alpha и PowerPC.

Принцип совместимости
Одним из аспектов совместимости является способность операционной системы
выполнять программы, написанные для других систем или для более ранних вер­
сий данной операционной системы, а также для другой аппаратной платформы.

Необходимо разделять вопросы двоичной совместимости и совместимости на уров­
не исходных текстов приложений. Двоичная совместимость достигается в том слу­
чае, когда можно взять исполняемую программу и запустить ее на выполнение на
другой операционной системе. Для этого необходимы: совместимость на уровне
команд процессора, совместимость на уровне системных вызовов и даже на уровне
библиотечных вызовов, если они являются динамически связываемыми.
Совместимость на уровне исходных текстов требует наличия соответствующего
транслятора в составе системного программного обеспечения, а также совмести­
мости на уровне библиотек и системных вызовов. При этом необходима переком­
пиляция имеющихся исходных текстов в новый выполняемый модуль.

Гораздо сложнее достичь двоичной совместимости между процессорами, основан­
ными на разных архитектурах. Для того чтобы один компьютер выполнял про­
граммы другого (например, программу для персонального компьютера типа IBM
PC хочется выполнять на компьютере типа Мае от фирмы Apple), этот компьютер
должен работать с машинными командами, которые ему изначально непонятны.
Например, процессор типа PowerPC на Мае должен исполнять двоичный код, пред­
назначенный для процессора i80x86. Процессор 80x86 имеет свои собственные де­
шифратор команд, регистры и внутреннюю архитектуру. Процессор PowerPC имеет
Другую архитектуру, он не понимает непосредственно двоичный код 80x86, поэто­
му должен выбрать каждую команду, декодировать ее, чтобы определить, для чего
она предназначена, а затем выполнить эквивалентную подпрограмму, написанную
Для PowerPC. К тому же у PowerPC нет в точности таких же регистров, флагов и
внутреннего арифметико-логического устройства, как в 80x86, поэтому он должен
эмулировать все эти элементы с использованием своих регистров или памяти. И он
Должен тщательно воспроизводить результаты каждой команды, что требует спе­
циально написанных подпрограмм для PowerPC, гарантирующих, что состояние
эмулируемых регистров и флагов после выполнения каждой команды будет в точ­
ности таким же, как и на реальном процессоре 80x86. Выходом в таких случаях
Шляется использование так называемых прикладных сред, или эмуляторов. Учи-

ь№ая, что основную часть программы, как правило, составляют вызовы библио-

286 Глава 9. Архитектура операционных систем

течных функций, прикладная среда имитирует библиотечные функции целиком
используя заранее написанную библиотеку функций аналогичного назначения а
остальные команды эмулирует каждую по отдельности.

Одним из средств обеспечения совместимости программных и пользовательских
интерфейсов является соответствие стандартам POSIX. Эти стандарты позволя­
ют создавать программы в стиле UNIX, которые впоследствии могут легко пере­
носиться из одной системы в другую.

Принцип генерируемое™
Согласно принципу генерируемости исходное представление центральной систем­
ной управляющей части операционной системы (ее ядра и основных компонен­
тов, которые должны постоянно находиться в оперативной памяти) должно обеспе­
чивать возможность настройки, исходя из конкретной конфигурации конкретного
вычислительного комплекса и круга решаемых задач. Под генерацией операцион­
ной системы понимается ее сборка (компоновка) из отдельных программных мо­
дулей. В результате генерации получают скомпонованные двоичные коды опера­
ционной системы и построенные системные таблицы, отражающие конкретную
конфигурацию компьютера. Эта процедура проводится редко перед достаточно
протяженным периодом эксплуатации операционной системы. Процесс генерации
осуществляется с помощью специальной программы-генератора и соответствую­
щего входного языка для этой программы, позволяющего описывать программ­
ные возможности системы и конфигурацию машины. В результате генерации
получается полная версия операционной системы. Сгенерированная версия опе­
рационной системы представляет собой совокупность системных наборов моду­
лей и данных.

Упомянутый раньше принцип модульности положительно проявляется при гене­
рации операционной системы. Он существенно упрощает ее настройку на требуе­
мую конфигурацию вычислительной системы. В наши дни при использовании
персональных компьютеров с принципом генерируемости операционной системы
можно столкнуться разве что при работе с Linux. В этой UNIX-системе имеется
возможность не только использовать какое-либо готовое ядро операционной сис­
темы, но и самому сгенерировать (скомпилировать) такое ядро, которое будет оп­
тимальным для данного конкретного персонального компьютера и решаемых на
нем задач. Кроме генерации ядра в Linux имеется возможность указать и наоор
подгружаемых драйверов и служб, то есть часть функций может реализовываться
модулями, непосредственно входящими в ядро системы, а часть — модулями, име
ющими статус подгружаемых, транзитных.

В остальных современных распространенных операционных системах, в том чи
ле и для персональных компьютеров, конфигурирование системы под соответству
ющий состав оборудования осуществляется на этапе установки, причем в бол
шинстве случаев не представляется возможным серьезно вмешаться в этот проце
В дальнейшем, при эксплуатации компьютера, можно изменить состав драйвер <
служб, отдельных параметров и режимов работы. Как правило, внесение п о д 0

ных изменений может быть осуществлено посредством редактирования конери У

Основные принципы построения операционных систем 2 8 7

рационного файла или реестра. Например, мы можем отключить ненужное устрой­
ство, заменить для какого-нибудь устройства драйвер, отключить или добавить ту
или иную службу. Более того, для большей гибкости часто вводится механизм
поддержки нескольких конфигураций. Например, такие популярные системы,

к а к Windows 98 и Windows NT/2000/XP, предоставляют возможность создавать
до девяти конфигураций. При загрузке операционной системы пользователю пре­
доставляется возможность выбрать одну из имеющихся конфигураций. Таким об­
разом, имея всего одну операционную систему, за счет нескольких различающих­
ся конфигураций пользователь может получить несколько виртуальных систем,
различающихся составом установленного (работающего) оборудования, драйве­
ров и служб, и на выбор запускать одну из этих систем.

Принцип открытости
Открытая операционная система доступна для анализа как пользователям, так и си­
стемным специалистам, обслуживающим вычислительную систему. Наращивае­
мая (модифицируемая, развиваемая) операционная система позволяет не только
использовать возможности генерации, но и вводить в ее состав новые модули, со­
вершенствовать существующие и т. д. Другими словами, необходимо, чтобы мож­
но было легко внести дополнения и изменения, если это потребуется, не нарушая
целостности системы. Прекрасные возможности для расширения предоставляет
подход к структурированию операционной системы по типу клиент-сервер с ис­
пользованием микроядерной технологии. В соответствии с этим подходом опера­
ционная система строится как совокупность привилегированной управляющей
программы и набора непривилегированных служб — «серверов». Основная часть
операционной системы может оставаться неизменной, в то время как добавляются
новые службы или изменяются старые.

Этот принцип иногда трактуют как расширяемость системы.

К открытым операционным системам прежде всего следует отнести UNIX-систе­
мы и, естественно, системы Linux.

Принцип обеспечения безопасности вычислений
Обеспечение безопасности при выполнении вычислений является желаемым свой­
ством для любой многопользовательской системы. Правила безопасности опреде­
ляют такие свойства, как защита ресурсов одного пользователя от других и уста­
новление квот по ресурсам для предотвращения захвата одним пользователем всех
системных ресурсов (таких как память).

оеспечение защиты информации от несанкционированного доступа является обя­
зательной функцией многих операционных систем. Для решения этой проблемы чаще

сего используется механизм учетных записей. Он предполагает проведение аутен-
фикащи пользователя при его регистрации на компьютере и последующую авто-

изацию, которая определяет уровень полномочий (прав) пользователя (об аутенти­
фикации и а в т о Ризации пользователей см. главу 1). Каждая учетная запись может

°Дить в одну или несколько групп. Встроенные группы, как правило, определяют

2 8 8 Глава 9, Архитектура операционных систем

права пользователей, тогда как создаваемые администратором группы (их называют
группами безопасности) используются для определения разрешений в доступе пользо­
вателей к тем или иным ресурсам. Имеющиеся учетные записи хранятся в специаль­
ной базе данных, которая бывает доступна только для самой системы. Для этого файл
базы данных с учетными записями открывается системой в монопольном режиме, и
доступ к нему со стороны любого пользователя становится невозможным. Делается
это для того, чтобы нельзя было получить базу данных с учетными записями. Если
получить файл с учетными записями, то посредством его анализа можно было бы узнать
пароль пользователя, по которому осуществляется аутентификация.
Во многих современных операционных системах гарантируется степень безопас­
ности данных, соответствующая уровню С2 в системе стандартов США. Основы
стандартов в области безопасности были заложены в документе «Критерии оцен­
ки надежных компьютерных систем». Этот документ, изданный в США в 1983 году.
Национальным центром компьютерной безопасности (National Computer Security
Center), часто называют Оранжевой книгой.

В соответствии с требованиями Оранжевой книги безопасной считается система,
которая «посредством специальных механизмов защиты контролирует доступ к ин­
формации таким образом, что только имеющие соответствующие полномочия лица
или процессы, выполняющиеся от их имени, могут получить доступ на чтение, за­
пись, создание или удаление информации».

Иерархия уровней безопасности, приведенная в Оранжевой книге, помечает низ­
ший уровень безопасности как D, а высший — как А.

В класс D попадают системы, оценка которых выявила их несоответствие требова­
ниям всех других классов.

Основными свойствами, характерными для систем класса С, являются наличие
подсистемы учета событий, связанных с безопасностью, и избирательный конт­
роль доступа. Класс (уровень) С делится на два подуровня: уровень С1 обеспечи­
вает защиту данных от ошибок пользователей, но не от действий злоумышленни­
ков. На более строгом уровне С2 должны присутствовать:

Q средства секретного входа, обеспечивающие идентификацию пользователей
путем ввода уникального имени и пароля перед тем, как им будет разрешен
доступ к системе;

Q избирательный контроль доступа, требуемый на этом уровне, позволяет вла­
дельцу ресурса определить, кто имеет доступ к ресурсу и что он может с ним
делать (владелец делает это путем предоставления разрешений доступа пользо­
вателю или группе пользователей);

• средства аудита (auditing) обеспечивают обнаружение и запись важных сооы
тий, связанных с безопасностью, или любых попыток создать системные ресур
сы, получить доступ к ним или удалить их;

а защита памяти заключается в том, что память перед ее повторным использов.

нием должна инициализироваться.
На этом уровне система не защищена от ошибок пользователя, но поведение его м
жет быть проконтролировано по записям в журнале, оставленным средствами ауДИ

Системы уровня В основаны на помеченных данных и распределении пользовате­
ли по категориям, то есть реализуют мандатный контроль доступа. Каждому

Л

0льзователю присваивается рейтинг защиты, и он может получать доступ к дан­
ным только в соответствии с этим рейтингом. Этот уровень в отличие от уровня С
защищает систему от ошибочного поведения пользователя.

Уровень А является самым высоким уровнем безопасности, он требует в дополне­
ние ко всем требованиям уровня В выполнения формального математически обо­
снованного доказательства соответствия системы требованиям безопасности.
Различные коммерческие структуры (например, банки) особо выделяют необхо­
димость учетной службы, аналогичной той, что предлагают государственные ре­
комендации С2. Любая деятельность, связанная с безопасностью, может быть от­
слежена и тем самым учтена. Это как раз то, что требует стандарт для систем
класса С2 и что обычно нужно банкам. Однако коммерческие пользователи, как
правило, не хотят расплачиваться производительностью за повышенный уровень
безопасности. Уровень безопасности А занимает своими управляющими механиз­
мами до 90 % процессорного времени, что, безусловно, в большинстве случаев не­
приемлемо. Более безопасные системы не только снижают эффективность, но и
существенно ограничивают число доступных прикладных пакетов, которые соот­
ветствующим образом могут выполняться в подобной системе. Например, для опе­
рационной системы Solaris (версия UNIX) есть несколько тысяч приложений, а для
ее аналога уровня В — только около ста.

Микроядерные операционные системы
В микроядерных операционных системах мы можем выделить центральный ком­
пактный модуль, относящийся к супервизорной части системы. Этот модуль име­
ет очень небольшие размеры и выполняет относительно небольшое количество
управляющих функций, но позволяет передать управление на другие управляю­
щие модули, которые и выполнят затребованную функцию. Микроядро — это ми­
нимальная главная (стержневая) часть операционной системы, служащая осно­
вой модульных и переносимых расширений. Микроядро само является модулем
системного программного обеспечения, работающим в наиболее приоритетном
состоянии компьютера и поддерживающим связи с остальной частью операцион­
ной системы, которая рассматривается как набор серверных приложений (служб).
в 90-е годы XX века было весьма распространенным убеждение, что большинство
операционных систем следующих поколений будут строиться как микроядерные.
Однако практика показывает, что это не совсем так. Разработчики желают иметь
компактное микроядро, но при этом включить в него как можно больше функций,
исполняемых непосредственно этим программным модулем. Ибо выполнение за-
реоованной функции другим модулем, вызываемым из микроядра, приводит

к Дополнительным задержкам, и к дополнительным сложностям. Более того, име-
Т с я масса разных мнений по поводу того, как следует организовывать службы опе­

рационной системы по отношению к микроядру; как проектировать драйверы
Р°йств, чтобы добиться наибольшей эффективности, но сохранить функции

2 9 0 Глава 9. Архитектура операционных систем

драйверов максимально независимыми от аппаратуры; следует ли выполнять опе­
рации, не относящиеся к ядру, в пространстве ядра или в пространстве пользова­
теля; стоит ли сохранять программы имеющихся подсистем (например, UNIX) или
лучше отбросить все и начать с нуля.

Основная идея, заложенная в технологию микроядра заключается в том, чтобы
создать необходимую среду верхнего уровня иерархии, из которой можно легко
получить доступ ко всем функциональным возможностям уровня аппаратного
обеспечения. При этом микроядро является стартовой точкой для создания всех
остальных модулей системы. Все эти остальные модули, реализующие необхо­
димые системе функции, вызываются из микроядра и выполняют сервисную роль.
При этом они получают статус обычного процесса или задачи. Можно сказать,
что микроядерная архитектура соответствует технологии клиент-сервер. Имен­
но эта технология позволяет в большей мере и с меньшими трудозатратами реа­
лизовать перечисленные выше принципы проектирования операционных сис­
тем.

Важнейшая задача разработки микроядра заключается в выборе базовых прими­
тивов, которые должны находиться в микроядре для обеспечения необходимого и
достаточного сервиса. В микроядре содержится и исполняется минимальное ко­
личество кода, необходимое для реализации основных системных вызовов. В чис­
ло этих вызовов входят передача сообщений и организация другого общения меж­
ду внешними по отношению к микроядру процессами, поддержка управления
прерываниями, а также ряд других весьма немногочисленных функций. Осталь­
ные системные функции, характерные для «обычных» (не микроядерных) опера­
ционных систем, обеспечиваются как модульные дополнения-процессы, взаимо­
действующие главным образом между собой и осуществляющие взаимодействие
посредством передачи сообщений.

Для большинства микроядерных операционных систем основой для такой архи­
тектуры выступает технология микроядра Mach. Эта операционная система была
создана в университете Карнеги Меллон, и многие разработчики брали с нее при­
мер.

Исполняемые микроядром функции ограничены в целях сокращения его разме­
ров и максимизации количества кода, работающего как прикладная программа.
Микроядро включает только те функции, которые требуются в целях определе­
ния набора абстрактных сред обработки для прикладных программ и организации
совместной работы приложений. В результате микроядро обеспечивает только пять
различных типов сервисов:

• управление виртуальной памятью;

• поддержка заданий и потоков;

Q взаимодействие между процессами (Inter-Process Communication, IPC);

Q управление поддержкой ввода-вывода и прерываниями;

• сервисы хоста (host)1 и процессора.

Хост — главный компьютер. Нынче этим термином обозначают любой компьютер, имеющий

Микроядерные операционные системы 2 9 1

Другие подсистемы и функции операционной системы, такие как файловые сис­
темы, поддержка внешних устройств и традиционные программные интерфейсы,
оформляются как системные сервисы либо получают статус обычных обрабаты­
вающих задач. Эти программы работают как приложения на микроядре.
С применением концепции нескольких потоков выполнения на одно задание мик­
роядро создает прикладную среду, обеспечивающую использование мультипро­
цессоров; при этом совсем не обязательно, чтобы машина была мультипроцессор­
ной: на однопроцессорной машине различные потоки просто выполняются в разное
время. Вся поддержка, требуемая для мультипроцессорных машин, сконцентри­
рована в сравнительно малом и простом микроядре.

Благодаря своим небольшим размерам и способности поддерживать остальные
службы в виде обычных процессов, выполняющихся вместе с прикладными про­
граммами, сами микроядра проще, чем ядра монолитных или модульных операци­
онных систем. С микроядром супервизорная часть операционной системы разби­
вается на модульные части, которые могут быть сконфигурированы целым рядом
способов, позволяя строить большие системы добавлением частей к меньшим.
Например, каждый аппаратно-независимый нейтральный сервис логически отде­
лен и может быть сконфигурирован различными способами. Микроядра также
облегчают поддержку мультипроцессоров созданием стандартной программной
среды, которая может использовать несколько процессоров, если они есть, однако
если их нет, работает на одном. Специализированный код для мультипроцессоров
ограничен самим микроядром. Более того, сети из общающихся между собой мик­
роядер могут быть использованы для операционной системной поддержки возни­
кающего класса массивно параллельных машин.

В некоторых случаях использование микроядерного подхода на практике сталки­
вается с определенными сложностями, что проявляется в некотором замедлении
скорости выполнения системных вызовов при передаче сообщений через микро­
ядро по сравнению с классическим подходом. С другой стороны, можно констати­
ровать и обратное. Поскольку микроядра малы и в значительной степени оптимизи­
рованы, при соблюдении ряда условий они позволяют обеспечить характеристики
реального времени, требующиеся для управления устройсч вами и для высокоско­
ростных коммуникаций. Наконец, хорошо структурированные микроядра обеспе­
чивают изолирующий слой для аппаратных различий, которые не маскируются
применением языков программирования высокого уровня. Таким образом, они
упрощают перенесение кода и увеличивают уровень его повторного использова­
ния.

Наиболее ярким представителем микроядерных операционных систем является
операционная система реального времени QNX. Микроядро QNX поддерживает
только планирование и диспетчеризацию процессов, взаимодействие процессов,
обработку прерываний и сетевые службы нижнего уровня (подробнее об ОС QNX
см. в главе 10). Это микроядро обеспечивает всего лишь пару десятков системных
вызовов, но благодаря этому оно может быть целиком размещено во внутреннем
кэше даже таких процессоров, как Intel 486. Как известно, разные версии этой опе­
рационной системы имели и разные объемы ядер — от 8 до 46 Кбайт.

2 9 2 Глава 9. Архитектура операционных систои

Чтобы построить минимальную систему QNX, требуется добавить к микроядпу
менеджер процессов, который создает процессы и управляет ими и памятью про­
цессов. Чтобы операционная система QNX была применима не только во встроен­
ных и бездисковых системах, нужно добавить файловую систему и менеджер уст­
ройств. Эти менеджеры исполняются вне пространства ядра, так что ядро остается
небольшим.

Макроядерные операционные системы
В макроядерных, или монолитных, операционных системах ядро, состоящее из мно­
жества управляющих модулей и структур данных, не разделено на центральную
часть и периферийные (по отношению к этой центральной части) модули. Ядро
получается монолитным, неделимым. В этом смысле макроядерные операцион­
ные системы являются прямой противоположностью микроядерным. Можно со­
гласиться с тем, как трактуется архитектура монолитных операционных систем в
работах [29,30]. В монолитной операционной системе, несмотря на ее возможную
сильную структуризацию, очень трудно удалить один из уровней многоуровневой
модульной структуры. Добавление новых функций и изменение существующих
для монолитных операционных систем требует очень хорошего знания всей архи­
тектуры операционной системы и чрезвычайно больших усилий.

Очень плодотворным оказался подход, основанный на модели клиент-сервер. Эта
модель предполагает наличие программного компонента — потребителя какого-
либо сервиса, или клиента, и программного компонента — поставщика этого сер­
виса, или сервера. Взаимодействие между клиентом и сервером стандартизируется,
так что сервер может обслуживать клиентов, реализованных различными спосо­
бами и, возможно, разными разработчиками. При этом главным требованием яв­
ляется то, чтобы использовался единообразный интерфейс. Инициатором обмена
обычно является клиент, который посылает запрос на обслуживание серверу, на­
ходящемуся в состоянии ожидания запроса. Один и тот же программный компо­
нент может быть клиентом по отношению к одному виду услуг и сервером для
другого вида услуг. Модель клиент-сервер является скорее удобным концептуаль­
ным средством ясного представления функций того или иного программного эле­
мента в той или иной ситуации, нежели технологией. Эта модель успешно приме­
няется не только при построении операционных систем, но и на всех уровнях
программного обеспечения, и имеет в некоторых случаях более узкий, специфи­
ческий смысл, сохраняя, естественно, при этом все свои общие черты. Микроядер­
ные операционные системы в полной мере используют модель клиент-сервер.
При поддержке монолитных операционных систем возникает ряд проблем, свя­
занных с тем, что все компоненты макроядра работают в едином адресном про
странстве. Во-первых, это опасность возникновения конфликта между различнь
ми частями ядра, во-вторых, сложность подключения к ядру новых драйвере
Преимущество микроядерной архитектуры перед макроядерной заключается в TOIV,
что каждый компонент системы представляет собой самостоятельный процес ,
запуск или остановка которого не отражается на работоспособности остальнь
процессов.

требования к операционным системам реального времени 2 9 3

Микроядерные операционные системы нынче разрабатываются чаще монолитных.
Однако следует заметить, что использование технологии клиент-сервер — это еще

Не гарантия того, что операционная система станет микроядерной. В качестве под­
тверждения этому можно привести пример с операционными системами класса
Windows NT, которые построены на идеологии клиент-сервер, но которые тем не
менее трудно назвать микроядерными. Их «микроядро» имеет уже достаточно боль­
шой размер, приставка «микро» здесь вызывает улыбку. Хотя по своей архитекту­
ре супервизорная часть этих систем без каких-либо условностей может быть отне­
сена к системам, построенным на базе модели клиент-сервер. Причем для последних
версий операционных систем с общим названием NT (New Technology) еще более
заметным является отход от микроядерной архитектуры, но сохранение принципа
клиент-сервер во взаимодействиях между модулями управляющей (супервизор-
ной) части. Для того чтобы согласиться с таким высказыванием, достаточно срав­
нить операционную систему QNX и операционные системы Windows NT/2000/
ХР.

Требования к операционным системам
реального времени
Как известно, система реального времени (СРВ) должна давать отклик на любые
непредсказуемые внешние воздействия в течение предсказуемого интервала вре­
мени. Для этого должны выполняться следующие требования.

• Ограничение времени отклика. После наступления события реакция на него га­
рантированно должна последовать до предустановленного крайнего срока. От­
сутствие такого ограничения рассматривается как серьезный недостаток про­
граммного обеспечения.

• Одновременность обработки. Даже если наступает более одного события одно­
временно, все временные ограничения для всех событий должны быть выдер­
жаны. Это означает, что системе реального времени должен быть присущ па­
раллелизм, что достигается использованием нескольких процессоров и/или
многозадачного подхода.

Примерами систем реального времени являются системы управления атомными
электростанциями или какими-нибудь технологическими процессами, системы
медицинского мониторинга, системы управления вооружением, системы косми­
ческой навигации, системы разведки, системы управления лабораторными экспе­
риментами, системы управления автомобильными двигателями, робототехника,
телеметрические системы управления, системы антиблокировки тормозов, систе­
мы сигнализации — список в принципе бесконечен.

Иногда можно услышать из разговоров специалистов, что различают системы «мяг­
кого» и «жесткого» реального времени. Различие между жесткой и мягкой СРВ
зависит от требований к системе — система считается жесткой, если «нарушение
вРеменных ограничений недопустимо», и мягкой, если «нарушение временных
0 граничений нежелательно». В недалеком прошлом велось множество дискуссий
0 точном смысле терминов «жесткая» и «мягкая» СРВ. Можно даже показать, что

2 9 4 Глава 9. Архитектура операционных систем

мягкая СРВ не является СРВ вовсе, ибо основное требование о соблюдении вре­
менных ограничений не выполнено. В действительности термин СРВ часто не­
правомерно применяют по отношению к быстрым системам.

Часто путают понятия СРВ и ОСРВ (операционная система реального времени)
а также неправильно используют атрибуты «мягкая» и «жесткая», когда говорят
что та или иная ОСРВ мягкая или жесткая. Нет мягких или жестких операцион­
ных систем реального времени. ОСРВ может только служить основой для постро­
ения мягкой или жесткой СРВ. Сама по себе ОСРВ не препятствует тому, что ваша
СРВ будет мягкой. Например, пусть вы решили создать СРВ, которая должна ра­
ботать через Ethernet по протоколу TCP/IP. Такая система не может быть жест­
кой СРВ, поскольку сама сеть Ethernet в принципе непредсказуема вследствие
использования случайного метода доступа к среде передачи данных, в отличие,
например, от сети IBM Token Ring или ARC Net, в которых используются детер­
минированные методы доступа.

Итак, перечислим основные требования к ОСРВ.

Мультипрограммность и мультизадачность
Требование 1. Операционная система должна быть мультипрограммной и мульти­
задачной {многопоточной — multi-threaded), а также активно использовать преры­
вания для диспетчеризации. Как указывалось выше, ОСРВ должна быть предска­
зуемой. Это означает не то, что ОСРВ должна быть быстрой, а то, что максимальное
время выполнения того или иного действия должно быть известно заранее и соот­
ветствовать требованиям приложения. Так, например, система Windows 3.11 даже
на Pentium IV с частотой более 3000 МГц не может функционировать в качестве
ОСРВ, ибо одно приложение может практически монопольно захватить централь­
ный процессор и заблокировать систему для остальных вычислений.

В соответствии с первым требованием операционная система должна быть много­
поточной на принципе абсолютного приоритета (прерываемой). То есть плани­
ровщик должен иметь возможность прервать любой поток выполнения и предо­
ставить ресурс тому потоку, которому он более необходим. Операционная система
(и аппаратура) должна также обеспечивать прерывания на уровне обработки пре­
рываний.

Приоритеты задач
Требование 2. Должно существовать понятие приоритета потока (задачи). Пробле­
ма в том, чтобы определить, какой задаче ресурс требуется более всего. В идеальной
ситуации ОСРВ отдает ресурс потоку или драйверу с ближайшим крайним сроком,
что называется управлением временным ограничением (Deadline DrivenOS). Ч т 0 "
бы реализовать это временное ограничение, операционная система должна знать,
сколько времени требуется каждому из выполняющихся потоков для завершения.
Операционных систем, построенных по этому принципу, практически нет, так как
он слишком сложен для реализации. Поэтому разработчики операционных систел
принимают иную точку зрения: вводится понятие уровня приоритета для задач ,

Требования к операционным системам реального времени 2 9 5

и временные ограничения сводятся к приоритетам. Так как умозрительные реше­
ния чреваты ошибками, показатели СРВ при этом снижаются. Чтобы более эффек­
тивно осуществить указанное преобразование ограничений, проектировщик может
воспользоваться теорией расписаний или имитационным моделированием, хотя и
это может оказаться бесполезным. Тем не менее, так как на сегодняшний день не
имеется иного решения, без понятия приоритета потока не обойтись.

Наследование приоритетов
Требование 3. Должна существовать система наследования приоритетов. На са­
мом деле именно этот механизм синхронизации и тот факт, что различные потоки
выполнения используют одно и то же пространство памяти, отличают их от про­
цессов. Как мы уже знаем, процессы не разделяют одно и то же пространство памя­
ти. Так, например, старые версии UNIX не являются многопоточными. «Старая»
UNIX — многозадачная ОС, где задачами являются процессы (а не потоки), кото­
рые сообщаются через каналы связи (pipes) и разделяемую память. Оба этих меха­
низма используют файловую систему, а ее поведение непредсказуемо.

Комбинация приоритетов потоков и разделение ресурсов между ними приводит к
другому явлению — классической проблеме инверсии приоритетов. Это можно
проиллюстрировать на примере, где есть как минимум три потока. Когда поток
низшего приоритета захватил ресурс, разделяемый с потоком высшего приорите­
та, и начал выполняться поток среднего приоритета, выполнение потока высшего
приоритета будет приостановлено, пока не освободится ресурс и не отработает
поток среднего приоритета. В этой ситуации время, необходимое для завершения
потока высшего приоритета, зависит от нижних уровней приоритетов — это и есть
инверсия приоритетов. Ясно, что в такой ситуации трудно выдержать ограниче­
ние на время исполнения.

Чтобы устранить такие инверсии, ОСРВ должна допускать наследование приори­
тета, то есть повышение уровня приоритета потока до уровня потока, который его
вызывает. Наследование означает, что блокирующий ресурс поток наследует при­
оритет потока, который он блокирует (разумеется, это справедливо лишь в том
случае, если блокируемый поток имеет более высокий приоритет).

Иногда можно услышать утверждение, что в грамотно спроектированной системе
такая проблема не возникает. В случае сложных систем с этим нельзя согласиться.
Единственный способ решения этой проблемы состоит в увеличении приоритета
потока «вручную» прежде, чем ресурс окажется заблокированным. Разумеется, это
возможно в случае, когда два потока разных приоритетов претендуют на один ре­
сурс В общем случае решения не существует.

Сихронизация процессов и задач
Требование 4. Операционная система должна обеспечивать мощные, надежные и
Удобные механизмы синхронизации задач. Так как задачи разделяют данные (ре­
сурсы) и должны сообщаться друг с другом, представляется логичным существо­
вание механизмов блокирования и коммуникации. То есть необходимы механиз-

2 9 6 Глава 9. Архитектура операционных систем

мы, гарантированно предоставляющие возможность оперативно обменяться сооб­
щениями и синхросигналами между параллельно выполняющимися задачами и
процессами. Эти системные механизмы должны быть всегда доступны процессам
требующим реального времени. Следовательно, системные ресурсы для их функ­
ционирования должны быть распределены заранее.

П ре дсказуем ость
Требование 5. Поведение операционной системы должно быть известно и доста­
точно точно прогнозируемо. Времена выполнения системных вызовов и времен­
ные характеристики поведения системы в различных обстоятельствах должны быть
известны разработчику. Поэтому создатель ОСРВ должен приводить следующие
характеристики:

• латентную задержку прерывания, то есть время от момента прерывания до мо­
мента запуска задачи: она должна быть предсказуема и согласована с требова­
ниями приложения (эта величина зависит от числа одновременно «висящих»
прерываний);

Q максимальное время выполнения каждого системного вызова (оно должно быть
предсказуемо и не должно зависеть от числа объектов в системе);

а максимальное время маскирования прерываний драйверами и супервизорны-
ми модулями операционной системы.

Интерфейсы операционных систем
Напомним, что операционная система всегда выступает как интерфейс между ап­
паратурой компьютера и пользователем с его задачами. Под интерфейсами опера­
ционных систем здесь и далее следует понимать специальные интерфейсы систем­
ного и прикладного программирования (API), предназначенные для выполнения
перечисленных ниже задач.

• Управление процессами, которое включает в себя следующий набор основных

функций:

• запуск, приостанов и снятие задачи с выполнения;

• задание или изменение приоритета задачи;

• взаимодействие задач между собой (механизмы сигналов, семафорные при­
митивы, очереди, конвейеры, почтовые ящики);

• вызов удаленных процедур (Remote Procedure Call, RPC).

• Управление памятью:

• запрос на выделение блока памяти;

• освобождение памяти;

• изменение параметров блока памяти (например, память может быть забло­
кирована процессом либо предоставлена в общий доступ);

• отображение файлов на память (имеется не во всех системах).

Интерфейсы операционных систем 2 9 7

• Управление вводом-выводом:
• запрос на управление виртуальными устройствами (напомним, что управ­

ление вводом-выводом является привилегированной функцией самой опе­
рационной системы, и никакая из пользовательских задач не должна иметь
возможности непосредственно управлять устройствами);

• файловые операции (запросы к системе управления файлами на создание,
изменение и удаление данных, организованных в файлы).

Здесь мы перечислили основные наборы функций, которые выполняются опера­
ционной системой по соответствующим запросам от задач. Что касается интерфейса
пользователя с операционной системой, то он реализуется с помощью специальных
программных модулей, которые принимают его команды на соответствующем язы­
ке (возможно, с использованием графического интерфейса) и транслируют их
в обычные вызовы в соответствии с основным интерфейсом системы. Обычно эти
модули называют интерпретатором команд. Так, например, функции такого ин­
терпретатора в MS DOS выполняет модуль C0MMAND.COM. Получив от пользовате­
ля команду, такой модуль после лексического и синтаксического анализа либо сам
выполняет действие, либо, что случается чаще, обращается к другим модулям опе­
рационной системы, используя механизм API. Надо заметить, что в последние годы
большую популярность получили графические интерфейсы (Graphical User In­
terface, GUI), в которых задействованы соответствующие манипуляторы типа мышь
или трекбол (track-ball)1. Указание курсором на объект и щелчок или двойной
щелчок на соответствующей кнопке мыши приводит к каким-либо действиям —
запуску программы, ассоциированной с объектом, выбору и/или активизации меню
и т. д. Можно сказать, что такая интерфейсная подсистема транслирует «коман­
ды» пользователя в обращения к операционной системе.

Поясним также, что управление GUI является частным случаем задачи управле­
ния вводом-выводом и не относится к функциям ядра операционной системы, хотя
в ряде случаев разработчики операционной системы относят функции GUI к ос­
новному системному интерфейсу API.

Следует отметить, что имеются два основных подхода к управлению задачами. Так,
в одних системах порождаемая задача наследует все ресурсы задачи-родителя, тогда
как в других системах существуют равноправные отношения, и при порождении
нового процесса ресурсы для него запрашиваются у операционной системы.

Обращения к операционной системе в соответствии с имеющимся интерфейсом
API могут осуществляться как посредством вызова подпрограммы с передачей ей
необходимых параметров, так и через механизм программных прерываний. Выбор
метода реализации вызовов функций API должен определяться архитектурой плат­
формы.

1 рекбол — специальный шарик, который в переносных компьютерах (NoteBook) размещается ря­
дом с клавиатурой, прокручивается пальцами и служит для перемещения указателя мыши. В насто­
ящее время гораздо чаще используют устройство, чувствительное к касанию (touchpad). С помощью
такого устройства пользователь управляет указателем мыши, перемещая палец по специальной по­
верхности.

http://C0MMAND.COM

2 9 8 Глава 9, Архитектура операционных систем

Так, например, в операционной системе MS DOS, которая разрабатывалась для
однозадачного режима (поскольку процессор i80x86 не поддерживал мультипро­
граммирование), использовался механизм программных прерываний. При этом
основной набор функций API был доступен через точку входа обработчика int 21 h.
В более сложных системах имеется не одна точка входа, а множество — по количе­
ству функций API. Так, в большинстве операционных систем используется метод
вызова подпрограмм. В этом случае вызов сначала передается в модуль API, на­
пример в библиотеку времени выполнения (Run Time Library, RTL)1, который пе­
ренаправляет его соответствующим обработчикам программных прерываний, вхо­
дящим в состав операционной системы. Использование механизма прерываний
вызвано, главным образом, тем, что при этом процессор переводится в режим су­
первизора.

Интерфейс прикладного
программирования
Прежде всего, необходимо однозначно разделить общий термин API (Application
Program Interface — интерфейс прикладного программирования) на следующие
направления:

Q API как интерфейс высокого уровня, принадлежащий к библиотекам RTL;

• API прикладных и системных программ, входящих в поставку операционной
системы;

• прочие интерфейсы API.

Интерфейс прикладного программирования, как это и следует из названия, пред­
назначен для использования прикладными программами системных ресурсов ком­
пьютера и реализуемых операционной системой разнообразных системных функ­
ций. API описывает совокупность функций и процедур, принадлежащих ядру или
надстройкам операционной системы.

Итак, API — это набор функций, предоставляемых системой программирования раз­
работчику прикладной программы и ориентированных на организацию взаимодей­
ствия результирующей прикладной программы с целевой вычислительной системой.
Целевая вычислительная система представляет собой совокупность программных
и аппаратных средств, в окружении которых выполняется результирующая програм­
ма. Сама результирующая программа порождается системой программирования на
основании кода исходной программы, созданного разработчиком, а также объект­
ных модулей и библиотек, входящих в состав системы программирования.
В принципе API используется не только прикладными, но и системными програм­
мами как в составе операционной системы, так и в составе системы программиро­
вания. Но дальше речь пойдет только о функциях API с точки рения разработчика

RTL включает в себя те стандартные подпрограммы, которые система программирования п
ляет на этапе компиляции. В общем случае это не только модули системы программирован:
модули самой операционной системы.

интерфейс прикладного программирования 2 9 9

прикладной программы. Для системной программы существуют некоторые допол­
нительные ограничения на возможные реализации API.

функции API позволяют разработчику строить результирующую прикладную

программу так, чтобы использовать средства целевой вычислительной системы для

выполнения типовых операций. При этом разработчик программы избавлен от

необходимости создавать исходный код для выполнения этих операций.

Программный интерфейс API включает в себя не только сами функции, но и согла­

шения об их использовании, которые регламентируются операционной системой,

архитектурой целевой вычислительной системы и системой программирования.

Существует несколько вариантов реализации API:

О реализация на уровне модулей операционной системы;

О реализация на уровне системы программирования;

Q реализация на уровне внешней библиотеки процедур и функций.

Система программирования в каждом из этих вариантов предоставляет разработ­
чику средства для подключения функций API к исходному коду программы и орга­
низации их вызовов. Объектный код функций API подключается к результирую­
щей программе компоновщиком при необходимости.

Возможности API можно оценивать со следующих позиций:

• эффективности выполнения функций API — эффективность включает в себя
скорость выполнения функций и объем вычислительных ресурсов, необходи­
мых для их выполнения;

• широты предоставляемых возможностей;

Q зависимости прикладной программы от архитектуры целевой вычислительной
системы.

В идеале хотелось бы иметь набор функций API, выполняющихся с наивысшей
эффективностью, предоставляющих пользователю все возможности современных
операционных систем и имеющих минимальную зависимость от архитектуры вы­
числительной системы (еще лучше — лишенных такой зависимости).

Добиться наивысшей эффективности выполнения функций API практически труд­
но по тем же причинам, по которым невозможно добиться наивысшей эффектив­
ности выполнения для любой результирующей программы. Поэтому об эффек­
тивности интерфейса API можно говорить только в сравнении его характеристик
с другими интерфейсами API.

Что касается двух других показателей, то в принципе нет никаких технических
ограничений на их реализацию. Однако существуют организационные проблемы
и узкие корпоративные интересы, тормозящие создание такого рода библиотек.

Реализация функций API на уровне модулей
операционной системы
При реализации функций API на уровне модулей операционной системы опера­
ционная система ответственна за выполнение функций API. Объектный код, вы-

3 0 0 Глава 9, Архитектура операционных систем

полняющий функции, либо непосредственно входит в состав операционной сис­
темы (или даже ядра операционной системы), либо находится в составе динами­
чески загружаемых библиотек, поставляемых вместе с системой. Система програм­
мирования ответственна только за то, чтобы организовать интерфейс для вызова
этого кода.

В таком варианте результирующая программа обращается непосредственно к опе­
рационной системе. Поэтому достигается наибольшая эффективность выполне­
ния функций API по сравнению со всеми другими вариантами реализации API.

Недостатком организации API по такой схеме является практически полное от­
сутствие переносимости не только кода результирующей программы, но и кода
исходной программы. Программа, созданная для одной архитектуры вычислитель­
ной системы, не сможет исполняться на вычислительной системе другой архитек­
туры даже после того, как ее объектный код полностью перестроен. Чаще всего
система программирования просто не сможет выполнить перестроение исходного
кода для новой архитектуры вычислительной системы, поскольку многие функ­
ции API, ориентированные на определенную операционную систему, в новой ар­
хитектуре могут просто отсутствовать.

Таким образом, в данной схеме для переноса прикладной программы с одной це­
левой вычислительной системы на другую потребуется изменение исходного кода
программы.

Переносимости можно было бы добиться, если унифицировать функции API в раз­
личных операционных системах. С учетом корпоративных интересов производи­
телей операционных систем и иного системного программного обеспечения такое
направление их развития представляется практически невозможным. В лучшем
случае при приложении определенных организационных усилий удается добить­
ся стандартизации смыслового (семантического) наполнения основных функций
API, но не их программного интерфейса.

Хорошо известным примером API такого рода может служить набор функций,
предоставляемых пользователю со стороны операционных систем типа Microsoft
Windows — WinAPI (Windows API). Надо сказать, что даже внутри этого корпора­
тивного интерфейса API существует определенная несогласованность, которая
несколько ограничивает переносимость программ между различными операцион­
ными системами типа Windows. Еще одним примером такого интерфейса API
можно считать набор сервисных функций простейших однопрограммных опе­
рационных систем типа MS DOS, реализованный в виде набора подпрограмм об­
служивания программных прерываний.

Реализация функций API на уровне
системы программирования
При реализации функций API на уровне системы программирования эти функ­
ции предоставляются пользователю в виде библиотеки функций соответствую­
щего языка программирования. Обычно речь идет о библиотеке времени выпол­
нения (RTL). Система программирования предоставляет пользователю библиотеку

Интерфейс прикладного программирования 3 0 1

функций и обеспечивает подключение к результирующей программе объектного
кода, ответственного за выполнение этих функций.

Очевидно, что эффективность вызова функций API в таком варианте будет не­
сколько ниже, чем при непосредственном обращении к функциям операционной
системы. Так происходит, поскольку для выполнения многих функций API биб­
лиотека RTL языка программирования должна все равно выполнять обращения
к функциям операционной системы. Наличие всех необходимых вызовов и обра­
щений к функциям операционной системы в объектном коде RTL обеспечивает
система программирования.

Однако переносимость исходного кода программы в таком варианте оказывается
самой высокой, поскольку синтаксис и семантика всех функций строго регламен­
тированы в стандарте соответствующего языка программирования. Они зависят
от языка и не зависят от архитектуры целевой вычислительной системы. Поэтому
для выполнения прикладной программы на новой архитектуре вычислительной
системы достаточно заново построить код результирующей программы с помощью
соответствующей системы программирования.

Единообразное выполнение функций языка обеспечивается системой программи­
рования. При ориентации на различные архитектуры целевой вычислительной
системы в системе программирования могут потребоваться различные комбина­
ции вызовов функций операционной системы для выполнения одних и тех же
функций исходного языка. Это должно быть учтено в коде RTL. В общем случае
для каждой архитектуры целевой вычислительной системы потребуется свой код
RTL языка программирования. Выбор того или иного объектного кода RTL для
подключения к результирующей программе система программирования обеспе­
чивает автоматически.

Например, рассмотрим функции динамического выделения памяти в языках С
и Паскаль. В С это функции malloc, realLoc и free (функции new и delete в C++),
в Паскале — функции new и dispose. Если использовать эти функции в исходном
тексте программы, то с точки зрения исходной программы они будут действовать
одинаковым образом в зависимости только от семантики исходного кода програм­
мы. При этом для разработчика исходной программы не имеет значения, на какую
архитектуру ориентирована его программа. Это имеет значение для системы про­
граммирования, которая для каждой из этих функций должна подключить к ре­
зультирующей программе объектный код библиотеки. Этот код будет выполнять
обращение к соответствующим функциям операционной системы. Не исключено
даже, что для однотипных по смыслу функций в разных языках (например, malloc
в С и new в Паскале выполняют схожие по смыслу действия) этот код будет вы­
полнять схожие обращения к операционной системе. Однако для различных вари­
антов операционной системы этот код будет различен даже при использовании
одного и того же исходного языка.

Проблема главным образом заключается в том, что большинство языков про­
граммирования предоставляют пользователю не очень широкий набор стандарти­
зованных функций. Поэтому разработчик исходного кода существенно ограничен
в выборе доступных функций API. Как правило, набора стандартных функций ока-

3 0 2 Глава 9. Архитектура операционных систем

зывается недостаточно для создания полноценной прикладной программы. Тогда
разработчик может обратиться к функциям других библиотек, имеющихся в со­
ставе системы программирования. В этом случае нет гарантии, что функции, вклю­
ченные в состав данной системы программирования, но не входящие в стандарт
языка программирования, будут доступны в другой системе программирования,
особенно если та ориентирована на другую архитектуру целевой вычислительной
системы. Такая ситуация уже ближе к третьему варианту реализации API.

Например, те же функции malloc, realLoc и free в языке С фактически не входят
в стандарт языка. Они входят в состав стандартной библиотеки, которая «де-фак­
то» входит во все системы программирования, построенные на основе языка С.
Общепринятые стандарты существуют для многих часто используемых функций
языка. Если же взять более специфические функции, такие как функции порожде­
ния новых процессов, то для них ни в С, ни в Паскале не окажется общепринятого
стандарта.

Реализация функций API с помощью
внешних библиотек
При реализации функций API с помощью внешних библиотек эти функции пре­
доставляются пользователю в виде библиотеки процедур и функций, созданной
сторонним разработчиком.

Система программирования ответственна только за то, чтобы подключить объект­
ный код библиотеки к результирующей программе. Причем внешняя библиотека
может быть и динамически загружаемой (загружаемой во время выполнения про­
граммы).

С точки зрения эффективности выполнения этот метод реализации API имеет са­
мые низкие результаты, поскольку внешняя библиотека обращается как к функ­
циям операционной системы, так и к функциям RTL языка программирования.
Только при очень высоком качестве внешней библиотеки ее эффективность срав­
нима с эффективностью библиотеки RTL.

Если говорить о переносимости исходного кода, то здесь требование только одно —
используемая внешняя библиотека должна быть доступна в любой из архитектур
вычислительных систем, на которые ориентирована прикладная программа. Тог­
да удается достигнуть переносимости. Это возможно, если внешняя библиотека
удовлетворяет какому-то принятому стандарту, а система программирования под­
держивает этот стандарт.

Например, библиотеки, удовлетворяющие стандарту POSIX (см. следующий раз­
дел), доступны в большинстве систем программирования для языка С. И если при­
кладная программа использует только библиотеки этого стандарта, то ее исход­
ный код будет переносимым. Еще одним примером является широко известная
библиотека графического интерфейса XLib, поддерживающая стандарт графичес­
кой среды X-Window.

Для большинства специфических библиотек отдельных разработчиков это не так.
Если пользователь использует какую-то библиотеку, то она ориентирована на ог-

Интерфейс прикладного программирования 3 0 3

раниченный набор доступных архитектур целевой вычислительной системы. При­
мерами могут служить библиотеки MFC (Microsoft Foundation Classes) от Microsoft

и VCL (Visual Controls Library) от Borland, жестко ориентированные на архитек­
туру операционных систем семейства Windows.

Тем не менее многие фирмы-разработчики сейчас стремятся создавать библиоте­
ки, которые бы обеспечивали переносимость исходного кода приложений между
различными архитектурами целевой вычислительной системы. Пока еще такие
библиотеки не получили широкого распространения, но имеется несколько попы­
ток их реализации, например библиотека CLX от Borland ориентирована на архи­
тектуру операционных систем семейств Linux и Windows.

В целом развитие функций API идет в направлении попытки создать библиотеки
API, обеспечивающие широкую переносимость исходного кода. Однако с учетом
корпоративных интересов различных производителей и сложившейся ситуации
на рынке в ближайшее время вряд ли удастся достичь значительных успехов в этом
направлении. Разработка широко применимого стандарта API пока еще остается
делом будущего.

Поэтому разработчики системных программ вынуждены оставаться в довольно
узких рамках ограничений стандартных библиотек языков программирования.

Что касается прикладных программ, то гораздо большую перспективу для них пре­
доставляют технологии, связанные с разработками в рамках архитектуры клиент-
сервер или трехзвенной архитектуры создания приложений. В этом направлении
ведущие производители операционных систем, СУБД и систем программирова­
ния скорее достигнут соглашений, чем в направлении стандартизации API.

Итак, нами были рассмотрены основные принципы, цели и подходы к реализации
системных интерфейсов API. Отметим еще один очень важный момент: желатель­
но, чтобы интерфейс прикладного программирования не зависел от системы про­
граммирования. Конечно, были одно время персональные компьютеры, у которых
базовой системой программирования выступал интерпретатор с языка Basic, но
это скорее исключение. Обычно интерфейс API не зависит от системы програм­
мирования и может вызываться из любой системы программирования, хотя и с ис­
пользованием соответствующих правил построения вызывающих последователь­
ностей. В то же время, в ряде случаев система программирования может сама
генерировать обращения к API. Например, мы можем написать в программе вызов
Функции по запросу 256 байт памяти:

unsigned char * ptr = malloc (256);
Система программирования с языка С сгенерирует целую последовательность об­
ращений. Из кода пользовательской программы будет осуществлен вызов библио­
течной функции malloc, код которой расположен в RTL языка С. Библиотека вре­
мени выполнения, в данном случае, реализует вызов malloc уже как вызов системной
Функции HeapAlloc API:

LPV0ID НеарАПос(
HANDLE hHeap. // handle to the private heap block - указатель на блок
DWORD dwFlags. // heap allocation control flags - свойства блока

3 0 4 Глава 9. Архитектура операционных систем

DWORD dwBytes // number of bytes to allocate - размер блока
);

Параметры выделяемого блока памяти в таком случае задаются системой програм­
мирования, и пользователь лишен возможности задавать их напрямую. С другой
стороны, если это необходимо, функции API можно вызывать прямо в тексте про­
граммы:

unsigned char * ptr = (LPVOID) HeapAlloc(GetProcessHeapO, 0. 256);
В этом случае программирование вызова немного усложняется, но получаемый
конечный результат будет, как правило, короче и, что самое важное, работать бу­
дет эффективнее. Следует отметить, что далеко не все возможности API доступны
через обращения к функциям системы программирования. Непосредственное об­
ращение к API позволяет пользователю обращаться к системным ресурсам более
эффективным способом. Однако это требует знания функций API, количество ко­
торых нередко достигает нескольких сотен.

Как правило, функции API не стандартизированы. В каждом конкретном случае
набор вызовов API определяется, прежде всего, архитектурой операционной сис­
темы и ее назначением. В то же время, принимаются попытки стандартизировать
некоторый базовый набор функций, поскольку это существенно облегчило бы пе­
ренос приложений с одной операционной системы на другую. Таким примером
может служить очень известный и, пожалуй, один из самых распространенных стан­
дарт POSIX. В этом стандарте перечислен большой набор функций, их парамет­
ров и возвращаемых значений. Стандартизированными, согласно POSIX, являют­
ся не только обращения к API, но и файловая система, организация доступа к
внешним устройствам, набор системных команд1. Использование в приложениях
этого стандарта позволяет в дальнейшем легко переносить такие программы с од­
ной операционной системы в другую путем простейшей перекомпиляции исход­
ного текста.

Частным случаем попытки стандартизации API является внутренний корпоратив­
ный стандарт компании Microsoft, известный как WinAPI. Он включает в себя сле­
дующие реализации: Winl6, Win32s, Win32, WinCE. С точки зрения WinAPI
(в силу ряда идеологических причин графический, то есть «оконный», интерфейс
пользователя обязателен) базовой задачей является окно. Таким образом, стан­
дарт WinAPI изначально ориентирован на работу в графической среде. Однако
базовые понятия дополнены традиционными функциями, в том числе частично
поддерживается стандарт POSIX.

Интерфейс POSIX
POSIX (Portable Operating System Interface for Computer Environments - незави­
симый от платформы системный интерфейс для компьютерного окружения) — это
стандарт IEEE (Institute of Electrical and Electronics Engineers - институт инже­
неров по электротехнике и радиоэлектронике), описывающий системные интер-

1 В данном контексте под системными командами следует понимать некий набор программ, позволя­
ющих управлять вычислительными процессами, например pstat, kill, dir и др.

Интерфейс POSIX 3 0 5

фейсы для открытых операционных систем, в том числе оболочки, утилиты и ин­
струментарии. Помимо этого, согласно POSIX, стандартизированными являются
задачи обеспечения безопасности, задачи реального времени, процессы админист­
рирования, сетевые функции и обработка транзакций. Стандарт базируется на
UNIX-системах, но допускает реализацию и в других операционных системах.
Интерфейс POSIX начинался как попытка пропаганды институтом IEEE идей
переносимости приложений в UNIX-средах путем разработки абстрактного неза­
висимого от платформы стандарта. Однако POSIX не ограничивается только UNIX-
системами; существуют различные реализации этого стандарта в системах, которые
соответствуют требованиям, предъявляемым стандартом IEEE Standard 1003.1-
1990 (POSIX.1). Например, известная ОС реального времени QNX соответствует
спецификациям этого стандарта, что облегчает перенос приложений в эту систе­
му, но UNIX-системой не является ни в каком виде, ибо ее архитектура использу­
ет абсолютно иные принципы.

Этот стандарт подробно описывает систему виртуальной памяти (Virtual Memory
System, VMS), многозадачность (Multiprocess Executing, МРЕ) и технологию пе­
реноса операционных систем (CTOS). Таким образом, на самом деле POSIX пред­
ставляет собой множество стандартов POSIX. 1-POSIX. 12. В табл. 9.1 перечисле­
ны основные направления, описываемые данными стандартами. Следует также
особо отметить, что в POSIX.1 основным языком описания системных функций
API предполагается язык С.

Таблица 9 . 1 . Семейство стандартов POSIX

Стандарт Стандарт ISO Краткое описание

POSIX.0 Нет Введение в стандарт открытых систем. Данный документ
не является стандартом в чистом виде, а представляет
собой рекомендации и краткий обзор технологий

Системный интерфейс API (язык С)

Оболочки и утилиты (одобренные IEEE)

Тестирование и верификация

Задачи реального времени и потоки выполнения

Использование языка ADA применительно
к стандарту POSIX. 1

Системная безопасность

Администрирование системы

Сети, «прозрачный» доступ к файлам, абстрактные
сетевые интерфейсы, не зависящие от физических
протоколов, вызовы RPC, связь системы
с приложениями, зависящими от протокола

POSIX.9 Да Использование языка Fortran, применительно

к стандарту POSIX. 1

Super-computing Application Environment Profile (AEP)

Обработка транзакций АЕР

Графический интерфейс пользователя (GUI)

POSIX.1

POSIX.2

POSIX.3

POSIX.4

POSIX.5

POSIX.6

POSIX.7

POSIX.8

Да

Нет

Нет

Нет

Да

Нет

Нет

Нет

POS1X.10
pOSIX. 11

POSIX.12

Нет

Нет

Нет

3 0 6 Глава 9. Архитектура операционных систем

Таким образом, программы, написанные с соблюдением данных стандартов, бу­
дут одинаково выполняться на всех POSIX-совместимых системах. Однако стан­
дарты отчасти носят всего лишь рекомендательный характер. Часть стандартов
описана очень строго, тогда как другая часть только поверхностно раскрывает
основные требования. Нередко программные системы заявляются как POSIX-
совместимые, хотя таковыми их назвать нельзя. Причины кроются в формальном
подходе к реализации интерфейса POSIX в различных операционных системах.
На рис. 9.1 изображена типовая схема реализации строго соответствующего
POSIX приложения.

Строго соответствущее стандарту
POSIX приложение

>

1

Г

к

Библиотеки
POSIX.1

1

i

1

к,

V

Стандартные библиотеки
языка С (110 функций)

1

V

Операционная система

Рис. 9 . 1 . Схема реализации приложения, строго соответствующего стандарту POSIX

Из рисунка видно, что для взаимодействия с операционной системой программа
использует только библиотеки POSIX.1 и стандартную библиотеку RTL языка С,
в которой возможно использование только 110 различных функций, также опи­
санных стандартом POSIX.1.

К сожалению, достаточно часто с целью увеличения производительности той или
иной подсистемы либо для введения фирменных технологий, которые ограни­
чивают область применения приложения соответствующей операционной сре­
дой, при программировании используются другие функции, не отвечающие стан­
дарту POSIX.

Реализации стандарта POSIX на уровне операционной системы различны. Если
UNIX-системы в своем абсолютном большинстве изначально соответствуют
спецификациям IEEE Standard 1003.1-1990, то WinAPI не является POSIX-
совместимым. Однако для его поддержки в операционной системе Windows N1
введен специальный модуль API для поддержки стандарта POSIX, работаю­
щий на уровне привилегий пользовательских процессов. Данный модуль обес­
печивает преобразование и передачу вызовов из пользовательской программы
к ядру системы и обратно, работая с ядром через WinAPI. Прочие приложения,
написанные с использованием WinAPI, могут передавать информацию POSIX
приложениям через стандартные механизмы потоков ввода-вывода stdin и
stdout [57].

Примеры программирования
для разных интерфейсов API
Для наглядной демонстрации принципиальных различий интерфейсов API наи­
более популярных современных операционных систем для персональных ком­
пьютеров рассмотрим простейший пример, в котором необходимо подсчитать
количество пробелов в текстовых файлах, имена которых должны указываться в ко­
мандной строке. Рассмотрим два варианта программы: для Windows (с использо­
ванием WinAPI) и для Linux (POSIX API).

Поскольку нас интересует работа с параллельными задачами, пусть при выполне­
нии программы для каждого из перечисленных в командной строке файлов созда­
ется свой процесс или поток выполнения (задача), который параллельно с други­
ми процессами (потоками) производит работу по подсчету пробелов в «своем»
файле. Результатом работы программы будет являться список файлов с подсчи­
танным количеством пробелов для каждого.

Следует обратить особое внимание на то, что приведенные ниже реализации про­
грамм решения данной задачи не являются единственно возможными. В обеих
рассматриваемых операционных системах существуют разные методы работы с
файловой системой и управления процессами. В данном случае рассматривается
только один, но наиболее характерный для соответствующего интерфейса API ва­
риант.

Для того чтобы было удобнее сравнивать эту (листинг 9.1) и следующую (лис­
тинг 9.2) программы, а также учитывая, что задача не требует для своего решения
оконного интерфейса, в тексте использованы только те вызовы API, которые не
затрагивают графический интерфейс. Конечно, нынче редко какое приложение не
использует возможностей GUI, но зато в нашем случае сразу можно увидеть раз­
ницу в организации параллельной работы запускаемых вычислений.

Листинг 9 . 1 . Текст программы для Windows (WinAPI)

finclude <windows.h>
#include <stdio.h>
finclude <stdlib.h>

// Название: processFile
// Описание: исполняемый код потока
// Входные параметры: IpFlleName - имя файла для обработки
// Выходные параметры: нет
DWORD processFile(LPVOID IpFileName) {

HANDLE handle; // описатель файла
DWORD numRead. total = 0:
char buf;

// запрос к ОС на открытие файла (только для чтения)
handle = CreateFile((LPCTSTR)IpFileName. GENERIC_READ.
FILE_SHARE_READ, NULL. OPENJXISTING, FILE_ATTRIBUTE_NORMAL. NULL);

// цикл чтения до конца файла
do { продолжение £

3 0 8 Глава 9, Архитектура операционных систем

Листинг 9.1 (продолжение)

II чтение одного символа из файла
ReadFilet handle, (LPVOID) &buf. 1, SnumRead. NULL);
if (buf == 0x20) total++:

} while (numRead > 0);

f p r i n t f (stderr, "(ThreadID: *Lu), File %s. spaces = %6\n\
GetCurrentThreadldO. lpFileName. t o t a l) :

// закрытие файла
CloseHandle(handle);

return(O);

// Название: main

// Описание: главная программа

// Входные параметры: список имен файлов для обработки

// Выходные параметры: нет

int maindnt argc. char *argv[]) {

int i;

DWORD pid;

HANDLE hThrd[255]; // массив ссылок на потоки

// для всех файлов, перечисленных в командной строке

for (i = 0: i< (argc-1): i++) {

// запуск потока - обработка одного файла

hThrd[i] = CreateThread(NULL, 0x4000,

(LPTHREAD_START_ROUTINE) processFile,

(LPVOID) argv[i+l]. 0, &pid);

fprintf(stdout, "processFile started (HND=Xd)\n", hThrd[i]);

// ожидание окончания выполнения всех запущенных потоков

WaitForMultipleObjects(argc-1. hThrd, true. INFINITE);

return(O);
}

Обратите внимание, что основная программа запускает потоки и ждет окончания
их выполнения. Другими словами, мы имеем всего один вычислительный процесс,
но используем мультизадачные возможности операционной системы.

Листинг 9.2. Текст программы для Linux (POSIX API)

#include <sys/types.h>
finclude <sys/stat.h>
#include <wait.h>
#include <fcntl.h>
finclude <stdio.h>

// Название: processFile
// Описание: обработка файла, подсчет кол-ва пробелов
// Входные параметры: fileName - имя файла для обработки
// Выходные параметры: кол-во пробелов в файле
int processFile(char *fileName) {

int handle. numRead, total = 0;

Примеры программирования для разных интерфейсов API 309

char buf;

// запрос к ОС на открытие файла (только для чтения)
handle = open(fileName. 0_RDONLY):

// цикл чтения до конца файла

do {
// чтение одного символа из файла
numRead = read(handle. Sbuf. 1):

if (buf == 0x20) total++;
} while (numRead > 0);

// закрытие файла
close(handle);
return(total);

// Название: main
// Описание: главная программа
// Входные параметры: список имен файлов для обработки
// Выходные параметры: нет
int maindnt argc, char *argv[]) {
int i. pid, status;

// для всех файлов, перечисленных в командной строке
for (i = 1; i< argc; i++) {

// запускаем дочерний процесс
pid = forkO;
if (pid == 0) {

// если выполняется дочерний процесс
// вызов функции счета количества пробелов в файле
printf("(PID: %6). File %s. spaces - Sd\n".
getpidO. argv[i]. processFile(argv[i]));

// выход из процесса
exitO;

}
// если выполняется родительский процесс
else

printf("processFile started (pid=£d)\n", pid);
}

/Л ожидание окончания выполнения всех запущенных процессов
if (pid != 0) while (wait(&status)>0);
return;

}

Из листинга 9.2 видно, что здесь все вычисления имеют статус процессов, а не по­
токов выполнения. Надо заметить, что многие современные версии UNIX поддер­
живают механизм потоков, поскольку потоки в ряде случаев позволяют повысить
эффективность вычислений и упрощают их создание, но в рассматриваемом ин­
терфейсе потоков нет.

о заключение можно заметить, что очень трудно сравнивать интерфейсы API. При
их разработке создатели, как правило, стараются реализовать функционально пол­
ный набор основных функций, используя которые можно решать разные задачи,
"Равда, порой, различными способами. Один набор системных функций хорош для

3 1 0 Глава 9. Архитектура операционных систем

одного набора задач, другой — для иного набора задач. Тем более что, фактически,
сейчас мы имеем существенно ограниченное множество интерфейсов API из-за
того, что имеет место доминирование наиболее популярных операционных сис­
тем и на их распространении в большей степени сказалась правильная маркетин­
говая политика их создателей, а не достоинства и недостатки самих этих систем и
их интерфейсов.

Контрольные вопросы и задачи
1. Что вы понимаете под архитектурой операционной системы?

2. Перечислите и поясните основные принципы построения операционных сис­
тем.

3. Для чего операционные системы используют несколько режимов работы про­
цессора? Чем отличается супервизорный режим работы процессора от пользо­
вательского? Как часто процессор переводится в супервизорный режим?

4. Объясните принцип виртуализации. Имеется ли связь между принципом вир­
туализации и принципом совместимости? Если имеется, то поясните, в чем
она заключается?

5. Что такое ядро операционной системы? Расскажите об основных моментах,
характерных для микроядерных ОС. Какие основные функции должно вы­
полнять микроядро ОС?

6. Перечислите основные требования, предъявляемые к операционным систе­
мам в плане обеспечения информационной безопасности.

7. Перечислите основные требования, предъявляемые к операционным систе­
мам реального времени.

8. Какие задачи возлагаются на интерфейс прикладного программирования (API)?

9. Какими могут быть варианты реализации API? В чем заключаются достоин­
ства и недостатки каждого варианта?

10. Что такое библиотека времени выполнения (RTL)?

11. Что такое POSIX? Какими преимуществами обладают программы, созданные
с использованием только стандартных функций, предусмотренных POSIX?

Глава 10. Краткий обзор
современных
операционных систем

Теперь, после знакомства с основными понятиями, относящимися к операцион­
ным системам, и изучения конкретных механизмов, реализующих известные ме­
тоды организации вычислительных процессов, вкратце рассмотрим архитектурные
особенности современных операционных систем для персональных компьютеров
типа IBM PC.

Прежде всего, отметим тот общеизвестный факт, что наиболее популярными
являются операционные системы семейства Windows компании Microsoft. Это
и Windows 95/98/МЕ, и Windows NT/2000, и новое поколение Windows XP/
2003 — этим операционным системам посвящена отдельная глава (см. главу 11).
Здесь же мы рассмотрим операционные системы, не относящиеся к продуктам
Microsoft, — это UNIX-подобные операционные системы Linux и FreeBSD, a
также системы QNX и OS/2. При изучении известных всему миру систем с об­
щим названием Linux и системы FreeBSD, по которым сейчас появляется не­
мало монографий и учебников, упор будет сделан именно на основных архи­
тектурных особенностях семейства UNIX, в абсолютном своем большинстве
относящихся ко всем UNIX-системам. Система QNX была выбрана потому, что
является наиболее известной и удачной операционной системой реального вре­
мени. Операционную систему OS/2 мы рассмотрим последней. Хотя сейчас эта
система уже практически всеми забыта1, она была одной из первых полноцен­
ных и надежных мультипрограммных и мультизадачных операционных систем
Для персональных компьютеров, в которой поддерживалось несколько опера­
ционных сред.

о настоящее время ее используют те организации, которые в свое время создали под нее свои прило­
жения, вложив немалые средства. И поскольку система по-прежнему в основном неплохо выполня­
ет свои функции, эти организации не спешат вкладывать деньги для переноса своих задач на новые
платформы.

31 2 Глава 10. Краткий обзор современных операционных систем

Семейство операционных систем UNIX
UNIX является исключительно удачным примером реализации простой мульти­
программной и многопользовательской операционной системы. В свое время она
проектировалась как инструментальная система для разработки программного
обеспечения. Своей уникальностью система UNIX обязана во многом тому обсто­
ятельству, что была, по сути, создана всего двумя разработчиками1, которые дела­
ли ее исключительно для себя и первое время использовали на мини-ЭВМ с очень
скромными вычислительными ресурсами. Первая версия этой системы занимала
всего около 12 Кбайт и могла работать на компьютерах с очень небольшим объ­
емом оперативной памяти. Поскольку при создании второй версии UNIX разра­
ботчики отказались от языка ассемблера и специально придумали язык высокого
уровня, на котором можно было бы писать не только системные, но и прикладные
программы (речь идет о языке С), то и сама система UNIX, и приложения, выпол­
няющиеся в ней, стали легко переносимыми (мобильными). Компилятор с языка
С для всех оттранслированных программ дает реентерабельный и разделяемый
код, что позволяет эффективно использовать имеющиеся в системе ресурсы.

Общая характеристика
и особенности архитектуры
Первой целью при разработке этой системы было стремление сохранить простоту
и обойтись минимальным количеством функций. Все реальные сложности остав­
лялись пользовательским программам.

Второй целью была общность. Одни и те же методы и механизмы должны были
использоваться во многих случаях:

• обращение к файлам, устройствам ввода-вывода и буферам межпроцессных
сообщений выполняются с помощью одних и тех же примитивов;

• одни и те же механизмы именования, присвоения альтернативных имен и за­
щиты от несанкционированного доступа применяются и к файлам с данными,
и к каталогам, и к устройствам;

а одни и те же механизмы работают в отношении программно и аппаратно ини­
циируемых прерываний.

Третья цель заключалась в том, чтобы сложные задачи можно было решать, ком­
бинируя существующие небольшие программы, а не разрабатывая их заново.
Наконец, четвертая цель состояла в создании мультитерминальной операционной
системы с эффективными механизмами разделения не только процессорного вре­
мени, но и всех остальных ресурсов. В мультитерминальной операционной систе­
ме на одно из первых мест по значимости выходят вопросы защиты одних вычис-

Создателями системы UNIX считаются Кен Томпсон и Деннис Ритчи. В своей операционной с и с ^
ме Томпсон и Ритчи учли опыт работы над проектом сложной мультизадачной операционной си ^
мы с разделением времени, которая имела название MULTICS (MULTiplexed I n f o r m a t l ° " * e d

Computing System). Название новой системы UNIX произошло от аббревиатуры UNICS (Unip e-
Information and Computing System).

Семейство операционных систем UNIX 3 1 3

лительных процессов от вмешательства других вычислительных процессов. При­
чем для реализации третьей цели необходимо было создать механизмы полноцен­
ного обмена данными между программными модулями, из которых предполага­
лось составлять конечные программы,

перационная система UNIX обладает простым, но очень мощным командным
зыком и независимой от устройств файловой системой. Важным, хотя и простым
позиций реализации такой возможности, является тот факт, что система UNIX
редоставляет пользователям средства направления выхода одной программы не-
осредственно на вход другой. В результате достигается четвертая цель — большие
рограммные системы можно создавать путем композиции имеющихся небольших
рограмм, а не путем написания новых, что в большинстве случаев упрощает зада-
у. UNIX-системы существуют уже 30 лет, и к настоящему времени имеется чрез-
ычайно большой набор легко переносимых из системы в систему отлично отла-
енных и проверенных временем приложений.

число системных и прикладных программ, поставляемых с UNIX-системами,
ходят редакторы текстов, программируемые интерпретаторы командного языка,
омпиляторы с нескольких популярных языков программирования, включая С,
"++, ассемблер, PERL, FORTRAN и многие другие, компоновщики (редакторы
ежпрограммных связей), отладчики, многочисленные библиотеки системных
пользовательских программ, средства сортировки и ведения баз данных, много-

исленные административные и обслуживающие программы. Для абсолютного
ольшинства всех этих программ имеется документация, в том числе исходные
ексты программ (как правило, хорошо комментированные). Кроме того, описа-
ия и документация по большей части доступны пользователям в интерактивном
ежиме. Используется иерархическая файловая система с полной защитой, рабо-
а со съемными томами, обеспечивается независимость от устройств.

'ентральной частью UNIX-систем является ядро (kernel). Оно состоит из боль­
шого количества модулей и с точки зрения архитектуры считается монолитным,
днако в ядре всегда можно выделить три основные подсистемы: управления про­
весами, управления файлами, управления операциями ввода-вывода между цен-
ральной частью и периферийными устройствами. Подсистема управления про­
весами организует выполнение и диспетчеризацию процессов, их синхронизацию
разнообразное межпроцессное взаимодействие. Важнейшая функция подсисте­

мы управления процессами — это распределение оперативной памяти и (для со-
ременных систем) организация виртуальной памяти. Подсистема управления
аилами тесно связана и с подсистемой управления процессами, и с драйверами.
Дро может быть перекомпилировано с учетом конкретного состава устройств
омпьютера и решаемых задач. Не все драйверы могут быть включены в состав
Дра, часть из них может вызываться из ядра. Более того, очень большое количе-
тво системных функций выполняется системными программными модулями, не
ходящими непосредственно в ядро, но вызываемых из ядра. Основные систем-
Ые функции, которые должно выполнять ядро совместно с остальными систем­
ами модулями, строго стандартизированы. За счет этого во многом достигается
ереносимость кода между разными версиями UNIX и абсолютно различным ап-
аРатным обеспечением.

3 1 4 Глава 10. Краткий обзор современных операционных систем

Основные понятия
Одним из достоинств ОС UNIX является то, что система базируется на неболь­
шом числе понятий; рассмотрим их вкратце. Здесь необходимо отметить, что на­
стоящая книга не претендует на полноценное изложение основ работы и детальное
описание архитектуры системы UNIX (или Linux). На эту тему имеется достаточ­
ное количество специальной литературы, например отличная монография [39] или
такие замечательные книги, как [23,43]. Тем не менее, исходя из имеющегося опы­
та преподавания предметов, относящихся к операционным системам и системно­
му программному обеспечению, считаю полезным изложить здесь минимальный
набор основных понятий, который часто помогает студентам «погрузиться в мир
UNIX», отличающийся от привычного всем окружения Windows.

Виртуальная машина
Система UNIX многопользовательская. Каждому пользователю после регистра­
ции (входа в систему) предоставляется виртуальный компьютер, в котором есть
все необходимые ресурсы: процессор (процессорное время выделяется на основе
круговой, или карусельной, диспетчеризации и с использованием динамических
приоритетов, что позволяет обеспечить равенство в обслуживании), оперативная
память, устройства, файлы. Текущее состояние такого виртуального компьютера,
предоставляемого пользователю, называется образом. Можно сказать, что про­
цесс — это выполнение образа. Образ процесса состоит:

О из образа памяти;

Q значений общих регистров процессора;

О состояния открытых файлов;

• текущего каталога файлов;

• другой информации.

Образ процесса во время выполнения процесса размещается в основной памяти.
В старых версиях UNIX образ можно было «сбросить» на диск, если какому-либо
более приоритетному процессу требовалось место в основной памяти. Напомним,
что такое замещение процессов называется свопингом (swapping). В современных
реализациях, поддерживающих, как правило, страничный механизм виртуальной
памяти, прежде всего выгружаются неиспользуемые страницы, а не целиком об­
раз. В частности, в системах Linux свопинг образов не применяется, но создается
специальный1 раздел на магнитном диске для файла подкачки (swap-file), где раз­
мещаются виртуальные страницы выполняющихся процессов, для которых не хва­
тает места в оперативной памяти. Таким образом, замещаются не процессы, а их
отдельные страницы.

Образ памяти делится на три логических сегмента:

Q сегмент реентерабельных процедур (начинается с нулевого адреса в виртуаль­

ном адресном пространстве процесса);

Сигнатура этого раздела обозначается как 082h.

Семейство операционных систем UNIX 3 1 5

• сегмент данных (располагается следом за сегментом процедур и может расти в
сторону больших адресов);

• сегмент стека (начинается со старшего адреса и растет в сторону младших адре­
сов по мере занесения в него информации при вызовах подпрограмм и при пре­
рываниях).

В современных версиях UNIX-систем все виртуальное адресное пространство каж­
дого образа отображается на реальную физическую память компьютера. Исполь­
зуется страничный механизм организации виртуальной памяти. И следует разли­
чать замещение процессов и подкачку страниц, хотя в обоих случаях используется
термин swapping.

Пользователь
Мы уже отмечали, что с самого начала операционная система UNIX замышлялась
как интерактивная многопользовательская система. Другими словами, UNIX пред­
назначена для мультитерминальной работы. Чтобы начать работать, пользователь
должен «войти» в систему, введя со свободного терминала свое учетное, или вход­
ное, имя (account name, или login) и пароль (password). Человек, зарегистрирован­
ный в учетных файлах системы и, следовательно, имеющий учетное имя, называется
зарегистрированным пользователем системы. Регистрацию новых пользователей
обычно выполняет администратор системы. Пользователь не может изменить свое
учетное имя, но может установить и/или изменить свой пароль. Пароли хранятся
в отдельном файле в закодированном виде.

Ядро операционной системы UNIX идентифицирует каждого пользователя по его
идентификатору (User Identifier, UID), уникальному целому значению, присваива­
емому пользователю при регистрации в системе. Кроме того, каждый пользователь
относится к некоторой группе пользователей, которая также идентифицируется не­
которым целым значением (Group Identifier, GID). Значения UID и GID для каждого
зарегистрированного пользователя сохраняются в учетных файлах системы и при­
писываются процессу, в котором выполняется командный интерпретатор, запущен­
ный при входе пользователя в систему. Эти значения наследуются каждым новым
процессом, запущенным от имени данного пользователя, и используются ядром си­
стемы для контроля правомочности доступа к файлам, выполнения программ и т. д.

Все пользователи операционной системы UNIX явно или неявно работают с фай­
лами. Файловая система операционной системы UNIX имеет древовидную струк-
ТУРУ [39]. Промежуточными узлами дерева являются каталоги со ссылками на
Другие каталоги или файлы, а листья дерева соответствуют файлам или пустым
каталогам. Каждому зарегистрированному пользователю соответствует некоторый
каталог файловой системы, который называется домашним (home) каталогом поль­
зователя. При входе в систему пользователь получает неограниченный доступ
к своему домашнему каталогу и всем каталогам и файлам, содержащимся в нем.
Пользователь может создавать, удалять и модифицировать каталоги и файлы, со­
держащиеся в домашнем каталоге. Потенциально возможен доступ и ко всем дру­
гим файлам, однако он может быть ограничен, если пользователь не имеет доста­
точных привилегий.

3 1 6 Глава 10. Краткий обзор современных операционных систем

Суперпользователь
Очевидно, что администратор системы, который тоже является зарегистрирован­
ным пользователем, чтобы управлять всей системой, должен обладать существен­
но большими, чем обычные пользователи, привилегиями. В операционных систе­
мах UNIX эта задача решается путем выделения единственного нулевого значения
UID. Пользователь с таким значением UID называется суперпользователем (su-
peruser) и обозначается словом root (корень). Он имеет неограниченные права на
доступ к любому файлу и на выполнение любой программы. Кроме того, такой
пользователь имеет возможность полного контроля над системой. Он может оста­
новить ее и даже разрушить. По этой причине не рекомендуется работать под этой
учетной записью. Администратор должен создать себе обычную учетную запись
простого пользователя, а для выполнения действий, связанных с административ­
ными полномочиями, рекомендуется использовать команду su. Команда su запра­
шивает у пользователя пароль суперпользователя, и, если он указан правильно,
операционная система переводит сеанс пользователя в режим работы суперполь­
зователя. После выполнения необходимых действий, требующих привилегий су­
перпользователя, следует выполнить команду exit, которая и вернет администра­
тору статус простого пользователя.

Еще одним важным отличием суперпользователя от обычного пользователя опе­
рационной системы UNIX является то, что на суперпользователя не распростра­
няются ограничения на используемые ресурсы. Для обычных пользователей уста­
навливаются такие ограничения, как максимальный размер файла, максимальное
число сегментов разделяемой памяти, максимально допустимое пространство на
диске и т. д. Суперпользователь может изменять эти ограничения для других поль­
зователей, но на него они не действуют.

Интерфейс пользователя
Традиционный способ взаимодействия пользователя с системой UNIX основыва­
ется на командных языках. После входа пользователя в систему для него запуска­
ется один из командных интерпретаторов (в зависимости от параметров, сохраня­
емых в файле/etc/passwd). Обычно в системе поддерживается несколько командных
интерпретаторов с похожими, но различающимися своими возможностями коман­
дными языками. Общее название для любого командного интерпретатора ОС
UNIX — оболочка (shell), поскольку любой интерпретатор представляет внешнее
окружение ядра системы. По умолчанию в системах Linux командным интерпре­
татором является bash. В принципе он может быть заменен другим, но практичес­
ки никто этого не делает.

Вызванный командный интерпретатор выдает приглашение на ввод пользовате­
лем командной строки, которая может содержать простую команду, конвейер ко­
манд или последовательность команд. После выполнения очередной командной
строки и выдачи на экран терминала или в файл соответствующих результате!
интерпретатор команд снова выдает приглашение на ввод командной строки, и та
до тех пор, пока пользователь не завершит свой сеанс работы и не выйдет из си
стемы.

Пемейство операционных систем UNIX 3 1 7

Командные языки, используемые в UNIX, достаточно просты, чтобы новые пользо­
ватели могли быстро начать работать, и достаточно мощны, чтобы можно было
использовать их для написания сложных программ. Последняя возможность опи­
рается на механизм командных файлов (shell scripts), которые могут содержать про­
извольные последовательности командных строк. При указании имени командно­
го файла вместо очередной команды интерпретатор читает файл строка за строкой
и последовательно интерпретирует команды.

Поскольку в настоящее время все большее распространение получают графичес­
кие интерфейсы, в операционных системах семейства UNIX стали все чаще рабо­
тать в X-Window. X-Window — это графический интерфейс, позволяющий пользо­
вателям взаимодействовать со своими вычислениями и с системой в графическом
режиме. В отличие от систем Windows компании Microsoft, графический интер­
фейс для UNIX-систем не является основным, в системе можно работать и без него.
Прежде всего, графический режим разрабатывался для приложений, предназна­
ченных для работы с графикой. Однако в последние годы его стали применять го­
раздо чаще, особенно в системах Linux, которые начинают использовать не только
как серверные операционные системы, но и как системы для персональных компь­
ютеров.

Графический интерфейс в UNIX-системах основан на модели клиент-сервер. Сер­
верная часть X-Window — это аппаратно-зависимая система ввода-вывода, кото­
рая непосредственно взаимодействует с приложением и видеоподсистемой, кла­
виатурой и мышью. При этом серверная часть должна работать на компьютере,
производящем вычисления. Взаимодействие с пользователем осуществляется че­
рез клиентскую часть, которая обеспечивает вывод данных на дисплей и прием их
с устройств ввода. Клиентская часть должна быть на том компьютере, за которым
работает пользователь. Таким образом, можно работать в графическом режиме,
сидя за одним компьютером, в то время как собственно вычисления могут проис­
ходить и на другом компьютере.

Один из клиентов X-Window — это оконный менеджер (также называемый дис­
петчером окон). Он управляет размещением окон на экране, определяет их вид
и характер управляющих элементов. То есть именно он и предоставляет пользова­
телю графический интерфейс (GUI), тогда как X-Window — это его основа.
В системах Linux наиболее популярными менеджерами графического интерфейса
являются KDE и GNOME. Для запуска X-Window в системах семейства UNIX
(и Linux) используется команда startx.

Команды и командный интерпретатор
Как уже упоминалось, оболочкой (shell) в UNIX-системе называют механизм вза­
имодействия между пользователями и системой. По сути дела, это интерпретатор
команд, который считывает набираемые пользователем строки и запускает ука­
занные в командах программы, которые и выполняют запрошенные системные
Функции и операции. Полный командный язык, интерпретируемый оболочкой,
богат возможностями и достаточно сложен, однако большинство команд просты в
Использовании, и запомнить их не составляет труда.

3 1 8 Глава 10. Краткий обзор современных операционных систем

Командная строка состоит из имени команды (а именно имени выполняемого фай­
ла), за которым следует список аргументов, разделенных пробелами. Оболочка
разбивает командную строку на компоненты. Указанный в команде файл загружа­
ется, и ему обеспечивается доступ к заданным в команде аргументам.

Любой командный язык оболочки фактически состоит из трех частей:

Q служебных конструкций, позволяющих манипулировать текстовыми строка­
ми и строить сложные команды на основе простых команд;

а встроенных команд, выполняемых непосредственно интерпретатором команд­
ного языка;

Q команд, представляемых отдельными выполняемыми файлами.
В свою очередь, набор команд последнего вида включает стандартные команды
(системные утилиты, такие как vi, ее и т. д.) и команды, созданные пользователями
системы. Для того чтобы выполняемый файл, разработанный пользователем ОС
UNIX, можно было запускать как команду оболочки, достаточно определить в од­
ном из исходных файлов функцию с именем main (имя main должно быть глобаль­
ным, то есть перед ним не должно указываться ключевое слово static). Если упо­
требить в качестве имени команды имя такого выполняемого файла, командный
интерпретатор создаст новый процесс и запустит в нем указанную выполняемую
программу, начиная с вызова функции main.

Тело функции main, вообще говоря, может быть произвольным (для интерпре­
татора существенно только наличие входной точки в программу с именем main),
но для того чтобы создать команду, которой можно задавать параметры, при­
держиваются некоторых стандартных правил. В этом случае каждая функция
main должна определяться с двумя параметрами — argc и argv. После вызова
команды параметру argc будет соответствовать число символьных строк, ука­
занных в качестве аргументов вызова команды, a argv — массив указателей на
переменные, содержащие эти строки. При этом имя самой команды составляет
первую строку аргументов (то есть после вызова значение argc всегда больше
или равно 1). Код функции main должен проанализировать допустимость за­
данного значения argc и соответствующим образом обработать заданные тек­
стовые строки.

Например, следующий текст на языке С может быть использован для создания
команды, которая выводит на экран текстовую строку, заданную в качестве ее ар­
гумента:

linclude <stdio.h>
main (argc. argv)
int argc;
char *argv[]:
{

if (argc ! = 2)
{ printfC'usage: %s your-text\n". argv[0]):

exit:
}

printf("%s\n". argv[l]);
}

Семейство операционных систем UNIX о 19

Процессы
Процесс в системах UNIX — это процесс в классическом понимании этого термина,
то есть это программа, выполняемая в собственном виртуальном адресном простран­
стве. Когда пользователь входит в систему, автоматически создается процесс, в ко­
тором выполняется программа командного интерпретатора. Если командному ин­
терпретатору встречается команда, соответствующая выполняемому файлу, то он
создает новый процесс и запускает в нем соответствующую программу, начиная с
функции main. Эта запущенная программа, в свою очередь, может создать процесс и
запустить в нем другую программу (та тоже должна содержать функцию main) и т. д.
Для образования нового процесса и запуска в нем программы используются два
системных вызова API — fork() и ехес(имя_выполняемого_файла). Системный вызов
fork() приводит к созданию нового адресного пространства, состояние которого аб­
солютно идентично состоянию адресного пространства основного процесса (то есть
в нем содержатся те же программы и данные). Для дочернего процесса заводятся
копии всех сегментов данных.

Другими словами, сразу после выполнения системного вызова forkQ основной (ро­
дительский) и порожденный процессы являются абсолютными близнецами; управ­
ление в том и другом находится в точке, непосредственно следующей за вызовом
fork(). Чтобы программа могла разобраться, в каком процессе (основном или по­
рожденном) она теперь работает, функция fork() возвращает разные значения:
О в порожденном процессе и целое положительное число в основном процессе. Этим
целым положительным числом является уже упоминавшийся идентификатор про­
цесса (PID). Таким образом, родительский процесс будет знать идентификатор
своего дочернего процесса и может при необходимости управлять им.

Теперь, если мы хотим запустить новую программу в порожденном процессе, нуж­
но обратиться к системному вызову exec, указав в качестве аргументов вызова имя
файла, содержащего новую выполняемую программу, и, возможно, одну или не­
сколько текстовых строк, которые будут переданы в качестве аргументов функ­
ции main новой программы. Выполнение системного вызова exec приводит к тому,
что в адресное пространство порожденного процесса загружается новая выполня­
емая программа и запускается с адреса, соответствующего входу в функцию main.
Другими словами, это приводит к замене текущего программного сегмента и теку­
щего сегмента данных, которые были унаследованы при выполнении вызова fork,
соответствующими сегментами, заданными в файле. Прежние сегменты теряются.
Это эффективный метод смены выполняемой процессом программы, но не самого
процесса. Файлы, уже открытые до вызова примитива exec, остаются открытыми
после его выполнения.

В следующем примере пользовательская программа, вызываемая как команда обо­
лочки, выполняет в отдельном процессе стандартную команду Is оболочки, кото­
рая выдает на экран содержимое текущего каталога.

mainO
{if(forkO--O) wait(O); /* родительский процесс */
else exec!("Is". "Is". 0): /* порожденный процесс */

}

3 2 0 Глава 10, Краткий обзор современных операционных систем

Таким образом, с практической точки зрения процесс в UNIX является объектом
создаваемым в результате выполнения функции fork(). Каждый процесс за исклю­
чением начального (нулевого) порождается в результате вызова другим процес­
сом функции fork(). Каждый процесс имеет одного родителя, но может породить
много процессов. Начальный (нулевой) процесс является особенным процессом
который создается в результате загрузки системы. После порождения нового про­
цесса с идентификатором 1 нулевой процесс становится процессом подкачки и
реализует механизм виртуальной памяти. Процесс с идентификатором 1, извест­
ный под именем init, является предком любого другого процесса в системе и свя­
зан с каждым процессом особым образом.

Функционирование
Теперь, когда мы познакомились с основными понятиями, рассмотрим наиболее
характерные моменты функционирования UNIX-системы.

Выполнение процессов
Процесс может выполняться в одном из двух состояний, а именно пользователь­
ском и системном. В пользовательском состоянии процесс выполняет пользова­
тельскую программу и имеет доступ к пользовательскому сегменту данных. В сис­
темном состоянии процесс выполняет программы ядра и имеет доступ к системному
сегменту данных.

Когда пользовательскому процессу требуется выполнить системную функцию,
он делает системный вызов. Фактически происходит вызов ядра системы как под­
программы. С момента системного вызова процесс считается системным. Таким
образом, пользовательский и системный процессы являются двумя фазами од­
ного и того же процесса, но они никогда не пересекаются между собой. Каждая
фаза пользуется своим собственным стеком. Стек задачи содержит аргументы,
локальные переменные и другую информацию относительно функций, выпол­
няемых в режиме задачи. Диспетчерский процесс не имеет пользовательской
фазы.

В UNIX-системах организуется разделение времени (time sharing), то есть каждо­
му процессу выделяется квант времени. Либо процесс завершается сам до истече­
ния отведенного ему кванта времени, либо он приостанавливается по истечении
кванта и продолжает свое исполнение при очередном получении нового кванта
времени. Механизм диспетчеризации характеризуется достаточно справедливым
распределением процессорного времени между всеми процессами. Пользователь­
ским процессам приписываются приоритеты в зависимости от получаемого ими
процессорного времени. Процессам, которые получили много процессорного вре­
мени, назначают более низкие приоритеты, в то время как процессам, которые по­
лучили лишь немного процессорного времени, наоборот, повышают приоритет.
Вспомните рассмотренные ранее механизмы динамических приоритетов. Тако
метод диспетчеризации обеспечивает хорошее время реакции для всех пользова
телей системы. Все системные процессы имеют более высокие приоритеты по ера
нению с пользовательскими и поэтому всегда обслуживаются в первую очередь.

Подсистема ввода-вывода
функции ввода-вывода в UNIX задаются в основном с помощью пяти системных

вызовов: open, close, read, write и seek.

Открыть файл можно следующей командой:

file_descriptor = open (filejiame. mode)

Здесь mode — режим открытия файла (чтение, запись или то и другое); file_de-

scriptor — дескриптор файла, служит для последующих ссылок на данный файл;

file_name — имя открываемого файла.

Чтение и запись осуществляются командами следующего вида:
after_reading_bytes = read (file_descriptor. buffer, bytes)
after_writing_bytes = write (file_descriptor, buffer, bytes)

Здесь bytes — количество байтов, которые должны быть прочитаны или записаны;
after_reading_bytes и after_writing_bytes — реально прочитанное и записанное коли­
чество байтов соответственно.

При чтении возможны три ситуации, в каждой из которых чтение происходит по­
следовательно:

О если это первое чтение из файла, то оно осуществляется последовательно с са­
мого начала файла;

Q если операции чтения предшествовала другая операция чтения из этого файла,
то текущая операция предоставит данные, непосредственно следующие за пре­
дыдущими;

• если предшествовала операция поиска seek (см. далее), то чтение осуществля­
ется последовательно от точки смещения, указанной в операции seek.

Это же справедливо и по отношению к операции записи в файл. Обратите внима­
ние, что все эти вызовы относятся к последовательному доступу и эффект прямой
адресации достигается с помощью команды seek, смещающей текущую позицию
файла:

Seek (fi 1 ejdescriptor,displacement,displacement_type)
Здесь параметр displacement_type (тип смещения) определяет, является смещение
абсолютным или относительным, а также задано оно числом байтов или числом
блоков по 512 байт.

Важно заметить, что команда seek исполняется для магнитных дисков так же, как
и для магнитных лент, которые нынче уже практически не используются, но во
времена появления и становления UNIX-систем были часто используемым уст­
ройством.

Чтобы закрыть файл, достаточно выполнить следующую команду:

close (file_descriptor)

Еще три примитива — gtty, stty, stat — позволяют получать и задавать информа­

цию о файлах и терминалах.

Те же самые команды ввода-вывода применяются и к физическим устройствам.
В UNIX-системах физические устройства представлены специальными файлами
в единой структуре файловой системы. Это означает, что пользователь не может

3 2 2 Глава 10, Краткий обзор современных операционных систем

написать зависящую от устройств программу, если только эта зависимость не от­
ражена в самом потоке передаваемых данных. Стандартные файлы ввода и выво­
да, приписываемые пользовательскому терминалу, открывать обычным путем не
требуется. Терминал открывается автоматически по команде входа в систему login.
Система ввода-вывода UNIX в отличие от большинства других систем ориентиро­
вана на работу скорее с потоком данных, а не с записями. Здесь поток данных
(stream)1 — это последовательность байтов, закапчивающаяся разделителем (то есть
символом конца потока). Понятие потока данных позволяет проще добиться неза­
висимости от устройств и унификации файлов с физическими устройствами и кон­
вейерами. Тем самым пользователь получает гибкость в работе с группами дан­
ных, но на него ложатся и дополнительные заботы, поскольку ему приходится
писать программы управления данными. Пользователь может при необходимости
относительно легко самостоятельно реализовать работу с записями. Чтобы рабо­
тать с записями фиксированной длины, достаточно просто задавать постоянную
длину во всех командах чтения и записи. Для нахождения позиции нужной записи
при фиксированной длине записей нужно умножить длину записи на номер запи­
си и выполнить команду seek. Работу с записями переменной длины можно орга­
низовать, если разместить в начале каждой записи поле фиксированного размера,
содержащее значение длины записи.

Перенаправление ввода-вывода

Механизм перенаправления ввода-вывода является одним из наиболее элегант­
ных, мощных и одновременно простых механизмов UNIX. Цель, которая стави­
лась при разработке этого механизма, состоит в следующем. Поскольку UNIX —
это интерактивная система, которая создавалась в конце 60-х — начале 70-х годов,
то обычно программы считывали текстовые строки с алфавитно-цифрового тер­
минала и выводили результирующие текстовые строки на экран терминала. Для
того чтобы обеспечить большую гибкость при использовании таких программ, же­
лательно было иметь возможность вводить в них данные непосредственно из фай­
лов или с выхода других программ и выводить их данные в файл или на вход дру­
гих программ.

Реализация этого механизма основывается на следующих свойствах операцион­
ных систем семейства UNIX. Во-первых, любой ввод-вывод трактуется как ввод
из некоторого файла и вывод в некоторый файл. Клавиатура и экран терминала
тоже интерпретируются как файлы (первый можно только читать, а во второй мож­
но только писать). Во-вторых, доступ к любому файлу производится через его де­
скриптор (положительное целое число). Фиксируются три значения дескрипто­
ров файлов. Файл с дескриптором 1 называется файлом стандартного ввода (stdin),
файл с дескриптором 2 — файлом стандартного вывода (stdout), и файл с дескрипто­
ром 3 — файлом стандартного вывода диагностических сообщений (stderr). В-треть­
их, программа, запущенная в некотором процессе, «наследует» от породившего
процесса все дескрипторы открытых файлов.

Не путать с потоком выполнения, или тредом (thread).

Семейство операционных систем UNIX 323

В головном процессе интерпретатора командного языка файлом стандартного ввода
является клавиатура терминала пользователя, а файлами стандартного вывода и
вывода диагностических сообщений — экран терминала. Однако при запуске лю­
бой команды можно сообщить интерпретатору (средствами соответствующего ко­
мандного языка), какой файл или выход какой программы должен служить фай­
лом стандартного ввода для запускаемой программы, а также какой файл или вход
какой программы должен служить для запускаемой программы файлом стандарт­
ного вывода или файлом вывода диагностических сообщений. Тогда интерпрета­
тор перед выполнением системного вызова exec открывает указанные файлы, под­
меняя смысл дескрипторов 1, 2 и 3.

То же самое может проделать и любая другая программа, запускающая третью
программу в специально созданном процессе. Следовательно, все, что требуется
для нормального функционирования механизма перенаправления ввода-выво­
да, — это придерживаться при программировании соглашения об использовании
дескрипторов stdin, stdout и stderr. Это не очень трудно, поскольку в наиболее
распространенных функциях библиотеки ввода-вывода printf, scant и error вооб­
ще не требуется указывать дескриптор файла. Функция printf неявно использует
дескриптор stdout, функция scant — дескриптор stdin, функция error — дескрип­
тор stderr.

Файловая система
Файл в системе UNIX представляет собой множество символов с произвольным
доступом. В файле могут содержаться любые данные, помещенные туда пользова­
телем, и файл не имеет никакой иной структуры, кроме той, какую создаст в нем
пользователь.

Структура файловой системы
Здесь мы вкратце рассмотрим одну из первых реализаций файловой системы, по­
скольку основные ее идеи сохраняются до сих пор.

Информация на дисках размещается блоками. В первой версии файловой систе­
мы размер блока был равен 512 байт. Во многих современных файловых системах,
разработанных для конкретной версии UNIX-клона, размер блока больше. Это
позволяет повысить быстродействие файловых операций. Например, в системе FFS
(Fast File System — быстродействующая файловая система) размер блока равен
8192 байт.

В рассматриваемой версии файловой системы раздел диска разбивается на следу­
ющие области (рис. 10.1):

Q неиспользуемый блок;
0 управляющий блок, или суперблок, в котором хранится размер логического

Диска и границы других областей;
а ьсписок, состоящий из описаний файлов, называемых /-узлами;

Q область для хранения содержимого файлов.

3 2 4 Глава 10. Краткий обзор современных операционных систем

Неиспользуемый блок

Суперблок

i-узел 1

i-узел 2

i-узел З

i-узел п

Блок с данными файла

Блок с данными файла

Блок с данными файла

Свободный блок

Файл

Свободный блок

>

Рис. 1 0 . 1 . Организация файловой системы в ОС UNIX

Каждый г'-узел содержит:

Q идентификатор владельца;

Q идентификатор группы владельца;

Q биты защиты;

Q физические адреса на диске или ленте, где находится содержимое файла;

Q размер файла;

• время создания файла;

• время последнего изменения (modification time) файла;

Семейство операционных систем UNIX 3 2 5

• время последнего изменения атрибутов (change time) файла;

• число связей-ссылок, указывающих на файл;

О индикатор типа файла (каталог, обычный файл или специальный файл).

Следом за z'-списком идут блоки, предназначенные для хранения содержимого

файлов. Пространство на диске, оставшееся свободным от файлов, образует свя­

занный список свободных блоков.

Таким образом, файловая система UNIX представляет собой структуру данных,
размещенную на диске и содержащую управляющий суперблок с описанием фай­
ловой системы в целом, массив г-узлов, в котором определены все файлы в файло­
вой системе, сами файлы и, наконец, совокупность свободных блоков. Выделение
пространства под данные осуществляется блоками фиксированного размера.

Каждый файл однозначно идентифицируется старшим номером устройства, млад­
шим номером устройства и i-номером (индексом г-узла данного файла в массиве
г'-узлов). Когда вызывается драйвер устройства, по старшему номеру индексиру­
ется массив входных точек в драйверы. По младшему номеру драйвер выбирает
одно устройство из группы идентичных физических устройств.

Файл-каталог, в котором перечислены имена файлов, позволяет установить соот­
ветствие между именами и самими файлами. Каталоги образуют древовидную
структуру. На каждый обычный файл или файл устройства могут иметься ссылки
в различных узлах этой структуры. В непривилегированных программах запись
в каталог не разрешена, но при наличии соответствующих разрешений они могут
читать их. Дополнительных связей между каталогами нет.

Большое число системных каталогов UNIX использует для собственных нужд.
Один из них, корневой каталог, является базой для всей структуры каталогов, и,
«отталкиваясь» от него, можно найти все файлы. В других системных каталогах
содержатся программы и команды, предоставляемые пользователям, а также фай­
лы устройств.

Имена файлов задаются последовательностью имен каталогов, разделенных ко­
сой чертой (/) и приводящих к концевому узлу (листу) некоторого дерева. Если
имя файла начинается с косой черты, то поиск по дереву начинается в корневом
каталоге. Если же имя файла не имеет в начале косой черты, то поиск начинается с
текущего каталога. Имена файлов, начинающиеся с символов ../ (две точки и ко­
сая черта), подразумевают начало поиска в каталоге, родительском по отношению
к текущему. Имя файла stuff (персонал) указывает на элемент stuff в текущем ка­
талоге. Имя файла /work/alex/stuff приводит к поиску каталога work в корневом
каталоге, затем к поиску каталога aLex в каталоге work и, наконец, к поиску элемен­
та stuff в каталоге aLex. Сама по себе косая черта (/) обозначает корневой каталог.
В приведенном примере нашла отражение типичная иерархическая структура фай­
ловой системы, например work может обозначать диск (устанавливаемый при ра­
боте пользователя), alex может быть каталогом пользователя, a stuff может при­
надлежать a lex.

Файл, не являющийся каталогом, может встречаться в различных каталогах, воз­
можно, под разными именами. Это называется связыванием. Элемент в каталоге,

3 2 6 Тлава 10. Краткий обзор современных операционных систем

относящийся к одному файлу, называется связью. В UNIX-системах все такие связи
имеют равный статус. Файлы не принадлежат каталогам. Скорее, файлы существу­
ют независимо от элементов каталогов, а связи в каталогах указывают на реальные
(физические) файлы. Файл «исчезает», когда удаляется последняя связь, указы­
вающая на него. Биты защиты, заданные в связях, могут отличаться от битов в ис­
ходном файле. Таким образом решается проблема избирательного ограничения на
доступ к файлам.

С каждым поддерживаемым системой устройством ассоциируется один или боль­
шее число специальных файлов. Операции ввода-вывода для специальных фай­
лов осуществляются так же, как и для обычных дисковых файлов с той лишь раз­
ницей, что эти операции активизируют соответствующие устройства. Специальные
файлы обычно находятся в каталоге /dev. На специальные файлы могут указывать
связи точно так же, как на обычные файлы.

От файловой системы не требуется, чтобы она целиком размещалась на том уст­
ройстве, где находится корень. Запрос от системы mount (на установку носителей
и т. п.) позволяет встраивать в иерархию файлов файлы на сменных томах. Коман­
да mount имеет несколько аргументов, но обязательных аргументов у стандартного
варианта ее использования два: имя файла блочного устройства и имя каталога.
В результате выполнения этой команды файловая подсистема, расположенная на
указанном устройстве, подключается к системе таким образом, что ее содержимое
заменяет собой содержимое заданного в команде каталога. Поэтому для монтиро­
вания соответствующего тома обычно используют пустой каталог. Команда umount
выполняет обратную операцию — «отсоединяет» файловую систему, после чего
диск с данными можно физически извлечь из системы. Например, для записи дан­
ных на дискету необходимо ее «подмонтировать», а после работы — «размонтиро­
вать».

Монтирование файловых систем позволяет получить единое логическое файло­
вое пространство, в то время как реально отдельные каталоги с файлами могут
находиться в разных разделах одного жесткого диска и даже на разных жестких
дисках. Причем, что очень важно, сами файловые системы для монтируемых раз­
делов могут быть разными. Например, при работе в системе Linux мы можем иметь
часть разделов с файловой системой EXT2FS, а часть разделов — с файловой сис­
темой EXT3FS. Важно, чтобы ядро знало эти файловые системы.

Защита файлов
Защита файлов осуществляется при помощи номера, идентифицирующего пользо­
вателя, и десяти битов защиты — атрибутов доступа. Права доступа подразделя­
ются на три типа: чтение (read), запись (write) и выполнение (execute). Эти типы
прав доступа могут быть предоставлены трем классам пользователей: владельцу
файла, группе, в которую входит владелец, и всем прочим пользователям. Девять
из этих битов управляют защитой по чтению, записи и исполнению для владельца
файла, других членов группы, в которую входит владелец, и всех других пользова­
телей. Файл всегда связан с определенным пользователем — своим владельцем
и с определенной группой, то есть у него есть уже известные нам идентификаторы

Семейство операционных систем UNIX 3 2 7

пользователя (UID) и группы (GID). Изменять права доступа к файлу разрешено
только его владельцу. Изменить владельца файла может только суперпользова­
тель, изменить группу — суперпользователь или владелец файла.
Программа, выполняющаяся в системе, всегда запускается от имени определен­
ных пользователя и группы (обычно основной группы этого пользователя), но связь
процессов с пользователями и группами организована сложнее. Различают иден­
тификаторы доступа к файловой системе для пользователя (File System access User
ID, FSUID) и для группы (File System access Group ID, FSGID), а также эффек­
тивные идентификаторы пользователя (Effective User ID, EUID) и группы (Ef­
fective Group ID, EGID). Кроме того, при доступе к файлам учитываются полно­
мочия (capabilities), присвоенные самому процессу.

При создании файл получает идентификатор UID, совпадающий с FSUID про­
цесса, который его создает, а также идентификатор GID, совпадающий с FSGID
этого процесса.

Атрибуты доступа определяют, что разрешено делать с данным файлом данной
категории пользователей. Имеется всего три операции: чтение, запись и выполне­
ние.

При создании файла (или при создании еще одного имени для уже существующе­
го файла) модифицируется не сам файл, а каталог, в котором появляются новые
ссылки на узлы. Удаление файла заключается в удалении ссылки. Таким образом,
право на создание или удаление файла — это право на запись в каталог.

Право на выполнение каталога интерпретируется как право на поиск в нем (про­
хождение через него). Оно позволяет обратиться к файлу с помощью пути, содер­
жащему данный каталог, даже тогда, когда каталог не разрешено читать, и поэтому
список всех его файлов недоступен.

Помимо трех названных основных атрибутов доступа существуют дополнитель­
ные, используемые в следующих случаях. Атрибуты SUID и SGID важны при за­
пуске программы: они требуют, чтобы программа выполнялась не от имени запус­
тившего ее пользователя (группы), а от имени владельца (группы) того файла, в
котором она находится. Если файл программы имеет атрибут SUID (SGID), то
идентификаторы FSUID и EUID (FSGID и EGID) соответствующего процесса не
наследуются от процесса, запустившего его, а совпадают с UID (GID) файла. Бла­
годаря этому пользователи получают возможность запустить системную програм­
му, которая создает свои рабочие файлы в закрытых для них каталогах.

Кроме того, если процесс создает файл в каталоге, имеющем атрибут SGID, то файл
получает GID не по идентификатору FSGID процесса, а по идентификатору GID
каталога. Это удобно для коллективной работы: все файлы и вложенные каталоги1

в каталоге автоматически оказываются принадлежащими одной и той же группе,
хотя создавать их могут разные пользователи. Есть еще один атрибут SVTX, кото­
рый нынче относится к каталогам. Он показывает, что из каталога, имеющего этот
атрибут, ссылку на файл может удалить только владелец файла. Существуют две
стандартные формы записи прав доступа — символьная и восьмеричная. Символь-

Вложенные каталоги часто называют подкаталогами (subdirectory).

3 2 8 Глава 10. Краткий обзор современных операционных систем

ная запись представляет собой цепочку из десяти знаков, первый из которых не
относится собственно к правам, а обозначает тип файла. Используются следую­
щие обозначения:

• - (дефис) — обычный файл;

Qd — каталог;

• с — символьное устройство;

Q b — блочное устройство;

• р — именованный канал (named pipe);

Qs — сокет (socket)1;

a I — символическая ссылка.

Далее следуют три последовательности, каждая из трех символов, соответствую­
щие правам пользователя, группы и всех остальных. Наличие права на чтение
обозначается символом г, на запись — символом w, на выполнение — символом х,
отсутствие какого-либо права — символом - (дефис) в соответствующей пози­
ции.

Наличие атрибута SUID (SGID) обозначается прописной буквой S в позиции пра­
ва на выполнение для владельца (группы), если выполнение не разрешено, и строч­
ной буквой s, если разрешено.

Восьмеричная запись — это шестизначное число, первые два знака которого обо­
значают тип файла и довольно часто опускаются, третья цифра — атрибуты GUID
(4), SGID (2) и SVTX (1), оставшиеся три — права владельца, группы и всех ос­
тальных соответственно. Очевидно, что право на чтение можно представить чис­
лом 4, право на запись — числом 2, а право на выполнение — числом 1.

Например, стандартный набор прав доступа для каталога /tmp в символьной фор­
ме выглядит как drwxrwxrwx, а в восьмеричной — как 041777 (каталог; чтение, за­
пись и поиск разрешены всем; установлен атрибут SVTX). А набор прав -r-S-xw-,
или в числовом виде — 102412, означает, что это обычный файл, владельцу разре­
шается читать его, но не выполнять и не изменять, пользователям из группы (за
исключением владельца) — выполнять (причем во время работы программа полу­
чит права владельца файла), но не читать и не изменять, а всем остальным — изме­
нять, но не читать и не выполнять.

Большинство программ создают файлы с разрешением на чтение и запись для всех
пользователей, а каталоги — с разрешением на чтение, запись и поиск для всех
пользователей. Этот исходный набор атрибутов логически складывается с пользо­
вательской маской создания файла (user file-creation mask, umask), которая обычно
ограничивает доступ. Например, значения u=rwx, g=rwx, o=r-x для пользовательской
маски следует понимать так: у владельца и группы остается полный набор прав, а
всем остальным запрещается запись. В восьмеричном виде оно запишется как 002
(первая цифра — ограничения для владельца, вторая — для группы, третья — для

' Сокет — это понятие, связанное со стеком протоколов TCP/IP, который является «родным» для
UNIX. Его следует понимать как некий адрес или порт, через который связываются удаленные про­
граммы.

Семейство операционных систем UNIX 3 2 9

остальных; запрещение чтения — 4, записи — 2, выполнения — 1). Владелец файла
может изменить права доступа к нему командой chmod.

Взаимодействие между процессами
Операционная система UNIX в полной мере отвечает требованиям технологии
клиент-сервер. Эта универсальная модель служит основой построения любых сколь
угодно сложных систем, в том числе и сетевых. Разработчики СУБД, коммуника­
ционных систем, систем электронной почты, банковских систем и т. д. во всем мире
широко используют технологию клиент-сервер. Для построения программных
систем, работающих по принципам модели «клиент-сервер», в UNIX существуют
следующие механизмы:

• сигналы;

• семафоры;

Q программные каналы;

• очереди сообщений;

• сегменты разделяемой памяти;

Q вызовы удаленных процедур.

Многие из этих механизмов нам уже знакомы, поэтому рассмотрим их вкратце.
Для более глубокого изучения этих вопросов можно рекомендовать известную
работу [43].

Сигналы
Если рассматривать выполнение процесса на виртуальном компьютере, который
предоставляется каждому пользователю, то в такой системе должна существовать
система прерываний, отвечающая стандартным требованиям:

• обработка исключительных ситуаций;

• средства обработки внешних и внутренних прерываний;

Q средства управления системой прерываний (маскирование и демаскирование).
Всем этим требованиям в UNIX отвечает механизм сигналов, который позволяет
не только воспринимать и обрабатывать сигналы, но и порождать их и посылать на
другие машины (процессы). Сигналы могут быть синхронными, когда инициатор
сигнала — сам процесс, и асинхронными, когда инициатор сигнала — интерактив­
ный пользователь, сидящий за терминалом. Источником асинхронных сигналов
может быть также ядро, когда оно контролирует определенные состояния аппара­
туры, рассматриваемые как ошибочные.

Сигналы можно рассматривать как простейшую форму взаимодействия между про­
цессами. Они используются для передачи от одного процесса другому или от ядра
ОС какому-либо процессу уведомления о возникновении определенного события.

Семафоры
Механизм семафоров, реализованный в UNIX-системах, является обобщением
классического механизма семафоров, предложенного известным голландским спе-

3 3 0 Глава 10. Краткий обзор современных операционных систем

циалистом профессором Дейкстрой. Семафор в операционной системе семейства
UNIX состоит из следующих элементов:

Q значения семафора;

• идентификатора процесса, который хронологически последним работал с се­
мафором;

• числа процессов, ожидающих увеличения значения семафора;

• числа процессов, ожидающих нулевого значения семафора.

Для работы с семафорами имеются следующие три системных вызова:

Q semget — создание и получение доступа к набору семафоров;

О semop — манипулирование значениями семафоров (именно этот системный
вызов позволяет с помощью семафоров организовать синхронизацию процес­
сов);

• semctl — выполнение разнообразных управляющих операций над набором се­
мафоров.

Системный вызов semget имеет следующий синтаксис:

id = semget(key, count, flag);
Здесь параметры key и flag определяют ключ объекта и дополнительные флаги.
Параметр count задает число семафоров в наборе семафоров, обладающих одним и
тем же ключом. После этого индивидуальный семафор идентифицируется деск­
риптором набора семафоров и номером семафора в этом наборе. Если к моменту
выполнения системного вызова semget набор семафоров с указанным ключом уже
существует, то обращающийся процесс получит соответствующий дескриптор, но
так и не узнает о реальном числе семафоров в группе (хотя позже это все-таки
можно узнать с помощью системного вызова semctl).

Основным системным вызовом для манипулирования семафором является semop:

oldval = semopdd. oplist, count);
Здесь id — это ранее полученный дескриптор группы семафоров, oplist — массив
описателей операций над семафорами группы, a count— размер этого массива.
Значение, возвращаемое системным вызовом, является значением последнего об­
работанного семафора. Каждый элемент массива oplist имеет следующую структуру:

Q номер семафора в указанном наборе семафоров;

• операция;

Q флаги.

Если проверка прав доступа проходит нормально и указанные в массиве oplist но­
мера семафоров не выходят за пределы общего размера набора семафоров, то сис­
темный вызов выполняется следующим образом. Для каждого элемента массива
oplist значение соответствующего семафора изменяется в соответствии со значе­
нием поля операции, как показано ниже.

• Если значение поля операции положительно, то значение семафора увеличи­
вается на единицу, а все процессы, ожидающие увеличения значения семафо­
ра, активизируются {пробуждаются — в терминологии UNIX).

Семейство операционных систем UNIX 3 3 1

а Если значение поля операции равно нулю и значение семафора также равно
нулю, выбирается следующий элемент массива oplist. Если же значение поля
операции равно нулю, а значение семафора отлично от нуля, то ядро увеличи­
вает на единицу число процессов, ожидающих нулевого значения семафора,
причем обратившийся процесс переводится в состояние ожидания (засыпает —
в терминологии UNIX).

О Если значение поля операции отрицательно и его абсолютное значение меньше
или равно значению семафора, то ядро прибавляет это отрицательное значение
к значению семафора. Если в результате значение семафора стало нулевым, то
ядро активизирует (пробуждает) все процессы, ожидающие нулевого значения
этого семафора. Если же значение семафора оказывается меньше абсолютной
величины поля операции, то ядро увеличивает на единицу число процессов,
ожидающих увеличения значения семафора, и откладывает (усыпляет) теку­
щий процесс до наступления этого события.

Интересно заметить, что основным поводом для введения массовых операций над
семафорами было стремление дать программистам возможность избегать тупико­
вых ситуаций, возникающих в связи с семафорной синхронизацией. Это обеспечи­
вается тем, что системный вызов semop, каким бы длинным он ни был (по причине
потенциально неограниченной длины массива oplist), выполняется как атомарная
операция, то есть во время выполнения semop ни один другой процесс не может
изменить значение какого-либо семафора.

Наконец, среди флагов-параметров системного вызова semop может содержаться
флаг с символическим именем IPC_NOWAIT, наличие которого заставляет ядро UNIX
не блокировать текущий процесс, а лишь сообщать в ответных параметрах о воз­
никновении ситуации, приведшей к блокированию процесса в случае отсутствия
флага IPC_NOWAIT. Мы не будем обсуждать здесь возможности корректного завер­
шения работы с семафорами при незапланированном завершении процесса; заме­
тим только, что такие возможности обеспечиваются.

Системный вызов semctl имеет следующий формат:

semctKid. number, cmd. arg);
Здесь id — это дескриптор группы семафоров, number — номер семафора в группе,
cmd — код операции, arg — указатель на структуру, содержимое которой интерпре­
тируется по-разному в зависимости от операции. В частности, с помощью вызова
semctl можно уничтожить индивидуальный семафор в указанной группе. Однако
Детали этого системного вызова настолько громоздки, что лучше рекомендовать в
случае необходимости обращаться к технической документации используемого
варианта операционной системы.

Программные каналы
Мы уже познакомились с программными каналами в главе 7. Рассмотрим этот
механизм еще раз, так сказать, в его исходном, изначальном толковании.

Программные каналы (pipes) в системе UNIX являются очень важным средством
взаимодействия и синхронизации процессов. Теоретически программный канал

3 3 2 Глава 10. Краткий обзор современных операционных систем

позволяет взаимодействовать любому числу процессов, обеспечивая дисциплину
FIFO (First In First Out — первый пришедший первым и выбывает). Другими сло­
вами, процесс, читающий из программного канала, прочитает те данные, которые
были записаны в программный канал раньше других. В традиционной реализации
программных каналов для хранения данных использовались файлы. В современ­
ных версиях операционных систем семейства UNIX для реализации программных
каналов применяются другие средства взаимодействия между процессами (в час­
тности, очереди сообщений).

В UNIX различаются два вида программных каналов — именованные и неимено­
ванные. Именованный программный канал может служить для общения и синх­
ронизации произвольных процессов, знающих имя данного программного канала
И имеющих соответствующие права доступа. Неименованным программным кана­
лом могут пользоваться только породивший его процесс и его потомки (необяза­
тельно прямые).

Для создания именованного программного канала (или получения к нему досту­
па) используется обычный файловый системный вызов open. Для создания же не­
именованного программного канала существует специальный системный вызов pipe
(исторически более ранний). Однако после получения соответствующих дескрип­
торов оба вида программных каналов используются единообразно с помощью стан­
дартных файловых системных вызовов read, write и close.

Системный вызов pipe имеет следующий синтаксис:

pipe(fdptr);

Здесь fdptr — это указатель на массив из двух целых чисел, в который после созда­
ния неименованного программного канала будут помещены дескрипторы, пред­
назначенные для чтения из программного канала (с помощью системного вызова
read) и записи в программный канал (с помощью системного вызова write). Деск­
рипторы неименованного программного канала — это обычные дескрипторы фай­
лов, то есть такому программному каналу соответствуют два элемента таблицы
открытых файлов процесса. Поэтому при последующих системных вызовах read и
write процесс совершенно не обязан отличать случай использования программных
каналов от случая использования обычных файлов (собственно, на этом и основа­
на идея перенаправления ввода-вывода и организации конвейеров).
Для создания именованных программных каналов (или получения доступа к уже
существующим каналам) используется обычный системный вызов open. Основ­
ным отличием от случая открытия обычного файла является то, что если имено­
ванный программный канал открывается для записи и ни один процесс не открыл
тот же программный канал для чтения, то обращающийся процесс блокируется до
тех пор, пока некоторый процесс не откроет данный программный канал для чте­
ния. Аналогично обрабатывается открытие для чтения.

Запись данных в программный канал и чтение данных из программного канала (не­
зависимо от того, именованный он или не именованный) выполняются с помощью
системных вызовов read и write. Отличие от случая использования обычных файлов
состоит лишь в том, что при записи данные помещаются в начало канала, а при чте­
нии выбираются (освобождая соответствующую область памяти) из конца канала.

Семейство операционных систем UNIX

Окончание работы процесса с программным каналом (независимо от того, имено­
ванный он или не именованный) производится с помощью системного вызова close.

Очереди сообщений
Для обмена данными между процессами используется механизм очередей сооб­

щений, который поддерживается следующими системными вызовами:

a msgget — образование новой очереди сообщений или получение дескриптора

существующей очереди;

a msgsnd — отправка сообщения (точнее, его постановка в указанную очередь со­

общений);

a msgrcv — прием сообщения (точнее, выборка сообщения из очереди сообщений);

• msgctl — выполнение ряда управляющих действий.

Ядро хранит сообщения в виде связного списка (очереди), а дескриптор очереди
сообщений является индексом в массиве заголовков очередей сообщений.

Системный вызов msgget имеет следующий синтаксис:

msgqid = msgget(key. flag):

Здесь параметры key и flag имеют то же значение, что и в вызове semget при запросе

семафора.

При выполнении системного вызова msgget ядро UNIX-системы либо создает но­
вую очередь сообщений, помещая ее заголовок в таблицу очередей сообщений и
возвращая пользователю дескриптор вновь созданной очереди, либо находит эле­
мент таблицы очередей сообщений, содержащий указанный ключ, и возвращает
соответствующий дескриптор очереди.

Для отправки сообщения используется системный вызов msgsnd:

msgsnd(msgqid, msg, count, flag):
Здесь msg — указатель на структуру, содержащую определяемый пользователем
целочисленный тип сообщения и символьный массив (собственно сообщение);
count — размер сообщения в байтах; flag — значение, которое определяет действия
ядра при выходе за пределы допустимых размеров внутренней буферной памяти.

Для приема сообщения используется системный вызов msgrcv:

count » msgrcvdd, msg. maxcount, type, flag);
Здесь msg — указатель на структуру данных в адресном пространстве пользовате­
ля, предназначенную для размещения принятого сообщения; maxcount — размер
области данных (массива байтов) в структуре msg; type — тип сообщения, которое
требуется принять; flag — значение, которое указывает ядру, что следует предпри­
нять, если в указанной очереди сообщений отсутствует сообщение с указанным
типом. Возвращаемое значение системного вызова задает реальное число байтов,
переданных пользователю.

Следующий системный вызов служит для опроса состояния описателя очереди
сообщений, изменения его состояния (например, изменения прав доступа к очере­
ди) и для уничтожения указанной очереди сообщений:

msgctl(id. cmd, mstatbuf);

3 3 4 Глава 10, Краткий обзор современных операционных систем

Разделяемая память
Для работы с разделяемой памятью используются четыре системных вызова:

Q shmget — создает новый сегмент разделяемой памяти или находит существую­
щий сегмент с тем же ключом;

Q shmat — подключает сегмент с указанным дескриптором к виртуальной памяти
обращающегося процесса;

Q shmdt — отключает от виртуальной памяти ранее подключенный к ней сегмент
с указанным виртуальным адресом начала;

• shmctl — служит для управления разнообразными параметрами, связанными с
существующим сегментом.

После того как сегмент разделяемой памяти подключен к виртуальной памяти
процесса, процесс может обращаться к соответствующим элементам памяти с ис­
пользованием обычных машинных команд чтения и записи, не прибегая к допол­
нительным системным вызовам.

Синтаксис системного вызова shmget выглядит следующим образом:

shmid = shmget(key, size, flag):
Параметр size определяет желаемый размер сегмента в байтах. Далее работа про­
исходит по общим правилам. Если в таблице разделяемой памяти находится эле­
мент, содержащий заданный ключ, и права доступа не противоречат текущим ха­
рактеристикам обращающегося процесса, то значением системного вызова является
дескриптор существующего сегмента (и обратившийся процесс так и не узнает
реального размера сегмента, хотя впоследствии его можно узнать с помощью сис­
темного вызова shmctl). В противном случае создается новый сегмент, размер ко­
торого не меньше, чем установленный в системе минимальный размер сегмента
разделяемой памяти, и не больше, чем установленный максимальный размер. Со­
здание сегмента не означает немедленного выделения для него основной памяти.
Это действие откладывается до первого системного вызова подключения сегмента
к виртуальной памяти некоторого процесса. Аналогично, при выполнении после­
днего системного вызова отключения сегмента от виртуальной памяти соответ­
ствующая основная память освобождается.

Подключение сегмента к виртуальной памяти выполняется путем обращения К
системному вызову shmat:

virtaddr = shmatdd, addr. flags):
Здесь id — ранее полученный дескриптор сегмента; addr — требуемый процессу
виртуальный адрес, который должен соответствовать началу сегмента в виртуаль­
ной памяти. Значением системного вызова является реальный виртуальный адрес
начала сегмента (его значение не обязательно совпадает со значением параметра
addr). Если значением addr является нуль, ядро выбирает подходящий виртуаль­
ный адрес начала сегмента.

Для отключения сегмента от виртуальной памяти используется системный вызов

shmdt:

shmdt(addr);

Семейство операционных систем UNIX 3 3 5

Здесь addr — виртуальный адрес начала сегмента в виртуальной памяти, ранее по­
лученный с помощью системного вызова shmat. При этом система гарантирует (опи­
раясь на данные таблицы сегментов процесса), что указанный виртуальный адрес
действительно является адресом начала разделяемого сегмента в виртуальной па­
мяти данного процесса.
Для управления памятью служит системный вызов shmctl:

shmctKid, cmd, shsstatbuf):
Параметр cmd идентифицирует требуемое конкретное действие, то есть ту или иную
функцию. Наиболее важной является функция уничтожения сегмента разделяемой
памяти, которое производится следующим образом. Если к моменту выполнения
системного вызова ни один процесс не подключил сегмент к своей виртуальной
памяти, то основная память, занимаемая сегментом, освобождается, а соответству­
ющий элемент таблицы разделяемых сегментов объявляется свободным. В про­
тивном случае в элементе таблицы сегментов выставляется флаг, запрещающий
выполнение системного вызова shmget по отношению к этому сегменту, но про­
цессам, успевшим получить дескриптор сегмента, по-прежнему разрешается под­
ключать сегмент к своей виртуальной памяти. При выполнении последнего систем­
ного вызова отключения сегмента от виртуальной памяти операция уничтожения
сегмента завершается.

Вызовы удаленных процедур
Во многих случаях взаимодействие процессов соответствует отношениям клиент-
сервер. Один из процессов (клиент) запрашивает у другого процесса (сервера)
некоторую услугу (сервис) и не продолжает свое выполнение до тех пор, пока эта
услуга не будет выполнена (то есть пока процесс-клиент не получит соответству­
ющие результаты). Видно, что семантически такой режим взаимодействия экви­
валентен вызову процедуры. Отсюда и соответствующее название — вызов уда­
ленной процедуры (Remote Procedure Call, RPC). Другими словами, процесс
обращается к процедуре, которая не принадлежит данному процессу. Она может
находиться даже на другом компьютере. Операционная система UNIX по своей
«идеологии» идеально подходит для того, чтобы быть сетевой операционной сис­
темой, на основе которой можно создавать распределенные системы и организо­
вывать распределенные вычисления. Свойства переносимости позволяют созда­
вать «операционно-однородные» сети, включающие разнородные компьютеры.
Однако остается проблема разного представления данных в компьютерах разной
архитектуры. Поэтому одной из основных идей RPC является автоматическое обес­
печение преобразования форматов данных при взаимодействии процессов, выпол­
няющихся на разнородных компьютерах.

Реализация механизма вызовов удаленных процедур (RPC) достаточно сложна,
поскольку этот механизм должен обеспечить работу взаимодействующих процес­
сов, находящихся на разных компьютерах. Если в случае обращения к процедуре,
расположенной на том же компьютере, процесс общается с ней через стек или об­
щие области памяти, то в случае удаленного вызова передача параметров процеду­
ре превращается в передачу запроса по сети. Соответственно, и получение резуль­
тата также осуществляется с помощью сетевых механизмов.

3 3 6 Глава 10. Краткий обзор современных операционных систем

Вызов удаленных процедур включает следующие шаги [39].

1. Процесс-клиент осуществляет вызов локальной процедуры, которую называ­
ют заглушкой (stub). Задача этого модуля-заглушки — принять аргументы, пре­
образовать их в стандартную форму и сформировать сетевой запрос. Упаковка
аргументов и создание сетевого запроса называется сборкой (marshalling).

2. Сетевой запрос пересылается на удаленную систему, где соответствующий мо­
дуль ожидает такой запрос и при его получении извлекает параметры вызова
процедуры, то есть выполняет разборку (unmarshalling), а затем передает их
серверу удаленной процедуры. После выполнения осуществляется обратная
передача.

Операционная система Linux
Linux — это современная UNIX-подобная операционная система для персональ­
ных компьютеров и рабочих станций, удовлетворяющая стандарту POSIX.
Как известно, Linux — это свободно распространяемая версия UNIX-систем, кото­
рая первоначально разрабатывалась Линусом Торвальдсом (torvalds@kruuna.hel-
sinki.fi) в университете Хельсинки (Финляндия). Он предложил разрабатывать ее
совместно и выдвинул условие, согласно которому исходные коды являются от­
крытыми, любой может их использовать и изменять, но при этом обязан оставить
открытым и свой код, внесенный в тот или иной модуль системы. Все компоненты
системы, включая исходные тексты, распространяются с лицензией на свободное
копирование и установку для неограниченного числа пользователей.

Таким образом, система Linux была создана с помощью многих программистов и эн­
тузиастов UNIX-систем, общающихся между собой через Интернет. К данному
проекту добровольно подключились те, кто имеет достаточно навыков и способ­
ностей развивать систему. Большинство программ Linux разработаны в рамках
проекта GNU из Free Software Foundation (Кембридж, штат Массачусетс). Но в него
внесли свою лепту и многие программисты со всего мира.

Изначально система Linux создавалась как «самодельная» UNIX-подобная реали­
зация для машин типа IBM PC с процессором i80386. Однако вскоре Linux стала
настолько популярна и ее поддержало такое большое число компаний, что в насто­
ящее время имеются реализации этой операционной системы практически для всех
типов процессоров и компьютеров на их основе. На базе Linux создаются и встро­
енные системы, и суперкомпьютеры. Система поддерживает кластеризацию и боль­
шинство современных интерфейсов и технологий.

Большинство свойств Linux присущи другим реализациям UNIX, кроме того, име­
ются некоторые уникальные свойства. Этот раздел представляет собой лишь крат­
кий обзор этих свойств.

Linux — это полноценная многозадачная многопользовательская операционная
система (точно так же, как и все другие версии UNIX). Это означает, что одновре­
менно много пользователей могут работать на одной машине, параллельно выпол­
няя множество программ. Поскольку при работе за персональным компьютером
практически никто не подключает к нему дополнительные терминалы (хотя это в

mailto:torvalds@kruuna.hel-
http://sinki.fi

Семейство операционных систем UNIX 3 3 7

принципе возможно), пользователь просто имитирует работу за несколькими тер­
миналами. В этом смысле можно говорить о виртуальных терминалах. По умолча­
нию пользователь регистрируется на первом терминале. При этом он получает
примерно следующее сообщение:

Mandrake Linux release 9.0 (dolphin) for i586
Kernel 2.4.16-16mdk on an 1686 /ttyl
Vienna login:

Здесь во второй строке слово ttyl означает, что пользователь сейчас взаимодей­
ствует с системой через первый виртуальный терминал. Собственно работа на нем
возможна только после аутентификации — ввода своих учетного имени и пароля.

При желании открыть второй или последующий сеанс работы на соответствую­
щем терминале, пользователь должен нажать комбинацию клавиш Alt+Fi, где i
обозначает номер функциональной клавиши и одновременно номер соответству­
ющего виртуального терминала. Всего Linux поддерживает до семи терминалов,
причем седьмой терминал связан с графическим режимом работы и использова­
нием одного из оконных менеджеров. Однако если пользователь работает в графи­
ческом режиме, то для перехода в один из алфавитно-цифровых терминалов сле­
дует воспользоваться комбинацией клавиш CtrL+Alt+Fi. В каждом сеансе
пользователь может запускать свои задачи.

Система Linux достаточно хорошо совместима с рядом стандартов для UNIX (на­
сколько можно говорить о стандартизации UNIX) на уровне исходных текстов,
включая IEEE POSIX.l, System V и BSD. Она и создавалась с расчетом на такую
совместимость. Большинство свободно распространяемых через Интернет про­
грамм для UNIX может быть откомпилировано для Linux практически без особых
изменений1. Кроме того, все исходные тексты для Linux, включая ядро, драйверы
устройств, библиотеки, пользовательские программы и инструментальные сред­
ства распространяются свободно. Другие специфические внутренние черты Linux
включают контроль работ по стандарту POSIX (используемый оболочками, таки­
ми как csh и bash), псевдотерминалы (pty), поддержку национальных и стандарт­
ных раскладок клавиатур динамически загружаемыми драйверами клавиатур.
Linux поддерживает различные типы файловых систем для хранения данных. Не­
которые файловые системы, такие как EXT2FS, были созданы специально для
Linux. Поддерживаются также другие типы файловых систем, например Minix-1 и
Xenix. Кроме того, реализована система управления файлами на основе FAT, по­
зволяющая непосредственно обращаться к файлам, находящимся в разделах с этой
файловой системой. Поддерживается также файловая система ISO 9660 CD-ROM
для работы с дисками CD-ROM. Имеются системы управления файлами и на то­
мах с HPFS и NTFS, правда, они работают только на чтение файлов. Созданы ва­
рианты системы управления файлами и для доступа к FAT32; эта файловая систе­
ма в операционной системе Linux называется VFAT.

Справедливости ради следует заметить, что в последнее время в Linux наметились тенденции все
большего отхода от принятых в семействе UNIX стандартов и увеличения количества различий в
разных дистрибутивах Linux. Эти различия распространяются и на структуру каталогов файловой
системы, что приводит к определенным проблемам при переносе прикладных программ из одной
системы Linux в другую.

3 3 8 Глава 10. Краткий обзор современных операционных систем

Linux, как и все UNIX-системы, поддерживает полный набор протоколов стека
TCP/IP для сетевой работы. Программное обеспечение для работы в Интернет/
интранет включает драйверы устройств для многих популярных сетевых адапте­
ров технологии Ethernet, протоколы SLIP (Serial Line Internet Protocol), PLIP
(Parallel Line Internet Protocol), PPP (Point-to-Point Protocol), NFS (Network File
System) и пр. Поддерживается весь спектр клиентов и услуг TCP/IP, таких как
FTP, telnet, NNTP и SMTP.

Ядро Linux сразу было создано с учетом возможностей защищенного режима 32-
разрядных процессоров 80386 и 80486 фирмы Intel. В частности, в Linux использу­
ется парадигма описания памяти в защищенном режиме и другие новые свойства
процессоров с архитектурой ia32. Для защиты пользовательских программ друг от
друга и операционной системы от них Linux работает исключительно в защищен­
ном режиме1, реализованном в процессорах фирмы Intel. В защищенном режиме
только программный код, исполняющийся в нулевом кольце защиты, имеет не­
посредственный доступ к аппаратным ресурсам компьютера — памяти и устрой­
ствам ввода-вывода. Пользовательские и системные обрабатывающие программы
работают в третьем кольце защиты. Они обращаются к аппаратным ресурсам ком­
пьютера исключительно через системные подпрограммы, функционирующие в
нулевом кольце защиты. Таким образом, пользовательским программам предо­
ставляются только те услуги, которые реализованы разработчиками операцион­
ной системы. При этом системные подпрограммы обеспечивают выполнение только
тех функций, которые безопасны с точки зрения операционной системы.

Как и в классических UNIX-системах, Linux имеет макроядро, которое содержит
уже известные нам три подсистемы. Ядро обеспечивает выделение каждому про­
цессу отдельного адресного пространства, так что процесс не имеет возможности
непосредственного доступа к данным других процессов и ядра операционной сис­
темы. Тем более что сегмент кода, сегмент данных и стек ядра располагаются в
нулевом кольце защиты. Для обращения к физическим устройствам компьютера
ядро вызывает соответствующие драйверы, управляющие аппаратурой компьюте­
ра. Поскольку драйверы функционируют в составе ядра, их код будет выполнять­
ся в нулевом (привилегированном) кольце защиты, и они могут получить прямой
доступ к аппаратным ресурсам компьютера.

В отличие от старых версий UNIX, в которых задачи выгружались во внешнюю
память на магнитных дисках целиком, ядро Linux использует аппаратную поддерж­
ку процессорами страничного механизма организации виртуальной памяти. Поэто­
му в Linux замещаются отдельные страницы. То есть с диска в память загружаются
те виртуальные страницы образа, которые сейчас реально требуются, а неиспользу­
емые страницы выгружаются на диск в файл подкачки. Возможно разделение стра­
ниц кода, то есть использование одной страницы, физически уже один раз загру­
женной в память, несколькими процессами. Другими словами, реентерабельность
кода, присущая всем UNIX-системам, осталась. В настоящее время имеются ядра
для этой системы, оптимизированные для работы с процессорами Intel и AMU

1 Напомним, что только в этом режиме процессоры с архитектурой ia32 используют 32-разрядную
адресацию и имеют доступ ко всей оперативной памяти.

Семейство операционных систем UNIX 3 3 9

последнего поколения, хотя основные архитектурные особенности защищенного
режима работы изменились мало. Уже разработаны ядра для работы с 64-разряд­
ными процессорами от Intel и AMD.

Ядро также поддерживает универсальный пул памяти для пользовательских про­
грамм и дискового кэша. При этом для кэширования может использоваться вся
свободная память, и наоборот, требуемый объем памяти, отводимой для кэширо­
вания файлов, уменьшается при работе больших программ. Этот механизм, назы­
ваемый агрессивным кэшированием, позволяет более эффективно расходовать
имеющуюся память и увеличить производительность системы.

Исполняемые программы задействуют динамически связываемые библиотеки
(Dynamic Link Library, DLL), то есть эти программы могут совместно использо­
вать библиотеку, представленную одним физическим файлом на диске. Это по­
зволяет занимать меньше места на диске исполняемым файлам, особенно тем, ко­
торые многократно вызывают библиотечные функции. Есть также статические
связываемые библиотеки для тех, кто желает пользоваться отладкой на уровне
объектных кодов или иметь «полные» исполняемые программы, не нуждающиеся
в разделяемых библиотеках. В Linux разделяемые библиотеки динамически свя­
зываются во время выполнения, позволяя программисту заменять библиотечные
модули своими собственными.

Операционная система FreeBSD
Помимо Linux к свободно распространяемым операционным системам семейства
UNIX следует отнести FreeBSD. Принципиальное и самое важное различие меж­
ду этими операционными системами заключается в том, что согласно принятому
соглашению в системы Linux каждый может внести свои изменения, но при этом
обязан также сделать свой код открытым. Не все компании на это согласны. Мно­
гие предпочитают воспользоваться исходными текстами и готовыми решениями,
но не открывать секретов своего программного обеспечения, сделанного с помо­
щью использованного открытого кода. Поэтому в настоящее время сложилась такая
ситуация, что имеется уже несколько десятков компаний, занимающихся созданием
дистрибутивов для этой операционной системы. Каждая компания, подготавлива­
ющая дистрибутив, помимо собственно операционной системы добавляет к нему
свой инсталлятор1, утилиты, в том числе менеджер пакетов программ, конфигура­
торы и, наконец, большой набор прикладного программного обеспечения. При этом
она привносит в систему свои изменения, не согласуя их с другими (за исключе­
нием самого ядра, работу над которым по-прежнему курирует Торвальдс). Таким
образом, можно констатировать, что у системы Linux как совокупности собствен­
но операционной системы и программного обеспечения, поставляемого с ней, нет
единого координатора. С одной стороны, это приводит к заметному прогрессу си­
стемы, она быстро реагирует на новые устройства и технологии. Сейчас уже на
компьютере с Linux можно играть в современные трехмерные игры, просматри-

Программа установки программного обеспечения на компьютер, в том числе программа установки
операционной системы (от англ. «install» — установить).

3 4 0 Глава 10. Краткий обзор современных операционных систем

вать видеофильмы, кодированные в соответствии с самыми современными фор­
матами, слушать и писать музыку и т. д. С другой стороны, пользователи сталки­
ваются с проблемами переносимости приложений, созданных для этих (и других
UNIX-подобных) систем, поскольку нет единого координатора.

В противоположность Linux операционная система FreeBSD имеет такого коор­
динатора — это университет в Беркли, Калифорния. Любой может изучить тексты
кодов этой операционной системы и предложить внести в нее свои изменения, но
это не означает, что так и будет сделано, даже если изменения разумны. Только
координирующая группа BSD имеет на это право.

Итак, FreeBSD — это тоже UNIX-подобная операционная система с открытым ис­
ходным кодом. Однако несмотря на то, что она родилась раньше и в той же мере
бесплатна, что и Linux, многие о ней даже не слышали. Дело в том, что эта опера­
ционная система не имеет такой раскрученной рекламы, как проект Linux, хотя
история BSD уходит корнями в более далекие годы. При этом необходимо заме­
тить, что в плане производительности, стабильности, качества кода специалисты
практически единодушно отдают предпочтение операционной системе FreeBSD.
В частности, еще одним важным отличием FreeBSD от Linux является то, что ядро
FreeBSD построено по принципам микроядерных операционных систем, тогда как
Linux — это макроядерная операционная система.

Сетевая операционная система
реального времени QNX
Вспомним основные принципы, обязательная реализация которых позволяет со­
здавать операционные системы реального времени (ОСРВ). Первым обязатель­
ным требованием к архитектуре операционной системы реального времени явля­
ется многозадачность в истинном смысле этого слова. Очевидно, что варианты с
псевдомногозадачностью (а точнее, с невытесняющей многозадачностью) в систе­
мах Windows 3.X или Novell NetWare неприемлемы, поскольку они допускают воз­
можность блокировки или даже полного развала системы одним неправильно ра­
ботающим процессом. Для предотвращения блокировок вычислений ОСРВ должна
использовать квантование времени (то есть использовать вытесняющую, а не коо­
перативную многозадачность), что сделать достаточно просто. Вторая пробле­
ма — организация надежных вычислений — может быть эффективно решена за счет
специальных аппаратных возможностей процессора. При построении системы для
работы на персональных компьютерах типа IBM PC для этого необходимы про­
цессоры типа Intel 80386 и выше, чтобы иметь возможность организовать функци­
онирование операционной системы в защищенном (32-разрядном) режиме работы
процессора. Для эффективного обслуживания прерываний операционная система
должна использовать алгоритм диспетчеризации, обеспечивающий вытесняющее
планирование, основанное на приоритетах. Наконец, крайне желательна эффек­
тивная поддержка сетевых коммуникаций и наличие развитых механизмов взаи­
модействия между процессами, поскольку реальные технологические системы
обычно управляются целым комплексом компьютеров и/или контроллеров. Весь-

Сетевая операционная система реального времени QNX 3 4 1

ма желательно также, чтобы операционная система поддерживала многопоточность
(не только мультипрограммный, но и мультизадачный режимы) и симметричную
мультипроцессорность. И наконец, при соблюдении всех перечисленных условий
операционная система должна быть способна работать на ограниченных аппарат­
ных ресурсах, поскольку одна из ее основных областей применения — встроенные
системы. К сожалению, данное условие обычно реализуется путем простого уреза­
ния стандартных сервисных средств.

Операционная система QNX является мощной операционной системой, разрабо­
танной для процессоров с архитектурой ia32. Она позволяет проектировать слож­
ные программные комплексы, работающие в реальном времени как на отдельном
компьютере, так и в локальной вычислительной сети. Встроенные средства QNX
обеспечивают поддержку многозадачного режима на одном компьютере и взаимо­
действие параллельно выполняемых задач на разных компьютерах, работающих в
среде локальной вычислительной сети. Таким образом, эта операционная система
хорошо подходит для построения распределенных систем.

Основным языком программирования в системе является С. Основная операци­
онная среда соответствует стандарту POSIX. Это позволяет с небольшими дора­
ботками переносить ранее разработанное программное обеспечение в QNX для
организации их работы в среде распределенной обработки.

Операционная система QNX, будучи сетевой и мультизадачной, в то же время яв­
ляется многопользовательской (многотерминальной). Кроме того, она масштаби­
руема. С точки зрения пользовательского интерфейса и интерфейса прикладного
программирования она очень похожа на UNIX, поскольку выполняет требования
стандарта POSIX. Однако QNX — это не версия UNIX, хотя почему-то многие так
считают. Система QNX была разработана, что называется, «с нуля» канадской
фирмой QNX Software Systems Limited в 1989 году по заказу Министерства оборо­
ны США, причем на совершенно иных архитектурных принципах, нежели исполь­
зовались при создании операционной системы UNIX.

QNX была первой коммерческой операционной системой, построенной на прин­
ципах микроядра и обмена сообщениями. Система реализована в виде совокупно­
сти независимых (но взаимодействующих путем обмена сообщениями) процессов
различного уровня (менеджеры и драйверы), каждый из которых реализует опре­
деленный вид услуг. Эти идеи позволили добиться нескольких важнейших пре­
имуществ. Вот как об этом написано на сайте, посвященном операционной систе­
ме QNX[14].

Q Предсказуемость означает применимость системы к задачам жесткого ре­
ального времени. QNX является операционной системой, которая дает пол­
ную гарантию того, что процесс с наивысшим приоритетом начнет выпол­
няться практически немедленно, и критически важное событие (например,
сигнал тревоги) никогда не будет потеряно. Ни одна версия UNIX не может
достичь подобного качества, поскольку нереентерабельный код ядра слиш­
ком велик. Любой системный вызов из обработчика прерывания в UNIX
может привести к непредсказуемой задержке (то же самое можно сказать
про Windows NT).

3 4 2 Глава 10. Краткий обзор современных операционных систем

• Масштабируемость и эффективность достигаются оптимальным использова­
нием ресурсов и означают применимость QNX для встроенных (embedded) си­
стем. В данном случае мы не увидим в каталоге /dev множества файлов, соот­
ветствующих ненужным драйверам, что характерно для UNIX-систем. Драйверы
и менеджеры можно запускать и удалять (кроме файловой системы, что оче­
видно) динамически, просто из командной строки. Мы можем иметь только те
услуги, которые нам реально нужны, причем это не требует серьезных усилий и
не порождает проблем.

Q Расширяемость и надежность обеспечиваются одновременно, поскольку напи­
санный драйвер не нужно компилировать в ядро, рискуя вызвать нестабиль­
ность системы. Менеджеры ресурсов (служба логического уровня) работают
в третьем кольце защиты, и вы можете добавлять свои менеджеры, не опасаясь
за систему. Драйверы работают в первом кольце и могут вызвать проблемы,
но не фатального характера. Кроме того, их достаточно просто писать и отла­
живать.

Q Быстрый сетевой протокол FLEET прозрачен для обмена сообщениями, авто­
матически обеспечивает отказоустойчивость, балансирование нагрузки и мар­
шрутизацию между альтернативными путями доступа.

• Компактная графическая подсистема Photon, построенная на тех же принци­
пах модульности, что и сама операционная система, позволяет получить пол­
нофункциональный интерфейс GUI (расширенный интерфейс Motif), работа­
ющий вместе с POSIX-совместимой операционной системой всего в 4 Мбайт
памяти, начиная с i80386 процессора.

Архитектура системы QNX
Итак, QNX — это операционная система реального времени для персональных
компьютеров, позволяющая эффективно организовать распределенные вычисле­
ния. В системе реализована концепция связи между задачами на основе сообще­
ний, посылаемых от одной задачи к другой, причем задачи эти могут решаться как
на одном и том же компьютере, так и на разных, но связанных между собой ло­
кальной вычислительной сетью. Реальное время и концепция связи между про­
цессами посредством сообщений оказывают решающее влияние и на разрабатывае­
мое для операционной системы QNX программное обеспечение, и на программиста,
стремящегося с максимальной выгодой использовать преимущества системы.
Микроядро операционной системы QNX имеет объем всего в несколько десятков
килобайтов (в одной из версий — 10 Кбайт, в другой — менее 32 Кбайт, хотя есть
вариант и на 46 Кбайт), то есть это одно из самых маленьких ядер среди всех суще­
ствующих операционных систем. В этом объеме помещаются [26]:

• механизм передачи сообщений между процессами IPC (Inter Process Commu­
nication — взаимодействие между процессами);

• редиректор (redirector) прерываний;

Это фирменная технология, о которой несколько более подробно рассказано далее.

Сетевая операционная система реального времени QNX 3 4 3

О блок планирования выполнения задач (иначе говоря, диспетчер задач);
Q сетевой интерфейс для перенаправления сообщений (менеджер Net).
Механизм IPC обеспечивает пересылку сообщений между процессами и является
одной из важнейших частей операционной системы, так как все взаимодействие
между процессами, в том числе и системными, происходит через сообщения. Со­
общение в операционной системе QNX — это последовательность байтов произ­
вольной длины (0-65 535 байт) произвольного формата. Протокол обмена сооб­
щениями может выглядеть, например, таким образом. Задача блокируется для
ожидания сообщения. Другая задача посылает первой сообщение и при этом бло­
кируется сама, ожидая ответа. Первая задача деблокируется, обрабатывает сооб­
щение и отвечает, деблокируя вторую задачу.

Сообщения и ответы, пересылаемые между процессами при их взаимодействии,
находятся в теле отправляющего их процесса до того момента, когда они могут
быть приняты. Это означает, что, с одной стороны, снижается вероятность повреж­
дения сообщения в процессе передачи, а с другой — уменьшается объем оператив­
ной памяти, необходимый для работы ядра. Кроме того, становится меньше пере­
сылок из памяти в память, что разгружает процессор. Особенностью процесса
передачи сообщений является то, что в сети, состоящей из нескольких компьюте­
ров, работающих под управлением QNX, сообщения могут прозрачно передавать­
ся процессам, выполняющимся на любом из узлов. Определены в QNX еще и два
дополнительных метода передачи сообщений — метод представителей (proxy) и
метод сигналов (signal).

Представители используются в случаях, когда процесс должен передать сообщение,
но не должен при этом блокироваться на передачу. Тогда вызывается функция
qnx_proxy_attach() и создается представитель. Он накапливает в себе сообщения, кото­
рые должны быть доставлены другим процессам. Любой процесс, знающий иденти­
фикатор представителя, может вызвать функцию Trigger(), после чего будет доставле­
но первое в очереди сообщение. Функция Trigger() может вызываться несколько раз, и
каждый раз представитель будет доставлять следующее сообщение. При этом пред­
ставитель содержит буфер, в котором может храниться до 65 535 сообщений.

Как известно, механизм сигналов уже давно используется в операционных систе­
мах, в том числе и в UNIX. Операционная система QNX также поддерживает множе­
ство сигналов, совместимых с POSIX, большое количество сигналов, традиционно
использовавшихся в UNIX (поддержка этих сигналов требуется для совместимости
с переносимыми приложениями, ни один из системных процессов QNX их не ге­
нерирует), а также несколько сигналов, специфичных для самой системы QNX.
По умолчанию любой сигнал, полученный процессом, приводит к завершению
процесса (кроме нескольких сигналов, которые по умолчанию игнорируются).
Но процесс с приоритетом уровня суперпользователя может защититься от неже­
лательных сигналов. В любом случае процесс может содержать обработчик для
каждого возможного сигнала. Сигналы удобно рассматривать как разновидность
программных прерываний.

Редиректор прерываний является частью ядра и занимается перенаправлением
аппаратных прерываний в связанные с ними процессы. Благодаря такому подходу

3 4 4 Глава 10. Краткий обзор современных операционных систем

возникает один побочный эффект — с аппаратной частью компьютера работает
ядро, оно перенаправляет прерывания процессам — обработчикам прерываний.
Обработчики прерываний обычно встроены в процессы, хотя каждый из них ис­
полняется асинхронно с процессом, в который он встроен. Обработчик исполня­
ется в контексте процесса и имеет доступ ко всем глобальным переменным про­
цесса. При работе обработчика прерываний прерывания разрешены, но обработчик
приостанавливается только в том случае, если произошло более высокоприори­
тетное прерывание. Если это позволяется аппаратной частью, к одному прерыва­
нию может быть подключено несколько обработчиков, каждый из которых полу­
чит управление при возникновении прерывания.

Этот механизм позволяет пользователю избегать работы с аппаратным обеспече­
нием напрямую и тем самым избегать конфликтов между различными процесса­
ми, работающими с одним и тем же устройством. Для обработки сигналов от вне­
шних устройств чрезвычайно важно минимизировать время между возникновением
события и началом непосредственной его обработки. Этот фактор существен в
любой области применения: от работы терминальных устройств до обработки вы­
сокочастотных сигналов.

Блок планирования выполнения задач обеспечивает многозадачность. В этом плане
операционная система QNX предоставляет разработчику огромный простор для
выбора той дисциплины выделения ресурсов процессора задаче, которая обеспе­
чит наиболее подходящие условия для выполнения критически важных приложе­
ний, а обычным приложениям обеспечит такие условия, при которых они будут
выполняться за разумное время, не мешая работе критически важных приложе­
ний.

К выполнению своих функций как диспетчера ядро приступает в следующих слу­
чаях:

• какой-либо процесс вышел из блокированного состояния;

• истек квант времени для процесса, владеющего центральным процессором;

О работающий процесс прерван каким-либо событием.

Диспетчер выбирает процесс для запуска среди неблокированных процессов в по­
рядке значений их приоритетов в диапазоне от 0 (наименьший) до 31 (наиболь­
ший). Обслуживание каждого из процессов зависит от метода его диспетчериза­
ции (приоритет и метод диспетчеризации могут динамически меняться во время
работы). В QNX существуют три метода диспетчеризации:

Q очередь (First In First Out, FIFO) — раньше пришедший процесс раньше об­
служивается;

• карусель (Round Robin, RR) — процессу выделяется определенный квант вре­
мени для работы, после чего процессор предоставляется следующему процессу;

Q адаптивный метод (используется чаще других).

Метод FIFO наиболее близок к невытесняющей многозадачности. То есть процесс
выполняется до тех пор, пока он не перейдет в состояние ожидания сообщения,
в состояние ожидания ответа на сообщение или не отдаст управление ядру. При
переходе в одно из таких состояний процесс помещается последним в очередь про-

Сетевая операционная система реального времени QNX 3 4 5

цессов с таким же уровнем приоритета, а управление передается процессу с наи­
большим приоритетом.

В методе RR все происходит так же, как и в предыдущем, с той разницей, что пери­
од, в течение которого процесс может работать без перерыва, ограничивается не­
ким квантом времени.

Процесс, работающий в соответствии с адаптивным методом, ведет себя следую­
щим образом:

а если процесс полностью использует выделенный ему квант времени, а в систе­
ме есть готовые к исполнению процессы с тем же уровнем приоритета, его при­
оритет снижается на 1;

О если процесс с пониженным приоритетом остается необслуженным в течение
секунды, его приоритет увеличивается на 1;

Q если процесс блокируется, ему возвращается исходное значение приоритета.

По умолчанию процессы запускаются в режиме адаптивной многозадачности. В этом
же режиме работают все системные утилиты QNX. Процессы, работающие в разных
режимах многозадачности, могут одновременно находиться в памяти и исполнять­
ся. Важный элемент реализации многозадачности — приоритет процесса. Обычно
приоритет процесса устанавливается при его запуске. Но есть дополнительная воз­
можность, называемая вызываемым клиентом приоритетом. Как правило, она реа­
лизуется для серверных процессов (исполняющих запросы на какое-либо обслужи­
вание). При этом приоритет процесса-сервера устанавливается только на время
обработки запроса и становится равным приоритету процесса-клиента.

Сетевой интерфейс в операционной системе QNX является неотъемлемой частью
ядра. Он, конечно, взаимодействует с сетевым адаптером через сетевой драйвер,
но базовые сетевые службы реализованы на уровне ядра. При этом передача сооб­
щения процессу, находящемуся на другом компьютере, ничем не отличается с точ­
ки зрения приложения от передачи сообщения процессу, выполняющемуся на том
же компьютере. Благодаря такой организации сеть превращается в однородную
вычислительную среду. При этом для большинства приложений не имеет значе­
ния, с какого компьютера они были запущены, на каком исполняются и куда по­
ступают результаты их работы.

Все службы операционной системы QNX, не реализованные непосредственно в яд­
ре, работают как обычные стандартные процессы в полном соответствии с основ­
ными концепциями микроядерной архитектуры. С точки зрения операционной
системы эти системные процессы ничем не отличаются от всех остальных. Как,
впрочем, и драйверы устройств. Единственное, что нужно сделать, чтобы новый
драйвер устройства стал частью операционной системы, — изменить конфигура­
ционный файл системы так, чтобы драйвер запускался при загрузке.

Основные механизмы организации
распределенных вычислений
QNX является сетевой операционной системой, которая позволяет организовать
эффективные распределенные вычисления. Для этого на каждой машине, называ-

3 4 6 Глава 10. Краткий обзор современных операционных систем

емой узлом, помимо ядра и менеджера процессов должен быть запущен уже упо­
мянутый ранее менеджер Net. Менеджер Net не зависит от аппаратной реализа­
ции сети. Эта аппаратная независимость обеспечивается за счет сетевых драйверов.
В операционной системе QNX имеются драйверы для сетей с различными техно­
логиями: Ethernet и FastEthernet, Arcnet, IBM Token Ring и др. Кроме того, имеет­
ся возможность организации сети через последовательный канал или модем.

В QNX версии 4 полностью реализовано встроенное сетевое взаимодействие типа
«точка-точка». Например, сидя за машиной А, вы можете скопировать файл с гиб­
кого диска, подключенного к машине В, на жесткий диск, подключенный к маши­
не С. По существу, сеть из машин с операционными системами QNX действует как
один мощный компьютер. Любые ресурсы (модемы, диски, принтеры) могут быть
добавлены к системе простым их подключением к любой машине в сети. QNX обес­
печивает возможность одновременной работы в сетях Ethernet, Arcnet, Serial и To­
ken Ring, более одного пути для связи и балансировку нагрузки в сетях. Если ка­
бель или сетевая плата выходит из строя и связь через эту сеть прекращается,
система автоматически перенаправит данные через другую сеть. Все это происходит
в режиме подключения (on-line), предоставляя пользователю автоматическую се­
тевую избыточность и увеличивая эффективность взаимодействия во всей системе.

Каждому узлу в сети соответствует уникальный целочисленный идентификатор —
логический номер узла. Любой поток выполнения в сети QNX имеет прозрачный
доступ (при наличии достаточных привилегий) ко всем ресурсам сети; то же самое
относится и к взаимодействию потоков. Для взаимодействия потоков, находящихся
на разных узлах сети, используются те же самые вызовы ядра, что и для потоков,
выполняемых на одном узле. В том случае, если потоки находятся на разных узлах
сети, ядро переадресует запрос менеджеру сети. Для обмена в сети используется
надежный и эффективный протокол транспортного уровня FLEET. Каждый из
узлов может принадлежать одновременно нескольким QNX-сетям. В том случае,
если сетевое взаимодействие может быть реализовано несколькими путями, для
передачи выбирается менее загруженная и более скоростная сеть.
Сетевое взаимодействие является узким местом в большинстве операционных
систем и обычно создает значительные проблемы для систем реального времени.
Для того чтобы обойти это препятствие, разработчики операционной системы QNX
создали собственную специальную сетевую технологию FLEET и соответствую­
щий протокол транспортного уровня FTL (FLEET Transport Layer). Этот прото­
кол не базируется ни на одном из распространенных сетевых протоколов вроде
IPX или NetBios и обладает рядом качеств, которые делают его уникальным. Ос­
новные его качества зашифрованы в аббревиатуре FLEET, которая расшифровы­
вается следующим образом:

Q Fault-Tolerant Networking — QNX может одновременно использовать несколь­
ко физических сетей, при выходе из строя любой из них данные будут «на лету»
перенаправлены через другую сеть;

• Load-Balancing on the Fly — при наличии нескольких физических соединении
QNX автоматически распараллеливает передачу пакетов по соответствующим
сетям;

Сетевая операционная система реального времени QNX 3 4 7

• Efficient Performance — специальные драйверы, разрабатываемые фирмой QSSL
для широкого спектра оборудования, позволяют использовать это оборудова­
ние с максимальной эффективностью;

a Extensable Architecture — любые новые типы сетей могут быть поддержаны
путем добавления соответствующих драйверов;

О Transparent Distributed Processing — благодаря отсутствию разницы между пе­
редачей сообщений в пределах одного узла и между узлами нет необходимости
вносить какие-либо изменения в приложения, для того чтобы они могли взаи­
модействовать через сеть.

Благодаря технологии FLEET сеть компьютеров с операционными системами QNX
фактически можно представлять как один виртуальный суперкомпьютер. Все ре­
сурсы любого из узлов сети автоматически доступны другим, и для этого не нужно
создавать никаких дополнительных механизмов с использованием технологии
RPC. Это значит, что любая программа может быть запущена на любом узле, при­
чем ее входные и выходные потоки могут быть направлены на любое устройство
на любых других узлах [18].

Например, утилита make в операционной системе QNX автоматически распарал­
леливает компиляцию пакетов из нескольких модулей на все доступные узлы сети,
а затем собирает исполняемый модуль по мере завершения компиляции на узлах.
Специальный драйвер, входящий в комплект поставки, позволяет использовать
для сетевого взаимодействия любое устройство, с которым может быть ассоции­
рован файловый дескриптор, например последовательный порт, что открывает
возможности для создания глобальных сетей.

Достигаются все эти удобства за счет того, что поддержка сети частично обеспечи­
вается и микроядром (специальный код в его составе позволяет операционной
системе QNX фактически объединять все микроядра в сети в одно ядро). Разуме­
ется, за такие возможности приходится платить тем, что мы не можем получить
драйвер для какой-либо сетевой платы от кого-либо еще, кроме фирмы QSSL,
то есть использоваться может только то оборудование, которое уже поддержива­
ется. Однако ассортимент такого оборудования достаточно широк и периодиче­
ски пополняется новейшими устройствами.

Когда ядро получает запрос на передачу данных процессу, находящемуся на уда­
ленном узле, он переадресовывает этот запрос менеджеру Net, в подчинении кото­
рого находятся драйверы всех сетевых карт. Имея перед собой полную картину
состояния всего сетевого оборудования, Net может отслеживать состояние каж­
дой сети и динамически перераспределять нагрузку между ними. В случае, когда
одна из сетей выходит из строя, поток данных автоматически перенаправляется
в другую доступную сеть, что очень важно при построении высоконадежных сис­
тем. Кроме поддержки собственного протокола, Net обеспечивает передачу паке­
тов TCP/IP, SMB (Server Message Block)1 и многих других, используя то же сете-

Сетевая технология взаимодействия клиента и сервера, разработанная фирмой IBM и активно ис­
пользуемая компанией Microsoft в своих операционных системах. В последнее время компания
Microsoft стала называть ее CIFS (Common Internet File System).

3 4 8 Глава 10. Краткий обзор современных операционных систем

вое оборудование. При этом производительность компьютеров с операционной
системой QNX в сети приближается к производительности аппаратного обеспече­
ния — настолько малы задержки, вносимые операционной системой.

При проектировании системы реального времени, как правило, необходимо обес­
печить одновременное выполнение нескольких приложений. В QNX/Neutrino1

параллельность выполнения достигается за счет использования потоковой модели
POSIX, в которой процессы в системе представляются в виде совокупности пото­
ков выполнения. Поток является минимальной единицей выполнения и диспет­
черизации для ядра Neutrino; процесс определяет адресное пространство для по­
токов. Каждый процесс состоит минимум из одного потока. Операционная система
QNX предоставляет богатый набор функций для синхронизации потоков. В отли­
чие от потоков, само ядро не подлежит диспетчеризации. Код ядра исполняется
только в том случае, когда какой-нибудь поток вызывает функцию ядра, или при
обработке аппаратного прерывания.

Напомним, что операционная система QNX базируется на концепции передачи
сообщений. Передачу и диспетчеризацию сообщений осуществляет ядро системы.
Кроме того, ядро управляет временными прерываниями. Выполнение остальных
функций обеспечивается задачами-администраторами. Программа, желающая со­
здать задачу, посылает сообщение администратору задач (модуль task) и блокиру­
ется для ожидания ответа. Если новая задача должна выполняться одновременно
с порождающей ее задачей, администратор задач task создает ее и, отвечая, выдает
порождающей задаче идентификатор созданной задачи. В противном случае ни­
какого сообщения не посылается до тех пор, пока новая задача не закончится сама
по себе. Тогда в ответе администратора задач будут содержаться конечные харак­
теристики закончившейся задачи.

Сообщения различаются количеством данных, которые передаются от одной зада­
чи точно к другой задаче. Данные копируются из адресного пространства первой
задачи в адресное пространство второй, и выполнение первой задачи приостанав­
ливается до тех пор, пока вторая задача не вернет ответное сообщение. В действи­
тельности обе задачи кратковременно взаимодействуют во время выполнения пе­
редачи. Ничто, кроме длины сообщения (максимальная длина может достигать
64 Кбайт), не заботит QNX при передаче сообщения. Существует несколько про­
токолов, которые могут быть использованы для этой цели.

Основные операции над сообщениями: послать, получить и ответить, а также
несколько их вариантов для обработки специальных ситуаций. Получатель всегда
идентифицируется своим идентификатором задачи, хотя существуют способы ас­
социировать имена с идентификатором задачи. Наиболее интересные варианты
операций включают в себя возможность получать (копировать) только первую
часть сообщения, а затем получать оставшуюся часть такими кусками, какие по­
требуются. Это может быть полезным, поскольку позволяет сначала узнать длину
сообщения, а затем динамически распределить принимающий буфер. Если необ­
ходимо задержать ответное сообщение до тех пор, пока не будет получено и обра-

Neutrino — один из проектов микроядерной ОС.

Сетевая операционная система реального времени QNX 3 4 9

ботано другое сообщение, то чтение первых нескольких байтов дает вам компакт­
ный «обработчик», через который позже можно получить доступ ко всему сообще­
нию. Таким образом, задача оказывается избавленной от необходимости хранить в
себе большое количество буферов.

Другие функции позволяют программе получать сообщения только тогда, когда
она уже ожидает их приема, а не блокироваться до тех пор, пока не прибудет сооб­
щение. Можно также транслировать сообщение другой задаче без изменения иден­
тификатора передатчика. Задача, которая транслировала сообщение, в транзакции
невидима.

Кроме того, операционная система QNX обеспечивает объединение сообщений
в структуру данных, называемую очередью. Очередь сообщений — это просто область
данных в третьей, отдельной задаче, которая временно принимает передаваемое со­
общение и немедленно отвечает передатчику. В отличие от стандартной передачи
сообщений, передатчик немедленно освобождается для того, чтобы продолжить свою
работу. Задача администратора очереди — хранить в себе сообщение до тех пор, пока
приемник не будет готов прочитать его; делает он это, запрашивая сообщение у ад­
министратора очереди. Любое количество сообщений (ограничено только возмож­
ностью памяти) может храниться в очереди. Сообщения хранятся и передаются в
том порядке, в котором они были приняты. Может быть создано любое количество
очередей. Каждая очередь идентифицируется своим именем.

Помимо сообщений и очередей в операционной системе QNX для взаимодействия
задач и организации распределенных вычислений имеются так называемые пор­
ты, которые позволяют формировать сигнал одного конкретного условия и меха­
низм исключений, о котором мы уже упоминали ранее.

Порт подобен флагу, известному всем задачам на одном и том же узле (но не на
разных узлах). Он имеет только два состояния, которые могут трактоваться как
«присоединить» и «освободить», хотя пользователь может интерпретировать их
по-своему, например «занят» и «доступен». Порты используются для быстрой про­
стой синхронизации между задачей и обработчиком прерываний устройства. Они
нумеруются от нуля до 32 максимум (на некоторых типах узлов возможно и боль­
ше). Первые 20 номеров зарезервированы для операционной системы.

С портом может быть выполнено три операции:

• присоединить порт,

Q отсоединить порт,

• послать сигнал в порт.

Одновременно к порту может быть присоединена только одна задача. Если другая
задача попытается «отсоединиться» от того же самого порта, то произойдет отказ
при вызове функции, и управление вернется к задаче, которая в настоящий мо­
мент присоединена к этому порту. Это самый быстрый способ обнаружить иден­
тификатор другой задачи, подразумевая, что задачи могут договориться исполь­
зовать один номер порта. Напомним, что все рассматриваемые задачи должны
находиться на одном и том же узле. При работе нескольких узлов специальные
функции обеспечивают большую гибкость и эффективность.

3 5 0 Глава 10. Краткий обзор современных операционных систем

Любая задача может посылать сигнал в любой порт независимо от того, была она
присоединена к нему или нет (предпочтительно, чтобы не была). Сигнал подобен
неблокирующей передаче пустого сообщения. То есть передатчик не приостанав­
ливается, а приемник не получает какие-либо данные; он только отмечает, что кон­
кретный порт изменил свое состояние.

Задача, присоединенная к порту, может ожидать прибытия сигнала или может пе­
риодически читать порт. Система QNX хранит информацию о сигналах, передава­
емых в каждый порт, и уменьшает счетчик после каждой операции «приема» сиг­
нала («чтение» возвращает счетчик и устанавливает его в нуль). Сигналы всегда
принимают перед сообщениями, давая им тем самым больший приоритет над со­
общениями. В этом смысле сигналы часто используются обработчиками прерыва­
ний для того, чтобы оповестить задачу о внешних (аппаратных) событиях. Дей­
ствительно, обработчики прерываний не имеют возможности посылать сообщения
и должны использовать сигналы.

В отличие от описанных выше методов, которые строго синхронизируются, ис­
ключения обеспечивают асинхронное взаимодействие. То есть исключение может
прервать нормальное выполнение потока задачи. Они, таким образом, являются
аварийными событиями. Операционная система QNX резервирует для себя 16 ис­
ключений, чтобы оповещать задачи о прерываниях с клавиатуры, нарушении па­
мяти и подобных необычных ситуациях. Остальные 16 исключений могут быть
определены и использованы прикладными задачами.

Системная функция может быть вызвана для того, чтобы позволить задаче реали­
зовать собственный механизм обработки исключений и во время возникновения
исключения выполнять свою внутреннюю функцию.

Заметим, что функция исключения задачи вызывается асинхронно операционной
системой, а не самой задачей. Поэтому исключения могут негативно повлиять на
операции (например, передачу сообщений), которые выполняются в это же время.
Обработчики исключений должны быть написаны очень аккуратно.

Одна задача может установить одно или несколько исключений для другой зада­
чи. Эти исключения могут быть комбинацией системных исключений и исключе­
ний, определяемых приложениями, обеспечивая другие возможности для межза­
дачного взаимодействия.

Благодаря такому свойству QNX, как возможность обмена посланиями между за­
дачами и узлами сети, программы не заботятся о конкретном размещении ресур­
сов в сети. Это свойство придает системе необычную гибкость. Так, узлы могут
произвольно добавляться в систему и изыматься из системы, не затрагивая сис­
темные программы. QNX имеет эту конфигурационную независимость благодаря
концепции виртуальных задач. У виртуальных задач непосредственный код и дан­
ные, будучи на одном из удаленных узлов, возникают и ведут себя так, как если бы
они были локальными задачами какого-то узла со всеми их атрибутами и приви­
легиями. Программа, посылающая сообщение в сеть, никогда не направляет его
точно. Сначала она открывает виртуальный канал. Виртуальный канал связывает
между собой все виртуальные задачи. На обоих концах такой связи имеются буфе­
ры, которые позволяют хранить самое большое послание из тех, которые канал

Семейство операционных систем OS/2 Warp компании IBM 3 5 1

может нести в данном сеансе связи. Сетевой администратор помещает в эти буфе­
ры все сообщения для соединенных задач. Виртуальная задача, таким образом, за­
нимает всего лишь пространство, необходимое для буфера и входа в таблице за­
дач. Чтобы открыть виртуальный канал, необходимо знать идентификатор узла и
задачи, с которой устанавливается связь. Для этого требуется идентификатор за­
дачи-администратора, ответственного за данную функцию, или глобальное имя
сервера. Не раскрывая здесь подробно механизм обмена посланиями, добавим лишь,
что задача может вообще выполняться на другом узле, где, допустим, имеется бо­
лее совершенный процессор.

Семейство операционных систем OS/2
Warp компании IBM
История появления, расцвета и практического ухода со сцены операционных сис­
тем под общим названием OS/2 и странна, и поучительна. Будучи одной из самых
лучших операционных систем для персональных компьютеров по очень большо­
му числу параметров и появившись существенно раньше систем своих основных
конкурентов, она тем не менее не смогла стать самой распространенной, хотя мог­
ла бы, и с легкостью. Основная причина тому — законы бизнеса (умение реклами­
ровать свой товар, всячески поддерживать его продвижение, вкладывать деньги
в завоевание рынка), а не качество самой операционной системы. Во-первых, ком­
пания IBM не сочла необходимым продвигать свою операционную систему на ры­
нок программного обеспечения, ориентированного на конечного пользователя, а
решила продолжить свою практику работы исключительно с корпоративными
клиентами. А этот рынок (корпоративного программного обеспечения) оказался
существенно уже для персональных компьютеров, чем рынок программного обес­
печения для конечного пользователя, ибо компьютеры типа IBM PC прежде всего
являются персональными. Во-вторых, основные доходы компания IBM получала
не от продажи системного программного обеспечения для персональных компью­
теров, а за счет продаж дорогостоящих серверов и другого оборудования. Доходы
от продажи операционной системы OS/2 не представлялись руководству компа­
нии IBM значимыми. Чтобы добиться успеха на рынке операционных систем для
персональных компьютеров, необходимо было обеспечить всестороннюю поддер­
жку своей системы соответствующей учебной литературой, широкой рекламой,
заинтересовать разработчиков программного обеспечения. Увы, этого сделано не
было, и сегодня уже практически мало кто знает о системах семейства OS/2. В то
же время следует отметить, что те организации и предприятия, которые в свое
время освоили эту систему и создали для нее соответствующее прикладное про­
граммное обеспечение, до сих пор не переходят на ныне чрезвычайно популяр­
ные операционные системы Windows NT/2000/XP, поскольку последние требу­
ют существенно больше системных ресурсов. Любопытный факт: всем известные
банкоматы работают под управлением OS/2.

Семейство 32-разрядных операционных систем OS/2 для IBM-совместимых пер­
сональных компьютеров начало свою историю с появления первой OS/2 v 2.0

3 5 2 Глава 10. Краткий обзор современных операционных систем

в 1992 году. Ей предшествовала 16-разрядная операционная система с таким же
названием — OS/2, которая была разработана для микропроцессора i80286. Этот
микропроцессор, несмотря на множество принципиальных новаций, оказался
неудачным. Защищенный режим работы этого 16-разрядного микропроцессора был
несовершенным. Он обеспечивал работу с относительно небольшим объемом опе­
ративной памяти, имел слабую аппаратную поддержку для организации виртуаль­
ной памяти, слишком низкое быстродействие (для того, чтобы выступать в качестве
основы для построения мультизадачных операционных систем). Неудачная судьба
16-разрядной системы OS/2 1.x во многом повлияла и на 32-разрядную операцион­
ную систему, хотя по очень многим позициям архитектура 32-разрядной версии опе­
рационной системы OS/2 принципиально отличалась от своей предшественницы.
Компания IBM оставила этот проект, когда его версия имела номер 4.5. Сейчас из
состава IBM отделилась небольшая компания, которая, выкупив проект OS/2,
продолжает над ним работу и обеспечивает приверженцев этой операционной си­
стемы пакетами обновления и всевозможными добавлениями.

Все последние версии операционной системы OS/2 в своем названии имеют слово
Warp, что переводится с английского как «основа». Операционная система OS/2
Warp 4.0 практически представляет собой OS/2 Warp 3.0 (вышедшую еще в 1994 году)
с несколько улучшенной поддержкой DOS-задач и обновленными элементами
объектно-ориентированного интерфейса. Для этой системы характерны:

Q вытесняющая многозадачность (preemptive multitasking) и поддержка DOS-
и Windows- (Win32s1) приложений;

0 по-настоящему интуитивно понятный и действительно удобный объектный
пользовательский интерфейс;

• поддержка стандарта открытого объектного документооборота OpenDoc;

• поддержка стандарта OpenGL;

• поддержка Java-апплетов и встроенных средств разработки на языке Java;

• поддержка шрифтов True Type (TTF);

• управление голосом без предварительной подготовки (технология Voice Type);

Q полная поддержка сетевых технологий Интернет/интранет, доступ в сети Com­

puServe2;

• средства построения одноранговых сетей и клиентские части для сетевых опе­
рационных систем IBM LAN Server, Windows, Lantastic, Novell Netware 4.1
(в том числе поддержка службы каталогов);

Q система удаленного доступа через модемные соединения;

• файловая система Mobile File System для поддержки мобильных пользовате­

лей;

Q стандарт автоматического распознавания аппаратных устройств (Plug-and-
Play), но без столь навязчивого механизма, который реализован в Windows;

1 Win32s — это одно из расширений интерфейса прикладного программирования систем Windows.
2 Популярная американская служба.

Семейство операционных систем OS/2 Warp компании IBM 3 5 3

• набор офисных приложений1 (базы данных, электронные таблицы, текстовый
процессор, генератор отчетов, деловая графика, встроенная система приема-
передачи факсимильных сообщений, информационный менеджер);

а полная поддержка мультимедиа, включая средства работы с видеокамерой, рас­
ширенную систему помощи WarpGuide.

Однако наиболее заманчивы не перечисленные из рекламного буклета возможно­
сти системы, а удобная и надежная для работы с корпоративными базами данных
и в сетях среда, предоставляющая клиентское рабочее место.

Операционная система OS/2 Warp предлагает единый интерфейс прикладного
программирования (API), совместимый с рядом операционных систем, что позво­
ляет снизить стоимость разработок. Все версии операционных систем OS/2 и LAN
Server, включая текущие версии OS/2 Warp и OS/2 Warp Server 4.5, совместимы
по восходящей линии, что позволяет экономить средства, необходимые для под­
держания уже существующих прикладных программ.

Чрезвычайно важным для пользователей является тот факт, что компания IBM
для всех версий своей операционной системы регулярно выпускает пакеты обнов­
ления (FixPak). Эти пакеты исправляют обнаруженные ошибки, а также вносят
новые функции. Для пользователей такая практика сопровождения фирмой своей
операционной системы, безусловно, более выгодна, нежели практика частого вы­
пуска новых версий операционных систем (ей следует компания Microsoft).

Так, например, для одной из своих самых удачных операционных систем — Win­
dows NT 4.0 — компания Microsoft выпустила всего 6 пакетов обновления (Ser-
vicePak), тогда как для уже совсем старой операционной системы OS/2 Warp 3.0,
которая вышла в свет в 1994 году, компания IBM выпустила уже несколько десят­
ков пакетов FixPak. Для операционной системы OS/2 Warp 4.0 вышло более 15 па­
кетов исправлений и обновлений.

Пакеты исправлений и обновлений пользователи получают бесплатно, тогда как
за новую операционную систему приходится платить большие деньги. К тому же,
длительная работа по исправлению имеющихся в системе ошибок приводит к тому,
что количество последних со временем, как правило, уменьшается и система ста­
новится все более надежной и функциональной, в то время как новая версия опе­
рационной системы содержит не меньше ошибок, чем предыдущая. Последнее об­
стоятельство объясняется в том числе и тем, что объем ее исходного кода становится
все больше и больше, а времени на создание операционной системы отводится
столько же, если не меньше.

Немаловажным фактором является и то, что значительные капиталовложения тре­
буются не только на приобретение новой операционной системы, но и на ее освое­
ние. Для многих желательно, чтобы время жизни операционной системы состав­
ляло до 10 лет и более. В противном случае мы будем не только напрасно тратить

Справедливости ради следует заметить, что этот набор приложений (называемый BonusPak) несов­
местим с современными версиями Microsoft Office, поэтому его используют, как правило, только в
«закрытых системах», когда не предусматривается обмен документами, изготовленными посредством
приложений Microsoft Office.

354 Глава 10. Краткий обзор современных операционных систем

деньги на приобретение новых систем, но и не сможем обеспечить квалифициро­
ванную работу пользователей в этих системах. Современные операционные сис­
темы и прикладное программное обеспечение для своего освоения требуют дли­
тельного и дорогостоящего обучения пользователей. Поэтому желательно, чтобы
все это программное обеспечение не требовало частого переобучения сотрудников
(однако, с другой стороны, прогресс не стоит на месте, и большое количество ко­
нечных пользователей с нетерпением ожидают появления все более новых опера­
ционных систем и приложений).

Весьма полезным, как для управления приложениями, так и для создания неслож­
ных собственных программ, является наличие системы программирования на языке
высокого уровня REXX, который иногда называют языком процедур. Можно ска­
зать, что это встроенный командный язык, который служит для тех же целей, что
и язык для пакетных (batch) файлов в среде DOS, но он обладает несравнимо боль­
шими возможностями. Это язык высокого уровня с нетипизированными перемен­
ными. Язык легко расширяем, любая программа OS/2 может добавлять в него но­
вые функции. Помимо встроенного интерпретатора с языка REXX имеется система
программирования Visual REXX. Имеется и объектно-ориентированная версия
языка REXX с соответствующим интерпретатором.

Наиболее сильное впечатление при работе в операционной системе OS/2 оставля­
ет объектно-ориентированный графический пользовательский интерфейс, а осо­
бой популярностью у программистов эта система пользовалась вследствие очень
хорошей организации VDM-машин и высокого быстродействия при выполнении
обычных DOS-приложений.

Особенности архитектуры
и основные возможности
Строение и функционирование операционной системы OS/2 можно считать прак­
тически идеальными с точки зрения теории и довольно неплохими в реализации.
В качестве подтверждения этому можно привести один пример, который представ­
ляется очень показательным: OS/2 до сегодняшних дней практически неизменна,
начиная с версии 2.0, увидевшей свет в 1992 году. Этот факт говорит о глубокой
продуманности архитектуры системы, ведь и по сей день OS/2 является одной из
самых мощных и продуктивных операционных систем. Здесь самым показательным
примером являются тесты серверов. В одной из вычислительных лабораторий Санкт-
Петербургского государственного университета аэрокосмического приборостроения
(ГУАП) с 1995 года в течение нескольких лет функции сервера кафедры вычисли­
тельных систем и сетей выполняла система OS/2 Warp Advanced Server. При перехо­
де на сервер Windows NT 4.0 пришлось в два раза увеличить объем оперативной памя­
ти и поменять процессор (с Pentium 90 на Pentium II300), и даже после этого скорость
работы обычных приложений на рабочих станциях не достигла той производительно­
сти, какую имели пользователи при работе сервера под управлением OS/2. Аналогич­
ные замечания не так давно можно было прочесть и в зарубежных публикациях —
однопроцессорная машина под управлением OS/2 Warp Server обгоняет по произ­
водительности двухпроцессорную машину под управлением Windows NT.

Семейство операционных систем OS/2 Warp компании IBM 3 5 5

Разработчики системы OS/2 решили не использовать всех возможностей защи­
щенного режима, заложенных в микропроцессоры i80x86. Например, обработка
прерываний чаще всего ведется через коммутаторы прерываний, а не через комму­
таторы задач. Используется плоская модель памяти. Хорошо продуманная архи­
тектура, в которой задействована модель клиент-сервер, и тщательное кодирова­
ние позволили получить систему, требующую очень небольших вычислительных
ресурсов. Очень удачно реализована диспетчеризация задач. Представление раз­
личных системных информационных структур в статической форме (в виде таб­
лиц) привело к более высокому быстродействию.

В OS/2 имеется несколько видов виртуальных машин для выполнения приклад­
ных программ. Собственные 32- и 16-разрядные программы OS/2 выполняются
на отдельных виртуальных машинах в режиме вытесняющей многозадачности и
могут общаться между собой с помощью средств DDE OS/2. Прикладные про­
граммы DOS и Win 16 могут запускаться на отдельных виртуальных машинах в
многозадачном режиме. При этом они поддерживают полноценные связи DDE и
OLE 2.0 друг с другом, а также связи DDE с 32-разрядными программами OS/2.
Кроме того, при желании можно запустить несколько программ Win 16 на общей
виртуальной машине Win 16, где они работают в режиме невытесняющей многоза­
дачности, как в Windows 3.x. Конечно, нынче это уже неактуально, поскольку по­
явилось огромное количество приложений, использующих API Win32, но в 90-е го­
ды XX века эти факты имели существенное значение.

Разнообразные сервисные функции API OS/2, в том числе SOM (System Object
Model — модель системных объектов), обеспечиваются с помощью системных биб­
лиотек DLL, к которым можно обращаться без требующих затрат времени перехо­
дов между кольцами защиты. Ядро операционной системы OS/2 предоставляет
многие базовые сервисные функции API, обеспечивает поддержку файловой сис­
темы, управление памятью, имеет диспетчер аппаратных прерываний. В ядре вир­
туальных DOS-машин (Virtual DOS Machine, VDM), или в VDM-ядре, осуществ­
ляется эмуляция DOS и процессора 8086, а также управление VDM. Драйверы
виртуальных устройств обеспечивают уровень аппаратной абстракции. Драйверы
физических устройств напрямую взаимодействуют с аппаратурой.

Модуль реализации механизмов виртуальной памяти в ядре OS/2 поддерживает
большие постраничные разбросанные адресные пространства, составленные из
объектов памяти. Каждый объект памяти управляется так называемым пейдже­
ром — задачей вне ядра, обеспечивающей резервное хранение страниц объекта па­
мяти. Адресные пространства управляются путем отображения или размещения
объектов памяти внутри них. Ядро управляет защитой памяти и ее распределени­
ем на основе объектов памяти абстрактным образом, вне зависимости от каких-
либо конкретных аппаратных средств трансляции процессорных адресов. В част­
ности, ядро интенсивно использует режим копирования при записи для придания
программам способности делить объекты памяти, не копируя множество страниц,
когда новое адресное пространство получает доступ к объекту памяти. Новые ко­
пии страниц создаются, только когда программа в одном из адресных пространств
обновляет их. Когда ядро принимает страничный сбой в объекте памяти и не име-

3 5 6 Глава 10. Краткий обзор современных операционных систем

ет страницы памяти в наличии, или когда оно должно удалить страницы из памяти
по требованию других работающих программ, ядро с помощью механизма IPC уве­
домляет пейджер об объекте памяти, в котором произошел сбой. После этого пей­
джер сервера приложений определяет, каким образом предоставить или сохранить
данные. Это позволяет системе устанавливать различные семантики для объектов
памяти, основываясь на потребностях программ, которые их используют.

Ядро управляет средами исполнения для программ, обеспечивая множественность
заданий (процессов) и потоков выполнения. Каждое задание (процесс1) имеет свое
собственное адресное пространство, или отображение. Ядро распределяет объекты
памяти, которые задание отобразило на диапазон адресов внутри адресного простран­
ства. Задание также является блоком размещения ресурсов и защиты, при этом за­
даниям придаются возможности и права доступа к средствам IPC системы. Для под­
держки параллельного исполнения с другой программой в пределах одного адресного
пространства ядро отделяет среду исполнения от реально выполняющегося потока.
Таким образом, программа задания может быть загружена и исполнена в несколь­
ких различных местах кода в одно и то же время на мультипроцессоре или парал­
лельной машине. Это может привести к повышению быстродействия приложения.
Система IPC обеспечивает базовый механизм, позволяющий потокам работать в раз­
личных заданиях, взаимодействуя друг с другом, и надежную доставку сообщений в
порты. Порты представляют собой защищенные каналы связи между заданиями.
Каждому заданию, использующему порт, приписывается набор прав на этот порт.
Права могут быть различными для разных заданий. Только одно задание может по­
лучить какой-либо порт, хотя любой поток внутри задания может выполнять опера­
цию приема. Одно или более заданий могут иметь право посылать информацию в
порт. Ядро позволяет заданиям применять систему IPC для передачи друг другу
прав на порт. Оно также обеспечивает высокопроизводительный способ передачи
больших объемов данных в сообщениях. Вместо того чтобы копировать данные, со­
общение содержит указатель на них, который называется указателем на данные вне
линии. Когда ядро передает сообщение от передатчика к приемнику, оно заставляет
память, передаваемую через указатель, появиться в адресном пространстве прием­
ника и, как вариант, исчезнуть из адресного пространства передатчика. Ядро само
структурировано как задание с потоками, и большинство системных служб реали­
зованы как механизмы IPC-обращений к ядру, а не как прямые системные вызовы.

Для поддержки операций ввода-вывода и доступа к внешним устройствам ядро опе­
рационной системы OS/2 обеспечивает доступ к ресурсам ввода-вывода, таким как
устройства с отображаемой памятью, порты ввода-вывода и каналы прямого досту­
па к памяти (Direct Memory Access, DMA), а также возможность отображать преры­
вания на драйверы устройств, исполняемые в пользовательском пространстве. Служ­
бы ядра позволяют приоритетным программам получать устройства в свое владение:
такими программами обычно являются программы, не связанные с заданиями, вро­
де серверов драйверов устройств, работающих как приложения. Поскольку ядро
обязано обслужить все прерывания (в силу того, что прерывания обычно выдаются

Здесь термины «задание» и известный нам «процесс» используются как синонимы.

Семейство операционных систем OS/2 Warp компании IBM 3 5 7

в приоритетном состоянии компьютера, а также в целях поддержания целостности
системы), оно имеет логику, которая определяет, должно ли оно обрабатывать пре­
рывание или его следует отобразить на сервер. Если прерывание следует отобразить
на приложение, это приложение должно быть зарегистрировано в ядре и содержать
код, контролирующий отображение прерывания. Сразу после отображения в при­
ложении запускается поток по обработке прерывания.

В соответствии с концепцией микроядерных операционных систем, непосредственно
поверх ядра системы OS/2, которое построено с использованием этой архитектуры,
располагается ряд служебных приложений, предоставляющих системные службы об­
щего назначения, то есть службы, не зависящие от операционной среды, в которой
выполняется приложение. Эти службы зависят только от ядра, некоторых вспомога­
тельных служб, экспортируемых доминирующей задачей операционной системы, и
от самих себя. В числе задачно-нейтральных служб имеются пейджер умолчания, ма­
стер-сервер, который загружает другие задачно-нейтральные серверы в память, служ­
ба низкоуровневых имен, служба защиты, службы инициализации, набор драйверов
устройств со связанным кодом поддержки, а также библиотечные подпрограммы для
стандартной программной среды. Дополнительные задачно-нейтральные сервисы,
например выделенный файловый сервер, могут быть просто добавлены.

С помощью ядра операционной системы и задачно-нейтральных сервисов приори­
тетная задача может обеспечить операционную системную среду типа UNIX. По­
скольку приоритетная задача является прикладным сервером, можно добавлять
другие серверы для различных задач, исполняющих программы, написанные в раз­
ных операционных системах, работающих на машине в одно и то же время.

Существуют некоторые операционные системные сервисы (вроде трансляции со­
общений об ошибках), не обеспечиваемые задачно-нейтральными сервисами. По­
скольку лучше не дублировать подобные сервисы, приоритетная задача предо­
ставляет эти сервисы не только своим клиентским приложениям, но и любой другой
задаче, исполняющейся в машине.

Особенности интерфейсов
В операционных системах OS/2 Warp в качестве стандартной графической оболоч­
ки используется среда Workplace Shell (WPS), организованная логичней и удоб­
ней, чем известный Windows-интерфейс. Оболочка Workplace Shell основана на
модели системных объектов (SOM) фирмы IBM — мощной технологии, специ­
ально разработанной для решения таких проблем, как жесткая привязка объектов
к их клиентам и необходимость использования одного и того же языка програм­
мирования. Объекты Workplace Shell работают в среде SOM, доступ в которую
можно реализовать почти на всех языках программирования, где предусмотрены
внешние процедуры, в том числе и на языке REXX.

В отличие от интерфейса GUI в Windows, где ярлыки (shortcuts) объектов никак
не связаны между собой, в WPS объекты, имеющие аналогичные ярлыки (shadow1

1 Shadow (по-английски «тень») — значок на рабочем столе OS/2, который является частью объекта,
то есть имеется постоянная двухсторонняя связь между этим значком и собственно объектом.

3 5 8 Глава 10. Краткий обзор современных операционных систем

в терминологии WPS), просто имеют дополнительное свойство — возможность
многократно отображаться почти как самостоятельные объекты. Можно сделать
несколько таких ярлыков из уже существующего ярлыка или из объекта. При этом
любые ярлыки могут перемещаться в любое место и при этом их связи с основным
объектом не теряются. Вроде бы то же самое происходит в GUI, но в WPS можно
переместить основной объект, и его ярлыки тут же изменят свои параметры, тогда
как в GUI произойдет разрушение связей, поскольку связи являются односторон­
ними.

Про SOM можно сказать, что это не связанная ни с одним конкретным языком
объектно-ориентированная технология для создания, хранения и использования
двоичных библиотек классов. Ключевые слова здесь «двоичные» и «не связан­
ная ни с одним конкретным языком». Хотя нынче многие считают OS/2 тех­
нологией прошлого, модель SOM на самом деле представляет собой одну из
наиболее интересных разработок в области компьютерной индустрии даже на
сегодняшний день. По существу, некоторые идеи, реализованные в OS/2 в нача­
ле 90-х годов прошлого столетия, сейчас только обещают реализовать в новом
поколении операционных систем Windows с кодовым названием Whistler. Объек­
тно-ориентированное программирование (ООП) заслужило безоговорочное при­
знание в качестве основной парадигмы, однако его применению в коммерческом
программном обеспечении препятствуют отсутствие в языках ООП средств об­
ращения к библиотекам классов, подготовленным на других языках, и необходи­
мость поставлять с библиотеками классов исходные тексты. Многим независимым
разработчикам библиотек классов приходится продавать заказчикам исходные
тексты, поскольку разные компиляторы по-разному отображают объекты. На­
стоящий потенциал модели SOM заключается в ее совместимости практически с
любой платформой и любым языком программирования. Технология SOM соот­
ветствует спецификации CORBA (Common Object Request Broker Architecture —
общая архитектура посредника объектных запросов), которая определяет стан­
дарт условий взаимодействия между прикладными программами в неоднород­
ной сети.

Графический интерфейс в системах OS/2 не единственный. Интересно отметить
тот факт, что существует довольно много альтернативных оболочек для операци­
онных систем OS/2, начиная с программы FileBar, которая хотя и кажется прими­
тивной, но зато отлично работает на компьютерах с оперативной памятью объемом
4 Мбайт, и кончая мощной системой Object Desktop, которая значительно улуч­
шает внешний вид экрана OS/2 и делает работу более удобной.
Помимо оболочек, улучшающих интерфейс операционной системы OS/2, имеет­
ся также ряд программ, расширяющих ее функциональность. В первую очередь,
это Xfree86 for OS/2 — полноценная система X-Window, которая может использо­
ваться как графический терминал при работе в сети с UNIX-машинами, а также
для запуска программ, перенесенных из UNIX в OS/2. К сожалению, таких про­
грамм немного, однако большое количество UNIX-программ поставляется вместе
с исходными кодами, которые, как правило, практически не нужно изменять для
перекомпиляции под Xfree86/OS2.

Семейство операционных систем OS/2 Warp компании IBM 3 5 9

Серверная операционная система OS/2 Warp 4.5
Серверная операционная система компании IBM, предназначенная для работы на
персональных компьютерах и вышедшая в свет в 1999 году, носит название OS/2
WarpServer for e-Business, что подчеркивает ее основное назначение. Однако в про­
цессе ее создания система носила кодовое название Аврора (Aurora), поэтому все
ее так теперь и называют.

Как известно, предыдущие версии системы OS/2 могли предоставить программи­
сту только 512 Мбайт виртуального адресного пространства для «родных» 32-раз­
рядных приложений. В свое время это было очень много. Однако хотя задачи, тре­
бующие столь большого объема оперативной памяти, встречаются пока еще редко,
некоторые считают ограничение в 512 Мбайт серьезным недостатком. Поэтому в
последней версии системы это ограничение снято (напомним, что в операционной
системе Windows NT 4.0 объем виртуального адресного пространства для задач
пользователя составляет 2 Гбайт), и теперь максимальный объем виртуальной
памяти для задачи в операционной системе OS/2 v. 4.5 по умолчанию состав­
ляет 2 Гбайт, но командой VIRTUALADDRESSLIMIT=3072 в конфигурационном фай­
ле CONFIG.SYS он может быть увеличен до 3 Гбайт.

В операционной системе OS/2 v. 4.5 разработчики постарались все «остатки» ста­
рого 16-разрядого кода, который еще частично оставался в предыдущих версиях
системы, полностью заменить 32-разрядными реализациями, что повысило быст­
родействие системы. Прежде всего, обеспечена поддержка 32-раздядных драйве­
ров устанавливаемых файловых систем (IFS), ибо в предыдущих системах работа
с ними велась через трансляцию вызовов 32bit—>16bit—>32bit. В то же время для
совместимости со старым программным обеспечением помимо 32-раздядного ис­
пользуется и 16-раздядный интерфейс API.

Создана новая файловая система JFS (Journaling File System — файловая система
с протоколированием), призванная повысить надежность и живучесть файловой
подсистемы по сравнению с файловой системой HPFS386.IFS. Файловая система
JFS обеспечивает большую безопасность в структурах данных благодаря технике,
разработанной для систем управления базами данных. Работа с JFS происходит в
режиме транзакций с ведением журнала транзакций. В случае системных сбоев
есть возможность обработки журнала транзакций с целью принятия или отмены
изменений, произведенных во время системного сбоя. Эта система управления
файлами также повышает скорость восстановления файловой системы после сбоя.
Сохраняя целостность файловой системы, она, подобно файловой системе NTFS,
не гарантирует восстановление пользовательских данных. Следует отметить, что
файловая система JFS обеспечивает самую высокую скорость работы с файлами
из всех известных систем, созданных для персональных компьютеров, что очень
важно для серверной операционной системы.

Для работы с дисками создан специальный менеджер дисков — LVM (Logical Volume
Manager — менеджер логических дисков). LVM хранит информацию обо всех уста­
навливаемых файловых системах и определяет имена дисков для программ, кото­
рые этого требуют. Это позволяет избирательно назначить любую букву любому
разделу диска, что в ряде случаев можно считать удобным. И даже больше — теперь

3 6 0 Глава 10. Краткий обзор современных операционных систем

операционной системе более не нужно использовать имена дисков. Менеджер логиче­
ских дисков в совокупности с файловой системой JFS позволяет объединять несколь­
ко томов и даже несколько физических дисков в один большой логический том.

Контрольные вопросы и задачи
1. Изложите основные архитектурные особенности операционных систем семей­

ства UNIX. Попробуйте объяснить основные различия между системами UNIX
и Windows.

2. Перечислите и поясните основные понятия, относящиеся к UNIX-системам.

3. Что делает системный вызов fork()? Каким образом осуществляется в опера­
ционных системах семейства UNIX запуск новой задачи?

4. Изложите основные моменты, связанные с защитой файлов в UNIX.

5. Сравните разрешения NTFS, имеющиеся в Windows NT/2000/XP, с правами
на доступ к файлам, реализованные в UNIX-системах.

6. Расскажите об особенностях семафоров в UNIX. Почему семафорные опера­
ции осуществляются сразу над множеством семафоров?

7. Что представляет собой вызов удаленной процедуры (RPC)?

8. Найдите в Интернете описание лицензии GNU и изучите его основные поло­
жения. Изложите их. Перечислите сильные и слабые стороны программного
обеспечения с открытым исходным кодом.

9. Расскажите об операционной системе Linux. Какие проблемы, на ваш взгляд,
наиболее важны для Linux? Расскажите об основных различиях между Linux
и FreeBSD.

10. Что представляет собой Х-Window? Что такое оконный менеджер? Какие окон­
ные менеджеры для операционной системы Linux вы знаете?

11. Что представляет собой операционная система QNX? Перечислите ее основ­
ные особенности.

12. Почему про QNX часто говорят, что это «сетевая» операционная система? Что
такое сетевой протокол FLEET?

13. Какие функции реализует ядро QNX?

14. В чем вы видите принципиальные различия между ядром Windows NT 4.0,
которое считают построенным по микроядерным принципам, и ядром QNX?

15. Расскажите об основных механизмах взаимодействия для организации рас­
пределенных вычислений в операционной системе QNX.

16. Расскажите о проекте OS/2. Какие особенности архитектуры этой операцион­
ной системы представляются наиболее интересными?

17. Какие механизмы использует операционная система OS/2, чтобы уменьшить
потребности в оперативной памяти и повысить производительность системы?

Глава 1 1 . Операционные
системы Windows

Как известно, компания Microsoft является безусловным лидером в разработке
программного обеспечения для персональных компьютеров. Среди разнообразных
программных продуктов этой компании особое место занимают ее операционные
системы. Начав с разработки простейшей однопрограммной операционной систе­
мы для первого персонального компьютера, эта компания недавно выпустила не­
сколько версий серверной операционной системы Windows 2003, которые пред­
назначены для построения корпоративных сетей и считаются на сегодняшний день
одними из самых сложных и полнофункциональных. Для встроенных систем (в том
числе систем для карманных компьютеров и других мобильных систем) Microsoft
разработала операционные системы семейства Windows СЕ. Последняя такая опе­
рационная система для популярных компьютеров типа Pocket PC получила на­
звание Microsoft Windows Mobile 2003 for Pocket PC. (Операционные системы
Windows СЕ имеют тот же интерфейс Win32 API, что и системы для персональ­
ных компьютеров.)

Впервые слово «Windows», что, как известно, в переводе с английского дословно
означает окна, компания Microsoft использовала в названии своей программной
системы для персональных компьютеров, призванной предоставить пользовате­
лям графический интерфейс и возможность работать с несколькими приложения­
ми. Первые системы Windows представляли собой своеобразную оболочку, запус­
каемую из операционной системы MS DOS, которая переключала центральный
процессор в защищенный режим работы (см. главу 4) и позволяла организовать
параллельное выполнение нескольких задач. Но главным на тот момент было пре­
доставление пользователям графического интерфейса, которым в те времена об­
ладали пользователи компьютеров фирмы Apple. Вначале возможность работать
на персональном компьютере в графическом режиме вместо текстового некото­
рым не казалась такой уж актуальной, хотя, конечно же, всем было понятно, что
графический режим богаче по своему потенциалу. Наличие графического интер­
фейса пользователя (Graphical User Interface, GUI) и широкая поддержка его со
стороны компании Microsoft привели к тому, что большинство новых программ­
ных продуктов стали создаваться в расчете на эти новые возможности. Со време-

362 Глава 11. Операционные системы Windows

нем компания Microsoft все больше внимания стала уделять обеспечению надеж­
ности вычислений и их эффективности, однако задача обеспечить пользователя
интуитивно понятным и в целом удобным графическим интерфейсом, похоже, так
и осталась главной.

Общим для операционных систем, имеющих в своем названии слово «Windows»,
является графический интерфейс пользователя. Все эти операционные системы
похожи друг на друга. Приложения, написанные для среды Windows, будут одина­
ково выглядеть и в Windows 95, и в Windows XP. В результате пользователи, уме­
ющие работать с одной операционной системой, достаточно легко могут освоить
другую. И это одно из важнейших достоинств.

Основной особенностью систем Windows является то, что все они предназначены
для диалогового режима работы, и поэтому в качестве основного интерфейса вы­
бран графический, как более функциональный и удобный. Если в таких операци­
онных системах, как Linux, QNX или OS/2, можно работать с системой через
интерфейс командной строки и этим ограничиться, то во всех системах Windows
невозможно получить текстовый интерфейс командной строки без графического.

Многие считают, что интерфейс командной строки нужен только для относитель­
но редкого вмешательства в работу операционной системы. Однако это не совсем
так. Дело в том, что посредством скриптов можно автоматизировать выполнение
большинства функций, связанных с управлением вычислительными процессами.
Скрипт — это текстовый файл, содержащий программу действий, составленную
на соответствующем языке1. Например, пакетные (batch) файлы в операционных
системах от компании Microsoft, которые имеют расширение bat, обрабатываются
командным интерпретатором C0MMAND.COM, если речь идет о сеансах DOS, или
командным процессором CMD.EXE, если речь идет о системах типа Windows NT/
2000/ХР и в скрипте имеются соответствующие команды. При запуске програм­
мы CMD.EXE открывается сеанс обычного защищенного 32-разрядного режима.

В ряде случаев графический режим не нужен, поскольку выполняющиеся вычис­
ления не требуют диалога с пользователем. К таким случаям, прежде всего, можно
отнести работу серверов, которые, будучи правильно и разумно сконфигурирова­
ны, способны работать месяцами без какого-либо вмешательства человека и пол­
ностью выполнять поставленные перед ними задачи. К таким случаям можно от­
нести и задачи автоматизированного управления различными технологическими
процессами, специальным автоматизированным оборудованием. А поскольку в этих
случаях графический диалоговый режим работы с системой не нужен, не нужны
операционной системе и соответствующие вычислительные ресурсы, необходи­
мые для функционирования этого режима. Если же вдруг потребуется организо­
вать диалоговое взаимодействие с операционной системой, то тот же графический
режим может быть запущен непосредственно из командной строки, что и делается
в уже упомянутых операционных системах семейства UNIX (Linux, FreeBSD
и т. д.), QNX, OS/2.

1 Язык для составления программ, которые имеют текстовую форму даже на момент своего исполне­
ния и состоят из команд, понятных операционной системе, часто называют языком скриптов.

http://C0MMAND.COM

Операционные системы Windows 9x 3 6 3

Операционные системы Windows 9x

Краткая историческая справка
В те годы, когда появилась первая система Windows, а это произошло в ноябре
1985 года, наибольшее распространение имели компьютеры на базе процессора
i80286. Этот процессор хотя и имел средства для организации мультизадачного ре­
жима работы (в нем компания Intel впервые реализовала защищенный режим рабо­
ты, поддержку виртуальной памяти с сегментным механизмом, кольца защиты со
шлюзованием для доступа к сегментам кода и многое другое), но аппаратная под­
держка была слишком слаба и несовершенна. Только с широким распространением
32-разрядных процессоров (i80386 и все последующие) появилась возможность со
временем отказаться в системах Windows от поддержки 16-разрядного защищен­
ного режима работы процессоров и в качестве основного выбрать полноценный
32-разрядный защищенный режим. Как известно, микропроцессор i80386 появился
в том же 1985 году. Возможности этого микропроцессора, заложенные в него специ­
ально для организации полноценных мультизадачных операционных систем, мы
рассмотрели в главе 4. Однако первые несколько лет этот микропроцессор исполь­
зовался просто как более быстродействующий 16-разрядный микропроцессор i8086
или i80286 (благо он поддерживал такую возможность), поскольку для него долгое
время не существовало полноценной 32-разрядной операционной системы.

После первой системы Windows, которая себя только обозначила, компания Mi­
crosoft в течение нескольких лет принимала активное участие в работах по созда­
нию операционной системы OS/2. Кстати, операционная система Windows NT
«выросла» из проекта OS/2, который имел версию 3.0. Однако проблемы во взаи­
моотношениях между этими фирмами и желание стать первыми в создании новых
мультизадачных операционных систем, имеющих графический интерфейс, при­
вели к тому, что компания Microsoft продолжила работу над Windows вопреки
существовавшей договоренности, а в последующем даже разорвала отношения
с IBM. Было выпущено несколько версий Windows, пока наконец в 1990 году вышла
одна из самых популярных систем того времени — система Windows 3.0. Это была
операционная система, предназначенная для работы на процессорах i80386, одна­
ко прикладные программы, которые могли выполняться под ее управлением, рас­
считывались на интерфейс Winl6 API. Само собой, обеспечивалось выполнение
DOS-приложений, которые на тот момент доминировали. Для своего запуска эта
операционная система требовала наличия среды MS DOS. При запуске програм­
мы WIN.COM последняя переводила микропроцессор в защищенный режим работы
и начинала загружать ядро Windows. Часть драйверов заменялась новыми, а часть
могла остаться от MS DOS. После загрузки Windows 3.0 на компьютере можно
было параллельно выполнять несколько приложений.

После системы Windows 3.0 появилась система Windows 3.1 и, наконец, сетевая
операционная система Windows 3.11 for Workgroups. Все эти операционные сис­
темы, хотя и были популярны, имели определенные недостатки, в частности, нельзя
было задействовать более 16 Мбайт памяти, не обеспечивались должные надежность
и производительность, поскольку не использовались все те возможности 32-раз-

http://WIN.COM

364 Глава 11. Операционные системы Windows

рядного защищенного режима работы микропроцессора, которые этот режим пре­
доставлял.

Первой операционной системой от компании Microsoft, которая должна была ис­
править существовавшее положение вещей, была Chicago. Она вышла в свет в ав­
густе 1995 года и получила известное всему миру название Windows 95. Опера­
ционная система Windows 95, по сути дела', произвела революцию в персональных
компьютерах. И это несмотря на появившуюся еще в 1992 г. великолепную 32-раз­
рядную операционную систему OS/2 версии 2.0, которая к 1995 году «доросла»
уже до версии 2.2 и имела существенно более совершенный графический интер­
фейс. К сожалению, большинство пользователей почти ничего не знали о суще­
ствовании этой полноценной, надежной и эффективной операционной системы,
поскольку фирма IBM мало беспокоилась об этом. Да и предыдущая (первая) вер­
сия операционной системы с тем же названием OS/2 себя не зарекомендовала.
В противоположность той позиции, которую заняла IBM, компания Microsoft за­
долго до появления своей операционной системы Windows 95 серьезно занима­
лась ее продвижением. Пользователи хорошо знали возможности 16-разрядной
системы Windows 3.x, они умели с ней работать. Правильно организованная рек­
ламная кампания успешно делала свое дело, и пользователи ждали новую 32-раз­
рядную операционную систему с нетерпением.

Появление операционной системы Windows 95 сопровождалось выходом большого
числа соответствующего прикладного программного обеспечения и, что немало­
важно, выпуском так необходимых всем книг, в которых излагались принципы
работы с новой операционной системой и создания для нее прикладных программ.
Многие фирмы, занимающиеся разработкой программного обеспечения, стали
выпускать для Windows 95 различные пакеты прикладных программ, системы уп­
равления базами данных, системы программирования и другие программы. Все
это вместе взятое стало мощнейшим стимулом, обеспечившим победу операцион­
ной системе Windows 95, несмотря на то что по своей архитектуре и возможнос­
тям она почти по всем параметрам уступала операционной системе OS/2. Опера­
ционная система Linux в те годы еще только начинала о себе заявлять.

Затем в 1996 году вышла вторая редакция операционной системы Windows 95 (это
был проект Nashville), которая получила название Windows 95 0 S R 2 (O E M Service
Release 2). В этой операционной системе были улучшены система управления фай­
лами (введена поддержка файловой системы FAT32), а также средства для работы
с мультимедиа и Интернетом.

Далее в 1998 году компания Microsoft обновила свою операционную систему еще раз,
дав ей имя Windows 98. Эта операционная система имела еще больше именно 32-раз­
рядного собственного кода, обладала большей стабильностью и производительнос­
тью, поскольку был устранен почти весь прежний 16-разрядный код, выполнявшийся
достаточно часто и имевший все характерные для него недостатки. В частности, была
введена новая модель 32-разрядных драйверов WDM (Windows Driver Model) ,

Новая модель многоуровневой организации драйверов для систем Windows, которая пришла на смену

прежней.

Операционные системы Windows 9x зе>э

которая позволяет использовать драйверы, создаваемые для операционных сис­
тем семейства Windows NT. Важной для успеха этой операционной системы была
также полноценная поддержка интерфейса USB (Universal Serial Bus — универ­
сальная последовательная шина). Обнаруженные в системе ошибки были исправ­
лены во второй редакции этой операционной системы. Нынче операционная сис­
тема Windows 98 SE1 является одной из самых распространенных в мире.
Наконец, в канун начала нынешнего тысячелетия2 Microsoft выпустила свою по­
следнюю версию операционной системы, которая также была основана на ар­
хитектуре системы Windows 95. Это была Windows Millennium Edition3 (ME).
Выпуская Windows ME, Microsoft преследовала несколько первоочередных целей:
превратить потребительскую операционную систему в полноценную мультиме­
дийную (не только игровую) платформу; максимально упростить обслуживание
системы; обеспечить удобные средства создания домашних сетей; обеспечить дос­
туп ко всему богатству ресурсов Интернета. Основным, принципиальным момен­
том (и основным недостатком, как это ни покажется странным) был отказ от под­
держки сеансов DOS, что позволяет потенциально немного увеличить надежность
организуемых вычислений. Операционная система Windows ME была предназна­
чена для использования на домашних компьютерах, и это обстоятельство, вкупе с
невозможностью организовать выполнение программ, требующих открытия сеан­
сов DOS, не позволило ей получить широкое распространение. Тем более что вскоре
для потребительских целей Microsoft стала продавать новую операционную сис­
тему Windows XP Home Edition, которая уже относится к системам типа Windows NT.

Общие сведения
Операционные системы Windows 9x создавались для работы только на IBM-со­
вместимых персональных компьютерах. Они не являются переносимыми и на дру­
гих платформах (на процессорах, не совместимых с архитектурой ia32) не работа­
ют. Как и для всего остального программного обеспечения от Microsoft, исходные
коды операционных систем закрыты, поэтому подробного описания ее архитекту­
ры практически нет; имеются только многочисленные публикации о том, как сле­
дует использовать эти системы.

Операционные системы семейства Windows 9x предназначены, главным образом,
для домашнего, а не корпоративного применения. Уже многие годы они являются
самыми распространенными в мире. Хотя они допускают возможность работы с
компьютером нескольких пользователей (естественно, по очереди, поскольку сис­
темы являются однотерминальными), в них не поддерживается механизм учет­
ных записей, как в остальных 32-разрядных операционных системах. Каждый
пользователь может иметь свое собственное рабочее окружение, то есть свои вид
рабочего стола (desktop), состав панели задач (taskbar) и меню Пуск (Start), пара­
метры настройки используемых программ и многое другое. Это собственное рабо-

SE означает «Second Edition» — вторая редакция.
Эта система вышла осенью 2000 года.
Слово «millennium» как раз и означает канун тысячелетия.

366 Глава 11. Операционные системы Windows

чее окружение называется профилем (profile), и при включении такой возможнос­
ти в системном каталоге образуется вложенный каталог' с именем Profiles, в кото­
ром и размещаются профили пользователей. Независимо от того, имеет каждый
пользователь свой профиль или не имеет, он должен зарегистрироваться, если си­
стема сконфигурирована для работы в вычислительной сети. Для выполнения про­
цедуры аутентификации используются файлы с расширением pwl, к которым, к со­
жалению, имеется свободный доступ, в результате узнать пароль того или иного
пользователя не составляет большой проблемы для злоумышленника.

Для облегчения работы с компьютером все эти системы поддерживают механизм
автоматического обнаружения подключенных к нему устройств (так называемый
механизм Plug and Play — «включай и работай»). Эту задачу выполняет специаль­
ный модуль — диспетчер конфигурации (Configuration Manager). Он гарантирует,
что каждое устройство, входящее в состав персонального компьютера, сможет ис­
пользовать линии IRQ (Interrupt Request — запрос на прерывание), адреса портов
ввода-вывода, каналы прямого доступа к памяти и прочие ресурсы без конфлик­
тов с другими устройствами. Кроме того, диспетчер конфигурации отслеживает
текущие изменения в конфигурации компьютера. Поскольку операционные сис­
темы Windows 9x получили самое широкое распространение, все выпускаемое
периферийное оборудование имеет необходимые драйверы, причем достаточно
правильно написанные и успешно работающие. Поэтому серьезные проблемы на
сегодняшний день с этим механизмом мало кто испытывает. Динамическое кон­
фигурирование аппаратно-программной среды значительно упрощает использо­
вание операционной системы и позволяет без лишних операций ручной настройки
работать на компьютере пользователям, не являющимся специалистами в вычис­
лительной технике.

С точки зрения базовой архитектуры операционные системы семейства Windows 9x
являются 32-разрядными и мультизадачными (многопоточными) системами с
вытесняющей многозадачностью. Ядра у всех этих операционных систем построе­
ны по макроядерной архитектуре. Ядро состоит из трех основных компонентов:
Kernel, Usern GDI. Модуль Kernel обеспечивает основную функциональность опе­
рационной системы, в том числе: планирование процессов; поддержку потоков
выполнения; синхронизацию объектов; работу с файлами, отображаемыми на па­
мять; управление памятью; файловый ввод-вывод; обработку исключений; работу
консолей; взаимодействие 32-разрядного и 16-разрядного кода с преобразованием
16-разрядного формата кода и данных в 32-разрядный (и наоборот) посредством
механизма шлюзования; некоторые другие функции. Компонент User управляет
вводом с клавиатуры и координатных устройств (типа мыши) и выводом через
пользовательский интерфейс. Когда то или иное устройство ввода генерирует пре­
рывания, обработчик прерываний, используя модель асинхронного ввода, преоб­
разует их в сообщения и посылает потоку необработанного ввода, который рас­
пределяет их по соответствующим очередям сообщений. Наконец, компонент ядра,
называемый GDI (Graphical Device Interface — графический интерфейс устрой-

1 Вместо термина каталог (directory) в системах с графическим интерфейсом гораздо чаще использу­

ют термин папка (folder).

Операционные системы Windows 9x 3 6 /

ства), представляет собой графическую подсистему, которая отвечает за прори­
совку графических примитивов, операции с растровыми изображениями и взаи­
модействие с аппаратно-независимыми графическими драйверами. GDI управля­
ет выводом на экран, принтеры и другие устройства.

Все операционные системы Windows 9x централизованно хранят всю системную ин­
формацию об аппаратных средствах, установленном системном и прикладном про­
граммном обеспечении и его настройке, в том числе и индивидуальных параметрах
каждого пользователя. Такая централизованная информационная база данных назы­
вается реестром (registry). Реестр избавляет от необходимости иметь дело с множе­
ством INI-файлов, как это было в системах Windows 3.x. Физически содержимое рее­
стра определяется файлами system.dat и user.dat, которые располагаются в каталоге с
файлами операционной системы. В режиме, когда каждый пользователь имеет соб­
ственный профиль, определяющий персональную настройку его рабочего окружения,
в состав реестра включается еще файл user.dat того пользователя, который в этот мо­
мент работает на компьютере. Файлы с именем user.dat располагаются в профилях
пользователей и определяют права пользователей в операционной системе.

В операционных системах Windows 9x для работы с периферийными устройства­
ми используется архитектура универсальный драйвер—мини-драйвер. Она позво­
ляет упростить разработку драйверов для создателей нового оборудования. Опера­
ционные системы Windows 9x сами предоставляют базовые услуги для различных
классов аппаратных устройств. Для этого существуют универсальные драйверы,
которые включают большую часть кода, необходимого конкретному классу уст­
ройств для взаимодействия с компонентами операционной системы. Поэтому из­
готовителям оборудования необходимо написать относительно небольшой код
минидрайвера, который должен содержать какие-либо дополнительные функции,
нужные для управления конкретным устройством и учитывающие именно его спе­
цифику. Во многих случаях универсальные драйверы реализуют практически все
функции, которые необходимы для управления операциями ввода-вывода при
обмене данными с периферийным устройством, и иметь дополнительный мини-
драйвер не требуется.

Помимо этих драйверов, которые относятся к драйверам низкого уровня и непос­
редственно завязаны на аппаратуру, в Windows 9x используются драйверы вирту­
альных устройств. Эти драйверы предназначены для управления системными ре­
сурсами, причем они позволяют разделять ресурс между несколькими процессами.
Аббревиатура VxD (Virtual Device — виртуально устройство), которую мы можем
встретить при детальном знакомстве с этими операционными системами, означа­
ет, что речь идет именно о драйверах виртуальных устройств. Вместо средней бук­
вы х в названии драйвера виртуального устройства может стоять, например, ла­
тинская буква Р, которая означает, что речь идет о драйвере принтера. Если же
название виртуального драйвера — VDD, то мы имеем дело с драйвером дисплея.

Драйверы VxD поддерживают все основные устройства персонального компьюте­
ра, включая контроллеры на системной плате, контроллеры дисковых устройств,
таймер, видеоконтроллеры, коммуникационные порты (параллельный и последо­
вательный), принтеры, клавиатуры и многие другие. Они обеспечивают динами-

3 6 8 Глава 11. Операционные системы Windows

ческую поддержку драйверов устройств, а виртуальное устройство отслеживает
состояние соответствующего реального аппаратного устройства для любого про­
цесса, которое им используется. Поскольку системы Windows 9x обеспечивают
мультизадачный режим, передача устройства от одного процесса другому проис­
ходит очень часто. Каждое выполняемое приложение или системный процесс может
прервать работу с устройством другого приложения. Поскольку такое вмешатель­
ство в принципе могло бы вызвать полный крах процессов управления вводом-
выводом, драйвер виртуального устройства проверяет и соответственно изменяет
состояние устройства для любого приложения и/или системного процесса ввода-
вывода. При этом, естественно, гарантируется, что устройство будет корректно
функционировать с каждым из процессов, запрашивающим ту или иную опера­
цию ввода-вывода на этом устройстве. Некоторые драйверы виртуальных устройств
предназначены для управления программными компонентами операционной сис­
темы; они содержат код, который эмулирует определенные программные средства
или отслеживает, чтобы выполняющиеся процессы использовали только свои дан­
ные. Во всех операционных системах Windows 9x в память загружаются только те
драйверы виртуальных устройств, которые необходимы в данный момент. Это по­
зволяет экономить оперативную память компьютера.

Одним из драйверов виртуальных устройств является системный драйвер, управ­
ляющий файловой системой защищенного режима и драйверами блочных уст­
ройств. Это супервизор ввода-вывода (Input/Output Supervisor, IOS). Он прини­
мает запросы от файловых систем и загружает драйверы, обеспечивающие доступ
к локальным дискам и дисковым устройствам.

Драйверы файловых систем являются компонентами кода с нулевым уровнем при­
вилегий. Они поддерживают следующие файловые системы:

Q VFAT (Virtual FAT) — файловые операции на дисковых устройствах и взаимо­
действие с подсистемой блочного ввода-вывода;

Q CDFS — работа с компакт-дисками;

Q UDF (Universal Disk Format) — соответствует спецификациям, принятым ор­
ганизацией Optical Storage Technology Association, и предназначена для досту­
па к дискам DVD-ROM и CD-ROM (эта файловая система не поддерживается
в Windows 95);

Q сетевые редиректоры для обеспечения связи с серверами компаний Microsoft

и Novell (Netware).
Все эти файловые системы управляются диспетчером устанавливаемых файловых
систем (IFS). Помимо перечисленных в операционную систему можно установить
и иные файловые системы. Например, при работе с Windows 98 мы можем устано­
вить драйвер для доступа к дискам NTFS. Правда, реализация этого драйвера та­
кова, что он игнорирует все расширенные атрибуты. В результате не работают раз­
решения NTFS для ограничения на доступ к файлам, которые и составляют одно
из основных достоинств этой файловой системы.

По умолчанию системы Windows 98 и Windows ME позволяют работать с файло­
вой системой FAT12 (для работы с дискетами), FAT16 и FAT32. Последняя явля­
ется основной для этих операционных систем.

Операционные системы Windows 9x 3 6 9

Операционные системы Windows являются сетевыми. В дистрибутивы входит все
необходимое системное сетевое программное обеспечение, которое легко и быст­
ро устанавливается и конфигурируется. Используется программный интерфейс
NetBIOS и технология SMB (Server Message Blocks). Системы главным образом
предназначены для работы в составе рабочих групп, то есть для построения одно­
ранговых вычислительных сетей, хотя операционные системы Windows 95 и Win­
dows 98 допускают работу в составе домена в сетях клиент-сервер. Для этого они
имеют все необходимые программные модули и интерфейсные экранные формы.
Однако, поскольку в случае их использования в корпоративных сетях существен­
ным образом начинает страдать информационная безопасность, делать это не ре­
комендуется.

Организация многозадачности
Одним из наиболее актуальных вопросов, которые решает любая многозадачная
операционная система, в том числе и системы Windows 9x, состоит в организации
по возможности простого, но эффективного способа предоставления процессор­
ного времени различным параллельно выполняющимся программам. Другими сло­
вами, речь идет о диспетчеризации задач.

Мы уже знаем, что многозадачность, в общем случае, означает способность опера­
ционной системы обеспечивать совместное использование процессора нескольки­
ми программами. Большинство разработчиков операционных систем называют
работающие программы задачами, поэтому задачей можно считать загруженную
в память программу, которая что-то делает. В большинстве операционных систем,
в том числе и в Windows NT, и в UNIX, выполнение приложения называется про­
цессом. Однако в уже упомянутых операционных системах Windows 3.x почти все­
гда использовался термин «задача», и лишь изредка — «процесс». Имейте в виду,
что в операционных системах Windows 9x используется исключительно термин
«процесс», а понятие задачи было официально исключено из терминологии Win­
dows. Вкладывая совершенно такой же смысл в слово «процесс», разработчики
Microsoft тем самым попытались поставить операционные системы семейства
Windows 9x как бы на один уровень с другими операционными системами, таки­
ми, например, как Windows NT. В большей части документации по Windows 3.1
мы можем обнаружить оба упомянутых слова. Основная причина изменения тер­
минологии — реализация мультизадачности при сохранении мультипрограммно­
го режима работы. Другими словами, речь идет о поддержке в этих операционных
системах возможности многопоточного выполнения приложений. Поэтому поми­
мо отхода от термина задача и использования термина процесс, мы должны отме­
тить, что во всех этих операционных системах стал использоваться термин поток
выполнения, или тред (thread).

Напомним, что поток выполнения — это одна из ветвей вычислительного процес­
са. Потоку выделяется процессорное время, этим занимается диспетчер задач опе­
рационной системы, называемый планировщиком. Поток может быть создан лю­
бым работающим под управлением Windows 9x 32-разрядным приложением или
виртуальным драйвером устройства. Поток имеет собственный стек и контекст

370 Глава 11, Операционные системы Windows

выполнения (а именно содержимое рабочих регистров процессора). Потоки ис­
пользуют память совместно с процессом-родителем. Когда Windows 95/98 загру­
жает приложение и создает необходимые ему структуры данных, система настраи­
вает процесс в виде отдельного потока. Потоки могут использовать весь код и
глобальные данные процесса-родителя. Это означает, что создание нового потока
требует минимальных затрат памяти. Один процесс может породить множество
параллельно выполняющихся потоков. Многие приложения на протяжении всего
времени своей работы используют единственный поток, хотя могут (а многие так
и делают) использовать еще несколько потоков для выполнения определенных
кратковременных операций в фоновом режиме, что позволяет либо увеличить ско­
рость выполнения приложений, либо дать возможность пользователю выполнять
следующую операцию в своей программе, не дожидаясь завершения текущей опе­
рации.

Термин «задача» мы все же будем использовать и дальше, поскольку с точки зре­
ния распределения процессорного времени требуется все то же: выполнять вычис­
ления, то есть выполнять некий конкретный код с конкретными данными.

В Windows 95/98 работа с потоками доступна только 32-разрядным приложениям
и виртуальным драйверам устройств. Виртуальные машины MS DOS и старые
16-разрядные приложения Windows не могут обращаться к функциям API, ко­
торые поддерживают потоки. Каждая виртуальная машина MS DOS работает в
отдельном потоке. Аналогично, каждое 16-разрядное приложения Windows при
своем исполнении образует процесс, который использует всего один поток, что
позволяет обеспечить для старых приложений Windows модель кооперативной
многозадачности. Любое 32-разрядное приложение или виртуальный драйвер ус­
тройства может создавать дополнительные потоки, a Windows 95/98 может орга­
низовать диспетчеризацию всех этих потоков в соответствии с алгоритмами вы­
теснения, что представляет собой еще один аспект многозадачности в Windows.
Несмотря на то что все эти потоки могут представлять принципиально разные типы
программ, в системе они представлены в виде одинаковых структур данных. Вслед­
ствие этого диспетчер и остальной 32-разрядный системный код, использующий
эти внутренние структуры данных, и удалось реализовать так, что разработчи­
кам не понадобилось учитывать особенности преобразований 16-разрядного кода
в 32-разрядный.

Как известно, в основе диспетчеризации задач ныне уже почти всеми забытой
Windows 3.x лежал принцип невытесняющей, или кооперативной, многозадачнос­
ти (cooperative multitasking). При работе в среде Windows 95/98 кооперативная
многозадачность используется только для диспетчеризации старых 16-разрядных
приложений, в то время как работа приложений Win32 планируется в соответ­
ствии с иным алгоритмом. Для 32-разрядных приложений система использует
вытесняющую многозадачность (preemptive multitasking).

Поддержкой многозадачности занимается планировщик (scheduler). Он имеет дело
главным образом с временем и событиями. Процессу в Windows 95/98 выделяется
квант времени, который определяет, как долго данный процесс может использо­
вать процессор. По окончании кванта времени планировщик определяет, следует

Операционные системы Windows 9x 3 7 1

ли передать процессор в распоряжение другого процесса. В отличие от Windows
NT, Windows 95/98 не поддерживает мультипроцессорные системы, в которых
планировщик может выделять процессам больше одного процессора.
Решения, принимаемые планировщиком, определяются событиями. Так, щелчок
мыши является для планировщика событием. Это событие может привести к пе­
редаче процессора в распоряжение процесса, «владеющего» окном, в котором про­
изошел щелчок. Впрочем, планировщик может решить, что завершение передачи
данных по сети заслуживает большего внимания, чем щелчок мыши, и тогда про­
цессор будет передан в распоряжение процесса, обслуживающего сеть, а всем ос­
тальным процессам придется подождать.

Как мы знаем, при вытесняющем планировании только система может решать, в ка­
ком порядке, как долго и какие задачи (в нашем случае — потоки) будут выпол­
няться. Планировщик может в любой момент отнять процессор у одного из потоков
выполнения и.передать его в распоряжение другого. Обычно такой акт вытесне­
ния происходит в результате реакции на событие, требующее внимания. Плани­
ровщик присваивает каждому из работающих процессов приоритет (priority). По­
токи его наследуют, хотя при создании нового потока ему можно задать и иной
приоритет. В случае если происходит событие, относящееся к потоку, обладающе­
му более высоким приоритетом, планировщик приостанавливает (вытесняет) те­
кущий поток и начинает выполнять тот, у которого приоритет больше.

Для обеспечения гарантированного обслуживания введен механизм динамичес­
ких приоритетов, при котором приоритеты потоков постоянно пересчитываются.
Например, если бы системе надо было выбирать между двумя потоками, у одного
из которых приоритет больше, а у другого меньше, то поток, обладающий низким
приоритетом, никогда бы не смог выполняться, если бы планировщик динамичес­
ки не изменял значения приоритетов. При расчете приоритетов также играет роль
длительность квантов времени.

Диспетчер задач (потоков выполнения) использует следующие три механизма, с по­
мощью которых он пытается равномерно распределять время процессора между
всеми вычислениями в целях обеспечения бесперебойной и одновременно быст­
рой реакции системы.

• Динамическое изменение приоритета. Диспетчер на время может повысить или
понизить приоритет того или иного потока. Так, например, нажатие клавиши
или щелчок мыши говорит ему о том, что приоритет потока, к которому отно­
сится действие пользователя, должен быть повышен.

• Постсинхронизированное снижение приоритета. Ранее повышенное значение
приоритета постепенно возвращается к исходному значению.

• Наследование приоритета. Служит для быстрого повышения приоритета. Обыч­
но это делается для того, чтобы позволить потоку с низким приоритетом быстро
закончить работу с выделенным для монопольного использования ресурсом,
который необходим потокам с высоким приоритетом. Windows 95/98 восста­
навливает исходное значение унаследованного приоритета сразу же после удов­
летворения конфликтного условия.

3 7 2 Глава 11. Операционные системы Windows

В операционных системах семейства Windows 9x имеется два модуля для диспет­
черизации потоков выполнения: основной планировщик (primary scheduler) отве­
чает за вычисление приоритетов потоков; планировщик квантования (timeslice
scheduler) занимается расчетами, необходимыми для выделения квантов времени.
По сути дела, модуль квантования решает, какой процент доступного процессор­
ного времени какому потоку выделить. Если некий поток не получает времени на
выполнение, значит, он находится в состоянии ожидания выполнения (suspended)
и не будет работать, пока ситуация не изменится.

Основной планировщик просматривает все потоки выполнения и рассчитывает
для каждого из них приоритет выполнения (execution priority), который представ­
ляет собой целое число, находящееся в пределах от 0 до 31. Далее он переводит в
состояние ожидания выполнения все потоки, приоритет выполнения которых мень­
ше текущего наибольшего значения, имеющегося у одного из потоков. После того
как поток переведен в состояние ожидания выполнения, основной планировщик
более не обращает на него никакого внимания при дальнейших вычислениях при­
оритетов на протяжении данного кванта времени. По умолчанию длительность
кванта времени составляет 20 мс. Затем планировщик квантования рассчитывает
процентную долю кванта времени, которую необходимо выделить каждому пото­
ку. Для этого он использует значения приоритетов и информацию о текущем со­
стоянии виртуальной машины.

После окончания выделенного потоку кванта времени планировщик перемещает
его в конец очереди, состоящей из потоков с равным приоритетом. Этот класси­
ческий механизм диспетчеризации, называемый карусельным, обеспечивает всем
потокам, обладающим равным наивысшим приоритетом, одинаковый доступ к про­
цессору. Если некоторый поток не занимает весь выделенный ему квант процес­
сорного времени, диспетчер передает процессор в распоряжение следующего по­
тока с таким же приоритетом и позволяет тому использовать остаток данного кванта
времени.

Если в системе одновременно работают только 32-разрядные приложения, то бо­
лее быструю реакцию системы и значительно менее конфликтный отклик программ
пользователю обеспечивает так называемое упреждающее планирование. Как из­
вестно, в диалоговых системах используется событийное программирование, при
котором выполнение той или иной процедуры начинается после определенного
события. Сама операционная система также функционирует по этому принципу.
Управляющая (супервизорная) подсистема Windows 9x просматривает направля­
емый ей подсистемой ввода-вывода поток сообщений, из которых она и узнает о но­
вых событиях, таких, например, как щелчки мыши в одном из ее окон, запуск но­
вых программ и т. д. В системах Windows 3.x все сообщения находились в одной
системной очереди, вследствие чего одна некорректно работающая программа могла
заблокировать поток сообщений, предназначенных всем остальным приложени­
ям. Windows 95/98 дает системе возможность помещать сообщения, предназна­
ченные приложениям Win32, в отдельные очереди, что снижает вероятность зави­
сания системы в тех случаях, когда одно из приложений не обслуживает очередь
сообщений должным образом.

Операционные системы Windows 9x 3 7 3

Распределение оперативной памяти
Для загрузки операционные системы Windows 95/98 используют операционную
систему MS DOS 7.0 (MS DOS 98), и в случае если в секции [Options] файла MSDOS.SYS
имеется строка BootGUI = 0, процессор работает в обычном реальном режиме (см.
главу 4). Распределение памяти в MS DOS 7.0 такое же, как и в предыдущих версиях
DOS. Однако при загрузке интерфейса GUI перед загрузкой ядра Windows 95/98
процессор переключается в защищенный режим работы и начинает распределять
память уже с помощью страничного механизма.

Приложения и подсистемы Windows 9x (за исключением ядра) никогда не рабо­
тают с физической памятью. Разделение на виртуальную и физическую память
является ключевым аспектом работы системы. Приложения и подсистемы Win­
dows 9х имеют дело с определенными интерфейсами прикладного программиро­
вания и виртуальными адресными пространствами. Базовая система работает как
с физической памятью, так и с виртуальными адресными пространствами.

В основе поддержки виртуальных машин и виртуального адресного пространства,
которую обеспечивают операционные системы Windows 9x, лежит работа с реаль­
ной (физической) памятью компьютера, ограниченной в своих размерах. Опера­
ционная система выгружает неактивные страницы памяти виртуальных адресных
пространств выполняющихся процессов из оперативной памяти на диск и загру­
жает страницу, запрошенную при выполнении текущей команды. Другими слова­
ми, загрузка страницы в оперативную память осуществляется по требованию, как
это принято в большинстве операционных систем, использующих страничный
механизм организации виртуальной памяти. В то же время, освобождается опера­
тивная память от неактивных страниц группами по нескольку страниц за одну
операцию. Реализованный в операционных системах Windows 9x алгоритм заме­
щения представляет собой стандартную дисциплину LRU (Least Recently Used —
дольше других неиспользуемый), заключающуюся, как мы уже знаем, в освобож­
дении тех страниц физической памяти, которые дольше других не использовались.

Многие страницы физической памяти компьютера не участвуют в замещении, они
распределены постоянно. Их занимают, в частности, резидентные компоненты ядра.
На эти цели отводится примерно один мегабайт памяти. За оставшуюся физичес­
кую память конкурируют различные программы: динамически загружаемые ком­
поненты системы и загружаемые виртуальные драйверы устройств, код и данные
приложений, а также динамически размещаемые данные, такие как области кэши­
рования, необходимые для работы файловой системы, и буферы прямого доступа
к памяти (DMA).

В отличие от тех мультитерминальных систем, в которых операционная система
должна заботиться о равноправном совместном использовании ресурсов, в систе­
мах Windows 9x сделано иначе. Поскольку это однопользовательские операцион­
ные системы, они позволяют заполнять память так, как это нужно пользователю и
его программам. Динамически загружаемые компоненты системы конкурируют
за память с прикладными программами. Если пользователь хочет, чтобы его при­
ложение работало быстрее, ему будет позволено занять столько памяти, сколько
вообще возможно. Система накладывает ограничение на максимальный объем па-

3 7 4 Глава 11. Операционные системы Windows

мяти, который может быть отдан в распоряжение отдельных приложений, — если
не следить за этим, становится возможным возникновение тупиковых ситуаций.
После того как вся физическая память заполнена, первый же новый запрос на вы­
деление памяти инициирует замещение страниц. Интересным побочным эффек­
том такого подхода является то, что у приложений нет надежного способа опреде­
ления объема памяти, доступного в системе. Функция API GlobalMemorySatusQ
возвращает целый ряд параметров, характеризующих состояние системной памя­
ти, однако это не более чем «мгновенный снимок» текущей обстановки — еще один
вызов этой функции вполне может дать другие значения.

Страницы поступают в память и уходят из нее по-разному: в большинстве случаев
они либо непосредственно размещаются в выделенной для этого памяти (как ре­
зультат соответствующих запросов), либо загружаются при старте программы из
ЕХЕ-файла приложения. Впоследствии эти страницы начинают перемещаться
между физической памятью и файлом подкачки. Страницы, в которых содержит­
ся только код 32-разрядных приложений и динамически связываемых библиотек
(DLL), система всегда загружает только из исходных исполняемых файлов.

Для того чтобы облегчить управление всем разнообразием типов страниц памяти,
каждая активная страница, то есть каждая страница, которая является частью вы­
полняющегося в данный момент системного модуля или приложения, снабжена хра­
нящимся совместно с ней страничным дескриптором (Page Descriptor, PD). В этом
дескрипторе содержатся адреса процедур, которые занимаются перемещением стра­
ницы из памяти на диск и обратно. Независимо от того, что именно находится в
данной странице, диспетчер физической памяти, чтобы переместить страницу в опе­
ративную память или из нее, просто вызывает соответствующую функцию, адрес
которой определен в поле дескриптора страницы. В случае, если некоторая страни­
ца еще никогда не заполнялась, она называется абсолютно чистой (virgin"). Напри­
мер, именно так обозначаются страницы, содержащие код, использующий вызовы
Win32. После того как с момента размещения страницы в памяти в нее будет в первый
раз произведена запись данных, она считается испорченной (tainted) и может быть
либо грязной (dirty), либо чистой (clean), в зависимости от того, осуществлялась ли в
нее запись с момента последней ее подкачки в физическую память. Если запись в эту
страницу производилась, и в этой физической странице требуется разместить иную
виртуальную страницу, ее содержимое должно быть сохранено в файле подкачки.

Для наблюдения за распределением памяти и использованием иных ресурсов ком­
пьютера можно воспользоваться, например, программой SYSMON.EXE (системный
монитор). Эта программа входит в состав утилит операционных систем Windows
9х, поэтому после ее установки команда для ее запуска располагается в подменю
Служебные меню Стандартные. Она позволяет выбрать интересующие нас парамет­
ры и наблюдать за их текущими значениями.

Использование так называемой плоской модели памяти, когда программист может
использовать только один сегмент кода и один сегмент данных, которые имеют
максимально возможные размеры, определяемые системными соглашениями опе­
рационной системы, приводит к тому, что с точки зрения программиста память
получается неструктурированной. Программы используют классическую малую

Операционные с и стемы Windows 9x 3 7 5

(small) модель памяти [40]. Каждая прикладная программа определяется 32-раз­
рядными адресами, в которых сегмент кода имеет то же значение, что и сегменты
данных. Единственный сегмент программы отображается непосредственно в об­
ласть виртуального линейного адресного пространства, которая, в свою очередь,
состоит из 4-килобайтных страниц. Каждая страница может располагаться где угод­
но в оперативной памяти (естественно, в том месте, где ее разместит диспетчер
памяти, который сам находится в невыгружаемой области) или быть «сброшена»
на диск, если не запрещено использовать страничный файл.

В операционных системах Windows 9x младшие адреса виртуального адресного
пространства совместно используются всеми процессами. Это сделано для совме­
стимости с драйверами устройств реального режима, резидентными программами
и некоторыми 16-разрядными программами Windows. Безусловно, это плохое ре­
шение с точки зрения надежности, поскольку оно приводит к тому, что любой про­
цесс может непреднамеренно (или же, наоборот, специально) испортить компо­
ненты, находящиеся в этих адресах.

В Windows 9x каждая 32-разрядная прикладная программа выполняется в соб­
ственном адресном пространстве, но все они используют совместно один и тот же
32-разрядный системный код. Доступ к чужим адресным пространствам в прин­
ципе возможен. Другими словами, виртуальные адресные пространства не задей­
ствуют всех аппаратных средств защиты, заложенных в микропроцессор. В резуль­
тате неправильно написанная 32-разрядная прикладная программа может привести
к аварийному сбою всей системы. Все 16-разрядные прикладные программы Win­
dows разделяют общее адресное пространство, поэтому они так же уязвимы друг
для друга, как и в среде Windows 3.X.

Собственно системный код Windows 9x размещается выше границы 2 Гбайт. В про­
странстве с отметками 2 и 3 Гбайт находятся системные библиотеки DLL, использу­
емые несколькими программами. Напомним, что в 32-разрядных микропроцессорах
семейства i80x86 имеется четыре уровня защиты, именуемые кольцами с номерами
от 0 до 3. Кольцо с номером 0 является наиболее привилегированным, то есть мак­
симально защищенным. Компоненты операционных систем Windows 9x, относя­
щиеся к кольцу 0, отображаются на виртуальное адресное пространство между
3 и 4 Гбайт. К этим компонентам относятся собственно ядро Windows, подсистема
управления виртуальными машинами, модули файловой системы и драйверы вир­
туальных устройств (VxD).

Область памяти между 2 и 4 Гбайт адресного пространства каждой 32-разрядной
прикладной программы совместно используется всеми 32-разрядными приклад­
ными программами. Такая организация позволяет обслуживать вызовы API не­
посредственно в адресном пространстве прикладной программы и ограничивает
размер рабочего множества. Однако за это приходится расплачиваться снижени­
ем надежности. Ничто не может помешать программе, содержащей ошибку, про­
извести запись в адреса, принадлежащие системным библиотекам DLL, и вызвать
крах всей системы.

В области между 2 и 3 Гбайт также находятся все запускаемые 16-разрядные при­
кладные программы Windows. С целью обеспечения совместимости эти програм-

3 7 6 Глава 1 1 . Операционные системы Windows

мы выполняются в совместно используемом адресном пространстве, где они мо­
гут испортить друг друга так же, как и в Windows 3.x.
Адреса памяти ниже 4 Мбайт также отображаются в адресное пространство каж­
дой прикладной программы и совместно используются всеми процессами. Благо­
даря этому становится возможной совместимость с существующими драйверами
реального режима, которым необходим доступ к этим адресам. Это делает еще одну
область памяти не защищенной от случайной записи. К самым нижним адресам
(менее 64 Кбайт) этого адресного пространства 32-разрядные прикладные програм­
мы обращаться не могут, что дает возможность перехватывать неверные указате­
ли, но 16-разрядные программы, которые, возможно, содержат ошибки, могут за­
писывать туда данные.

Вышеизложенную модель распределения памяти можно проиллюстрировать с
помощью рис. 11.1.

4 Гбайт

3 Гбайт

2 Гбайт

4 Мбайт

64 Кбайт

О

Системные компоненты,
относящиеся к кольцу защиты О

- Системные библиотеки DLL

- Прикладные программы Win 16

- Совместно используемые
библиотеки DLL

Прикладные 32-разрядные
программы

Компоненты реального режима

Адреса между 2 и 4 Гбайт
отображаются в адресное пространство

каждой 32-разрядной программы
и используются совместно

В этой области адресного пространства
у каждой прикладной программы
располагается свое собственное

адресное пространство. «Личные» адресные
пространства других программ невидимы

для программы, и, следовательно,
она не может никак изменить

их содержимое

Эта область используется
всеми процессами

Рис. 1 1 . 1 . Модель памяти операционных систем Windows 95/98

Операционные системы Windows 9x 3 7 7

В операционных системах Windows термином модуль (module) называют присут­
ствующую в памяти совокупность кода, данных и других ресурсов (в частности
таких, как битовые массивы). Обычно такая совокупность объектов представляет
собой отдельную прикладную программу или библиотеку DLL. Windows форми­
рует и поддерживает структуру данных под названием база данных модулей (module
database), в которой учитываются все активные в данный момент модули системы.
База данных модулей описывает статическую совокупность объектов в отличие от
той динамической, что поддерживает база данных задач. Учет загруженных в дан­
ный момент модулей необходим, потому что он служит основой поддерживаемого
Windows 9x механизма совместного использования ресурсов. Так, например, ког­
да мы вторично запускаем программу Word или Internet Explorer, операционная
система Windows обнаруживает, что сегменты кода и формирующий значок этой
программы — битовый массив — уже загружены, и вместо того чтобы загружать
еще одну копию, которая только отнимет память, она попросту заводит дополни­
тельные ссылки на уже используемые ресурсы.

На протяжении всего времени работы системы Windows 9x для каждого ресурса
поддерживают счетчик обращений к нему. По мере того как приложения исполь­
зуют тот или иной ресурс, Windows 9x увеличивают значение соответствующего
счетчика, а по завершении работы приложения уменьшают его. Значение счет­
чика, равное нулю, свидетельствует о том, что ресурс больше не используется,
а значит, система может удалить ресурс и освободить память, которую он зани­
мал.

Минимально допустимый объем оперативной памяти, начиная с которого эти
операционные системы могут функционировать, равен 4 Мбайт для Windows 95
и 8 Мбайт для Windows 98. Однако при таких маленьких объемах физической па­
мяти пробуксовка столь велика, что быстродействие системы становится слиш­
ком малым, и практически работать нельзя.

Страничный файл, с помощью которого реализуется механизм виртуальной памя­
ти, по умолчанию располагается в каталоге самой системы Windows и имеет пере­
менный размер. Система отслеживает его длину, увеличивая или сокращая этот
файл при необходимости. Вместе с фрагментацией файла подкачки это приводит
к тому, что быстродействие системы становится меньше, чем если бы этот файл
был фиксированного размера и располагался в смежных кластерах (был бы де-
фрагментирован). Создать файл подкачки заданного размера можно либо через
специально разработанный для этого апплет (Панель управления • Система • Быс­
тродействие • Файловая система), либо просто прописав в секции [386Enh] файла
SYSTEM.INI строки с указанием диска и имени файла подкачки, например:

PagingDrive=C:
Pagi ngFi1е=С:\PageFiIe.sys
Mi nPagingFi1eSi ze=65536
MaxPagi ngFi1eSi ze=262144

Здесь первая и вторая строки описывают размещение страничного файла и его
имя, а две последних — начальный и предельный размеры страничного файла
(значения указываются в килобайтах). Для определения необходимого минималь­
ного размера можно рекомендовать запустить уже упомянутую выше программу

-

378 Глава 11. Операционные системы Windows

SYSMON.EXE1 (системный монитор) и, выбрав в качестве наблюдаемых параметров
размер файла подкачки и объем свободной памяти, оценить потребности в памя­
ти, запуская те приложения, с которыми чаще всего приходится работать.

Большое влияние на использование оперативной памяти и общую производитель­
ность системы оказывает драйвер виртуального устройства VCache, занимающийся
кэшированием файлов. Он взаимодействует с менеджером физической памяти,
запрашивая и освобождая области памяти, которые впоследствии могут быть вы­
делены отдельным драйверам файловой системы для выполнения операций кэ­
ширования. Этот драйвер работает по методу агрессивного кэширования, в резуль­
тате он может захватывать почти всю свободную оперативную память. Как ни
странно, это не всегда приводит к увеличению скорости работы с файлами, по­
скольку поиск нужных блоков данных среди блоков, находящихся в кэше, осуще­
ствляется простым последовательным перебором, а количество просматриваемых
блоков в этом случае существенно больше. Поэтому в ряде случаев имеет смысл
ограничивать «аппетит» драйвера VCache. Сделать это можно путем редактирова­
ния все того же файла SYSTEM.INI. Только теперь нужно найти другую секцию фай­
ла — [VCache]. В эту секцию следует добавить строки и прописать значения для
максимального и минимально объемов оперативной памяти, которую операцион­
ная система будет предоставлять подсистеме кэширования. Выглядеть эти новые
строки могут, например, так:

MinFileCache=16384
MaxFileCache=65536
ChunkSize=2048
NameCache=4096
DirectoryCache=128

Назначение первой и второй строк представляется очевидным. Третья строка опи­
сывает размер блока, четвертая строка — количество хранимых в кэше имен фай­
лов, а последняя — количество каталогов. Прописанные в приведенных строках
значения, естественно, зависят от объема оперативной памяти, имеющейся в ком­
пьютере. В данном случае компьютер имеет 512 Мбайт оперативной памяти. Кста­
ти, если персональный компьютер имеет более 256 Мбайт памяти, то наличие пер­
вых двух строк в секции [VCache] файла SYSTEM.INI обязательно. В противном случае
из-за недальновидности разработчиков драйвера виртуального устройства VCache
он может запросить у системы более 256 Мбайт памяти, причем она может выде­
лить ему эту память. Это неминуемо приведет к критической ошибке в его даль­
нейшей работе и краху вычислительного процесса.

Операционные системы Windows NT/2000/XP

Краткая историческая справка
Компания Microsoft в 1990 году объявила о начале работ по созданию принципи­
ально новой операционной системы для персональных IBM PC-совместимых ком-

1 Программа SYSMON.EXE входит в состав штатного программного обеспечения систем Windows 9x,
но при обычной установке она не устанавливается — требуется выборочная установка.

Операционные системы Windows NT/2000/XP 3 7 9

пьютеров с прицелом на корпоративный сектор, которая помимо банальной муль­
тизадачное™ и поддержки виртуальной памяти обладала бы, в частности, такими
качествами, как:

О микроядерная архитектура — сказалось влияние идей проекта Mach 3, выпол­
ненного в университете Карнеги Меллон (Carnegie Mellone University), кото­
рое в то время было очень велико;

• аппаратная независимость (platform independent), что должно было обеспечить
легкую переносимость системы;

Q мультипроцессорная обработка и масштабируемость (в то время операцион­
ные системы семейства UNIX обеспечивали работу на мультипроцессорных
компьютерах и фактически доминировали как мощные корпоративные сервер­
ные системы);

а возможность выполнения приложений, созданных для других операционных
систем, в частности приложений для UNIX и 16-разрядных программ OS/2;

• защита информации и вычислений от несанкционированного доступа;

Q наличие высокопроизводительной и надежной файловой системы и возмож­
ность работать с несколькими файловыми системами;

Q встроенные сетевые функции и поддержка распределенных вычислений.

Этот проект изначально имел название OS/2 version 3.0, однако впоследствии
Microsoft назвала его Windows NT. Аббревиатура NT означала «New Technology»,
что подчеркивало принципиальную новизну этой операционной системы. Опера­
ционная система вышла в 1993 г. в двух вариантах и имела название Windows NT
3.1 и Windows NT Advanced Server 3.1. Эти системы обладали большими возмож­
ностями. Однако Windows NT 3.1 в качестве рабочей станции уступала системе
OS/2, поскольку требовала существенно больше оперативной памяти и имела от­
носительно низкое быстродействие. Кроме этого, при работе с дисками, отформа­
тированными под файловую систему FAT, она не поддерживала длинные имена.
Основным конкурентом серверной системы был сервер Novell Netware 3.x. После
выхода первой версии Windows NT Microsoft выпустила Windows NT 3.5 для ра­
бочих станций и одноименную серверную операционную систему. Последняя имела
встроенное программное обеспечение для связи с серверами от Novell, поддержи­
вала длинные имена при работе с дисками FAT, и много других усовершенствова­
ний. В те годы в качестве серверов для локальных вычислительных сетей пре­
имущественно использовалась операционная система Netware 3.x компании
Novell. В последующем эта сетевая операционная система была заменена суще­
ственно более мощной Netware 4.x, которая была предназначена для больших
корпоративных сетей и имела службу каталогов, предназначенную для центра­
лизованного хранения информации о сетевых ресурсах. Она имела продуман­
ные механизмы администрирования и была высокоэффективной. Завершилось
поколение операционных систем Windows NT 3.x версиями под номером 3.5.1.
Системы Windows NT 3.x не смогли тогда завоевать признание ни в качестве сер­
верных, ни в качестве обычных настольных систем, поскольку требовали очень
больших (по меркам того времени) вычислительных ресурсов.

3 8 0 Глава 11, Операционные системы Windows

Как ни странно, но еще одним недостатком этих первых систем Windows NT было
строгое следование идеям микроядерной архитектуры. Согласно идеологии кли­
ент-сервер, которой придерживались разработчики Windows NT 3.x, только ядро
и низкоуровневые драйверы работали в нулевом кольце привилегий. А драйверы
графической подсистемы, модули GDI, менеджер окон (Window Manager) и дру­
гие компоненты графической подсистемыработали как службы, то есть в пользо­
вательском режиме работы процессора. Такое решение обеспечивало высокую
надежность системы, но отрицательно сказывалось на ее производительности, по­
скольку приходилось многократно переключаться из режима ядра в пользователь­
ский режим и обратно. Полезно напомнить, что сделать это можно только через
механизм шлюзования. К тому же интерфейс этих первых операционных систем
класса NT соответствовал обычной 16-разрядной системе Windows 3.x, быстро
уходившей в прошлое, и заметно отличался от интерфейса Windows 95. Желая
исправить эти недочеты, Microsoft запустила проект Cairo и в 1996 г. выпустила
операционные системы Windows NT 4.0 Sever и Windows NT 4.0 Workstation.

Операционные системы Windows NT 4.0 оказались на редкость удачными. К мо­
менту их выхода вычислительные ресурсы среднего персонального компьютера уже
были достаточными для эффективной работы. Эти операционные системы в каче­
стве основного ресурса требовали оперативную память. Официально серверная си­
стема требовала 16 Мбайт, а рабочая станция — 12 Мбайт, в то время как для реаль­
ной работы памяти нужно было иметь раза в четаре больше. И поскольку стоимость
модулей полупроводниковой памяти для персональных компьютеров в те годы очень
заметно снизилась, организации и отдельные пользователи стали массово осваивать
эти операционные системы. А упомянутый перевод части кода, ответственного за
работу графической подсистемы, в привилегированный режим работы процессора
существенно увеличил быстродействие при обработке графики и позволил в после­
дующем начать перенос пользовательских операционных систем на NT.

К сожалению, в своей новой операционной системе компания Microsoft отказа­
лась от поддержки высокопроизводительной файловой системы HPFS, с которой
работают операционные системы OS/2, хотя при желании пользователь мог сам до­
бавить соответствующие драйверы из дистрибутива предыдущей Windows NT 3.x.
Это был один из тех мелких уколов, которые в совокупности помогали компании
Microsoft «уводить» пользователей от операционных систем OS/2.
Желая противопоставить свою серверную операционную систему известным се­
тевым операционным системам корпоративного уровня Novell Netware 4.x и Net­
ware 5.x, компания Microsoft разработала новое семейство операционных систем
класса NT, которое должно было изначально называться Windows NT 5.0, однако
из маркетинговых соображений было переименовано в Windows 2000. В семей­
ство этих систем вошли четыре операционные системы.

Q Windows 2000 Professional — для использования в качестве рабочей станции
вместо Windows NT.40 Workstation или Windows 98. Эта операционная систе­
ма может работать на 2-процессорных компьютерах.

• Windows 2000 Server — для использования в качестве контроллера домена и/или
сервера (файлов, приложений, баз данных, web и/или FTP, печати и т. д.) в от-

Операционные системы Windows NT/2000/XP 3 8 1

носительно небольшой сети, которую могут себе позволить иметь предприятия
малого и среднего бизнеса. Эта операционная система поддерживает 4-процес-
сорные конфигурации.

• Windows 2000 Advanced Server — для тех же целей, что и Windows 2000 Server,
но с упором на выполнение функций сервера приложений и сервера баз дан­
ных. Обладает возможностью работать на компьютере с восемью процессора­
ми и, самое главное, организовать кластер из двух машин.

a Windows 2000 Datacenter Server — специальная версия операционной систе­
мы, предназначенная для работы в вычислительных сетях крупных предприя­
тий. Система хорошо масштабируется, позволяет построить 4-узловой кластер,
причем каждая из машин может иметь вплоть до 16 процессоров1.

Наверное, самыми главными особенностями этих операционных систем (по сравне­
нию с предыдущими Windows NT 4.0) следует назвать поддержку механизма Plug
and Play (как и в системах Windows 9x) и использование службы каталогов как ос­
новы для построения сетей клиент-сервер. Служба каталогов Microsoft получила
наименование Active Directory. Принципиальной особенностью этой технологии яв­
ляется ее глубокая интеграция с TCP/IP. Кроме этого, нельзя не отметить, что но­
вые операционные системы получили переработанную систему управления файла­
ми, которая получила наименование NTFS52. Интересно отметить, что были удалены
все остатки кода, до этого позволявшие устанавливать файловую систему HPFS.
Для этого поколения операционных систем Microsoft сочла нецелесообразным
переносить их на платформы Alpha (DEC), PowerPC, MIPS.

Осенью 2001 года Microsoft обновила операционную систему Windows 2000 Pro­
fessional до Windows XP (eXPerience). При этом она выпустила две редакции. Одна
из них представляла собой «облегченный» вариант системы для домашнего при­
менения. Она получила название Windows XP Home Edition. Эту операционную
систему Microsoft считает основной для современного персонального компьюте­
ра. Вторая — полноценная система с предназначением работать в качестве рабо­
чей станции, которая, как правило, подключается к локальной вычислительной
сети с выходом в Интернет. Эти операционные системы, прежде всего, получили
возможность выполнять приложения, которые использовали оба подмножества
функций Win32 API: и для Windows 9x, и для систем класса NT. Системы Windows
ХР в еще большей мере стали мультимедийными и ориентированными на Интер­
нет. Интересным новшеством для систем Windows стала возможность организо­
вать одновременную работу с компьютером двух пользователей: для одного непо­
средственно (локально), а для второго удаленно с другого компьютера. В принципе,
в этом нет ничего особенного. Например, операционная система UNIX позволяет
без проблем организовать не только такое взаимодействие, но и полноценную муль-
титерминальную работу. Но для систем Windows — это явно новая возможность.

Наконец, весной 2003 года на замену семейству Windows 2000 вышли несколько сер­
верных операционных систем, которые получили в название число 2003. Это сле-

1 За счет специальных расширений, которые могут быть разработаны изготовителями аппаратуры,
допускают возможность работать на компьютерах, насчитывающих до 32 процессоров.

2 Подробней об этой файловой системе см. в главе 6.

382 Глава 11, Операционные системы Windows

дующие 32-разрядные операционные системы для микропроцессоров с архитек­
турой ia-32.

• Windows Small Business Server 2003 — предназначена для построения неболь­
ших локальных вычислительных сетей.

• Windows Server 2003 Web Edition — это самая «облегченная» система, она не
может выступать в роли контроллера домена и быть сервером приложений.

• Windows Server 2003 Standard Edition — основная многоцелевая операционная
система, пришедшая на смену Windows 2000 Server.

Q Windows Server 2003 Enterprise Edition — аналог Windows 2000 Advanced Server.

Q Windows Server 2003 Datacenter Edition.

Последние две операционные системы имеют разновидности для 64-разрядных
процессоров Itanium 2 производства компании Intel.

Ничего революционного эти системы не привнесли, но существенно обновили
предыдущие серверные операционные системы. В качестве основных особенностей
новых систем Microsoft отмечает упрощение администрирования, более безопас­
ную инфраструктуру и более высокую надежность, интеграцию в системы актив­
но продвигаемой технологии .NET (произносится как «дот нет»).

Основные особенности архитектуры
Наиболее принципиальным отличием между системами класса Windows 9x и Win­
dows NT является то, что у них разная архитектура.

Большинство операционных систем использует такую особенность современных
процессоров, как возможность работать в одном из двух режимов: привилегирован­
ном (режиме ядра, или режиме супервизора) и пользовательском (режиме выпол­
нения приложений). При описании своей системы Windows NT Microsoft для ука­
зания этих режимов использует термины kernel mode и user mode соответственно.
Программные коды, которые выполняются процессором в привилегированном
режиме, имеют доступ и к системным аппаратным средствам, и к системным дан­
ным. Чтобы защитить операционную систему и данные, располагающиеся в опе­
ративной памяти, от ошибок приложений или их преднамеренного вмешательства
в чужие вычисления, только системному коду, относящемуся к управляющей (су-
первизорной) части операционной системы, разрешают выполняться в привиле­
гированном режиме работы процессора. Все остальные программные модули дол­
жны выполняться в пользовательском режиме.

Поскольку при создании Windows NT разработчики хотели обеспечить ее мобиль­
ность, то есть легкую переносимость на другие платформы, они приняли решение
использовать только два уровня привилегий из четырех, имеющихся в микропро­
цессорах Intel семейства i80x86. Как мы уже знаем, нулевой уровень привилегий в
микропроцессорах с архитектурой ia32 обеспечивает возможность выполнять лю­
бые команды и иметь доступ ко всем регистрам процессора. Наименьшие приви­
легии имеются у кода, выполняемого в третьем кольце защиты (см. главу 4), кото­
рое и предназначается для выполнения обычных приложений. Напомним, что код,

Операционные системы Windows NT/2000/XP 3 8 3

работающий в этом режиме, не может ни при каких обстоятельствах получить до­
ступ к данным, расположенным в нулевом кольце защиты. Поэтому, если бы сис­
темный код использовал не два уровня привилегий, а все четыре, то появились бы
очевидные проблемы при переносе системы на другой процессор.

Системы типа Windows NT построены по микроядерной технологии. Конечно, их
ядро никак нельзя назвать маленьким, особенно в сравнении с ядром операцион­
ной системы QNX. Однако в целом архитектура Windows NT безусловно отвечает
идеям построения операционной системы, в которой управляющие модули орга­
низованы с четким выделением центральной части и взаимодействием этой части
с остальными по принципу клиент-сервер. Это означает, что в состав ядра включе­
ны только самые важные основообразующие управляющие процедуры, а осталь­
ные управляющие модули операционной системы вызываются из ядра как служ­
бы. Причем только часть служб использует процессор в режиме ядра, а остальные —
в пользовательском режиме, как и обычные приложения пользователей (рис. 11.2).
А для обеспечения надежности они располагаются в отдельном виртуальном ад­
ресном пространстве, к которому ни один модуль и ни одна прикладная програм­
ма, помимо системного кода, не может иметь доступа.

Приложение
пользователя

Приложение
пользователя

Подсистемы
окружения

Службы
операционой

системы

Процессы
поддержки

системы

Пользовательский режим

Привилегированный режим

Исполняющая система Windows NT

Микроядро

Диспетчер окон
и модули

графического
интерфейса

устройств

Уровень абстракции аппаратных средств

Рис. 11.2. Архитектура операционных систем класса Windows NT

384 Глава 11. Операционные системы Windows

Ядро (микроядро) систем Windows NT выполняет диспетчеризацию задач (точ­
нее, потоков), обработку прерываний и исключений, поддерживает механизмы
синхронизации потоков и процессов, обеспечивает взаимосвязи между всеми ос­
тальными компонентами операционной системы, работающими в режиме ядра.
Если компьютер имеет микропроцессорную архитектуру (системы класса Win­
dows NT поддерживают симметричную мультипроцессорную архитектуру1), ядро
повышает его производительность, синхронизируя работу процессоров.

Из рисунка видно, что помимо собственно ядра в том же режиме супервизора ра­
ботают модуль HAL (Hardware Abstraction Layer — уровень абстракции аппарат­
ных средств), низкоуровневые драйверы устройств и исполняющая система Win­
dows NT, называемая Win32 Executive. Начиная с Windows NT 4.0 в режиме ядра
работают и диспетчер окон (Window Manager), который иногда называют «User»,
и модули графического интерфейса устройств (GDI).

Программное обеспечение, абстрагирующее работу исполняющей системы и соб­
ственно ядра от специфики работы конкретных устройств и контроллеров, во мно­
гом упрощает перенос операционной системы на другую платформу. Оно пред­
ставлено в системе модулем динамически связываемой библиотеки HAL.DLL.

Одним из важнейших компонентов операционных систем Windows NT/2000/XP,
который появился вследствие следования микроядерному принципу их построе­
ния, является исполняющая система (Win32 Executive). Она выполняет такие ба­
зовые функции операционной системы, как управление процессами и потоками,
управление памятью, взаимодействие между процессами, защиту, операции вво­
да-вывода (включая файловые операции, кэширование, работу с сетью и некото­
рые другие). Ниже перечислены компоненты исполняющей системы.

• Диспетчер процессов (Process Manager) создает, отслеживает и удаляет про­
цессы. Для выполнения этих функций создается соответствующий дескриптор,
определяются базовый приоритет процесса и карта адресного пространства,
создается и поддерживается список всех готовых к выполнению потоков.

• Диспетчер виртуальной памяти (Virtual Memory Manager) предоставляет вир­
туальную память выполняющимся процессам. Каждый процесс имеет отдель­
ное адресное пространство, используется страничное преобразование линей­
ных адресов в физические, поэтому потоки одного процесса не имеют доступа к
физическим страницам, отведенным для другого процесса.

Q Диспетчер объектов (Object Manager) создает и поддерживает объекты. В част­
ности, поддерживаются дескрипторы объектов и атрибуты защиты объектов.
Объектами считаются каталоги, файлы, процессы и потоки, семафоры и собы­
тия и многие другие.

• Монитор безопасности (Security Reference Monitor) обеспечивает санкциони­
рование доступа к объектам, контроль полномочий доступа и ведение аудита.
Совместно с процессом входа в систему (logon) и защищенными подсистемами
реализует модель безопасности Windows NT.

Микроядро может одновременно выполняться на всех процессорах, а потоки одного процесса могут
одновременно выполняться на нескольких процессорах.

Операционные системы Windows NT/2000/XP 3 8 5

Q Диспетчер ввода-вывода (Input/Output Manager) управляет всеми операция­
ми ввода-вывода в системе. Организует взаимодействие и передачу данных
между всеми драйверами, включая драйверы файловых систем, драйверы фи­
зических устройств, сетевые драйверы, для чего используются структуры дан­
ных, называемые пакетами запросов на ввод-вывод (I/O Request Packet, IRP).
Запросы на ввод-вывод обрабатываются в порядке приоритетов, а не в порядке
их поступления. Операции ввода-вывода кэшируются, этим процессом управ­
ляет диспетчер кэша (Cache Manager). Поддерживаются различные файловые
системы, причем драйверы1 этих систем воспринимаются диспетчером ввода-
вывода как драйверы физических устройств. Специальное сетевое системное
программное обеспечение (редиректор2 и сервер3) трактуются как сетевые драй­
веры и также имеют непосредственную связь с диспетчером ввода-вывода.

Q Средства вызова локальных процедур (Local Procedure Call, LPC) обеспечивают
выполняющиеся подсистемы среды выполнения и приложения пользователей
коммуникационным механизмом, в котором взаимодействие строится по прин­
ципу клиент-сервер.

Для системных данных и программного кода, работающего в режиме ядра, не пре­
дусмотрено никакой защиты. Это означает, что некорректно написанный драйвер
устройства может разрушить вычисления, выполняемые собственно операцион­
ной системой. Поэтому необходимо очень осторожно относиться к выбору таких
драйверов и использовать только те, которые были тщательно оттестированы. По­
следние версии операционных систем, включая поколение Windows 2000, имеют
специальный механизм проверки цифровой подписи Microsoft, наличие которой
означает, что драйвер прошел всестороннее тестирование. Это должно выступать
гарантом качества системного кода.

Остальные системные модули операционной системы, относящиеся к организа­
ции соответствующей среды выполнения, выполнению ряда функций, связанных
с обеспечением защиты, модуль серверного процесса, который обеспечивает воз­
можность приложениям обращаться к операционной системе с соответствующи­
ми запросами, и многие другие выполняются в пользовательском режиме работы
процессора.

Диспетчеризация в системах Windows NT/2000/XP организована почти так же,
как и в системах Windows 95/98/ME. Все эти операционные системы относятся к
мультизадачным и поддерживают потоковые вычисления. 16-разрядные прило­
жения Windows, работая на одной виртуальной машине, разделяют процессорное
время кооперативно. 32-разрядные потоки разделяют процессорное время, вытес­
няя друг друга через некоторые моменты времени. При этом диспетчер задач (пла-

1 Здесь можно было бы употребить термин «системы управления файлами».
2 Этот модуль перехватывает запрос па ввод-вывод и проверяет, к каким ресурсам он относится, ло­

кальным (расположены непосредственно на том же компьютере) пли удаленным (предоставлены в
общий доступ через сеть и могут быть расположены на любом компьютере).

3 В данном контексте речь идет о модуле системного сетевого программного обеспечения, который
получает запрос па обслуживание или ресурс от другого компьютера (посылаемый им после про­
хождения через свой модуль редиректора) и генерирует соответствующий запрос к операционной
системе.

3 8 6 Глава 11. Операционные системы Windows

нировщик потоков) работает с несколькими очередями. Всего существует 32 уровня
приоритетов — от 0 до 31. Распределение приоритетов между выполняющимися
процессами и потоками осуществляется по следующим правилам:

Q Low — 4 (низкий приоритет);

Q BelowNormal — ниже среднего;

Q Normal — 8 (нормальный приоритет);

• AboveNormal — выше среднего;

• High — 16 (высокий приоритет);

• RealTime — 24 (приоритет реального времени).

Собственно исполняемыми элементами процесса являются потоки. Как мы уже
знаем, каждый процесс имеет, по крайней мере, один поток. Поток получает базо­
вый приоритет от своего процесса, а фактическое значение приоритета присваива­
ется потоку операционной системой. Те потоки, которые выполняются на перед­
нем плане (foreground), получают приращение приоритета относительно базового.
У потоков, выполняемых в фоновом режиме (background), приоритет уменьшает­
ся. По умолчанию все задачи запускаются с нормальным приоритетом. Обычный
пользователь может изменить приоритет задачи вплоть до высокого. Приоритет
реального времени может присвоить только администратор.

Используемые дисциплины диспетчеризации у всех этих операционных систем
одинаковы. Однако если внимательно понаблюдать за тем, как ведут себя системы
Windows NT/2000/XP и системы Windows 95/98/ME, выполняя параллельно
множество запущенных приложений, то можно без особого труда заметить, что
многозадачность у первых реализована значительно лучше. Причина такого явле­
ния заключается в том, что с разными затратами времени происходят изменения в
подсистеме управления памятью. При переключении с одного вычислительного
процесса на другой необходимо поменять значение регистра CR3, с помощью ко­
торого линейные адреса команд и операндов пересчитываются в реальные физи­
ческие. В операционных системах Windows NT/2000/XP (как и в OS/2, и в Linux)
используется вся та аппаратная поддержка двухэтапного вычисления физических
адресов, которая имеется в микропроцессорах. То есть при переключении процес­
сора на новую задачу смена значения регистра CR3, а значит, и замена всех деск-
рипторных таблиц, описывающих местонахождение виртуальных страниц процесса
и его потоков, осуществляется автоматически. А в системах Windows 95/98/ME
вместо инициализации одного регистра, указывающего на адрес таблицы PDE (см.
в главе 4 описание страничного способа организации виртуальной памяти в мик­
ропроцессорах i80x86), операционная система переписывает все содержимое це­
лой физической страницы, на которую указывает регистр CR3 вместо простой за­
мены содержимого этого регистра. И поскольку такая операция требует совершенно
иных затрат времени, мы и наблюдаем тот факт, что многозадачность в системах
Windows 95/98/ME реализована намного хуже, чем в системах класса NT.
Полезно знать, что операционные системы, предназначенные для построения ра­
бочих станций (ранее Workstation, позже Professional), и серверные варианты стро­
ятся практически на одном ядре, но имеют разные настройки в реестре. Более того,

Операционные системы Windows NT/2000/XP 3 8 7

их дистрибутивы почти полностью совпадают (более чем на 90 %). Однако серве­
ры не имеют ограничений на количество сетевых подключений к ним (эти ограни­
чения определяются только количеством приобретенных лицензий) и позволяют
установить и выполнять различные сетевые службы, например службу именова­
ния Windows для Интернета (Windows Internet Name Service, WINS), систему
доменного именования (Domain Name System, DNS), протокол управления дина­
мической адресацией компьютеров (Dynamic Host Control Protocol, DHCP), кон­
троллер домена (domain controller) в локальной вычислительной сети и многие
другие. В доказательство этому можно упомянуть известную утилиту NTSwitch.exe,
которая при запуске превращает рабочую станцию в сервер или, наоборот, сер­
вер — в рабочую станцию.

В заключение заметим, что мы очень кратко познакомились с архитектурой опера­
ционных систем Windows NT/2000/XP. Для более детального изучения целого
ряда вопросов, связанных с этой темой, рекомендую такие известные книги, как
[16,42].

Модель безопасности
При разработке всех операционных систем семейства Windows NT/2000/XP ком­
пания Microsoft уделяла самое пристальное внимание обеспечению информаци­
онной безопасности. Как следствие, эти системы предоставляют надежные меха­
низмы защиты, которые просты в использовании и легки в управлении. Сертификат
безопасности на соответствие уровню С2 имеют операционные системы Win­
dows NT 3.5 и Windows NT 4.0. Операционные системы семейства Windows 2000
имеют еще более серьезные средства обеспечения безопасности, однако на момент
написания этой книги они еще не сертифицировались.

В отличие от операционных систем семейства Windows 9x, как, впрочем, и от сис­
темы OS/2, в разработке первой версии которой Microsoft тоже принимала учас­
тие, системы класса Windows NT имеют совершенно иную модель безопасности.
Средства защиты изначально глубоко интегрированы в операционную систему.
Подсистема безопасности осуществляет контроль за тем, кто и какие действия со­
вершает в процессе работы, к каким объектам пытается получить доступ. Все дей­
ствия пользователя, в том числе и обращения ко,всем объектам, как нетрудно до­
гадаться, на самом деле могут быть совершены только через соответствующие
запросы к операционной системе. Операционная система использует этот факт и
имеет все необходимые механизмы для тотального контроля всех запросов к ней.
Запрашиваемые у операционной системы операции и обращения к конкретным
объектам разрешаются, только если у пользователя для этого имеются необходи­
мые права и/или разрешения. При этом обязательно следует различать эти поня­
тия.

Права (rights) определяют уровень полномочий при работе в системе. Например,
если нет права форматировать диск, то выполнить это действие пользователь не
сможет. Кстати, конкретно таким правом при работе с Windows NT/2000/XP об­
ладают только члены группы администраторов. Можно говорить и о праве изме­
нения настроек дисплея, и о праве работать на компьютере. Очевидно, что пере-

3 8 8 Глава 11, Операционные системы Windows

чень прав является достаточно большим. Права могут быть изменены посредством
применения соответствующих политик.

Термин разрешение (permission) обычно применяют по отношению к конкретным
объектам, таким как файлы и каталоги, принтеры и некоторые другие. Можно го­
ворить о разрешениях на чтение, на запись, на исполнение, на удаление и проч.
Например, можно иметь разрешения на чтение и запуск некоторой программы, но
не иметь разрешений на ее переименование и удаление.

Важно, что права имеют преимущество перед разрешениями. Например, если у
некоторого пользователя нет разрешения «стать владельцем» того или иного фай­
лового объекта, но при этом мы дадим ему право стать владельцем любого объекта,
то он, дав запрос на владение упомянутым объектом, получит его в свою собствен­
ность.

Модель безопасности Windows NT гарантирует, что не удастся получить доступ к ее
объектам без того, чтобы предварительно пройти аутентификацию и авторизацию.
Для того чтобы иметь право работать на компьютере, необходимо иметь учетную
запись (account). Учетные записи хранятся в базе данных учетных записей, которая
представлена файлом SAM (Security Account Management). Каждая учетная запись
в базе данных идентифицируется не по имени, а по специальному системному иден­
тификатору. Такой идентификатор в Windows NT называется идентификатором
безопасности (Security IDentifier, SID). Подсистема безопасности этих операцион­
ных систем гарантирует уникальность идентификаторов безопасности. Они генери­
руются при создании новых учетных записей и никогда не повторяются. Имеются
встроенные учетные записи, но они тоже уникальны. Помимо учетных записей
пользователей имеются учетные записи групп. Учетные записи имеют и компьюте­
ры. Идентификаторы несут в себе информацию о типе учетной записи.

Учетные записи могут быть объединены в группы. Имеются встроенные группы.
Принадлежность учетной записи к одной из встроенных групп определяет полно­
мочия (права, привилегии) пользователя при работе на этом компьютере. Напри­
мер, члены встроенной группы администраторов имеют максимально возможные
права при работе на компьютере (встроенная учетная запись администратора рав­
носильна учетной записи суперпользователя в UNIX-системах).

Вновь создаваемые учетные записи групп (их называют группами безопасности)
используются для определения разрешений на доступ к тем или иным объектам.
Для этого каждый объект может иметь список управления доступом (Access Control
List, ACL)1. Список ACL состоит из записей — АСЕ (Access Control Entry). Каж­
дая запись списка состоит из двух полей. В первом поле указывается некий иден­
тификатор безопасности. Во втором поле располагается битовая маска доступа,
описывающая, какие разрешения указаны в явном виде, какие не запрещены,
и какие запрещены в явном виде для этого идентификатора. При использовании
файловой системы NTFS список ACL реально представлен списком DACL (Dis­
cretionary Access Control List). Ранее (в главе 6) был изложен механизм работы

На самом деле файловые объекты (файлы и каталоги с файлами) имеют списки управления досту
ном, только если они расположены на дисках с файловой системой NTFS.

Операционные системы Windows NT/2000/XP 389

разрешений NTFS, причем описаны разрешения как для прежней версии NTFS,
использовавшиеся вплоть до Windows NT 4.0, так и для файловой системы NTFS5,
которая появилась в Windows 20001. Здесь мы лишь заметим, что рекомендуется
составлять списки управления доступом, пользуясь не учетными записями пользо­
вателей, а учетными записями групп. Во-первых, это позволяет существенно со­
кратить список управления доступом, поскольку групп обычно намного меньше,
чем пользователей. Как результат, список будет намного короче, понятнее и удоб­
нее для последующего редактирования. Во-вторых, в последующем можно будет
создать нового пользователя (и не единожды) и добавить его в соответствующие
группы, что практически автоматически определит его разрешения на те или иные
объекты как члена определенных групп. Наконец, в-третьих, список будет быст­
рее обрабатываться операционной системой.

Каждый пользователь должен быть членом как минимум одной встроенной груп­
пы и может быть членом нескольких групп безопасности, создаваемых в процессе
эксплуатации операционной системы. При регистрации пользователь получает так
называемый маркер доступа, который содержит, помимо идентификатора безопас­
ности учетной записи пользователя, все идентификаторы групп, в которые пользо­
ватель входит. Именно этот маркер сопровождает любой запрос на получение ре­
сурса (объекта), который передается операционной системе.

Итоговые разрешения на доступ к объектам, имеющим списки управления досту­
пом, вычисляются как сумма разрешений, определенных для каждой из групп.
И только явный запрет на разрешение перечеркивает сумму разрешений, которая
получается для данного пользователя.

Операционные системы Windows NT/2000/XP обеспечивают защиту на локаль­
ном уровне. Это означает, что механизмы защиты работают на каждом компьюте­
ре с такой операционной системой. Однако это имеет и обратную сторону. Дело в
том, что учетные записи пользователей и групп локальны: они действуют только
на том компьютере, где их создали. Если же есть необходимость обратиться к об­
щим ресурсам компьютера через сеть, нужно, чтобы для пользователя, который
выполняет такое обращение к удаленным объектам, была создана такая же учет­
ная запись. Поскольку становится затруднительным обеспечить наличие учетных
записей для каждого пользователя на всех тех компьютерах, с ресурсами которых
ему необходимо работать, пользуясь вычислительной сетью, в свое время была
предложена технология доменных сетей. В домене, который представляет собой
множество компьютеров, должен быть выделен сервер со всеми учетными запися­
ми этого домена. Такой сервер называют контроллером домена. Учетные записи
домена2 в отличие от локальных учетных записей, имеющихся на каждом компыо-

' В новых серверных операционных системах Windows 2003 Server используется новая версия системы
управления файлами, которая обеспечивает существенное увеличение производительности при рабо­
те с файлами. Версия файловой системы в этих операционных системах осталась прежней — NTFS5.

2 На контроллере домена, работающем под управлением Windows NT 4.0 Server, база с учетными за­
писями домена по-прежнему представлена файлом SAM. На контроллерах домена, работающих под
управлением Windows 2000/2003 Server, база с учетными записями домена находится в файле
NTDS.DIT, поскольку организация доменов в этих операционных системах возможна только при
установке службы Active Directory.

3 9 0 Глава 11. Операционные системы Windows

тере с операционной системой типа Windows NT, являются перемещаемыми: они
могут перемещаться с контроллера домена на любой другой компьютер этого до­
мена. В результате, имея множество компьютеров, объединенных в домен, и кон­
троллер домена, на котором созданы все необходимые учетные записи, мы можем
использовать эти учетные записи для управления доступом к различным ресур­
сам. Более того, мы можем контролировать использование этих ресурсов и регис­
трировать попытки несанкционированного доступа к тем или иным объектам. Кон­
троль за использованием прав и разрешений, а также их регистрация называется
аудитом.

Распределение оперативной памяти
В операционных системах типа Windows NT тоже используется плоская модель
памяти. Однако схема распределения виртуального адресного пространства рази­
тельно отличается от модели памяти Windows 9x. Прежде всего, в отличие от
Windows 9x, в гораздо большей степени задействуется ряд серьезных аппаратных
средств защиты, имеющихся в микропроцессорах, а также применено принципи­
ально другое логическое распределение адресного пространства.

Все системные программные модули находятся в своих собственных виртуальных
адресных пространствах, и доступ к ним со стороны прикладных программ невоз­
можен. Центральная супервизорная часть системы, состоящая, как мы теперь зна­
ем, из микроядра, исполняющей системы (Win32 executive), модуля обеспечения
аппаратной независимости, графического интерфейса устройств и оконного ме­
неджера, а также низкоуровневых драйверов устройств, работает в нулевом коль­
це защиты в отдельном адресном пространстве.

Остальные программные модули самой операционной системы, которые выступа­
ют как серверные процессы по отношению к прикладным программам (клиентам),
функционируют также в собственном системном виртуальном адресном простран­
стве, невидимом и недоступном для прикладных процессов. Правда, из-за того,
что эти программные модули расположены в другом кольце защиты, они изолиро­
ваны от ядра системы. Логическое распределение адресных пространств иллюст­
рирует рис. 11.3.

Прикладным программам выделяется 2 Гбайт1 локального (собственного) линей­
ного (неструктурированного) адресного пространства от границы 64 Кбайт до
2 Гбайт (первые 64 Кбайт полностью недоступны). Прикладные программы изо­
лированы друг от друга, хотя могут общаться через буфер обмена (clipboard), ме­
ханизмы DDE (Dynamic Data Exchange — динамический обмен данными) и OLE
(Object Linking and Embedding — связывание и внедрение объектов).

В верхней части каждой области прикладной программы размером по 2 Гбайт раз­
мещен код системных библиотек DLL кольца защиты 3, который перенаправляет
вызовы в совершенно изолированное адресное пространство, где содержится уже
собственно системный код. Этот системный код, выступающий как серверный
процесс (server process), проверяет значения параметров, исполняет запрошенную

1 В серверных версиях Windows 2000 эта граница проходит выше, приложениям выделяется до 3 Гбайт.

Операционные системы Windows NT/2000/XP 3 9 1

функцию и пересылает результаты назад в адресное пространство прикладной
программы. Хотя серверный процесс сам по себе остается процессом прикладного
уровня, он полностью защищен от вызывающей его прикладной программы и изо­
лирован от нее.

ц i оаит

2 Гбайт

4 Кбайт

Код ядра
(работает

в кольце защиты 0)

32-разрядные
библиотеки DLL

клиентской стороны

32-разрядные
прикладные программы

(у каждой программы
собственное
виртуальное

пространство памяти)

16-разрядные
виртуальные машины

к
>

<

Процесс системного
сервера

Прикладные программы
обращаются к библиотекам

DLL, которые
перенаправляют обращения

к системе

Этот системный код
находится в собственном
адресном пространстве

и недоступен вызывающим
его процессам

Рис. 11.3. Модель распределения виртуальной памяти в Windows NT

Между отметками 2 и 4 Гбайт расположены низкоуровневые системные компо­
ненты Windows NT кольца защиты 0, в том числе ядро, планировщик потоков и дис­
петчер виртуальной памяти. Системные страницы в этой области наделены при­
вилегиями супервизора, которые задаются физическими схемами колец защиты
процессора. Это делает низкоуровневый системный код невидимым и недоступ­
ным по записи для программ прикладного уровня, но приводит к падению произ­
водительности из-за переходов между кольцами.

Для 16-разрядных прикладных Windows-программ операционные системы типа
Windows NT реализуют сеансы Windows on Windows (WOW). В отличие от Win-

3 9 2 Глава 11. Операционные системы Windows

dows 9x, система Windows NT дает возможность выполнять 16-разрядные Win­
dows-программы индивидуально в собственных пространствах памяти или совмест­
но в разделяемом адресном пространстве. Почти во всех случаях 16- и 32-разрядные
прикладные Windows-программы могут свободно взаимодействовать, используя
механизм OLE, независимо от того, выполняются они в отдельной или общей па­
мяти. Собственные прикладные программы и сеансы WOW выполняются в режи­
ме вытесняющей многозадачности, основанной на управлении отдельными пото­
ками. Несколько 16-разрядных прикладных Windows-программ в одном сеансе
WOW выполняются в соответствии с кооперативной моделью многозадачности.
Windows NT может также открыть в многозадачном режиме несколько сеансов
DOS. Поскольку Windows NT имеет полностью 32-разрядную архитектуру, не су­
ществует теоретических ограничений на ресурсы компонентов GDI и User.

При запуске приложения создается процесс со своей информационной структу­
рой. В рамках процесса запускается поток выполнения. При необходимости этот
поток может инициировать запуск множества других потоков, которые будут вы­
полняться параллельно в рамках одного процесса. Очевидно, что множество запу­
щенных процессов также выполняются параллельно, и каждый из процессов мо­
жет представлять собой мультизадачное (многопоточное) приложение. Задачи
(потоки) в рамках одного процесса выполняются в едином виртуальном адресном
пространстве, а процессы выполняются в различных виртуальных адресных про­
странствах. Короче, все это почти полностью напоминает Windows 9x.

Отображение различных виртуальных адресных пространств исполняющихся про­
цессов на физическую память осуществляется по принципам страничной органи­
зации виртуальной памяти.

Процессами выделения памяти, ее резервирования, освобождения и замещения
страниц управляет диспетчер виртуальной памяти (Virtual Memory Manager,
VMM) Windows NT. В своей работе этот компонент реализует сложную страте­
гию учета требований к коду и данным процесса для минимизации обращений к
диску, поскольку реализация виртуальной памяти часто приводит к большому
количеству дисковых операций. Для взаимодействия между выполняющимися
приложениями и между приложениями и кодом самой операционной системы
используются соответствующие механизмы защиты памяти, поддерживаемые ап­
паратурой микропроцессора.

Каждая виртуальная страница памяти, отображаемая на физическую страницу,
переносится в так называемый страничный кадр (page frame). Прежде чем код или
данные можно будет переместить с диска в память, диспетчер виртуальной памя­
ти должен найти или создать свободный или нулевой (заполненный нулями) стра­
ничный кадр. Заметим, что заполнение страниц нулями представляет собой одно
из требований стандарта на системы безопасности уровня С2, принятого прави­
тельством США. Страничные кадры перед своим выделением должны заполнять­
ся нулями, чтобы исключить возможность использования их предыдущего содер­
жимого другими процессами. Чтобы кадр можно было освободить, необходимо
скопировать на диск изменения в его странице данных, и только после этого кадр
можно будет повторно использовать. Программы, как правило, не меняют страниц
кода. Такие страницы можно просто расформировать (удалить).

Операционные системы Windows NT/2000/XP 3 9 3

Диспетчер виртуальной памяти может быстро и относительно легко удовлетво­
рить программные прерывания типа страничной ошибки (page fault). Что касается
аппаратных прерываний типа страничной ошибки, то они приводят к необходи­
мости подкачки нужных страниц (paging), что снижает производительность систе­
мы. Мы уже говорили (см. главу 3), что в Windows NT, к большому сожалению,
для замещения страниц выбрана дисциплина FIFO, а не более эффективная дис­
циплина LRU или LFU, как это сделано в других операционных системах.

Когда процесс использует код или данные, находящиеся в физической памяти,
система резервирует место для этой страницы в файле подкачки Pagefile.sys на диске.
Это делается с расчетом на то, что данные потребуется выгрузить на диск. Файл
Pagefile.sys представляет собой зарезервированный блок дискового пространства,
который используется для выгрузки страниц, помеченных как «грязные», для ос­
вобождения физической памяти. Заметим, что этот файл может быть как непре­
рывным, так и фрагментированным; он может быть расположен на системном дис­
ке или на любом другом и даже на нескольких дисках. Размер этого страничного
файла ограничивает объем данных, которые могут храниться во внешней памяти
при использовании механизмов виртуальной памяти. По умолчанию размер фай­
ла подкачки в операционных системах Windows NT 4.0 устанавливается равным
объему физической памяти плюс 12 Мбайт, однако пользователь имеет возмож­
ность изменить его размер по своему усмотрению. В следующих системах (Win­
dows 2000/ХР) начальный размер страничного файла подкачки берется равным
полуторакратному объему физической оперативной памяти. То есть, например,
для компьютера, имеющего 512 Мбайт оперативной памяти, по умолчанию раз­
мер файла Pagefile.sys равен 768 Мбайт. Проблема нехватки виртуальной памяти
часто может быть решена за счет увеличения размера файла подкачки. Файл под­
качки может быть не один — система поддерживает до 16 файлов подкачки, поэто­
му лучше создать их несколько и разместить на быстрых жестких дисках.

В системах Windows NT 4.0 объекты, создаваемые и используемые приложениями
и операционной системой, хранятся в так называемых пулах памяти (memory
pools). Доступ к этим пулам может быть получен только в привилегированном ре­
жиме работы процессора, в котором функционируют компоненты операционной
системы. Поэтому для того чтобы объекты, хранящиеся в пулах, стали видимы
потокам выполнения приложений, эти потоки должны переключиться в привиле­
гированный режим.

Перемещаемый, или нерезидентный, пул (paged pool) содержит объекты, которые
могут быть при необходимости выгружены на диск. Неперемещаемый, или рези­
дентный, пул (nonpaged pool) содержит объекты, которые должны постоянно на­
ходиться в памяти. В частности, к такого рода объектам относятся структуры
данных, используемые процедурами обработки прерываний, а также структуры,
требуемые для предотвращения конфликтов в мультипроцессорных системах.
Исходный размер пулов определяется объемом физической памяти, доступной
Windows NT. Впоследствии размер пула устанавливается динамически и в зави­
симости от работающих в системе приложений и служб может изменяться в Щиро-
ком диапазоне значений.

3 9 4 Глава 11. Операционные системы Windows

Вся виртуальная память в Windows NT подразделяется на зарезервированную
(reserved), выделенную (committed) и доступную (available).

Q Зарезервированная память представляет собой набор непрерывных адресов,
которые диспетчер виртуальной памяти (VMM) выделяет для процесса, но не
учитывает в общей квоте памяти процесса до тех пор, пока она не будет факти­
чески задействована. Когда процессу требуется выполнить запись в память, ему
выделяется нужный объем из зарезервированной памяти. Если процессу по­
требуется больший объем памяти, то при наличии в системе доступной памяти
дополнительная память может быть одновременно зарезервирована и исполь­
зована.

• Память выделена, если диспетчер виртуальной памяти резервирует для нее
место в файле Pagefile.sys на тот случай, когда потребуется выгрузить содержи­
мое памяти на диск. Объем выделенной памяти процесса характеризует факти­
чески потребляемый им объем памяти. Выделенная память ограничивается
размером файла подкачки. Предельный объем выделенной памяти в системе
(commit limit) определяется тем, какой объем памяти можно выделить процес­
сам без увеличения размеров файла подкачки. Если в системе достаточно дис­
кового пространства, то файл подкачки может быть увеличен, тем самым будет
расширен предельный объем выделенной памяти.

• Вся память, которая не является ни выделенной, ни зарезервированной, явля­
ется доступной. К доступной относится свободная память, обнуленная память
(освобожденная и заполненная нулями), а также память, находящаяся в списке
ожидания (standby list), то есть та, которая была удалена из рабочего набора
процесса, но может быть затребована вновь.

Контрольные вопросы и задачи

Вопросы для проверки
1. Опишите основные архитектурные особенности операционных систем семей­

ства Windows 9x.

2. Расскажите об организации мультизадачное™ в операционных системах Win­
dows. Какие методы диспетчеризации используются в этих операционных сис­
темах?

3. Расскажите об управлении памятью в операционных системах семейства Win­
dows 9х. Приведите карту распределения памяти и объясните причины невы­
сокой надежности этих операционных систем.

4. Перечислите используемые планировщиком механизмы, которые обеспечивают
бесперебойную работу системы и быструю реакцию на действия пользователя.

5. Опишите основные архитектурные особенности операционных систем семей­
ства Windows NT.

6. Перечислите функции ядра (микроядра). Какова роль исполняющей системы
(Win32 executive)? Какие основные компоненты входят в ее состав?

Контрольные вопросы и задачи 3 9 5

7. Какие функции выполняют компоненты Window Manager, GDI и драйверы
графических устройств? Зачем их код получил нулевой уровень привилегий?
Укажите положительные и отрицательные стороны этого решения.

8. Изложите основные идеи модели безопасности, принятой в системах Win­
dows NT. Что следует понимать под терминами «права» и «разрешения»? Чем
определяются права конкретного пользователя?

9. Что представляет собой список управления доступом? Расскажите о разреше­
ниях файловой системы NTFS. Что такое SID?

10. Что означает локальность учетной записи? Бывают ли глобальные (переме­
щаемые) учетные записи? Что такое домен? Какую роль играет контроллер
домена?

11. Расскажите об управлении памятью в операционных системах семейства Win­
dows NT. Приведите карту распределения памяти и объясните причины высо­
кой надежности этих операционных систем.

Задания
1. Изучите работу утилиты SysMon.exe (системный монитор, System monitor), вхо­

дящей в состав операционных систем Windows 9x. Исследуйте загрузку цент­
рального процессора и подсистемы управления памятью (использование опе­
ративной памяти и файла подкачки) при запуске ресурсоемких приложений
(например, Adobe Photoshop или аналогичных ему в плане расходования вы­
числительных ресурсов).

2. Изучите работу утилиты PerfMon.exe (системный монитор, Performance mo­
nitor), входящей в состав операционных систем Windows NT/2000/XP. Ис­
следуйте загрузку центрального процессора и подсистемы управления памятью
(использование оперативной памяти и файла подкачки) при запуске ресурсо­
емких приложений (например, Adobe Photoshop или аналогичных ему в пла­
не расходования вычислительных ресурсов).

V

Список терминов

Термин

Access

Access Control Entry

Access Control List

Access mask

Account

Account name

Active Directory

Allocation block

Application Program Interface

Auditing

Available (memory)

Background session

Bad

Bad block list

Band

Base Input-Output System

Batch

Binary Tree

Bit map

Bit Test and Reset

Bitmap block list

Boot block

Boot manager

Boot Record

Bootstrap loader

Cache Manager

Capabilities

Аббревиатура

ACE

ACL

API

BIOS

B-Tree

BTS

BR

Перевод

Обращение

Запись списка управления доступом

Список управления доступом

Маска доступа

Учетная запись

Входное, или учетное, имя

Активный каталог

Блок размещения

Интерфейс прикладного
программирования

Аудит

Доступная (память)

Фоновый сеанс

Плохой (блок или кластер)

Список дефектных блоков

Полоса

Базовая подсистема ввода-вывода

Пакет, пакетный (файл)

Двоичное дерево

Битовая карта

Проверка и установка бита

Список битовых карт

Загрузочный блок

Менеджер загрузки

Загрузочная запись

Процедура начальной загрузки

Диспетчер кэша

Полномочия

Список терминов

Термин Аббревиатура Перевод

3 9 7

Carry Flag

Chain

Change permissions

Change time

Chunk

Clean

Code Segment

Coder

Committed

Common Object Request
Broker Architecture

Configuration Manager

Consumable Resource

Conventional memory

Cooperating processes

Cooperative multitasking

Critical Section

Current Privilege Level

Cylinder

Cylinder-Head-Sector

Data Control Block

Deadlock

Deny

Descriptor Privilege Level

Desktop

Device Reference Table

Direct Memory Access

Directory

Directory band

Directory emergency free block list

CF

CS

CORBA

CR

CS

CPL

C-H-S

DCB

DPL

DRT

DMA

Флаг переноса

Цепочка

Изменение разрешений

Время последнего изменения атрибутов

Порция (данных)

Чистая (страница)

Сегмент кода

Кодировщик

Выделенная (память)

Общая архитектура посредника
объектных запросов

Диспетчер конфигурации

Расходуемый, или потребляемый, ресурс

Основная, или стандартная, память

Взаимодействующие процессы

Кооперативная многозадачность

Критическая секция

Текущий уровень привилегий

Цилиндр

Номера цилиндра, головки и сектора

Блок управления данными

Тупик, клинч

Запрет

Уровень привилегии сегмента,
определяемый его дескриптором

Рабочий стол

Таблица описания виртуальных
логических устройств

Прямой доступ к памяти

Каталог

Полоса каталогов

Dirty

Discretionary ACL

Disk cache

Disk Parameter Block

Disks Operating System

Domain controller

Domain Name System

Dynamic Data Exchange

DACI

DPB

DOS

DNS

DDE

Список свободных запасных блоков
каталогов

Грязная (страница), грязный (бит)

Дискреционный список ACL

Дисковый кэш

Блок параметров диска

Дисковая операционная система

Контроллер домена

Система доменного именования

Динамический обмен данными

продолжение ^>

398

Продолжение таблицы

Термин Аббревиатура

Dynamic Host Control Protocol DHCP

Dynamic Link Library DLL

Dynamic priority variation

Effective Group ID EGID

Effective Privilege Level EPL

Effective User ID EUID

Effective Performance

Embedded

Equipment table EQT

Execution priority

Expanded Memory Specification EMS

Extended

Extended Attributes EAs

Extended Instruction Pointer EIP

Extended Memory Specification XMS

Extensable Architecture

Extent

Fast File System FFS

Fault-Tolerant Networking

File Allocation Table FAT

File node F-node

File reference

File System access Group ID ' FSGID

File System access User ID FSUID

First Come First Served FCFS

First In First Out FIFO

First-class delivery

FixPak

FLEET Transport Layer FTL

Folder

Foreground boost

Foreground session

Foreground task

Form Disk FDisk

Список терминов

Перевод

Протокол управления динамической
адресацией компьютеров

Динамически связываемые библиотеки

Динамическое изменение приоритета

Эффективный идентификатор группы

Эффективный уровень привилегий

Эффективный идентификатор
пользователя

Эффективная производительность

Внедренная (система)

Таблица оборудования

Приоритет выполнения

Дополнительная (отображаемая) память

Расширенный (раздел)

Расширенные атрибуты

Расширенный указатель команд

Расширенная память

Расширяемая архитектура

Фрагмент (файла)

Быстродействующая файловая система

Надежная работа в сети

Таблица размещения файлов

Файловый узел

Файловая ссылка

Идентификатор доступа группы
к файловой системе

Идентификатор доступа пользователя
к файловой системе

Первым пришел, первым обслужен

Первый пришедший первым и выбывает

Первый класс доставки

Пакет исправлений и обновлений

Транспортный уровень FLEET

Папка

Повышение приоритета активной задачи

Активный сеанс

Активная задача (с которой сейчас
работает пользователь)

Формирование диска

Список терминов

Термин Аббревиатура

Gate

Generic

Global Descriptor Table GDT

Global Descriptor Table Register GDTR

Graphical Device Interface GDI

Graphical User Interface GUI

Group Identifier GID

Hardware Abstraction Layer HAL

Hardware Emulation Layer HEL

Head

Hidden

High Memory Area HMA

High Performance File System HPFS

Hint

Home

Host

HotFix

HotFix areas

HotFix map

I/O Request Packet IRP

Independed processes

Input/Output boost

Input/Output Manager

Input/Output Supervisor IOS

Installable File System IFS

Institute of Electrical IEEE

and Electronics Engineers

Instruction Pointer IP

Interface

Inter-Process Communication IPC

Interrupt

Interrupt Descriptor Table IDT

Interrupt Descriptor IDTR
Table Register
Interrupt gate

3 9 9

Перевод

Шлюз

Родовые (права доступа)

Глобальная таблица дескрипторов

Регистр глобальной таблицы
дескрипторов

Графический интерфейс устройства

Графический интерфейс пользователя

Идентификатор группы

Уровень абстракции аппаратных средств

Уровень эмуляции аппаратных средств

Головка (чтения/записи данных)

Невидимый (раздел)

Область памяти с большими адресами
(выше 1 Мбайт)

Высокопроизводительная файловая
система

Подсказка

Домашний (каталог)

Хост

Аварийное замещение

Области аварийного замещения

Карта аварийного замещения

Пакет запросов на ввод-вывод

Независимые процессы

Повышение приоритета ввода-вывода

Диспетчер ввода-вывода

Супервизор ввода-вывода

Устанавливаемая (монтируемая)
файловая система

Институт инженеров по электротехнике
и радиоэлектронике

Указатель команд

Интерфейс

Взаимодействие между процессами

Прерывание

Таблица дескрипторов прерываний

Регистр таблицы дескрипторов
прерываний

Коммутатор прерываний

продолжение &

400

Продолжение таблицы

Термин Аббревиатура

Interrupt if overflow INTO

Interrupt Request INTR

Interrupt Request IRQ

Job Control Language JCL

Journaling File System JFS

Kernel

Kernel mode

Last Come First Served

Lazy write

Least Frequently Used LFU

Least Recently Used LRU

Least Recently Used LRU

Load Balancing on the Fly

Local Descriptor Table Register LDTR

Local Procedure Call LPC

Log in

Logical block addressing LBA

Logical disk

Logical Disk Table LDT

Logical Volume Manager LVM

Login

Long File Name LFN

Mailbox

Mailslot

Main

Marshalling

Master

Master Boot Record MBR

Master File Table MFT

Memory pool

Modification time

Module

Module database

Multiprocess Executing

Multiprogramming with
a Variable number of Tasks MVT

Mutex

Список терминов

Перевод

Прерывание по переполнению

Запрос на прерывание

Линия запроса на прерывание

Язык управления заданиями

Файловая система с протоколированием

Ядро

Привилегированный режим, режим ядра,
или режим супервизора

Последним пришел, первым обслужен

Отложенная запись

Реже других используемый

Дольше других неиспользуемый

Дольше других неиспользуемый

Балансировка нагрузки на лету

Регистр локальной таблицы
дескрипторов

Вызов локальных процедур

Регистрация,вход в систему

Логическая адресация блоков

Логический диск

Таблица логических дисков

Менеджер логических дисков

Входное, или учетное, имя

Длинное имя файла

Почтовый ящик

Гнездо почтового ящика

Главная (часть, функция)

Сборка

Главный (накопитель)

Главная загрузочная запись

Главная таблица файлов

Пул памяти

Время последнего изменения

Модуль

База данных модулей

Мультипрограммное выполнение
вычислений

Мультипрограммирование с переменным
числом задач

Мьютекс

Список терминов

Термин Аббр<

Named pipe

National Computer
Security Center

Native

New Technology File System NTFS

Nice number, или nice

No Mask Interrupt NMI

Nonpaged pool

Non-preemptive multitasking

Non-System Bootstrap NSB

Object Linking and Embedding OLE

Object Manager

Overlay

Page

Page Descriptor PD

Page Directory Entry PDE

Page fault

Page frame

Page Table Entry РТЕ

Paged pool

Paging

Paging file

Partition

Partition Table PT

Password

Permission

Pipe

Platform independent

Pool

Portable Operating System POSIX
Interface for Computer
Environments

Power On Self Test POST

Preemptive multitasking

Primary

Primary scheduler

Priority

4 0 1

Перевод

Именованный канал

Национальный центр компьютерной
безопасности

Основная,естественная, или нативная
(среда)

Файловая система новой технологии

Относительный приоритет

Немаскируемое прерывание

Неперемещаемый, или резидентный, пул

Не вытесняющая многозадачность

Внесистемный загрузчик

Связывание и внедрение объектов

Диспетчер объектов

Оверлейная (структура)

Страница

Страничный дескриптор

Таблица каталога таблиц страниц

Страничная ошибка

Страничный кадр, физическая страница

Таблица страниц

Перемещаемый, или нерезидентный, пул

Подкачка страниц

Страничный файл

Раздел, часть (памяти или диска)

Таблица разделов

Пароль

Разрешение

Канал связи,конвейер, транспортер

Аппаратная независимость

Пул

Не зависимый от платформы системный

интерфейс для компьютерного окружения

Самотестирование при включении

компьютера

Вытесняющая многозадачность

Первичный (раздел)

Основной планировщик

Приоритет

продолжение ^>

402 Список терминов

Продолжение таблицы

Термин

Priority boost

Privilege Level

Process

Process Identifier

Process Manager

Producer-consumer

Profile

Program Status Word

Protected mode

Proxy

Queue

Random

Read ahead

Real mode

Redirector

Re-enterable

Re-entrance

Region

Registry

Regular

Release

Remote Procedure Call

Requested Privilege Level

Reserved

Reserved Sector

Response time

Reusable Resource

Right

Root

Root Directory

Rotational latency

Round Robin

Run Time Library

Scheduler

Secondary MBR

Second-class delivery

Sector

Аббревиатура

PL

PID

PSW

RPC

RPL

ResSecs

RR

RDir

RR

RTL

SMBR

Перевод

Повышение приоритета

Уровень привилегий

Процесс

Идентификатор процесса

Диспетчер процессов

Производитель-потребитель

Профиль

Слово состояния программы

Защищенный режим (работы процессора)

Представитель

Очередь

Случайный (выбор)

Упреждающее чтение

Реальный режим (работы процессора)

Редиректор

Реентерабельный (программный модуль)

Повторно входимый (программный
модуль)

Раздел, область (памяти)

Реестр

Регулярный (класс задач)

Освободить

Вызов удаленных процедур

Запрашиваемый уровень привилегий

Зарезервированная (память)

Зарезервированный сектор

Время отклика

Многократно используемый ресурс

Право

Корень

Корневой каталог

Время ожидания

Карусельная (дисциплина обслуживания)

Библиотека времени выполнения

Планировщик

Вторичная запись MBR

Второй класс доставки

Сектор

Список терминов

Термин

Security Account Management

Security Identifier

Security Reference Monitor

Seek time

Segment

Semaphore

Server Message Blocks

Server process

Set Interrupt Flag

Shell

Shell script

Shortcut

Shortest Job Next

Shortest Remaining Time

Shortest Seek Time First

Simultaneous Peripheral
Operation On-Line

Slave

Small

Socket

Spare block

Specific

Spool-file

Spool-reader

Spool-writer

Standard

Standby list

Starvation boost

Stream

Stub

Subdirectory

Super block

Аббревиатура

SAM

SID

SMB

STI

SJN

SRT

SSTF

Spooling

•

•

4 0 3

Перевод

База данных системы управления
учетными записями

Идентификатор безопасности

Монитор безопасности

Время на позиционирование (поиск)
цилиндра

Сегмент

Семафор

Блоки сообщений сервера (сетевая
технология)

Серверный процесс

Установить флаг прерываний

Оболочка, интерпретатор команд

Командный файл

Ярлык

Следующим выполняется самое короткое
задание

Время выделяется заданию, которому
осталось выполняться меньше всего
времени

Запрос с наименьшим временем поиска
выполняется первым

Имитация работы устройства в режиме
подключения

Вспомогательный (накопитель)

Малая (модель памяти)

Сокет

Резервный блок

Специфичные (права доступа)

Спул-файл

Спулер чтения

Спулер записи

Стандартные (права доступа)

Список ожидания

Повышение приоритета «забытой»
задачи

Поток данных

Заглушка

Вложенный каталог, подкаталог

Дополнительный блок

продолжение $•

V

404

Продолжение таблицы

Термин Аббревиатура Перевод

Список терминов

Superuser

Supervisor

Swap partition

Swap-file

Swapping

System ACL

System Bootstrap

System Object Model

System Resource

System stack

Tainted

Task

Task gate

Task Register

Task State Segment

Taskbar

Terminate and Stay Resident

Test and Set

Thin

Thread

Throughput

Time critical

Time sharing

Time slice

Timeslice scheduler

Track

Trap Flag

Trap gate

Turnaround time

Unit Control Block

Universal Serial Bus

Unmarshalling

Upper Memory Areas

User file-creation mask

User Identifier

User mode

SACL

SB

SOM

SR

TR

TSS

TSR

TS

TF

UCB

USB

UMA

umask

UID

Суперпользователь

Супервизор

Раздел подкачки

Файл подкачки

Замещение, подкачка, свопинг

Системный список ACL

Системный загрузчик

Модель системных объектов

Системный ресурс

Системный стек

Испорченная (страница)

Задача

Коммутатор задачи

Регистр задачи

Сегмент состояния задачи

Панель задач

Завершиться и остаться резидентным
в памяти

Проверка и установка

Легковесный (процесс)

Поток выполнения, тред, нить

Пропускная способность

Критические по времени (задачи)

Разделение времени

Квант времени

Планировщик квантования

Дорожка

Флаг трассировки

Коммутатор перехвата

Время оборота

Блок управления устройством
ввода-вывода

Универсальная последовательная шина

Разборка

Области верхней памяти

Пользовательская маска создания файла

Идентификатор пользователя

Пользовательский режим

Список терминов 4 0 5

Термин

Utilization

Variable priority

Virgin

Virtual Device

Virtual DOS Machine

Virtual FAT

Virtual Memory Manager

Virtual Memory System

Virtual Mode

Volume

Waiting time

Windows Internet Name Service

Word Counter

Workplace Shell

Аббревиатура

VD

VDM

VFAT

VMM

VMS

VM

WINS

wc
WPS

Перевод

Загрузка

Переменный приоритет

Абсолютно чистая (страница)

Виртуально устройство

Виртуальная DOS-машина

Виртуальная система FAT

Диспетчер виртуальной памяти

Система виртуальной памяти

Виртуальный режим

Том

Время ожидания

Служба именования Windows
для Интернета

Счетчик слов

Среда рабочего места, обеспечивающая
графический режим работы в OS/2

Список литературы

1. Александров Е. К., Рудня 10. Л. Микропроцессор 80386: как он работает и как
работают с ним: Учеб. пособие / Под ред. проф. Д. В. Пузанкова. — СПб.: Эл-
мор, 1994. 274 с.

2. Богимирский Б. С. Руководство пользователя ПЭВМ: В 2 ч. — СПб.: Ассоциа­
ция OILCO, 1992. 357с.

3. Гордеев А. В., Кучин Н. В. Проектирование взаимодействующих процессов
в операционных системах: Учеб. пособие. Л.: ЛИАП, 1991. 72 с.

4. Гордеев А. В., Молчанов А. Ю. Системное программное обеспечение: Учебник. —
СПб.: Питер, 2002. 736 с.

5. Гордеев А. В., Молчанов А. Ю. Применение сетей Петри для анализа вычисли­
тельных процессов и проектирования вычислительных систем: Учеб. пособие.
Л.: ЛИАП, 1993.80 с.

6. Гордеев А. В., Никитин А. В., Фильчаков В. В. Организация пакетов приклад­
ных программ: Учеб. пособие. Л.: ЛИАП, 1988. 78 с.

7. Гордеев А. В., Штепен В. А. Управление процессами в операционных системах
реального времени: Учеб. пособие. Л.: ЛИАП, 1988. 76 с.

8. Григорьев В. Л. Микропроцессор i486. Архитектура и программирование:
В 4 кн. - М.: Гранал, 1993.

9. Гудмэн Дж. Секреты жесткого диска. — Киев: Диалектика, 1994. 256 с.

10. Дейкстра Е. Взаимодействующие последовательные процессы // Языки про­
граммирования / Под ред. Ф. Женюи. — М.: Мир, 1972.

11. Дейтел Г. Введение в операционные системы: В 2 т. / Пер. с англ. Л. А. Теп-
лицкого, А. Б. Ходулева, В. С. Штаркмаиа; Под ред. В. С. Штаркмапа. — М.:
Мир, 1987.

12. Джордейи Р. Справочник программиста персональных компьютеров типа IBM
PC, XT и AT / Пер. с англ. — М.: Финансы и статистика, 1991. 544 с.

13. Дунаев С. UNIX system v. 4.2: Общее руководство. — М.: Диалог-наука, 1995.287 с.

14. Коваленко И. Н. QNX: Золушка в семье UNIX http://www.lgg.ru/-nigl/QNX/
doc/Kovalenko_cinderella.html. 1995.

15. Иртегов Д.В. Введение в операционные системы.— СПб.: БХВ-Петербург,
2002. 624 с.

http://www.lgg.ru/-nigl/QNX/

Список литературы , 4 0 7

16. Кастер X. Основы Windows NT и NTFS / Пер. с англ. — М: Изд. отдел «Рус­
ская редакция» ТОО «Channel Trading Ltd.», 1996. 440 с.

17. Кейлингерт П. Элементы операционных систем. Введение для пользователей
/ Пер. с англ. Б. Л. Лисса и С. П. Тресковой. — М.: Мир, 1985. 295 с.

18. Кейслер С. Проектирование операционных систем для малых ЭВМ. — М.: Мир,
1986. 680 с.

19. Краковяк С. Основы организации и функционирования ОС ЭВМ. — М.: Мир,
1988.480 с.

20. МихальчукВ. М., РовдоА. А., Рыжиков С. В. Микропроцессоры 80x86, Pentium:
Архитектура, функционирование, программирование, оптимизация кода. —
Минск: Битрикс, 1994. 400 с.

21. Мурата Т. Сети Петри: Свойства, анализ, приложения (обзор) // ТИИЭР,
1989. № 4 . С. 41-85.

22. Мэдник С, Донован Дж. Операционные системы. — М.: Мир, 1978. 792 с.

23. Немет Э., Снайдер Г., Сибасс С, Хеш Т. UNIX: руководство системного адми­
нистратора. Для профессионалов / Пер. с англ. — СПб.: Питер; Киев: Издатель­
ская группа BHV, 2002. 928 с.

24. Нортон П. Персональный компьютер фирмы IBM и операционная система MS-
D O S / П е р . с англ. — М.: Радио и связь, 1992. 416 с.

25. Нортон П., Гудмен Дж. Внутренний мир персональных компьютеров. 8-е изд.
Избранное от Питера Нортона / Пер. с англ.; Питер Нортон, Джон Гудмен. —
К.: Диасофт, 1999. 584 с.

26. Минаси М., Камарда Б. и др. OS/2 Warp изнутри: В 2 т. / Пер. с англ. С. Сокор-
новой. - СПб.: Питер, 1996. Т. 1: 528 с; Т. 2: 512 с.

27. Обухов И. QNX: Как надо делать операционные системы / PC Week RE. 1998.
№ 7. С. 58-59.

28. Озеров В. Советы по Дельфи (Версия 1.3.1 от 1.07.2000) — http://www.web-
machine.ru/delphi.

29. Олифер В. Г., Олифер Н. А. Сетевые операционные системы.:Учебник. — СПб.:
Питер, 2001. 544 с.

30. Олифер Н. А., Олифер В. Г. Сетевые операционные системы / Публ. Центра
информационных технологий — www.citmgu.ru.

31. ФодорЖ., БонифасД., ТашиЖ. Операционные системы — от PC до PS/2 / Пер.
с франц. - М.: Мир, 1992. 319 с.

32. Орловский Г. В. Введение в архитектуру микропроцессора 80386. — СПб: Се­
анс-Пресс Ltd; Инфокон, 1992. 240 с.

33. ОС QNX: Обзор системы / http://www.lgg.ru/~nigl/QNX/doc/about_qnx.html.

34. Петерсен P. Linux: руководство по операционной системе: В 2 т. / Пер. с англ. —
Киев: Издательская группа BHV, 1998.

35. Петзолд Ч. Программирование для Windows 95: В 2 т. / Пер. с англ. — СПб.:
BHV - Санкт-Петербург, 1997.

36. Питерсон Дж. Теория сетей Петри и моделирование систем / Пер. с англ. —
М.: Мир, 1984. 264 с.

http://www.web-
http://machine.ru/delphi
http://www.citmgu.ru
http://www.lgg.ru/~nigl/QNX/doc/about_qnx.html

408 Список литературы

37. Ресурсы Microsoft Windows 98 / Пер. с англ. — М.: Издательско-торговый дом
«Русская редакция», 1999. 1288 с.

38. Ресурсы Microsoft Windows NT Workstation 4.0 / Пер. с англ. — СПб.: BHV —
Санкт-Петербург, 1998. 800 с.

39. Робачевский А. М. Операционная система UNIX. — СПб.: BHV — Санкт-Пе­
тербург, 1997. 528 с.

40. Рудаков П. И., Финогенов К. Г. Программируем на языке ассемблера IBM PC.
Ч. 3: Защищенный режим. — М.: Энтроп, 1996. 320 с.

41. Соловьев Г. Н., Никитин В. Д. Операционные системы ЭВМ: Учеб. пособие. —
М.: Высшая школа, 1989. 255 с.

42. Соломон Д., Руссинович М. Внутреннее устройство Microsoft Windows 2000.
Мастер-класс / Пер. с англ. — СПб.: Питер; М.: Издательско-торговый дом
«Русская редакция», 2001. 752 с.

43. Стивене У. UNIX: взаимодействие процессов. — СПб.: Питер, 2002. 576 с.

44. Столлингс В. Операционные системы. 4-е изд. / Пер. с англ. — М.: Издатель­
ский дом «Вильяме», 2002. 848 с.

45. СтудневА. Boot-менеджеры — кто они и откуда? // Byte Россия. 1998. № 4. С. 70-75.

46. Таненбаум Э. Современные операционные системы. 2-е изд. — СПб.: Питер,
2002.1040 с.

47. Тревеннор А. Операционные системы малых ЭВМ / Пер. с англ. А. Г. Василье­
ва. — М.: Финансы и статистика, 1987.188 с.

48. Фролов А. В., Фролов Г. В. Защищенный режим процессоров Intel 80286,80386,
80486. Практическое руководство по использованию защищенного режима. —
М.: Диалог-МИФИ, 1993. 240 с.

49. Фролов А. В., Фролов Г. В. Операционная система OS/2 Warp. — М.: Диалог-
МИФИ, 1995. 272 с. (Библиотека системного программиста; т. 20)

50. Фролов А. В., Фролов Г. В. Программирование для IBM OS/2 Warp: Ч. 1. — М.:
Диалог-МИФИ, 1996. 288 с.

51. Фролов А. В., Фролов Г. В. Программирование для Windows NT. — М.: Диалог-
МИФИ, 1996. (Библиотека системного программиста; т. 26, 27)

52. Хоар Ч. Взаимодействующие последовательные процессы. — М.: Мир, 1989.264 с.

53. Цикршпзис Д., Бернстайн Ф. Операционные системы / Пер. с англ. В. Л. Уш-
ковой и Н. Б. Фейгельсон. — М.: Мир, 1977. 336 с.

54. Шоу А. Логическое проектирование операционных систем / Пер. с англ. В. В. Ма­
карова и В. Д. Никитина. — М.: Мир, 1981. 360 с.

55. Ющенко С. В. ОС QNX — реальное время, реальные возможности // Мир ПК.
1995. № 5 - 6 .

56. Microsoft Windows 2000: Server и Professional. Русские версии / Под общ. ред.
А. И. Чекмарева и Д. Б. Вишнякова. - СПб.: BHV, 2000. 1056 с.

57. Understanding Windows NT POSIX Compatibility» by Ray Cort Microsoft Cor­
porate Technology Team, Created: May-June 1993.

Алфавитный указатель

А
access mask — маска доступа 196
account — учетная запись 388
АСЕ (Access Control Entry) 201, 388
ACL (Access Control List) 180, 201, 388
API (Application Program Interface) 14,

296, 298
auditing — аудит 288

В
B-tree (Binary Tree) 182
background — фоновый режим 386
background session — фоновый сеанс 187
bad block list — список дефектных блоков 180
BIOS (Base Input-Output System) 79
bitmap block list — список битовых карт 179
boot block — загрузочный блок 179
bootstrap loader — начальный загрузчик 151
BTS (Bit Test and Reset) 222

С
C-Scan — циклическое сканирование 161
chain — цепочка 168
clean page — чистая страница 374
conventional memory — основная,

или стандартная, память 81
cooperating processes — взаимодействующие

процессы 210
cooperative multitasking — кооперативная

многозадачность 370
CPL (Current Privilege Level) 116
CPU throughput — пропускная способность

процессора 64
CPU utilization — загрузка процессора 64
CR (Consumable Resource) 248
CS (Critical Section) 214
cylinder — цилиндр диска 146

D
DACL (Discretionary Access Control List) 196, 388
deadlock — тупик 247
desktop — рабочий стол 365
directory — каталог 166
directory band — полоса каталогов 180
dirty page — грязная страница 374
DMA (Direct Memory Access) 356
DOS (Disk Operating System) 78
DPB (Disk Parameter Block) 170
DPL (Descriptor Privilege Level) 116
DRT (Device Reference Table) 140
dynamic priority variation — динамическое

изменение 65

E
EAs (Extended Attributes) 177
EMS (Expanded Memory Specification) 81
EPL (Effective Privilege Level) 117
equipment table — таблица оборудования 139
extended partition — расширенный раздел 150
extent — экстент 178

F
FAT (File Allocation Table) 164, 166
FCFS (First Come First Served) 56
file reference — файловая ссылка 193
FLEET 346
folder — папка 366
foreground — передний план 386
foreground session — активный сеанс 187
foreground task — задача переднего плана 54
FreeBSD 339
FSGID (File System access Group ID) 327
FSUID (File System access User ID) 327

G
gate — шлюз 118
GDI (Grafical Device Interface) 366

410 Алфавитный указатель

GDT (Global Descriptor Table) 106
GDTR (Global Descriptor Table Register) 105
GID (Group Identifier) 315
GUI (Graphical User Interface) 297, 361

H
HAL (Hardware Abstraction Layer) 283
head — головка чтения/записи 146
HMA (High Memory Area) 81
HotFix map — карта аварийного замещения 180
HPFS (High Performance File System) 177

I
IDT (Interrupt Descriptor Table) 125
IDTR (Interrupt Descriptor Table

Register) 105, 122
IEEE (Institute of Electrical and Electronics

Engi 304
IFS (Installable File System) 185, 188
independed processes — независимые процессы 210
interface — интерфейс 13
interrupt gate — коммутатор прерывания 125
INTR (Interrupt Request) 123
IPC (Inter Process Communication) 342
IRP (I/O Request Packet) 385

J
JCL (Job Control Language) 58
JFS (Journaling File System) 359

к
kernel mode — режим ядра 382

L
lazy write — отложенная запись 157, 185
LBA (Logical Block Addressing) 147
LDT (Local Descriptor Table) 106
LDT (Logical Disks Table) 151
LDTR (Local Descriptor Table Register) 104
LFU (Least Frequently Used) 90
Linux 336
logical disk — логический диск 151
login — входное, или учетное, имя 15
LPC (Local Procedure Call) 385
LRU (Least Recently Used) 90, 373
LVM (Logical Volume Manager) 359

M
MBR (Master Boot Record) 147
memory pool — пул памяти 393
MFT (Master File Table) 191
module — модуль 377
module database — база данных модулей 377
MPE (Multiprocess Executing) 305

multi-threaded — многопоточный 294
MULTICS (MULTiplexed Information and

Computing Sys 312
mutex — мыотекс 229

N
native — основная, естественная, нативная 16
nonpaged pool — неперсмещаемый пул 393
NSB (Non-System Bootstrap) 147
NTFS permissions — разрешения NTFS 194

P
page fault — страничная ошибка 393
page frame — страничный кадр 392
paged pool — перемещаемый пул 393
paging — подкачка страниц 393
partition — раздел диска 82, 146
PDE (Page Directory Entry) 111
permission — разрешение 388
PID (Process Identifier) 34
pipe — канал связи 242
PL (Privilege Level) 116
pool — пул 213
POSIX (Portable Operating System Interface

for Computer Environments) 284, 304
POST (Power On Self Test) 79
primary partition — первичный раздел 150
primary scheduler — основной планировщик 372
priority boost — повышение приоритета 70
process — процесс 37
produces-consumer —

производитель-потребитель 213
profile — профиль 366
protected mode — защищенный режим 102
PT (Partition Table) 147
РТЕ (Page Table Entry) 111

Q

QNX 341
queue — очередь 244

R
read ahead — упреждающее чтение 158
real mode — реальный режим 102
region — раздел диска 82
registry — реестр 367
release — освободить 227
release — освободить 239
request — запрос 239
reserved memory — зарезервированная память 394
response time — время отклика 64
REXX 354
right — право 387
rotational latency — время ожидания 178
RPC (Remote Procedure Call) 296, 335

^дфавитный указатель 4 1 1

RPL (Requested Privilege Level) 107, 117
RR (Reusable Resource) 248
RR (Round Robin) 59
RTL (Run Time Library) 298, 300

SACL (System Access Control List) 196
SAM (Security Account Management) 388
scheduler — планировщик 370
sector — сектор диска 146
seek time — время позиционирования 178
shell — оболочка, командный

интерпретатор 316,317
SID (Security Identifier) 196, 388
SJN (Shortest Job Next) 58
SOM (System Object Model) 355, 358
spare block — резервный блок 179
spooling — спулинг 136
SRT (Shortest Remaining Time) 58
SSTF (Shortest Seek Time First) 160
stream — поток данных 193, 322
subdirectory — подкаталог 166
super block — дополнительный блок 179
supervisor — супервизор 29
swapping — свопинг 84

tainted page — испорченная страница 374
task — задача 25, 50
task gate — коммутатор задачи 125
thread — тред, поток выполнения,

пить 37,348,369
time critical — критическая по времени

(задача) 69
time sharing — разделение времени 29, 320
time slice — квант времени 60
timeslice scheduler планировщик

квантования 372
TR (Task Register) 36, 104, 107
track — дорожка диска 146
trap gate — коммутатор перехвата 125
TSR (Terminate and Stay Resident) 78
TSS (Task State Segment) 36, 51, 105, 107
turnaround time — время оборота 64

и
UCB (Unit Control Block) 139
UID (User Identifier) 315
UMA (Upper Memory Area) 81
user mode — пользовательский режим 382

variable priority — переменный приоритет 69
virgin page — абсолютно чистая страница 374
VMM (Virtual Memory Manager) 392

VMS (Virtual Memory System) 305
volume-том 170, 179, 191

w
wait — ожидать 227, 239
waiting time — время ожидания 64
WinAPI 304
Windows 361
WPS (Workplace Shell) 357

X-Window 358
XMS (Extended Memory Specification) 81

аварийное замещение 180, 184, 189
авторизация 14, 287, 388
адрес

виртуальный 73
линейный 108

адресное пространство
виртуальное 73
глобальное 106
логическое 73
локальное 104, 106

алгоритм
банкира 266
Деккера 219

атрибут файла 174, 194
аудит 288, 390
аутентификация 14, 287, 366, 388

библиотека времени выполнения 298
бит

обращения 90, 111
присутствия 87, 111

блокировка памяти 215
буфер

системный 143
сообщении 240
страниц 96

буферизация 143, 144

В
ввод

асинхронный 143, 144
синхронный 143

вектор прерывания 122
взаимное исключение 213, 214
виртуальная задача 350
виртуальная машина 113, 281, 314
виртуальное устройство 136
виртуальный терминал 337

412 Алфавитный указатель

время
оборота 64
ожидания 64
отклика 64

вывод
асинхронный 143, 144
буферизованный 143
синхронный 143

вызов
локальных процедур 385
удаленных процедур 335

вычислительные процессы
взаимодействующие 210
конкурирующие 211
независимые 210
параллельные 210
последовательные 25
сотрудничающие 213

гарантия обслуживания 63
главная загрузочная запись 147
головка чтения/записи 146
граф повторно используемых

ресурсов 249, 268
группа 388

безопасности 388
встроенная 388

д
двоичное дерево 182
двойная буферизация 157
дескриптор

задачи 36, 50, 51, 107
прерывания 125
процесса 32, 34, 50
сегмента 87, 106
страницы 94, НО
файла 166
шлюза 118, 125

динамическое присоединение 93
диск

динамический 191
логический 146, 147, 151

диспетчер 344
виртуальной памяти 392
задач 50
памяти 85

диспетчер
окон 317

диспетчеризация 55
дисциплина обслуживания 30, 55

FCFS 56
RR 59
SJN 58

дисциплина обслуживания (продолжение)
SRT 58
вытесняющая 57, 61
невытесняющая 57, 61
с несколькими очередями 61

домен 389
дорожка диска 146
драйвер 135

виртуального устройства 367
миии-драйвер 367
секция

завершения 136
запуска 135
продолжения 135

универсальный 367

загрузка процессора 64
загрузочная запись 79, 147, 170, 172, 176
загрузочный блок 179
загрузчик

внесистемный 147
главный 151
начальный 151
системный 155, 170

задача 25, 38, 51
диск-резидентная 35
ОЗУ-резидентная 36, 83
реального времени 69
резидентная 36, 78, 83

запрос
к операционной системе 16, 281
на ввод-вывод 133, 141, 385
на прерывание 135

И
идентификатор

безопасности 196
процесса 34

инициативное устройство 33, 133
интерфейс 13

графический 297
пользовательский 17
прикладного программирования 281, 298
программный 17

исключение 131
исполняющая система 384

К
канал

ввода-вывода
программный 134
прямой доступ к памяти 134

связи 242

Алфавитный указатель 4 1 3

каталог
корневом 166, 167, 169, 173
понятие 166

кластер 167, 191
кольцо защиты 118
коммутатор

задачи 125
перехвата 125
прерывания 125

контекст задачи 34
контроллер домена 389
коэффициент мультипрограммирования 83
критическая секция 214
кэширование 157, 158, 185

м
маска доступа 196
менеджер загрузки 152, 155
метафайл 192
механизм

взаимодействия между процессами 342
шлюзов 118

микроядро
OS/2 357
QNX 291, 342, 345
Windows NT 383
определение 289

многозадачность 369
вытесняющая 61
кооперативная 61, 370

многопоточность 38
модель

клиент-сервер 292
Холта 248

модуль 279, 377
монитор Хоара 237
мультипрограммирование 27, 29, 47
мыотекс 229

О
образ процесса 314
обслуживание

бесприоритетное 55
приоритетное 55

оверлейная структура 77
ожидание

активное 223
пассивное 224

операционная система 13
макроядерная 280, 292
микроядерная 280, 289
монолитная 280, 292

операционная среда 16, 114
ОСРВ (операционная система реального

времени) 48
ОСРВ QNX 291
очередь сообщений 244, 349

п
пакет запросов на ввод-вывод 385
память

виртуальная 73
сегментная 87, 106
сегментно-страничная 97
страничная 93, НО

выделенная 394
зарезервированная 394
оперативная 72
реальная 73
физическая 73

пейджер 355
передача сообщений 348
перенаправление ввода-вывода 322
планирование

вычислительных процессов 52
упреждающее 372

планировщик 370
квантования 372
основной 372

плоская модель памяти ИЗ, 374
подкаталог 166
полоса каталогов 180
порт 349, 356
поток

выполнения 37, 348
данных 193, 322, 352

почтовый ящик 240
правила использования шлюзов 119, 121
прерывание 18, 122

асинхронное 19, 123
внешнее 19, 123
внутреннее 19, 123
маскируемое 21, 123
немаскируемое 123
программное 21
синхронное 19, 123

принтер 137
локальный 137
сетевой 137

приоритет
абсолютный 56
динамический 55, 65
постоянный 55
сна 66

пробуксовка 95
программа

абсолютная двоичная 75
пативная 114

программный канал 331
программный модуль 279

диск-резидентный 280
повторно входимый 46
привилегированный 44
реентерабельный 44, 139, 279
транзитный 280

4 1 4 Алфавитный указатель

пропускная способность процессора
профиль 366
процесс 37, 369, 392

внешний 144
внутренний 144
вычислительный 25
легковесный 37
писатель 232
последовательный 25
читатель 232

пул 213

рабочее множество 96
раздел

диска 146
активный 147, 150
первичный 150
расширенный 150

памяти 82
разделение времени 320
разрешения NTFS 194

индивидуальные 197, 203
основные 204
специальные 199, 205
стандартные 198

распределение памяти
неразрывное 82
разрывное 86

расширенные атрибуты 177
регистр

задачи 36
флагов 123

редиректор 342, 343, 385
режим

ввода-вывода 134
обмен с прерываниями 134, 135
опрос готовности 134, 135

виртуальный 113
защищенный 102, 105, 106, 124
мультизадачный 27, 36, 37, 47
мультипрограммный 27, 36, 47
отложенной записи 157, 185
пользователя 116, 131
привилегированный 29, 131, 280
работы процессора 29, 280
разделения времени 29
реальный 102, 105, 122
супервизора 116, 131, 280

ресурс 26
виртуальный 72
критический 210
повторно используемый 248
потребляемый 248
программный 43
расходуемый 248
системный 248

сбалансированное двоичное
дерево 178, 182, 190

свопинг 84, 89
сегмент

кода 102, 108
логический 87
подчиненный 118
состояния задачи 36, 51, 105, 107, 127

сегментная адресация 102
сектор диска 146
селектор

дескриптора 118
сегмента 107

семафор 224
семафорный примитив

Р 225, 228
V 225, 228

сервер 385
сети Петри 255

графическое представление 257
теоретико-множественное представление 255

сигнал готовности 135
система

многопользовательская 29
мультитерминальная 48
реального времени (СРВ) 293
управления файлами 164, 165
файловая 163

FAT 164, 167
FAT12 165
FAT16 167
FAT32 172, 174
HPFS 177
NTFS 188
super-FAT 165
VFAT 172, 173
монтируемая 164, 185, 188

системный вызов 16, 78
exec 319
fork 319

системный вызов 320
скрипт 362
состояние

активное 31, 210
безопасное 261
блокирования 32
выполнения 31
готовности к выполнению 32
ненадежное 265
ожидания 32
пассивное 31
пользовательское 320
системное 320
тупика 247, 261, 268
фиксированное 272

Алфавитный указатель 4 1 5

список
битовых карт 179
дефектных блоков 180
управления доступом 180, 190

дискреционный 196
системный 196

спул-файл 137
спулипг 136
страница

абсолютно чистая 374
виртуальная 93
грязная 374
испорченная 374
физическая 93
чистая 374

страничный кадр 392
страничный файл 93
стратегия

обслуживания 53
планирования 53

супервизор 16, 29, 77
ввода-вывода 132, 142
задач 132, 142, 281
прерываний 22, 23

суперпользователь 316

т
таблица

векторов прерывания 79, 122
виртуальных логических устройств 140
дескрипторов

прерываний 125
сегментов 87, 104

каталога таблиц страниц 105, 111
логических дисков 151
оборудования 139
прерываний 140
разделов 147
размещения файлов 164, 166, 167
сегментов 87
страниц 94

тег 99
теорема о тупике 269
том 170, 179, 191
тупиковая ситуация 226, 235, 247, 257

У
уплотнение памяти 86
упреждающее чтение 158
уровень

безопасности 288, 392

уровень (продолжение)
привилегий 116, 382

задачи 117
запрашиваемый 117
сегмента 116
текущий 116
эффективный 117

условие
взаимного исключения 254, 264
кругового ожидания 254, 264
ожидания 254, 264
отсутствия перераспределения 254, 264

установка тайм-аута 135
учетная запись 388

группы 388
пользователя 388

Ф
файл 163

каталог 166
подкачки 93, 393
страничный 93

файловая система 165
файловая ссылка 193
файловый объект 167, 195
файловый узел 180, 185
фрагментация

памяти 84
файлов 169, 183

функции
API 300
библиотечные 286
микроядра 290
системные 14, 16, 290

ц
циклическое сканирование 161, 186
цилиндр диска 146

ш
шлюз 118

задачи 125
перехвата 125
прерывания 125

э
экстент 178, 181

Я
ядро операционной системы 77, 279

Гордеев Александр Владимирович

Операционные системы: Учебник для вузов

, 2-е издание

Главный редактор Е. Строганова

Заведующий редакцией И. Корнеев

Руководитель проекта Ю. Суркис

Литературный редактор А. Жданов

Художник Н. Биржаков

Иллюстрации А/. Шендерова

Корректоры С. Беляева, И. Тимофеева

Верстка А. Келле Пелле

Лицензия ИД № 05784 от 07.09.01.
Подписано в печать 27.10.03. Формат 70X100/16. Усл. п. л. 33,54.

Тираж 4500 экз. Заказ № 925.
ООО «Питер Принт». 196105, Санкт-Петербург, ул. Благодатная, д. 67в.

Налоговая льгота - общероссийский классификатор продукции ОК 005-93, том 2; 953005 - литература учебная.
Отпечатано с готовых диапозитивов в ФГУП «Печатный двор» им. А. М. Горького

Министерства РФ по делам печати, телерадиовещания и средств массовых коммуникаций.
197110, Санкт-Петербург, Чкаловский пр., 15.

ОПЕРАЦИОННЫЕ

Гордеев Александр Владимирович —
доктор технических наук в области
математического и программного обеспечения
вычислительных машин, комплексов, систем и сетей,
профессор кафедры «Вычислительные системы
и сети» Санкт-Петербургского государственного

университета аэрокосмического приборостроения.

Взаимодействие пользователей с компьютером
и организация выполнения нужных им вычислений
осуществляются с помощью операционной системы.
Знание основ построения и функционирования операционных
систем является обязательным для всех, кто изучает
информатику и вычислительную технику. Эти знания позволяют
более эффективно использовать возможности компьютеров.
В книге помимо рассмотрения таких обязательных тем,
как управление задачами и ресурсами в операционных vi
системах, организация параллельных взаимодействующих

-

вычислений и связанных с этим проблем, приводятся сведения
об особенностях архитектур современных операционных
систем, используемых на персональных компьютерах.

Базовый курс для студентов высших учебных
заведений, обучающихся по направлению
«Информатика и вычислительная техника».

ISBN 5-94723-632-Х

*^^^ w w w O I T F H m u WWW.PITER.COM

9"785947"236323' Посетите наш web-магазин: w w w . p i t e r . c o m x

""~':/:"у^0Ш

http://WWW.PITER.COM
http://www.piter.comx

