

Panda3D 1.7 Game
Developer's Cookbook

Over 80 recipes for developing 3D games with Panda3D,
a full-scale 3D game engine

Christoph Lang

 BIRMINGHAM - MUMBAI

Panda3D 1.7 Game Developer's Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1170311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-92-3

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Christoph Lang

Reviewers
C.G. Anderson
Paulo Barbeiro

Acquisition Editor
Usha Iyer

Development Editor
Meeta Rajani

Technical Editor
Prashant Macha

Indexer
Hemangini Bari

Tejal Daruwale

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Priya Mukherji

Project Coordinator
Sneha Harkut

Proofreader
Samantha Lyon

Graphics
Nilesh Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Christoph Lang is a game developer currently working for Mi'pu'mi Games in Vienna. He
has a BSc in Computer Science and an MSc in Game Engineering and Simulation Technology,
both from UAS Technikum Wien. Christoph has a strong interest in developing and designing
games as well as computer graphics and game engine design. He tries to take an active part
of the game developer community by contributing code, blog posts, tweets, and of course,
this book.

I would like to thank Kathi, my one love, for always being there for me.
My parents, siblings, and friends for all their support. Thanks also goes to
Alexander Hofmann and his team at UAS Technikum Wien for encouraging
me to do this.

About the Reviewers

Cynthia "CG" Anderson (yes, CGA are really her initials) has been involved in the software
industry for over 20 years, and has worn many hats—from researcher, to software designer, to
UI/UX consultant, to marketing/customer insight researcher, to AI experimenter, to technical
writer, to program manager, but also to avid artist, and storyteller. She's shipped multimedia
titles as well as written hundreds of pages of user/developer documentation for various
companies, as well as advised other past technical books during her varied history. She's
seen the rapid expansion of the Internet and of the visual dimension of computing, including
being involved in virtual worlds standards definition and couldn't be happier at the result.
In fact, she hopes many more people will embrace open source gems like Panda3D, as well
as others of equal caliber, and continue to keep not just the open source community but
the whole software industry alive and vibrant with new innovations, new opportunities for
storytelling, and the creation of entirely new methods for virtual world immersion. You can
contact CG through her page on LinkedIn. CG resides currently in the Seattle, WA area.

Paulo Barbeiro is Brazilian, from São Paulo, graduated in Graphic Design in 2004, at Belas
Artes SP College, and postgraduate in Game Development at SENAC SP. Paulo has started his
professional carrier in 1999, as web developer.

Today, besides the web and mobile application development work, Paulo is involved in
experimental educational projects in technology and cyber culture, at SESC SP, where he
leads activities about creative code, and art-software, like interactive environments, games,
and entertainment media.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books. 

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Setting Up Panda3D and Configuring Development Tools	 7

Introduction	 7
Downloading and configuring NetBeans to work with Panda3D	 8
Configuring Visual Studio 2008 to work with Panda3D	 15
Understanding Panda3D's runtime configuration options	 18
Setting up the game structure	 22
Building Panda3D from source code	 25

Chapter 2: Creating and Building Scenes	 29
Introduction	 29
Loading terrain	 32
Loading and attaching sounds to objects	 35
Creating a scene using C++	 37
Adding an additional camera	 39
Inspecting and modifying the scene	 40
Modifying the scene graph	 44
Moving objects based on time	 48
Controlling actions using intervals	 49
Making animations fit to intervals	 53
Making objects follow a predefined path	 55
Making the camera smoothly follow an object	 56
Generating geometry at runtime	 60
Loading data asynchronously	 65

Chapter 3: Controlling the Renderer	 67
Introduction	 67
Changing a model's render attributes	 67
Adding an alpha mask to a texture	 70
Creating a splitscreen mode	 73

ii

Table of Contents

Controlling the rendering order	 75
Using multiple displays	 79

Chapter 4: Scene Effects and Shaders	 81
Introduction	 81
Adding lights and shadows	 82
Using light ramps	 85
Creating particle effects	 88
Animating textures	 91
Adding ribbon trails to an object	 93
Creating a flashlight effect	 97
Making objects reflect the scene	 99
Adding a custom shader generator	 101
Applying a custom Cg shader	 105

Chapter 5: Post-Processing and Screen Space Effects	 109
Introduction	 109
Adding built-in post-processing effects	 110
Building custom effects	 114
Adding a scanline and vignette effect	 118
Adding a color grading effect	 121
Adding a depth of field effect	 124
Building a deferred rendering pipeline	 129

Chapter 6: 2D Elements and User Interfaces	 139
Introduction	 139
Rendering text to the screen	 139
Rendering images to the 2D layer	 142
Playing a movie file	 144
Creating an interactive user interface	 146
Making the user interface data-driven using XML	 150

Chapter 7: Application Control	 157
Introduction	 157
Toggling window and fullscreen modes	 158
Controlling game state	 160
Decoupling modules using events	 163
Handling events more elegantly	 165
Managing recurring tasks	 167

Chapter 8: Collision Detection and Physics	 171
Introduction	 171
Using the built-in collision detection system	 172

iii

Table of Contents

Using the built-in physics system	 176
Using the ODE physics engine	 179
Using the PhysX physics engine	 183
Integrating the Bullet physics engine	 186

Chapter 9: Networking	 197
Introduction	 197
Downloading a file from a server	 198
Using assets hosted on a server	 200
Sending high scores to a server	 201
Establishing a network connection	 208
Sending and receiving custom datagrams	 212
Synchronizing object state between server and client	 215

Chapter 10: Debugging and Performance	 221
Introduction	 221
Debugging Python code	 222
Debugging C++ code	 226
Using the PStats tool for finding performance bottlenecks	 231
Improving performance by flattening scenes	 235
Implementing performance critical code in C++	 237

Chapter 11: Input Handling	 247
Introduction	 247
Handling keyboard and mouse input	 248
Implementing an abstraction layer for supporting multiple input methods	 252
Handling input from an Xbox 360 controller	 257
Recording and simulating user input	 261
Reading audio data from a microphone	 264
Reading video data from a webcam	 267
Reading input data from a network	 269

Chapter 12: Packaging and Distribution	 277
Introduction	 277
Packing assets into multifiles	 278
Creating a redistributable game package	 281
Advanced package creation and hosting	 284
Embedding a game into a website	 287
Using website and plugin interoperability	 292

iv

Table of Contents

Chapter 13: Connecting Panda3D with Content Creation Tools	 297
Introduction	 297
Setting up the Blender export plugin	 298
Exporting models from Blender	 302
Generating model files programmatically	 304
Using the "Pview" tool to preview models	 307
Compressing and converting model files using pzip and egg2bam	 309

Index	 313

Preface
Panda3D is a free and open source game engine. It has been used successfully by hobbyists
as well as big studios to create games ranging from quick prototypes to full-scale commercial
MMOs. Panda3D makes it easy to use models, textures, and sounds to create impressive
interactive experiences. With this book, you too will be able to leverage the full power of the
Panda3D engine.

Panda3D 1.7 Game Developer's Cookbook will supply you with a set of step-by-step
instructions to guide you to usable results quickly. Enabling physics, working with shader
effects, and using Panda3D's networking features are only a few of the things you will
learn from this book.

This book will take you through all the topics involved in developing games with Panda3D.
After a quick sweep through setting up a basic scene, Panda3D 1.7 Game Developer's
Cookbook will bring up topics like render-to-texture effects and performance profiling.

Focused recipes will get you closer to your game development goals step-by-step. This
book covers advanced topics of game development with the industry-scale Panda3D engine.
With every article you will be able to add more features and you will be guided from getting
user input from gamepads and shader effects to user interfaces, adding physics, and using
the engine's networking capabilities. Using these features, you will also get in touch with
other languages and technologies like C++, the Cg shading language, or the Twisted
server framework.

Panda3D 1.7 Game Developer's Cookbook provides a great reference for your Panda3D
game development needs and helps you to deliver impressive results more quickly and
with great ease.

Preface

2

What this book covers
Chapter 1, Setting Up Panda3D and Configuring Development Tools: Get set for working with
Panda3D. Install and configure the engine as well as the development tools used throughout
the book.

Chapter 2, Creating and Building Scenes: Learn about the scene management of Panda3D.
This chapter will show you how to load models, animations, and terrain, and how to place
them in a 3D world. You will learn how to work with virtual cameras and how to make them
follow an object.

Chapter 3, Controlling the Renderer: This chapter shows, how to set attributes for controlling
how a single model or an entire scene should be displayed on the screen. Work with
color channels and alpha masks. Create a splitscreen mode and learn how to render
on multiple displays.

Chapter 4, Scene Effects and Shaders: Lights, shadows, and particles are some of this
chapter's topics. Apply shader effects to models. Take control of the advanced shader
generator system of Panda3D and learn how to implement your own custom shader generator.

Chapter 5, Post-Processing and Screen Space Effects: Learn how to add polish and
professional looks to your games using post-processing techniques like color grading or depth
of field. This chapter also provides an implementation of a deferred rendering pipeline.

Chapter 6, 2D Elements and User Interfaces: Panda3D can also be used for 2D rendering.
This chapter focuses on loading and displaying images and on how to use the GUI libraries
of Panda3D.

Chapter 7, Application Control: Gain insight on Panda3D’s messaging and task systems.
Learn how to use messages for inter-object communication. Elegantly handle code that
is run on every frame using tasks.

Chapter 8, Collision Detection and Physics: Physics and proper collision handling are
important parts of a game. Panda3D gives you powerful programming libraries for controlling
physics and collisions like PhysX or ODE that will be presented in this chapter.

Chapter 9, Networking: This chapter is dedicated to sending and receiving data over networks
with Panda3D. Learn how to download data, synchronize game objects, and how to post high
scores to a remote server.

Chapter 10, Debugging and Performance: Find performance issues and bugs in your
Panda3D based games. Use the tools provided by Panda3D and the included Python
runtime for fixing these problems.

Chapter 11, Input Handling: Game controllers, a keyboard, and a mouse or even the
network—many input measures can be used for providing interactive experiences with
Panda3D. This chapter will show you how to transparently handle input from various
devices in an elegant, easy, and reusable way.

Preface

3

Chapter 12, Packaging and Distribution: Learn how to package your game code and assets
and make them ready for redistribution. Find out how to use set-up and use the browser
plugin for a seamless and nearly installation-free end-user experience.

Chapter 13, Connecting Panda3D with Content Creation Tools: Export model files from
Blender and preview them with the tools provided by the engine. Learn how to write a
data converter for Panda3D's model format and how to compress model data to more
space-saving formats.

What you need for this book
Apart from Panda3D and the tools that come included with it, the following software is used in
this book:

ff NetBeans 6.8

ff Visual Studio 2008

ff Blender

All these tools and programs are either free software or provide free versions that can be
downloaded and used without any further costs. Refer to the chapters discussing these
programs for instructions on how to obtain copies and how to install them.

Who this book is for
If you are a developer with experience in Python, Panda3D, and optionally C++ and shading
languages and you are looking for quick and easy method to integrate solutions to common
game development problems with Panda3D, this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Save it as PandaSettings.vsprops in a directory
of your choice."

A block of code is set as follows:

from direct.showbase.ShowBase import ShowBase

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

from direct.showbase.ShowBase import ShowBase

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

Any command-line input or output is written as follows:

pzip -9 model.egg

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "If you can’t find it this way,
click View | Property Manager in the main menu".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Setting Up Panda3D

and Configuring
Development Tools

In this chapter, we will cover:

ff Downloading and configuring NetBeans to work with Panda3D

ff Configuring Visual Studio 2008 to work with Panda3D

ff Understanding Panda3D's runtime configuration options

ff Setting up the game structure

ff Building Panda3D from source code

Introduction
The Panda3D game engine has initially been a closed-source project of Disney Interactive but
was later opened to the community, allowing anyone to use the engine or contribute code.
Development of Panda3D is now driven and coordinated in a joint effort by Disney Interactive
and the Entertainment Technology Center of the Carnegie Mellon University. Together, they
are adding new features, fixing bugs, and preparing new releases of the engine.

Panda3D is distributed under a version of the very liberal BSD open-source license, which
allows anyone interested to download, view, alter, and redistribute the source code compiled
binaries without ever having to pay any license fees. This applies to commercial projects too.
So creating a game using Panda3D and selling it is no problem and will never require any
amount of money to be paid.

Setting Up Panda3D and Configuring Development Tools

8

Panda3D is a very powerful and feature-rich game engine that comes with a lot of features
needed for creating modern video games. Using Python as a scripting language to interface
with the low-level programming libraries makes it easy to quickly create games because
this layer of abstraction neatly hides many of the complexities of handling assets, hardware
resources, or graphics rendering, for example. This also allows simple games and prototypes
to be created very quickly and keeps the code needed for getting things going to a minimum.

Panda3D is a complete game engine package. This means that it is not just a collection
of game programming libraries with a nice Python interface, but also includes all the
supplementary tools for previewing, converting, and exporting assets as well as packing game
code and data for redistribution. Delivering such tools is a very important aspect of a game
engine that helps with increasing the productivity of a development team.

The Panda3D engine is a very nice set of building blocks needed for creating entertainment
software, scaling nicely to the needs of hobbyists, students, and professional game
development teams. Panda3D is known to have been used in projects ranging from one-shot
experimental prototypes to full-scale commercial MMORPG productions like Toontown Online
or Pirates of the Caribbean Online.

Before you are able to start a new project and use all the powerful features provided by
Panda3D to their fullest, though, you need to prepare your working environment and tools. By
the end of this chapter, you will have a strong set of programming tools at hand, as well as the
knowledge of how to configure Panda3D to your future projects' needs.

Downloading and configuring NetBeans
to work with Panda3D

When writing code, having the right set of tools at hand and feeling comfortable when using
them is very important. Panda3D uses Python for scripting and there are plenty of good
integrated development environments available for this language like IDLE, Eclipse, or Eric.
Of course, Python code can be written using the excellent Vim or Emacs editors too.

Tastes do differ, and every programmer has his or her own preferences when it comes to this
decision. To make things easier and have a uniform working environment, however, we are
going to use the free NetBeans IDE for developing Python scripts throughout this book. This
choice was made out of pure preference and one of the many great alternatives might be
used as well for following through the recipes in this book, but may require different steps
for the initial setup and getting samples to run.

In this recipe we will install and configure the NetBeans integrated development
environment to suit our needs for developing games with Panda3D using the Python
programming language.

Chapter 1

9

Getting ready
Before beginning, be sure to download and install Panda3D. To download the engine SDK and
tools, go to www.panda3d.org/download.php:

The Panda3D Runtime for End-Users is a prebuilt redistributable package containing a player
program and a browser plugin. These can be used to easily run packaged Panda3D games.
You can find more information on this topic in Chapter 12, Packaging and Distribution.

Under Snapshot Builds, you will be able to find daily builds of the latest version of
the Panda3D engine. These are to be handled with care, as they are not meant for
production purposes.

Finally, the link labeled Panda3D SDK for Developers is the one you need to follow to retrieve
a copy of the Panda3D development kit and tools. This will always take you to the latest
release of Panda3D, which at this time is version 1.7.0. This version was marked as unstable
by the developers but has been working in a stable way for this book. This version also added
a great amount of interesting features, like the web browser plugin, an advanced shader, and
graphics pipeline or built-in shadow effects, which really are worth a try and will be treated in
the following chapters.

Setting Up Panda3D and Configuring Development Tools

10

Click the link that says Panda3D SDK for Developers to reach the page shown in the
following screenshot:

Here you can select one of the SDK packages for the platforms that Panda3D is available on.
This book assumes a setup of NetBeans on Windows but most of the samples should work
on these alternative platforms too, as most of Panda3D's features have been ported to all of
these operating systems.

To download and install the Panda3D SDK, click the Panda3D SDK 1.7.0 link at the top of
the page and download the installer package. Launch the program and follow the installation
wizard, always choosing the default settings. In this and all of the following recipes we'll
assume the install path to be C:\Panda3D-1.7.0, which is the default installation location.
If you chose a different location, it might be a good idea to note the path and be prepared
to adapt the presented file and folder paths to your needs!

Chapter 1

11

How to do it...
Follow these steps to set up your Panda3D game development environment:

1.	 Point your web browser to netbeans.org and click the prominent
Download FREE button:

2.	 Ignore the big table showing all kinds of different versions on the following page and
scroll down. Click the link that says JDK with NetBeans IDE Java SE bundle.

Setting Up Panda3D and Configuring Development Tools

12

3.	 This will take you to the following page as shown here. Click the Downloads link to
the right to proceed.

4.	 You will find yourself at another page, as shown in the screenshot. Select Windows
in the Platform dropdown menu and tick the checkbox to agree to the license
agreement. Click the Continue button to proceed.

Chapter 1

13

5.	 Follow the instructions on the next page. Click the file name to start the download.

6.	 Launch the installer and follow the setup wizard.
7.	 Once installed, start the NetBeans IDE.
8.	 In the main toolbar click Tools | Plugins.
9.	 Select the tab that is labeled Available Plugins.
10.	 Browse the list until you find Python and tick the checkbox next to it:

Setting Up Panda3D and Configuring Development Tools

14

11.	 Click Install. This will start a wizard that downloads and installs the necessary
features for Python development.

12.	 At the end of the installation wizard you will be prompted to restart the NetBeans IDE,
which will finish the setup of the Python feature.

13.	 Once NetBeans reappears on your screen, click Tools | Python Platforms.

14.	 In the Python Platform Manager window, click the New button and browse for the file
C:\Panda3D-1.7.0\python\ppython.exe.

15.	 Select Python 2.6.4 from the platforms list and click the Make Default button. Your
settings should now reflect the ones shown in the following screenshot:

16.	 Finally we select the Python Path tab and once again, compare your settings
to the screenshot:

Chapter 1

15

17.	 Click the Close button and you are done!

How it works...
In the preceding steps we configured NetBeans to use the Python runtime that drives
the Panda3D engine and as we can see, it is very easy to install and set up our working
environment for Panda3D.

There's more...
Different than other game engines, Panda3D follows an interesting approach in its internal
architecture. While the more common approach is to embed a scripting runtime into the game
engine's executable, Panda3D uses the Python runtime as its main executable. The engine
modules handling such things as loading assets, rendering graphics, or playing sounds are
implemented as native extension modules. These are loaded by Panda3D's custom Python
interpreter as needed when we use them in our script code.

Essentially, the architecture of Panda3D turns the hierarchy between native code and the
scripting runtime upside down. While in other game engines, native code initiates calls to the
embedded scripting runtime, Panda3D shifts the direction of program flow. In Panda3D, the
Python runtime is the core element of the engine that lets script code initiate calls into native
programming libraries.

To understand Panda3D, it is important to understand this architectural decision. Whenever
we start the ppython executable, we start up the Panda3D engine.

If you ever get into a situation where you are compiling your own
Panda3D runtime from source code, don't forget to revisit steps
13 to 17 of this recipe to configure NetBeans to use your custom
runtime executable!

Configuring Visual Studio 2008 to work
with Panda3D

The scripting-centric architecture of the Panda3D divides development into two sides. One of
them is the application code written in Python that is created by game programmers to control
the gameplay behavior of their games. On the opposite side we can find the engine modules,
which are written in C++ and compiled to native modules. At runtime, the Python interpreter
found that the core of Panda3D loads these modules and lets us make calls into them to
control the engine and the game running on it.

Setting Up Panda3D and Configuring Development Tools

16

This programming model combines the best of both of these programming worlds. While the
performance critical parts are implemented in C++, gameplay programmers do not know any
of the advanced stuff going on under the hood to get things done. Instead, they are able to
use Python, an expressive and easy to learn programming language, for using Panda3D's
great features. This also allows the engine developers to work on the internals of Panda3D
while gameplay programmers are able to concentrate on creating interesting games.

While this split between application and gameplay code works really well, nothing keeps us
from using the Panda3D programming libraries and writing application side code in C++.
There' s nothing wrong with coding our games in Python, and in general it is the path to
follow with Panda3D. But the possibility to use C++ is there, so we shouldn't omit discussing
this topic.

In this recipe we will configure Visual Studio 2008 for compiling Panda3D C++ projects
on Windows. Panda3D is a cross-platform game engine and other compilers like gcc and
alternative IDEs like KDevelop might as well be used for writing C++ programs that link to the
Panda3D libraries but within the context of this book, we will be looking at how things are
working on the Windows platform.

Getting ready
This recipe assumes that Visual Studio 2008 is already installed on your system. If not, you
can download Visual C++ 2008 Express Edition from www.microsoft.com/express/
Downloads/ for free. Some restrictions apply to this free edition, but all recipes in this book
are tested to work with this version of Visual Studio.

Although technically very similar, the Express and full editions
of Visual Studio do differ in several ways. Some menus, options,
and functions of the full versions are not available in the free
Express edition. So if you are looking for help online you should
always clearly state which version you are using.

How to do it...
The following tasks will help you to configure Visual Studio 2008 for developing
Panda3D projects:

1.	 In a text editor of your choice, create a new file and paste the following code:
<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioPropertySheet
 ProjectType="Visual C++"
 Version="8.00"
 Name="PandaSettings"

Chapter 1

17

 >
 <Tool
 Name="VCCLCompilerTool"
 AdditionalIncludeDirectories=""C:\Panda3D-1.7.0\
python\include";"C:\Panda3D-1.7.0\include""
 />
 <Tool
 Name="VCLinkerTool"
 AdditionalDependencies="libp3framework.lib libpanda.
lib libpandafx.lib libpandaexpress.lib libp3dtool.lib
libp3dtoolconfig.lib libp3pystub.lib libp3direct.lib"
 AdditionalLibraryDirectories=""C:\Panda3D-1.7.0\
python\libs";"C:\Panda3D-1.7.0\lib""
 />
</VisualStudioPropertySheet>

2.	 Save it as PandaSettings.vsprops in a directory of your choice.

3.	 Start Visual Studio 2008 or Visual C++ 2008 Express and create a new C++ project.

4.	 Open the Property Manager, which is located in the same pane as the Solution
Explorer and the Class View by default. If you can't find it this way, click View |
Property Manager in the main menu.

5.	 Right-click the item Release | Win32 and select Add Existing Property Sheet... from
the popup menu.

6.	 Locate and select the PandaSettings.vsprops file.

Setting Up Panda3D and Configuring Development Tools

18

How it works...
In this recipe we set all the options for using Panda3D using a feature of Visual Studio called
Property Sheets, which allow you to configure each build target of your project independently
and in a reusable way.

Property Sheet settings are stored using XML, as you can see in the previous sample code.
Let's have a look at the data stored in PandaSettings.vsprops:

Following the XML header and the opening tag of the property sheet, we can see two
<Tool/> tags, the first of which is adding the required include paths to the header search
paths. The second <Tool/> tag instructs the linker to use the listed library files when it is
generating the executable, as well as where it will need to look for these files.

There's more...
You might have noticed that we only configured the release target in this recipe. The reason
for this is that the recipe is aimed at the precompiled Panda3D SDK, which only includes the
files needed to produce release builds.

If you want to create debug builds you will definitely need to
compile Panda3D yourself and configure your debug target in the
way shown in this recipe (but don't forget to modify the search
paths accordingly!).

Also, you don't have to use Property Sheets to configure include directories and linked
libraries. You may also right-click the project node in the project explorer, click Properties and
then click Configuration Properties | Properties | C++ in the tree of configuration categories
to then fill in the include directories in the Additional Include Directories field in the right
pane of the window.

To configure the linker, choose Configuration Properties | Properties | Linker in the
same window as previously described and fill in the library file names into the Additional
Dependencies and Additional Library Directories fields.

Understanding Panda3D's runtime
configuration options

Panda3D allows you to configure the engine runtime using a central configuration file. This
recipe will show you where to find this configuration file and will explain a selection of settings
you are able to specify to tweak Panda3D's behavior.

Chapter 1

19

How to do it...
You can configure the Panda3D engine with these two steps:

1.	 Open the file C:\Panda3D-1.7.0\etc\Config.prc in a text editor.

2.	 Edit and add settings.

How it works...
Now that you've opened Panda3D's configuration file, it is time to explain a good part of the
vast array of settings the engine allows you to modify. The following table will present the
names of the configuration variables, the values that can be set, as well as a short description
of what part of Panda3D is influenced by the setting.

The column containing the possible values uses several notations:

ff Square brackets are used to denote an interval of values. For example, [0..8] denotes
an interval of integers between 0 and 8, while the notation [0.0..1.0] stands for an
interval of floating point values. The interval boundaries are inclusive.

ff Within intervals, the labels MAX_INT and MAX_DBL are used as placeholders for the
maximum possible values for signed integer and floating point variables.

ff The prc file format uses #t for true and #f for false for Boolean configuration flags.
For example, the following line in Config.prc enables full screen mode:
fullscreen #t

ff "A valid file path" means a Unix-style file path, even on Windows. For example, the
following line is used to set the application icon:
icon-filename /c/mygame/assets/icon.ico

ff Any other values than the ones previously described are meant to be inserted directly,
without quotes. If multiple values are listed, you may use one of them at a time.

Name Possible Values Description
audio-volume [0.0..1.0] Sets the master volume of your game.
background-
color

Any combination of 3
floating point numbers
between 0 and 1, e.g.:
1.0 0.3 0.4

This variable sets the default background color for
the render window and all render buffers in RGB
format.

cursor-filename A valid file path Allows you to specify an image file to use as the
mouse cursor.

cursor-hidden #t, #f If set to true, this makes the mouse cursor
invisible when it is within the bounds of the game
window.

Setting Up Panda3D and Configuring Development Tools

20

Name Possible Values Description
disable-sticky-
keys

#t, #f If set to true, this disables the "sticky keys" feature
of Windows. It's a good idea to set this to true
because the sticky keys popup window will cause
your game to lose focus!

fullscreen #t, #f Set this variable to #t if your game should switch
to fullscreen mode on startup.

icon-filename A valid file path This variable instructs Panda3D to use the given
file as its application icon.

model-path A valid file path The model-path variable sets one or more paths
the engine will use as your search path when
looking for models to load. The special symbol
$THIS_PRC_DIR can be used to define directories
relative to the configuration file. With $MAIN_DIR
you are able to set a path relative to the directory
the game's main python file resides in.

For example, we can find these three lines in the
default Config.prc file:

model-path $MAIN_DIR

model-path $THIS_PRC_DIR/..

model-path $THIS_PRC_DIR/../models

These lines add the directory containing the main
Python source file and the directories containing
the sample models that come with the Panda3D
SDK to the engine asset search path.

show-frame-
rate-meter

#t, #f If enabled, this shows a frame rate counter in the
game window.

sync-video #t, #f Enables and disables vertical synchronization. If
this is set to true, the maximum frame rate will be
equal to the refresh rate of your display device.

win-origin Two integer values, for
example, 25 20

Lets you define the position of the top left corner
of the game window. When fullscreen mode is
enabled, this setting has no effect.

win-size Two integer values, for
example, 640 480

Sets the window size as well as the resolution
when in fullscreen mode. When going to
fullscreen mode, Panda3D switches the screen
resolution to the values specified in this variable.
If this does not match your screen resolution, it
might have an effect on the positions and sizes
of your desktop icons and any open program
window.

Chapter 1

21

Name Possible Values Description
window-title A string This setting is used to specify the title of the game

window. The string does not have to be put within
quotes even if it contains spaces.

There's more...
By setting the configuration variables above, you are already able to modify the engine's
runtime behavior to your liking. But Panda3D's configuration system provides a few additional
features you should know about.

Listing all configuration variables
The preceding table only shows a selection of the most commonly used configuration
variables. To get a list of all configuration variables available in Panda3D, insert the
following import statement and method call into your application code:

from panda3d.core import ConfigVariableManager
ConfigVariableManager.getGlobalPtr().listVariables()

Loading a specific configuration file
You do not need to put all engine settings into the global configuration file shown in this
recipe. Instead, you can use the following function to load settings from any given file:

loadPrcFile("myconfig.prc")

You should put this call to a global scope to make sure settings are loaded before the engine
systems that are using them are initialized.

Embedding configuration data in Python code
You can also put settings directly into your Python code files. Just add something similar to the
following snippet to the global scope:

configVars = """
win-size 1440 900
fullscreen 1
"""

loadPrcFileData("", configVars)

Setting Up Panda3D and Configuring Development Tools

22

Setting up the game structure
Through the course of this recipe you will learn the steps that are necessary to set up a very
basic application structure to get your application going.

Getting ready
To follow the steps of this recipe you should have finished the first recipe in this chapter
to have a properly configured development environment.

How to do it...
Follow these steps to create an empty project skeleton:

1.	 Start NetBeans and click File | New Project… in the main menu.

2.	 Select Python Project and click Next on the first screen of the New Project Wizard.

Chapter 1

23

3.	 On the New Python Project screen, set the Project Name and choose a Project
Location. Also select Set as Main Project and Create Main File. Set the textbox to
main.py, and check that the right Python Platform is active. Click Finish to proceed.

4.	 Right-click the Project Name | Sources | Top Level item in the tree view in the
Projects tab and select New | Empty Module.

Setting Up Panda3D and Configuring Development Tools

24

5.	 In the window that opens, set the File Name to Application and click Finish.

6.	 Paste the following code into Application.py:
from direct.showbase.ShowBase import ShowBase

class Application(ShowBase):

 def __init__(self):

 ShowBase.__init__(self)

7.	 The code that follows goes into main.py:
from Application import Application

if __name__ == "__main__":
 gameApp = Application()
 gameApp.run()

8.	 Open your project directory in Windows Explorer and create folders called models
and sounds next to the src folder. The folder structure should resemble the
following screenshot:

Chapter 1

25

9.	 Open the Config.prc file as described in the prior recipe and add the
following lines:
model-path $MAIN_DIR/../models
model-path $MAIN_DIR/../sounds

10.	 Hit F6 to run the application.

How it works...
First, we start by creating a new project in NetBeans. It generally is a very good idea to name
the main file that will be launched by the Python runtime main.py, so we are already set
when we want to package our code and assets for redistribution later on.

The Application class, derived from ShowBase, is added as an abstraction of our game
application. We must not forget to call the constructor of ShowBase in the constructor of
Application or else there won't be a window opening when launching the program.

Because we do not want code files and assets to be scattered in a mess inside one single
folder, we add folders dedicated to certain asset types. Depending on the type of project
we intend to create, this setup may vary and we may wish to add additional folders. What's
important about that is not to forget to add these extra folders to Panda3D's search paths
too in Config.prc, just like the models and sounds folders!

Building Panda3D from source code
When developing a game with Panda3D you may want to—and most likely will need
to—compile the engine from source code. This recipe will show how to do this and show which
options there are for configuring how your custom build of Panda3D is created.

Getting ready
The following instructions rely on the target system having installed Microsoft Visual Studio
2008 or Microsoft Visual C++ Express 2008. To build the DirectX 8 and 9 renderers, you also
need the DirectX SDK, which can be downloaded from msdn.microsoft.com/en-us/
directx/aa937788.aspx. If you have the Professional Edition of Visual Studio, you're set
and ready to go.

For making the recipe work with the Express Edition you will need to download and install the
Windows Server 2003 R2 Platform SDK, as recommended in the documentation of Panda3D.
It can be obtained from the following URL: www.microsoft.com/downloads/details.
aspx?familyid=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB

Setting Up Panda3D and Configuring Development Tools

26

How to do it...
Work through these tasks to build Panda3D from source code:

1.	 Go to www.panda3d.org/download.php?platform=windows&version=1.
7.0&sdk, download the Panda3D Complete Source Code package and unzip the
archive at a location of your choice.

2.	 Open the file makepanda\makepanda.bat in a text editor and change the line
if %PROCESSOR_ARCHITECTURE% == AMD64 goto :AMD64 to REM if
%PROCESSOR_ARCHITECTURE% == AMD64 goto :AMD64.

3.	 Open a Visual Studio 2008 Command Prompt by clicking Microsoft Visual Studio
2008 | Visual Studio Tools | Visual Studio Command Prompt in the Start menu.
If you have Visual C++ Express 2008, you can find it under Microsoft Visual C++
Express 2008 | Visual Studio Tools | Visual Studio Command Prompt.

4.	 Change to the directory you unpacked the source code to. If you enter the dir
command and see the following directory listing (or a similar looking one) you
are in the right directory:

5.	 Type makepanda\makepanda.bat --everything.

How it works...
Panda3D uses its own custom build system to produce builds from source code. In step 2, we
need to modify the build system's start script to prevent it from throwing an error if the build
system is using a 64-bit processor. Building 64-bit executables does not work with version
1.7.0 of Panda3D and isn't officially supported, so we force the build system to compile 32-bit
executables and libraries.

In the following steps we open a Visual Studio 2008 Command Prompt, which guarantees that
all required search paths are set properly and kick off a complete build of Panda3D. Please note
that such a build, depending on the power of your machine, takes about one hour to complete!

Once the build is complete, the freshly compiled version of Panda3D can be found in the
built subdirectory.

Chapter 1

27

There's more...
Panda3D's build system allows us to configure the build using a number of command line
flags. The --everything option we already used before will instruct the makepanda script to
build Panda3D and all third party libraries.

The exact counterpart of the --everything option is --nothing, which will disable all third party
libraries to be built.

Of course there isn't just on and off. The makepanda build script allows us to set which
libraries we do and do not want to include in our build. This can be done by setting the various
--use-xxx and --no-xxx flags, where xxx stands for a library to be included or left out of the
resulting executable. For a full list, just issue the command makepanda\makepanda.bat
from the top level of the unpacked source package.

The --optimize option allows to set the optimization level used when compiling Panda3D
on a range from 1 to 4, where 1 creates a debug build and 4 enables the most aggressive
optimizations, including link time code generation. If not set, this value defaults to 3, which
provides a safe default while generating a very well performing build.

Lastly, we can use the --installer flag to generate an installer, which for example makes it
easier to redistribute the custom build of the engine to other developers on a team.

2
Creating and Building

Scenes

In this chapter, we will cover the following topics:

ff Loading models and actors
ff Loading terrain
ff Loading and attaching sounds to objects
ff Creating a scene using C++
ff Adding an additional camera
ff Inspecting and modifying the scene
ff Modifying the scene graph
ff Moving objects based on time
ff Controlling actions using intervals
ff Making animations fit to intervals
ff Making objects follow a predefined path
ff Making the camera smoothly follow an object
ff Generating geometry at runtime
ff Loading data asynchronously

Introduction
One thing that is great about games is their ability to present immersive and exciting
worlds which players are able to explore over the course of their progress in the game. Be
it dungeons filled with dragons and monsters or futuristic space stations, these worlds do
have one thing in common they need to be built by hand by someone prior to their inclusion
in a game.

Creating and Building Scenes

30

In this chapter we will see how Panda3D allows us to build interesting scenes by placing and
arranging static and animated objects to fill the initial void of an empty scene. Additionally, we
will see how to place cameras and make our game worlds even more exciting by dynamically
moving and animating objects.

Panda3D makes it very easy to quickly load some static non-animated models as well as
actors that can be animated and placed to your liking to create a scene. This is one of the
powerful features of the engine and, for example, makes it a very strong prototyping tool. In
this recipe you will learn how to get Panda3D to load models and actors and display them on
the screen.

This book follows the naming convention used by Panda3D. Therefore
the term model refers to a static mesh without animation data and
actor is used for meshes that include animation data.

Getting ready
The following steps will use the application skeleton presented in the recipe Setting up the
game structure found in Chapter 1, Setting Up Panda3D and Configuring Development Tools.
If you're unsure about setting up a project and need a little refresher on that topic, feel free
to take a step back to this topic.

How to do it...
Loading models and actors is easy. Just follow these steps:

1.	 Add the highlighted code to your Application.py file:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import Vec3

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.teapot = loader.loadModel("teapot")
 self.teapot.reparentTo(render)
 self.teapot.setPos(-5, 0, 0)

 self.pandaActor = Actor("panda", {"walk": "panda-walk"})
 self.pandaActor.reparentTo(render)
 self.pandaActor.setPos(Vec3(5, 0, 0))
 self.pandaActor.loop("walk")

 self.cam.setPos(0, -30, 6)

Chapter 2

31

Click Run | Run Project in the main menu or press F6 to start the application. If you followed
all of the steps correctly, your scene will look like the following screenshot:

How it works...
After setting up our new project, we add new import statements for the Actor and Vec3
classes we are going to use in the following code. Then the teapot model, which is included
in the standard installation of Panda3D, is loaded—note that you do not need to provide
a file extension!

The next line is very important. The reparentTo() method is used to make the calling object
a child of the object given as the parameter to reparentTo(), which is the render object
in this case. This allows you to build hierarchies of scene objects so that when you move a
parent node, all child nodes are influenced too. For example, in a racing game you could make
the wheel models child nodes of the car body model to ensure their proper position relative
to the chassis. In our sample code, the teapot is a child of render, which is the root of the
scene graph. Models and actors that are not added to the scene graph will not be drawn!

Finally, the teapot is set five units to the left of the coordinate system origin to leave some
space for the big panda that is going to be loaded by the next block of code.

Creating and Building Scenes

32

It is important to understand Panda3D's coordinate system, which is
visualized in the following screenshot. By default, positive x (in red)
points to the right, positive y (in green) points into the screen and
positive z (in blue) points up.

Loading actors works a little bit different than loading models. We create a new instance
of the Actor class and provide the name of the actor to load. The second parameter is a
dictionary that maps animation names to a file containing the animation data. This parameter
is optional and only necessary if animation and mesh data are stored in separate files.

After adding the panda to the scene graph and setting its position, the walk animation is
set to play in a loop and finally, the camera is set to a position that allows it to capture our
first scene.

Loading terrain
If you plan to create a game set in a non-flat outdoor environment, you will need a way to
create a natural looking terrain consisting of mountains, hills, and slopes. Luckily, Panda3D
comes with the GeoMipTerrain class that allows you to generate such an environment from
a simple grayscale image called a height map.

Getting ready
Create a new project as described in Setting up the game structure and add a directory called
textures on the same level as the models, nbproject, sounds, and src directories. Also
copy the height map and terrain texture you are going to use for rendering the landscape to
the textures directory.

Chapter 2

33

Height maps can be created with specialized tools like Terragen or by rendering the height
information of a mesh created by hand to a texture using a modeling package like Maya. A
very quick solution is to generate a random landscape using a difference cloud filter found in
many professional image editing programs.

The size of your height map should be 2n + 1 pixels so the engine is able to handle it
efficiently. This means your height map images should be of sizes 257x257 (28 + 1) or
1025x1025 (210 + 1), for example. This image size rule is mandated by the algorithm that
turns the pixels of the height map into the vertices of the terrain. If the texture image provided
fails to comply with this rule, the engine will resize it, which may lead to longer loading times
and undesired resulting terrains. The code we are going to write will use a texture size of
513x513 pixels.

How to do it...
Fulfill these tasks to make Panda3D load and render terrain:

1.	 Make sure all needed resources are in place and add the marked code to
Application.py. The height map and color map images are assumed to
be called height.png and grass.png.
from direct.showbase.ShowBase import ShowBase
from panda3d.core import GeoMipTerrain

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.terrain = GeoMipTerrain("terrain")
 self.terrain.setHeightfield("../textures/height.png")
 self.terrain.setColorMap("../textures/grass.png")
 self.terrain.getRoot().setSz(35)
 self.terrain.getRoot().reparentTo(render)
 self.terrain.generate()

 z = self.terrain.getElevation(256, 256) * 40
 self.cam.setPos(256, 256, z)

 self.terrain.setFocalPoint(self.cam)
 self.taskMgr.add(self.updateTerrain, "update terrain")

 def updateTerrain(self, task):
 self.terrain.update()
 return task.cont

Creating and Building Scenes

34

2.	 Start your program. You should be able to see a scene similar to the
following screenshot:

How it works...
After the obligatory import statement, we create a new instance of GeoMipTerrain and load
the height map and texture. In version 1.7.0 of Panda3D, GeoMipTerrain seems to ignore
the search paths set in the configuration. Therefore we provide the full relative paths and
filenames. Additionally, we set the maximum elevation of the terrain by scaling the geometry
about the z-axis with the setSz() method. By default, the terrain's elevation ranges between
0 and 1. Feel free to play with this value until the results suit your needs!

Next we add the terrain to the scene graph and call generate() to create the geometry for
our landscape. We also set the camera to a position that is somewhere within the boundaries
of the terrain and use getElevation() to sample the height map at the given position
to set the camera height to be above the hills.

GeoMipTerrain uses LOD (level of detail) mapping, where items closer to the focal point
are rendered in higher quality than those further away. We can also turn this off (and always
get the highest quality) by calling setBruteforce(True) on a GeoMipTerrain object.
To wrap things up, we add a small task to keep the terrain updated according to the focal
point's position.

Chapter 2

35

There's more...
GeoMipTerrain objects can be configured further with the following methods, which you
most likely need to use as they have a great influence on rendering performance.

Block size
Geometrical mipmapping, the level of detail technique used by the terrain renderer,
divides the terrain into groups of quads, which then are set to an elevation according to the
information found in the height map. The method setBlockSize() allows you to define
the number of quads to use. Clearly, a higher amount will result in increased quality and
decreased performance and vice versa.

Near and far thresholds
With the setNear() and setFar() methods of GeoMipTerrain you are able to define two
important thresholds that are used for choosing the level of rendering fidelity of the terrain.
The near distance defines to which point from the focal point the highest level of detail will be
used. The far distance, on the other hand, sets from which distance on the lowest detail level
will be chosen.

Loading and attaching sounds to objects
In this recipe we will take a look into Panda3D's positional audio capabilities. 3D sound is a
wonderful tool to immerse the player and to generate great atmosphere. Positional audio also
can help the player to orientate: In a shooter, for example, it is much easier to return fire if one
heard that the enemy units are attacking from behind.

Getting ready
Before starting this recipe, be sure to set up a project as described in Setting up the game
structure. You will also need to provide a mono sound file called loop.wav in the sounds
folder of your project.

How to do it...
Let's load a sound file and attach it to a model:

1.	 Open Application.py and add the highlighted code:
from direct.showbase.ShowBase import ShowBase
from direct.showbase.Audio3DManager import Audio3DManager

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

Creating and Building Scenes

36

 self.smiley = loader.loadModel("smiley")
 self.smiley.reparentTo(render)

 self.audio = Audio3DManager(self.sfxManagerList[0])
 self.audio.attachListener(self.cam)

 self.loop = self.audio.loadSfx("loop.wav")
 self.loop.setLoop(True)
 self.audio.attachSoundToObject(self.loop, self.smiley)
 self.loop.play()

 self.cam.setPos(0, -40, 0)

2.	 Hold the left mouse button and move the mouse to pan the camera, or hold down the
right mouse button and use the mouse to zoom in and out of the scene. Note how the
sound position changes.

How it works...
The key to positional audio in Panda3D is the Audio3DManager class. After adding a smiley
to the scene, we initialize the Audio3DManager and set the camera to be the listener object.
This has the effect that all sounds played using positional audio will be mixed relative to the
NodePath we pass to attachListener().

Then, the sound file is loaded, set to be a loop and attached to the smiley, so that the sound
plays wherever the object is positioned in the scene. Finally we start to play the sound loop
and position the camera.

Positional audio will not work if we are using a stereo sound file.
Panda3D will print a warning message in the console output if our
sound is stereo, not mono.

There's more...
If you want to take the scene objects' and listener's velocity into account to achieve the Doppler
effect, you need to update the listener and object positions by passing their velocity vectors to
the setListenerVelocity() and setSoundVelocity() methods of Audio3DManager.

Chapter 2

37

Creating a scene using C++
The Panda3D engine was mainly designed to be controlled by Python scripts to hide away
the complexities of handling and rendering a 3D game world. This allows us to concentrate
on creating game scenes and gameplay without having to think about any low-level
implementation issues. Many of these have already been solved by the Panda3D developers
and are implemented in a whole set of libraries written in C++. When working with Python
Panda3D's API nicely wraps their functionality, but we may also use these libraries directly
from our own C++ code if we prefer to use this language instead of Python.

Getting ready
If you haven't yet, please read the recipe Configuring Visual Studio 2008 to work with
Panda3D found in Chapter 1 prior to starting this one. The following steps assume you know
how to get a Panda3D project started in Visual Studio 2008 or Visual C++ Express 2008. Both
editions can be used for this recipe. For the sake of readability, this recipe will refer to both of
them as Visual Studio 2008.

How to do it...
These tasks will show you how to create a scene using the C++ programming language:

1.	 Start Visual Studio 2008 and create a new Win32 Console Application. Make sure
to tick the Empty project checkbox in the project wizard.

2.	 Set up your project paths and settings as described in the section Configuring Visual
Studio 2008 to work with Panda3D.

3.	 Right-click the Source Files item in the solution explorer, click Add | New Item….

4.	 Choose the C++ File (.cpp) template in the Code category of the Add New Item
window and add the file main.cpp.

5.	 Insert the following code to the newly created file:
#include <pandaFramework.h>
#include <pandaSystem.h>
#include <animControlCollection.h>
#include <auto_bind.h>

PandaFramework framework;

int main(int argc, char* argv[])
{
 framework.open_framework(argc, argv);
 WindowFramework* win = framework.open_window();
 NodePath camera = win->get_camera_group();

Creating and Building Scenes

38

 NodePath teapot = win->load_model(framework.get_models(),
"teapot");
 teapot.reparent_to(win->get_render());
 teapot.set_pos(-5, 0, 0);

 NodePath panda = win->load_model(framework.get_models(),
"panda");
 panda.reparent_to(win->get_render());
 panda.set_pos(5, 0, 0);

 win->load_model(panda, "panda-walk");
 AnimControlCollection pandaAnims;
 auto_bind(panda.node(), pandaAnims);
 pandaAnims.loop("panda_soft", false);

 camera.set_pos(0, -30, 6);

 framework.main_loop();
 framework.close_framework();
 return 0;
}

6.	 Press F5 to run the program. You should now be able to see the scene from the
section Loading models and actors.

How it works...
In this recipe, we are using the PandaFramework class, which acts as a wrapper around
Panda3D's core classes to form an application framework. To get our application started,
we need to initialize our global instance of PandaFramework and open a window. For
convenience, we also get a reference to the default camera, so we don't need to call
win->get_camera_group() every time we want to modify the camera.

Loading the teapot and panda models and adding them to their positions within our
little scene looks nearly the same as in Python, with one exception—that strange call to
framework.get_models(). This method returns the root of scene graph, which is not
rendered, but instead serves as a scratchpad area for model loading. This is passed to the
load_model() method as the parent node that the model will be attached to and may
seem a little overly verbose in this sample. In fact, we could pass win->get_render()
as the parent node and drop the reparent_to() call. But in practice, where you might
not add a model to the scene directly after you loaded it, the purpose of this scratch scene
becomes more evident. In real world projects, hundreds of models are preloaded for the
current level, with this scratchpad area removing the need to keep hundreds of NodePath
instances around. Instead, the temporary scene is queried for the needed model, which then
is reparented to its place in the rendered scene.

Chapter 2

39

Loading and playing animations also works differently than what we know from Python.
Instead of an explicit method for loading animation data, we use load_model() to load
the animation and make it a child node of the panda actor. We then call auto_bind() to
fill an AnimControlCollection and bind the animation data to the panda actor. Note
the animation name used for starting the loop—this is the animation name found in the
panda-walk file defined in the art tool used to create the animation.

Lastly, we set the camera position and start the main loop, from which the program will only
return if the program is terminated. At this point, the close_framework() method is called
to properly clean up.

Adding an additional camera
A great way to make scenes more interesting is to present them from multiple points of view.
This can give a more cinematic feel to a game or might even be a plain necessity if you think
of the TV-like replays found in most racing games.

After completing this recipe you will be able to add multiple cameras to the scene and switch
between these predefined views.

Getting ready
To follow this recipe, complete the steps described in Setting up the game structure found in
Chapter 1 before going on.

How to do it...
Let's create a new scene and look at it from different angles:

1.	 Add the highlighted code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from direct.interval.FunctionInterval import Func

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.pandaActor = Actor("panda", {"walk": "panda-walk"})
 self.pandaActor.reparentTo(render)
 self.pandaActor.loop("walk")

 self.cameras = [self.cam, self.makeCamera(self.win)]
 self.cameras[1].node().getDisplayRegion(0).setActive(0)
 self.activeCam = 0

Creating and Building Scenes

40

 self.cameras[0].setPos(0, -30, 6)
 self.cameras[1].setPos(30, -30, 20)
 self.cameras[1].lookAt(0, 0, 6)

 self.taskMgr.doMethodLater(5, self.toggleCam, "toggle
camera")

 def toggleCam(self, task):
 self.cameras[self.activeCam].node().getDisplayRegion(0).
setActive(0)
 self.activeCam = not self.activeCam
 self.cameras[self.activeCam].node().getDisplayRegion(0).
setActive(1)
 return task.again

2.	 Press F6 to start the program. The view will toggle every 5 seconds.

How it works...
After the necessary imports and the walking panda being added to the scene, we reach the
first interesting part of this recipe, where we create a list containing the default camera and
a newly added one. Additionally, we turn off the new camera with setActive(0), because
we will use the default camera as initial point of view. We also store the index of the active
camera in the activeCam variable.

In the following lines, the positions targets of the cameras are set. Finally, we instruct the
task manager to queue the call to toggleCam and wait for five seconds until the method is
called that switches back and forth between the cameras. The toggleCam method returns
task.again, which causes it to be called again after another five seconds have passed.

In this recipe we only added one additional camera. Of course, Panda3D supports more
than that and lets us create new cameras with a call to makeCamera(). This creates a new
scene node that wraps the actual camera object so we can move it around or reparent it to
an object, for example. Whenever we want to toggle between cameras, we need to get the
camera objects wrapped by the scene node using the node() method. We can then turn
cameras on and off by toggling the active state of the display region associated with each
camera. This is done using the getDisplayRegion() and setActive() methods.

Inspecting and modifying the scene
Panda3D is a great engine for quickly developing prototypes of games, because creating
and modifying scenes works quick and easy. But sometimes quick is not fast enough and
restarting the game to see a change taking effect is a frustrating and repetitive task. This is
why Panda3D provides the scene explorer, which we will use in the following recipe.

Chapter 2

41

Getting ready
The following instructions are going to modify the code created in the recipe Loading models
and actors, which can be found in this chapter.

How to do it...
The following tasks will introduce you to the features of the scene explorer:

1.	 Add the highlighted lines to Application.py:
from panda3d.core import Vec3
from pandac.PandaModules import loadPrcFileData

loadPrcFileData("", "want-directtools #t")
loadPrcFileData("", "want-tk #t")

class Application(ShowBase):
 def __init__(self):

2.	 Press F6 to start the application. Next to the game window, you will see the
screenshot similar to this:

3.	 Push the Wireframe button to enable wireframe rendering.

Creating and Building Scenes

42

4.	 Select the Grid tab and enable the grid:

5.	 Go to the Tasks tab and push the Update button to watch all active tasks:

Chapter 2

43

6.	 Expand the PandaNode DIRECT node in the tree view on the left side of the window.
You will see the following tree:

7.	 Right-click the ModelRoot teapot.egg node and click Place to open the Placer Panel
enter the values from the following screenshot:

8.	 Click Placer | Print info to output your settings to Netbeans' Output pane:

9.	 Close the Placer Panel.

10.	 Left-click ModelRoot teapot.egg in the tree view to make it the active selection.

Creating and Building Scenes

44

11.	 Right-click ModelRoot teapot.egg and click Set Color.

12.	 In the RGBA Panel, set the following values:

13.	 Click the Print to Log button to output the color value to the Output pane
of Netbeans.

How it works...
The scene explorer is enabled in the first step by setting the configuration flags
want-directtools and want-tk at runtime using the loadPrcFileData() function.

Although it will never be able to replace a proper level editor, the scene explorer can come in
very handy to quickly place objects, especially if you use the buttons to print your settings
to the Output pane of Netbeans. These little snippets can then be copied and pasted to our
code to make the changes permanent.

Modifying the scene graph
Today's games very often present jaw-dropping, complex scenes, and levels composed out
of hundreds of single objects. So managing these object compositions can become a very
challenging task without the right data structure. This is why the principle of the scene graph
has become a state of the art technique in video games and computer graphics in general.
A scene graph is a hierarchical tree structure that holds information about the scene models'
positions, rotations, and parent-child relationships for relative positioning—among many
other things.

In this recipe we will take a look at Panda3D's scene graph interfaces and will learn how to
place and rotate objects within the scene and how to build a hierarchy of models and actors
to allow our scene objects to be placed relative to each other.

Chapter 2

45

Getting ready
Be sure to complete Setting up the game structure in chapter one before you start this recipe,
as this project structure forms the basis for the following steps.

How to do it...
Let's see how Panda3D's scene graph works. Follow these steps to create a sample application:

1.	 Open Application.py and add the marked code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import Vec3

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.sun = loader.loadModel("smiley")
 self.sun.reparentTo(render)
 self.sun.setScale(5)

 self.phantom = loader.loadModel("teapot")
 self.phantom.reparentTo(self.sun)
 self.phantom.setScale(0.1)
 self.phantom.setPos(0, -5, 0)
 self.phantom.hide()

 self.earth = loader.loadModel("frowney")
 self.earthCenter = render.attachNewNode("earthCenter")
 self.earth.reparentTo(self.earthCenter)
 self.earth.setPos(20, 0, 0)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(self.earth)
 self.panda.setScale(0.1)
 self.panda.setPos(Vec3(0.7, 0, 0.7))
 self.panda.setHpr(0, 0, 40)
 self.panda.loop("walk")

 self.moon = loader.loadModel("box")
 self.moonCenter = self.earthCenter.attachNewNode("moonCent
er")
 self.moon.reparentTo(self.moonCenter)
 self.moonCenter.setPos(self.earth.getPos())
 self.moon.setPos(0, 0, 6)
 self.cam.setPos(0, -100, 0)

Creating and Building Scenes

46

2.	 Press F6 to start the application. If you added the code properly, you will see the
following scene. Hold down the left mouse button and drag your mouse to pan the
camera. Keep the right mouse button pressed while moving the mouse to zoom in
and out.

How it works...
If you compare the code used to create this little solar system to Loading models and actors,
you will immediately understand how the mesh data is loaded and added to the scene. On the
other hand, you just used a few new calls and some already known ones in a new fashion.

The smiley model is the sun in this little solar system, therefore we do not change its position,
but scale it to five times its original size with setScale().

Next comes the phantom planet that is a child of the sun, which means that all transforms
of the object will happen relative to the sun. So if you decided to set the sun to a different
position, this planet's position would change, too, to keep the relative position. This
relationship also has an impact on the scale factor, which means that scaling the teapot
model that was reparented to the sun by 0.1 really means scaling it by a factor of 0.5,
because its parent object was scaled to five times its size before.

All this happens to no avail for the phantom planet, as it is disabled for rendering by the
hide() method. A hidden model can easily be made visible again by calling the show()
method of the object.

The earth is positioned with the help of an empty scene node you added with the line
render.attachNewNode("earthCenter"). Using dummy objects like this one is
a great way to simplify complex relative object placements!

Chapter 2

47

On top of the earth, there walks a lonesome panda, which introduces another new method for
modifying objects in the scene graph called setHpr(), which is used to make the panda lean
to the side. "Hpr" in this case stands for heading, pitch, and roll. Heading makes the panda
turn to the left and the right, pitch makes it lean backwards and forwards and roll makes it
lean to the left and the right.

Finally, the moon is placed using a new dummy object attached to the earth's placement
dummy, and the camera is set to capture this tiny universe in all its glory!

There's more...
Apart from the methods shown in the code sample, there are some more ways to modify the
actors and models in your scene. For example, the position and rotation can be set using only
one method call with setPosHpr(). Another way to do the same with different measures is
to use setMat(), and provide a matrix containing transformation data. But there's even more
you can do, as the following paragraphs will show!

Position
Besides setPos(), you can set the position of an object on each individual coordinate axis
by using setX(), setY(), and setZ() respectively. In addition, these methods can be
made using coordinates that are relative to an object by passing it as the first parameter. For
example, adding the line self.earth.setX(self.sun, 5) in the preceding sample would
position the earth five units away from the sun's coordinate origin along the x-axis.

Rotation
Just like position, rotation can be modified individually by using the methods
setH(), setP(), and setR().

Another way of representing rotations are quaternions, which can be set by using setQuat().
Quaternions are a four-dimensional extension of complex numbers, which allow you to store
rotations within only four values, help to circumvent the effect of Gimbal lock (two coordinate
axis becoming one after certain rotations, effectively removing one degree of freedom), and
can very easily be interpolated.

Scale
The method setScale() used above uniformly scales geometry along all three axis. If you
intend to only modify the scale of a model or an actor in your scene along one coordinate
axis, you can use the methods setSx(), setSy(), and setSz().

All the methods used to set position, rotation, and scale of objects
in the scene graph also provide corresponding getter methods for
retrieving data!

Creating and Building Scenes

48

Moving objects based on time
While there is beauty in static images, and they add much to the world of games, in modern
video games, action is typically the focus. Today's games are usually very dynamic, having the
player and non-player characters moving through scenes containing stacks of crates that can
be tossed around, dynamic obstacles such as moving platforms, or flocks of birds that are just
there to make a level more compelling.

In this recipe you will learn to make things move around in your scenes and how to use the
time that has passed as a parameter for creating the illusion of movement.

Getting ready
We will be using and extending the code created in the recipe Modifying the scene graph,
so please take a step back and follow that tip before you haven't already tried that recipe.

How to do it...
It's time to get things moving. Let's animate the scene:

1.	 Open Application.py and below the last line of code created in Modifying the
scene graph, which is marked here, add the following lines to the source code:
 self.cam.setPos(0, -100, 0)
 self.taskMgr.add(self.update, "update")

 def update(self, task):
 self.sun.setP(task.time * 10)
 self.earth.setH(task.time * -100)
 self.earthCenter.setH(task.time * 50)
 self.moonCenter.setR(task.time * 150)
 return task.cont

2.	 Press F6 to run the code and watch the planets go around.

How it works...
You just added a task to your program whose sole purpose is to set the positions and rotations
of the objects found in the scene graph. The twist about this is that you are not setting these
values to fixed numbers, but instead you are multiplying them with the time that has passed
since the task was started, which is stored in task.time.

Chapter 2

49

Beside the fact that you just implemented the most basic principle of animation, you also did
something else! You just ensured that this little animation is progressing at the same rate, no
matter how many frames per second the Panda3D's renderer is drawing.

Our update() method is executed every time a new frame of the scene is rendered.
Depending on the speed of our system, this happens at a different frequency—a faster system
is able to draw more frames per second than a slower one. If we just moved our objects by a
fixed amount per frame, the animation speed would be bound to the frame rate. In a game,
this would lead to the undesired effect of gameplay being not stable and unpredictable,
because any occasion of the frame rate dropping or increasing would cause the game to
change its pace.

By multiplying with the time that has passed, we make our animation independent of the
current frame rate. Take the rotation of the sun in our code as an example. On a system that
takes 0.5 seconds to render a frame, the sun is rotated by 0.5 * 10 units per frame. Now let's
think about what happens if we ran the code on a system that takes one second to produce
one frame—the rotation rate is multiplied by the time that has passed so that the sun is
rotated 10 units per frame.

If we now compare what happens within one second on our slow and fast systems, we can
see that the faster one will render two frames instead of only one. More importantly, though,
the sun rotates at the same rate of 10 units per second, no matter how fast or slow the
system is able to execute our code.

There's more...
Panda3D provides some additional methods for measuring how much time has passed.

For tasks, there's task.frame for getting the number of frames that have passed since the
creation of the task.

Another way of accessing time values is the globalClock object, which can be accessed
globally from any point within a Panda3D application. By calling globalClock.getDt() you
can retrieve the time that has passed since the last frame, and the method getFrameTime()
of the globalClock object returns the time since the program was started. Don't be afraid
to experiment and replace task.time in the sample code with one of these methods and
watch the results!

Controlling actions using intervals
The gameplay of many great video games is defined by certain movement patterns as well as
their speed and timing. For example, each of the ghosts in Pac-Man has its own and unique way
of hunting the player. Another great sample for gameplay-defining movement patterns can be
found in Half-Life, where a Headcrab, the simplest type of enemy, tries to attack directly from
the front, while fighting Marines is harder as they are taking cover and try to flank the player.

Creating and Building Scenes

50

Without the proper tools, defining such action sequences can be a very time-consuming and
tedious task that often requires an experienced animator or games designer to make them
seem natural and compelling. But with Panda3D and its intervals system, this won't be a
problem for you after reading and working through the following recipe.

Getting ready
The following code and steps build on top of Setting up the game structure found in the
Chapter 1, Setting Up Panda3D and Configuring Development Tools. Please complete
this recipe before you proceed!

How to do it...
Complete these steps to get a running sample of Panda3D's intervals:

1.	 Add the highlighted lines to the file Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.showbase.RandomNumGen import RandomNumGen
from direct.actor.Actor import Actor
from panda3d.core import Vec3
from direct.interval.IntervalGlobal import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.setHpr(-90, 0, 0)
 self.panda.loop("walk")

 self.walkIval1 = self.panda.posInterval(2, Vec3(-8, 0, 0),
startPos = Vec3(8, 0, 0))
 self.walkIval2 = self.panda.posInterval(2, Vec3(8, 0, 0),
startPos = Vec3(-8, 0, 0))
 self.turnIval1 = self.panda.hprInterval(0.5, Vec3(90, 0,
0), startHpr = Vec3(-90, 0, 0))
 self.turnIval2 = self.panda.hprInterval(0.5, Vec3(-90, 0,
0), startHpr = Vec3(90, 0, 0))
 self.colorIval = Func(self.randomColor)
 self.pandaWalk = Sequence(self.walkIval1, self.turnIval1,
self.colorIval, self.walkIval2, self.turnIval2, self.colorIval)
 self.pandaWalk.loop()

 self.cam.setPos(0, -50, 6)

Chapter 2

51

 def randomColor(self):
 rand = RandomNumGen(globalClock.getFrameTime())
 self.panda.setColorScale(rand.random(), rand.random(),
rand.random(), 255)

2.	 Start the program by hitting F6. If your code is correct, you will see a panda walk from
one side of the window to the other and back, changing its color every time it turns:

How it works...
Right after loading and adding the panda actor to the scene, we define four intervals that
make the panda walk from one side to the other. The first two are position intervals that
move an object from one point to the other, and the other two intervals are interpolating
between two rotation values, all of which are getting passed similar parameters: The first
value is the time we want the action to take until it is completed, followed by the final and
starting positions.

Then we add a function interval. We cannot pass a time value to this kind of interval because
it executes immediately. All the constructor of Func takes is the method to execute upon
activation. Here we use the randomColor() method, which changes the panda's color
tint to a random value.

Creating and Building Scenes

52

Finally, all these intervals are put into a Sequence object. We use this to ensure that the
intervals we defined before are executed in the order passed to the constructor of Sequence.
We are creating a chain of actions. Our Sequence makes the panda walk from one side to
the other, turn around, change its color, walk back to where it started, turn around again, and
finally change its color yet another time. We start the sequence as a loop, set the camera, and
the panda is on its way!

There's more...
Panda3D's interval system is very powerful and important and therefore deserves some more
discussion, in order to give you a better understanding of its reach and power.

Lerp intervals
In the sample code above, we used shortcuts to directly create intervals for the panda actor.
These shortcuts create instances of LerpPosInterval and LerpHprInterval, respectively.
We can create instances of these classes directly, but we must not forget to pass the model
or actor NodePath we want to modify as the first parameter of the constructor! There are
even more very commonly used interpolation interval types: LerpQuatInterval lets us
move objects from one rotation to another one using quaternions. LerpScaleInterval
interpolates between two scale factors of a scene object. LerpColorInterval and
LerpColorScaleInterval can be used to crossfade object colors. While the first one
overrides the target object's initial color, LerpColorScaleInterval multiplies colors
and tints models and actors in the given colors.

Also there are interval types that modify two or more object properties at the same time:
LerpPosHprInterval, for example, interpolates the position and rotation at the same
time, while LerpHprScaleInterval is used to rotate and scale. To top it off,
a LerpPosHprScaleInterval does all of the aforementioned in parallel.

Lerp function interval
You can use a LerpFunc to continuously call a function or method over a given period
of time, allowing you to, for example, change a parameter slightly with each iteration. The
following code snippet shows how to use an interpolation function interval:

def someFunc(t):
 print t

fn = LerpFunc(someFunc, fromData=0, toData=1, duration=10)
fn.start()

This brief snippet creates a LerpFunc that calls someFunc() over the course of ten seconds
while passing values ranging from zero to one, which then will be printed to the console.

Chapter 2

53

Interpolation easing
Passing in the blendType parameter to the constructor when creating a new LerpFunc
can be used to modify the starting and stopping behaviors of interpolation intervals to be
more smooth: 'noBlend', which is the default value, causes the interval to make a hard start
and stop. Setting the blendType parameter to 'easeIn' makes the animation accelerate
until it reaches its full speed. Passing 'easeOut' has the effect of making the interpolation
decelerate smoothly before coming to a stop. If you intend to create a smooth animation
without any sudden starting or stopping, set the blendType parameter to 'easeInOut'.

Sequences and Parallels
This recipe already has shown how to use the Sequence class to chain intervals, but
sometimes you really want to coordinate actions so that they happen at the same time. This is
what you can use objects of the type Parallel for—creation works analogous to Sequence,
but all intervals you added will play in parallel once this interval has started.

Sequences and Parallels can be nested within each other. Use this fact for
creating very complex action patterns with great ease!

Wait interval
Panda3D features a special kind of interval called Wait. The only thing it does is to wait for
the specified amount of time you pass to its constructor. Note that the Wait class is designed
to be used in conjunction with a Sequence or Parallel.

Making animations fit to intervals
Intervals are a very powerful feature of Panda3D, which you can see in the recipe Controlling
actions using intervals. In this recipe you will go one step beyond and see how to efficiently
control animations when used in conjunction with intervals.

Getting ready
If you haven't already, please read how to use intervals in Controlling actions using intervals
and follow the steps of that recipe.

How to do it...
This recipe consists of the following tasks:

1.	 Open Application.py.

2.	 Delete the line self.panda.loop("walk").

Creating and Building Scenes

54

3.	 Find the following part of the code:
self.pandaWalk = Sequence(self.walkIval1, self.turnIval1, self.
colorIval, self.walkIval2, self.turnIval2,
self.colorIval)
self.pandaWalk.loop()

4.	 Replace it with the following code:
self.pandaAnim = ActorInterval(self.panda, "walk", loop = 1,
duration = 5)
self.pandaMove = Sequence(self.walkIval1, self.turnIval1, self.
colorIval, self.walkIval2, self.turnIval2, self.colorIval)
self.pandaWalk = Parallel(self.pandaAnim, self.pandaMove)
self.pandaWalk.loop()

How it works...
The panda is moving just like before, but now an ActorInterval we create in the
highlighted line of the code controls animation playback. We set the animation to loop and to
play over the duration of five seconds. Finally, the animation-controlling ActorInterval and
the Sequence of transformations are made part of a Parallel that plays the two intervals
at the same time.

There's more...
 The actor interval constructor can take a range of optional parameters besides loop and
duration that were already presented in the sample code. Let's take a look at what else
you can do with ActorInterval:

Instead of duration, you can use startTime and endTime to define more precisely when
to start and stop playing the animation.

The playrate parameter lets you set the animation playback speed. Also note that if
playrate is a negative value, the animation is played backwards.

You can specify a sub range of the animation to be played by setting startFrame and
endFrame. Also, if you want to loop an animation range, set constrainedLoop to one
instead of loop.

In the following line of code, all these options have been applied to our sample code to loop
the first second of the walk animation at a very low rate:

self.pandaAnim = ActorInterval(self.panda, "walk", startTime = 0,
endTime = 1, playrate = 0.1, constrainedLoop = 1, duration = 5)

Chapter 2

55

Making objects follow a predefined path
In this recipe we will see how to move a model along a line, typically referred to as a path,
stored in Panda3D's model format. This can come in very handy for setting paths of non-player
characters inside a level. Another common use of this is to attach the camera to a path and
make it fly through the game world smoothly.

Getting ready
To follow this recipe you first have to set up a project as described in Setting up the game
structure. In addition, you need to create a curve in Maya or Blender and export it to
Panda3D's .egg file format. In case you don't have these tools or do not know how to work
with them, here's a sample curve you can paste into a text editor and save it as path.egg:

<CoordinateSystem> { Z-up }
<Group> Curve {
 <VertexPool> Curve {
 <Vertex> 0 {
 -2.66117048264 -0.964361846447 0.0 1.0
 }
 <Vertex> 1 {
 1.8930850029 -0.948404431343 0.0 1.0
 }
 <Vertex> 2 {
 10.3484048843 1.0 0.0 1.0
 }
 <Vertex> 3 {
 -3.6957449913 0.0 0.0 1.0
 }
 }
 <NURBSCurve> {
 <Order> { 4 }
 <Knots> { 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 }
 <VertexRef> { 0 1 2 3 <Ref> { Curve }}
 }
}

Creating and Building Scenes

56

How to do it...
Making objects follow a predefined path can be done like the following:

1.	 Copy the file containing the curve to the models directory of your project and make
sure it is named path.egg.

2.	 Copy the following code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from direct.directutil.Mopath import Mopath
from direct.interval.IntervalGlobal import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.smiley = self.loader.loadModel("smiley")
 self.smiley.reparentTo(render)

 self.mopath = Mopath()
 self.mopath.loadFile("path.egg")

 self.ival = MopathInterval(self.mopath, self.smiley,
duration = 10)
 self.ival.loop()

 self.cam.setPos(0, -20, 0)

3.	 Press F6 to start the program. The smiley model will follow the path.

How it works...
All it takes for you to use predefined paths is to create a Mopath object and load the file
containing the curve you want your object to follow. Then you pass the Mopath object to
a MopathInterval that is responsible for interpolating the model position along the path
over the specified duration. That's it—it's that easy!

Making the camera smoothly follow
an object

In this recipe you will learn how to program a simple camera system that follows an object
smoothly, without giving the impression of being glued to the back of the target.

Chapter 2

57

Getting ready
See the recipe Setting up the game structure to create the basic application framework
for the following steps.

How to do it...
Let's build a third person camera system:

1.	 Add this code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import Vec3
from direct.interval.IntervalGlobal import *
from FollowCam import FollowCam

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.setHpr(270, 0, 0)
 self.panda.loop("walk")

 self.walkIval1 = self.panda.posInterval(2, Vec3(-8, -8,
0), startPos = Vec3(8, -8, 0))
 self.walkIval2 = self.panda.posInterval(2, Vec3(-8, 8, 0),
startPos = Vec3(-8, -8, 0))
 self.walkIval3 = self.panda.posInterval(2, Vec3(8, 8, 0),
startPos = Vec3(-8, 8, 0))
 self.walkIval4 = self.panda.posInterval(2, Vec3(8, -8, 0),
startPos = Vec3(8, 8, 0))

 self.turnIval1 = self.panda.hprInterval(0.5, Vec3(180, 0,
0), startHpr = Vec3(270, 0, 0))
 self.turnIval2 = self.panda.hprInterval(0.5, Vec3(90, 0,
0), startHpr = Vec3(180, 0, 0))
 self.turnIval3 = self.panda.hprInterval(0.5, Vec3(0, 0,
0), startHpr = Vec3(90, 0, 0))

Creating and Building Scenes

58

 self.turnIval4 = self.panda.hprInterval(0.5, Vec3(-90, 0,
0), startHpr = Vec3(0, 0, 0))

 self.pandaWalk = Sequence(self.walkIval1, self.turnIval1,
 self.walkIval2, self.turnIval2,
 self.walkIval3, self.turnIval3,
 self.walkIval4, self.turnIval4)
 self.pandaWalk.loop()
 self.followCam = FollowCam(self.cam, self.panda)

2.	 Add a new file to the project. Call it FollowCam.py.

3.	 Copy the following code to the file you just created:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import Vec3

class FollowCam():
 def __init__(self, camera, target):
 self.dummy = render.attachNewNode("cam" + target.
getName())
 self.turnRate = 2.2
 self.camera = camera
 self.target = target
 taskMgr.add(self.updateCamera, "updateCamera" + target.
getName())

 def updateCamera(self, task):
 self.dummy.setPos(self.target.getPos())
 heading = self.clampAngle(self.dummy.getH())

 turnDiff = self.target.getH() - heading
 turnDiff = self.clampAngle(turnDiff)

 dt = globalClock.getDt()
 turn = turnDiff * dt
 self.dummy.setH(heading + turn * self.turnRate)

 self.camera.setPos(self.dummy.getPos())
 self.camera.setY(self.dummy, 40)
 self.camera.setZ(self.dummy, 10)
 self.camera.lookAt(self.target.getPos() + Vec3(0, 0, 7))

 return task.cont

Chapter 2

59

 def clampAngle(self, angle):
 while angle < -180:
 angle = angle + 360

 while angle > 180:
 angle = angle - 360

 return angle

4.	 Press F6 to start the application. You should be able to see a panda walking in circles
while the camera follows it:

How it works...
We use the constructor of our Application class to set up the scene containing the
walking panda and the background scenery. In the last line we create a new instance of
our FollowCam, which contains the camera tracking code that is the core of this recipe.

To make the FollowCam work correctly and to be able to have multiple cameras follow
different objects, we have to pass the camera we want to be updated and its target to the
constructor, where we set up a few things we need for updating the camera. For example,
we add a task that will call the updateCamera() method each frame. Additionally, the
target's name is appended to both the dummy object's and the task's names to avoid name
clashes in the case where we need to use more than one FollowCam instance. The dummy
object is an invisible helper object that will help us to position the camera, as you will see in
the following paragraphs.

Creating and Building Scenes

60

The updateCamera() method is where all the work is happening: We move the dummy to
our target's current position and get its current heading. The heading angle (in degrees) is
clamped to the range of values from 180 to 180. We do this to avoid the camera getting
stuck or continuing to turn because of the ambiguous nature of angles.

In the next steps, we calculate the difference between the target's heading and that of
our dummy object, which is also clamped to avoid the undesired results described in the
previous paragraph. In the following lines we can find the explanation for the camera's
smooth turning—every frame, the dummy object's heading converges towards the heading
of the camera target just a little bit. This is intentional; as it is multiplied by the time it took
to complete the last frame. Additionally, we can also influence how fast the camera turns by
adjusting turnRate.

In the final steps, the camera is first moved to the position of the dummy and then pushed
away again along the dummy's local axis to its final position. After setting the camera's
lookAt() target, we are done!

There's more...
In this version, the camera only supports smooth turning for objects that only change their
heading. Other rotation axes can be added rather easily, as they work exactly the same as
the one presented in this recipe!

Generating geometry at runtime
In some cases, Panda3D's model loading capabilities might not be enough for your needs.
Maybe you want to procedurally generate new geometry at runtime or maybe you decided to
drop the native file model file format of Panda3D in favor of your own custom data file layout.
For all these cases where you need to glue together vertices by hand in order to form a model,
the engine provides an API that you will learn about in this recipe.

Getting ready
As a prerequisite to the following steps, please create a new project as described in the recipe
Setting up the game structure. This recipe can be found in the Chapter 1.

You will also need a texture image. Preferably it should be rectangular and in the best case be
in a 2n format (64x64, 128x128, 256x256, and so on.). This recipe will use a crate texture in
PNG format.

Lastly, add a directory called textures to your project and be sure it is in Panda3D's search
path. This works analogous to what you did for the models and sounds directories.

Chapter 2

61

How to do it...
Follow these steps to learn how to create geometry on the fly:

1.	 Copy your texture image to the textures directory. Name it crate.png.

2.	 Open Application.py. Insert the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

vertices = [Vec3(1, 0, 1), Vec3(-1, 0, 1), Vec3(-1, 0, -1),
Vec3(1, 0, -1)]
texcoords = [Vec2(1, 1), Vec2(0, 1), Vec2(0, 0), Vec2(1, 0)]

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 format = GeomVertexFormat.getV3t2()
 geomData = GeomVertexData("box", format, Geom.UHStatic)
 vertexWriter = GeomVertexWriter(geomData, "vertex")
 uvWriter = GeomVertexWriter(geomData, "texcoord")

 for pos, tex in zip(vertices, texcoords):
 vertexWriter.addData3f(pos)
 uvWriter.addData2f(tex)

 triangles = GeomTriangles(Geom.UHStatic)
 triangles.addVertices(0, 1, 2)
 triangles.closePrimitive()
 triangles.addVertices(2, 3, 0)
 triangles.closePrimitive()

 geom = Geom(geomData)
 geom.addPrimitive(triangles)
 node = GeomNode("box")
 node.addGeom(geom)
 box = render.attachNewNode(node)
 texture = loader.loadTexture("crate.png")
 box.setTexture(texture)

 self.cam.setPos(0, -5, 0)

Creating and Building Scenes

62

3.	 Start the program. A quad with your texture on it should be rendered to the
Panda3D window:

How it works...
Let's take a look at what this code is doing! We begin by creating a format descriptor for one
of Panda3D's built in vertex data layouts. There are several of these layouts, which also can
be completely customized, which describe what kind of data will be stored for each point in
space that forms the mesh. In this particular case, we are using the getV3t2() method to
get a descriptor for a vertex layout that stores the vertex position in space using three floating
point values and the texture coordinate using two float values.

We then move on to create a GeomVertexData object, which uses the format we just
requested. We also pass the Geom.UHStatic flag, which signals the underlying rendering
systems that the vertex data will not change, which allows them to enable some optimizations.
Additionally, we create two GeomVertexWriter objects—one for writing to the "vertex"
channel, which stores the positions of the points that form the mesh, and the other one for
writing to the "texcoord" channel of the point data we are adding to geomData in the loop
that follows.

What we have so far is a cloud of seemingly random points—at least to the engine. To correct
this issue, we need to connect the points to form primitives, which in this case are triangles.
We create a new instance of GeomTriangles, using the Geom.UHStatic flag again to hint
that the primitives will not be changed after they are defined. Then we create two triangles by
passing indices to the proper points in the vertices list. After each triangle, we need to call
the closePrimitive() method to mark the primitive as complete and start a new one.

Chapter 2

63

At this point we have a collection of points in space, stored in a GeomVertexData object
and a GeomTriangles primitive that holds the information necessary to connect the dots
and form a mesh. To get the model to the screen, we need to create a new Geom, and add the
point data and the triangle primitives. Because a model can in fact consist of multiple Geom
objects, which also can't be added directly to the scene graph, we add it to a GeomNode.
Finally, we attach the GeomNode to the scene graph, load and apply the texture and set the
camera a bit back to be able to see our creation.

There's more...
There's a lot more to say about Panda3D's procedural geometry feature than what you just
saw, so take your time and keep on reading to discover what else you can do to generate
geometry at runtime.

Built in vertex formats
You already saw the built in GeomVertexFormat.getV3t2() format, but there are several
more ready to use formats available:

ff getV3(): Vertices store position only
ff getV3c4(): Vertex position and a RGBA color value
ff getV3c4t2(): Position, color, and texture coordinates
ff getV3n3(): Position and normal vector
ff getV3n3c4(): Position, normal, and RGBA color
ff getV3n3c4t2(): This is the most extensive format. Contains position, normal, color,

and texture coordinates
ff getV3n3t2(): Position, normal vector, and texture coordinates.

There's also a packed color format, which you can use by replacing c4 in the previous
methods with cp. In this format, colors are stored into one 32-bit integer value. The best way
to define color values for this format is in hexadecimal, because it lets you easily recognize
the RGBA components of the color. For example, the value 0xFF0000FF is full red.

Custom vertex formats
Apart from the built-in vertex formats, Panda3D allows you to be much more flexible by
defining your own custom formats. The key parts to this are the GeomVertexArrayFormat
and GeomVertexFormat classes, which are used in the following way:

arrayFmt = GeomVertexArrayFormat()
arrayFmt.addColumn(InternalName.make("normal"), 3, Geom.NTFloat32,
Geom.CVector)
fmt = GeomVertexFormat()
fmt.addArray(arrayFmt)
fmt = GeomVertexFormat.registerFormat(fmt)

Creating and Building Scenes

64

In the beginning, you need to describe your vertex array data layout by adding columns. The
first parameter is the channel that Panda3D is going to use the data for. Very commonly used
channels are "vertex", "color", "normal", "texcoord", "tangent", and "binormal".

The second and third parameters are the number of components and data type the channel
is using. In this sample, the normal data is composed out of three 32-bit floating point values.
Legal values for the third parameter include NTFloat32, NTUint*, where * is one of 8, 16,
or 32, describing an unsigned integer of the according bit width as well as NTPackedDcba
and NTPackedDabc, used for packed index and color data.

The third parameter influences how the data is going to be treated internally—for example,
if and how it will be transformed if a matrix is applied to the data in the column. Possible
values include:

ff CPoint: Point data in 3D space, most often used for the "vertex" channel.

ff CVector: A vector giving a direction in space. Use this for normals, tangents,
and binormals.

ff CTexcoord: The data in the column contains the coordinates of texture
sample points.

ff CColor: The data is to be treated as color values.

ff CIndex: The column contains table indices.

ff COther: Arbitrary data values.

Points and texture coordinates are transformed as points, resulting in new positions if they
are involved in a matrix multiplication. Vectors of course are following different rules when
being transformed, because they describe directions, not positions! It would go too far to go
into the details here, but lots of material on vector math and linear algebra are freely available
on Wikipedia and other websites.

Primitive types
Panda3D supports all the standard primitive types commonly known in computer graphics:
Triangles, triangle strips, triangle fans, lines, line strips, and points. The according classes
used to describe these primitives are GeomTriangles, GeomTristrips, GeomTrifans,
GeomLines, GeomLinestrips, and GeomPoints.

See also
Loading models and actors, Modifying the scene graph.

Chapter 2

65

Loading data asynchronously
Panda3D really makes it very easy to load and use assets like models, actors, textures, and
sounds. But there is a problem with the default behavior of the asset loader—it blocks the
execution of the engine.

This is not a problem if all data is loaded before the player is allowed to see the game
world, but if models and other assets are to be loaded while the game is running, we are
facing a serious problem because the frame rate will drop dramatically for a moment. This
will cause game execution to stop for a short moment in a sudden and unpredictable way
that breaks gameplay.

To avoid getting into such problems, Panda3D offers the ability to load data through a
background thread. This is a very useful feature if game assets are loaded on the fly, such as
the popular use case with seamless streaming in game worlds. It is also a great way to reduce
initial loading times. The main level geometry and everything visible from the starting position
is loaded before the player enters the world and the rest of it is loaded afterwards, often
depending on the position in the game world.

Getting ready
For this recipe you will need to set up the basic framework described in Setting up the
game structure.

How to do it...
Follow these steps to create a sample application that demonstrates asynchronous
data loading:

1.	 Add the following code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import Vec3

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.cam.setPos(0, -30, 6)
 taskMgr.doMethodLater(3, self.load, "load", extraArgs =
["teapot", Vec3(-5, 0, 0), self.modelLoaded])
 taskMgr.doMethodLater(5, self.load, "load", extraArgs =
["panda", Vec3(5, 0, 0), self.actorLoaded])

 def load(self, name, pos, cb):
 loader.loadModel(name, callback = cb, extraArgs = [pos])

Creating and Building Scenes

66

 def modelLoaded(self, model, pos):
 model.reparentTo(render)
 model.setPos(pos)

 def actorLoaded(self, model, pos):
 self.panda = Actor(model, {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.setPos(pos)
 self.panda.loop("walk")

2.	 Press F6 to run the application. You will see a delay before the teapot and the panda
appear in the window.

How it works...
The previous code enqueues calls to the load() method using doMethodLater() so you
can see the objects pop up as soon as they are loaded. The list passed to the extraArgs
parameter will be used as parameters for the call to load().

The call to loadModel() within the load method is very important, because instead of just
passing the name of the model to load, you also set the callback parameter to one of the
modelLoaded() and actorLoaded() methods, depending on what the cb parameter of
load() contains.

As soon as a call to loadModel() uses the callback parameter, the request to load the data
is handed off to a background thread. When the required asset has finished loading, the
callback function is called and the loaded asset is passed as the first parameter, as you
can see in the modelLoaded() and actorLoaded() methods.

3
Controlling the

Renderer

In this chapter, we will cover

ff Changing a model's render attributes

ff Adding an alpha mask to a texture

ff Creating a splitscreen mode

ff Controlling the rendering order

ff Using multiple displays

Introduction
Panda3D consists of many subsystems that work together to form the engine as a whole. One
of these systems is the renderer, which is responsible for bringing the models and actors we
place in our scenes to the screen.

With video games being such a visual medium, it is very important to understand how the
rendering subsystem can be controlled and configured to suit our needs. In this chapter, we
will take a look at this engine system and the interfaces Panda3D provides that allow us
to modify the renderer's behavior.

Changing a model's render attributes
One of the big strengths of Panda3D is its nice and clever programming interface that
allows us to quickly put together scenes by loading and placing models and actors. Getting
something rendered onto the screen works amazingly fast and easy.

Controlling the Renderer

68

Beyond this simple programming interface lies a very advanced renderer that takes the
information from the current scene graph and draws the models and actors found in there
to the screen. The way this rendering subsystem draws geometry can be changed by setting
some render attributes, which we will explore in this recipe.

Getting ready
This recipe requires a project setup as described in Setting up the game structure found in
Chapter 1, Setting Up Panda3D and Configuring Development Tools. Please revisit these
instructions before proceeding with this tip.

How to do it...
Let's see how Panda3D allows you to change render attributes:

1.	 Open Application.py and replace its content with the following code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from pandac.PandaModules import loadPrcFileData

loadPrcFileData("", "multisamples 8")

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.pandas = []

 for i in range(4):
 panda = Actor("panda", {"walk": "panda-walk"})
 panda.reparentTo(render)
 panda.loop("walk")
 panda.setX(-10.5 + i * 7)
 self.pandas.append(panda)

 render.setAntialias(AntialiasAttrib.MAuto)

 mask = ColorWriteAttrib.CRed
 mask |= ColorWriteAttrib.CBlue
 mask |= ColorWriteAttrib.CAlpha
 self.pandas[0].setAttrib(ColorWriteAttrib.make(mask))
 self.pandas[1].setRenderMode(RenderModeAttrib.MWireframe, 1)
 self.pandas[2].setColorScale(0.5, 0.5, 0.5, 0.5)
 self.pandas[3].setColor(0.5, 0.5, 0.5, 0.5)

Chapter 3

69

 self.smiley = loader.loadModel("smiley")
 self.smiley.reparentTo(render)
 self.smiley.setDepthWrite(False)
 self.smiley.setDepthTest(False)
 self.smiley.setPos(5, 20, 3)
 self.smiley.setScale(3)

 self.cam.setPos(0, -40, 6)

2.	 Press F6 to start the application. You should now see the following scene:

How it works...
We start to compose this sample scene by loading and adding four pandas to the scene and
setting them to walk in lockstep.

Then we set the whole scene graph to use Anti-aliasing. Note that the setAntialias()
method on its own does not enable edge smoothing. We either need to add the statement
multisamples 8 to the Config.prc file or use the loadPrcFileData() function to
configure Panda3D to use antialiasing like we do in the sample code. This configuration option
also controls the quality level to use for antialiasing, where a higher number means higher
quality. In our code, we use eight samples, but other values can be used too. The number of
samples must be a power of two. Feel free to try other quality settings! However, note that the
given value only requests the given quality level from the graphics driver. If a multisampling
mode is not supported, the closest matching quality setting will be chosen. If the graphics
hardware doesn't support multisampling antialiasing at all, the setting is ignored.

Controlling the Renderer

70

The next feature of the renderer we use is a color write mask, which allows us to enable or
disable drawing to the color and alpha channels of the screen buffer. We do this by creating
a bit mask, adding the color channels that we wish to enable using bitwise OR operations. We
turn off writing new color values to the green color channel, which explains the look of the
panda on the outer left side of the scene. After the renderer clears the screen with the grey
background color, the green color channel is static and cannot be changed anymore. As a
result, the red and blue color channels are combined with the fixed value of the green color
channel. In the end, this gives us a slightly pink and green panda.

The other three pandas get a different treatment: For the one second from the left, we enable
the wireframe render mode, which can be useful for quickly visualizing the complexity of
the geometry being rendered. The two pandas on the right show the difference between
setColorScale() and setColor(). While the first method tints the second panda from
right by multiplying the specified color with the original color, the latter method overrides the
original color of the rightmost panda.

Lastly, we add the smiley model to the scene and set its position behind the four pandas,
which should cause the model to be hidden. But because we disable writing to the depth
buffer and depth testing, the position along the y-axis is completely ignored. So whatever is
rendered last will be drawn over the pixels that already are in the color buffer. This feature
may be used to ensure overlays like ammo and health meters to be always drawn on top of
the rest of the scene, for example.

Adding an alpha mask to a texture
A very common technique in computer graphics called alpha blending is used to make whole
objects, or only parts of them, appear translucent. In this recipe you will learn how to add an
additional texture layer, an alpha mask, which controls the opacity of an object.

Getting ready

This recipe uses Setting up the game structure found in Chapter 1 as a starting point
on which the rest of the sample will be built. Please revisit this recipe to set things up
before proceeding.

Analogous to the models and sounds directories, you need to add a directory called
textures and add it to Panda3D's asset search path.

You will need two texture images—one that contains the color information and an additional
grayscale texture that controls opacity. The color texture will simply be mapped onto our
model, while the grayscale image will be used to determine the translucency of each color
texture pixel. The whiter the pixel in the grayscale opacity map, the more opaque it will be
rendered. Gray and black pixels cause the according parts of the color map to be rendered
more translucent. This example uses the following two textures:

Chapter 3

71

How to do it...
Complete these tasks to create the sample application:

1.	 Copy your texture files to the textures directory and rename the color texture to
texture.png and the grayscale texture to mask.png.

2.	 Copy the following code to Application.py:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.box = self.buildCube(2)
 tex = loader.loadTexture("texture.png", "mask.png")
 self.box.setTexture(tex)
 self.box.setTransparency(TransparencyAttrib.MAlpha, 1)
 self.box.setTwoSided(1)
 self.cam.setPos(10, -10, 10)
 self.cam.lookAt(0, 0, 0)

 def buildCube(self, size):
 center = render.attachNewNode("cubeCenter")
 cm = CardMaker("plane")
 cm.setFrame(-size, size, -size, size)
 front = center.attachNewNode(cm.generate())
 front.setY(-size)
 back = center.attachNewNode(cm.generate())
 back.setY(size)
 back.setH(180)
 left = center.attachNewNode(cm.generate())
 left.setX(-size)

Controlling the Renderer

72

 left.setH(270)
 right = center.attachNewNode(cm.generate())
 right.setX(size)
 right.setH(90)
 top = center.attachNewNode(cm.generate())
 top.setZ(size)
 top.setP(270)
 btm = center.attachNewNode(cm.generate())
 btm.setZ(-size)
 btm.setP(90)
 return center

3.	 Press the F6 key to start the program. You will see the following output:

How it works...
First, we use the CardMaker class, which is used for generating quad geometry at runtime,
and the buildCube() method to build a cube from four quads.

After the geometry is set, the following four lines of code are responsible for producing the
final image. First we use loadTexture() to load the color image together with the grayscale
alpha texture, whose filename is passed in the second parameter. The transparency values
are encoded in the mask texture using shades of gray—a value closer to white means more
opaque, while darker shades mean more transparent, as can be seen in the previous sample
mask. We are working with PNG textures here, but Panda3D supports some other image file
formats like JPEG, TGA, and DDS too.

The next line of code applies the texture data we just loaded to the cube, followed by a call
to setTransparency() that enables alpha blending. Without this, the mask texture would
simply be ignored!

Chapter 3

73

Finally, we need to mark the cube as two-sided geometry. Otherwise we wouldn't be able to
see the backsides of the cube through the transparent parts of its faces, due to a technique
called backface culling. Per default, the renderer discards all triangles facing away from the
camera, because they are on the backside of the object and can't be seen anyway. This gives
a nice performance boost as usually a lot of geometry can be discarded and doesn't have
to be rendered. While this optimization works fine for opaque objects, it can't be used for
transparent ones because we can actually see the backside of the rendered object.

Creating a splitscreen mode
Although online multiplayer games have become more and more mainstream and successful
over the course of the last few years, there still are games being released that feature great
local multiplayer modes. Games like Mario Kart are the proof that splitscreen multiplayer is far
from dead and can be great fun. This is the reason why this recipe will show you how to create
a splitscreen mode for your games!

Getting ready

Follow the steps found in Setting up the game structure in Chapter 1 before proceeding with
this recipe to have the base for the following sample code.

How to do it...
Let's get to work by implementing a splitscreen mode:

1.	 Open the file Application.py and add the following code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import Vec4

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.pandaActor = Actor("panda", {"walk": "panda-walk"})
 self.pandaActor.reparentTo(render)
 self.pandaActor.loop("walk")

 self.cam.node().getDisplayRegion(0).setActive(0)

 cameras = [self.makeCamera(self.win), self.makeCamera(self.
win)]
 self.makeRegion(cameras[0], Vec4(0, 0.5, 0, 1), Vec4(0, 1,
0, 1))
 self.makeRegion(cameras[1], Vec4(0.5, 1, 0, 1), Vec4(1, 0,
0, 1))

Controlling the Renderer

74

 cameras[0].setPos(0, -30, 6)
 cameras[1].setPos(-30, 0, 6)
 cameras[1].lookAt(0, 0, 6)

 def makeRegion(self, cam, dimensions, color):
 region = cam.node().getDisplayRegion(0)
 region.setDimensions(dimensions.getX(), dimensions.getY(),
dimensions.getZ(), dimensions.getW())
 region.setClearColor(color)
 region.setClearColorActive(True)
 aspect = float(region.getPixelWidth()) / float(region.
getPixelHeight())
 cam.node().getLens().setAspectRatio(aspect)

2.	 Press F6 to run the program. If your code is correct, you will see this:

How it works...
The first thing we do after adding the panda actor to the scene is disable the default camera.
We drop it in favor of two new ones, neatly stored in the cameras list, which we will use for
our splitscreen mode.

Splitting the screen into two halves is done using a feature of Panda3D called display
regions. Display regions allow us to define an arbitrary area within the game window. We then
are able to redirect the output of a camera to such a region. In our sample code, we use the
makeRegion() method to create a new display region.

To create a new display region in makeRegion() we must resize the default display region of
the camera given by the first parameter. The default display region has the same dimensions
as the window, but can easily by resized using the setDimensions() method. The position
and size of display regions is defined in a resolution independent way: The parameters passed
to setDimensions() denote the positions of the left, right, bottom, and top sides of a

Chapter 3

75

rectangle within the window, where the origin of this coordinate system is at the bottom left
of the window. Values may range from 0 to 1, so for example in our code we pass 0, 0.5, 0,
and 1. This means that the left side of the display region is at the left edge of the window, the
right side is at the middle of the window, the bottom edge of the rectangle is at the bottom of
the window, and the top border is thus defined to be at the top of the window. We use a four-
component vector to store these values, storing the coordinates of the left, right, bottom, and
top edges of a display region in the x, y, z, and w components of the vector.

To help better distinguishing between the two display regions, we also set their background
colors, before the last line, the makeRegion() method sets the aspect ratio of the camera
according to the size of the new display region. This prevents the scene from being displayed,
warped, and squeezed.

Controlling the rendering order
To be able to render with good performance and display effects like transparency correctly,
Panda3D automatically sorts the scene geometry and puts it into "cull bins", so vertices that
share the same texture, for example, are sent to the graphics card in one batch.

Panda3D allows you to change the rendering order manually, to achieve custom scene
sorting, which is what you will learn in this recipe.

Getting ready
This recipe requires the base code created in Setting up the game structure found in
Chapter 1, to which the following sample code will be added.

How to do it...
Let's get started with this recipe's tasks:

1.	 Add the following code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")
 self.panda.setBin("fixed", 40, 0)

 self.teapot = loader.loadModel("teapot")
 self.teapot.reparentTo(render)

Controlling the Renderer

76

 self.teapot.setBin("fixed", 40, 1)
 self.teapot.setDepthTest(False)
 self.teapot.setDepthWrite(False)

 self.smiley = loader.loadModel("smiley")
 self.smiley.reparentTo(render)
 self.smiley.setPos(0, 50, 6)
 self.smiley.setScale(30)
 self.smiley.setBin("background", 10)
 self.smiley.setDepthTest(False)
 self.smiley.setDepthWrite(False)

 self.cam.setPos(0, -30, 6)

2.	 Start the application using the F6 key to see the following scene:

How it works...
The quintessential parts of this recipe are the highlighted lines in the sample code. The
setBin() method adds the affected scene node to the specified cull bin. The panda and
the teapot are added to the "fixed" bin, which is rendered in the order given by the third
parameter. To illustrate the results of manually ordering scene objects, we turned off depth
writes and depth testing for the teapot. Normally, the teapot would appear between the
panda's feet, but using the third parameter we force the panda to be drawn first, followed
by the teapot. Because we do not use the depth buffer for rendering the teapot and we
requested that drawing order, the teapot is drawn in front of the panda.

Chapter 3

77

The same principle applies to the "background" bin. With a priority value of 10 it is
drawn before the "fixed" bin, which causes the smiley to be overdrawn by the panda
and the teapot.

At this point we can see the principle of multiple bins unravel itself. Panda3D's rendering
subsystem always processes these bins from lowest to highest priority. Summing up, this
creates the following render order for our sample code:

1.	 The "background" bin has a priority value of 10—the lowest in our scene.
Therefore, the smiley model it contains is rendered first.

2.	 Next comes the "fixed" bin with a priority of 40. This bin allows us to manually
control the render order of the contained models and actors based on another priority
value. The scene object with the lowest priority value is rendered first. This means
that the panda is rendered next.

3.	 The teapot is in the "fixed" bin and has a sub-priority value of 1. This is the highest
value for all objects in the scene, causing it to be the last object to be rendered.

There's more...
The sample code only showed you a part of Panda3D's scene sorting features, so let's take
a deeper look!

Cull bin types
If we take a look at the BinType enumeration found in Panda3D's API, we can see five
different types of cull bins:

ff BTUnsorted: An unsorted bin just sends geometry to the graphics card in the order
it is encountered while traversing the scene graph.

ff BTStateSorted: A state sorted cull bin sorts geometry by material, texture,
and shader, among others, to minimize the switching of render states to increase
drawing performance.

ff BTBackToFront: This type of cull bin will cause the parts of a model that are the
furthest away from the point of view to be drawn first. This is necessary for drawing
semi-transparent models, for example: Because we need to properly blend the colors
of the translucent parts of a model and the colors of the surfaces behind these
see-through parts. For further information on this topic, read up on alpha blending.

ff BTFrontToBack: This is the reversal of BTBackToFront. Geometry that is nearer
to the camera is drawn first.

ff BTFixed: The order of rendering is completely user defined and needs to be
specified as the third parameter of the setBin() method. Objects with lower order
values are drawn first.

Controlling the Renderer

78

Default cull bins
By default, Panda3D creates the following bins ready to be used by your code. Bins with a
lower priority value are processed first.

Name Type Priority
background BTFixed 10
opaque BTStateSorted 20
transparent BTBackToFront 30
fixed BTFixed 40
unsorted BTUnsorted 50
gui-popup BTUnsorted 60

Adding a cull bin at runtime
It's very easy to add new cull bins at runtime. Consider the following code snippet:

from panda3d.core import CullBinManager
cbm = CullBinManager.getGlobalPtr()
cbm.addBin("mybin", CullBinManager.BTFixed, 80)

All you need to do is import the CullBinManager class, get the global singleton instance,
and pass the new bin's name, type, and order value to the addBin() method. The bin type
is one out of the types presented previously. The order value can be any positive or negative
integer, but should not interfere with the priorities of the default cull bins.

Adding a cull bin using the configuration file
You can also add custom cull bins using the Config.prc file. All you need to do is add lines
similar to the ones shown in the following code:

cull-bin nameA 80 unsorted
cull-bin nameB 90 state_sorted
cull-bin nameC 100 back_to_front
cull-bin nameD 110 front_to_back
cull-bin nameE 120 fixed

As you might have guessed already, the arguments to the cull-bin variable are the bin's
name, the sort order, and the cull bin's type. Different to the names of the bin types shown
in the preceding sections, this uses a slightly different naming convention.

Chapter 3

79

Using multiple displays
Spanning the render view across multiple monitors can greatly enhance player immersion. In
a racing game, for example, it's great to not only be able to see out of the car's front window,
but also have the side windows available in two extra monitors.

In this short recipe you will learn how to configure Panda3D to use multiple displays and
render across two monitors. While the sample assumes two display devices to be used, you
can easily follow the principles presented in the following section to use three, four, or even
more display devices.

Getting ready
This recipe requires the base code from Setting up the game structure to be present before
proceeding. Please revisit this article found in Chapter 1 if you haven't read it yet.

Naturally, you will need two monitors for this recipe, which have to use the same resolution
to properly display the sample code's output.

How to do it...
Follow these steps to create an application that takes advantage of a multi-monitor setup:

1.	 Open Application.py and copy the following code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from pandac.PandaModules import loadPrcFileData

loadPrcFileData("", "win-origin 0 0")
loadPrcFileData("", "win-size 2880 900")
loadPrcFileData("", "undecorated 1")

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.pandas = []

 for i in range(8):
 panda = Actor("panda", {"walk": "panda-walk"})
 panda.reparentTo(render)
 panda.loop("walk")
 panda.setX(-28 + i * 8)
 self.pandas.append(panda)

 self.cam.setPos(0, -40, 6)

Controlling the Renderer

80

2.	 Press F6 to run the code. You will now see the following scene across your monitors:

3.	 The sample uses a borderless window without controls, so use Alt+F4 to quit.

How it works...
The entire necessary configuration is done in the three highlighted lines of the previous
source code. First, the window origin is set to the top left corner of the first display. Then we
set the window size to 2880 by 900 pixels. This makes the window span across two monitors
with a resolution of 1440 by 900 pixels. For displays with a different size, just multiply the
horizontal resolution of your display by two and use the original vertical resolution. The last
configuration option makes the window borderless and removes the controls for minimizing,
maximizing, and closing the window. Panda3D provides no native fullscreen rendering mode
for multiple displays. But using these settings, we are able to make the application window fill
both screens and make it appear as if it were set to fullscreen mode.

The same effect can be achieved by adding the following lines shown to your
Config.prc file.

win-origin 0 0
win-size 2880 900
undecorated 1

4
Scene Effects and

Shaders

In this chapter, we will cover:

ff Adding lights and shadows

ff Using light ramps

ff Creating particle effects

ff Animating textures

ff Adding ribbon trails to an object

ff Creating a flashlight effect

ff Making objects reflect the scene

ff Adding a custom shader generator

ff Applying a custom Cg shader

Introduction
While brilliant gameplay is the key to a fun and successful game, it is essential to deliver
beautiful visuals to provide a pleasing experience and immerse the player in the game world.
The looks of many modern productions are massively dominated by all sorts of visual magic
to create the jaw-dropping visual density that is soaked up by players with joy and makes
them feel connected to the action and the gameplay they are experiencing.

The appearance of your game matters a lot to its reception by players. Therefore it is
important to know how to leverage your technology to get the best possible looks out of it.
This is why this chapter will show you how Panda3D allows you to create great looking games
using lights, shaders, and particles.

Scene Effects and Shaders

82

Adding lights and shadows
Lights and shadows are very important techniques for producing a great presentation. Proper
scene lighting sets the mood and also adds depth to an otherwise flat-looking scene, while
shadows add more realism, and more importantly, root the shadow-casting objects to the
ground, destroying the impression of models floating in mid-air.

This recipe will show you how to add lights to your game scenes and make objects cast
shadows to boost your visuals.

Getting ready

You need to create the setup presented in Setting up the game structure found in Chapter
1, Setting Up Panda3D and Configuring Development Tools before proceeding, as this recipe
continues and builds upon this base code.

How to do it...
This recipe consists of these tasks:

1.	 Add the following code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")

 cm = CardMaker("plane")
 cm.setFrame(-10, 10, -10, 10)
 plane = render.attachNewNode(cm.generate())
 plane.setP(270)

 self.cam.setPos(0, -40, 6)

 ambLight = AmbientLight("ambient")
 ambLight.setColor(Vec4(0.2, 0.1, 0.1, 1.0))
 ambNode = render.attachNewNode(ambLight)
 render.setLight(ambNode)

Chapter 4

83

 dirLight = DirectionalLight("directional")
 dirLight.setColor(Vec4(0.1, 0.4, 0.1, 1.0))
 dirNode = render.attachNewNode(dirLight)
 dirNode.setHpr(60, 0, 90)
 render.setLight(dirNode)

 pntLight = PointLight("point")
 pntLight.setColor(Vec4(0.8, 0.8, 0.8, 1.0))
 pntNode = render.attachNewNode(pntLight)
 pntNode.setPos(0, 0, 15)
 self.panda.setLight(pntNode)

 sptLight = Spotlight("spot")
 sptLens = PerspectiveLens()
 sptLight.setLens(sptLens)
 sptLight.setColor(Vec4(1.0, 0.0, 0.0, 1.0))
 sptLight.setShadowCaster(True)
 sptNode = render.attachNewNode(sptLight)
 sptNode.setPos(-10, -10, 20)
 sptNode.lookAt(self.panda)
 render.setLight(sptNode)

 render.setShaderAuto()

2.	 Start the program with the F6 key. You will see the following scene:

Scene Effects and Shaders

84

How it works...
As we can see when starting our program, the panda is lit by multiple lights, casting shadows
onto itself and the ground plane. Let's see how we achieved this effect.

After setting up the scene containing our panda and a ground plane, one of each possible
light type is added to the scene. The general pattern we follow is to create new light instances
before adding them to the scene using the attachNewNode() method. Finally, the light is
turned on with setLight(), which causes the calling object and all of its children in the
scene graph to receive light. We use this to make the point light only affect the panda but not
the ground plane.

Shadows are very simple to enable and disable by using the setShadowCaster() method,
as we can see in the code that initializes the spotlight.

The line render.setShaderAuto() enables the shader generator, which causes the
lighting to be calculated pixel perfect. Additionally, for using shadows, the shader generator
needs to be enabled. If this line is removed, lighting will look coarser and no shadows will be
visible at all.

Watch the amount of lights you are adding to your scene! Every light that
contributes to the scene adds additional computation cost, which will hit
you if you intend to use hundreds of lights in a scene! Always try to detect
the nearest lights in the level to use for lighting and disable the rest to
save performance.

There's more...
In the sample code, we add several types of lights with different properties, which may need
some further explanation.

Ambient light sets the base tone of a scene. It has no position or direction—the light color
is just added to all surface colors in the scene, which avoids unlit parts of the scene to
appear completely black. You shouldn't set the ambient color to very high intensities. This
will decrease the effect of other lights and make the scene appear flat and washed out.

Directional lights do not have a position, as only their orientation counts. This light type
is generally used to simulate sunlight—it comes from a general direction and affects all
light-receiving objects equally.

A point light illuminates the scene from a point of origin from which light spreads towards all
directions. You can think of it as a (very abstract) light bulb.

Spotlights, just like the headlights of a car or a flashlight, create a cone of light that originates
from a given position and points towards a direction. The way the light spreads is determined
by a lens, just like the viewing frustum of a camera.

Chapter 4

85

Using light ramps
The lighting system of Panda3D allows you to pull off some additional tricks to create some
dramatic effects with scene lights. In this recipe, you will learn how to use light ramps to
modify the lights affect on the models and actors in your game scenes.

Getting ready
In this recipe we will extend the code created in Adding lights and shadows found in this
chapter. Please review this recipe before proceeding if you haven't done so yet.

How to do it...
Light ramps can be used like this:

1.	 Open Application.py and add and modify the existing code as highlighted:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from direct.interval.IntervalGlobal import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")

 cm = CardMaker("plane")
 cm.setFrame(-10, 10, -10, 10)
 plane = render.attachNewNode(cm.generate())
 plane.setP(270)

 self.cam.setPos(0, -40, 6)

 ambLight = AmbientLight("ambient")
 ambLight.setColor(Vec4(0.3, 0.2, 0.2, 1.0))
 ambNode = render.attachNewNode(ambLight)
 render.setLight(ambNode)

 dirLight = DirectionalLight("directional")
 dirLight.setColor(Vec4(0.3, 0.9, 0.3, 1.0))
 dirNode = render.attachNewNode(dirLight)
 dirNode.setHpr(60, 0, 90)
 render.setLight(dirNode)

Scene Effects and Shaders

86

 pntLight = PointLight("point")
 pntLight.setColor(Vec4(3.9, 3.9, 3.8, 1.0))
 pntNode = render.attachNewNode(pntLight)
 pntNode.setPos(0, 0, 15)
 self.panda.setLight(pntNode)

 sptLight = Spotlight("spot")
 sptLens = PerspectiveLens()
 sptLight.setLens(sptLens)
 sptLight.setColor(Vec4(1.0, 0.4, 0.4, 1.0))
 sptLight.setShadowCaster(True)
 sptNode = render.attachNewNode(sptLight)
 sptNode.setPos(-10, -10, 20)
 sptNode.lookAt(self.panda)
 render.setLight(sptNode)

 render.setShaderAuto()

 self.activeRamp = 0
 toggle = Func(self.toggleRamp)
 switcher = Sequence(toggle, Wait(3))
 switcher.loop()

 def toggleRamp(self):
 if self.activeRamp == 0:
 render.setAttrib(LightRampAttrib.makeDefault())
 elif self.activeRamp == 1:
 render.setAttrib(LightRampAttrib.makeHdr0())
 elif self.activeRamp == 2:
 render.setAttrib(LightRampAttrib.makeHdr1())
 elif self.activeRamp == 3:
 render.setAttrib(LightRampAttrib.makeHdr2())
 elif self.activeRamp == 4:
 render.setAttrib(LightRampAttrib.
makeSingleThreshold(0.1, 0.3))
 elif self.activeRamp == 5:
 render.setAttrib(LightRampAttrib.
makeDoubleThreshold(0, 0.1, 0.3, 0.8))

 self.activeRamp += 1
 if self.activeRamp > 5:
 self.activeRamp = 0

Chapter 4

87

2.	 Press F6 to start the sample and see it switch through the available light ramps as
shown in this screenshot:

How it works...
The original lighting equation that is used by Panda3D to calculate the final screen color of a
lit pixel limits color intensities to values within a range from zero to one. By using light ramps
we are able to go beyond these limits or even define our own ones to create dramatic effects
just like the ones we can see in the sample program.

In the sample code, we increase the lighting intensity and add a method that switches
between the available light ramps, beginning with LightRampAttrib.makeDefault()
which sets the default clamping thresholds for the lighting calculations.

Then, the high dynamic range ramps are enabled one after another. These light ramps allow
you to have a higher range of color intensities that go beyond the standard range between
zero and one. These high intensities are then mapped back into the displayable range,
allocating different amounts of values within it to displaying brightness.

By using makeHdr0(), we allocate a quarter of the displayable range to brightness values
that are greater than one. With makeHdr1() it is a third and with makeHdr2() we are
causing Panda3D to use half of the color range for overly bright values. This doesn't come
without any side effects, though. By increasing the range used for high intensities, we are
decreasing the range of color intensities available for displaying colors that are within the
limits of 0 and 1, thus losing contrast and making the scene look grey and washed out.

Scene Effects and Shaders

88

Finally, with the makeSingleThreshold() and makeDoubleThreshold() methods, we
are able to create very interesting lighting effects. With a single threshold, lighting values
below the given limit will be ignored, while anything that exceeds the threshold will be set
to the intensity given in the second parameter of the method.

The double threshold system works analogous to the single threshold, but lighting intensity
will be normalized to two possible values, depending on which of the two thresholds
was exceeded.

Creating particle effects
Ranging from dust kicked up by an out of control race car spinning out into a run-off area over
smoke that ascends from a battlefield to sparks spraying from a magic wand, particles are a
great tool for adding life and visual fidelity to the graphics of a game. Therefore, this recipe
will show you how to create a simple particle effect.

Getting ready
This recipe is based upon the project setup presented in Setting up the game structure.
Please follow this recipe, found in Chapter 1, before proceeding.

How to do it...
Let's try the following Panda3D's particle effect system:

1.	 Open the file Application.py and add the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from direct.particles.Particles import Particles
from direct.particles.ParticleEffect import ParticleEffect

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.enableParticles()

 particles = Particles()
 particles.setPoolSize(1000)
 particles.setBirthRate(0.1)
 particles.setLitterSize(10)
 particles.setLitterSpread(3)
 particles.setFactory("PointParticleFactory")
 particles.setRenderer("GeomParticleRenderer")
 particles.setEmitter("SphereVolumeEmitter")

Chapter 4

89

 smiley = loader.loadModel("smiley")
 smiley.setScale(0.1)
 particles.getRenderer().setGeomNode(smiley.node())
 particles.enable()

 self.effect = ParticleEffect("peffect", particles)
 self.effect.reparentTo(render)
 self.effect.enable()

 self.cam.setPos(0, -10, 0)

2.	 Press F6 to launch the program and see the following output:

How it works...
We placed a simple particle emitter into our sample scene. It spawns new particles,
represented by the smiley model, and makes them move to all directions. Let's see
what we had to do to create this effect.

In the first line of our Application class' constructor, we enable tracking and updating of
particles. After this is done, we can start setting up a particle system.

First, we set the pool size to 1000. This is the maximum amount of particles that are allowed
to exist at the same time. Then we set up how many and how often particles are spawned
with calls to setBirthRate(), setLitterSize(), and setLitterSpread(), where
the last of these methods defines the maximum deviation from the litter size. With our setup,
this means the particle system will spawn ten particles each 0.1 seconds with a variation
of ±3 particles.

Scene Effects and Shaders

90

Next, we set up the particle system to use the point factory, want our particles rendered as
geoms, and set the particles to be emitted within a spherical volume.

Finally, we load and attach the smiley model to the particle system renderer and add the new
ParticleEffect that uses our settings to the scene.

There's more...
As you already may have noticed in the code sample, Panda3D allows you to choose between
various factories, renderers, and emitters for your particle systems.

Particle Factories
Panda3D comes with two particle factory types: PointParticleFactory and
ZSpinParticleFactory. While the former factory creates particles as points without
orientation, the latter is responsible for the creation of particles that spin about their Z-axis.

Particle Renderers
The way particles emitted from a specific system are drawn depends on which particle
renderer is set.

The GeomParticleRenderer allows you to assign a GeomNode to the particle system that
is used to draw each of the particles, as shown in this recipe's sample code.

If you use the PointParticleRenderer, the LineParticleRenderer or the
SparkleParticleRenderer, particles are rendered as points, lines, or little
stars, respectively.

This leaves the SpriteParticleRenderer, which allows you to assign a texture image that
is used as on-screen representation for your particles.

Particle Emitters
The SphereVolumeEmitter used in this recipe's code defines a sphere-shaped volume
within the particles are emitted with a velocity that goes from the center of the sphere
to the hull of the volume.

With a BoxVolumeEmitter, particles are spawned inside a box without any velocity.

A DiscVolumeEmitter works similar to the SphereVolumeEmitter, with the difference
of using a flat, disc-shaped bounding volume.

PointEmitter, RectangleEmitter, and SphereSurfaceEmitter spawn particles
from a single point, within a rectangle and on the outer hull of a sphere, without assigning
any velocity to the newly created particles.

Chapter 4

91

The RingEmitter and TangentRingEmitter emitters both create new particles on a ring.
Particles spawned by a RingEmitter move on an axis that points from the center of the ring
to the outside, whereas the TangentRingEmitter gives particles an initial velocity with
a direction that is tangential to the ring that forms the emitter's bounding volume.

Animating textures
Many great effects found in games can be achieved using very simple measures. The
effect you will learn about in this recipe falls into this category. Animated textures are used
very often to create the illusion of a flowing lava stream, waves on a lake, or details like a
transparent plasma container mounted onto an alien gun.

This recipe will teach you how to put a texture onto an object and animate its position, scale,
and rotation.

Getting ready

Please make sure you completed the recipe Setting up the game structure found in Chapter
1 before proceeding with the following steps. Also be sure to add a folder called textures
to the project's folder structure and add it to Panda3D's content search paths, and have a
texture file in PNG format at hand that can be used for this sample.

How to do it...
Follow these steps to complete this recipe:

1.	 Copy your texture file to the textures directory and rename it to texture.png.

2.	 Open Application.py and add the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from math import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 cm = CardMaker("plane")
 cm.setFrame(-3, 3, -3, 3)

 self.plane = render.attachNewNode(cm.generate())
 tex = loader.loadTexture("texture.png")
 self.plane.setTexture(tex)

 self.cam.setPos(0, -12, 0)
 taskMgr.add(self.animate, "texanim")

Scene Effects and Shaders

92

 def animate(self, task):
 texStage = TextureStage.getDefault()

 offset = self.plane.getTexOffset(texStage)
 offset.setY(offset.getY() - 0.005)
 self.plane.setTexOffset(texStage, offset)

 scale = sin(offset.getY()) * 2
 self.plane.setTexScale(texStage, scale, scale)

 rotate = sin(offset.getY()) * 80
 self.plane.setTexRotate(texStage, rotate)
 return task.cont

3.	 Press F6 to run the program. The texture will be zoomed in and out while it is
being rotated:

How it works...
We begin this sample by adding a textured quad to the scene using the CardMaker class and
kicking off the task that will call the animate() method on every frame at runtime.

Texture stages are used to handle the properties of textures that are mapped onto an
object. In our sample, there is only one texture map applied to the geometry, so we use the
getDefault() method to get a reference to the default TextureStage that holds all
necessary data for the next operations.

Chapter 4

93

We then use the methods setTexOffset(), setTexScale(), and setTexRotate()
to apply transformation, scaling, and rotation to the texture coordinates. This means that
we need to think "in reverse" to get the proper results. To move the texture up, we need to
decrease the offset along the y-axis as shown in the code. The same applies to scaling and
rotation—bigger values mean that the texture will appear smaller, and turning the coordinate
system to the right means that the texture will rotate to the left.

We are using a sinus function for animating the rotation and scale of the texture. This makes
these two properties go back and forth, which means we are zooming in and out of the texture
while it is rotated to the left and then to the right. We also apply a transformation to the
texture that makes it go upwards.

Used together, all these animated properties twist and turn the texture a lot. Experiment and
try adding and removing the modifications to the texture offset, scale, and rotation to find new
and interesting effects!

Adding ribbon trails to an object
This recipe will show you how to implement a ribbon trail effect that is often used for
emphasizing high-speed movements such as sword slashes, very fast vehicles passing by or,
as you will see after finishing this recipe, the fastest running panda in the world.

Getting ready

Follow the instructions of Setting up the game structure found in Chapter 1 before you
proceed to create a basic project setup.

How to do it...
The following steps are necessary for implementing the ribbon trail effect:

1.	 Add a new file called Ribbon.py to the project and add the following code:
from direct.task import Task
from direct.task.TaskManagerGlobal import taskMgr
from panda3d.core import *

class RibbonNode():
 def __init__(self, pos, damping):
 self.pos = Vec3(pos)
 self.damping = damping
 self.delta = Vec3()

 def update(self, pos):
 self.delta = (pos - self.pos) * self.damping
 self.pos += self.delta

Scene Effects and Shaders

94

class Ribbon():
 def __init__(self, parent, color, thickness, length, damping):

 self.parent = parent
 self.length = length
 self.thickness = thickness
 self.color = color

 self.lineGen = MeshDrawer()
 self.lineGen.setBudget(100)
 genNode = self.lineGen.getRoot()
 genNode.reparentTo(render)
 genNode.setTwoSided(True)
 genNode.setTransparency(True)

 pos = parent.getPos(render)

 self.trailPoints = []
 for i in range(length):
 self.trailPoints.append(RibbonNode(pos, damping))

 taskMgr.add(self.trail, "update trail")

 def getRoot(self):
 return self.lineGen.getRoot()

 def trail(self, task):
 pos = self.parent.getPos(render)
 self.trailPoints[0].update(pos)

 for i in range(1, self.length):
 self.trailPoints[i].update(self.trailPoints[i -
1].pos)

 self.lineGen.begin(base.cam, render)
 color = Vec4(self.color)
 thickness = self.thickness

 for i in range(self.length - 1):
 p1 = self.trailPoints[i].pos
 p2 = self.trailPoints[i + 1].pos

 startColor = Vec4(color)
 endColor = Vec4(color)

Chapter 4

95

 endColor.setW(color.getW() - 0.2)
 color = Vec4(endColor)
 self.lineGen.unevenSegment(p1, p2, 0, thickness,
startColor, thickness - 0.3, endColor)
 thickness -= 0.3

 self.lineGen.end()
 return task.cont

2.	 Open Application.py and enter the following lines of code:
from direct.showbase.ShowBase import ShowBase
from direct.showbase.RandomNumGen import RandomNumGen
from direct.actor.Actor import Actor
from panda3d.core import *
from direct.interval.IntervalGlobal import *
from Ribbon import Ribbon

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")
 self.panda.setHpr(-90, 0, 0)

 self.ribbon = Ribbon(self.panda, Vec4(1, 1, 1, 1), 3, 10,
0.3)
 self.ribbon.getRoot().setZ(5)

 self.walkIval1 = self.panda.posInterval(1, Vec3(-12, 0,
0), startPos = Vec3(12, 0, 0))
 self.walkIval2 = self.panda.posInterval(1, Vec3(12, 0, 0),
startPos = Vec3(-12, 0, 0))
 self.turnIval1 = self.panda.hprInterval(0.1, Vec3(90, 0,
0), startHpr = Vec3(-90, 0, 0))
 self.turnIval2 = self.panda.hprInterval(0.1, Vec3(-90, 0,
0), startHpr = Vec3(90, 0, 0))
 self.pandaWalk = Sequence(self.walkIval1, self.turnIval1,
self.walkIval2, self.turnIval2)
 self.pandaWalk.loop()

 self.cam.setPos(0, -60, 6)
 self.cam.lookAt(0, 0, 6)

Scene Effects and Shaders

96

3.	 Press F6 to start the program and see the panda running:

How it works...
Our code puts a trail behind our panda actor that slowly fades out. Let's take a closer look at
the code that produced this effect.

In the constructor of the Ribbon class, after initializing our member variables, we set up a new
MeshDrawer, which is a very convenient class for working with dynamically updated geometry
like our ribbons. We configure it to use a budget of 100 triangles and enable transparency and
double sided rendering for the generated geometry.

After this is done, we fill a list of RibbonNodes. Each of these nodes will then try to follow
its predecessor in the list, but will be hampered by the amount of damping we specified in
the constructor parameter, so our nodes are keeping some distance, between which we
span some geometry using a MeshDrawer and unevenSegment() method that draws line
segments with different sized ends. Not only the size of the line decreases, but we also
make the alpha smaller and smaller with each segment until the trail smoothly fades out.

This leaves us with building a little test scene in our Application class, connecting the
ribbon to the panda that is moved back and forth using intervals.

There's more
The Ribbon class is far from complete, but it does its job and shows nicely how the
MeshDrawer class can help to procedurally generate and modify geometry. Some points
you may want to extend, for example, are the way the alpha value and the ribbon size
are controlled.

Chapter 4

97

Additionally, you could experiment with different damping values and behaviors. Instead of
using the same damping value for all RibbonNode objects in the trail, you could try to assign
different values to the nodes, making the ones in the back of the trail slower, for example.

Creating a flashlight effect
This recipe will show you how to implement an effect that makes the scene look like it was lit
from a small flashlight. This really nice effect can help you make your dark and creepy games
even darker and creepier!

Getting ready

Follow the steps from Setting up the game structure in Chapter 1 and add a directory called
textures to the project.

Additionally, you will need a texture that represents the light point created by the flashlight,
like the one shown as follows:

How to do it...
Let's get to the code behind this interesting effect:

1.	 Copy your texture file to the textures directory and rename it to flashlight.png.

2.	 Open Application.py and add the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

Scene Effects and Shaders

98

 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 self.proj = render.attachNewNode(LensNode("proj"))
 lens = PerspectiveLens()
 self.proj.node().setLens(lens)
 self.proj.reparentTo(self.cam)
 self.proj.setHpr(0, -5, 0)
 self.proj.setPos(0, 10, 0)

 tex = loader.loadTexture("flashlight.png")
 tex.setWrapU(Texture.WMClamp)
 tex.setWrapV(Texture.WMClamp)
 ts = TextureStage('ts')
 self.world.projectTexture(ts, tex, self.proj)

 self.cam.setPos(0, -10, 10)

3.	 Press F6 to run the application. You will see a dark scene like the one shown in the
following screenshot. Only a small portion of the scene will be Lit up, just like using
a flashlight in a very dark environment. Use Left Mouse Button + Right Mouse Button
to look around.

Chapter 4

99

How it works...
After loading the environment model into our scene, we add a new LensNode, that will
be used to project our flashlight texture onto the scene. We also need to assign a new
PerspectiveLens to this scene node, which defines the frustum used for projecting the
texture so that the light blob appears as a small dot on near objects and becomes bigger if
we point at objects that are further away. Additionally, we reparent the projector lens to the
camera, move it a bit in front of it, and let it point down slightly.

Then we load the flashlight texture and set its wrap mode to WMClamp. This means that
instead of repeating the whole texture image, only the outermost pixel color is repeated.
In our case this means that we have only one light blob and everything else appears black.

To conclude our effect implementation, we use the projectTexture() method to put the
flashlight texture image onto our environment model.

Making objects reflect the scene
This recipe will show you how to enable and use cube mapping to make your models and
actors dynamically reflect any other game objects and the surrounding environment. This is
a very useful effect for emphasizing movement by creating a glossy car paint effect in a racing
game, for example.

Getting ready
This recipe requires you to have finished the steps of the recipe Setting up the game structure
found in Chapter 1 and will follow up to where this recipe left off.

How to do it...
These are the tasks for this recipe:

1.	 In the file Application.py, add the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from direct.interval.IntervalGlobal import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

Scene Effects and Shaders

100

 self.teapot = loader.loadModel("teapot")
 self.teapot.reparentTo(render)
 self.teapot.setPos(0, 0, 10)

 cubeCams = NodePath("cubeCams")
 cubeBuffer = self.win.makeCubeMap("cubemap", 128,
cubeCams)
 cubeCams.reparentTo(self.teapot)

 tex = TextureStage.getDefault()
 self.teapot.setTexGen(tex, TexGenAttrib.MWorldCubeMap)
 self.teapot.setTexture(cubeBuffer.getTexture())

 rotate = self.teapot.hprInterval(10, Vec3(360, 0, 0),
startHpr = Vec3(0, 0, 0))
 move = self.teapot.posInterval(10, Vec3(-10, 0, 10),
startPos = Vec3(10, 0, 10))
 rotate.loop()
 move.loop()

 self.cam.setPos(0, -30, 10)

2.	 Hit the F6 key to run the code and see the scene similar to the one shown in the
following screenshot. Note how the teapot model reflects the scene:

Chapter 4

101

How it works...
To render the reflections on the teapot model, we are using a technique called cube mapping.
This effect renders the scene around a center point (marked by the object that uses the
reflection texture) into six different textures, forming a so-called 'texture cube'. Each side of
the cube is formed by a texture that stores what can be seen if we look up, down, left, right,
forward, or backward from the center point. Finally, the six textures are mapped onto a model,
making it appear as if it reflected its surroundings.

In the first few lines of code, we set up the scene that we are going to work with, before
we add a new dummy node that will mark the center point from where the cube map will
be generated.

Next we call the makeCubeMap() method, which initializes everything needed for rendering
the teapot's surroundings into a texture with a size of 128x128 pixels, specified by the second
parameter. The dummy node we pass as the third parameter to this method will act as parent
node to the six cameras. These six cameras point at each direction from the center point
and capture the image data that is then put into our cube map texture. This also means that
our scene will be rendered six additional times, so be aware of the performance implications
this brings!

Finally, we use TexGenAttrib.MWorldCubeMap to enable automatic and proper generation
of texture coordinates on the teapot, before assigning the cube map texture by calling the
getTexture() method on our cube map buffer.

In the closing steps, two intervals for moving and rotating the teapot are added to show off
that the cube map texture is updated dynamically.

Adding a custom shader generator
Modern graphics cards and graphics APIs like Direct3D or OpenGL allow developers to
program, and therefore customize, the behavior of parts of the graphics pipeline using shader
programs, written in a C-like programming language. These shader programs define how
vertices are being transformed, which textures are used for retrieving color values, and
which final color pixels we have on the screen.

Luckily, Panda3D adds a very nice abstraction layer on top of this shader system, which is
called the shader generator. As soon as you call the setShaderAuto() method on a node
in the scene graph, the shader generator kicks in and pieces together the right shaders,
depending on the render state (textures, colors, lights, and so on.) of your objects.

Sometimes the built-in shader generator and the code it creates may not suit your needs.
Therefore, this recipe will explore and show how to add a custom shader generator
to Panda3D.

Scene Effects and Shaders

102

Getting ready
This recipe requires you to modify and build the source code of Panda3D. Please take your
time to review Building Panda3D from source code to get set before proceeding with the
following steps. You can find this recipe in Chapter 1.

How to do it...
Complete the following steps to create a custom shader generator:

1.	 From the top level directory of your unpacked Panda3D source tree, navigate to the
subfolder panda\src\pgraphnodes.

2.	 Create two new files called customShaderGenerator.h and
customShaderGenerator.cxx.

3.	 Open customShaderGenerator.h and add the following code:
#ifndef CUSTOMSHADERGENERATOR_H
#define CUSTOMSHADERGENERATOR_H

#include "shaderGenerator.h"

class EXPCL_PANDA_PGRAPHNODES CustomShaderGenerator : public
ShaderGenerator {
PUBLISHED:
 CustomShaderGenerator(PT(GraphicsStateGuardianBase) gsg,
PT(GraphicsOutputBase) host);
 virtual ~CustomShaderGenerator();
 virtual CPT(RenderAttrib) synthesize_shader(const RenderState
*rs);

public:
 static TypeHandle get_class_type() {
 return _type_handle;
 }
 static void init_type() {
 ShaderGenerator::init_type();
 register_type(_type_handle, "CustomShaderGenerator",
 ShaderGenerator::get_class_type());
 }
 virtual TypeHandle get_type() const {
 return get_class_type();
 }
 virtual TypeHandle force_init_type() {init_type(); return get_
class_type();}

Chapter 4

103

 private:
 static TypeHandle _type_handle;
};

#endif

4.	 Open the file customShaderGenerator.cxx and add these lines of code:
#include "customShaderGenerator.h"

TypeHandle CustomShaderGenerator::_type_handle;

CustomShaderGenerator::CustomShaderGenerator(PT(GraphicsStateGuard
ianBase) gsg, PT(GraphicsOutputBase) host) :
 ShaderGenerator(gsg, host) {
}

CustomShaderGenerator::~CustomShaderGenerator() {
}

CPT(RenderAttrib) CustomShaderGenerator::
synthesize_shader(const RenderState *rs) {
}

The last line of customShaderGenerator.cxx has
to be blank for the code to compile properly!

5.	 Open shaderGenerator.cxx and copy and paste the method body
of synthesize_shader() to the synthesize_shader() method in
customShaderGenerator.cxx.

6.	 In customShaderGenerator.cxx, replace all occurrences of saturate(dot(l_
eye_normal.xyz, lvec.xyz)) with saturate(0.5 * dot(l_eye_normal.
xyz, lvec.xyz) + 0.5).

7.	 Open the file lightLensNode.h. Find the following code lines and add the
highlighted code:
friend class GraphicsStateGuardian;
friend class ShaderGenerator;
friend class CustomShaderGenerator;

8.	 In the file pgraphnodes_composite2.cxx, find the line that reads
#include "shaderGenerator.cxx" and add the line #include
"customShaderGenerator.cxx" below it.

Scene Effects and Shaders

104

9.	 Open config_pgraphnodes.cxx. Below the line #include
"shaderGenerator.h", add the line #include "customShaderGenerator.
h". Also find this line of code: ShaderGenerator::init_type();. Add a new line
below, containing CustomShaderGenerator::init_type();.

10.	 Go to the panda\src\dxgsg9 subdirectory of the source tree.

11.	 In the file dxGraphicsStateGuardian9.cxx, add the line #include
"customShaderGenerator.h" below the other includes. Also find and
replace the following code line with the highlighted one:
_shader_generator = new ShaderGenerator(this, _scene_setup->get_
display_region()->get_window());
_shader_generator = new CustomShaderGenerator(this, _scene_setup-
>get_display_region()->get_window());

12.	 Repeat step 11 for the file glGraphicsStateGuardian_src.cxx in the
panda\src\glstuff subdirectory.

13.	 Proceed through the steps of Building Panda3D from source code to compile your
custom build of Panda3D.

How it works...
We begin implementing our custom shader generator by defining the interface of our new
CustomShaderGenerator. We derive this class from the default shader generator and
declare our own constructor, destructor, and synthesize_shader() implementations. The
code of the synthesize_shader() method will later be handling the generation of the
shader code.

Don't be irritated by the PUBLISHED: line and the TypeHandle code. This stuff is needed
internally to register the class and methods with Python.

We then proceed to add method implementations to customShaderGenerator.cxx. The
constructor calls its base constructor and the destructor remains empty. The real magic
happens within the synthesize_shader() method, which we base upon the code of the
original code to remain compatible with the existing render states. Unfortunately, the shader
generator system is not written in a very modular way, which means we need to copy the
method body of the original implementation of the method.

For the purpose of this recipe, we then change the standard Lambert lighting equation
slightly by moving the range of possible results from [-1, 1] to [0, 1], making lit scenes appear
brighter, as shown in the following comparison with the standard implementation to the left
and our custom lighting to the right:

Chapter 4

105

In step 7, we declare our CustomShaderGenerator class to be a friend of
LightLensNode, because our base class needs to access some private and
protected members of this class when the shader is put together.

The last steps before we can compile our custom version of Panda3D are necessary to add
the new class to the build system and register it with the Python API. The most important
steps in this closing part are 11 and 12, where we replace the instantiation of the standard
ShaderGenerator class with our CustomShaderGenerator.

There's more...
This recipe only made very slight changes to the original implementation of the shader
generator. For more extensive changes to this system, you might consider taking a close
look at the ShaderGenerator class and its analyze_renderstate() method, which
operates on instances of RenderState to determine which shader parts are then needed
in synthesize_shader() to produce the proper shader permutation.

Applying a custom Cg shader
Shaders are one of the most powerful concepts in today's graphics programming, allowing
programmers to program the graphics hardware and thus provide great flexibility for creating
amazing effects.

This recipe will show you how to use shaders written in the Cg shading language with the
Panda3D engine.

Scene Effects and Shaders

106

Getting ready
Setup your project as described in Setting up the game structure found in Chapter 1. Add an
additional folder called shaders in the top-level source directory and add it to Panda3D's
resource search paths.

How to do it...
Let's create a shader and apply it to a model:

1.	 Add the following code snippet to Application.py:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 shader = loader.loadShader("shader.cg")
 render.setShader(shader)

 self.cam.setPos(0, -40, 10)

2.	 Create a new file called shader.cg in the shaders subdirectory and enter the
code below:
//Cg

void vshader(uniform float4x4 mat_modelproj,
 in float4 vtx_position:POSITION,
 in float2 vtx_texcoord0:TEXCOORD0,
 out float4 l_position:POSITION,
 out float2 l_texcoord0:TEXCOORD0)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord0 = vtx_texcoord0;
}

void fshader(uniform sampler2D tex_0,
 in float2 l_texcoord0:TEXCOORD0,
 out float4 o_color:COLOR0)

Chapter 4

107

{
 float4 fullColor = tex2D(tex_0, l_texcoord0);
 float3 rgb = fullColor.xyz;
 rgb *= 8;
 rgb = floor(rgb);
 rgb /= 8;
 o_color = float4(rgb, fullColor.w);
}

3.	 Press F6 to launch the application and see something similar to the following
screenshot. The colors will appear somewhat strange, but don't worry, this is
what our shader is supposed to do:

How it works...
In our Python code, loading and applying a shader doesn't require any heavy lifting. We just
use the loadShader() method and then enable it on models and actors of our choice, as
well as all their children in the scene graph using setShader(). One thing to note though, is
that if we use such a custom shader, all render states and all the functionality of the shader
generator are overridden and need to be reimplemented within the shader file.

Scene Effects and Shaders

108

After our Python code is set and ready, we implement the shader code. One very important
thing about writing shaders can already be found in the first line, where the line //Cg must
be found for the engine to be able to recognize the file as Cg shader code.

The vertex shader function must be called vshader, just as the pixel or fragment shader
function needs to be called fshader. The names of the function parameters were not chosen
arbitrarily, either. These names have to comply with the hard-coded naming convention of
Panda3D, so the data provided by the engine can be used by our shader code.

Our simple vertex shader just transforms the scene vertices to their proper position on the
screen and hands the texture coordinates on to the pixel shader.

In the pixel shader, we sample from the texture at the main color texture image channel
using the tex2D() function. As a special twist, we limit color output to only 8 possible
values, creating an old-school look for our scene.

5
Post-Processing and

Screen Space Effects

In this chapter, we will cover:

ff Adding built-in post-processing effects

ff Building custom effects

ff Adding a scanline and vignette effect

ff Adding a color grading effect

ff Adding a depth of field effect

ff Building a deferred rendering pipeline

Introduction
Over the course of the years that passed in the industry, games have always pushed the
envelope of what was possible in terms of presentation to impress players and one-up what
had been done before. Color depth increased, sprites were replaced by polygons, which were
later colored using texture images. With the rise of programmable hardware, elaborate lighting
models were implemented and tricks like normal, parallax, and bump mapping surfaced
to make games look even more realistic and awesome.

With the rise of seventh generation video game consoles like Xbox 360 and PlayStation 3, the
graphics of video games reached a point where lit pixels and bumpy surfaces were just not
enough anymore. So today, to make games look even more exciting, post-processing effects
are added to create cinematic effects like depth of field or color correction.

Post-Processing and Screen Space Effects

110

Besides that, using render-to-texture functionality to generate intermediate textures that
are processed, filtered, and then composited back into the final image, gives graphics
developers very interesting capabilities when creating the final image. Just like in a painting,
the on-screen image consists of various layers that ultimately form the final result.

In this chapter you will learn how to use Panda3D to render to off-screen buffers and how
to create post-processing effects to generate stunning visuals for your games.

Some of the effects presented in the following articles fall into a more
advanced category. Therefore, depending on your mix of graphics
hardware and driver you might not be able to see the effects working!
Please keep issues such as this in mind if you plan to release your game to
a broad audience, and never forget to test hardware-demanding features
across varying hardware setups prior to releasing!

Adding built-in post-processing effects
Adding post-processing effects to a scene can boost a game's visuals and greatly enhance
the perceived quality of a game. For example, it is very common to work with bloom, blur,
and color warping effects like negative colors.

These effects are a very common sight in video games, which is the reason why the Panda3D
developers added them to the engine. Instead of having to reinvent the wheel and roll
your own implementation, you are provided with a set of drop-in effects for quickly adding
state-of-the-art post-processing to your games.

In this recipe you will learn how to add these effects to your game and how to tweak their
parameters to achieve a unique look.

Getting ready

Set up your project as in Setting up the game structure, found in Chapter 1, Setting Up
Panda3D and Configuring Development Tools. Also, add the line basic-shaders-only #f
to the file Config.prc in the etc subdirectory of your Panda3D installation. This enables the
most recent shader profile required for the effects shown in this recipe.

How to do it...
Let's find out what can be done with Panda3D's built-in post-processing effects by writing
some sample code:

1.	 Open Application.py and paste the following code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor

Chapter 5

111

from panda3d.core import *
from direct.filter.CommonFilters import *
from direct.interval.IntervalGlobal import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.setupScene()
 self.setupPostFx()

 def setupScene(self):
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")

 cm = CardMaker("plane")
 cm.setFrame(-10, 10, -10, 10)
 plane = render.attachNewNode(cm.generate())
 plane.setP(270)

 self.cam.setPos(0, -40, 6)

 ambLight = AmbientLight("ambient")
 ambLight.setColor(Vec4(0.2, 0.1, 0.1, 1.0))
 ambNode = render.attachNewNode(ambLight)
 render.setLight(ambNode)

 dirLight = DirectionalLight("directional")
 dirLight.setColor(Vec4(0.1, 0.4, 0.1, 1.0))
 dirNode = render.attachNewNode(dirLight)
 dirNode.setHpr(60, 0, 90)
 render.setLight(dirNode)

 pntLight = PointLight("point")
 pntLight.setColor(Vec4(0.8, 0.8, 0.8, 1.0))
 pntNode = render.attachNewNode(pntLight)
 pntNode.setPos(0, 0, 15)
 self.panda.setLight(pntNode)

 sptLight = Spotlight("spot")
 sptLens = PerspectiveLens()
 sptLight.setLens(sptLens)
 sptLight.setColor(Vec4(1.0, 1.0, 1.0, 1.0))
 sptNode = render.attachNewNode(sptLight)

Post-Processing and Screen Space Effects

112

 sptNode.setPos(-10, -10, 20)
 sptNode.lookAt(self.panda)
 render.setLight(sptNode)

 render.setShaderAuto()

2.	 Below the code you just added, append the following method:
 def setupPostFx(self):
 self.filters = CommonFilters(self.win, self.cam)

 switch = Sequence(Func(self.filters.setBloom, size =
"large"), Wait(3), Func(self.filters.delBloom),
 Func(self.filters.setCartoonInk, 2),
Wait(3), Func(self.filters.delCartoonInk),
 Func(self.filters.setBlurSharpen, 0),
Wait(3), Func(self.filters.delBlurSharpen),
 Func(self.filters.setBlurSharpen, 2),
Wait(3), Func(self.filters.delBlurSharpen),
 Func(self.filters.setInverted), Wait(3),
Func(self.filters.delInverted))
 switch.loop()

3.	 Press F6 to start the sample and see it toggle through the effects:

Chapter 5

113

How it works...
After the scene setup code from step one, we add a sequence of function intervals that toggle
through the built-in effects that are managed by the CommonFilters class.

The first filter that will be applied causes bright parts of the screen to bleed color into the rest
of the image. This creates the impression of being blinded by glaringly bright lights, and can
be used to create soft halos around light sources, for example.

The bloom effect can be configured further using the following named parameters:

ff blend controls how much each color channel contributes to the brightness of the
scene. This means passing the list [1, 0, 0, 0] makes only red parts glow, while
[0, 0, 0, 1] causes the bloom effect to be controlled by the alpha channel.

ff mintrigger takes a value between 0 and 1 that sets the minimum intensity level.
If this value is exceeded, the bloom effect starts to take effect.

ff maxtrigger sets the intensity value the effect will see as maximum and apply the
highest amount of the color bleeding effect.

ff desat lets you set the amount of desaturation that is applied to the original scene
color. If the value is 0, the original color will be used. The closer you set the value
to 1, the nearer the color of the halos will be to white.

ff intensity controls the maximum brightness of the bloom effect.

ff size configures the size of the halos around bright spots in the scene. This
parameter takes one of the string values "small", "medium", and "large".

The next effect we apply to our scene is called cartoon ink by the Panda3D developers and
causes an outline to be drawn around objects, giving them a hand-drawn, comic-like look. This
is a very simple effect, therefore the setCartoonInk() method only takes one parameter
that sets the thickness of the line in pixels.

Following that, we use setBlurSharpen() twice to first blur the scene and then sharpen
the image. The amount of blur, respectively sharpness, applied can be controlled by the only
parameter of the method. Values ranging from below one to zero cause the drawn frames
to be blurred, where zero sets the maximum amount of blur. Passing one disables any
effect of the filter, while any number greater than one sharpens the image that is rendered
to the screen.

The last filter in our little program is the simplest to use. It takes no parameters at all and
simply causes colors to appear inverted.

Post-Processing and Screen Space Effects

114

There's more...
The CommonFilters class contains some more filters, like ambient occlusion
or volumetric lighting (the so-called "god rays"). You can give them a try using the
setAmbientOcclusion() and setVolumetricLighting() methods. Be aware, though,
that you might encounter driver and hardware compatibility issues when using these effects.

Version 1.7.0 of Panda3D added new and great shader and effects
capabilities to the engine, but some of them still might need some
more testing and tweaking. If they do not work for you, you can
help the entire community by reporting your problems. The more
people contribute test data, the more compatibility the engine will
eventually be able to provide!

Building custom effects
Panda3D comes with a handy feature that enables you to conveniently define off-screen
render buffers that can be used to render scene information into one or more textures. This
allows you to redirect rendering output to intermediate textures that can be used as a base for
exciting visuals. Filtering and recombining the previously generated texture data then create
the end results of these image-based special effects. This recipe will show you how to use this
feature, as it is the basis for any image based rendering effect you are going to build using
this engine.

Getting ready

Set up your project folder as in Setting up the game structure found in Chapter 1. Add a
directory called shaders at the same level as the src and models directories. Make sure
these directories are in Panda3D's asset search path.

How to do it...
Follow these steps to implement a custom post-processing effect:

1.	 Open Application.py and add the following listed code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from direct.filter.FilterManager import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

Chapter 5

115

 self.setupScene()
 self.setupPostFx()

 def setupScene(self):
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")

 cm = CardMaker("plane")
 cm.setFrame(-10, 10, -10, 10)
 plane = render.attachNewNode(cm.generate())
 plane.setP(270)

 self.cam.setPos(0, -40, 6)

 ambLight = AmbientLight("ambient")
 ambLight.setColor(Vec4(0.2, 0.1, 0.1, 1.0))
 ambNode = render.attachNewNode(ambLight)
 render.setLight(ambNode)

 dirLight = DirectionalLight("directional")
 dirLight.setColor(Vec4(0.1, 0.4, 0.1, 1.0))
 dirNode = render.attachNewNode(dirLight)
 dirNode.setHpr(60, 0, 90)
 render.setLight(dirNode)

 pntLight = PointLight("point")
 pntLight.setColor(Vec4(0.8, 0.8, 0.8, 1.0))
 pntNode = render.attachNewNode(pntLight)
 pntNode.setPos(0, 0, 15)
 self.panda.setLight(pntNode)

 sptLight = Spotlight("spot")
 sptLens = PerspectiveLens()
 sptLight.setLens(sptLens)
 sptLight.setColor(Vec4(1.0, 1.0, 1.0, 1.0))
 sptLight.setShadowCaster(True)
 sptNode = render.attachNewNode(sptLight)
 sptNode.setPos(-10, -10, 20)
 sptNode.lookAt(self.panda)
 render.setLight(sptNode)

 render.setShaderAuto()

Post-Processing and Screen Space Effects

116

2.	 After you are done with that big pile of code, add another method to your
Application class:
 def setupPostFx(self):
 self.filterMan = FilterManager(self.win, self.cam)

 colorTex = Texture()
 finalQuad = self.filterMan.renderSceneInto(colortex =
colorTex)

 finalTex = Texture()
 interQuad = self.filterMan.renderQuadInto(colortex =
finalTex, div = 8)
 interQuad.setShader(loader.loadShader("filter.cg"))
 interQuad.setShaderInput("color", colorTex)

 finalQuad.setShader(loader.loadShader("pass.cg"))
 finalQuad.setShaderInput("color", finalTex)

3.	 Add new files called filter.cg and pass.cg to the shaders directory.

4.	 Open filter.cg in an editor and add the following shader code:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,
 out float4 o_color : COLOR)
{
 float4 color = tex2D(k_color, l_texcoord);
 o_color = float4(color.r * 1.8, color.g, color.b * 0.2, color.
a);
}

Chapter 5

117

5.	 Next, paste the following to pass.cg:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,
 out float4 o_color : COLOR)
{
 o_color = tex2D(k_color, l_texcoord);
}

6.	 Everything is set. Now you can press F6 to run the program:

Post-Processing and Screen Space Effects

118

How it works...
Our program implements a very basic effect, pixelizing, and tinting the final image. But in the
case of this recipe, it is about the way and not the goal.

After putting together our obligatory panda scene in the setupScene() method, we add
setupPostFx(), which sets up all the buffers and textures we use for creating our effect,
but let's take a closer look. First a new FilterManager is created, which is the engine's
interface for managing render targets. Then we tell the engine to render our scene into
colorTex using the renderSceneInto() method. Besides the colortex parameter,
renderSceneInto() also takes the parameters depthtex for storing scene depth and
auxtex for rendering to an auxiliary color buffer, which can be used for storing scene normals
for example. This also creates and returns a quad that fills the entire screen onto which we
will render the final image.

We then use renderQuadInto() to add an intermediate processing step to our little
pipeline. The result of this step will be stored in finalTex, sampled down to an eighth of its
original edge lengths, thanks to the div parameter. We apply the filter.cg shader to this
temporary quad, using colorTex as the input. The shader itself just samples from the data
found in colorTex and gives the red color channel a boost, while the blue channel values
are decreased, giving the scene a warm look.

In the last lines of setupPostFx(), we set finalQuad to use finalTex as the input for
the pass.cg shader, which simply takes the color it finds in the texture and outputs it to
the screen.

There's more...
To see the contents of your render buffers for debugging, just add the line show-buffers
#t to your Config.prc file. You can also turn buffer visualization on by adding the
line loadPrcFileData('', 'show-buffers 1') below the import section of
Application.py.

Adding a scanline and vignette effect
This recipe will show you a very typical use of post-processing. You will create an effect that
makes the scene feel as if it were observed through a security camera or the eye of a remote
controlled robot by dropping every other line of output. Additionally, you will learn how to
implement a simple vignette effect that directs the focus to the center of the screen.

After completing this article, you will see how very simple post-processing techniques can
have a major impact on the look and feel of a scene.

Chapter 5

119

Getting ready
We will be using the same scene and project setup as in Building custom effects found in this
chapter. Please follow the recipe until you complete step 1 before proceeding with this one.

How to do it...
These are the tasks required for completing this recipe:

1.	 Open Application.py and add this method to the Application class:
 def setupPostFx(self):
 self.filterMan = FilterManager(self.win, self.cam)

 colorTex = Texture()

 finalQuad = self.filterMan.renderSceneInto(colortex =
colorTex)
 finalQuad.setShader(loader.loadShader("scanline.cg"))
 finalQuad.setShaderInput("color", colorTex)

2.	 Add a new file called scanline.cg to the shaders directory.

3.	 Open scanline.cg in an editor and add the following code:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

#define DRAW 4
#define DROP 2
#define DRAW_INTENSITY 1.1
#define DROP_INTENSITY 0.5

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,
 uniform sampler2D k_line : TEXUNIT1,
 uniform float4 texpix_color,

Post-Processing and Screen Space Effects

120

 uniform float4 texpad_color,
 out float4 o_color : COLOR)
{
 float4 color = tex2D(k_color, l_texcoord);

 float falloff = 1.1 - length(l_texcoord - texpad_color);
 color *= pow(falloff, 4);

 o_color = color * (int(l_texcoord.y / texpix_color.y) % DRAW +
DROP < DRAW ? DRAW_INTENSITY : DROP_INTENSITY);
}

4.	 In the Netbeans IDE, press F6 to launch the sample:

How it works...
In this sample, our buffer setup is very simple. The scene is rendered into colorTex, which is
modified and applied to the final fullscreen quad by the shader found in scanline.cg.

The interesting parts of this recipe can be found in the fshader() function of the shader
file, which is the pixel shader code. Here we first read the color value at the current texture
coordinate into a four-component vector.

The next two lines are responsible for the vignette effect. The falloff value is based on
the distance of the current texture coordinate from the center of the texture, stored in
texpad_color. The value of 1.1 from which the length is subtracted was chosen to make

Chapter 5

121

the final image appear a bit brighter and make the effect appear less harsh. The falloff is then
raised to the power of 4, which results in a nice circular decline in intensity, moving the panda
into focus.

Finally, we need to decide if the current pixel is on a scanline or not. The macros DRAW, DROP,
DRAW_INTENSITY, and DROP_INTENSITY define how many lines to draw, how many lines
to drop, at which intensity drawn lines are put onto the screen and the intensity of dropped
lines, respectively. Whether the current pixel lies on a dropped or drawn line is decided
by some simple math. We take the integral part of the current vertical texture coordinate
(l_texcoords.y) divided by the normalized height of a pixel (texpix_color.y) modulo
the number of lines we observe in our scanline pattern. If the result of this function is smaller
than number of lines to draw the line is considered visible. If it is bigger than DRAW, the
current line is discarded.

Adding a color grading effect
No matter if it is professional film production or photography, neither of these professions will
release a piece of work without a serious amount of color editing in post-production. Proper
color grading sets the overall tone and emotion of the final picture, making the sunrise
scenes look warm, and movies that are set in an arctic environment feel as cold as ice.

These effects can also be achieved with some shader code and enable you to further tweak
the look and feel of your games. Choosing the right color palette is a very important measure
for setting and transporting mood and emotion in visual media, which includes video games.

It's a rather small change to put into your rendering pipeline but the results might have a big
impact on how your scenes will be perceived by players.

Getting ready
This recipe builds upon the sample code presented in Building custom effects, the second
recipe in this chapter. Follow the instructions of said recipe up to step 1 so you are ready to
implement the setupPostFx() method and add the required shaders.

How to do it...
These steps will show you how to implement color grading in Panda3D:

1.	 Add this method to the Application class:
 def setupPostFx(self):
 self.filterMan = FilterManager(self.win, self.cam)

 colorTex = Texture()

Post-Processing and Screen Space Effects

122

 finalQuad = self.filterMan.renderSceneInto(colortex =
colorTex)
 finalQuad.setShader(loader.loadShader("color.cg"))
 finalQuad.setShaderInput("color", colorTex)

2.	 Add a new text file called color.cg to the shaders directory.

3.	 Open color.cg in an editor and add the following code:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

#define overlay_blend(base, blend) (base < 0.5 ? (2.0 * base *
blend) : (1.0 - 2.0 * (1.0 - base) * (1.0 - blend)))
#define overlay_add(base, blend) (base + blend)
#define overlay_mul(base, blend) (base * blend)

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,
 out float4 o_color : COLOR)
{
 float gamma = 1.2;
 gamma = 1 / gamma;
 float3 lift = float3(1.05, 1.05, 1.1);
 float3 blend = float3(0.1, 0.1, 0.5);
 float weight = 0.5;

 float4 color = tex2D(k_color, l_texcoord);

 color.rgb = pow(color.rgb, gamma);
 color.rgb = saturate(overlay_mul(color.rgb, lift));
 float3 tint = saturate(overlay_blend(color.rgb, blend));
 color.rgb = lerp(color.rgb, tint, weight);

 o_color = color;
}

Chapter 5

123

4.	 In Netbeans, press F6 to run the application:

How it works...
Looking at the two screenshots (original color on the left, modified scene on the right) we can
see that the color balance of the scene has changed dramatically due to our new filter. We
shifted the color palette of the final image towards a cold and blue look, setting a nightly and
full moon mood.

In this recipe, we are using only one render target that draws scene color into colorTex. This
texture will be uploaded to the graphics card and used by our shader.

The shader found in color.cg is where all the color magic happens, so let's take
a closer look!

Inside the fshader() function, which is the pixel shader applied to the final fullscreen quad,
we first define a few parameters that will influence the color balance of our scene.

With the gamma variable, we change the gamma correction. The input color will be raised by
the reciprocal of this value, resulting in a non-linear change in color intensity. Values greater
than 1 will give low color intensities a boost, making the scene appear brighter, but also
washed out as contrast decreases. With values below one, everything will appear dark with
a lot of contrast and with lower intensities converging towards black.

The lift variable will be used with the overlay_mul() macro, multiplying the input color.
With this, you can increase and decrease the intensities of color channels, emphasizing one
channel while eliminating another one.

Using the blend variable, we define a color which is first blended with the source color using
the overlay_blend() macro, which applies the overlay blending formula you may know
from Photoshop or similar tools. This formula causes color channels with low intensities to be
pushed harder towards the desired value than higher intensities, resulting in a balanced push
towards the desired color. The result from this calculation is then linearly interpolated with the
original color value, using weight to define how these colors are blended together.

Post-Processing and Screen Space Effects

124

In principle, what we do in our shader is similar to the steps we'd follow in an image
manipulation program. First we change gamma correction and apply a channel multiplication
filter. Then we create a new layer by blending the original image with a single color. Finally we
alpha blend this layer onto our scene.

Adding a depth of field effect
An effect you can very commonly see in photography is objects that are very close to or very
far away from the point of view. Therefore, appearing fuzzy and blurred while the middle
portion of the image appears focused and sharp, emphasizing an object of interest in the
scene. This focused part of the scene is referred to as 'depth of field'.

In this recipe you will learn how to mimic this cinematic effect in a post-processing filter. This
will help you to emphasize the visual depth of a scene and focus a point of interest while
blurring the background and foreground.

Getting ready
Set up the project structure found in Setting up the game structure, add a directory called
shaders inside the project directory, make sure it is in the engine's search path and you're
ready to go!

How to do it...
This recipe requires you to write some Python and Cg code as presented in the following steps:

1.	 Paste the following code into Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from direct.filter.FilterManager import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.setupScene()
 self.setupLight()
 self.setupPostFx()

 def setupScene(self):
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")

Chapter 5

125

 smiley = loader.loadModel("smiley")
 smiley.reparentTo(render)
 smiley.setPos(5, -15, 10)

 smiley = loader.loadModel("smiley")
 smiley.reparentTo(render)
 smiley.setPos(5, 0, 10)

 smiley = loader.loadModel("smiley")
 smiley.reparentTo(render)
 smiley.setPos(5, 20, 10)

 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 self.cam.setPos(0, -40, 6)
 self.cam.node().getLens().setNearFar(1.0, 300.0)

2.	 Add this method to the Application class:
 def setupLight(self):
 ambLight = AmbientLight("ambient")
 ambLight.setColor(Vec4(0.2, 0.1, 0.1, 1.0))
 ambNode = render.attachNewNode(ambLight)
 render.setLight(ambNode)

 dirLight = DirectionalLight("directional")
 dirLight.setColor(Vec4(0.1, 0.4, 0.1, 1.0))
 dirNode = render.attachNewNode(dirLight)
 dirNode.setHpr(60, 0, 90)
 render.setLight(dirNode)

 pntLight = PointLight("point")
 pntLight.setColor(Vec4(0.8, 0.8, 0.8, 1.0))
 pntNode = render.attachNewNode(pntLight)
 pntNode.setPos(0, 0, 15)
 self.panda.setLight(pntNode)

 sptLight = Spotlight("spot")
 sptLens = PerspectiveLens()
 sptLight.setLens(sptLens)
 sptLight.setColor(Vec4(1.0, 1.0, 1.0, 1.0))
 sptLight.setShadowCaster(True)

Post-Processing and Screen Space Effects

126

 sptNode = render.attachNewNode(sptLight)
 sptNode.setPos(-10, -10, 50)
 sptNode.lookAt(self.panda)
 render.setLight(sptNode)

 render.setShaderAuto()

3.	 After the setupLight() method, add this last piece of code to Application.py:
 def setupPostFx(self):
 self.filterMan = FilterManager(self.win, self.cam)

 colorTex = Texture()
 blurTex = Texture()
 depthTex = Texture()

 finalQuad = self.filterMan.renderSceneInto(colortex =
colorTex, depthtex = depthTex)
 blurQuad = self.filterMan.renderQuadInto(colortex =
blurTex, div = 4)
 blurQuad.setShader(loader.loadShader("blur.cg"))
 blurQuad.setShaderInput("color", colorTex)

 finalQuad.setShader(loader.loadShader("depth.cg"))
 finalQuad.setShaderInput("color", colorTex)
 finalQuad.setShaderInput("blur", blurTex)
 finalQuad.setShaderInput("depth", depthTex)

4.	 Add two new files called blur.cg and depth.cg to the shaders subdirectory.

5.	 Open blur.cg and add the following code:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,

Chapter 5

127

 out float4 o_color : COLOR)
{
 float4 color = tex2D(k_color, l_texcoord);
 int samples = 16;
 float step = 0.001;

 for (float i = -(samples / 2) * step; i <= (samples / 2) *
step; i += step)
 color += tex2D(k_color, l_texcoord + float2(i, 0));
 color /= (samples + 1);

 samples /= 2;
 for (float i = -(samples / 2) * step; i <= (samples / 2) *
step; i += step)
 color += tex2D(k_color, l_texcoord + float2(0, i));
 color /= (samples + 1);

 o_color = color;
}

6.	 After pasting this piece of shader code to depth.cg you are done with coding
for this sample:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

float linearZ(uniform sampler2D tex, float2 uv)
{
 float near = 1.0;
 float far = 300.0;
 float z = tex2D(tex, uv);
 return (2.0 * near) / (far + near - z * (far - near));
}

Post-Processing and Screen Space Effects

128

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,
 uniform sampler2D k_blur : TEXUNIT1,
 uniform sampler2D k_depth : TEXUNIT2,
 out float4 o_color : COLOR)
{
 float z_max = 0.3;
 float z_min = 0.16;
 float z = linearZ(k_depth, l_texcoord);

 float4 color = z > z_max ? tex2D(k_blur, l_texcoord) : z < z_
min ? tex2D(k_blur, l_texcoord) : tex2D(k_color, l_texcoord);
 o_color = color;
}

7.	 To run the sample, hit the F6 key and watch how out-of-focus objects are
being blurred:

How it works...
Before applying our post-processing effect, we need a scene which is created by the methods
setupScene() and setupLight(). We also configure the near and far clipping planes of
our camera using setNearFar() to define the depth boundaries of our scene.

Chapter 5

129

Next, in setupPostFx(), we put together our render buffer setup. We're rendering scene
color to colorTex and the depth buffer to depthTex. Additionally, we create an intermediate
render step that produces a blurred and downsampled version of our color buffer.

Blurring the color buffer is implemented in the pixel shader of blur.cg. Here we first blur
horizontally by taking the average of the color values to the left and the right of the current
pixel. The same is done in vertical direction too, using only half as many samples as the
horizontal blur. We're doing this to make the blur look more balanced, as using the same
amount of samples tends to emphasize the vertical blur.

To create the final effect, the untouched scene color, the blurred scene, and the depth texture
are passed to the depth of field shader found in depth.cg. First, notice the values z_max
and z_min, which define the boundaries for the depth of field. Every pixel that has a scene
depth below z_min or above z_max will appear blurred.

The depth values are converted to normalized, linear values produced by the linearZ()
function to make it easier to define the blur boundaries. In our sample, everything that is
below the first 16% of depth into the scene or further away than 30% of the maximum depth
is blurred.

The line that chooses the color sample might look a bit cryptic, but does a really simple
thing using nested ternary operators. First the depth value is checked against z_max. If it
is greater, the current pixel will be sampled from the blurred texture. If not, there are two
branches left—either z is smaller than z_min, which will also result in the blurred texture
being used, or not—which means that we're in focus and the unaltered version of the pixel is
drawn to the screen.

Building a deferred rendering pipeline
Although modern graphics cards are able to push millions of polygons per frame, their abilities
in terms of lighting are quite limited when using the traditional, forward rendering approach,
where all permutations of lights on scene objects have to be calculated to get the final scene
lighting. Some engines circumvent this issue by limiting the number of lights that are allowed
to affect the scene, by choosing the ones that are nearest.

But what if we wanted hundreds of lights in a scene? How would we realize that? In this
recipe we will see how to solve this problem by building a deferred rendering pipeline that is
limited by the number of pixels our hardware is able to push, but not the number of lights in
our scene.

Getting ready
Create your project folders according to Setting up the game structure, add a directory
called shaders and make sure it is in the engine's search path. If that is done, you're
ready to go on.

Post-Processing and Screen Space Effects

130

How to do it...
Complete the following tasks to get your deferred rendering pipeline going:

1.	 Open Application.py and paste the following code below:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from direct.filter.FilterManager import *
import random

loadPrcFileData('', 'show-buffers 1')

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.setupScene()
 self.setupLight()
 self.setupCams()
 self.setupPostFx()

 def setupScene(self):
 self.scene = render.attachNewNode("scene")
 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(self.scene)
 self.panda.loop("walk")

 self.world = loader.loadModel("environment")
 self.world.reparentTo(self.scene)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 self.scene.setShaderAuto()

2.	 Add the following method to the Application class:
 def setupCams(self):
 self.lightCam = self.makeCamera(self.win)
 self.lightCam.reparentTo(self.cam)

 sceneMask = BitMask32(1)
 lightMask = BitMask32(2)
 self.cam.node().setCameraMask(sceneMask)
 self.lightCam.node().setCameraMask(lightMask)
 self.lights.hide(sceneMask)
 self.ambient.hide(sceneMask)
 self.scene.hide(lightMask)

Chapter 5

131

 self.cam.node().getDisplayRegion(0).setSort(1)
 self.lightCam.node().getDisplayRegion(0).setSort(2)
 self.win.setSort(3)

 self.lightCam.node().getDisplayRegion(0).
setClearColor(Vec4(0, 0, 0, 1))
 self.lightCam.node().getDisplayRegion(0).
setClearColorActive(1)

 self.cam.setPos(0, -40, 6)

3.	 Add another method to the class Application:
 def setupLight(self):
 self.lights = render.attachNewNode("lights")
 self.sphere = loader.loadModel("misc/sphere")

 for i in range(400):
 light = self.lights.attachNewNode("light")
 light.setPos(random.uniform(-15, 15), random.uniform(-
5, 50), random.uniform(0, 15))
 light.setColor(random.random(), random.random(),
random.random())
 light.setScale(5)
 self.sphere.instanceTo(light)

 vlight = self.scene.attachNewNode("vlight")
 vlight.setPos(light.getPos())
 vlight.setColor(light.getColor())
 vlight.setScale(0.1)
 self.sphere.instanceTo(vlight)

 cm = CardMaker("ambient")
 cm.setFrame(-100, 100, -100, 100)
 self.ambient = render.attachNewNode("ambient")
 self.ambient.attachNewNode(cm.generate())
 self.ambient.setColor(0.1, 0.1, 0.1, 1)
 self.ambient.reparentTo(self.cam)
 self.ambient.setPos(0, 5, 0)

4.	 The following setupPostFx() method is the last one you have to add to the
Application class:
def setupPostFx(self):
 self.gbufMan = FilterManager(self.win, self.cam)
 self.lightMan = FilterManager(self.win, self.lightCam)

Post-Processing and Screen Space Effects

132

 albedo = Texture()
 depth = Texture()
 normal = Texture()
 final = Texture()

 self.gbufMan.renderSceneInto(colortex = albedo, depthtex =
depth, auxtex = normal, auxbits = AuxBitplaneAttrib.ABOAuxNormal)

 lightQuad = self.lightMan.renderSceneInto(colortex =
final)
 lightQuad.setShader(loader.loadShader("pass.cg"))
 lightQuad.setShaderInput("color", final)

 self.ambient.setShader(loader.loadShader("ambient.cg"))
 self.ambient.setShaderInput("albedo", albedo)

 self.ambient.setAttrib(ColorBlendAttrib.
make(ColorBlendAttrib.MAdd, ColorBlendAttrib.OOne,
ColorBlendAttrib.OOne))
 self.ambient.setAttrib(DepthWriteAttrib.
make(DepthWriteAttrib.MOff))

 self.lights.setShader(loader.loadShader("light.cg"))
 self.lights.setShaderInput("albedo", albedo)
 self.lights.setShaderInput("depth", depth)
 self.lights.setShaderInput("normal", normal)

 self.lights.setAttrib(ColorBlendAttrib.
make(ColorBlendAttrib.MAdd, ColorBlendAttrib.OOne,
ColorBlendAttrib.OOne))
 self.lights.setAttrib(CullFaceAttrib.make(CullFaceAttrib.
MCullCounterClockwise))
 self.lights.setAttrib(DepthWriteAttrib.
make(DepthWriteAttrib.MOff))

5.	 Go to the shaders subdirectory of the project and add 3 new files called ambient.
cg, light.cg, and pass.cg.

6.	 Open ambient.cg in an editor and add the following code:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float4 l_screenpos : TEXCOORD0,
 uniform float4x4 mat_modelproj)

Chapter 5

133

{
 l_position = mul(mat_modelproj, vtx_position);
 l_screenpos = l_position;
}

void fshader(float4 l_screenpos : TEXCOORD0,
 uniform sampler2D k_albedo : TEXUNIT0,
 uniform float4 texpad_albedo,
 uniform float4 attr_color,
 out float4 o_color : COLOR)
{
 l_screenpos.xy /= l_screenpos.w;
 float2 texcoords = float2(l_screenpos.xy) * texpad_albedo.xy +
texpad_albedo.xy;

 float4 albedo = tex2D(k_albedo, texcoords);
 o_color = albedo * attr_color;
}

7.	 Add the following shader code to light.cg:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float4 l_screenpos : TEXCOORD0,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_screenpos = l_position;
}

void fshader(float4 l_screenpos : TEXCOORD0,
 uniform sampler2D k_albedo : TEXUNIT0,
 uniform sampler2D k_depth : TEXUNIT1,
 uniform sampler2D k_normal : TEXUNIT2,
 uniform float4 texpad_albedo,
 uniform float4 attr_color,
 uniform float4 vspos_model,
 uniform float4x4 vstrans_clip,
 uniform float4 row0_model_to_view,
 out float4 o_color : COLOR)
{

Post-Processing and Screen Space Effects

134

 l_screenpos.xy /= l_screenpos.w;
 float2 texcoords = float2(l_screenpos.xy) * texpad_albedo.xy +
texpad_albedo.xy;

 float4 albedo = tex2D(k_albedo, texcoords);
 float4 normal = tex2D(k_normal, texcoords);
 float depth = tex2D(k_depth, texcoords);

 float4 vspos_scene;
 vspos_scene.xy = l_screenpos.xy;
 vspos_scene.z = depth;
 vspos_scene.w = 1;
 vspos_scene = mul(vstrans_clip, vspos_scene);
 vspos_scene /= vspos_scene.w * 2;

 float3 vec = float3(vspos_model) - vspos_scene;
 float len = length(vec);
 float3 dir = vec / len;
 float atten = saturate(1.0 - (len / row0_model_to_view.x));
 float intensity = pow(atten, 2) * dot(dir, float3(normal));
 o_color = float4(albedo.xyz * attr_color.xyz * intensity, 1);
}

8.	 Open and edit pass.cg so it contains this piece of code:
//Cg

void vshader(float4 vtx_position : POSITION,
 out float4 l_position : POSITION,
 out float2 l_texcoord : TEXCOORD0,
 uniform float4 texpad_color,
 uniform float4x4 mat_modelproj)
{
 l_position = mul(mat_modelproj, vtx_position);
 l_texcoord = (vtx_position.xz * texpad_color.xy) + texpad_
color.xy;
}

void fshader(float2 l_texcoord : TEXCOORD0,
 uniform sampler2D k_color : TEXUNIT0,
 out float4 o_color : COLOR0)
{
 o_color = tex2D(k_color, l_texcoord);
}

Chapter 5

135

9.	 Press the F6 key to launch the program you just created:

How it works...
The basic idea behind deferred rendering is very simple. The unlit scene, its normals, and the
depth buffer are stored into textures in the first step of the technique. Then, the bounding
volume of each light is rendered using a special shader that samples color, depth, and normal
data at the current pixel and projects the screen position back into the scene to get the
position relative to itself. Depending on this distance and the normal at that position, the pixel
is lit or not.

This technique has the advantage that its performance only depends on how many pixels in
the scene are actually lit. The downsides are that it consumes a lot of video memory and that
it binds application performance to the graphics processor.

After this high level view on the topic, let's take a closer look at the parts this code sample is
made of!

After filling our scene with the panda and the jungle background and instructing the engine to
show the content of our buffers with the line loadPrcFileData('', 'show-buffers 1'),
we go on to set up the lights and cameras.

Post-Processing and Screen Space Effects

136

In the setupLight() method, we create a new node that will be the parent for all the point
lights in our scene, before the four hundred light volumes and the tiny dots that visualize the
lights' center points are added to the scene. We also create an ambient light, which does not
have a real light volume. In fact, it has an infinitely big one, but as this wouldn't be practical
to implement, it is represented by a huge quad put in front of the camera.

Our camera setup is quite elaborate for this sample but unfortunately, it is necessary. We add
a new camera and reparent it to the default camera so it always sees the same scene. Then
we create a bit mask for each camera, which we use to hide the point and ambient lights from
the default camera. The lightCam will in turn only record objects that act as light volumes.

In the following lines, we define the order in which the cameras will record the scene. This is
very important, because the unlit scene has to be rendered before the lights are composited
into the image. We also set the clear color of the lightCam to black, so unlit parts of the
scene are rendered in a dark color.

This leaves us with the buffer and shader setup in the setupPostFx() method.

We are using two instances of FilterManager, each one attached to one of our cameras.
The gbufMan instance is attached to the main camera to record scene color, normals, and
depth, the so-called geometry buffer or short—G-buffer. With lightMan, we are recording the
final image composition, which we will then render onto lightQuad, using a pass-through
shader, to present the scene on the screen.

The lights will blend additively to make the scene appear brighter if more lights affect one spot
and will not write to the depth buffer. After we're done with these render states, we can take
a look at what's going on inside the light shaders.

The ambient light shader is really simple. It reconstructs the proper texture coordinates from
the current screen coordinates to sample the albedo texture and multiply with the ambient
quad's color.

Looking deeper into the inner workings of light.cg, the situation isn't so trivial anymore.
First, we must find the current pixel position on the screen to determine the proper texture
coordinates for the color, normal, and depth textures. Then, the view space position of
the pixel is restored from clip space using the matrix vstrans_clip that is provided
by Panda3D.

After the view space position of the current pixel is restored in vspos_scene, we
can calculate the distance to the light that is currently rendered by subtracting it from
vspos_model, which holds the view space position of the currently rendering model.

Chapter 5

137

Using the distance from the current light's center and the direction to the pixel that is in
question, we can calculate if that point actually is within the boundaries of the light volume.
This is done by dividing len by row0_model_to_view.x and subtracting from one to
compute the amount of distance-based attenuation. The latter of the variables stores
the light volume's scale factor, which at the same time is its radius.

Finally, we determine the pixel's intensity using the famous Lambertian term (the dot product
of the surface normal and the light direction) and the amount of attenuation. This is multiplied
with the vertex color attribute holding the light's color and the albedo color sampled from the
unlit scene buffer texture.

There's more...
This is a very basic deferred rendering setup that only supports ambient and point lights.
Building on this sample, try adding directional lights, specular highlights, and shadows.
A set up like this one opens many possibilities to create interesting effects!

6
2D Elements and

User Interfaces

In this chapter, we will cover:

ff Rendering text to the screen

ff Rendering images to the 2D layer

ff Playing a movie file

ff Creating an interactive user interface

ff Making the user interface data-driven using XML

Introduction
Apart from its 3D rendering capabilities, the Panda3D engine also has features for drawing
two-dimensional graphics. This may be useful if you want to build a simple, side-scrolling
platformer, but also when creating spectacular 3D action games. Score overlays, head-up
displays, and movie clips all need the engine to draw "flat" to the screen, which is exactly
what you will be learning over the course of this chapter.

Rendering text to the screen
This simple recipe will show you how to quickly put some text on the screen. This might be
useful for debug output, but also for presenting the current score or hit points to the player.

2D Elements and User Interfaces

140

Getting ready
If you haven't done it yet, set up your project according to the steps presented in the recipe
Setting up the game structure before you proceed. You can find this recipe in Chapter 1,
Setting Up Panda3D and Configuring Development Tools.

How to do it...
Let's put some text on the screen:

1.	 Open Application.py and add the following source code:
from direct.showbase.ShowBase import ShowBase
from direct.gui.OnscreenText import OnscreenText
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 font = loader.loadFont("cmr12.egg")
 props = TextProperties()
 props.setTextColor(1, 1, 0, 0.5)
 tp = TextPropertiesManager.getGlobalPtr()
 tp.setProperties("yellow", props)

 OnscreenText(text = "Panda3D Rocks!!",
 frame = Vec4(1, 0, 0, 1),
 bg = Vec4(1, 1, 0, 1),
 pos = Vec2(-0.5, 0.5),
 scale = 0.2,
 font = font)

 wrapWidth = 6
 text = OnscreenText(text = "So long... \1yellow\1And
thanks for all the bamboo\2!!",
 wordwrap = wrapWidth,
 fg = Vec4(1, 1, 1, 1),
 shadow = Vec4(0, 0, 0, 1),
 scale = 0.07,
 font = font)

 wrap = text.getScale()[0] * wrapWidth
 print "Word wrap after", wrap, "screen units"

Chapter 6

141

2.	 Press F6 and run the program:

How it works...
As you can see, outputting text is very easy using OnscreenText(). First, you import the
proper package, which is direct.gui.OnscreenText. Then you load the font you wish to
use, in this case the "cmr12" font that is included with Panda3D. If you wish to use a different
font—no problem! Just use loadFont() to load any "Truetype" font you wish to use. Like
other resources, such as models and textures, fonts need to be located in a directory that is
configured to be a part of Panda3D's search path. See the description of the model-path
configuration variable in the recipe Understanding Panda3D's runtime configuration options
in Chapter 1, Setting Up Panda3D and Configuring Development Tools, for further information
on adding directories to the search path.

OnscreenText() also allows you to set additional text properties, some of which are
shown in the code you just added to your program, like frame for the red outline around
the Panda Rocks!! text, bg for setting the background color, fg for setting the text color,
scale for scaling the size of the text, shadow for defining a drop shadow below each font and
wordwrap to set at which width to insert a line break. You may also use the pos parameter
to position the text.

The wordwrap parameter sets the wrap width relative to the scale of the font. The last two
lines of the sample code calculate the absolute wrap width in screen units and print it to the
screen. In this case, this is 0.7 * 6, so a line break is inserted after about a fifth of the screen
width. If the scale parameter is omitted, the engine automatically chooses a scale factor to
make the font fit onto the screen.

When you are positioning and scaling text or setting the word wrap width, you are working with
a normalized coordinate system. The origin of this coordinate system is at the centre of the
window, (-1, 1) is the top-left corner and (1, -1) are the coordinates of the bottom-right
corner. This makes it easier to position elements independent from the screen resolution.

2D Elements and User Interfaces

142

Text properties can also be set for sections of text. For getting this to work, you need to create
a new instance of the TextProperties class, set the text properties you wish and register
them with the global TextPropertiesManager. The custom text properties you create this
way are then activated and deactivated using \1[name]\1 and \2. This works like a stack:
A property name enclosed by \1 enables properties for any subsequent text. Putting \2 into
a string pops and thus deactivates the text property you activated last. Watch how the text
changes in the sample: The text color is set to yellow before the sentence And thanks for
all the bamboo and deactivated again right before the two exclamation marks.

Rendering images to the 2D layer
In this easy-and-short recipe you will learn how to display images in the 2D layer of Panda3D.
For example, if you want to build 2D games or display a HUD in a shooter, this recipe is the
way to go!

Getting ready
Apart from using the project structure found in Setting up the game structure found in
Chapter 1, Setting Up Panda3D and Configuring Development Tools, you will need two texture
images that will be displayed. Also, add an additional directory called textures to the project
folder structure.

Putting the image files into the textures directory is optional (you could
also put them into the source directory) but will help you to keep your code
and resources organized. You may also use a different image file format for
your textures. Panda3D also supports JPEG and DDS, for example.

How to do it...
Follow these steps to put some images into the 2D rendering layer:

1.	 Copy your texture image files to the textures directory and call them panda.png
and test.png.

2.	 Add the following code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.gui.OnscreenImage import OnscreenImage
from direct.actor.Actor import Actor
from panda3d.core import *
import random

class Application(ShowBase):

Chapter 6

143

 def __init__(self):
 ShowBase.__init__(self)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.panda.loop("walk")
 self.cam.setPos(0, -30, 5)

 files = ["panda.png", "test.png"]

 for i in range(30):
 OnscreenImage(random.sample(files, 1)[0],
 scale = Vec3(0.15, 0, 0.15),
 pos = Vec3(random.uniform(-1, 1), 0,
random.uniform(-1, 1)),
 hpr = Vec3(0, 0, random.uniform(0,
360)))

3.	 Press F6 to start the application:

How it works...
All it takes to display an image in the render2d layer of Panda3D is a call to
OnscreenImage(). This loads the texture, puts it on a quad and adds it to the render2d
scene graph, which is rendered using orthogonal projection after 3D drawing is done. The
function also returns the created node, so we can change its properties later on.

2D Elements and User Interfaces

144

Playing a movie file
Whether it's showing your game studio's logo sequence at the start of the game, or it's
telling an important part of your story using cutscenes—sometimes you need to play full
motion video. That's why in this recipe you will learn how to load a video and replay it in
the game window.

Getting ready
This sample uses the project structure created in Setting up the game structure found
in Chapter 1. You also need to add a directory called videos to the project's source tree to
keep your assets organized. Make sure that the videos directory is on Panda3D's content
search path!

Of course, you need to provide a video file for playback. Panda3D uses the FFmpeg
programming library for decoding video data, so it should be able to process any codec
supported by FFmpeg. The sample code assumes you are using an AVI file.

How to do it...
To play a movie file, complete these tasks:

1.	 Copy your video file to the videos directory and rename it to movie.avi.

2.	 Open the Application.py file and add the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

loadPrcFileData("", "audio-library-name p3openal_audio")

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 cm = CardMaker("plane")
 cm.setFrame(-1, 1, -1, 1)

 plane = render2d.attachNewNode(cm.generate())
 movie = loader.loadTexture("movie.avi")
 sound = loader.loadSfx("movie.avi")

 plane.setTexture(movie)
 plane.setTexScale(TextureStage.getDefault(), movie.
getTexScale())

Chapter 6

145

 movie.setLoop(0)
 movie.synchronizeTo(sound)

 sound.play()

3.	 Hit the F6 key to run the application and watch the video play:

How it works...
First of all, we need to properly configure Panda3D to use OpenAL for audio output, using the
loadPrcFileData() function. This is very important, because otherwise our code would
not work!

To get the movie clip to play on the screen, we first use a CardMaker to create the quad the
video will be put on as a dynamically updated texture image. We reparent plane to render2d,
so it is rendered to Panda3D's 2D drawing layer.

Next, we load the video file into a texture object and set it as our target quad's texture image.
Additionally, the texture matrix of plane is modified using setTexScale(). We have to
do this because if the pixel width and height of our video is not a power of two, the movie
texture Panda3D creates internally will be set to the nearest power-of-two measures. When
we put video frames into this texture, it will cause a noticeable amount of stretching and/or
squashing, distorting the video and making it appear rather odd.

Finally, we turn off looping the video over and over again and instruct the engine to
synchronize the video to the audio data of the video. Note how we use the loadSfx()
method to open the movie file a second time to retrieve the audio data!

2D Elements and User Interfaces

146

The last line may appear a bit odd at first. Why would we want to start playing the sound if
we want to see the video? The answer to this question can be found just one line above,
where we ensure the audio to be synchronized with the video stream. This also causes
movie playback to be bound to starting and stopping the sound.

Creating an interactive user interface
With very few exceptions, nearly every game features some kind of menu-based user
interaction for selecting game modes, browsing servers, setting game, and graphics options,
or chatting with other players. Most likely, the games you are going to create with Panda3D
will also have such requirements and you will need to create buttons, text input fields, loading
bars, or whatever controls suit your needs. To make things easier for you, the Panda3D engine
comes with a set of user interface classes that make it very easy to place controls on the
screen and make them react to the players' actions.

Getting ready
Go back to Chapter 1 and follow the steps of the recipe Setting up the game structure if you
haven't yet and you are set to go on with the following tasks.

How to do it...
Let's create a user interface:

1.	 Paste the following source code to Application.py:
from direct.showbase.ShowBase import ShowBase
from direct.gui.DirectGui import *
from direct.interval.IntervalGlobal import *
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.nameEnt = DirectEntry(scale = 0.08, pos = Vec3(-0.4,
0, 0.15), width = 10)
 self.nameLbl = DirectLabel(text = "Hi, what's your name?",
 pos = Vec3(0, 0, 0.4),
 scale = 0.1,
 textMayChange = 1,
 frameColor = Vec4(0, 0, 0, 0))
 helloBtn = DirectButton(text = "Say Hello!",
 scale = 0.1,
 command = self.setName,
 pos = Vec3(0, 0, -0.1))

Chapter 6

147

 self.gender = [0]
 genderRdos = [DirectRadioButton(text = "Female",
 variable = self.gender,
 value = [0],
 scale = 0.05,
 pos = Vec3(-0.08, 0,
0.05)),
 DirectRadioButton(text = "Male",
 variable =self.gender,
 value = [1],
 scale = 0.05,
 pos = Vec3(0.16, 0,
0.05))]
 for btn in genderRdos:
 btn.setOthers(genderRdos)

2.	 Now add the methods for handling clicks on the Say Hello! button and the resulting
dialog to the Application class:
 def setName(self):
 self.acceptDlg = YesNoDialog(text = "Are you sure?",
 command = self.acceptName)

 def acceptName(self, clickedYes):
 self.acceptDlg.cleanup()
 if clickedYes:
 self.loadName()

3.	 Next, it is time to add the code for creating and advancing a progress bar:
 def loadName(self):
 self.waitBar = DirectWaitBar(text = "Loading",
 range = 100,
 value = 0,
 pos = Vec3(0, 0, -0.3))
 inc = Func(self.loadStep)
 show = Func(self.setNameLabel)

 load = Sequence(Wait(1), inc, Wait(2), inc, Wait(1), inc,
Wait(3), inc, show)
 load.start()

 def loadStep(self):
 self.waitBar["value"] += 25

2D Elements and User Interfaces

148

4.	 Lastly, add the code for setting the label text to Application.py:
 def setNameLabel(self):
 title = ""
 if self.gender[0]:
 title = "Mister"
 else:
 title = "Miss"

 self.nameLbl["text"] = "Hello " + title + " " + self.
nameEnt.get() + "!"

5.	 Press F6 to start the program:

How it works...
After importing the packages we need for this recipe—most notably, direct.gui.
DirectGui for the user interface functionality—we go on to add a text input field, a label,
a set of radio buttons and a button to confirm the name entry. We also use the pos, scale,
and text parameters to define the positions, scales, and the texts of the controls and hint
the label that its text will change by setting textMayChange to 1. Also note the variable
and value parameters used when setting up the radio buttons. The former defines the
variable that value will be stored into when the radio button is active. Don't forget to pass
data to value using a list! Further, we pass the method to call when being clicked by using
the command parameter of our confirmation button. To close step 1 of this sample, we iterate
over the radio buttons, informing each button about the other buttons in the radio group so
that only one option can be selected at a time.

Chapter 6

149

In the next step, we add the setName() and acceptName() methods, which cause the
application to display a confirmation popup after the user clicks the Say Hello! button. If
the user clicks Yes, the program proceeds, otherwise the popup is hidden and nothing
whatsoever happens.

We then proceed to step 3, where we add a progress bar to our user interface. The range
parameter sets the maximum value for the progress bar, whereas value defines the initial
progress shown after the control is added to the screen. We want to slow things down for this
sample to see the progress bar in action. Therefore, we call loadStep() in a Sequence that
waits a short moment between each step. This also allows us to see how we are able
to update the progress bar's current value.

In the last method we add to the Application class, setNameLabel(), which is called last
by the sequence that controls our progress bar. Here we finally modify the text attribute of
the label control to display the name that is entered into the text input field.

There's more...
The GUI features of Panda3D go beyond what you have seen in this recipe so far, of course.
The following section is meant to give you an idea about what else you can do with the
engine's DirectGui library.

More controls
Besides the DirectEntry, DirectLabel, DirectButton, DirectRadioButton,
YesNoDialog, and DirectWaitBar controls we used so far in this recipe, there are
several more that might be useful for your purposes:

ff DirectCheckButton is a button control that toggles between a checked and
unchecked state every time it is clicked.

ff DirectDialog is used for building popup dialogs like the confirmation used in the
sample code. There are several pre-built default dialogs included in the DirectGui
library like YesNoDialog, OkDialog, or RetryCancelDialog.

ff DirectFrame acts as a container for controls. This allows us to group multiple
controls and positions them relative to the frame.

ff DirectOptionMenu works like a drop-down menu. When clicked, a menu opens
and the control state is set to the selected item.

ff DirectScrolledList is a container control similar to DirectFrame, with the
difference that items are being placed in a scrollable list.

ff DirectSlider is a control that allows the user to select an arbitrary value between
two boundaries.

ff DirectScrollBar allows you to build controls similar to DirectScrolledList
by hand.

ff DirectScrolledFrame works just like a DirectFrame, but it allows objects that
are positioned outside of the container's boundaries to be reached using scroll bars.

2D Elements and User Interfaces

150

More parameters
Apart from the parameters we used for setting up our sample GUI, there are some more
common options that allow customizing Panda3D's user interface controls:

ff frameSize makes it possible to set the measures of the control using a four-
component vector that specifies the left, right, bottom, and top positions of its frame.

ff frameColor sets the color of the user interface control element.
ff image sets the texture that is rendered on the control.
ff geom allows to set a Geom object that is rendered in place of the control.
ff suppressKeys turns off global keyboard events when set to 1. This is useful

for implementing a menu for the pause state of a game, as it makes sure that the
game logic is not notified about any keys being pressed when interacting with the
user interface.

ff suppressMouse works like suppressKeys, but for the mouse.

Making the user interface data-driven
using XML

A common practice in user interface programming is the division of design and program logic.
In this recipe you will learn how to use one of the XML processing API that comes as a part of
the standard libraries of the Python runtime used by Panda3D.

Different versions of Panda3D might use different versions of Python.
Don't assume these versions to be compatible as they might introduce
changes to the standard library. You can check the version of the included
Python runtime by issuing the command ppython --version on the
console prompt.

Getting ready
Before proceeding, you will need to follow the recipe Setting up the game structure found in
Chapter 1 to have the proper project structure set and ready.

How to do it...
Complete the following tasks to create a data-driven user interface:

1.	 Add a new source file to the project and name it GuiBuilder.py.

2.	 Add the following code to GuiBuilder.py. GuiHandler is only a class stub. The
following functions are not members of the GuiHandler class!
from xml.etree.ElementTree import *
from direct.gui.DirectGui import *

Chapter 6

151

from panda3d.core import *

class GuiHandler:
 def __init__(self):
 self.controls = {}

def GuiFromXml(fname, handler):
 elements = ElementTree()
 elements.parse(fname)

 handleButtons(elements, handler)
 handleLabels(elements, handler)
 handleEntries(elements, handler)
 handleRadioGroups(elements, handler)

3.	 Next, add the functions for finding all button, label, entry box, radio group, and radio
button control descriptions contained in the XML structure to GuiBuilder.py:
def handleButtons(elements, handler):
 buttons = elements.findall("button")
 for button in buttons:
 createButton(button, handler)

def handleLabels(elements, handler):
 labels = elements.findall("label")
 for label in labels:
 createLabel(label, handler)

def handleEntries(elements, handler):
 entries = elements.findall("entry")
 for entry in entries:
 createEntry(entry, handler)

def handleRadioGroups(elements, handler):
 rdoGroups = elements.findall("radiogroup")
 for group in rdoGroups:
 handleRadios(group, handler)

def handleRadios(elements, handler):
 radios = elements.findall("radio")
 created = []
 for radio in radios:
 created.append(createRadio(radio, handler))
 for btn in created:
 btn.setOthers(created)

2D Elements and User Interfaces

152

4.	 Below the code you just added, paste the getParams() helper function. This
function parses the parameters of an XML element and returns them in a dictionary:
def getParams(element):
 params = {}
 params["scale"] = float(element.findtext("scale", 1))
 params["text"] = element.findtext("text", "")
 params["mayChange"] = int(element.findtext("mayChange", 0))
 params["width"] = float(element.findtext("width", 1))
 params["value"] = [int(element.findtext("value", 0))]
 params["variable"] = element.findtext("variable", "")
 params["name"] = element.findtext("name", "")
 params["command"] = element.findtext("command", "")

 fcolorElem = element.find("frameColor")
 if fcolorElem != None:
 r = fcolorElem.get("r", 0)
 g = fcolorElem.get("g", 0)
 b = fcolorElem.get("b", 0)
 a = fcolorElem.get("a", 0)
 color = Vec4(float(r), float(g), float(b), float(a))
 params["frameColor"] = color
 else:
 color = Vec4(0, 0, 0, 0)
 params["frameColor"] = color

 posElem = element.find("pos")
 if posElem != None:
 x = posElem.get("x", 0)
 y = posElem.get("y", 0)
 z = posElem.get("z", 0)
 pos = Vec3(float(x), float(y), float(z))
 params["pos"] = pos
 else:
 pos = Vec3(0, 0, 0)
 params["pos"] = pos

 return params

5.	 The following code is the last you need to add to GuiBuilder.py. These functions
create the actual user interface controls:
def createButton(element, handler):
 params = getParams(element)
 assert params["command"] != ""
 assert params["name"] != ""

Chapter 6

153

 button = DirectButton(text = params["text"],
 scale = params["scale"],
 command = getattr(handler,
params["command"]),
 pos = params["pos"])
 handler.controls[params["name"]] = button

def createLabel(element, handler):
 params = getParams(element)
 assert params["name"] != ""
 label = DirectLabel(text = params["text"],
 pos = params["pos"],
 scale = params["scale"],
 textMayChange = params["mayChange"],
 frameColor = params["frameColor"])
 handler.controls[params["name"]] = label

def createEntry(element, handler):
 params = getParams(element)
 assert params["name"] != ""
 entry = DirectEntry(scale = params["scale"],
 pos = params["pos"],
 width = params["width"])
 handler.controls[params["name"]] = entry

def createRadio(element, handler):
 params = getParams(element)
 assert params["variable"] != ""
 assert params["name"] != ""
 radio = DirectRadioButton(text = params["text"],
 variable = getattr(handler,
params["variable"]),
 value = params["value"],
 scale = params["scale"],
 pos = params["pos"])
 handler.controls[params["name"]] = radio
 return radio

6.	 Now open the Application.py file and implement the Application class
like this:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from GuiBuilder import GuiHandler, GuiFromXml

2D Elements and User Interfaces

154

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 handler = MyHandler()
 GuiFromXml("gui.xml", handler)

class MyHandler(GuiHandler):
 def __init__(self):
 GuiHandler.__init__(self)
 self.gender = [0]

 def setName(self):
 title = ""
 if self.gender[0]:
 title = "Mister"
 else:
 title = "Miss"

 self.controls["nameLbl"]["text"] = "Hello " + title + " "
+ self.controls["nameEnt"].get() + "!"

7.	 Add a new file called gui.xml to the src directory.

8.	 Add this code to the gui.xml file:
<gui>
 <button>
 <name>helloBtn</name>
 <command>setName</command>
 <scale>0.1</scale>
 <text>Say Hello!</text>
 <pos x="0" y="0" z="-0.1"/>
 </button>
 <label>
 <name>nameLbl</name>
 <text>Hi, what's your name?</text>
 <pos x="0" y="0" z="0.4"/>
 <scale>0.1</scale>
 <mayChange>1</mayChange>
 <frameColor r="0" g="0" b="0" a="0"/>
 </label>
 <entry>
 <name>nameEnt</name>
 <scale>0.08</scale>
 <pos x="-0.4" y="0" z="0.15"/>
 <width>10</width>

Chapter 6

155

 </entry>
 <radiogroup>
 <radio>
 <name>femaleRdo</name>
 <text>Female</text>
 <variable>gender</variable>
 <value>0</value>
 <scale>0.05</scale>
 <pos x="-0.08" y="0" z="0.05"/>
 </radio>
 <radio>
 <name>maleRdo</name>
 <text>Male</text>
 <variable>gender</variable>
 <value>1</value>
 <scale>0.05</scale>
 <pos x="0.16" y="0" z="0.05"/>
 </radio>
 </radiogroup>
</gui>

9.	 Press F6 to start the application:

2D Elements and User Interfaces

156

How it works...
In our newly added GuiBuilder library, we first add the GuiHandler class, which will be
used as a base class for even handling. The central piece of this library is the GuiFromXml()
function, that loads and parses the given XML file and calls the functions we added in step
3. Within these functions, we instruct the ElementTree object to look for the tags that
represent user interface controls. If the appropriate tag is found, the according creation
function is called, which first gets the parameters for the new control and then calls into
Panda3D's DirectGui library to create the requested user interface element. The GUI
controls are also added to the controls dictionary, so event-handling code is able to reference
other user interface controls.

In Application.py, we then just add a new class that is derived from GuiHandler,
containing a method that will set the label to the name given by the user. All the constructor
of our Application class does then is create a new instance of MyHandler and call the
GuiFromXml() function we created before to load the user interface data.

Finally, we add the XML data that defines our user interface. The tag names reflect the
names of the controls and their properties. What's added now is the <name> tag that
allows us to reference the control by name in the controls dictionary of the handler class.

There's more...
The code shown in this recipe is only a starting point for a data-driven user interface
implementation and far from complete. For one, the getParams() function does not
support all parameters yet. Also, besides not supporting all user interface controls found
in the DirectGui library, the implemented elements do not even use all the parameters
they could.

What's not complete is meant to be finished—feel free to complete and modify the
GuiBuilder library to be able to elegantly divide the code and structure of your
user interfaces!

7
Application Control

In this chapter, we will cover:

ff Toggling window and fullscreen modes
ff Controlling game state
ff Decoupling modules using events
ff Handling events more elegantly
ff Managing recurring tasks

Introduction
So you wrote down your game idea into a nice design document? You convinced yourself
and hopefully others, too, that it really would make a nice game once your vision has taken
the form of an actual, completed, and polished product? Or maybe someone else inaugurated
you into his or her game design ideas? Congratulations to you! This means you completed one
very challenging step of the game production process!

Having a complete game design does not mean, however, that you are through with the
challenges of creating a game. In fact, you are standing at the beginning of a very interesting
journey towards the completion of your product.

Luckily, Panda3D provides you with a very impressive set of building blocks for implementing
your game ideas at a level of abstraction that hides away many of the challenges, hassles,
and annoyances of some lower-level programming APIs.

Unluckily for you, Panda3D cannot magically connect the single parts on its own to form the
game you've imagined—ultimately it's your task to produce the application that implements
the algorithms and rules that produce the entertaining behaviors described in your game
design! That is where this book, and this chapter in particular, come in. This chapter will show
you some tricks and techniques that put you in control of that application and enable you to
connect the various modules that Panda3D provides.

Application Control

158

Toggling window and fullscreen modes
Of course, game creators are always trying to immerse their customers into the colorful and
fantastic worlds they are creating. This is why most games act quite selfish and take up the
whole screen to present themselves in all their "awesome glory".

While this is true and understandable, some players just don't like this behavior. Maybe they
are reading their email while the game is running. Maybe they want to be able to quickly
minimize the game window in case their boss walks up behind them to check if they are busily
working. Or maybe a developer just wants to switch from fullscreen to windowed mode to
check the debug output window without having to tab through the window choices.

Whatever the reasons might be, PC games should be able to switch between windowed and
fullscreen modes to accommodate the needs of players. So this recipe will show you how to
achieve this with Panda3D.

Getting ready
Follow the steps of Setting up the game structure found in Chapter 1, Setting Up Panda3D
and Configuring Development Tools before you go on with this recipe.

How to do it...
Let's create a sample program for switching between window and fullscreen modes:

1.	 Open Application.py and insert this code:
from direct.showbase.ShowBase import ShowBase
from direct.interval.IntervalGlobal import *
from direct.gui.OnscreenText import OnscreenText
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.status = OnscreenText("Window Mode")
 toggle = Sequence(Wait(3),
 Func(self.status.setText, "Switching to
Fullscreen Mode"),
 Wait(2),
 Func(self.toggleFullscreen, 1280, 800,
0, 0, 1),
 Wait(3),
 Func(self.status.setText, "Switching to
Window Mode"),
 Wait(2),

Chapter 7

159

 Func(self.toggleFullscreen, 800, 600,
50, 50, 0))
 toggle.start()

 def toggleFullscreen(self, width, height, posX, posY, full):
 winProps = WindowProperties()
 winProps.setOrigin(posX, posY)
 winProps.setSize(width, height)
 winProps.setFullscreen(full)
 self.win.requestProperties(winProps)

 if full:
 self.status.setText("Fullscreen Mode")
 else:
 self.status.setText("Window Mode");

2.	 Press F6 to run the application:

How it works...
While in our application class' constructor we set up a sequence that makes our program
switch to fullscreen and back again to windowed mode. The interesting part in this code is
the toggleFullscreen() method.

Here, the current properties of the game window are retrieved and modified. We pass the
posX and posY parameters to setOrigin() to set the window's position. Then the window
size is set using the values stored in width and height. For fullscreen mode, this describes
the screen resolution that the application will switch to. Finally, we set the fullscreen flag of
the window properties object and request our newly created screen mode from Panda3D's
window handling system.

Application Control

160

Panda3D handles errors quite transparently. If a given resolution is not supported, the
engine will try to switch to the closest matching resolution. To check for errors manually
we can also use the getRejectedProperties() of the window object after calling
requestProperties(). This will retrieve a WindowProperties object containing the
properties that could not be changed.

Controlling game state
No matter how simple your game might be, chances are that there will be multiple screens
or modes the player will be able to interact with. Think of it for a moment—in most games
there is a title screen, which is followed by a main menu, which lets you branch into various
other sub-screens that let you set the game's difficulty or level of detail. Typically, you must
navigate your way through many if not most of these screens and menus before you are finally
ready to play the game itself.

All these varying screens and modes fall into the game development concept of game states.
Each of these screens is seen as a state and might set the game to a different mode of
operation. As the game transitions from one state to another, it is setting variables, loading
content and finally, drawing different graphics to the screen or presenting new ways of
interaction to the player.

This recipe will show you how to define and use a state machine that lets you easily define and
cleanly switch back and forth through the differing states of a game.

Getting ready
As a prerequisite, please follow the instructions found in the recipe Setting up the game
structure back in Chapter 1 before proceeding with the following tasks.

How to do it...
Let's get started with the practical part of this recipe:

1.	 Add a new Python source file called AppState.py to the project.

2.	 Insert the following code to AppState.py:
from direct.fsm.FSM import FSM
from direct.gui.DirectGui import *
from panda3d.core import *

class AppState(FSM):
 def enterMenu(self):
 self.pandaBtn = DirectButton(text = "Panda",
 scale = 0.12,
 pos = Vec3(0, 0, 0.1),

Chapter 7

161

 command = self.request,
 extraArgs = ["Panda"])
 self.smileyBtn = DirectButton(text = "Smiley",
 scale = 0.1,
 pos = Vec3(0, 0, -0.1),
 command = self.request,
 extraArgs = ["Smiley"])

 def exitMenu(self):
 self.pandaBtn.destroy()
 self.smileyBtn.destroy()

3.	 Below the code you just added, append the following two methods:
 def enterPanda(self):
 self.menuBtn = DirectButton(text = "Menu",
 scale = 0.1,
 pos = Vec3(0, 0, -0.8),
 command = self.request,
 extraArgs = ["Menu"])
 self.panda = loader.loadModel("panda")
 self.panda.reparentTo(render)
 base.cam.setPos(0, -40, 5)

 def exitPanda(self):
 self.menuBtn.destroy()
 self.panda.removeNode()

4.	 To finish the AppState class, add this code to it:
 def enterSmiley(self):
 self.menuBtn = DirectButton(text = "Menu",
 scale = 0.1,
 pos = Vec3(0, 0, -0.8),
 command = self.request,
 extraArgs = ["Menu"])
 self.smiley = loader.loadModel("smiley")
 self.smiley.reparentTo(render)
 base.cam.setPos(0, -20, 0)

 def exitSmiley(self):
 self.menuBtn.destroy()
 self.smiley.removeNode()

Application Control

162

5.	 Open Application.py and paste the following piece of code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from AppState import AppState

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 state = AppState("Application")
 state.request("Menu")

6.	 That's it! Hit F6 to run the code:

How it works...
For handling state in our code, Panda3D comes with the FSM (finite state machine) class,
which we use as the base class for our AppState class. This class handles state switches
for our sample application. This class is kept quite simple for the purpose of this recipe. A full
game would feature a lot more states, of course.

The AppState class defines 3 states: Menu, Panda, and Smiley, all of which are implicitly
defined by their respective enter() and exit() methods. These methods implement
the actions that are performed if the state is entered, or when the state transitions to
a different state.

Chapter 7

163

Each state adds either some user interface controls or loads a model and then cleans up
after itself, once another state is requested. Changing the state of our AppState object (and
thus of our application) is done using the request() method, passing the name of the state
to switch to as the method parameter. This can be seen in the last line of Application.py,
for example, where we set the initial Menu state.

Decoupling modules using events
Gameplay code can be a complex beast. In many cases, there are complex, many-to-many
relationships between all sorts of different game entities. This can be good for the player, as
he or she might enjoy the interesting emergent patterns of behavior created by this kind of
game object interconnection.

For the programmer (that is you), who has to think about and write all the code that makes
this happen, things look different, though. Having the game entity that creates an event
which holds references to all the objects that will react to it could be problematic. This could
lead to chaotic, messy code and a great deal of unnecessary coupling between otherwise
independent and differing types of objects. The more complex the code, the more you need
to create a more modular and maintainable design.

From a software engineering point of view, this situation cries out for a form of publish/
subscribe design pattern that allows game entities (and other kinds of objects too, of course)
to send and react to messages without knowing about the specific senders or receivers of
the message.

Panda3D provides such a neat messaging subsystem, which we will take a look at in
this recipe.

Getting ready
This recipe builds upon the project structure described in Setting up the game structure found
in Chapter 1. Please follow these instructions before going on with the current recipe.

How to do it...
Follow the following instructions to learn how to use Panda3D's messaging system:

1.	 Edit Application.py so it contains the following code:
from direct.showbase.ShowBase import ShowBase
from direct.interval.IntervalGlobal import *
from direct.showbase.DirectObject import DirectObject
from panda3d.core import *

Application Control

164

class Sender(DirectObject):
 def start(self):
 smiley = loader.loadModel("smiley")
 pause = Sequence(Wait(5), Func(messenger.send, "smiley-
done", [smiley]))
 pause.start()

class Receiver(DirectObject):
 def __init__(self):
 self.accept("smiley-done", self.showSmiley)

 def showSmiley(self, smiley):
 smiley.reparentTo(render)

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.cam.setPos(0, -10, 0)
 rec = Receiver()
 snd = Sender()
 snd.start()

2.	 Press F6 to start the program.

How it works...
In our little event sample, we create the classes Sender and Receiver that are
communicating without ever knowing about each other's existence.

In the start() method of Sender, we load the smiley model and wait five seconds before
sending the "smiley-done" message, passing the smiley model reference as a parameter
to the messenger.send() method that adds the message to the global message queue
of Panda3D.

By calling accept() in its constructor, each instance of Receiver subscribes to
the "smiley-done" message. As soon as a Sender dispatches this message, the
showSmiley() method will be called. This method reparents the smiley model to
the scene root to make it visible.

Chapter 7

165

Handling events more elegantly
Although Panda3D's event system is a great way for passing messages between objects, there
are some things you should know before you are going to use it in your game. This recipe will
show you an even more elegant way of integrating events into your code. You will learn how
to use the introspection facilities of the Python language to create an annotation that marks
a method as an event handler. Additionally, this article will discuss some problems you might
encounter when using the messaging system of Panda3D.

Getting ready
Follow the tasks of Setting up the game structure found in Chapter 1 prior to continuing with
the current recipe.

How to do it...
The following are your tasks for this recipe:

1.	 Add a new file called GameObject.py to your project.

2.	 Insert the following source code into GameObject.py:
from direct.showbase.DirectObject import DirectObject

def handle_event(event):
 def inner_event(func):
 func.event_name = event
 return func
 return inner_event

class GameObject(DirectObject):
 def __init__(self):
 for attrib in dir(self):
 method = getattr(self, attrib)
 if callable(method) and hasattr(method, 'event_name'):
 self.accept(method.event_name, method)

 def destroy(self):
 self.ignoreAll()

3.	 Open Application.py and add this following code to the file:
from direct.showbase.ShowBase import ShowBase
from direct.interval.IntervalGlobal import *
from GameObject import GameObject
from GameObject import handle_event
from panda3d.core import *

Application Control

166

class Sender(GameObject):
 def start(self):
 smiley = loader.loadModel("smiley")
 pause = Sequence(Wait(5), Func(messenger.send, "smiley-
done", [smiley]))
 pause.start()

class Receiver(GameObject):
 @handle_event("smiley-done")
 def showSmiley(self, smiley):
 smiley.reparentTo(render)
 messenger.send("smiley-shown")

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.accept("smiley-shown", self.clean)
 self.cam.setPos(0, -10, 0)
 self.rec = Receiver()
 snd = Sender()
 snd.start()

 def clean(self):
 self.ignore("smiley-shown")
 self.rec.destroy()

4.	 Hit F6 to run the program.

How it works...
This recipe introduces the @handle_event() decorator that allows you to mark methods
to be event handlers for a given message. The decorator adds a new attribute called
event_name to the method. The constructor of the GameObject class then iterates over
all member methods, looking for this attribute and automatically calling accept() for the
given event name and handler method. This can help a lot to keep code cleaner, especially in
classes that listen for a lot of events. Instead of filling the constructor with calls to accept()
to subscribe to messages, we can now simply mark a method to be an event handler, making
its purpose clearer when reading the code.

One concept that this recipe is trying to teach you is that subscribing to a message has one
slight side effect—it adds the object that registers for a kind of event to a list of listeners, thus
increasing the object's reference count. This can result in surprising behavior and annoying
bugs. Because of the entry in the list of subscribers, the reference count will never reach zero,
keeping the object on reacting to events.

Chapter 7

167

The effect of this can lead to the following situation: Let's suppose one of your game objects
listens for an event called "explode", that displays a spectacular explosion on the screen and
removes the object that was blown up from the scene graph. A few moments later, there
occurs another "explode" event, but suddenly there's an explosion showing where it shouldn't.
This is because the object from the first explosion still exists, eagerly listening for the order
to explode.

To prevent this from happening, whenever an object that accepts messages isn't needed
anymore, you should use ignoreAll() to stop listening for events. This will remove it
from the subscriber list, allowing its reference count to reach zero so it can ultimately
be deallocated.

There's more...
Panda3D's messaging system works within the boundary of a frame. This means that if you
send a message in the first frame, all objects listening for that message will be reacting to
it in the second frame.

This is usually sufficient for handling the needs of gameplay code, but should you somehow
need to have an object react to a message immediately, or even multiple times within a
frame, you will need to provide your own facilities or resort to Python libraries like PubSub
or PyDispatcher.

Managing recurring tasks
Loops can be found in any video game running in real-time. Small incremental steps
generally characterize gameplay simulation code. With each of these steps occurs a minimal
frame-by-frame change of object transformations, creating the illusion of smooth movement.

Panda3D has its own way of handling code that needs to be called time and time again while
the game is running. This recipe's topic is Panda3D's task system.

Getting ready
Please complete the tasks found in Setting up the game structure found in Chapter 1 to get
ready for this recipe.

Application Control

168

How to do it...
Let's implement an application that uses the task system to execute a piece of code in
every frame:

1.	 Open Application.py and insert the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
import random

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.smiley = loader.loadModel("smiley")
 self.smileyCount = 0
 self.cam.setPos(0, -100, 10)
 taskMgr.doMethodLater(0.1, self.addSmiley, "AddSmiley")
 taskMgr.add(self.updateSmileys, "UpdateSmileys", uponDeath
= self.removeSmileys)
 taskMgr.doMethodLater(60, taskMgr.remove, "RemoveUpdate",
extraArgs = ["UpdateSmileys"])

 def addSmiley(self, task):
 sm = render.attachNewNode("smiley-instance")
 sm.setPos(random.uniform(-20, 20), random.uniform(-30,
30), random.uniform(0, 30))
 sm.setPythonTag("velocity", 0)
 self.smiley.instanceTo(sm)
 self.smileyCount += 1

 if self.smileyCount == 100:
 return task.done

 return task.again

 def updateSmileys(self, task):
 for smiley in render.findAllMatches("smiley-instance"):
 vel = smiley.getPythonTag("velocity")
 z = smiley.getZ()
 if z <= 0:
 vel = random.uniform(0.1, 0.8)
 smiley.setZ(z + vel)
 vel -= 0.01

Chapter 7

169

 smiley.setPythonTag("velocity", vel)
 return task.cont

 def removeSmileys(self, task):
 for smiley in render.findAllMatches("smiley-instance"):
 smiley.removeNode()

2.	 Press F6 to run the application:

How it works...
To interface with Panda3D's task system, we are using the global taskMgr object. In total, we
are adding three tasks to our application.

First we use doMethodLater() to add a task that calls the addSmiley() method after 0.1
seconds. As long as there are less than 100 smileys in the scene, the addSmiley() method
will return task.again, which will put the task into the task queue again to be called after
another tenth of a second has passed.

Application Control

170

The second task we add is responsible for updating the positions of the smileys. This will
be called every frame until the game is quit or the task is removed from the internal queue
of taskMgr. For the latter case, we define that the removeSmileys() method should be
called that removes all smileys from the scene.

Finally, we enqueue another method to be called later, which is the remove() method of
taskMgr. This will stop the update task and also remove all smileys from the scene.

8
Collision Detection

and Physics

In this chapter, we will cover:

ff Using the built-in collision detection system

ff Using the built-in physics system

ff Using the ODE physics engine

ff Using the PhysX physics engine

ff Integrating the Bullet physics engine

Introduction
In a video game, the game world or level defines the boundaries within which the player is
allowed to interact with the game environment. But how do we enforce these boundaries?
How do we keep the player from running through walls?

This is where collision detection and response come into play.

Collision detection and response not only allow us to keep players from passing through the
level boundaries, but also are the basis for many forms of interaction. For example, lots of
actions in games are started when the player hits an invisible collision mesh, called a trigger,
which initiates a scripted sequence as a response to the player entering its boundaries.

Simple collision detection and response form the basis for nearly all forms of interaction
in video games. It's responsible for keeping the player within the level, for crates being
pushable, for telling if and where a bullet hit the enemy.

Collision Detection and Physics

172

What if we could add some extra magic to the mix to make our games even more believable,
immersive, and entertaining? Let's think again about pushing crates around: What happens if
the player pushes a stack of crates? Do they just move like they have been glued together, or
will they start to tumble and eventually topple over?

This is where we add physics to the mix to make things more interesting, realistic,
and dynamic.

In this chapter, we will take a look at the various collision detection and physics libraries that
the Panda3D engine allows us to work with. Putting in some extra effort, we will also see that
it is not very hard to integrate a physics engine that is not part of the Panda3D SDK.

Using the built-in collision detection system
Not all problems concerning world and player interaction need to be handled by a fully fledged
physics API—sometimes a much more basic and lightweight system is just enough for our
purposes. This is why in this recipe we dive into the collision handling system that is built
into the Panda3D engine.

Getting ready
This recipe relies upon the project structure created in Setting up the game structure found in
Chapter 1, Setting Up Panda3D and Configuring Development Tools.

How to do it...
Let's go through this recipe's tasks:

1.	 Open Application.py and add the include statements as well as the constructor
of the Application class:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
import random

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.cam.setPos(0, -50, 10)
 self.setupCD()
 self.addSmiley()
 self.addFloor()
 taskMgr.add(self.updateSmiley, "UpdateSmiley")

Chapter 8

173

2.	 Next, add the method that initializes the collision detection system:
 def setupCD(self):
 base.cTrav = CollisionTraverser()
 base.cTrav.showCollisions(render)
 self.notifier = CollisionHandlerEvent()
 self.notifier.addInPattern("%fn-in-%in")
 self.accept("frowney-in-floor", self.onCollision)

3.	 Next, implement the method for adding the frowney model to the scene:
 def addSmiley(self):
 self.frowney = loader.loadModel("frowney")
 self.frowney.reparentTo(render)
 self.frowney.setPos(0, 0, 10)
 self.frowney.setPythonTag("velocity", 0)

 col = self.frowney.attachNewNode(CollisionNode("frowney"))
 col.node().addSolid(CollisionSphere(0, 0, 0, 1.1))
 col.show()
 base.cTrav.addCollider(col, self.notifier)

4.	 The following methods will add a floor plane to the scene and handle the
collision response:
 def addFloor(self):
 floor = render.attachNewNode(CollisionNode("floor"))
 floor.node().addSolid(CollisionPlane(Plane(Vec3(0, 0, 1),
Point3(0, 0, 0))))
 floor.show()

 def onCollision(self, entry):
 vel = random.uniform(0.01, 0.2)
 self.frowney.setPythonTag("velocity", vel)

5.	 Add this last piece of code. This will make the frowney model bounce up and down:
 def updateSmiley(self, task):
 vel = self.frowney.getPythonTag("velocity")
 z = self.frowney.getZ()
 self.frowney.setZ(z + vel)
 vel -= 0.001
 self.frowney.setPythonTag("velocity", vel)
 return task.cont

Collision Detection and Physics

174

6.	 Hit the F6 key to launch the program:

How it works...
We start off by adding some setup code that calls the other initialization routines. We also add
the task that will update the smiley's position.

In the setupCD() method, we initialize the collision detection system. To be able to find out
which scene objects collided and issue the appropriate responses, we create an instance
of the CollisionTraverser class and assign it to base.cTrav. The variable name is
important, because this way, Panda3D will automatically update the CollisionTraverser
every frame. The engine checks if a CollisionTraverser was assigned to that variable
and will automatically add the required tasks to Panda3D's update loop.

Additionally, we enable debug drawing, so collisions are being visualized at runtime. This will
overlay a visualization of the collision meshes the collision detection system uses internally.

In the last lines of setupCD(), we instantiate a collision handler that sends a message
using Panda3D's event system whenever a collision is detected. The method call
addInPattern("%fn-in-%in") defines the pattern for the name of the event that is
created when a collision is encountered the first time. %fn will be replaced by the name of the
object that bumps into another object that goes by the name that will be inserted in the place
of %in. Take a look at the event handler that is added below to get an idea of what these
events will look like.

After the code for setting up the collision detection system is ready, we add the addSmiley()
method, where we first load the model and then create a new collision node, which we attach
to the model's node so it is moved around together with the model. We also add a sphere
collision shape, defined by its local center coordinates and radius. This is the shape that
defines the boundaries; the collision system will test against it to determine whether two
objects have touched.

Chapter 8

175

To complete this step, we register our new collision node with the collision traverser and
configure it to use the collision handler that sends events as a collision response.

Next, we add an infinite floor plane and add the event handling method for reacting on
collision notifications. Although the debug visualization shows us a limited rectangular area,
this plane actually has an unlimited width and height. In our case, this means that at any
given x- and y-coordinate, objects will register a collision when any point on their bounding
volume reaches a z-coordinate of 0. It's also important to note that the floor is not registered
as a collider here. This is contrary to what we did for the frowney model and guarantees that
the model will act as the collider, and the floor will be treated as the collide when a contact
between the two is encountered.

While the onCollision() method makes the smiley model go up again, the code in
updateSmiley() constantly drags it downwards. Setting the velocity tag on the frowney
model to a positive or negative value, respectively, does this in these two methods. We
can think of that as forces being applied. Whenever we encounter a collision with the
ground plane, we add a one-shot bounce to our model. But what goes up must come down,
eventually. Therefore, we continuously add a gravity force by decreasing the model's velocity
every frame.

There's more...
This sample only touched a few of the features of Panda3D's collision system. The following
sections are meant as an overview to give you an impression of what else is possible. For
more details, take a look into Panda3D's API reference.

Collision Shapes
In the sample code, we used CollisionPlane and CollisionSphere, but there are
several more shapes available:

ff CollisionBox: A simple rectangular shape. Crates, boxes, and walls are example
usages for this kind of collision shape.

ff CollisionTube: A cylinder with rounded ends. This type of collision mesh is often
used as a bounding volume for first and third person game characters.

ff CollisionInvSphere: This shape can be thought of as a bubble that contains
objects, like a fish bowl. Everything that is outside the bubble is reported to be
colliding. A CollisionInvSphere may be used to delimit the boundaries of
a game world, for example.

ff CollisionPolygon: This collision shape is formed from a set of vertices, and
allows for the creating of freeform collision meshes. This kind of shape is the most
complex to test for collisions, but also the most accurate one. Whenever polygon-level
collision detection is important, when doing hit detection in a shooter for example,
this collision mesh comes in handy.

Collision Detection and Physics

176

ff CollisionRay: This is a line that, starting from one point, extends to infinity in
a given direction. Rays are usually shot into a scene to determine whether one or
more objects intersect with them. This can be used for various tasks like finding out
if a bullet shot in the given direction hit a target, or simple AI tasks like finding out
whether a bot is approaching a wall.

ff CollisionLine: Like CollisionRay, but stretches to infinity in both directions.

ff CollisionSegment: This is a special form of ray that is limited by two end points.

ff CollisionParabola: Another special type of ray that is bent. The flying curves of
ballistic objects are commonly described as parabolas. Naturally, we would use this
kind of ray to find collisions for bullets, for example.

Collision Handlers
Just like it is the case with collision shapes for this recipe, we only used
CollisionHandlerEvent for our sample program, even though there are several more
collision handler classes available:

ff CollisionHandlerPusher: This collision handler automatically keeps the collider
out of intersecting vertical geometry, like walls.

ff CollisionHandlerFloor: Like CollisionHandlerPusher, but works in the
horizontal plane.

ff CollisionHandlerQueue: A very simple handler. All it does is add any intersecting
objects to a list.

ff PhysicsCollisionHandler: This collision handler should be used in connection
with Panda3D's built-in physics engine. Whenever a collision is found by this collision
handler, the appropriate response is calculated by the simple physics engine that is
built into the engine.

Using the built-in physics system
Panda3D has a built-in physics system that treats its entities as simple particles with masses
to which forces may be applied. This physics system is a great amount simpler than a fully
featured rigid body one. But it still is enough for cheaply, quickly, and easily creating some
nice and simple physics effects.

Getting ready
To be prepared for this recipe, please first follow the steps found in Setting up the game
structure found in Chapter 1. Also, the collision detection system of Panda3D will be used,
so reading up on it in Using the built-in collision detection system might be a good idea!

Chapter 8

177

How to do it...
The following steps are required to work with Panda3D's built-in physics system:

1.	 Edit Application.py and add the required import statements as well as the
constructor of the Application class:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from panda3d.physics import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.cam.setPos(0, -50, 10)
 self.setupCD()
 self.setupPhysics()
 self.addSmiley()
 self.addFloor()

2.	 Next, add the methods for initializing the collision detection and physics systems
to the Application class:
 def setupCD(self):
 base.cTrav = CollisionTraverser()
 base.cTrav.showCollisions(render)
 self.notifier = CollisionHandlerEvent()
 self.notifier.addInPattern("%fn-in-%in")
 self.notifier.addOutPattern("%fn-out-%in")
 self.accept("smiley-in-floor", self.onCollisionStart)
 self.accept("smiley-out-floor", self.onCollisionEnd)

 def setupPhysics(self):
 base.enableParticles()
 gravNode = ForceNode("gravity")
 render.attachNewNode(gravNode)
 gravityForce = LinearVectorForce(0, 0, -9.81)
 gravNode.addForce(gravityForce)
 base.physicsMgr.addLinearForce(gravityForce)

3.	 Next, implement the method for adding a model and physics actor to the scene:
 def addSmiley(self):
 actor = ActorNode("physics")
 actor.getPhysicsObject().setMass(10)
 self.phys = render.attachNewNode(actor)
 base.physicsMgr.attachPhysicalNode(actor)

Collision Detection and Physics

178

 self.smiley = loader.loadModel("smiley")
 self.smiley.reparentTo(self.phys)
 self.phys.setPos(0, 0, 10)

 thrustNode = ForceNode("thrust")
 self.phys.attachNewNode(thrustNode)
 self.thrustForce = LinearVectorForce(0, 0, 400)
 self.thrustForce.setMassDependent(1)
 thrustNode.addForce(self.thrustForce)

 col = self.smiley.attachNewNode(CollisionNode("smiley"))
 col.node().addSolid(CollisionSphere(0, 0, 0, 1.1))
 col.show()
 base.cTrav.addCollider(col, self.notifier)

4.	 Add this last piece of source code that adds the floor plane to the scene
to Application.py:
 def addFloor(self):
 floor = render.attachNewNode(CollisionNode("floor"))
 floor.node().addSolid(CollisionPlane(Plane(Vec3(0, 0, 1),
Point3(0, 0, 0))))
 floor.show()

 def onCollisionStart(self, entry):
 base.physicsMgr.addLinearForce(self.thrustForce)

 def onCollisionEnd(self, entry):
 base.physicsMgr.removeLinearForce(self.thrustForce)

5.	 Start the program by pressing F6:

Chapter 8

179

How it works...
After adding the mandatory libraries and initialization code, we proceed to the code that sets
up the collision detection system. Here we register event handlers for when the smiley starts
or stops colliding with the floor. The calls involved in setupCD() are very similar to the ones
used in Using the built-in collision detection system. Instead of moving the smiley model in our
own update task, we use the built-in physics system to calculate new object positions based
on the forces applied to them.

In setupPhysics(), we call base.enableParticles() to fire up the physics system. We
also attach a new ForceNode to the scene graph, so all physics objects will be affected by
the gravity force. We also register the force with base.physicsMgr, which is automatically
defined when the physics engine is initialized and ready.

In the first couple of lines in addSmiley(), we create a new ActorNode, give it a mass,
attach it to the scene graph and register it with the physics manager class. The graphical
representation, which is the smiley model in this case, is then added to the physics node
as a child so it will be moved automatically as the physics system updates.

We also add a ForceNode to the physics actor. This acts as a thruster that applies a force
that pushes the smiley upwards whenever it intersects the floor. As opposed to the gravity
force, the thruster force is set to be mass dependant. This means that no matter how heavy
we set the smiley to be, it will always be accelerated at the same rate by the gravity force. The
thruster force, on the other hand, would need to be more powerful if we increased the mass of
the smiley.

The last step when adding a smiley is adding its collision node and shape, which leads us
to the last methods added in this recipe, where we add the floor plane and define that the
thruster should be enabled when the collision starts, and disabled when the objects' contact
phase ends.

Using the ODE physics engine
The Open Dynamics Engine (ODE) in short, is a very powerful and feature-rich
implementation of a rigid body physics system. It has been successfully integrated into various
commercial simulation and game projects like World of Goo and Nail'd, for example. Panda3D
comes with this proven piece of physics technology included out of the box. This leaves it to us
to enable and use ODE in our code, so let's get started!

Getting ready
To get set for this recipe, please follow Setting up the game structure first. You can find this
recipe in Chapter 1.

Collision Detection and Physics

180

How to do it...
The ODE physics engine is used like the following in a Panda3D application:

1.	 Open Application.py and add this code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from panda3d.ode import *
import random

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.smiley = loader.loadModel("smiley")
 self.smileyCount = 0
 self.cam.setPos(0, -100, 10)

 self.setupODE()
 self.addGround()

 taskMgr.doMethodLater(0.01, self.addSmiley, "AddSmiley")
 taskMgr.add(self.updateODE, "UpdateODE")

2.	 Append the following code to the file:
 def setupODE(self):
 self.odeWorld = OdeWorld()
 self.odeWorld.setGravity(0, 0, -9.81)
 self.odeWorld.initSurfaceTable(1)
 self.odeWorld.setSurfaceEntry(0, 0, 200, 0.7, 0.2, 0.9,
0.00001, 0.0, 0.002)

 self.space = OdeSimpleSpace()
 self.space.setAutoCollideWorld(self.odeWorld)
 self.contacts = OdeJointGroup()
 self.space.setAutoCollideJointGroup(self.contacts)

 def addGround(self):
 cm = CardMaker("ground")
 cm.setFrame(-500, 500, -500, 500)
 ground = render.attachNewNode(cm.generate())
 ground.setColor(0.2, 0.4, 0.8)
 ground.lookAt(0, 0, -1)
 groundGeom = OdePlaneGeom(self.space, Vec4(0, 0, 1, 0))

Chapter 8

181

3.	 Next, add these methods:
 def addSmiley(self, task):
 sm = render.attachNewNode("smiley-instance")
 sm.setPos(random.uniform(-20, 20), random.uniform(-30,
30), random.uniform(10, 30))
 self.smiley.instanceTo(sm)

 body = OdeBody(self.odeWorld)
 mass = OdeMass()
 mass.setSphereTotal(10, 1)
 body.setMass(mass)
 body.setPosition(sm.getPos())
 geom = OdeSphereGeom(self.space, 1)
 geom.setBody(body)

 sm.setPythonTag("body", body)
 self.smileyCount += 1

 if self.smileyCount == 1000:
 return task.done

 return task.again

 def updateODE(self, task):
 self.space.autoCollide()
 self.odeWorld.quickStep(globalClock.getDt())

 for smiley in render.findAllMatches("smiley-instance"):
 body = smiley.getPythonTag("body")
 smiley.setPosQuat(body.getPosition(), Quat(body.
getQuaternion()))

 self.contacts.empty()
 return task.cont

Collision Detection and Physics

182

4.	 Press F6 to launch the program and see the smileys roll, tumble, and bounce:

How it works...
For ODE to work, we need to do the following things.

We create a new OdeWorld, set its gravity, and add a default surface description. The surface
description defines the properties of two surfaces that collide. The first two parameters of
setSurfaceEntry() are indices in the surface table, with index zero being the default
surface. The next parameter is the friction coefficient, which sets how slippery or sticky the
surfaces react to each other. The higher this value is set, the higher the friction will be. The
fourth parameter describes the bounciness on a scale between 0 and 1, while the fifth
parameter sets the minimum velocity that is required for an object to bounce at all. The next two
parameters define the values for error reduction and constraint force mixing, which influence
to which extent objects are allowed to penetrate each other and how much force will be applied
to push objects out of each other. This is followed by the slip parameter that is used to set
a force-dependent slip value, which is useful for simulating car tires, for example. The last
parameter sets a damping coefficient, which helps to keep the simulation more stable.

Next, we create an OdeSimpleSpace, which represents a space within which ODE tests
for collisions. We configure ODE to automatically detect and resolve collisions. This requires
a joint group, because whenever two objects intersect in ODE, a temporary joint is created
between them that pushes the objects off each other.

In the addGround() method, we create a static ground plane, both in our visible scene as
well as in ODE's simulation world.

Chapter 8

183

Whenever a new smiley is added, we create a new OdeBody, set its mass and position and
assign it to a new OdeSphereGeom. We then assign the ODE physics body to a tag of the
smiley NodePath. This part of the code also shows a very important principle of ODE—the
OdeBody is used for physics calculations, whereas the geometry is used for collision detection.

The updateOde() method is run every frame as a task. It first runs collision detection, then
steps the physics simulation, and updates the positions of the objects in the scene graph.
Before the method returns, we must not forget to clear the list of contact groups to keep the
automatic collision response working properly.

Using the PhysX physics engine
PhysX is a proprietary physics programming library made by the graphics card specialist nVidia
that simulates the behavior of rigid bodies. One of the library's major features is its ability to
leverage the computing abilities of a graphics card to accelerate the calculation of the internal
physics formulas used for the simulation. If a suitable graphics adapter cannot be found, the
physics engine falls back to the system's CPU so that nobody's left behind.

This recipe will give you some insight into the wrapper that the Panda3D developers have
created around this physics API.

Getting ready
This recipe builds upon the framework created in Setting up the game structure found
in Chapter 1.

Additionally, you need to have the PhysX SDK installed on your system. For more information
on licensing and how to download, see this website: http://developer.nvidia.com/
object/physx_downloads.html.

How to do it...
These are the tasks required to create a program that uses PhysX:

1.	 Copy the file NxCharacter.dll from C:\Program Files (x86)\NVIDIA
Corporation\NVIDIA PhysX SDK\v2.8.4_win\Bin\win32 to C:\Panda3D-
1.7.0\bin.

2.	 Open Application.py and add the required imports and the constructor:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from panda3d.physx import *
import random

Collision Detection and Physics

184

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.box = loader.loadModel("misc/rgbCube")
 self.boxCount = 0
 self.cam.setPos(0, -100, 10)

 self.setupPhysX()
 self.addGround()

 taskMgr.doMethodLater(0.01, self.addBox, "AddBox")
 taskMgr.add(self.updatePhysX, "UpdatePhysX")

3.	 Append the methods for initializing PhysX and adding a ground plane:
 def setupPhysX(self):
 scene = PhysxSceneDesc()
 scene.setGravity(Vec3(0, 0, -9.81))
 self.physxScene = PhysxManager.getGlobalPtr().
createScene(scene)

 mat = self.physxScene.getMaterial(0)
 mat.setRestitution(0.7)
 mat.setStaticFriction(0.5)
 mat.setDynamicFriction(0.8)

 def addGround(self):
 cm = CardMaker("ground")
 cm.setFrame(-500, 500, -500, 500)
 ground = render.attachNewNode(cm.generate())
 ground.setColor(0.2, 0.2, 0.2)
 ground.lookAt(0, 0, -1)

 shape = PhysxPlaneShapeDesc()
 shape.setPlane(Vec3(0, 0, 1), 0)
 actor = PhysxActorDesc()
 actor.addShape(shape)
 self.physxScene.createActor(actor)

4.	 Add the methods for adding boxes and updating the physics simulation:
 def addBox(self, task):
 bx = render.attachNewNode("box-instance")
 self.box.instanceTo(bx)

Chapter 8

185

 shape = PhysxBoxShapeDesc()
 shape.setDimensions(Vec3(0.5, 0.5, 0.5))
 body = PhysxBodyDesc()
 body.setMass(10)
 actor = PhysxActorDesc()
 actor.setBody(body)
 actor.addShape(shape)
 actor.setGlobalPos(Point3(random.uniform(-20, 20), random.
uniform(-30, 30), random.uniform(10, 30)))
 physxActor = self.physxScene.createActor(actor)
 physxActor.attachNodePath(bx)

 self.boxCount += 1

 if self.boxCount == 1000:
 return task.done

 return task.again

 def updatePhysX(self, task):
 self.physxScene.simulate(globalClock.getDt())
 self.physxScene.fetchResults()
 return task.cont

5.	 Press F6 to run the sample:

Collision Detection and Physics

186

How it works...
First, we make sure to place NxCharacter.dll in the right location, or else we won't be able
to use the API. The exact path of the source directory might vary slightly, depending
on which version of the PhysX SDK is installed.

After adding the boilerplate code for loading modules and setting up the Application class,
we can proceed to the setupPhysX() method, where we create a new PhysX scene
with earth-like gravitation. We also modify the material stored at index zero—the default
material—to be a bit more bouncy and also have more friction.

We then add a ground plane by creating a shape description, adding it to an actor description,
and creating the new physics actor using the createActor() method.

In the addSmiley() method, we connect a shape, used for collision detection, and body,
which is used for physics calculations, to form a new actor. We also attach the created smiley
NodePath to the newly created actor, so its transformation is automatically updated as PhysX
advances the simulation.

Finally, we add the code for the task that keeps on updating the simulation. This method first
performs a simulation step and afterwards instructs the PhysX API to collect and apply the
results of the calculations it performed.

Integrating the Bullet physics engine
As a sample for integrating a third party library that is not built into Panda3D into a game, this
recipe dives into the C++ side of Panda3D to create a scene that is driven by the excellent and
free Bullet physics engine.

Getting ready
This recipe builds on the project setup described in Creating a scene using C++ found in
Chapter 2. Follow the steps of this recipe before proceeding!

You also need a copy of the Bullet source code. The latest version can be retrieved from this
website: http://code.google.com/p/bullet/downloads/list.

How to do it...
Integrating the Bullet physics engine into a Panda3D program involves these tasks:

1.	 In the top-level solution directory, create a directory named Lib.

2.	 Unpack the Bullet source code into the Lib directory so that the top-level directory,
containing the file AUTHORS and the directory msvc, of Bullet is Lib\bullet-2.77.

Chapter 8

187

3.	 Navigate to the msvc\2008 subdirectory of the Bullet source tree and open the file
BULLET_PHYSICS.sln.

4.	 Switch the build configuration to Release and build the solution.

5.	 Quit Visual Studio.

6.	 Edit the PandaSettings.vsprops file and replace its content with the following
configuration data:
<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioPropertySheet
 ProjectType="Visual C++"
 Version="8.00"
 Name="PandaSettings"
 >
 <Tool
 Name="VCCLCompilerTool"
 AdditionalIncludeDirectories=""..\Lib\bullet-2.77\
src";"C:\Panda3D-1.7.0\python\include";"C:\
Panda3D-1.7.0\include""
 />
 <Tool
 Name="VCLinkerTool"
 AdditionalDependencies="BulletDynamics.lib BulletCollision.
lib LinearMath.lib libp3framework.lib libpanda.lib libpandafx.
lib libpandaexpress.lib libp3dtool.lib libp3dtoolconfig.lib
libp3pystub.lib libp3direct.lib"
 AdditionalLibraryDirectories=""..\Lib\bullet-2.77\
msvc\2008\lib\Release";"C:\Panda3D-1.7.0\python\
libs";"C:\Panda3D-1.7.0\lib""
 />
</VisualStudioPropertySheet>

7.	 Open your solution again.

8.	 Edit main.cpp and add the main function:
#include "Application.h"

PandaFramework framework;

int main(int argc, char* argv[])
{
 Application app(argc, argv);
 app.run();
 return 0;
}

Collision Detection and Physics

188

9.	 Add a new file called Application.h and add the declaration of the Application
and BulletTask classes:
#pragma once

#include <pandaFramework.h>
#include <pandaSystem.h>
#include <asyncTask.h>
#include <btBulletDynamicsCommon.h>

class Application
{
public:
 Application(int argc, char* argv[]);
 ~Application();
 void run();

private:
 void init();
 void setupBullet();
 void addGround();
 void updateBullet();

private:
 NodePath render;
 NodePath cam;
 NodePath smiley;
 WindowFramework* win;
 PandaFramework framework;

 btBroadphaseInterface* broadphase;
 btCollisionDispatcher* dispatcher;
 btConstraintSolver* solver;
 btDefaultCollisionConfiguration* collisionConfiguration;
 btDynamicsWorld* btWorld;
};

class BulletTask
{
public:
 static AsyncTask::DoneStatus updateBullet(GenericAsyncTask*
task, void* data);
};

Chapter 8

189

10.	 Create another new file called SmileyMotionState.h. Insert the following code for
declaring the SmileyMotionState class:
#pragma once

#include <pandaFramework.h>
#include <pandaSystem.h>
#include <btBulletDynamicsCommon.h>

class SmileyMotionState : public btMotionState
{
public:
 SmileyMotionState(const btTransform& start, const NodePath& sm);
 virtual ~SmileyMotionState() {}
 virtual void getWorldTransform(btTransform& trans) const;
 virtual void setWorldTransform(const btTransform& trans);

protected:
 btTransform transform;
 NodePath smiley;
};

11.	 Add a new header file called SmileyTask.h and add another class declaration:
#pragma once

#include <pandaFramework.h>
#include <pandaSystem.h>
#include <asyncTask.h>
#include <randomizer.h>
#include <btBulletDynamicsCommon.h>

class SmileyTask
{
public:
 SmileyTask(NodePath& rndr, NodePath& sm, btDynamicsWorld*
world);
 static AsyncTask::DoneStatus addSmiley(GenericAsyncTask* task,
void* data);

 NodePath render;
 NodePath smiley;
 btDynamicsWorld* btWorld;
 int smileyCount;
};

Collision Detection and Physics

190

12.	 Add a new code file to the solution. Call it SmileyTask.cpp and populate it with the
following code:
#include "SmileyTask.h"
#include "SmileyMotionState.h"

SmileyTask::SmileyTask(NodePath& rndr, NodePath& sm,
btDynamicsWorld* world)
{
 smileyCount = 0;
 smiley = sm;
 render = rndr;
 btWorld = world;
}

AsyncTask::DoneStatus SmileyTask::addSmiley(GenericAsyncTask*
task, void* data)
{
 SmileyTask* add = reinterpret_cast<SmileyTask*>(data);
 NodePath render = add->render;
 NodePath smiley = add->smiley;
 btDynamicsWorld* btWorld = add->btWorld;

 NodePath sm = render.attach_new_node("smiley-instance");
 Randomizer rnd;
 smiley.instance_to(sm);

 btCollisionShape* shape = new btSphereShape(btScalar(1));

 btTransform trans;
 trans.setIdentity();
 trans.setOrigin(btVector3(rnd.random_real(40) - 20, rnd.random_
real(20) + 10, rnd.random_real(60) - 30));

 btScalar mass(10);
 btVector3 inertia(0, 0, 0);
 shape->calculateLocalInertia(mass, inertia);

 SmileyMotionState* ms = new SmileyMotionState(trans, sm);
 btRigidBody::btRigidBodyConstructionInfo info(mass, ms, shape,
inertia);
 info.m_restitution = btScalar(0.5f);
 info.m_friction = btScalar(0.7f);
 btRigidBody* body = new btRigidBody(info);

Chapter 8

191

 btWorld->addRigidBody(body);

 add->smileyCount++;
 if (add->smileyCount == 100)
 return AsyncTask::DS_done;

 return AsyncTask::DS_again;
}

13.	 Create another file called SmileyMotionState.cpp and fill it with this
following snippet:
#include "SmileyMotionState.h"

SmileyMotionState::SmileyMotionState(const btTransform& start,
const NodePath& sm)
{
 transform = start;
 smiley = sm;
}

void SmileyMotionState::getWorldTransform(btTransform& trans)
const
{
 trans = transform;
}

void SmileyMotionState::setWorldTransform(const btTransform&
trans)
{
 transform = trans;
 btQuaternion rot = trans.getRotation();
 LQuaternionf prot(rot.w(), -rot.x(), -rot.z(), -rot.y());
 smiley.set_hpr(prot.get_hpr());
 btVector3 pos = trans.getOrigin();
 smiley.set_pos(pos.x(), pos.z(), pos.y());
}

14.	 Add one last file called Application.cpp and add the code below:
#include <cardMaker.h>
#include "Application.h"
#include "SmileyTask.h"

Application::Application(int argc, char* argv[])
{

Collision Detection and Physics

192

 framework.open_framework(argc, argv);
 win = framework.open_window();
 cam = win->get_camera_group();
 render = win->get_render();
}

Application::~Application()
{
}

void Application::run()
{
 init();
 framework.main_loop();
 framework.close_framework();
}

void Application::init()
{
 setupBullet();
 PT(AsyncTaskManager) taskMgr = AsyncTaskManager::get_global_
ptr();

 smiley = win->load_model(framework.get_models(), "frowney");
 SmileyTask* add = new SmileyTask(render, smiley, btWorld);
 PT(GenericAsyncTask) addSmiley = new GenericAsyncTask("AddSmiley
", &SmileyTask::addSmiley, add);
 addSmiley->set_delay(0.01);
 taskMgr->add(addSmiley);

 PT(GenericAsyncTask) bt = new GenericAsyncTask("UpdateBullet",
&BulletTask::updateBullet, btWorld);
 taskMgr->add(bt);

 addGround();
 cam.set_pos(0, -100, 10);
}

void Application::setupBullet()
{
 collisionConfiguration = new btDefaultCollisionConfiguration();
 dispatcher = new btCollisionDispatcher(collisionConfiguration);
 broadphase = new btDbvtBroadphase();

Chapter 8

193

 btSequentialImpulseConstraintSolver* sol = new
btSequentialImpulseConstraintSolver;
 solver = sol;

 btWorld = new btDiscreteDynamicsWorld(dispatcher, broadphase,
solver, collisionConfiguration);
 btWorld->setGravity(btVector3(0, -9.81f, 0));
}

void Application::addGround()
{
 CardMaker cm("ground");
 cm.set_frame(-500, 500, -500, 500);
 NodePath ground = render.attach_new_node(cm.generate());
 ground.look_at(0, 0, -1);
 ground.set_color(0.2f, 0.6f, 0.2f);

 btCollisionShape* shape = new btBoxShape(btVector3(btScalar(500)
, btScalar(0.5f), btScalar(500)));

 btTransform trans;
 trans.setIdentity();
 trans.setOrigin(btVector3(0, -0.5f, 0));

 btDefaultMotionState* ms = new btDefaultMotionState(trans);
 btScalar mass(0);
 btVector3 inertia(0, 0, 0);
 btRigidBody::btRigidBodyConstructionInfo info(mass, ms, shape,
inertia);
 info.m_restitution = btScalar(0.5f);
 info.m_friction = btScalar(0.7f);
 btRigidBody* body = new btRigidBody(info);

 btWorld->addRigidBody(body);
}

AsyncTask::DoneStatus BulletTask::updateBullet(GenericAsyncTask*
task, void* data)
{
 btScalar dt(ClockObject::get_global_clock()->get_dt());
 btDynamicsWorld* btWorld = reinterpret_cast<btDynamicsWorld*>(da
ta);
 btWorld->stepSimulation(dt);
 return AsyncTask::DS_cont;
}

Collision Detection and Physics

194

15.	 Press Ctrl + F5 to compile and run the program:

How it works...
First, we need to set up our environment: We unpack Bullet to the right location and
compile it. We also modify the property file to add the search paths for Bullet's libraries
and header files.

After we completely rewrite main.cpp, we go on to define the interfaces of the classes for
our little sample program. The Application class, just like in the Python code samples,
keeps everything together and controls the application behavior. BulletTask only contains
the static method that is used to perform simulation steps. A SmileyMotionState is
created for every new smiley created throughout the program's runtime. Motion state objects
are a convenient way for Bullet to keep object transformations up-to-date as they provide a
per-object callback mechanism that allows Bullet to inject new and updated data. Lastly, we
define the interface of SmileyTask, which is responsible for creating new smileys.

The next thing we add is the implementation of SmileyTask. In the static member function,
we first retrieve the necessary objects from the context data we pass into the function using
the data parameter.

Additionally, we can observe how Bullet's interface for adding a new object to the
simulation works. We need to combine a shape, mass, inertia, and motion state into a
btRigidBodyConstructionInfo object that we can also use to set the object's material
parameters for bounciness and friction. This info is then used to construct the new object,
which is then added to our physics world.

Chapter 8

195

In the implementation of SmileyMotionState, nothing too obscure is happening. The getter
and setter methods return and set transformation data and where necessary convert between
the data types of Bullet and Panda3D.

Bullet uses a different coordinate system than Panda3D. In Bullet's
representation of the scene, the y-axis points up, while in Panda3D, the
z-axis points up. Since they are different, in the sample code, the z- and
y-axes are flipped to accommodate this situation.

The code in Application.cpp is responsible for opening the application window and
initializing the Panda3D framework. It also sets up Bullet's btDiscreteDynamicsWorld
and sets up the scene.

9
Networking

In this chapter, we will cover:

ff Downloading a file from a server

ff Using assets hosted on a server

ff Sending high scores to a server

ff Establishing a network connection

ff Sending and receiving custom datagrams

ff Synchronizing object state between server and client

Introduction
Thanks to the adoption of networking features, today's video games provide a great deal
of additional value. While you are reading this, millions of gamers across the globe are
playing their favorite games against each other or cooperatively, submitting scores to online
leaderboards or retrieving the latest package of downloadable bonus content. Without a
doubt, games providing networking features are opening the doors for players to compete,
communicate, and connect.

Panda3D, being the engine behind Disney Interactive's Pirates of the Caribbean Online, comes
with a set of built-in features for developing features that make use of network connections. In
this chapter you will learn how to access remote content and how to implement a very simple
online leaderboard. You will also be introduced to the basics of writing a custom network
protocol and replicating the state of an object across hosts.

Networking

198

Downloading a file from a server
It is a very common property of today's games—even those that are strictly single player—to
connect to a server at some point in time to retrieve data such as the latest headlines from
the game's official website, leaderboards, patches or the latest bonus content package. By
the end of this recipe you will be able to do so as well.

Hosting files on a web server is very simple to set up and reasonably priced these days.
Additionally, this makes it easy to use Panda3D's built in networking features. The engine
comes with a class called HTTPClient that hides the complexities of communicating with
a web server.

In this sample you will learn how to connect to a server, download some data and display it
on the screen.

Getting ready
This recipe will use the framework presented in Setting up the game structure found in
Chapter 1, Setting Up Panda3D and Configuring Development Tools. Please set up your
project prior to going on with the following tasks.

How to do it...
Complete these tasks to make Panda3D download files from a server:

1.	 Open Application.py and fill in the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from direct.gui.OnscreenImage import OnscreenImage

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.http = HTTPClient.getGlobalPtr()
 self.channel = self.http.makeChannel(False)
 self.channel.beginGetDocument(DocumentSpec("http://www.
panda3d.org/images/panda-logo-2.png"))
 self.channel.downloadToFile(Filename("panda.png"))
 taskMgr.add(self.downloadData, "downloadData")

 def downloadData(self, task):
 if self.channel.run():
 return task.cont

 if not self.channel.isDownloadComplete():
 print "Unable to download file."
 return task.done

Chapter 9

199

 else:
 OnscreenImage("panda.png", scale = Vec3(0.2, 0, 0.2))
 return task.done

2.	 Press F6 to launch the program. After a short moment you should be able to see the
following result:

How it works...
Now that our little program is able to download an image file to disk and display it on the
screen, let's take a look at the steps that are necessary to achieve this goal.

First, we retrieve a reference to the global singleton instance of HTTPClient that Panda3D
creates for us automatically. We could also create a new instance here, which wouldn't alter
anything about this program's behavior apart from a minimally increased memory footprint.

We then go on to create a new HTTPChannel object by calling the makeChannel() method
on our HTTPClient. This channel object represents the communication line to the server
over which we will retrieve the image file. We also pass False as an argument, which makes
the channel non-persistent. This means that immediately after the requested file has finished
downloading, the connection will be closed. This fits our use case pretty well as we want to
retrieve only one single file from the server. If we wanted to download a series of files, we
would use a persistent connection. This is more efficient as the connection is kept open and
reused instead of opening a new one for each request.

The next two calls, beginGetDocument() and downloadToFile(), are used to set
which file to request from the server and where to store it. We try to retrieve a file hosted on
the website of Panda3D, but we could easily replace it with a URL that points to a different
resource, hosted on another server. Note, however, how we need to hand the URL to a new
DocumentSpec object, which is responsible for handling whether the file can be retrieved
from the local cache or needs to be downloaded.

By using downloadToFile(), we configure our HTTPChannel to download the requested
data into a local file. Alternatively, we could also use downloadToRam() to store the data in
a Ramfile object that represents a virtual file that uses the system's RAM for storage instead
of the hard disk.

Networking

200

The call to beginGetDocument() is non-blocking. This means that instead of waiting for
the complete download to finish within the execution of this method, it places a request for
the desired file. Then the call returns and the program continues execution from that point
onward. To actually download data after requesting it, we need to periodically update our
channel using the run() method that is called periodically inside the downloadData task.
This task will keep on updating the channel as long as there is data incoming before checking
if the download has finished. As soon as the file is retrieved to the local hard drive, a new
OnscreenImage is created to display the downloaded image.

Using assets hosted on a server
Panda3D features a very advanced virtual file system that makes it possible to transparently
handle and load file data from various sources, such as directories in the local file system or
archive files that contain resources themselves (See Chapter 12, Packaging and Distribution
for more info on multifile archives and packages). Every time you call loader.loadModel(),
the engine tries to find and load the requested model from one of the sources that have been
added to the file system structure before.

However, files do not have to be stored on the local system to be used by Panda3D. The virtual
file system also allows mounting directories hosted on web servers. Files that reside on the
remote system are downloaded transparently as needed whenever they are requested by your
application, without having to write any extra code apart from the call that adds the resources
on the server to Panda3D's file system.

This can be very practical for games that feature constantly evolving worlds or for hosting in-
game advertisements. This also allows you to build a very lean version of your game that only
contains some basic assets—keeping the initial download size small. Additional game content
will then be streamed in on-demand as the player progresses through the game.

Getting ready
Before going on, set up a new project as shown in Setting up the game structure as found in
Chapter 1.

How to do it...
Let's see how we can use some remotely hosted assets:

1.	 Edit Application.py to exactly resemble the following lines of code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from direct.gui.OnscreenImage import OnscreenImage

Chapter 9

201

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 vfs = VirtualFileSystem.getGlobalPtr()
 vfs.mount(VirtualFileMountHTTP("http://www.panda3d.org/
images/"), "/http", VirtualFileSystem.MFReadOnly)
 getModelPath().appendDirectory("/http")
 OnscreenImage("panda-logo-2.png", scale = Vec3(0.2, 0,
0.2))

2.	 Press F6 to run the sample. You should be able to see the same output as in
Downloading a file from a server.

How it works...
This little program is a great sample for how Panda3D wraps an advanced feature into an easy
to use API. All we need to do is get the pointer to the global VirtualFileSystem object and
mount() our new source. We're passing the MFReadOnly flag, as we only need to read from,
but never write to, our remotely hosted data.

The server directory is added to the virtual file system at the mount point /http. This
means that all files and directories found in the server's directory will be visible as children
of the http directory. The http directory in turn is a subdirectory of the virtual file system's
root directory.

To make things even easier, getModelPath().appendDirectory("/http") adds the
http directory to the model path so we do not need to provide full file paths when loading
assets, given that there are no name clashes, of course.

Finally, the last line of our program's code shows a remote file being referenced. There is
no visible difference to loading a local file. The internals of the engine are taking care of
downloading the file from the server and adding its contents to the scene.

Sending high scores to a server
In this recipe we are going to take a look at the very basics of implementing a feature that
allows us to submit scores to a server that processes and stores the data we are sending.
Additionally, we will be able to view the list of submitted scores using a web browser.

The server side of this project will be implemented using the Twisted framework
(http://twistedmatrix.com). The libraries contained in Twisted make it very easy to
implement servers and clients for all kinds of common and custom network protocols. For our
purpose, we are going to implement a little custom web server that will accept POST requests
for submitting data and will serve the static scoreboard page.

Networking

202

It is important to note that there are several other Python frameworks like Twisted available.
Tornado (http://www.tornadoweb.org) and Diesel (http://dieselweb.org) are just
two examples of network programming frameworks similar to Twisted. All of them have their
upsides and downsides, but in the end Twisted was chosen here out of pure preference as
well as for its ease of use. Not to mention that it is implemented in Python, which makes it
a good fit among all the other Python code in this recipe and this book.

Getting ready
Before we can begin working on the following steps, we need to install the Twisted framework
first using a collection of Python scripts called "setuptools". This is a set of command line tools
that handle installing and managing additional third-party libraries from the Python Package
Index hosted on http://pypi.python.org/pypi. This is a great source for Python
programming libraries and frameworks, definitely worth some time to browse and explore!

To get set for the following tasks, first follow these steps:

1.	 Open your browser and go to http://pypi.python.org/pypi/setuptools.

2.	 Scroll down the page until you find the following table of download links:

3.	 Download the file setuptools-0.6c11.win32-py2.6.exe. The exact filename
and version may vary slightly because of newer releases but it is important to watch
for the string win32-py2.6 in the filename to match the version of Python used
in Panda3D.

Chapter 9

203

4.	 After the file has finished downloading, launch the executable. This will start an
installer program. Click Next until you see the following screen:

5.	 Choose the Python installation that comes with Panda3D, if you happen to have
multiple versions of Python installed on your system. Double check the Python
Directory field – this has to match your Panda3D installation directory!

6.	 After the installer has finished, add the directory C:\Panda3D-1.7.0\python\
Scripts to the system search path.

7.	 Open a command prompt and enter the command easy_install Twisted. This
will download and set up all components needed for using the Twisted framework.

Now that the dependencies are installed and ready, it is time to finish the preparation steps by
creating two projects. For the first one, follow Setting up the game structure found in Chapter
1 and name the project PostScore. This will be our client application.

When creating the second project, follow the same recipe again, but only up to step 3, naming
the project ScoreServer. This is where we will implement the server side of this sample.

How to do it...
This recipe consists of the following tasks:

1.	 Open the main.py file that's part of the ScoreServer project and replace its content
with the following code:
from twisted.web.server import Site
from twisted.web.resource import Resource
from twisted.internet import reactor
import sqlite3

Networking

204

class ScorePage(Resource):
 def __init__(self):
 Resource.__init__(self)
 self.db = sqlite3.connect("scores.db")
 cursor = self.db.cursor()
 args = ("scores",)
 cursor.execute("select name from sqlite_master where
name=?", args)

 if len(cursor.fetchall()) == 0:
 cursor.execute("create table scores (player text,
score integer)")
 self.db.commit()

 cursor.close()

2.	 Below the code you just added, put this piece of code:
 def render_POST(self, request):
 cursor = self.db.cursor()

 args = (request.args["player"][0],)
 cursor.execute("select * from scores where player=?",
args)

 if len(cursor.fetchall()) > 0:
 args = (request.args["score"][0], request.
args["player"][0])
 cursor.execute("update scores set score=? where
player=?", args)
 else:
 args = (request.args["player"][0], request.
args["score"][0])
 cursor.execute("insert into scores values (?,?)",
args)

 self.db.commit()
 cursor.close()
 return "OK"

3.	 Then, add the following method:
 def render_GET(self, request):
 cursor = self.db.cursor()
 cursor.execute("select * from scores order by score desc")
 data = cursor.fetchall()
 cursor.close()

Chapter 9

205

 result = str("\n".join(["%s %s" % (p, s) for p, s in
data]))
 request.setHeader("Content-Type", "text/plain;
charset=utf-8")
 return result

4.	 Now we need to add the following main function that will start up our server:
if __name__ == "__main__":
 root = Resource()
 root.putChild("score", ScorePage())
 factory = Site(root)
 reactor.listenTCP(80, factory)
 reactor.run()

5.	 For implementing the client, open the file Application.py and fill in the
code below:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.http = HTTPClient.getGlobalPtr()
 self.channel = self.http.makeChannel(False)
 self.channel.beginPostForm(DocumentSpec("http://localhost/
score"), "player=Foo&score=1337")
 self.ram = Ramfile()
 self.channel.downloadToRam(self.ram)
 taskMgr.add(self.updateChannel, "updateChannel")

 def updateChannel(self, task):
 if self.channel.run():
 return task.cont
 elif self.channel.isDownloadComplete():
 print self.ram.getData()
 return task.done
 else:
 print "Error posting score."

Networking

206

6.	 To start the server, right-click the ScoreServer node in the project tree and click on
Run, as shown in the following screenshot:

7.	 Repeat the last step to run the PostScore project.
8.	 To view the list of scores, open a browser and go to http://localhost/score.
9.	 To stop the server, find the entry in NetBean's status bar (at the bottom right of the

window, as shown in the screenshot) that reads ScoreServer and Running and click
the little x button next to it.

Chapter 9

207

How it works...
First, let's take a look at how our server works. For this we need to understand the
programming model of the Twisted framework: At the core of our application we find the
reactor object that is responsible for opening ports and polling them in its internal event
loop. In our case, port 80 (the standard for a HTTP server) is opened to listen for TCP
connections, which leads us directly to the next layer.

When opening the server port, we pass a new object of the class Site that is responsible for
processing the data that is received and sent over our newly opened port as HTTP requests.
This means that with these steps, we have already created a web server. The only problem is
that as our web server currently is, it would not provide any interesting data.

To add resources that can be queried and retrieved, we first add an empty Resource at the
site's root folder. We do not want our server to host anything there. The only thing a client will
receive if they request at the document root of our server is an error code, specifically 503.
This error means that it is forbidden to access the requested resource. Instead, we add a new
child to our virtual directory tree called score. This causes our service to be reachable via the
URL http://localhost/score.

To be able to accept new scores being submitted by players and present the score list, we add
our custom ScorePage subclass of Resource to the aforementioned virtual server directory.

In the constructor of ScorePage, we connect to an SQLite database, check if a table
called scores exists, and create it if necessary. SQLite is a very lightweight SQL database
implementation that stores its data in a specially formatted local file. It is mainly intended
for small, single user applications, which means that for a serious attempt at implementing
a server that stores scores, we should think about using a database system that is aimed at
bigger scale use cases.

Querying the database requires us to use a cursor object. After executing the query, the cursor
holds the results, which we then can retrieve using the fetchall() method. If we made
changes to the database's layout or data, we need to commit() these changes, or they will
be dropped. Also, after we are done with our queries, we should not forget to close() the
cursor to free any resources or handles we might still be holding.

This leaves the render_POST() and render_GET() methods to be discussed on the server
side of our project. The render_POST() method is called whenever a client sends data to
our server. We then check if a player with the given name has already submitted a score that
we need to update or if we need to create a new record in our database. After the data is
processed and stored in the database, we're done receiving the request and return the string
"OK" to the client to signal that no error occurred.

Networking

208

An HTTP GET request asks the server to return the data it hosts at a given address. The
render_GET() method builds this data on the fly as new requests for retrieving the resource
located at the score directory of the server are received by the server. Our code queries the
database to return all submitted scores, ordered by score in descending order. We build
a plain text list of strings, where each line contains a player name and a score, hence the
text/plain MIME type is set in the header of the reply that will be sent back to the client.
Of course, we could also return a string that contains HTML and omit setting the MIME type
so the client (that is most likely going to be a web browser) will interpret it as a web page.

Before going on to discussing the client side, we should stop and think about an important
issue that we have not addressed so far in the server code: security. First, our little server
does not perform any sanity checks on the data submitted to it. In a production system, make
sure to define which ranges and data types are allowed and add checking routines to prevent
possible attacks based on submitting malicious data.

The second point we did not address is client authentication and authorization. So far, any
program that is able to send a POST request could possibly submit data to our server. Surely,
we would only want our game to be able to submit data to prevent cheaters from submitting
arbitrarily crafted scores, so some mechanisms for verifying clients and encrypting the
submitted data will have to be put into place.

Finally, we can take a look at the client, where we use the HTTPClient to send our request
and retrieve the server's reply, which has already been discussed in the recipe Downloading a
file from a server found earlier in this chapter. Instead of requesting a document, we use the
beginPostForm() method to send data to the server. What's particularly interesting about
this call is the second parameter it accepts, which is the data to send.

The data is sent using a key-value form. Each of these key-value pairs takes the following form
key=value. We can send multiples of these pairs in one request, as shown in the sample
code, using the ampersand (&) sign as a delimiter between each key-value pair.

Establishing a network connection
While the recipes preceding this one have shown off some neat networking features of the
Panda3D engine using standard communication protocols, none of them have touched upon
the topic of implementing the lower-level custom network protocols needed for synchronizing
game objects across players connected to a game server. Starting with this recipe though, we
change that situation. The rest of this chapter will be dedicated to how to open a connection
and exchange custom crafted data between hosts.

Why games might require special network handling, such that you need to know about
lower-level custom networking protocols?

Chapter 9

209

The problems game developers have to solve when developing online multiplayer games
are plenty. First of all, each game is a unique case on its own: First, there are different types
of games, like shooters, racing games, or online role-playing games. Every game out of any
category offers a different set of game modes, gameplay, game mechanics, objects, and
ways of interaction. Apart from offering non-standardized experiences, each online game
has a different set of requirements for its multiplayer functionality: An MMO has to be able to
let thousands of players share the same world at the same time, while a fast-paced shooter
has to minimize the communication lag between hosts to allow precise and accurate player
movement and hit detection.

These are just a few simple samples, but ultimately it's up to us game developers to find
solutions for all of these problems. This means that we need to be in control over how, when
and which data is sent to meet our games' requirements.

This recipe marks the beginning of a three-part series. First we will shed some light on the
components that are involved in getting Panda3D to talk over a network and how to establish
a connection. Second, we will implement a tiny custom protocol for learning how to build
and send custom datagrams across a network. Finally, in the third part of the series, we
will implement a basic sample for synchronizing the state of a game object as a start for
implementing a custom network protocol for a game.

Getting ready
We will build this sample on the foundation created in Setting up the game structure found
in Chapter 1. Take a step back to read that recipe before continuing if you're unsure.

Unlike the other recipes in this chapter, we will be building this sample from our basic project
setup without using any additional libraries or frameworks.

How to do it...
Let's implement a basic client and server and open a connection between them:

1.	 Add the required import statements and the NetCommon class to
Application.py:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *

class NetCommon:
 def __init__(self, protocol):
 self.manager = ConnectionManager()
 self.reader = QueuedConnectionReader(self.manager, 0)
 self.writer = ConnectionWriter(self.manager, 0)
 self.protocol = protocol

Networking

210

 taskMgr.add(self.updateReader, "updateReader")

 def updateReader(self, task):
 if self.reader.dataAvailable():
 data = NetDatagram()
 self.reader.getData(data)
 reply = self.protocol.process(data)

 if reply != None:
 self.writer.send(reply, data.getConnection())

 return task.cont

2.	 Below NetCommon, implement the Server class:
class Server(NetCommon):
 def __init__(self, protocol, port):
 NetCommon.__init__(self, protocol)
 self.listener = QueuedConnectionListener(self.manager, 0)
 socket = self.manager.openTCPServerRendezvous(port, 100)
 self.listener.addConnection(socket)
 self.connections = []

 taskMgr.add(self.updateListener, "updateListener")

 def updateListener(self, task):
 if self.listener.newConnectionAvailable():
 connection = PointerToConnection()
 if self.listener.getNewConnection(connection):
 connection = connection.p()
 self.connections.append(connection)
 self.reader.addConnection(connection)
 print "Server: New connection established."

 return task.cont

3.	 Now it's time to add the implementation of the Client and Protocol classes:
class Client(NetCommon):
 def __init__(self, protocol):
 NetCommon.__init__(self, protocol)

 def connect(self, host, port, timeout):
 self.connection = self.manager.openTCPClientConnection(hos
t, port, timeout)

Chapter 9

211

 if self.connection:
 self.reader.addConnection(self.connection)
 print "Client: Connected to server."

 def send(self, datagram):
 if self.connection:
 self.writer.send(datagram, self.connection)

class Protocol:
 def process(self, data):
 return None

4.	 To finish coding for this recipe, it's time to modify the Application class to look
like this:
class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 server = Server(Protocol(), 9999)
 client = Client(Protocol())
 client.connect("localhost", 9999, 3000)

5.	 Start the program. If everything went right you will be able to see the following lines in
the Output area of NetBeans:

Client: Connected to server.

Server: New connection established.

How it works...
To avoid duplication of code, we begin this recipe by adding the NetCommon class to
Application.py. In the constructor we can already see some of the main components
needed for implementing custom network functionality in Panda3D.

The ConnectionManager class handles opening ports, initiating connections to remote hosts
and encapsulates all the low level IO operations involved when communicating over a network.
Additionally, we need to create QueuedConnectionReader and a ConnectionWriter,
responsible for reading and writing data respectively. QueuedConnectionReader is a
subclass of ConnectionReader that buffers all incoming datagrams so they can be processed
one after another in the updateReader() task. This task periodically polls the reader object
for newly available data. If anything has been received, it is handed to the process() method
of a Protocol object, which decides how to react to the received data and which reply to send.

Currently, we only have a Protocol class that doesn't do anything. This will change in the
following recipes, where we will use different protocol implementations to define the behaviors
of client and server.

Networking

212

The NetCommon class already contains a good part of what's necessary for sending
and receiving data over a network, but to create a server we still need to derive a new
class and add some additional features. We need a QueuedConnectionListener
to listen for new connections on the network port that is opened using the call to
openTCPServerRendezvous(). The first parameter defines the port number our server will
listen on for connections. The second parameter sets the maximum amount of simultaneous
connection attempts. If the number of requests exceeds this value, new connection attempts
are simply ignored.

Similar to the QueuedConnectionReader class, QueuedConnectionListener buffers
requests for new connections and needs to be polled in a task where new connections are put
into a list and registered to the QueuedConnectionReader owned by the class so incoming
data is received and processed.

All we need to add to the Client class, on the other hand, are the connect() and send()
methods. The former opens a new connection to a server. For this we need to specify the
target host and port as well as the maximum time to wait for a reply before considering the
connection to be terminated. The latter method is just a wrapper for sending a datagram.

In the constructor of Application we finally create a new Server and Client object and connect
them using the internal loopback connection. Both client and server are using our stub
protocol that does nothing yet. If you want this to change, go on to the next recipe!

Sending and receiving custom datagrams
After having built the groundwork for opening network connections, it's time to implement
our first self-defined network protocol. To achieve this goal, we are going to implement new
classes derived from Protocol that will piece together custom datagrams. We will then send
these datagrams back and forth between our client and server to have them a nice little chat.

Getting ready
This recipe directly continues where the last one left off. So if you didn't read that part yet,
take one step back and start from the beginning to create the prerequisites for this recipe
and better understand what will be shown here.

How to do it...
Follow these steps to implement your own network protocol:

1.	 Open Application.py and add the following import statements to the top
of the file:
from direct.distributed.PyDatagram import PyDatagram
from direct.distributed.PyDatagramIterator import
PyDatagramIterator

Chapter 9

213

2.	 Add the following two methods to the Protocol class:
 def printMessage(self, title, msg):
 print "%s %s" % (title, msg)

 def buildReply(self, msgid, data):
 reply = PyDatagram()
 reply.addUint8(msgid)
 reply.addString(data)
 return reply

3.	 Directly below the code of the Protocol class, add this:
class ServerProtocol(Protocol):
 def process(self, data):
 it = PyDatagramIterator(data)
 msgid = it.getUint8()

 if msgid == 0:
 return self.handleHello(it)
 elif msgid == 1:
 return self.handleQuestion(it)
 elif msgid == 2:
 return self.handleBye(it)

 def handleHello(self, it):
 self.printMessage("Server received:", it.getString())
 return self.buildReply(0, "Hello, too!")

 def handleQuestion(self, it):
 self.printMessage("Server received:", it.getString())
 return self.buildReply(1, "I'm fine. How are you?")

 def handleBye(self, it):
 self.printMessage("Server received:", it.getString())
 return self.buildReply(2, "Bye!")

4.	 Now add the ClientProtocol class below ServerProtocol:
class ClientProtocol(Protocol):
 def process(self, data):
 it = PyDatagramIterator(data)
 msgid = it.getUint8()

 if msgid == 0:
 return self.handleHello(it)

Networking

214

 elif msgid == 1:
 return self.handleQuestion(it)
 elif msgid == 2:
 return self.handleBye(it)

 def handleHello(self, it):
 self.printMessage("Client received:", it.getString())
 return self.buildReply(1, "How are you?")

 def handleQuestion(self, it):
 self.printMessage("Client received:", it.getString())
 return self.buildReply(2, "I'm fine too. Gotta run! Bye!")

 def handleBye(self, it):
 self.printMessage("Client received:", it.getString())
 return None

5.	 Modify the Application class to resemble the code below:
class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 server = Server(ServerProtocol(), 9999)
 client = Client(ClientProtocol())
 client.connect("localhost", 9999, 3000)

 data = PyDatagram()
 data.addUint8(0)
 data.addString("Hello!")
 client.send(data)

6.	 Start the program and watch the Output area. You should be able to observe the
following output:

Client: Connected to server.

Server: New connection established.

Server received: Hello!

Client received: Hello, too!

Server received: How are you?

Client received: I'm fine. How are you?

Server received: I'm fine too. Gotta run! Bye!

Client received: Bye!

Chapter 9

215

How it works...
As we can see in this sample, sending and receiving data over a network connection is
really easy, thanks to the API provided by Panda3D. To send data, we need to create a new
PyDatagram and add data fields using methods like addString() and addUint8() before
passing it to a ConnectionWriter instance for sending. We are not limited to sending
strings and 8 bit unsigned integers, though. PyDatagram features a whole lot of these
add*() methods for floating point numbers and integers of various bit widths, for example.

To retrieve data that has been received over a network connection we have to pass it to
a PyDatagramIterator. With the help of this class we are able to unpack the data
fields from the datagram. Of course, this works quick and easy, but there's a catch to it
that is very important to keep in mind: When retrieving data from a datagram using a
PyDatagramIterator, the fields need to be accessed in exactly the same order as they
were added to the PyDatagram before sending!

Using this knowledge, we were able to build a simple communication protocol that sends a
numerical message id and a string. The receiver displays the string it got on the console and
sends a reply containing a new message id and string based on the numerical id it received.

Synchronizing object state between server
and client

Now that we know how to send custom data across a network connection, we can
proceed to address one of the hardest issues of programming online games: game
object synchronization.

There are two main challenges to this that we need to take on: The number one issue for
networked multiplayer games is the communication lag between clients and the server. In
many cases this is out of the hands of the developer, but we will find a way to smooth this
out so that it is at least less noticeable on the client side.

The second problem is closely related to the lag issue: We just can't send a complete update
of all active game objects' states every frame. This means state updates are sent to the client
at a much lower rate than the game makes updates to its local state. Again, the trick is about
smoothing things out to hide the issue from the player.

Getting ready
This recipe is the last part of a three-part series. Before proceeding, you should have followed
and understood the recipes Establishing a network connection and Sending and receiving
custom datagrams also found in this chapter. The following tasks will build upon the code
created in the first part of the series.

Networking

216

How to do it...
Complete the tasks below to achieve the goal of this recipe and synchronize object state
between two network hosts:

1.	 Append the following import statements to the ones already present in
Application.py:
from direct.distributed.PyDatagram import PyDatagram
from direct.distributed.PyDatagramIterator import
PyDatagramIterator
import random

2.	 Add the class ServerSmiley to your code:
class ServerSmiley:
 def __init__(self):
 self.pos = Vec3(0, 0, 30)
 self.vel = 0

 def update(self):
 z = self.pos.getZ()
 if z <= 0:
 self.vel = random.uniform(0.1, 0.8)
 self.pos.setZ(z + self.vel)
 self.vel -= 0.01

3.	 Modify the constructor of the Server class to match the following code:
 def __init__(self, protocol, port):
 NetCommon.__init__(self, protocol)
 self.listener = QueuedConnectionListener(self.manager, 0)
 socket = self.manager.openTCPServerRendezvous(port, 100)
 self.listener.addConnection(socket)
 self.connections = []

 self.smiley = ServerSmiley()
 self.frowney = loader.loadModel("frowney")
 self.frowney.reparentTo(render)

 taskMgr.add(self.updateListener, "updateListener")
 taskMgr.add(self.updateSmiley, "updateSmiley")
 taskMgr.doMethodLater(0.5, self.syncSmiley, "syncSmiley")

4.	 Add these methods to the Server class:
 def updateSmiley(self, task):
 self.smiley.update()
 self.frowney.setPos(self.smiley.pos)
 return task.cont

Chapter 9

217

 def syncSmiley(self, task):
 sync = PyDatagram()
 sync.addFloat32(self.smiley.vel)
 sync.addFloat32(self.smiley.pos.getZ())
 self.broadcast(sync)
 return task.again

 def broadcast(self, datagram):
 for conn in self.connections:
 self.writer.send(datagram, conn)

5.	 Add the class ClientProtocol to your code:
class ClientProtocol(Protocol):
 def __init__(self, smiley):
 self.smiley = smiley

 def process(self, data):
 it = PyDatagramIterator(data)
 vel = it.getFloat32()
 z = it.getFloat32()
 diff = z - self.smiley.getZ()
 self.smiley.setPythonTag("velocity", vel + diff * 0.03)
 return None

6.	 Modify the Application class so it resembles the code that follows below:
class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 server = Server(Protocol(), 9999)

 self.smiley = loader.loadModel("smiley")
 self.smiley.setPythonTag("velocity", 0)
 self.smiley.reparentTo(render)
 self.smiley.setPos(0, 0, 30)
 self.cam.setPos(0, -100, 10)

 client = Client(ClientProtocol(self.smiley))
 client.connect("localhost", 9999, 3000)

 taskMgr.add(self.updateSmiley, "updateSmiley")

 def updateSmiley(self, task):
 vel = self.smiley.getPythonTag("velocity")
 z = self.smiley.getZ()

Networking

218

 if z <= 0:
 vel = random.uniform(0.1, 0.8)
 self.smiley.setZ(z + vel)
 vel -= 0.01
 self.smiley.setPythonTag("velocity", vel)
 return task.cont

7.	 Start the program. You should now see a smiley and a frowney bounce up and down
very close to each other:

How it works...
In our little demo program, the server simulates the bouncy behavior of a ball and sends
information about the ball's position and velocity to all connected clients. Because the server
has control over the ball and its data will always be considered to be correct by the client, we
say that the server has the authority over the ball.

While the simulation is running at full speed, the syncSmiley() function is only called once
every 0.5 seconds to simulate lag and the limited server and bandwidth resources. If we just
took the data coming from the server and replaced the current position and velocity values
with the ones sent by the server, we would get some interesting but useless results. The client
is, and will always be, behind the server state—this is a fact we cannot change. Updated data
will arrive with a bit of delay every time and as soon as the client processes it, it is already
out of date. This generates some uncertainty about the ball's actual position on the client
side. This situation is visualized using the blue ball to show the position on the server, while
the white and yellow ball shows the position on the client side. What we want is little to no
distance between those two balls.

Chapter 9

219

The first step we are taking to even out network and server lag is to duplicate the simulation
on the client side. This keeps the game running smoothly on the player's computer and
prevents objects from jumping from one point to the other because of the delayed arrival
of updates.

But now there's another problem: Our client side simulation makes a call to a random number
generator that does not deliver the same values as the one on the server, causing the local
simulation to make the ball jump differently than the one simulated by the server. Why are we
doing this? How are we going to fix it?

The reason for adding this additional amount of uncertainty to the client side is to show
that the client always has to assume that its data is not precise or just plainly and simply
wrong. Sure, it is a rather drastic sample, but this is what happens in real world applications
more often than any developer would wish for. Possible causes for this, other than lag,
can be physics engines that operate in a nondeterministic way or different floating point
rounding errors.

To solve this issue, we built a clever little piece of code into the process() method of our
ClientProtocol class. When the client receives an update from the server, it does not
directly set the client ball's position and velocity (which should be avoided anyway, as it only
results in jerky behavior of client side objects). Instead we add a small fraction of the vector
that points from the client ball's position to the location of the ball on the server to the client's
velocity value. This has the result of the ball on the client side slowly converging towards the
correct position without giving the impression of objects jumping or being teleported between
two points.

10
Debugging and

Performance

In this chapter, we will cover:

ff Debugging Python code

ff Debugging C++ code

ff Using the PStats tool for finding performance bottlenecks

ff Improving performance by flattening scenes

ff Implementing performance critical code in C++

Introduction
As game programmers, our job is to translate the rules, ways of interaction, and ideas defined
either by us or the game designers and producers in our development team into program
code. We act as the interface between the language of the designers and the language
of the computer.

Most of the time we're doing fine when expressing game rules as clever algorithms, but from
time to time things go wrong and bugs and errors are introduced to the game. While violations
of programming language rules are detected and pointed out to us programmers by compilers
and interpreters, errors caused by misinterpretations of the design specifications or by faulty
algorithms are the ones that are putting us into all sorts of trouble.

Debugging and Performance

222

Many of these programming mistakes cause wrong and unintended behavior that is
immediately visible to players, who will at best be disappointed by a buggy and broken
game. This means that we need to find and fix these errors to keep up quality and produce
excellent games. To achieve this goal, we must realize two things: One, programming errors
do happen—there's nothing to be ashamed of about that. What we should be ashamed of is
being unable to find out what the problem is and how to fix it. Secondly, locating software bugs
in big codebases can be a daunting, cumbersome, and even a near impossible task without
the support of proper tools.

This is the reason why this chapter will introduce common programs and workflows involved
in searching and fixing erroneous program code. Running a program in a debugger and
stepping through the code line by line while inspecting its behavior is a part of the basics
any programmer has to know!

While our first goal when developing program code should always be to write correct and
working implementations of algorithms, there also are functional requirements we need to
fulfill. In the case of game development, this mostly means one thing: Maintaining program
performance to keep the game updating smoothly, at an interactive rate of thirty times per
second or more.

This would be a much easier task if there were not game entity behaviors to be executed,
collisions to be found and resolved, animations to be updated, and geometry to be rendered
in every frame. A lot of things are going on when one single frame of a game is rendered, and
whenever we hit a performance problem, we need to find the root of the problem and find
a solution to the problem.

Of course this is not done by trial and error, but by measuring and observing the various
components of our game code and the engine. For this purpose, we are going to use the
profiling tool included with the Panda3D engine to learn about the possibilities and features
it provides for locating performance problems.

Complex scenes containing lots of models are the cause of many performance problems. This
is why this chapter will introduce the measures Panda3D provides for simplifying scenes to
decrease the load on the scene management and the rendering stages of the engine.

Finally, we will take a look at how to add modules written in C++ to the engine, which can be
useful for implementing very complex algorithms that perform poorly when written and run
in Python.

Debugging Python code
As already stated in the introduction to this chapter, knowing the debugger of the language
you are developing in and how to put it to use is part of the bread-and-butter business of a
programmer, just like writing the code in the first place. In case of Python, this means knowing
how to use the pdb debugger, which will be introduced throughout the course of this recipe.

Chapter 10

223

The pdb debugger operates as an interactive prompt, accepting simple text commands that
trigger actions like advancing program execution, or setting break points that stop program
execution at a given line. In the following tasks, you will be walked through an example debug
session, teaching you all the commands needed for analyzing code and hunting down those
nasty bugs!

However, note that pdb is not the only debugger available for Python. There are plenty of
alternatives available like pydbgr, pudb, or Winpdb that might provide more features or a user
interface that's easier to use. Though the big plus point for pdb, on the other hand, is that it
comes included with the Python runtime, that's part of the Panda3D engine.

Getting ready
The program you are going to debug is the one developed in the recipe Managing recurring
tasks, found in Chapter 7, Application Control. Please prepare the code and before
proceeding, make the following changes to the source code:

1.	 Delete the removeSmileys() method.

2.	 Find and delete the following line in the constructor:
taskMgr.doMethodLater(60, taskMgr.remove, "RemoveUpdate",
extraArgs = ["UpdateSmileys"])

3.	 Remove the uponDeath parameter from the call that adds the updateSmileys()
method to the task manager.

Finally, check if Panda3D's bin directory can be found in the system search path. You can do
this by opening a command prompt and issuing the command ppython. This should start an
interactive Python session.

How to do it...
Let's take a look at the Python debugger:

1.	 Open a new command prompt window and navigate to the src subdirectory of your
project directory.

2.	 Use the following command to start debugging the program:
> ppython –m pdb main.py

3.	 In the newly opened command prompt, we first want to get an overview of the
available commands:
(Pdb) help

4.	 Place a temporary breakpoint at the first line of the addSmiley() method:
(Pdb) tbreak Application.py:15

Debugging and Performance

224

5.	 Create another breakpoint at the updateSmileys() method and set a condition for
triggering the breakpoint:
(Pdb) break Application.py:27

(Pdb) condition 2 self.smileyCount > 50

6.	 List all active breakpoints:
(Pdb) break

7.	 The program is in a halted state. Continue execution by entering the
following command:
(Pdb) continue

8.	 After a short moment of running, the application is stopped at the first breakpoint.
Gather some context about where the execution flow was stopped. List an excerpt
of the source code surrounding the breakpoint:
(Pdb) list

9.	 Inspect the arguments that were passed to the method:
(Pdb) args

10.	 Execute the addSmiley() method until the point from which it is going to return:
(Pdb) return

11.	 Print the value of the smileyCount variable:
(Pdb) p self.smileyCount

12.	 Continue execution until the next breakpoint is triggered:
(Pdb) c

13.	 Display a stack trace:
(Pdb) where

14.	 Execute the current and next line of code:
(Pdb) next

(Pdb) n

15.	 Check the type of the local variable vel:
(Pdb) whatis vel

16.	 Change the value of the smileyCount variable and continue execution:
(Pdb) !self.smileyCount = 55

(Pdb) c

17.	 Clear the breakpoint in updateSmileys() and let the program continue execution:
(Pdb) clear 2

(Pdb) continue

Chapter 10

225

How it works...
The pdb debugger is actually implemented as a Python module, which we load from the library
search path using the -m pdb parameters we pass to the Python runtime. This starts up the
debugger's command shell, loads our main.py file, and pauses program execution.

We then go on to add breakpoints to our code. A breakpoint marks a line of code so the
debugger halts the program when it is reached while the program is executed. While a
standard breakpoint, created with the break command, causes program execution to be
stopped whenever it is hit, we add some special cases of breakpoints: A temporary and a
conditional breakpoint.

Temporary breakpoints are deleted after being hit once. This is useful if you're only interested
in the first iteration of a loop, for example. If you want to narrow down the cause of a bug in
more detail, or want to skip loop iterations, conditional breakpoints allow the contents of
variables to be examined and evaluated. Only if the expression provided evaluates to true,
the program gets stopped.

Beneath breakpoints, another set of commands is dedicated to controlling how to run the
program. Using next, return, and continue, we are able to execute step by step, to the
point where the current function is about to return, or until the next breakpoint is hit.

Additionally to these commands, there's step, which we didn't use in this recipe. This
command steps the program line by line just like next, with the exception that instead of
stepping over function calls, it jumps into the body of the function being executed. This makes
it possible to observe what's going on inside a function instead of just seeing the result or
return value of the current call.

The last group of commonly used commands is used for gathering information about where
in the code we currently are (list), how we got there (where), and the types as well as the
values of variables and function parameters (whatis, p, args). These are the essentials for
observing program state and finding problems with our code!

One additional great thing about this debugger is the possibility to execute Python code
directly within the debug session. Lines beginning with an exclamation mark are directly
passed to the Python runtime to be interpreted, which makes it possible to halt execution
using a breakpoint, change the value of a variable or the state of an object before proceeding
the execution. This can be quite useful for quickly trying fixes or finding program states that
cause erroneous behavior.

Debugging and Performance

226

Debugging C++ code
Although this book is very Python-centric, we should not forget that the core of Panda3D is
written in C++. Additionally, it is possible to extend the engine with our own native libraries.
Not only that, but we're even able to drop Python and write our games in pure C++.

Even if we intend to write our games completely in Python, there might be this one occasion
coming up in the future where we wished we had read the recipe about using the C++
debugger of Visual Studio 2008. The following recipe will prepare us for this situation,
even if it is unlikely to occur.

Getting ready
In this recipe, you are going to debug the C++ code you created in Creating a scene using
C++ found in Chapter 2, Creating and Building Scenes. For this to work, you need to add the
property sheet containing your project settings to the Debug configuration just as you did for
the Release configuration.

To be able to debug the code of the Panda3D engine on top of your own source code, you will
need a debug build of the engine. If you want to use the release runtime from the installer
package and just want to debug your own code, you need to apply the following workaround
to be able to produce a debug build of your program:

1.	 Search for the string python26_d.lib.

2.	 Replace any occurrence of it with python26.lib.

How to do it...
The Visual Studio 2008 C++ debugger is a powerful tool. Let's see what can be done with it:

1.	 Load the project in Visual Studio 2008 and open the file main.cpp.

2.	 Place a new breakpoint in the line shown in the following screenshot by left-clicking
the grey area to the left of the source code editor:

Chapter 10

227

3.	 Right-click the breakpoint and select Condition…:

4.	 In the Breakpoint Condition window, tick the Condition checkbox and enter the
string win != 0 into the textbox and confirm your input by clicking OK:

5.	 Right-click the breakpoint and select Hit Count…:

Debugging and Performance

228

6.	 In the Breakpoint Hit Count window, choose the settings shown in the following
screenshot and click OK:

7.	 Right-click the breakpoint again and select When Hit…:

8.	 Tick the checkbox next to Print a message: in the When Breakpoint Is Hit window:

Chapter 10

229

9.	 Start the debug session by clicking the toolbar button shown in the following
screenshot, or by pressing F5:

10.	 Wait until the breakpoint is hit. If the program is halted at a breakpoint it is marked
with a little arrow:

11.	 Use the toolbar buttons shown next to continue and halt the program, to stop
debugging, restart the program, and to step through the code line by line. Click your
way through the buttons and watch the results. Your actions may cause the program
to stop, which will also cause the debugging session to end. In that case, just start
the program again.

12.	 While stepping through the code, observe the areas at the bottom of the screen.
Autos shows recently accessed or changed variables:

Debugging and Performance

230

13.	 Locals lets you observe all variables in the current local scope:

14.	 The Call Stack area shows which function calls led to the current point of execution:

15.	 Breakpoints lists all active breakpoints as well as the conditions that need to be
fulfilled to trigger them:

Chapter 10

231

16.	 The Output area shows the debug text and console output of the program:

How it works...
Compared to the textmode debugger for Python, presented in the recipe found right
before this one, the workflow doesn't differ too much. Basically, it's only the interface
that differs drastically.

What we do with the tool is absolutely the same though. We set a breakpoint, define
conditions that need to be fulfilled for triggering it, and create an action that prints a
diagnostic message to the output window. While we are stepping through the code, we are
watching variables as they change in the Autos and Locals windows. The Call Stack window
shows us how we got to where we currently are in the program flow, the Breakpoints window
is there to manage the breakpoints that are possibly scattered throughout the code of our
game or library, and the Output window prints diagnostics and log messages.

Using the PStats tool for finding
performance bottlenecks

From a plain technological point of view, most video games fall into the category of so-called
"soft real time multi-agent simulations". This means that in games, we are simulating, by
stepping frame by frame, a collection of multiple interacting game entities or agents within
soft real time boundaries. Or even simpler: We are moving models and actors around in
our game world while trying to maintain a frame rate high enough to create the illusion of
smooth movement.

In practice this imposes limits to our games' usage of computing resources, because dropping
frame rates and stuttering gameplay need to be avoided at all cost. Additionally, we want our
games to be able to run on a wealth of hardware configurations, even ones that do not feature
top of the line hardware.

Debugging and Performance

232

The reasons for a game to perform poorly are manifold: Inefficient algorithms, too many
models and actors per scene, too much geometry to draw per model or actor, too many
changes of render states, too many transforms—the list of possible causes goes on and on.
The fact is, however, that the program as a whole is almost never slow. Instead, in most cases,
performance problems are caused by single bottlenecks within the program.

We could just try to find performance problems by randomly crossing off items from our
imaginary list of possible causes but in this case, the odds for actually finding anything are
not very high. The right way to go about performance problems in our code is to observe,
measure, and finally locate the points in our code that make the game exceed the maximum
time it is allowed to take for rendering one frame.

Luckily, Panda3D is able to collect detailed profiling data. Together with the PStats tool, which
will be introduced in the following tasks, we are able to display and observe this data to
quickly find out where precious CPU cycles are wasted in our programs.

Getting ready
We are going to profile the sample program created in the recipe Managing recurring tasks,
found in Chapter 7. Please prepare this sample before proceeding to be able to follow the
tasks as closely as possible.

How to do it...
These are some of the common tasks where you will be using PStats in your projects:

1.	 Open Application.py and add the following line to the constructor of the
Application class:
PStatClient.connect()

2.	 Navigate to C:\Panda3D-1.7.0\bin and launch pstats.exe. Your firewall might
show a popup window asking if you want to allow PStats to listen on a network port. If
so, allow the port to be opened.

3.	 Launch the application. The following window will pop up:

Chapter 10

233

4.	 Click Graphs | Frame components | App components | Show code components |
UpdateSmileys. An additional child window will be created:

5.	 Click Graphs | Nodes to view the following graph:

6.	 Clicking Graphs | System memory will bring up the following display:

7.	 Click Graphs | Vertices. This will show the following child window:

Debugging and Performance

234

8.	 By clicking Graphs | State changes, the application will present the following graph:

9.	 Finally, click Graphs | Piano Roll to view the following profiling data representation:

How it works...
PStats is a network server program that once started, listens for incoming connections from
a Panda3D runtime. At application startup time, in the constructor of the Application class,
we instruct the engine to connect to the PStats instance running on the local machine. We
could also run PStats on an additional machine and pass a string containing its host name or
IP address to PStatClient.connect()—a great feature if we intend to run the game in full
screen mode.

Chapter 10

235

As soon as a connection is established, PStats shows its window and displays the Frame
time graph to give a very general performance overview. The tool allows us to get exact timing
data on individual tasks, the number of nodes in the scene, memory usage statistics, the
number of vertices that are drawn, how many state changes there have been in a frame, and
a detailed list of which component takes which amount of time to execute, among others.

There is no fixed way of using this tool. The goal should be to observe and interpret the
readings. Watch for sudden anomalies and keep an eye on how the readings change over
time. Big spikes in the graphs or constantly growing values should make you suspicious.

Improving performance by flattening scenes
While the scene graph and renderer of the Panda3D engine generally do a good job managing
and drawing scene data, they are easily overloaded with data. Too many different models
consisting of lots of geometry nodes while all being transformed to various positions will
quickly push the scene graph to its limits, while the renderer has to wait for the graphics card
because all these models in the scene need to be sent one by one to the graphics card for
drawing to the screen.

The easiest step to decreased scene complexity, for sure, is to remove objects from the
scene graph. This works, but it removes details from our game and may make it look
empty and cheap.

Fortunately, there's an alternative solution we can try before starting to cut models from our
scenes. Panda3D provides an API for simplifying scenes by precalculating transformations as
well as combining scene nodes and their geometry to please the graphics card by sending this
data in one big batch.

Getting ready
Setup a new game project structure as described in Chapter 1, Setting Up Panda3D and
Configuring Development Tools before going on with the following tasks.

How to do it...
For optimizing a scene, you will need to follow these steps:

1.	 Edit Application.py and fill in the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
import random

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

Debugging and Performance

236

 self.cam.setPos(0, -100, 10)
 self.setFrameRateMeter(True)

 envRoot = render.attachNewNode("envRoot")
 for i in range(100):
 self.addEnvironment(envRoot)
 envRoot.flattenStrong()

 combiner = RigidBodyCombiner("cmb")
 self.smRoot = render.attachNewNode(combiner)
 for i in range(200):
 self.addSmiley(self.smRoot)
 combiner.collect()
 taskMgr.add(self.updateSmileys, "UpdateSmileys")

2.	 Below the code you just added, append the following:

 def addSmiley(self, parent):
 sm = loader.loadModel("smiley")
 sm.reparentTo(parent)
 sm.setPos(random.uniform(-20, 20), random.uniform(-30,
30), random.uniform(0, 30))
 sm.setPythonTag("velocity", 0)

 def updateSmileys(self, task):
 for smiley in self.smRoot.findAllMatches("smiley.egg"):
 vel = smiley.getPythonTag("velocity")
 z = smiley.getZ()
 if z <= 0:
 vel = random.uniform(0.1, 0.8)
 smiley.setZ(z + vel)
 vel -= 0.01
 smiley.setPythonTag("velocity", vel)
 return task.cont

 def addEnvironment(self, parent):
 env = loader.loadModel("environment")
 env.reparentTo(parent)
 env.setScale(0.01, 0.01, 0.01)
 env.setPos(render, random.uniform(-20, 20), random.
uniform(-30, 30), random.uniform(0, 30))

Chapter 10

237

How it works...
The important parts about this code sample are the flattenStrong() method and the
RigidBodyCombiner class.

Actually, flattenStrong() is part of a group of methods of the NodePath class used
for simplifying the subtree of child nodes under the scene node the method is being called
on. Using flattenLight(), the vertices of child nodes are multiplied by their nodes'
transformation matrices. This has the effect that these nodes do not need to be transformed
to their positions anymore, sparing the CPU a set of matrix multiplications per frame. The
flattenMedium() method does a flattenLight() pass and additionally makes the
scene tree hierarchy simpler by removing and combining obsolete nodes and their children.
We can try to use this method to increase performance of static scenes with a very deep
and nested node hierarchy. By calling flattenStrong() on a node in the scene graph,
the complete scene node subtree under the affected node is flattened and combined to
one single node, making it possible to send the node geometry in one big batch, which can
greatly decrease the time needed for rendering the scene. The price for this gain though, is
that this is a destructive action because after using this method, the hierarchy of child nodes
connected to the modified node is destroyed.

We are using a similar optimization technique for the subtree containing the smileys. But
while the nodes we applied flattenStrong() to were static, our smileys are moved
every frame, which is why we are using the RigidBodyContainer class in this case.
Although used in a slightly different way than the flattening methods, the concept behind
RigidBodyContainer and its effect on how the scene is rendered is very similar. Before
being sent to the renderer, the child nodes of the combiner node are joined into one,
causing only one batch of geometry to be sent to the graphics device.

These optimization methods are no magic bullet, however. In some cases they are able to
greatly improve performance, while in others it can even become worse than before. Therefore
it is very important for us to keep on experimenting with the various degrees of flattening
while profiling our game to observe the results!

Implementing performance critical code
in C++

While in direct comparison, compiled C++ code performs better than the same code ported to
Python, it would be wrong to generally state that the use of the Python interpreter in Panda3D
is detrimental to the performance of your game. This would be wrong and utter nonsense, as
Python just acts as a simpler interface to the engine's core libraries. Most of a game's code
that uses the Python interface of Panda3D consists of calls to the engine's APIs, which are
implemented in C++ and simply forwarded by the Python runtime.

Debugging and Performance

238

While this architecture generally delivers quite acceptable performance, there might be an
occasion or two where, after thoroughly profiling and optimizing your Python code, you still
might not have reached the performance goals you set for that piece of code. Only if you are
sure about there not being any gains possible to achieve anymore should you start thinking
about writing a C++ implementation of your code.

This recipe will show you the steps necessary for adding a new C++ class to the Panda3D
engine and making it available to be instantiated from Python code. You will add the new
module containing the newly created class to Panda3D's API and build it with the rest of the
engine's source code. This approach might seem bloated and overly complex, but while it
is possible to build custom libraries for Panda3D outside the engine's source tree, it is a lot
harder and cumbersome to set up. Furthermore, the documentation on adding C++ classes
to the engine is really very sparse. Following the example of the rest of the source code of
Panda3D does at least provide you with lots of sample material you can compare your custom
efforts to. Finally and very importantly, this way the code is already prepared to be integrated
into the official source code in case you wish to contribute the code to the community.
Panda3D is an open source project and available for free, so giving back is just fair!

Getting ready
Prior to going on with this recipe you should have read and understood the recipe about
building Panda3D from source code found in Chapter 1.

How to do it...
To complete this recipe, work your way through these tasks:

1.	 In panda\src, create a new directory called bounce.

2.	 Copy the files config_skel.cxx, config_skel.h, skel_composite.cxx,
skel_composite1.cxx, Sources.pp, typedSkel.cxx, typedSkel.h, and
typedSkel.I from panda\src\skel to panda\src\bounce.

3.	 In panda\src\bounce, rename config_skel.cxx to config_bounce.cxx,
config_skel.h to config_bounce.h, skel_composite.cxx to bounce_
composite.cxx, skel_composite1.cxx to bounce_composite1.cxx as well as
typedSkel.cxx, typedSkel.h, and typedSkel.I to bounce.cxx, bounce.h
and bounce.I, respectively.

4.	 Open Sources.pp in a text editor and replace its content with the following lines:
#define OTHER_LIBS interrogatedb:c dconfig:c dtoolconfig:m \
 dtoolutil:c dtoolbase:c dtool:m prc:c

#define USE_PACKAGES
#define BUILDING_DLL BUILDING_PANDABOUNCE

Chapter 10

239

#begin lib_target
 #define TARGET bounce
 #define LOCAL_LIBS \
 putil

 #define COMBINED_SOURCES $[TARGET]_composite1.cxx

 #define SOURCES \
 config_bounce.h \
 bounce.I bounce.h

 #define INCLUDED_SOURCES \
 config_bounce.cxx \
 bounce.cxx

 #define INSTALL_HEADERS \
 bounce.I bounce.h

 #define IGATESCAN all

#end lib_target

5.	 Edit bounce_composite.cxx so it contains the following line:
#include "bounce_composite1.cxx"

6.	 Change bounce_composite1.cxx so it contains the following two lines:
#include "config_bounce.cxx"
#include "bounce.cxx"

7.	 Open bounce.h and change its content to reflect the following code:
#ifndef BOUNCE_H
#define BOUNCE_H

#include "pandabase.h"
#include "typedObject.h"
#include "randomizer.h"

class EXPCL_PANDABOUNCE Bounce : public TypedObject {
PUBLISHED:
 INLINE Bounce();
 INLINE ~Bounce();
 INLINE float get_z();
 INLINE void set_z(float z);
 void update();

Debugging and Performance

240

private:
 float _velocity;
 float _z;
 Randomizer _rand;

public:
 static TypeHandle get_class_type() {
 return _type_handle;
 }
 static void init_type() {
 TypedObject::init_type();
 register_type(_type_handle, "Bounce",
 TypedObject::get_class_type());
 }
 virtual TypeHandle get_type() const {
 return get_class_type();
 }
 virtual TypeHandle force_init_type() {init_type(); return get_
class_type();}

private:
 static TypeHandle _type_handle;
};

#include "bounce.I"
#endif

8.	 After you are done with bounce.cxx it should look like the following:
#include "bounce.h"

TypeHandle Bounce::_type_handle;

void Bounce::
update() {
 if (_z <= bounce_floor_level)
 _velocity = _rand.random_real(0.7f) + 0.1f;

 _z = _z + _velocity;
 _velocity -= 0.01f;
}

Chapter 10

241

9.	 Now open bounce.I and change the code to the following:
INLINE Bounce::
Bounce() {
 _z = 0;
 _velocity = 0;
}

INLINE Bounce::
~Bounce() {
}

INLINE float Bounce::
get_z() {
 return _z;
}

INLINE void Bounce::
set_z(float z) {
 _z = z;
}

10.	 Make sure config_bounce.h contains the following lines of code:
#ifndef CONFIG_BOUNCE_H
#define CONFIG_BOUNCE_H

#include "pandabase.h"
#include "notifyCategoryProxy.h"
#include "configVariableDouble.h"

NotifyCategoryDecl(bounce, EXPCL_PANDABOUNCE, EXPTP_PANDABOUNCE);

extern ConfigVariableDouble bounce_floor_level;
extern EXPCL_PANDABOUNCE void init_libbounce();

#endif

11.	 Edit config_bounce.cxx. The file's content should look as follows:
#include "config_bounce.h"
#include "bounce.h"
#include "dconfig.h"

Configure(config_bounce);
NotifyCategoryDef(bounce, "");

Debugging and Performance

242

ConfigureFn(config_bounce) {
 init_libbounce();
}

ConfigVariableDouble bounce_floor_level
("bounce-floor-level", 0);

void
init_libbounce() {
 static bool initialized = false;
 if (initialized) {
 return;
 }
 initialized = true;

 Bounce::init_type();
}

12.	 Open the file panda\src\pandabase\pandasymbols.h. Look for the following
block of code and add the highlighted code:
#ifdef BUILDING_PANDASKEL
 #define EXPCL_PANDASKEL __declspec(dllexport)
 #define EXPTP_PANDASKEL
#else
 #define EXPCL_PANDASKEL __declspec(dllimport)
 #define EXPTP_PANDASKEL extern
#endif

#ifdef BUILDING_PANDABOUNCE
 #define EXPCL_PANDABOUNCE __declspec(dllexport)
 #define EXPTP_PANDABOUNCE
#else
 #define EXPCL_PANDABOUNCE __declspec(dllimport)
 #define EXPTP_PANDABOUNCE extern
#endif

13.	 Still in pandasymbols.h, look out for the following code and add the marked lines:
#define EXPCL_PANDASKEL
#define EXPTP_PANDASKEL

#define EXPCL_PANDABOUNCE
#define EXPTP_PANDABOUNCE

Chapter 10

243

14.	 Search for the following block of code in makepanda\makepanda.py:
if (not RUNTIME):
 OPTS=['BUILDING:PANDASKEL', 'ADVAPI']

 TargetAdd('libpandaskel_module.obj', input='libskel.in')
 TargetAdd('libpandaskel_module.obj', opts=OPTS)
 TargetAdd('libpandaskel_module.obj', opts=['IMOD:pandaskel',
'ILIB:libpandaskel'])

 TargetAdd('libpandaskel.dll', input='skel_composite.obj')
 TargetAdd('libpandaskel.dll', input='libskel_igate.obj')
 TargetAdd('libpandaskel.dll', input='libpandaskel_module.obj')
 TargetAdd('libpandaskel.dll', input=COMMON_PANDA_LIBS)
 TargetAdd('libpandaskel.dll', opts=OPTS)

15.	 Directly below the aforementioned block of code add the following:
if (not RUNTIME):
 OPTS=['DIR:panda/src/bounce', 'BUILDING:PANDABOUNCE', 'ADVAPI']
 TargetAdd('bounce_composite.obj', opts=OPTS, input='bounce_
composite.cxx')
 IGATEFILES=GetDirectoryContents("panda/src/bounce", ["*.h", "*_
composite.cxx"])
 TargetAdd('libbounce.in', opts=OPTS, input=IGATEFILES)
 TargetAdd('libbounce.in', opts=['IMOD:pandabounce', 'ILIB:
libbounce', 'SRCDIR:panda/src/bounce'])
 TargetAdd('libbounce_igate.obj', input='libbounce.in',
opts=["DEPENDENCYONLY"])

 TargetAdd('libpandabounce_module.obj', input='libbounce.in')
 TargetAdd('libpandabounce_module.obj', opts=OPTS)
 TargetAdd('libpandabounce_module.obj', opts=['IMOD:pandabounce',
'ILIB:libpandabounce'])

 TargetAdd('libpandabounce.dll', input='bounce_composite.obj')
 TargetAdd('libpandabounce.dll', input='libbounce_igate.obj')
 TargetAdd('libpandabounce.dll', input='libpandabounce_module.
obj')
 TargetAdd('libpandabounce.dll', input=COMMON_PANDA_LIBS)
 TargetAdd('libpandabounce.dll', opts=OPTS)

16.	 Add the highlighted line to direct\src\ffi\panda3d.py:
panda3d_modules = {
 "core" :("libpandaexpress", "libpanda"),
 "dtoolconfig" : "libp3dtoolconfig",
 "physics" : "libpandaphysics",

Debugging and Performance

244

 "fx" : "libpandafx",
 "direct" : "libp3direct",
 "egg" : "libpandaegg",
 "ode" : "libpandaode",
 "vision" : "libp3vision",
 "physx" : "libpandaphysx",
 "ai" : "libpandaai",
 "bounce" : "libpandabounce",
}

17.	 Compile the Panda3D source code using the makepanda tool.

18.	 Add your custom built version of Panda3D to NetBeans. Follow steps 13 to 17 of
the recipe Downloading and configuring NetBeans to work with Panda3D found in
Chapter 1. Instead of the ppython.exe file in the Panda3D installation directory,
choose the one found in the built\python subdirectory of the Panda3D source
code. Type CustomPython into the Platform Name field of the Python Platform
Manager window.

19.	 Create a new project as described in Setting up the game structure. Be sure to
choose CustomPython in step 3.

20.	 Open Application.py and replace its content with the following:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from panda3d.bounce import *
import random

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.smiley = loader.loadModel("smiley")
 self.smileyCount = 0
 self.cam.setPos(0, -100, 10)
 taskMgr.doMethodLater(0.1, self.addSmiley, "AddSmiley")
 taskMgr.add(self.updateSmileys, "UpdateSmileys", uponDeath
= self.removeSmileys)
 taskMgr.doMethodLater(60, taskMgr.remove, "RemoveUpdate",
extraArgs = ["UpdateSmileys"])

 def addSmiley(self, task):
 sm = render.attachNewNode("smiley-instance")
 sm.setPos(random.uniform(-20, 20), random.uniform(-30,
30), random.uniform(0, 30))
 bounce = Bounce()
 bounce.setZ(sm.getZ())

Chapter 10

245

 sm.setPythonTag("bounce", bounce)
 self.smiley.instanceTo(sm)
 self.smileyCount += 1

 if self.smileyCount == 300:
 return task.done

 return task.again

 def updateSmileys(self, task):
 for smiley in render.findAllMatches("smiley-instance"):
 bounce = smiley.getPythonTag("bounce")
 bounce.update()
 smiley.setZ(bounce.getZ())
 return task.cont

 def removeSmileys(self, task):
 for smiley in render.findAllMatches("smiley-instance"):
 smiley.removeNode()
 return task.done

21.	 Press F6 to launch the program.

How it works...
After copying and renaming the files of the skeleton module provided with the rest of the
Panda3D source code, our first real task is preparing the files needed by the build system.

In Sources.pp, we need to list the source and header files that make up our project, as well
as the libraries our code depends on and needs to be linked against. Additionally, we set the
name of the build target to bounce, which will be the name of the library being built from our
code. This file also defines which header files will be distributed with the build, and is needed
for automatically generating the Python bindings for our class.

Using #include on C++ source files instead of just using it on headers may seem a bit odd,
but this is how the build system works. Panda3D is built using a compilation technique that
is very specific to C++ projects called "unity build". In this kind of setup, instead of compiling
individual source files to object files and linking them, the preprocessor is used to generate
one big file containing all of the source code. This big, unified source file is then compiled as
one, which can reduce build times of big C++ projects.

Debugging and Performance

246

Next, we define the interface of our class. Because we want our new class to be exposed to
the Python runtime, we need to derive from TypedObject and add the init_type() and
get_type() member functions that will be called by the engine to register and initialize our
class with Python's type system. In init_type() we have to call the init_type() function
of the base class and fill in the type name we are going to use in Python. So if we wanted to
derive a new class called Tumble from Bounce, the derived class' init_type() function
would have to look like this:

static void init_type() {
 Bounce::init_type();
 register_type(_type_handle, "Tumble", Bounce::get_class_type());
}

Besides the type system management code, we mark the member functions we want to
be exposed to Python as PUBLISHED. To the C++ compiler, these are just public member
functions, but the tools invoked by Panda3D's build system will pick it up for automatically
generating Python bindings for the class.

We then go on to implementing the Bounce class and adding functions for configuring
and initializing the library. In the files config_bounce.h and config_bounce.cxx,
we register a new category for log messages using the NotifyCategoryDecl and
NotifyCategoryDef macros. In addition, we add a new configuration variable, so
we are able to change the behavior of our class library using the engine's configuration
file. ConfigVariableDouble for floating point values is not the only possible
type for configuration variables. There are also the types ConfigVariableBool,
ConfigVariableInt and ConfigVariableString.

Before building, we need to add a few preprocessor symbols. The EXPCL_PANDABOUNCE and
EXPTP_PANDABOUNCE symbols are defined differently, depending on whether they are used
for building the engine code or they are included in client code. This avoids having to keep
around two versions of the file for these two use cases.

After adding the directory that contains our source to the makepanda script and adding our
library to the list of submodules of panda3d, we can go on to build the source code. When
this rather lengthy process has finished, all we have to do is register our customized runtime
version to the IDE, setup our project and use our Bounce class just like any other type found
in the Panda3D API.

11
Input Handling

In this chapter, we will cover:

ff Handling keyboard and mouse input
ff Implementing an abstraction layer for supporting multiple input methods
ff Handling input from an Xbox 360 controller
ff Recording and simulating user input
ff Reading audio data from a microphone
ff Reading video data from a webcam
ff Reading input data from a network

Introduction
The one important feature that sets video games apart from other media like movies or
books is the player's ability to interact and be a part of the experience. Just think about it
for a moment: A piece of literature defines itself by what it tells and which images it creates
in the reader's imagination. Movies are trying to engage and entertain by showing, not
telling. The video game medium, while of course being able to tell stories and visualize the
action in spectacular ways, requires its audience to take an active part and take control
of what's happening on the screen. This is a fundamental difference to the other forms of
entertainment media, where the audience is put into the role of a passive consumer. Reading
user input and providing immediate on-screen responses, representing the state of the game
and prompting the player for more input, this feedback loop operates at the core of every
video game.

Input data can originate from various sources and take many different forms. Be it binary data
from keyboard and mouse buttons, the absolute two-dimensional screen position of a mouse
pointer, or the normalized distance and direction an analog stick is being tilted. Apart from
the classic and widely used standard input methods, designers also have found uses for more
complex devices, like microphones and cameras, to immerse players even further.

Input Handling

248

Panda3D provides nice wrappers around most of the details of handling all of these different
devices. This chapter will discuss and show how to use these abstraction layers and how to
process the provided data to create measures of interaction.

Handling keyboard and mouse input
With the exception of karaoke and guitar games like Rock Band or Guitar Hero, it is generally
a pretty bad idea to require a specialized controller or other input device for a video game.
So, unless you have the marketing budget for advertising your new and special controller,
you should always opt to use the most common and most widely available devices.

On consoles you would therefore aim for the standard gamepad, while the most widespread
input measure for PC games is a combination of keyboard and mouse. Because Panda3D is
targeted towards PC game production, in this example, you will learn how to handle input data
received from the latter input method.

Getting ready
This recipe will of course be using our standard application skeleton that we created in
the first chapter. Additionally, we will reuse the FollowCam class from the recipe Making
the camera smoothly follow an object in Chapter 2, Creating and Building Scenes. Be sure
to implement that class and place the source file called FollowCam.py inside the src
subdirectory of the project.

How to do it...
Implement keyboard and mouse input by following these steps:

1.	 Import the required libraries and implement the constructor of the Application
class as well as the resetMouse() method:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from FollowCam import FollowCam

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

Chapter 11

249

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)

 self.followCam = FollowCam(self.cam, self.panda)

 base.disableMouse()
 props = WindowProperties.getDefault()
 props.setCursorHidden(True)
 base.win.requestProperties(props)

 self.resetMouse()

 # don't use -repeat because of slight delay after keydown
 self.pandaWalk = False
 self.pandaReverse = False
 self.pandaLeft = False
 self.pandaRight = False

 self.accept("escape", exit)
 self.accept("w", self.beginWalk)
 self.accept("w-up", self.endWalk)
 self.accept("s", self.beginReverse)
 self.accept("s-up", self.endReverse)
 self.accept("a", self.beginTurnLeft)
 self.accept("a-up", self.endTurnLeft)
 self.accept("d", self.beginTurnRight)
 self.accept("d-up", self.endTurnRight)

 taskMgr.add(self.updatePanda, "update panda")

 def resetMouse(self):
 cx = base.win.getProperties().getXSize() / 2
 cy = base.win.getProperties().getYSize() / 2
 base.win.movePointer(0, cx, cy)

2.	 Add these keyboard event handling methods to the Application class:
 def beginWalk(self):
 self.panda.setPlayRate(1.0, "walk")
 self.panda.loop("walk")
 self.pandaWalk = True

 def endWalk(self):
 self.panda.stop()
 self.pandaWalk = False

Input Handling

250

 def beginReverse(self):
 self.panda.setPlayRate(-1.0, "walk")
 self.panda.loop("walk")
 self.pandaReverse = True

 def endReverse(self):
 self.panda.stop()
 self.pandaReverse = False

 def beginTurnLeft(self):
 self.pandaLeft = True

 def endTurnLeft(self):
 self.pandaLeft = False

 def beginTurnRight(self):
 self.pandaRight = True

 def endTurnRight(self):
 self.pandaRight = False

3.	 Extend the Application class further by adding this method:
 def updatePanda(self, task):
 if base.mouseWatcherNode.hasMouse():
 self.panda.setH(self.panda, -base.mouseWatcherNode.
getMouseX() * 10)

 self.resetMouse()

 if self.pandaWalk:
 self.panda.setY(self.panda, -0.2)
 elif self.pandaReverse:
 self.panda.setY(self.panda, 0.2)

 if self.pandaLeft:
 self.panda.setH(self.panda, 0.8)
 elif self.pandaRight:
 self.panda.setH(self.panda, -0.8)

 return task.cont

4.	 Start the program. Use the W and S keys to walk forward and backward. Press A, D,
or use the mouse to turn left and right. Press the Escape key to quit.

Chapter 11

251

How it works...
After loading and positioning all the scene objects and setting up the FollowCam class
to follow the panda, we encounter the line base.disableMouse(). The method name
is somewhat misleading, as it does not literally do what it says. After calling base.
disableMouse() the engine will still receive mouse input but the default mouse-based
camera controls will be disabled.

We then hide the mouse cursor by setting the appropriate flag in WindowProperties and
use the resetMouse() method to reset the mouse pointer to the center of the window. This
is important for detecting mouse movement later on in the code.

Next, we initialize a set of Boolean flags. These will be used to inform the updating task which
action to perform and in which direction to move the panda. These flags are modified by the
event handling methods we register for keyboard presses in the following lines.

After the line that adds the task for updating the panda's position, we can find the keyboard
event handling methods. Here we set the movement flags pandaWalk, pandaReverse,
pandaLeft, and PandaRight and activate the appropriate animations depending on the key
being pressed. We need the Boolean flags to make the panda move as long as the key is in a
pressed state, where the flag is set to True. As soon as an "-up" event occurs, the flag is set
back to False and the panda stops moving.

We explicitly do not use the "-repeat" events here for a reason: The engine starts to send
this type of event a short moment after the key was initially pressed. In our case this would
cause the panda to twitch, pause, and then move on normally, which is not what we intend
to achieve.

Finally, we implement the updatePanda() method. At runtime, this code is called at every
frame and is responsible for moving the panda around, based on which of the movement flags
are set. It is also the place where we finally handle mouse movement: First we check if the
mouse is within our window. The position of the mouse pointer in Panda3D is relative to the
center of the window. We use this fact to check how far the mouse pointer was moved from
the window center since the last frame to change the heading of the panda model. Of course,
we need to reset the mouse pointer to the center of the window again to keep this technique
working and prevent it from leaving the window.

There's more...
As we can see, Panda3D automatically creates various events for when a key is pressed down
or released again. This reduces accepting keyboard events to simply adding the correct event
handlers for these events.

Input Handling

252

Character and number keys create events named after the symbol on the key. The events
for character keys are always in lower case. Special and control keys have their own, but not
hard to guess, event names: "enter", "lshift", "ralt", "f1", "f2", "page_down",
and so on. The same applies for mouse buttons, which are named consecutively, starting
with "mouse1" and "mouse2" for the left and right mouse buttons.

For handling keys being held down or being released after having been pressed, the event
names are modified with a set of post- and prefixes. In our sample, we can see the "-up"
modifier that is used when the player takes a finger off a key. Apart from that, there are also the
"time-" and "-repeat" variants of each event. The former passes the time when the event
occurred to the event handler, while the latter is sent continuously if a key is held down over
a period of time. These modifiers can also be mixed: "time-enter", "time-f1-repeat",
"a-up", and "time-lshift-up" are all valid samples of event names to accept.

Implementing an abstraction layer for
supporting multiple input methods

In this recipe we are going to rework the code produced in Handling keyboard and mouse
input. We are going to add an abstraction layer to the input handling sections of our code to
hide away the specifics of the input device being used. This means that the gameplay code
that controls animation and movement of the panda will not be handling any specific keys
being pressed. Instead, there will be just a set of unified events for the actions the panda
should be able to perform.

The reason for adding such a layer can already be found in the title of this recipe. We want to
generalize our gameplay code to be able to support more input devices than just the classic
keyboard and mouse combination. Further down in this chapter we will use this approach
to add gamepad support to our demo, for example. We could also use the approach of this
recipe as a starting point for implementing artificial intelligence for a game—why not let the AI
controlled bots use a virtual gamepad, keyboard, or mouse to send the same commands as
a human player would do?

Not only will this approach open new possibilities like the ones just stated, it will also make
the character and gameplay handling code a bit shorter and easier to comprehend.

Getting ready
Although this recipe can be finished on its own, it is recommended to follow and understand
the first recipe in this chapter before proceeding. This will help you to better understand
the benefits of adding an abstraction layer to your input handling code. Also note that the
following code will be discussed further based on the recipe Handling keyboard and mouse
input dealing with keyboard and mouse input.

Chapter 11

253

How to do it...
To finish this recipe, complete the tasks below:

1.	 Add a new file called InputHandler.py and insert the following code:
from direct.showbase.DirectObject import DirectObject
from panda3d.core import *

class InputHandler(DirectObject):
 def __init__(self):
 DirectObject.__init__(self)

 self.walk = False
 self.reverse = False
 self.left = False
 self.right = False

 taskMgr.add(self.updateInput, "update input")

 def beginWalk(self):
 messenger.send("walk-start")
 self.walk = True

 def endWalk(self):
 messenger.send("walk-stop")
 self.walk = False

 def beginReverse(self):
 messenger.send("reverse-start")
 self.reverse = True

 def endReverse(self):
 messenger.send("reverse-stop")
 self.reverse = False

 def beginTurnLeft(self):
 self.left = True

 def endTurnLeft(self):
 self.left = False

 def beginTurnRight(self):
 self.right = True

 def endTurnRight(self):
 self.right = False

Input Handling

254

 def dispatchMessages(self):
 if self.walk:
 messenger.send("walk", [-0.1])
 elif self.reverse:
 messenger.send("reverse", [0.1])

 if self.left:
 messenger.send("turn", [0.8])
 elif self.right:
 messenger.send("turn", [-0.8])

 def updateInput(self, task):
 return task.cont

2.	 Add another new file and name it KeyboardMouseHandler.py. Open it and
implement the following class:
from InputHandler import InputHandler
from panda3d.core import *

class KeyboardMouseHandler(InputHandler):
 def __init__(self):
 InputHandler.__init__(self)

 base.disableMouse()
 props = WindowProperties()
 props.setCursorHidden(True)
 base.win.requestProperties(props)

 self.accept("escape", exit)
 self.accept("w", self.beginWalk)
 self.accept("w-up", self.endWalk)
 self.accept("s", self.beginReverse)
 self.accept("s-up", self.endReverse)
 self.accept("a", self.beginTurnLeft)
 self.accept("a-up", self.endTurnLeft)
 self.accept("d", self.beginTurnRight)
 self.accept("d-up", self.endTurnRight)

 taskMgr.add(self.updateInput, "update input")

 def resetMouse(self):
 cx = base.win.getProperties().getXSize() / 2
 cy = base.win.getProperties().getYSize() / 2
 base.win.movePointer(0, cx, cy)

Chapter 11

255

 def updateInput(self, task):
 if base.mouseWatcherNode.hasMouse():
 messenger.send("turn", [-base.mouseWatcherNode.
getMouseX() * 10])

 self.resetMouse()
 self.dispatchMessages()

 return task.cont

3.	 Open Application.py and replace its contents with the following source code:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from FollowCam import FollowCam
from KeyboardMouseHandler import KeyboardMouseHandler

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)

 self.followCam = FollowCam(self.cam, self.panda)

 self.keyInput = KeyboardMouseHandler()
 self.accept("walk-start", self.beginWalk)
 self.accept("walk-stop", self.endWalk)
 self.accept("reverse-start", self.beginReverse)
 self.accept("reverse-stop", self.endReverse)
 self.accept("walk", self.walk)
 self.accept("reverse", self.reverse)
 self.accept("turn", self.turn)

 def beginWalk(self):
 self.panda.setPlayRate(1.0, "walk")
 self.panda.loop("walk")

Input Handling

256

 def endWalk(self):
 self.panda.stop()

 def beginReverse(self):
 self.panda.setPlayRate(-1.0, "walk")
 self.panda.loop("walk")

 def endReverse(self):
 self.panda.stop()

 def walk(self, rate):
 self.panda.setY(self.panda, rate)

 def reverse(self, rate):
 self.panda.setY(self.panda, rate)

4.	 Launch the program. If nothing about the input response has changed, you did
just fine!

How it works...
In this recipe we moved the event handling methods, the movement flags, and the updating
task to the InputHandler class. In this class, we implement the general parts of the input
system. It acts as an abstraction layer between the game code and the input handling code,
translating input device events to generalized, device-agnostic events.

The KeyboardMouseHandler class shows us one of the benefits of this architecture, as
it only contains device specific code. Instead of having to deal with one big piece of code
as before, we have now moved this part of the implementation in a separate, concise, and
easy to understand class. This way writing implementations for new devices only requires
wiring events to the appropriate handling functions and providing an implementation of
updateInput() that at least calls dispatchMessages().

With this change, we now are able to add support for new input devices without having to
touch gameplay code. In fact, the gameplay logic has become completely independent from
how input is generated. Here we added a handler for keyboard and mouse, but we might as
well add support for joysticks and gamepads, as can be seen in the recipe Handling input
from an Xbox 360 controller found in this chapter.

Finally, we can take a look at our cleaned up implementation of the Application class.
First we need to create an instance of our KeyboardMouseHandler class (or any other
device-specific derived implementation of the InputHandler class). We then just need
to register and implement a few event handlers for the device-independent messages and
that's it!

Chapter 11

257

Handling input from an Xbox 360 controller
Having been sold together with millions of Xbox 360 game consoles, the Xbox 360 controller
is one of the most widespread and well-known types of input devices for gamers. But it is not
only console gamers who are able to use this kind of controller as it can easily be plugged into
a Windows PC too. Apart from the device being recognized by the operating system, many
PC games are officially supporting the Xbox 360 controller as a possible input device.

In case you want to create a game with support for this gamepad, this recipe is for you.
But also if you intend to support any other type of joystick or game controller you will find
interesting resources ahead because the API you are going to use is not bound to any device
in particular. Nonetheless, this recipe will show you how to read data from the Xbox 360
controller's analog sticks and buttons, and will provide you with a minimal class that maps
the raw button and axis indices to more meaningfully named variables.

Getting ready
This recipe builds upon the code and knowledge presented in the recipe Implementing an
abstraction layer for supporting multiple input methods. Before going on, you are required to
follow and understand that recipe!

Additionally, as Panda3D does not have built-in support for analog input devices like joysticks
and gamepads, you need to add the pygame programming library to your installation of the
Panda3D engine:

1.	 Start your web browser and go to www.pygame.org/download.shtml.

2.	 Scroll down the page until you find the following list of download links:

Input Handling

258

3.	 Download the file pygame-1.9.1.win32-py2.6.msi. The version number might
not match. In that case watch out for the -py2.6 postfix in the filename.

4.	 Launch the installer and click Next until you reach the following step of the
install wizard:

5.	 Make sure the directory actually is the python subdirectory of your Panda3D
installation. The screenshot shows the default installation path.

6.	 Finish the installation and you are ready to go.

How to do it...
Let's write some code for handling gamepad input:

1.	 Add a new source file called XboxControllerHandler.py and insert the
following code:
from panda3d.core import *
import pygame
import math

class XboxControllerState:
 A = 0
 B = 1
 X = 2
 Y = 3
 LB = 4
 RB = 5

Chapter 11

259

 BACK = 6
 START = 7
 LS = 8
 RS = 9

 def __init__(self, joy):
 self.joy = joy
 self.leftStick = Vec2()
 self.rightStick = Vec2()
 self.dpad = Vec2()
 self.triggers = 0.0
 self.buttons = [False] * self.joy.get_numbuttons()

 def update(self):
 self.leftStick.setX(self.joy.get_axis(0))
 self.leftStick.setY(self.joy.get_axis(1))
 self.rightStick.setX(self.joy.get_axis(4))
 self.rightStick.setY(self.joy.get_axis(3))
 self.triggers = self.joy.get_axis(2)

 for i in range(self.joy.get_numbuttons()):
 self.buttons[i] = self.joy.get_button(i)

2.	 Add the XboxControllerHandler class below the code of
XboxControllerState:
class XboxControllerHandler(InputHandler):
 def __init__(self):
 InputHandler.__init__(self)

 self.wasWalking = False
 self.wasReversing = False
 self.controller = None

 pygame.init()
 pygame.joystick.init()

 for i in range(pygame.joystick.get_count()):
 joy = pygame.joystick.Joystick(i)
 name = joy.get_name()

 if "Xbox 360" in name or "XBOX 360" in name:
 joy.init()
 self.controller = joy
 self.state = XboxControllerState(joy)

 taskMgr.add(self.updateInput, "update input")

Input Handling

260

 def updateInput(self, task):
 pygame.event.pump()

 if self.controller:
 self.state.update()

 x = self.state.rightStick.getX()
 y = self.state.leftStick.getY()

 if y < -0.5 and not self.wasWalking:
 self.wasWalking = True
 self.beginWalk()
 elif not y < -0.5 and self.wasWalking:
 self.wasWalking = False
 self.endWalk()
 elif y > 0.5 and not self.wasReversing:
 self.wasReversing = True
 self.beginReverse()
 elif not y > 0.5 and self.wasReversing:
 self.wasReversing = False
 self.endReverse()

 if math.fabs(x) > 0.2:
 messenger.send("turn", [-x])

 self.dispatchMessages()
 return task.cont

3.	 Open Application.py and add the highlighted line to the constructor of the
Application class:
self.keyInput = KeyboardMouseHandler()
self.xboxInput = XboxControllerHandler()

4.	 Start the application and control the panda using the left analog stick for moving
forward and backward and the right stick for turning left and right.

How it works...
In the constructor of the XboxControllerHandler class we can see the pygame library
and its joystick module being initialized before we iterate over all connected devices to
see if we can find an Xbox 360 controller. If this routine is successful, a new instance of
XboxControllerState is created.

Chapter 11

261

This class is a container for storing the state of an Xbox 360 controller and provides easier
access to the controller data than using numeric indices. The class' leftStick and
rightStick variables store the state of the two analog sticks, while dpad and triggers
store the states of the cross-shaped directional pad and the analog triggers on the back of the
controller. Data about the various buttons on the controller being up or down can be accessed
using the buttons list. To make accessing these buttons easier, the A, B, X, and other class
variables, found right under the class declaration, can be used to address buttons by name
rather than by a numeric index.

This leaves the updateInput() method of the XboxControllerHandler class open
for discussion. Here, we keep the internal message loop of pygame running by calling
pygame.event.pump(). Handling the input for walking forwards and backwards requires
special care as we are degrading the left analog stick to a binary control scheme. We do not
care how far the stick was pushed forward. Instead, we just set a flag based on whether the
stick has been moved forward or backward.

Because we are not receiving any events for when an analog stick has become active, we
need to take care of detecting this case ourselves. Therefore we need to store and check if
we were not walking or reversing before any of the -start events are triggered. The same
applies for the -stop events, where we need to determine if we were in a walking or reversing
state, respectively.

The data read from the analog sticks on the Xbox 360 controller does not just simply go
back to zero if they are centered. Instead, we receive a lot of noise from the controller. This
is the reason why the turn event is starting to be triggered after the controller was moved
more than 20% of the way towards one direction, or else the panda would be twitching
uncontrollably and never stand still. We apply this low-cut filter in the code using the
conditional expression if math.fabs(x) > 0.2.

Recording and simulating user input
In this recipe you will learn how to record the stream of user inputs and replay it at a later
point. This can be useful in several areas of game development, such as playtesting and AI.

While testing a game, you could capture all of the playtesters' actions, for example. If a bug is
encountered, the data file containing the input that led to a crash or unintended behavior can
then be attached to the bug report so that a programmer is able to easily reproduce the steps
that led to the problem and fix it.

Apart from being able to save input streams for reproducing bugs, this data could also be
used to automate playtesting. You have to realize that testing a game means playing the same
section of it over and over again, just to make sure everything works properly. To relieve your
testers from this repetitive kind of work, using a technique similar to the one shown here
could enable them to record a stream of interactions once for every test case. This way, as
long as there are no fundamental changes to the level or the gameplay, testers would just
need to hit "play" and wait for unexpected things to happen.

Input Handling

262

Prerecorded input could also be used as a starting point for computer controlled opponents.
You could, for example, record the input of several hundred players and let the AI toggle
between these command streams or just parts of them. This will of course not work for every
game and might not be convincing enough, but a fake AI is still better than no AI if you didn't
implement that part of your game yet.

Getting ready
We will use the recipe Implementing an abstraction layer for supporting multiple input
methods found in this chapter as the base for this sample (Handling input from an Xbox
360 controller works too). If you haven't read and implemented it yet, take a step back
and complete that recipe first!

How to do it...
The following steps are necessary for recording and simulating user input:

1.	 Create a new source file. Name it InputRecorder.py and insert the code
found below:
from direct.showbase.DirectObject import DirectObject
from panda3d.core import *

class InputRecorder(DirectObject):
 def __init__(self):
 DirectObject.__init__(self)
 self.events = []
 self.setupEvents()

 def setupEvents(self):
 self.startTime = globalClock.getFrameTime()
 del self.events[:]
 self.accept("walk-start", self.recordEvent, ["walk-
start"])
 self.accept("walk-stop", self.recordEvent, ["walk-stop"])
 self.accept("reverse-start", self.recordEvent, ["reverse-
start"])
 self.accept("reverse-stop", self.recordEvent, ["reverse-
stop"])
 self.accept("walk", self.recordEvent, ["walk"])
 self.accept("reverse", self.recordEvent, ["reverse"])
 self.accept("turn", self.recordEvent, ["turn"])

 def replay(self):
 self.ignoreAll()
 self.acceptOnce("replay-done", self.setupEvents)
 last = 0

Chapter 11

263

 for e in self.events:
 taskMgr.doMethodLater(e[0], self.createInput,
"replay", extraArgs = [e[1], e[2]])
 last = e[0]
 taskMgr.doMethodLater(last + 1, messenger.send, "replay
done", extraArgs = ["replay-done"])

 def recordEvent(self, name, rate = 0):
 self.events.append((globalClock.getFrameTime() - self.
startTime, name, rate))

 def createInput(self, event, rate):
 if not event in ["walk", "reverse", "turn"]:
 messenger.send(event)
 else:
 messenger.send(event, [rate])

2.	 Open Application.py and add these two calls to the constructor:
self.rec = InputRecorder()
self.accept("r", self.startReplay)

3.	 Add these two methods to the Application class:
 def startReplay(self):
 self.acceptOnce("replay-done", self.replayDone)
 messenger.send("walk-stop")
 messenger.send("reverse-stop")
 self.panda.clearTransform()
 self.rec.replay()

 def replayDone(self):
 self.panda.clearTransform()
 messenger.send("walk-stop")
 messenger.send("reverse-stop")

4.	 Start the sample. Walk around a bit, then press the R key to see a replay of
your actions.

How it works...
Our record and replay implementation is really simple. The InputRecorder class just adds
additional event listeners for the input commands. But instead of moving an actor around the
scene, it appends the command and its argument to a list. We also store the time the event
occurred relative to the start time of the recording. This is enough for accurately reproducing
player actions in the right order and with the correct timing.

Input Handling

264

When replaying, we first reset all transformations and stop playing animations. Then we queue
up calls to the createInput() method, which is used to send movement commands, just as
a normal input device would do. In fact, what we created here is a virtual game controller.

Finally, when the playing of the recording has finished, we reset the scene again and get ready
to save another stream of user commands.

Reading audio data from a microphone
Microphones and audio processing have become a fixed part of game development, not only
for music and singing games, but also for team based action and strategy titles, which require
multiple players to coordinate their actions in order to succeed. It doesn't matter whether you
want to make your game voice controlled, detect the pitch of someone singing or implement
a voice chat, you will almost always need to get access to an audio device. In this short
recipe, you will learn how to open an audio source for recording and do some simple signal
processing on the received audio data.

Getting ready
Set up a new Panda3D Python project as shown in Setting up the game structure found in
Chapter 1 before going on with this recipe.

How to do it...
Complete these tasks to enable and handle input from a microphone:

1.	 Open Application.py and replace its contents with the following code:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
import audioop

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.addSmiley()
 self.addGround()
 self.setupMicrophone()
 self.cam.setPos(0, -50, 10)

 def setupMicrophone(self):
 for i in range(MicrophoneAudio.getNumOptions()):
 print i, MicrophoneAudio.getOption(i)

Chapter 11

265

 if MicrophoneAudio.getNumOptions() > 0:
 index = raw_input("choose device: ")
 opt = MicrophoneAudio.getOption(0)
 self.cursor = opt.open()
 taskMgr.add(self.update, "update audio")

 def addSmiley(self):
 self.smiley = loader.loadModel("smiley")
 self.smiley.reparentTo(render)
 self.smiley.setZ(10)

 def addGround(self):
 cm = CardMaker("ground")
 cm.setFrame(-500, 500, -500, 500)
 ground = render.attachNewNode(cm.generate())
 ground.setColor(0.2, 0.4, 0.2)
 ground.lookAt(0, 0, -1)

 def update(self, task):
 if self.cursor.ready() >= 16:
 data = self.cursor.readSamples(self.cursor.ready())
 rms = audioop.rms(data, 2)
 minmax = audioop.minmax(data, 2)
 intensity = float(rms) / 32767.0
 self.win.setClearColor(Vec4(intensity, intensity,
intensity, 1))
 print rms, minmax

 currentZ = self.smiley.getZ()
 self.smiley.setZ(currentZ - 0.3 + intensity)

 if self.smiley.getZ() <= 1:
 self.smiley.setZ(1)

 return task.cont

Input Handling

266

2.	 Start the program. The window background color will get closer to white and the
smiley will start to lift off the ground as you provide louder input:

How it works...
To open an audio recording device for reading data in Panda3D we have to retrieve a cursor
object of the type MovieAudioCursor. For this, we choose a device option and open it. In
Panda3D's MicrophoneAudio API terminology, an option describes a combination of input
device, jack, channel, and sampling rate. First, we print a list of all available options. Then we
create a console prompt that asks for the number of the device to use.

To read raw audio data from the recording device, we need to continuously poll the cursor,
checking if enough samples have been buffered. To access the audio data we use the
readSamples() method. This returns a string of audio bytes, which we can directly use
for some simple audio processing.

Using the audioop module that is part of the Python programming libraries, we calculate
the root mean square of the audio signal. This is used for getting the power of the signal,
which means you will get lower values when whispering into the microphone and higher ones
when screaming and shouting. We just use the root mean square to create a very simple
visualization of input loudness, but we could also use it to encourage players of a karaoke
game to sing louder or do some simple beat detection for audio visualizations by watching
how this value changes over time.

For a more thorough analysis of the input data, we would need fast Fourier transforms,
among other techniques. An efficient and easy to use implementation of fast Fourier
transforms can be found in the NumPy library, for example, which can be downloaded
for free from numpy.scipy.org.

Chapter 11

267

Reading video data from a webcam
Using a live camera feed opens new and interesting possibilities for video games: Motion
controlled games require players to get off the couch and use their whole bodies. Or why not
add a video chat feature to enhance the presentation of player-to-player communication?
Seeing your opponents face could even become a gameplay feature, for instance, an online
poker game could greatly benefit from this. What about a game where players are taking
turns in making stupid faces while their opponent tries not to smile or laugh at it? Detection
of facial expressions works quite well and in the case of the last example, will detect even
the slightest smirk!

Developing game ideas for camera-based video games is very interesting and great fun,
especially when your game involves doing funny faces or flapping your arms frantically. But
behind the pleasure of these games, there's always a technical side to it, which you will get to
know over the course of this recipe. After you worked your way through it, you will be able to
set up Panda3D to use a live video stream from a webcam and display it in your application.

Getting ready
To be able to work through this recipe, you need two things:

ff First, a new project skeleton as described in Chapter 1.

ff Second, you need to have a webcam connected to your computer.

How to do it...
Panda3D can read a video stream from a webcam if you follow these steps:

1.	 Open Application.py and replace its contents with the code that follows:
from direct.showbase.ShowBase import ShowBase
from panda3d.core import *
from panda3d.vision import *

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)

 for i in range(WebcamVideo.getNumOptions()):
 print WebcamVideo.getOption(i)

 if WebcamVideo.getNumOptions() > 0:
 opt = WebcamVideo.getOption(0)
 self.cursor = opt.open()
 self.tex = Texture()
 self.cursor.setupTexture(self.tex)

Input Handling

268

 cm = CardMaker("plane")
 cm.setFrame(-1, 1, -1, 1)
 plane = render2d.attachNewNode(cm.generate())
 plane.setTexture(self.tex)

 scaleX = float(self.cursor.sizeX()) / float(self.tex.
getXSize())
 scaleY = float(self.cursor.sizeY()) / float(self.tex.
getYSize())
 plane.setTexScale(TextureStage.getDefault(),
Vec2(scaleX, scaleY))

 taskMgr.add(self.update, "update video")

 def update(self, task):
 if self.cursor.ready():
 self.cursor.fetchIntoTexture(0, self.tex, 0)
 return task.cont

2.	 Start the application. Your webcam should turn on and the live video feed should be
displayed in the program window:

How it works...
If you already happened to have read the recipe on recording and using audio data found in
this chapter, the code might seem very familiar—you choose an option, which is a combination
of input device and recording resolution, and open a cursor to it that allows controlling and
accessing the input data.

Chapter 11

269

Additionally, you need to provide and setup a Texture object that will hold the recorded video
images. Because Panda3D tries to use textures with edge lengths that are a power of two,
you need to rescale the texture coordinates of the object the texture will be applied to. If you
do not do this, you will see a stretched image that is surrounded by black bars, because your
640x480 video stream, for example, will be fitted into a texture that is 1024x512.

There's more...
This is a very basic sample. If you need to process the image data or do some analysis on it
to detect motion, faces or colors, you should always think about using shaders, as they are the
most efficient tool for the job. Take a look at Chapter 4, Scene Effects and Shaders if you want
to know how to write and apply shader programs!

Reading input data from a network
In this recipe you will learn how to remotely control an actor by sending commands over a
network. This is a very common usage scenario in AI simulations, for example. In many of
these simulations one central server program is used for visualizing the current simulation
state. Each of the simulated entities is processed on a dedicated computer that connects
to the server to send commands for altering the state of the simulation.

The following instructions will teach you how to build such a setup using Panda3D. The client
part of this application will send text strings to the server side. The server will then interpret
these strings as movement commands for an actor placed in a simple scene.

Getting ready
To be able to complete this recipe, you need to set up a new project according to the steps
presented in the Chapter 1 article Setting up the game structure. Additionally, you need the
FollowCam class from the recipe Making the camera smoothly follow an object found in
Chapter 2 as well as the InputHandler class described in Implementing an abstraction
layer for supporting multiple input methods, which can be found in this chapter. Copy the
files FollowCam.py and InputHandler.py to the src subdirectory of your project.

This recipe also assumes that you have worked your way through Sending and receiving
custom datagrams in Chapter 9, Networking. Some of the code presented in the article will be
reused and altered slightly in the following steps. If you haven't yet read said recipe, this might
be the right time to do so.

Input Handling

270

How to do it...
This recipe consists of the following tasks:

1.	 Implement the classes responsible for sending and receiving in a new source file
called NetClasses.py:
from panda3d.core import *
from direct.distributed.PyDatagram import PyDatagram
from direct.distributed.PyDatagramIterator import
PyDatagramIterator
from random import choice

class NetCommon:
 def __init__(self, protocol):
 self.manager = ConnectionManager()
 self.reader = QueuedConnectionReader(self.manager, 0)
 self.writer = ConnectionWriter(self.manager, 0)
 self.protocol = protocol

 taskMgr.add(self.updateReader, "updateReader")

 def updateReader(self, task):
 if self.reader.dataAvailable():
 data = NetDatagram()
 self.reader.getData(data)
 reply = self.protocol.process(data)

 if reply != None:
 self.writer.send(reply, data.getConnection())

 return task.cont

class Server(NetCommon):
 def __init__(self, protocol, port):
 NetCommon.__init__(self, protocol)
 self.listener = QueuedConnectionListener(self.manager, 0)
 socket = self.manager.openTCPServerRendezvous(port, 100)
 self.listener.addConnection(socket)
 self.connections = []

 taskMgr.add(self.updateListener, "updateListener")

 def updateListener(self, task):
 if self.listener.newConnectionAvailable():
 connection = PointerToConnection()

Chapter 11

271

 if self.listener.getNewConnection(connection):
 connection = connection.p()
 self.connections.append(connection)
 self.reader.addConnection(connection)
 print "Server: New connection established."

 return task.cont

class Client(NetCommon):
 def __init__(self, protocol):
 NetCommon.__init__(self, protocol)

 def connect(self, host, port, timeout):
 self.connection = self.manager.openTCPClientConnection(hos
t, port, timeout)
 if self.connection:
 self.reader.addConnection(self.connection)
 print "Client: Connected to server."

 def send(self, datagram):
 if self.connection:
 self.writer.send(datagram, self.connection)

 def start(self):
 data = PyDatagram()
 data.addUint8(0)
 data.addString("hi")
 self.send(data)

class Protocol:
 def printMessage(self, title, msg):
 print "%s %s" % (title, msg)

 def buildReply(self, msgid, data):
 reply = PyDatagram()
 reply.addUint8(msgid)
 reply.addString(data)
 return reply

 def process(self, data):
 return None

class ServerProtocol(Protocol):
 def process(self, data):

Input Handling

272

 it = PyDatagramIterator(data)
 msgid = it.getUint8()

 if msgid == 0:
 pass
 elif msgid == 1:
 command = it.getString()
 self.printMessage("new command:", command)
 messenger.send(command)

 return self.buildReply(0, "ok")

class ClientProtocol(Protocol):
 def __init__(self):
 self.lastCommand = globalClock.getFrameTime()
 self.commands = ["net-walk-start",
 "net-walk-stop",
 "net-left-start",
 "net-left-stop",
 "net-right-start",
 "net-right-stop"]

 def process(self, data):
 time = globalClock.getFrameTime()
 if time - self.lastCommand > 0.5:
 self.lastCommand = time
 return self.buildReply(1, choice(self.commands))
 else:
 return self.buildReply(0, "nop")

2.	 Next, create another new source file called NetworkHandler.py. Implement the
network input handler in the newly created file:
from InputHandler import InputHandler
from panda3d.core import *

class NetworkHandler(InputHandler):
 def __init__(self):
 InputHandler.__init__(self)

 self.accept("net-walk-start", self.beginWalk)
 self.accept("net-walk-stop", self.endWalk)
 self.accept("net-left-start", self.beginTurnLeft)
 self.accept("net-left-stop", self.endTurnLeft)
 self.accept("net-right-start", self.beginTurnRight)

Chapter 11

273

 self.accept("net-right-stop", self.endTurnRight)

 taskMgr.add(self.updateInput, "update network input")

 def updateInput(self, task):
 self.dispatchMessages()
 return task.cont

3.	 Open Application.py and extend the Application class implementation:
from direct.showbase.ShowBase import ShowBase
from direct.actor.Actor import Actor
from panda3d.core import *
from FollowCam import FollowCam
from NetworkHandler import NetworkHandler
from NetClasses import Server, Client, ServerProtocol,
ClientProtocol

class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.setupScene()
 self.setupInput()
 self.setupNetwork()

 def setupScene(self):
 self.world = loader.loadModel("environment")
 self.world.reparentTo(render)
 self.world.setScale(0.5)
 self.world.setPos(-8, 80, 0)

 self.panda = Actor("panda", {"walk": "panda-walk"})
 self.panda.reparentTo(render)
 self.followCam = FollowCam(self.cam, self.panda)

 def setupInput(self):
 self.netInput = NetworkHandler()
 self.accept("walk-start", self.beginWalk)
 self.accept("walk-stop", self.endWalk)
 self.accept("reverse-start", self.beginReverse)
 self.accept("reverse-stop", self.endReverse)
 self.accept("walk", self.walk)
 self.accept("reverse", self.reverse)
 self.accept("turn", self.turn)

Input Handling

274

 def setupNetwork(self):
 server = Server(ServerProtocol(), 9999)
 client = Client(ClientProtocol())
 client.connect("localhost", 9999, 3000)
 client.start()

 def beginWalk(self):
 self.panda.setPlayRate(1.0, "walk")
 self.panda.loop("walk")

 def endWalk(self):
 self.panda.stop()

 def beginReverse(self):
 self.panda.setPlayRate(-1.0, "walk")
 self.panda.loop("walk")

 def endReverse(self):
 self.panda.stop()

 def walk(self, rate):
 self.panda.setY(self.panda, rate)

 def reverse(self, rate):
 self.panda.setY(self.panda, rate)

 def turn(self, rate):
 self.panda.setH(self.panda, rate)

4.	 Finally, press F6 to launch the program. You should be able to see a panda wander
around randomly in a simple background scene:

Chapter 11

275

How it works...
We start this recipe by implementing our networking layer. This is mostly taken from
Chapter 9, but not without a few notable alterations to the communication protocol.

In our custom network protocol, we distinguish between two general message types, indicated
by a numerical ID sent along with every command string. A message ID of 0 indicates an
internal command, while an ID of 1 stands for a movement command.

After the client establishes a connection, it sends the internal command "hi" to start
the conversation between the two hosts. The server then sends the reply "hi" to signal it
has successfully received a command. In fact, the server acknowledges every command it
receives by sending this reply to request further data.

Every 0.5 seconds, the client sends a random command string out of the possible movement
commands stored in self.commands. When the server receives such a command with
message ID 1, it uses Panda3D's messaging system to create a new event named after
the command. This is where the NetworkHandler class we implemented in step 2 comes
into play.

NetworkHandler is derived from the InputHandler class to create a new input handling
implementation for network commands. We implement this class to listen for the messages
the server side protocol dispatches when it receives a new command from the client.
Whenever a new movement command arrives, the NetworkHandler class translates it
to the common input message format implemented previously in the recipe Implementing
an abstraction layer for supporting multiple input methods.

This leaves us with the Application class. Here we set up the scene and the networking
layer. Additionally, we implement methods for handling incoming input messages that make
the panda move around the scene.

12
Packaging and

Distribution

In this chapter, we will cover:

ff Packing assets into multifiles

ff Creating a redistributable game package

ff Advanced package creation and hosting

ff Embedding a game into a website

ff Using website and plugin interoperability

Introduction
Besides the effort of developing an idea, getting the game design down to a point where it is
great fun and actually producing all the code and assets we need, there's another thing we
need to think about—how do we get our product into the hands of our customers? One way
would of course be to just give them this huge pile of code, models, textures, sounds, and
whatever else makes up our games, along with a manual for setting up the environment and
dependencies. And while this is a tempting approach that spares us some work, we simply
cannot do this to players who just want to play our games.

This is why we need to find a way to bundle up all the scripts and assets that make up our
games and provide the end users with something along the lines of a button that says "click
here to start playing".

If we make games available for download, we also want the file sizes to be small. While
broadband internet connections may be fast, cheap, and widely available, costs for server
traffic can easily get out of hand (and out of our budgets) if a million people happen to
download our three and a half gigabytes of gaming awesomeness.

Packaging and Distribution

278

Illegal ripping and reuse of game assets does happen and is not in the best interest of game
developers. Developers can make some assets free to copy and reuse, but that should be
their choice. People creating nude patches or changing a game's behavior in an unintended
way could cause us, as developers, some headaches. Therefore, protecting assets from
misuse is an important part of game development and release.

The Panda3D SDK contains tools that provide solutions to these problems. In this chapter,
we will see how we can make it easier for players to get and play our games. We will package
our assets into container files. We will make our data harder to tamper with. We will make
downloads faster by using data compression.

Packing assets into multifiles
If you take the time to browse through the folders of nearly any game that's installed on your
hard drive, you will see lots of files with interesting extensions: mpq, pk3, dat, upk, and so on.
What you most likely will not find are images, models, sounds, or scripts. But then you start
the game and everything appears on the screen and runs perfectly fine—why is that?

As you may have already guessed, it has something to do with these strange files that are
carrying even stranger name suffixes. These files are containers, hiding away the game
resources from the end user. Basically, they are similar to ZIP or RAR archives. Most of them
are using a proprietary file format that sometimes even resembles a small file system, just as
it might be implemented in an operating system.

Besides the obfuscation of resources, such file containers provide at least two more very
important advantages over distributing assets openly. The first one concerns the installation
process: The setup program only has to copy a few large container files compared to
transmitting hundreds or even thousands of small to medium sized files. This can speed
up the process of copying files by a substantial amount.

The design of the game engine consuming these files is the other reason. Containers allow
developers to store game assets in an optimized form and order that makes them easier and
faster to load and process at runtime, possibly decreasing loading time and increasing the
game's performance.

Panda3D provides the right tools and built-in features for creating and loading container files.
In the terminology of this engine, they are called multifiles and the following steps will show
you how to work with them.

Getting ready
This recipe extends upon the code created in Loading models and actors found in Chapter 2,
Creating and Building Scenes. Please review said recipe before going on.

Chapter 12

279

Additionally, you have to copy the files panda-walk.egg.pz, panda.egg.pz, and teapot.
egg.pz from C:\Panda3D-1.7.0\models to the models subdirectory of your project
directory tree.

How to do it...
Let's create a sample program:

1.	 Additional to the existing import statements at the top of Application.py, make
sure to have the following lines:
from panda3d.core import *
import glob
import os
import os.path

2.	 Add the following lines of code to the constructor of the Application class directly
after the call to ShowBase.__init__(self):

mf = Multifile()
mf.openWrite(Filename("../models/models.mf"))

for f in glob.iglob("../models/*.egg.pz"):
 filename = os.path.split(f)[1]
 mf.addSubfile(filename, Filename(f), 9)

mf.repack()
mf.close()

fs = VirtualFileSystem.getGlobalPtr()
fs.mount(Filename("../models/models.mf"), ".", VirtualFileSystem.
MFReadOnly)

How it works...
The preceding code actually combines two steps that are normally not found within the
same program.

The first step, which we would normally put inside a build script, is to build the multifile—to
add files to the container. We are using a Multifile object to add so-called subfiles to the
multifile. The addSubfile() method is the key point here. The first parameter is the name
the added file will be accessible as inside the multifile. The second parameter is the full path
to the file that is to be added. The third parameter sets the compression level.

Packaging and Distribution

280

The multifile libraries and tools of Panda3D are able to compress and decompress files
contained in a multifile on the fly, as they are added at build time and loaded at runtime. This
can help to keep the size of a game's distribution package small, and also provides a simple
form of obfuscation. When working with multifiles, use 0 for no compression at all and 9 for
the highest level of minimization. Choosing a higher compression level will keep package
sizes small, but in exchange we must accept that creating these packages will take more
time to finish.

Before we are done creating the multifile and close it, we need to repack()our container
file. A multifile contains an index that stores the names and offsets of the subfiles. Repacking
reorders this index, and makes sure all metadata and subfile content is in the proper place.
We must not forget this step to ensure that the engine will be able to load data from
the multifile.

The second part of working with multifiles happens in the last two lines shown in the
previous code. Here we mount the contents of the multifile into the root folder of Panda3D's
virtual file system, which makes it possible to transparently access all of the files found within
the container.

There's more…
There are a few more things you can do with multifiles.

Updating a subfile
During development, you will repack your assets over and over again. The following method
call will only add a subfile if it is different from the one already present in the multifile. This
may help you to decrease the time needed to regenerate asset containers.

mf = Multifile()
mf.updateSubfile(internalName, Filename(fullPath), compressionLevel)

Extracting a subfile
Subfiles can also be extracted from a multifile like this:

mf = Multifile()
index = mf.findSubfile(internalName)
mf.extractSubfile(index, Filename(fullPath))

Encrypting subfiles
To protect your data, you can encrypt subfiles on a per-file basis. After calling the two following
methods, all subsequent reads or writes will decrypt and encrypt subfiles respectively. Similar
to using compression, encoding, and decoding your data using an encryption algorithm
requires additional CPU resources. Also note that Panda3D uses the same key for encrypting
as well as decrypting data. This means that the password required for accessing multifile

Chapter 12

281

data needs to be stored somewhere in your code, exposing it to possible reverse-engineering
attacks. This kind of encryption should be seen as a time-consuming obstacle to be put in the
way of attackers. It makes accessing the data harder, but not impossible.

mf = Multifile()
mf.setEncryptionFlag(True)
mf.setEncryptionPassword("arewesafenow?")

Creating multifiles on the command line
The Panda3D SDK also includes a command line tool for working with multifiles. The following
line shows a possible way to invoke the program from the command prompt:

multify -c –z -9 -e -p pass -f models.mf panda.egg.pz panda-walk.egg.pz
teapot.egg.pz

This will create (-c) a new multifile called models.mf (-f), containing the subfiles panda.
egg.pz, panda-walk.egg.pz and teapot.egg.pz. The subfiles will be compressed
using the highest compression level (-z -9) and encrypted with the given password (-e -p
pass). The multify tool also has several other options and flags which can be viewed using the
command multify -h.

Note the .egg.pz file extension of the model files. These files are normal .egg files that were
compressed using pzip. You can unpack the raw .egg data using the punzip tool.

Creating a redistributable game package
Time is a precious resource, even in people's spare time. If a TV show isn't compelling after
seeing 3 seconds of it, we zap on to the next channel. If we don't like what we hear, we skip
to another song when listening to music.

The same principles apply to video games. But not only do games have to be compelling
and fun to keep players engaged—in the world of PC gaming we also need to provide an
uncomplicated experience for installing and launching a game. If players needed to do lots
of configuration work to get the game running, then that would drive off most of them from
actually playing it rather quickly.

To prevent this from happening and to make launching our games as easy as possible,
Panda3D gives us two things: The Panda3D Runtime and the Panda3D applet file that
packs an entire game into one file. All players need to do is install the runtime and
double-click the applet file.

This recipe will show you how to obtain the Panda3D Runtime and how to build a game
package for easy redistribution of your games.

Packaging and Distribution

282

Getting ready
This recipe requires some runtime components to be present to work. Open your browser and
download the Panda3D Runtime from the Panda3D website. The runtime download can be
found at www.panda3d.org/download.php?runtime. Then go to runtime.panda3d.
org, download the file packp3d.p3d and copy it to C:\Panda3D\bin.

You can use one of the samples found in this book or one of your personal projects as a
starting base for this recipe. As long as it is built after the project setup described in Setting
up the game structure found in Chapter 1 you are set and ready to go.

How to do it...
You can create and launch a redistributable game package like this:

1.	 Open main.py and change its contents to this:
from Application import Application

gameApp = Application()
gameApp.run()

2.	 Create a new batch file in the top-level directory of your project. Name it
deploy.bat.

3.	 Edit deploy.bat and insert the commands found below:
@echo off
mkdir deploy
xcopy /E /Y src* deploy
xcopy /E /Y models* deploy
xcopy /E /Y shaders* deploy
xcopy /E /Y sounds* deploy
packp3d -o pandagame.p3d -d deploy -r models
rmdir /S /Q deploy

4.	 Invoke deploy.bat from a command prompt or by double-clicking it. This step might
take a little time, as some additional components need to be downloaded.

5.	 Double-click the newly created pandagame.p3d file to launch your game. Before it
starts, you will most likely see the following screen while additional data and assets
are downloaded:

Chapter 12

283

How it works...
To fulfill the requirements of the p3d game package format and the Panda3D Runtime, we
first need to make a minimal change to main.py. Then we can go on to package our project.
The packp3d expects all files, assets as well as scripts, to be present in one folder, which is
why we copy all of our files to the temporary deploy directory.

Essentially, a p3d file is a special version of a multifile with a slightly different file header.
While multifiles are mainly used for packaging game assets, p3d files contain all files needed
to run a Panda3D based game. This includes assets as well as scripts and executables.
Multifiles are just containers, but p3d files can be launched using the Panda3D runtime.
Therefore they need to store some extra info to allow the engine to properly load and run
p3d packages. For example, the version of Panda3D used to create the package, the
application main file name as well as the names of referenced external packages are all
included in a p3d file.

When you double-click the p3d file, the Panda3D runtime starts up and mounts the file. The
engine then looks for a file called main.py and starts running the Python code found in it.
If our main file has a different name, we can pass it to packp3d using the -m parameter.

Packaging and Distribution

284

To close off the discussion, we take a look at what might be the most important parameter of
packp3d, which is -r. The initial Panda3D Runtime installation is very lightweight and does
not contain all components of the engine. Instead, it relies on game packages to reference
the various engine components. If a referenced package is not found in the local cache, or
a newer version is available, it is downloaded from runtime.panda3d.org, which is the
default package host.

This means that we have to use the -r parameter to add a reference for every package
we use. Without these references Panda3D assumes that we are only using the packages
included in the minimal runtime installer. So building a project using the default models
means appending -r models to the command. If we use sound, we need to add -r audio.
Using PhysX means an extra -r physx and so on.

Advanced package creation and hosting
In the previous recipe, Creating a redistributable game package, you learned about building
one monolithic container file that stores all of a game's code and assets. Of course, this
already made things simpler, as you only need to provide this one file and the information
that the Panda3D Runtime needs to be installed to run.

In this recipe, you will take things one step further. Instead of just putting everything into one
file, you will split your code and assets into two separate packages. You will be able to drop
the requirement of having to copy all data into one directory and additionally, you will learn
how to build these packages in a way that allows you to host them on the web using an HTTP
server. This will allow you to easily distribute games and the data they require. Additionally,
this will allow you to provide distinct packages containing game-specific data and others that
are filled with common libraries and resources. This way, code and assets shared across
multiple releases need to be downloaded only once, which helps in keeping client side
loading times smaller as well as keeping server system loads and bandwidth costs low.

After finishing this recipe you will be able to control the packaging process in a more detailed
way. This will allow you to further optimize the user experience and help you to save file
hosting bandwidth and traffic because they will only be downloading what they need.

Getting ready
Additional to the prerequisites of the recipe Creating a redistributable game package, you
need to download the file ppackage.p3d from runtime.panda3d.org and copy it into the
C:\Panda3D-1.7.0\bin directory.

Panda3D expects packages referenced by the main p3d file to be hosted on a web server.
Therefore you need to either set up a local web server or get some hosted webspace. There
are many free HTTP servers like HFS, Cherokee, or IIS Express, for example, that all allow you
to set up a simple web server very quickly.

Chapter 12

285

How to do it...
Follow the steps below:

1.	 Create a new file called deploy.pdef in the top-level directory of your project.

2.	 Open deploy.pdef and enter the following code. Make sure to replace the URL
with the one of your server:
from panda3d.core import *

packager.setHost("http://localhost:8000/")

class myresources(package):
 file(Filename("models/*"))
 file(Filename("shaders/*"))
 file(Filename("sounds/*"))

class pandagame(p3d):
 require("panda3d", "models", "myresources")
 config(display_name="My Game")
 dir("src")
 mainModule("main")

3.	 Open a command prompt window, navigate to your project's directory and enter
this command:
ppackage -i deploy deploy.pdef

4.	 The last command will create a new directory called deploy. Upload its entire
contents to your server.

5.	 Double-click pandagame.py. The Panda3D runtime should start, download all
necessary files, and then run your project. The following screen denotes the runtime
not being able to reach the server:

Packaging and Distribution

286

How it works...
Instead of pointing a tool to a directory containing all of our data, we write a package
definition file containing detailed information about the contents and name of each package.
The syntax of a .pdef file is based on Python and even allows a subset of the Python
language constructs, like importing modules or if conditionals. In a .pdef file, there are
two classes you derive from to create either multifile packages or p3d applet containers.
These two classes are package and p3d.

Within each of these classes, we use file() and dir() to add arbitrary files to a container
file. What's nice about these two is that the packaging tool is able to detect model files in
plain-text .egg format and automatically converts them into the more space and loading
time efficient .bam format, for example.

In our sample we also set a configuration variable and define the main module of our p3d
file using the self-explaining config() and mainModule() functions. Additionally, we must
not forget to add a call to require() inside our .p3d definition. This references an external
package—just like the running packp3d with the -r parameter flag.

There's more...
Before we are through with this recipe, there are just a couple of things you ought to know
when working with packages.

Working with modules
In this recipe we only created a game package and one containing asset. One thing that's
important to know additionally, though, is how to package Python modules. This enables us
to create libraries of common classes and functions the user has to download only once,
even though it might be used by multiple games.

There are two functions for working with modules: module() and excludeModule(). The
module() function will add a Python module and all of its dependencies to a package. If we
want to explicitly exclude a module from being included as a dependency, we add a call to
excludeModule(). This is used in the scripts building the Panda3D core runtime packages
to exclude the PhysX and ODE libraries to decrease the package size for example.

Creating patches
We created a new package using the ppackage tool in this recipe. But as it happens,
games change slightly over time as bugs in assets and the codes are fixed later after the
initial release.

Chapter 12

287

When hosting packages on a server, Panda3D makes sure it always uses the latest version of
all referenced applet and package files. But wouldn't it be a big waste of resources and time to
download the whole package all over again because one little thing has changed? Definitely!
And this is exactly what happens if we run ppackage for every patched release we make.

To overcome this problem and deliver updates more conveniently, Panda3D includes the
ppatcher tool. Simply run the following command line after the initial release and after you
are ready to distribute a new update (assuming our ppackage output is in a subdirectory
called deploy):

ppatcher -i deploy

This creates all the necessary files for patching data on the client side to the newest version,
only needing to transmit the data that has changed since the last version.

Embedding a game into a website
While providing a downloadable easy-to-run package of your game is a good step towards
making users happy, we can take this to the next level. Why require players to ever leave our
website? Why even bother them with downloading data to their hard disks where players,
need to find the file again before they are able to double-click to launch?

Minor nuisances, we might say. But the truth is that people might have already lost the will
to play a game after hitting the first few bumps in the road.

In this recipe, we take a look at how Panda3D allows us to embed games within websites.
This allows us to make many things easier for potential players. Using the web plugin, we
can create a website that just prompts players to press a button to launch the game without
leaving the site, or even the browser. If the plugin isn't installed on a player's system, it's no
problem either—we just forward her or him to the appropriate download page.

Online gaming websites have had great success with this operating model, so why shouldn't
we, too?

Getting ready
This recipe assumes you have read and followed the recipe Creating a redistributable game
package. Also be prepared to work with web technologies like JavaScript, HTML, and DOM.

The files DetectPanda3D.js and RunPanda3D.js are not part of the Panda3D SDK
distribution and are only located in the source code package. Be sure to download the source
code from www.panda3d.org to have the required files present on your system.

Packaging and Distribution

288

Adding to that, you will need a digital X.509 certificate in PEM format to sign your game
package. You can (and should) retrieve a trusted certificate from many commercial
certificate authorities for redistribution of your games over the web.

For testing purposes, you can create a self-signed certificate using OpenSSL. You can
download OpenSSL from gnuwin32.sourceforge.net/packages/openssl.htm. Select
the download link next to where it says Complete package, except sources as shown in the
following screenshot. Save the file and install OpenSSL.

To generate a new test certificate, open a new command prompt and first create a new private
key using the following command:

openssl genrsa 2048 > cacert.pem

Then, issue the following command to obtain a new certificate:

openssl req -config "C:\Program Files (x86)\GnuWin32\share\openssl.cnf"
-key cacert.pem -new -nodes -x509 -days 1095 >> cacert.pem

The OpenSSL program will ask a few questions about your location and company name. You
don't need to answer them for internal use and can accept the default values by just pressing
the Enter key. After finishing these steps, the certificate will be stored in a file called cacert.
pem in the current working directory.

How to do it...
Embedding a game based on Panda3D in a website is done like this:

1.	 Copy your certificate file to the top-level directory of the project structure and rename
it to cacert.pem.

2.	 Create a new directory called web inside the top-level directory of your project.

3.	 Copy the files DetectPanda3D.js and RunPanda3D.js from the direct\src\
directscripts subdirectory of the source code package to the web directory of
your project.

Chapter 12

289

4.	 Inside the web directory, create a new file called web.htm. Open it in an editor and
enter the following HTML code:
<html>
 <script src="DetectPanda3D.js" language="javascript"></script>
 <script src="RunPanda3D.js" language="javascript"></script>
<body>
 <script language="javascript">
 detectPanda3D('noplugin.htm', false)
 P3D_RunContent('id', 'pandaPlugin', 'src', 'pandagame.
p3d', 'width', '800', 'height', '600')
 </script>
</body>
</html>

5.	 Add another HTML file to the web directory. Name it noplugin.htm and enter the
following markup:
<html>
<body>
 <p>Panda3D Web Plugin not found!</p>
 <p>Download it <a href="http://www.panda3d.org/download.
php?runtime">here
</body>
</html>

6.	 Edit the deploy.bat file in your top-level project directory so it looks like this:
@echo off
mkdir deploy
xcopy /E /Y src* deploy
xcopy /E /Y models* deploy
xcopy /E /Y shaders* deploy
xcopy /E /Y sounds* deploy
multify -S cacert.pem -uf pandagame.p3d
xcopy /Y pandagame.p3d web\pandagame.p3d
rmdir /S /Q deploy

Packaging and Distribution

290

7.	 Open the web.htm file found inside the web subdirectory in a browser. After the
Panda3D plugin has downloaded some additional data, you will see something
similar to this:

8.	 Press the play button to start the game running. If you are using a self-signed test
certificate, the first time the program is started you will see the following message:

Chapter 12

291

9.	 Click View Certificate to proceed. Next you will see this window:

10.	 Your own test certificate can be considered as trustworthy, so you can press Run to
allow your application to start.

How it works...
There are three important points to look at in this recipe. First, the detectPanda3D()
function iterates over the list of installed browser plugins, trying to find an entry for the
Panda3D runtime. If it can't be found, the function immediately redirects the browser to
noplugin.htm, preventing the execution of any further JavaScript statement.

If detectPanda3D() was able to find the Panda3D Runtime, JavaScript execution goes on to
P3D_RunContent(). This function takes care of placing the necessary <object> tags that
make our application appear in the browser window, interpreting its parameters as key-value
pairs used for configuring the plugin.

These scripts have one great advantage—detecting plugins and placing the correct objects
in the document object model tree work slightly different across browsers. Luckily, the
Panda3D developers have already handled this for us, taking a lot of tedious work off
of our shoulders.

Packaging and Distribution

292

The web plugin of Panda3D accepts only signed packages and refuses to run
any unsigned piece of code. This happens with good reason, as players are
executing code locally, making it possible to run media-rich applications, but
also opening the door for possible attacks. Therefore we need to guarantee
users that the packages are coming from us and haven't been changed while
they were on the way through the tubes of the Internet.

Additionally, we should use a certificate issued by one of the big trust
providers when distributing our games. This prevents the certificate warning
from popping up, as these certificates can be checked against their respective
root certificates, guaranteeing our trustworthiness to the user.

Using website and plugin interoperability
The Panda3D web plugin allows you to deeply integrate your games with the website they are
embedded in. Using JavaScript in the website, code from outside of the plugin can access
values and call functions implemented in Python. This also works in the opposite direction,
as code running within the plugin may make calls to JavaScript or access the document tree
defined by the website's markup.

This opens many possibilities for interesting mashups between games and web technology.
Automatically setting a player's name within your game based on login data, showing toast
notifications when achievements are unlocked or posting status updates and screenshots
to social networking sites using their JavaScript APIs. These are just a few of the many
interesting things you could do using this feature of the Panda3D web plugin. But always
keep in mind the security issues involved, especially with accessing personal information
or login information!

Getting ready
This recipe carries on where the previous recipe Embedding a game into a website left off.
Make sure you have a working version of the code produced in that recipe before going on.

Web technologies like HTML, JavaScript, and DOM will be used in this recipe. A basic level
of knowledge in this area is assumed.

How to do it...
Let's add some interaction between the website and the Panda3D plugin:

1.	 Open the file web\web.htm in an editor and replace its contents with the
code below:
<html>
 <script src="DetectPanda3D.js" language="javascript"></script>
 <script src="RunPanda3D.js" language="javascript"></script>

Chapter 12

293

 <script language="javascript">
 function enableButtons()
 {
 var buttons = document.getElementsByTagName('input')
 for (var i = 0; i < buttons.length; i++)
 buttons[i].disabled = false
 }
 </script>
<body>
 <script language="javascript">
 detectPanda3D('noplugin.htm', false)
 P3D_RunContent('id', 'pandaPlugin', 'src', 'pandagame.
p3d', 'width', '800', 'height', '600', 'onWindowOpen',
'enableButtons()')
 </script>
 <p>
 <input type="button" disabled="true" value="Wireframe"
onclick="pandaPlugin.main.base.toggleWireframe()">
 <input type="button" disabled="true" value="Get Value" onc
lick="alert(pandaPlugin.main.gameApp.foo)">
 <input type="button" disabled="true" value="Load
Smiley" onclick="pandaPlugin.main.loader.loadModel('smiley').
reparentTo(pandaPlugin.main.render)">
 <input type="button" disabled="true" value="Lights Out!"
onclick="pandaPlugin.main.gameApp.lightsOut()">
 </p>
</body>
</html>

2.	 Edit src\Application.py and add the following lines to the constructor
of Application:
self.foo = 42
base.appRunner.main.base = base
base.appRunner.main.render = render
base.appRunner.main.loader = loader
base.appRunner.main.gameApp = self

3.	 Also add this member method to Application:
def lightsOut(self):
 base.appRunner.evalScript('document.body.style.
backgroundColor="#000"')

4.	 Open deploy.bat in your editor and change the line that runs the packp3d tool
to this:
packp3d -c script_origin="**" -o pandagame.p3d -d deploy -r models

Packaging and Distribution

294

5.	 Run deploy.bat.

6.	 Open web.htm in your browser. The following buttons the Panda3D plugin will be
enabled after the application has started successfully:

How it works...
Before we go on to discuss the communication between website and plugin, we need to
first think a second about security. By default, JavaScript code is not allowed to call into the
plugin, and the Python code running within it prevents arbitrary JavaScript from messing with
our games. To explicitly enable this channel, we need to set the script_origin flag to the
URL of the server that is going to call runtime functions from JavaScript code. In this sample,
we set it to allow any host, but when making our games available to a broader public, we
need to lock this down to a specific URL. For example, we could pass scripts.example.
com to allow only scripts from this URL to access the runtime. We can also use wildcards for
specifying these URLS: The rule *.example.com matches a.example.com, b.example.
com but not example.com, while the rule **.example.com would match all of the
aforementioned URLs.

Chapter 12

295

The key component in enabling communication between the website, JavaScript, the
Panda3D plugin and Python is base.appRunner. Using the evalScript() method of the
AppRunner class, we can run arbitrary JavaScript code within the context of our website. This
can really be anything allowed in JavaScript: A call to a function, a DOM tree manipulation or
even a bigger string containing loops, calls, conditionals, and variables.

The other calling direction, which is from JavaScript into the plugin, also involves the
AppRunner class. Here, any attribute attached to base.appRunner.main becomes
visible to JavaScript code.

Lastly, the plugin provides the possibility to assign functions to a set of callbacks. This allows
us to react to various events occurring during the runtime of the Panda3D plugin. In our case,
we use the onWindowOpen event callback that is called right before the game actually starts
running and produces the first frame.

There are several other events we can react to, like onPluginLoad after the plugin is loaded
and initialized, onDownloadComplete after all dependencies are downloaded or onReady
when the plugin is ready to launch our application. There are several more of these. You
should see the official documentation of Panda3D on this topic, found at www.panda3d.
org/manual/index.php/Plugin_notify_callbacks, to get a comprehensive list.

13
Connecting Panda3D

with Content Creation
Tools

In this chapter, we will cover:

ff Setting up the Blender export plugin

ff Exporting models from Blender

ff Generating model files programmatically

ff Using the "Pview" tool to preview models

ff Compressing and converting model files using pzip and egg2bam

Introduction
When making video games we need to understand the meaning of the saying "Content is
King". No matter how technically advanced our engine may be, all the ingenuity put into
building all these great features is worth nothing without high quality content. Players are
impressed by beautiful levels and nicely animated actors, not by feature lists, which is why
we are highly dependant on artists creating 3D models for our games.

Model and animation artists are working with extremely feature-rich programs to put together
and form the vertices, polygons, and textures that define the shape the look of game worlds
and their virtual inhabitants. These programs all have their own proprietary data formats for
storing mesh and animation data in memory and on disk. This is a problem for us because we
need to get all this content loaded into the Panda3D engine and therefore, into our games.

Connecting Panda3D with Content Creation Tools

298

In this chapter, we will see how to solve this problem by using a data export plugin that directly
writes model files in a format that can be loaded by Panda3D. We will also look into the API for
creating model files ourselves, so we can write our own converter if necessary. Lastly, we will
pack and process the model data in order to store it in more memory- and bandwidth-saving
data formats.

Setting up the Blender export plugin
Most of the digital content creation tools for making 3D meshes are very advanced pieces of
software. Not only do they come packed with thousands of features, they cost thousands of
dollars. This raises the entry barrier for everyone, but impacts less-funded developers more
than well-funded ones. Luckily, there's an alternative to paying for an expensive modelling
and animation tool, which does not involve robbing a bank.

Initially started as a proprietary product, Blender was bought and open-sourced by a
community of enthusiasts when its original developer went out of business. Blender
features advanced modeling and animation capabilities and has been used for various
professional-grade film and game projects.

Besides abilities that enable artists to build stunning 3D meshes, Blender has a Python
API for developing custom plugins. Many of these plugins add data import and export
features, which made Blender a premium tool for converting 3D mesh data from one
format into another.

In this recipe we set up a plugin called Chicken Exporter that was written for exporting models
from Blender.

Getting ready
If Blender is not already installed on your system, you will first need to download and install
it. Blender can be downloaded and used for free, just go to www.blender.org/download/
get-blender/ to get a copy of the program. Be sure to download a version prior to 2.5
because from this version on, Blender comes with a completely new version of its Python API
that is not compatible with one found in previous versions. The download page should look
similar to the following screenshot.

Chapter 13

299

Download and run the installer. This recipe assumes you installed Blender in its default
location. You will need to modify the file paths according to your settings if you made a
different choice about the install location.

How to do it...
Configure Blender and Chicken Exporter with the following steps:

1.	 Go to sourceforge.net/projects/chicken-export/files/. Click the
Download Now! button to retrieve the latest version of Chicken Exporter.

Connecting Panda3D with Content Creation Tools

300

2.	 Unpack the downloaded archive. Copy the bpydata and bpymodules directories,
as well as the file chicken_exportR91.py to C:\Users\[YOUR USERNAME]\
AppData\Roaming\Blender Foundation\Blender\.blender\scripts\.
Replace [YOUR USERNAME] with your login name.

3.	 Create a new environment variable called PYTHONPATH and set its value to C:\
Panda3D-1.7.0\python\python.exe;C:\Panda3D-1.7.0\python\DLLs;
C:\Panda3D-1.7.0\python\Lib; C:\Panda3D-1.7.0\python\Lib\lib-tk

4.	 Start Blender. Click File | Export | Chicken R91 (.egg).

Chapter 13

301

5.	 In the following screen, choose either Auto or Manual. When choosing Manual, you
need to enter the installation path of the Panda3D SDK.

6.	 Click Check Config and then Launch Chicken.

How it works...
While installing, the plugin involves copying the right files to the right place, we need to take
a closer look at the PYTHONPATH environment variable and how Blender works. Blender
internally uses a minimal version of Python, which loads a set of scripts that define the user
interface and its behavior. This embedded version of Python is also used for running any
user-provided plugin scripts.

The only problem about Blender's embedded Python version is that it is a stripped-down version
of the Python runtime. While this allows Blender to keep its initial download size small, this is a
problem for us because some plugins like Chicken require functionality found in the standard
libraries of the full Python distribution. To overcome this limitation, Blender automatically looks
to see if the PYTHONPATH environment variable contains paths to a complete distribution of
Python, which is then used instead of the built-in, slimmed-down version.

Connecting Panda3D with Content Creation Tools

302

Exporting models from Blender
Digital content creation tools provide great features, and talented artists are able to create
whatever they imagine. While these tools enable creators to make cool things, we need to
think about the channel that leads from the tool used for creating the 3D geometry and
animations to our engine. This is why we will step through the following tasks to learn how
to use the Chicken Exporter plugin for Blender, so we are able to close the gap between the
content creation tool and the Panda3D engine.

Getting ready
Exporting model data from Blender requires the Chicken Exporter plugin. Follow the
instructions of the preceding recipe (Setting up the Blender export plugin) to get ready.

How to do it...
Follow these instructions to export a model from Blender:

1.	 Select all parts of the scene you wish to export.

2.	 Click File | Export | Chicken R91 (.egg).

Chapter 13

303

3.	 The last step opened the dialogue shown in the following screenshot. Enter the name
of the exported file and click Export.

How it works...
The first thing we have to remember when using the Chicken Exporter is to select everything
we want to export. The plugin does not export the current scene, but only the objects that
were selected prior to launching the plugin. Although we are able to change our selection
even after the plugin has been activated, we need to press the Update Selection button for
Chicken Exporter to register our changes.

Besides the ability to update the selection of objects to export, Chicken Export has some more
two-state buttons for toggling options that need some explanation. Force Relative Tex makes
the plugin use relative paths for texture references, for example. So instead of specifying the
path to these files starting from the file system root (C:\ on Windows or / on Unix based
systems), file paths are used to describe the way from the directory that contains the model
to the directory that contains the texture files.

Connecting Panda3D with Content Creation Tools

304

Make Octree and Collision Octree enable optimization measures for bigger scenes. If these
flags are active, geometry and collision shapes respectively, are split up and prepared to be
stored in a hierarchical spatial data structure that allows the engine to dynamically cull parts
of the level that cannot be seen by the player.

Panda3D supports normal mapping, a technique that allows us to make surfaces appear
more detailed by putting an extra texture layer onto a model. This additional texture contains
specially encoded surface normals that add fine surface details, like bumps and creases,
without the use of any additional polygons. Normal mapping has become a standard
technique in video games and if you want to learn more about it, there's plenty of material
available on the internet if you search for the terms "normal mapping" and "dot3 bump
mapping". To make models suitable for this technique when exporting from Blender, we need
to export tangents and binormals, which we enable by activating Tangents & Binormals.

Lastly, there's a row of small buttons at the bottom of the Chicken Exporter screen. These
two-state buttons enable or disable various tools to be called after the model data was
exported. egg2bam converts the model to the binary .bam format, pview starts the Pview
tool that lets us preview what the model will look like when loaded into the engine. pzip
compresses the model file.

Generating model files programmatically
In a perfect world, every content creation tool would be able to import and export in one
common format that can easily be converted to the native data representation of a game
engine. But because we do not live in such a perfect world, there are literally hundreds to
thousands of file formats for storing 3D meshes. What makes things worse is the fact that
there might be no import plugin for our engine or content creation tool available, forcing us
into writing our own converter, which is very often the case with brand new tools and
file formats.

This recipe aims to be an exercise in writing our own custom file format conversion utility. We
will be working on an arbitrary set of vertex data, converting it to Panda3D's internal format,
and saving the data into a file.

Getting ready
This recipe extends the basic application skeleton described in Setting up the game structure
found in Chapter 1. Please set up a new project according to these instructions before going
on. Also, prepare a texture image in PNG format.

Chapter 13

305

How to do it...
This recipe consists of these tasks:

1.	 Create a new subdirectory called textures in the project directory.

2.	 Rename your texture file to texture.png and copy it to the textures directory.

3.	 Open Application.py and add the following import statements:
from panda3d.core import *

from panda3d.egg import *

4.	 Extend the constructor of the Application class:
class Application(ShowBase):
 def __init__(self):
 ShowBase.__init__(self)
 self.generateEgg()
 model = loader.loadModel("generated")
 model.reparentTo(render)

 dirLight = DirectionalLight("directional")
 dirNode = render.attachNewNode(dirLight)
 dirNode.setHpr(20, 20, 20)
 render.setLight(dirNode)
 self.cam.setPos(5, -5, -5)
 self.cam.lookAt(model)

5.	 Add the following method to Application class:
def generateEgg(self):
 eggRoot = EggData()
 meshGroup = EggGroup("Mesh")
 vertexPool = EggVertexPool("Vertices")
 eggRoot.addChild(vertexPool)
 eggRoot.addChild(meshGroup)

 vertices = (Point3D(-1, 1, 1),
 Point3D(-1, -1, 1),
 Point3D(1, -1, 1),
 Point3D(1, 1, 1),
 Point3D(1, 1, -1),
 Point3D(1, -1, -1),
 Point3D(-1, -1, -1),
 Point3D(-1, 1, -1))

 texcoords = (Point2D(0, 1),
 Point2D(0, 0),
 Point2D(1, 0),
 Point2D(1, 1))

Connecting Panda3D with Content Creation Tools

306

 faces = ((0, 1, 2, 3),
 (4, 5, 6, 7),
 (7, 6, 1, 0),
 (3, 2, 5, 4),
 (7, 0, 3, 4),
 (1, 6, 5, 2))

 texture = EggTexture("color", Filename("../textures/texture.
png"))

 for face in faces:
 polygon = EggPolygon()
 meshGroup.addChild(polygon)
 for index, uv in zip(face, texcoords):
 vertex = vertexPool.makeNewVertex(vertices[index])
 vertex.setUv(uv)
 polygon.addVertex(vertex)

 polygon.addTexture(texture)
 polygon.recomputePolygonNormal()
 polygon.triangulateInPlace(True)

 eggRoot.writeEgg(Filename("../models/generated.egg"))

6.	 Launch the program. You should see something comparable to the
following screenshot:

Chapter 13

307

How it works...
In the generateEgg() method, we can see a very common set of data to process. We have
a vertex buffer, an index buffer for referencing vertices, and a set of texture coordinates as
well as a texture image. All of which somehow need to go into an .egg file.

Panda3D's .egg files use a tree structure containing various nodes for geometry, textures,
and materials, among others. The root of this tree is represented by the EggData class,
to which other child nodes might be added. In our sample, we add a group node and a
vertex pool.

The group node is used to store the polygons our model consists of, while all the vertices
forming the polygons have to be part of a vertex pool. We can think of this data structure as a
simple list of vertices. We can use multiple meshes and vertex pools to form a model, but all
vertices used to build a mesh have to be part of the same vertex pool. In our sample we add
the vertices that form our mesh to a single pool. Additionally, we assign each vertex a texture
coordinate so Panda3D will be able to put a texture map onto the surface of our mesh.

We add a texture image to each of the newly created polygons. In our case, this is only one
texture, but each subsequent call to addTexture() adds another texture layer to a polygon.
We also calculate the polygon normal because we need that for lighting to work in Panda3D.

The algorithms and hardware involved in rasterized real-time rendering work most efficiently
when processing triangles. In comparison to other geometrical forms, triangles are very simple
and their properties are very well known. In addition, any polygonal surface can be split into
triangles, which makes them a perfect format for describing arbitrary meshes. So to allow
the graphics hardware to work most efficiently, we split the cube's six surface planes into
twelve triangles.

Using the "Pview" tool to preview models
No matter which content creation tools our artists are using, we can be sure that these
programs have different ways of displaying models than the Panda3D engine. This can be
quite annoying for artists to work with, as they would have to export their work and wait for the
game assets to be repackaged. Then they would have to start the game and load the model,
just to check what it looks like in the game. This is not what we want to happen.

Instead, we want to have a little application that allows artists to quickly load a model so they
can preview how Panda3D displays their work. Luckily, we do not need to write this program
ourselves, as the Panda3D developers already implemented a little tool called Pview for this
situation. This recipe will give you a short introduction to this tool.

Connecting Panda3D with Content Creation Tools

308

How to do it...
Let's explore the features of the Pview tool:

1.	 Open a new command prompt window.

2.	 Type the following command and press the Enter key:
pview –l panda panda-walk

3.	 Hold down the left mouse button and move the mouse to pan the panda around.

4.	 Push and hold the right mouse button, move the mouse forward and back to zoom in
and out.

5.	 Hold down the Alt key on your keyboard while holding the left mouse button and
moving the mouse to rotate the panda around its center point.

6.	 Center the Panda in the window by pressing the C key on your keyboard.

7.	 Press W once to turn on wireframe rendering. Press the key a second time to switch
back to normal rendering.

8.	 Turn on basic lighting by hitting L.

9	 Press the COMMA key multiple times to toggle through different background colors.

10.	 Open a new window. Press the Shift and W keys at the same time.

11.	 To close the newly opened window again, use the Q key.

12	 Open animation controls using the A key:

13.	 Take a screenshot of the current window by pressing F9.

14.	 Press Escape to quit.

Chapter 13

309

How it works...
While operating, the tool does not need any further explanation; we should take a quick
look at the command line parameters that we used to start the program. The -l option
makes Pview load the model data asynchronously, which means that the window appears
immediately, and the model will be visible after a short loading delay. The first argument after
this option is the model or actor to preview, which is mandatory. Optionally, as we do in this
recipe, the second argument is the name of an .egg or .bam file containing animation data.
Pview will load the first animation it finds contained within that .egg or .bam file and then
begin playing the animation in a continuous loop.

Compressing and converting model files
using pzip and egg2bam

When working with Panda3D, you will mainly encounter two kinds of files for storing models
and actors. The one type of file has the extension .egg, while the other ends with a .bam
filename suffix.q.

The .egg file format is intended to be a common intermediate and interchange file format.
It was designed to be very easy to understand, to facilitate the development of format
converters and export plugins for digital content creation tools. Files in .egg format are
text-based and human-readable, which makes them easier to inspect and analyze. This also
makes it possible for version tracking systems like Subversion, Perforce, or Git to efficiently
store and track changes to the model data.

The big downside of the .egg model file format is file size. Storing this kind of data in a
plain-text format is not very efficient and takes up a lot of storage space. Not only does this
unnecessarily waste disk space, it also increases the time needed for loading geometry into
the engine.

To keep file sizes smaller, .egg files can be compressed using pzip, as you will see in this
recipe. This works fairly well but does not solve the problem of loading times, which brings
us to the .bam file format.

Just like .egg files, .bam files are used for storing model and animation data. The difference
between these two is the way the data is stored. While the .egg format is designed to be
easily comprehensible for us humans, the .bam format is used to represent this data in
a way that is friendlier to a computer and more specifically, to the Panda3D engine.

The .bam format encodes model data in a binary format that is closer to Panda3D's
in-memory presentation of that data. This allows the engine to load models faster because
fewer preprocessing steps are required for parsing the file format and filling data structures.
Additionally, by this way, storing raw binary data is more space efficient, leading to smaller
file sizes.

Connecting Panda3D with Content Creation Tools

310

This recipe will show you how to compress .egg files to save disk space, and how to convert
models from this intermediate format to the .bam format for efficient storage, loading,
and distribution.

Getting ready
In this recipe you will work on an .egg model file. Of course you need such a model file
to be able to work through the tasks. The steps of this recipe will assume the filename
to be model.egg.

How to do it...
Use the following commands presented to compress and convert model files:

1.	 Open a command prompt and navigate to the directory containing your model file.

2.	 Type and execute the following command:
pzip -9 model.egg

3.	 Convert the model to the .bam format using this command line:
egg2bam -noabs -flatten 1 -combine-geoms 1 -txopz -ctex -mipmap -o
model.bam model.egg.pz

How it works...
The pzip tool is used to compress .egg files. When invoking it the way we do in this recipe,
the source file is compressed in place, generating the file model.egg.pz out of model.egg.
If we want to keep the original file, we need to explicitly specify an output file name using the
-o parameter. The pzip tool also takes an optional command line parameter for setting the
compression level. While -9 sets the strongest compression, -8, -7, and so on—ranging down
to -1—set subsequently weaker levels of compression. Less compression results in bigger file
sizes, but less time will be needed for processing a file. Setting a higher compression level on
the other hand will increase processing times but decrease file sizes.

When converting to the .bam format, there are a few more options we can pass to the
egg2bam tool. With -noabs, we make sure the .egg file does not contain any absolute
references to other models or textures. If any absolute file reference is found, the program
aborts with an error. It generally is a good idea to use relative file references, because it
makes it easier to relocate our model files, for example when we are installing them to a
directory chosen by the user.

The next two options, -flatten 1 and -combine-geoms 1 apply some optimizations
to the geometry and the hierarchy contained in the source file. While the first one enables
simplification of the tree structure, the second of the two parameters instructs egg2bam to
look for duplicate geometry groups and combine them into one.

Chapter 13

311

Finally, we pass some options for how egg2bam should handle textures. The -txopz option
causes the creation of texture object files. These files with a .txo.pz suffix store texture
image data in a format that is already suitable for being loaded efficiently into the engine.
Additionally, the file data is compressed to minimize storage requirements.

Using the -ctex flag enables lossy DXT compression to be applied to all of the model's
textures. This kind of compression not only saves space, it can be decoded in hardware by
most modern graphics cards. This makes it possible for texture data being stored inside the
graphics adapter's memory in the compressed form, using up less texture memory. As a
downside, this kind of compression will have a negative impact on the quality of our textures.
If our textures are in a very high resolution however, the space saved by DXT compression is
generally worth a minor loss in image quality.

Mipmapping is a commonly used level of detail technique where a set of textures is used
instead of one single texture map. Each texture in the set corresponds to a mipmapping level.
With each subsequent level, the texture is sampled down to half the size of the previous level.
Depending on an object's distance from the camera, this allows us to choose a lower texture
resolution, because it will only take a few pixels to draw a distant object. If objects are closer
to the camera, mipmapping uses the higher resolution textures found in the set, as more
details will be visible on a close object.

We can calculate the downsampled versions of the original texture using the -mipmap flag.
This increases texture file size by 30% because of the additional texture detail levels being
stored. But not having to generate them at load time may help to decrease loading times.
Additionally, our runtime performance should become better, because mipmapping allows
for more efficient rendering. We should however, always rely on profiling data to back our
performance claims and check our games' performance metrics using the tools shown in
Chapter 10, Debugging and Performance.

Index
Symbols
#include 245
-ctex flag 311
-m pdb parameters 225
.bam format 304
.egg file 307
.egg model 309
<name> tag 156
@handle_event() decorator 166
2D layer

images, rendering to 142, 143
3D sound

about 35
attaching, to objects 35, 36

A
abstraction layer

adding, for supporting multiple input methods
252-256

accept() method 164
acceptName() method 149
actions

controlling, intervals used 49, 51
Actor class 32
ActorInterval 54
actorLoaded() method 66
ActorNode 179
addBin() method 78
addGround() method 182
additional camera

adding 39, 40
addSmiley() method 169, 174, 186, 223, 224
addString() method 215
addSubfile() method 279
addTexture() 307

addUint8() method 215
alpha mask

adding, to texture 70, 71
ambient light 84
analyze_renderstate() method 105
animate() method 92
animated textures 91
animations

programming, to fit to intervals 53, 54
Application class 25, 116, 248, 305
AppState class 161
assets, hosted on server

using 200
attachListener() 36
attachNewNode() method 84
Audio3DManager class 36
audio data

reading, from microphone 264-266
audioop module 266

B
backface culling 73
background bin 77
base.disableMouse() method 251
base.enableParticles() 179
beginGetDocument() 199
beginPostForm() method 208
Blender

about 298
downloading 298
installing 299
models, exporting from 302-304

Blender export plugin
setting up 298-301
working 301

314

blendType parameter 53
bloom effect

about 113
configuring, named parameters used 113

BoxVolumeEmitter 90
break command 225
Breakpoint Condition window 227, 228
breakpoints 225
btDiscreteDynamicsWorld 195
btRigidBodyConstructionInfo object 194
buildCube() method 72
built-in physics system

about 176, 177
using 176-178
working 179

built in collision detection system
about 172
collision handlers 176
collision shapes 175
using 172, 173
working 174

built in vertex formats, Panda3D
getV3() 63
getV3c4() 63
getV3c4t2() 63
getV3n3() 63
getV3n3c4() 63
getV3n3c4t2() 63
getV3n3t2() 63

Bullet physics engine
about 186
integrating 186-193
working 194

BulletTask class 194

C
C++

performance critical code, implementing in
237-246

C++ code
debugging 226-231

camera system
programming, to follow an object 56-60
working 59

CardMaker class 72, 92
cb parameter 66

Chicken Exporter plugin 302
Client class 212
ClientProtocol class 219
CollisionBox 175
collision detection 171
collision detection system. See  built in

collision detection system
CollisionHandlerEvent 176
CollisionHandlerFloor 176
CollisionHandlerPusher 176
CollisionHandlerQueue 176
collision handlers

about 176
CollisionHandlerEvent 176
CollisionHandlerFloor 176
CollisionHandlerPusher 176
CollisionHandlerQueue 176
PhysicsCollisionHandler 176

CollisionInvSphere 175
CollisionLine 176
CollisionParabola 176
CollisionPlane 175
CollisionPolygon 175
CollisionRay 176
CollisionSegment 176
collision shapes

about 175
CollisionBox 175
CollisionInvSphere 175
CollisionLine 176
CollisionParabola 176
CollisionPlane 175
CollisionPolygon 175
CollisionRay 176
CollisionSegment 176
CollisionSphere 175
CollisionTube 175

CollisionSphere 175
CollisionTraverser class 174
CollisionTube 175
color grading effect

adding, to scene 121-124
CommonFilters class 113, 114
config() function 286
configuration variables

about 19
audio-volume 19

315

background-color 19
cursor-filename 19
cursor-hidden 19
disable-sticky-keys 20
fullscreen 20
icon-filename 20
listing 21
model-path 20
show-frame-rate-meter 20
sync-video 20
win-origin 20
win-size 20
window-title 21

connect() method 212
ConnectionManager class 211
ConnectionReader 211
continue command 225
createActor() method 186
createInput() method 264
cube mapping

enabling 99-101
cull bin

adding, at runtime 78
adding, configuration file used 78

CullBinManager class 78
cull bin types

about 77
BTBackToFront 77
BTFixed 77
BTFrontToBack 77
BTStateSorted 77
BTUnsorted 77

custom Cg shader
applying 106-108

custom datagrams
sending/receiving 212-215

custom effects
building 114-117
working 118

custom shader generator
adding, to Panda3D 101-105

CustomShaderGenerator class 105
custom vertex formats 63

D
data

loading asynchronously 65, 66

default cull bins 78
deferred rendering pipeline

building 129-134
working 135-137

deploy 285
deploy.pdef 285
depth of field effect

adding, to scene 124-128
working 128

detectPanda3D() function 291
Diesel

URL 202
direct.gui.DirectGui package 148
direct.gui.OnscreenText package 141
Direct3D 101
DirectCheckButton control 149
DirectDialog control 149
DirectFrame control 149
DirectGui library 149, 156
directional lights 84
DirectOptionMenu control 149
DirectScrollBar control 149
DirectScrolledFrame control 149
DirectScrolledList control 149
DirectSlider control 149
DiscVolumeEmitter 90
dispatchMessages() 256
display regions 74
DocumentSpec object 199
doMethodLater() 66, 169
downloadToFile() 199

E
easy_install Twisted command 203
egg2bam tool 304, 310
EggData class 307
ElementTree object 156
enter() method 162
environment model 99
event_name attribute 166
events

handling 165-167
excludeModule() function 286
exit() method 162
EXPCL_PANDABOUNCE 246

316

EXPTP_PANDABOUNCE 246
extraArgs parameter 66

F
falloff value 120
fetchall() method 207
file

downloading, from server 198, 199
fixed bin 77
flashlight effect

creating 97-99
flattenLight() method 237
flattenMedium() method 237
flattenStrong() method 237
FollowCam class 248
FollowCam instance 59
ForceNode 179
frameColor parameter 150
frameSize parameter 150
framework.get_models() method 38
frowney model

adding 173
fshader 108
fshader() function 120, 123
FSM (finite state machine) class 162

G
game

embedding, into website 287-291
GameObject class 166
game scenes

light, adding to 82-84
game state

controlling 160-162
game structure

setting up 22-24
working 25

gamma variable 123
gbufMan 136
generate() 34
generateEgg() method 307
Geom.UHStatic flag 62
Geometrical mipmapping 35
geometry

generating, at runtime 60-63
GeoMipTerrain class 32, 34

GeoMipTerrain object 34
GeomLines 64
GeomLinestrips 64
GeomNode 63, 90
geom parameter 150
GeomParticleRenderer 90
GeomPoints 64
GeomTriangles 64
GeomTrifans 64
GeomTristrips 64
GeomVertexArrayFormat class 63
GeomVertexData object 62
GeomVertexFormat.getV3t2() format 63
GeomVertexFormat class 63
GeomVertexWriter object 62
getDefault() method 92
getElevation() 34
getParams() helper function 152
getRejectedProperties() 160
getTexture() method 101
getV3() format 63
getV3c4() format 63
getV3c4t2() format 63
getV3n3() format 63
getV3n3c4() format 63
getV3n3c4t2() format 63
getV3n3t2() format 63
getV3t2() method 62
gui.xml file 154
GuiBuilder library 156
GuiFromXml() function 156
GuiHandler class 156

H
height map 32
high scores

sending, to server 201-208
HTTPChannel object 199
HTTPClient 198
http directory 201

I
ignoreAll() 167
image parameter 150
images

rendering, to 2D layer 142, 143

317

input data
reading, from network 269-275

InputHandler class 256
input handling, Panda3D

about 247
abstraction layer, adding for supporting

multiple input methods 252-256
audio data, reading from microphone 264-

266
from, Xbox 360 controller 257-261
input data, reading from network 269-275
keyboard and mouse input, handling 248-251
user input, recording 261, 263
user input, simulating 261, 263
video data, reading from webcam 267, 268

InputRecorder class 263
interactive user interface

creating 146-149

J
joint group 182
joystick module 260

K
keyboard and mouse input

handling 248-251
KeyboardMouseHandler class 256

L
LensNode 99
LerpColorInterval 52
LerpColorScaleInterval 52
LerpHprInterval 52
Lerp intervals 52
LerpPosHprScaleInterval 52
LerpPosInterval 52
LerpQuatInterval 52
LerpScaleInterval 52
lightCam 136
lightQuad 136
LightRampAttrib.makeDefault() 87
light ramps

actors, modifying 85-88
lights affect models, modifying 85-88

lights
about 82
adding, to game scenes 82-84
types 84

lights, types
about 84
ambient light 84
directional lights 84
point light 84
spotlights 84

LineParticleRenderer 90
load() method 66
load_model() method 38
loadFont() function 141
loadPrcFileData() function 69, 145
loadSfx() method 145
loadShader() method 107
loadTexture() method 72
LOD (level of detail) mapping 34
loop.wav 35

M
mainModule() function 286
makeChannel() method 199
makeCubeMap() method 101
makeDoubleThreshold() method 88
makeHdr0() method 87
makeHdr1() method 87
makeHdr2() method 87
makepanda tool 244
makeRegion() method 74
makeSingleThreshold() method 88
MeshDrawer class 96
messenger.send() method 164
mipmapping 311
model’s render attributes

changing 67, 68
model.egg 310
model.egg.pz 310
model files

compressing, pzip used 309, 310
converting, egg2bam used 309, 310
generating 304-307

modelLoaded() method 66

318

models
exporting, from Blender 302-304
previewing, Pview tool used 307-309

models and actors
loading 30-32

models render attributes
working 69, 70

module() function 286
modules

decoupling, events used 163
patches, creating 286
working with 286

MopathInterval 56
Mopath object 56
mount() 201
MovieAudioCursor 266
movie file

playing 144-146
multifiles

assets, packing 278, 279
creating, on command line 281
subfile, encrypting 280, 281
subfile, extracting 280
subfile, updating 280

multiple displays
using 79, 80

N
named parameters

blend 113
desat 113
intensity 113
maxtrigger 113
mintrigger 113
size 113

NetBeans
configuring 9-14
downloading 9

NetCommon class 211, 212
network connection

establishing 208-212
NetworkHandler class 275
networking, Panda3D

assets hosted on server, using 200
custom datagrams, receiving 212-215
custom datagrams, sending 212-215

file, downloading from server 198, 199
high scores, sending to server 201-208
network connection, establishing 208-212
object state, synchronizing between server

and client 215-219
next command 225
NodePath 183
NodePath class 237
NumPy library 266

O
object
objects

moving, based on time 48
ribbon trails effect, implementing on 93-96
programming, to follow predefined path 55,

56
object state

synchronizing, between server and client
215-219

OdeBody 183
ODE physics engine

about 179
using 179, 181
working 182

OdeSimpleSpace 182
OdeSphereGeom 183
OdeWorld 182
onCollision() method 175
OnscreenImage 200
OnscreenImage() method 143
OnscreenText() method 141
Open Dynamics Engine. See  ODE physics

engine
OpenGL 101
openTCPServerRendezvous() 212
overlay_mul() macro 123

P
P3D_RunContent() function 291
p3d packages 283
packaging process

controlling 284
working 286

Panda3D
about 7, 8

319

actions, controlling using intervals 49, 51
additional camera, adding 39, 40
animations, programming to fit to intervals

53, 54
assets, packing into multifiles 278-280
Blender export plugin, setting up 298-301
building, from source code 25, 26
built-in physics system 176
built in vertex formats 63
Bullet physics engine, integrating 186
camera system, programming to follow

predefined path 56-60
collision detection system 172
color grading effect, adding 121-124
cube mapping, enabling 99-101
custom Cg shader, applying 106-108
custom effects, building 114, 116
custom shader generator, adding to 101-105
custom vertex formats 63, 64
data, loading asynchronously 65, 66
deferred rendering pipeline, building 129-134
depth of field effect, adding 124-128
events, handling 165-167
flashlight effect, creating 97-99
game, embedding into website 287-291
game state, controlling 160-162
game structure, setting up 22-24
geometry, generating at runtime 60-63
images, rendering to 2D layer 142, 143
input handling 247, 248
interactive user interface, creating 146-149
light ramps, using 85-88
lights, adding to game scenes 82-84
model files, compressing 309, 310
model files, converting 309, 310
model files, generating 304-307
models, exporting from Blender 302-304
models, previewing using Pview tool 307-309
models and actors, loading 30, 31
modules, decoupling using events 163
movie file, playing 144-146
NetBeans, configuring 9-14
NetBeans, downloading 8, 9
networking 197
objects, moving based on time 48
objects, programming to follow predefined

path 55, 56

ODE physics engine 179
particle effects, creating 88, 89
PhysX 183
post-processing effects, adding to scene 110-

113
primitive types 64
Pview tool, using 307-309
Python code, debugging 222
recurring tasks, managing 167-169
redistributable game package , creating 281-

284
runtime, configuring 18-21
scanline effect, adding 118-121
scene, creating C++ used 37-39
scene, inspecting 40-43
scene, modifying 40-43
scene graph, modifying 44-47
scenes, building 29
scene sorting features 77
terrain, loading 32, 33
text, rendering to screen 139-142
textures, animating 91-93
user interface data-driven, XML used 150-

156
vignette effect, adding 118-121
Visual Studio 2008, configuring 15-18
window and fullscreen modes, toggling 158-

160
Panda3D configuration file

about 19
configuration data, embedding in Python code

21
configuration variables 19, 21
specific configuration file, loading 21

Panda3D interval system
about 52
interpolation easing 53
Lerp function interval 52
Lerp intervals 52
Parallel class 53
Sequence class 53
Wait interval 53

Panda3D web plugin
about 292
using 292, 293
working 294, 295

PandaFramework class 38

320

pandagame.py 285
pandaLeft flag 251
pandaReverse flag 251
PandaRight flag 251
pandaWalk flag 251
Parallel class 53
particle effects

creating 88, 89
particle emitters, Panda3D

about 90
BoxVolumeEmitter 90
DiscVolumeEmitter 90
PointEmitter 90
RectangleEmitter 90
RingEmitter 91
SphereSurfaceEmitter 90
SphereVolumeEmitter 90
TangentRingEmitter 91

particle factory types, Panda3D
PointParticleFactory 90
ZSpinParticleFactory 90

particle renderers, Panda3D
about 90
GeomParticleRenderer 90
LineParticleRenderer 90
PointParticleRenderer 90
SparkleParticleRenderer 90
SpriteParticleRenderer 90

patches
creating 286

pdb debugger
about 223
working 225

performance
improving, by flattening screen 235-237

performance bottlenecks
finding, PStats tools used 231-235

performance critical code
implementing, in C++ 237-246

PerspectiveLens 99
PhysicsCollisionHandler 176
PhysX

about 183
using 183-185
working 186

PointEmitter 90
point light 84

PointParticleFactory 90
PointParticleRenderer 90
pos parameter 148
post-processing effects

adding, to scene 110-113
ppackage 287
ppatcher tool 287
ppython --version command 150
process() method 211, 219
projectTexture() method 99
Property Sheets 18
Protocol class 211
PStatClient.connect() 234
PStats tool

about 234, 235
used, for finding performance bottlenecks

231-235
pudb 223
Pview tool

about 304, 307
using 307-309

pydbgr 223
pygame.event.pump() 261
pygame library 260
Python code

debugging 222-225
Python frameworks

Diesel 202
Tornado 202

PYTHONPATH environment variable 301
pzip tool 310

Q
QueuedConnectionReader class 211, 212

R
readSamples() method 266
RectangleEmitter 90
recurring tasks

managing 167-169
redistributable game package

creating 281-284
removeSmileys() method 170, 223
render.setShaderAuto() 84
render_GET() method 207
render_POST() method 207

321

rendering order
controlling 75-77

render object 31
renderQuadInto() method 118
renderSceneInto() method 118
repack() 280
reparentTo() method 31
request() method 163
requestProperties() 160
resetMouse() method 248
return command 225
Ribbon class 96
RibbonNode objects 97
ribbon trails effect

implementing, on object 93-96
RigidBodyCombiner class 237
RingEmitter 91
run() method 200

S
scale parameter 148
scanline effect

adding, to scene 118-121
working 120

scene
creating, C++ used 37-39
inspecting 40-43
modifying 40-43

scene graph
modifying 44-47
position 47
rotation 47
scale 47

scene sorting features
about 77
cull bin, adding at runtime 78
cull bin, adding using config file 78
cull bin types 77
default cull bins 78

screen
text, rendering to 139-142

send() method 212
Sequence class 53
setAmbientOcclusion() method 114
setAntialias() method 69
setBin() method 76, 77

setBirthRate() method 89
setBlockSize() method 35
setBlurSharpen() method 113
setCartoonInk() method 113
setColor() method 70
setColorScale() method 70
setDimensions() method 74
setFar() method 35
setLight() method 84
setListenerVelocity() method 37
setLitterSize() method 89
setLitterSpread() method 89
setName() method 149
setNear() method 35
setNearFar() method 128
setOrigin() method 159
setShader() method 107
setShaderAuto() method 101
setShadowCaster() method 84
setSoundVelocity() method 36
setSurfaceEntry() 182
setSz() method 34
setTexOffset() method 93
setTexRotate() method 93
setTexScale() method 93, 145
setTransparency() method 72
setupCD() method 174
setupLight() method 126
setupPhysics() 179
setupPhysX() method 186
setupPostFx() method 118
setupScene() method 118, 128
setuptools 202
setVolumetricLighting() method 114
shader generator 101
shaders 114 105
shadows

about 82, 84
casting 82-84

showSmiley() method 164
slip parameter 182
smileyCount variable 224
SmileyMotionState 194, 195
SmileyTask 194
soft real time multi-agent simulations 231
SparkleParticleRenderer 90
SphereSurfaceEmitter 90

322

SphereVolumeEmitter 90
splitscreen mode

creating 73-75
spotlights 84
SpriteParticleRenderer 90
start() method 164
suppressKeys parameter 150
suppressMouse parameter 150
syncSmiley() function 218
synthesize_shader() method 104

T
TangentRingEmitter 91
taskMgr object

recurring tasks, managing 169
Terragen 33
terrain

block size 35
loading 32

tex2D() function 108
texpad_color 120
text

rendering, to screen 139-142
textmode debugger 231
text parameter 148
texture

about 32
alpha mask, adding 70, 71
animating 91-93

textures directory 97, 142
toggleFullscreen() method 159
Tornado

URL 202
Twisted framework

URL 201
using 201

U
unevenSegment() method 96
updateCamera() method 59
updateInput() 256
updateOde() method 183
updatePanda() method 251
updateReader() task 211

updateSmiley() 175
updateSmileys() method 223, 224
user input

recording 261, 263
simulating 261, 263

V
value parameter 148
variable parameter 148
vertex pool 307
video data

reading, from webcam 267, 268
videos directory 144
vignette effect

adding, to scene 118-121
working 120

VirtualFileSystem object 201
Visual C++ 2008

downloading 16
Visual Studio 2008

configuring 15-18
vshader 108

W
Wait class 53
Wait interval 53
walk animation 32
window and fullscreen modes

toggling 158, 159
Winpdb 223
wordwrap parameter 141

X
Xbox 360 controller

about 257
input, handling from 257-261

XboxControllerHandler class 259
XboxControllerState 259

Z
ZSpinParticleFactory 90

Thank you for buying
Panda3D 1.7 Game Developer’s Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Panda3D 1.6 Game Engine
Beginner’s Guide
ISBN: 978-1-84951-272-5 Paperback: 356 pages

Create your own computer game with this 3D rendering
and game development framework

1.	 The first and only guide to building a finished
game using Panda3D

2.	 Learn about tasks that can be used to handle
changes over time

3.	 Respond to events like keyboard key presses,
mouse clicks, and more

4.	 Take advantage of Panda3D’s built-in shaders
and filters to decorate objects with gloss, glow,
and bump effects

Flash 10 Multiplayer Game
Essentials
ISBN: 978-1-847196-60-6 Paperback: 336 pages

Create exciting real-time multiplayer games using Flash

1.	 A complete end-to-end guide for creating fully
featured multiplayer games

2.	 The author’s experience in the gaming industry
enables him to share insights on multiplayer
game development

3.	 Walk-though several real-time multiplayer game
implementations

4.	 Packed with illustrations and code snippets with
supporting explanations for ease of understanding

Please check www.PacktPub.com for information on our titles

XNA 4.0 Game Development
by Example: Beginner’s
Guide
ISBN: 978-1-84969-066-9 Paperback: 428 pages

Create your own exciting games with Microsoft XNA 4.0

1.	 Dive headfirst into game creation with XNA

2.	 Four different styles of games comprising a
puzzler, a space shooter, a multi-axis shoot ‘em
up, and a jump-and-run platformer

3.	 Games that gradually increase in complexity
to cover a wide variety of game development
techniques

4.	 Focuses entirely on developing games with the
free version of XNA

Unity 3D Game Development
by Example Beginner’s Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy little
games quickly

1.	 Build fun games using the free Unity 3D game
engine even if you’ve never coded before

2.	 Learn how to “skin” projects to make totally
different games from the same file – more games,
less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

4.	 Packed with ideas, inspiration, and advice for your
own game design and development

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Panda3D and Configuring Development Tools
	Introduction
	Downloading and configuring NetBeans to work with Panda3D
	Configuring Visual Studio 2008 to work with Panda3D
	Understanding Panda3D's runtime configuration options
	Setting up the game structure
	Building Panda3D from source code

	Chapter 2: Creating and Building Scenes
	Introduction
	Loading terrain
	Loading and attaching sounds to objects
	Creating a scene using C++
	Adding an additional camera
	Inspecting and modifying the scene
	Modifying the scene graph
	Moving objects based on time
	Controlling actions using intervals
	Making animations fit to intervals
	Making objects follow a predefined path
	Making the camera smoothly follow an object
	Generating geometry at runtime
	Loading data asynchronously

	Chapter 3: Controlling the Renderer
	Introduction
	Changing a model's render attributes
	Adding an alpha mask to a texture
	Creating a splitscreen mode
	Controlling the rendering order
	Using multiple displays

	Chapter 4: Scene Effects and Shaders
	Introduction
	Adding lights and shadows
	Using light ramps
	Creating particle effects
	Animating textures
	Adding ribbon trails to an object
	Creating a flashlight effect
	Making objects reflect the scene
	Adding a custom shader generator
	Applying a custom Cg shader

	Chapter 5: Post-Processing & Screen Space Effects
	Introduction
	Adding built-in post-processing effects
	Building custom effects
	Adding a scanline and vignette effect
	Adding a color grading effect
	Adding a depth of field effect
	Building a deferred rendering pipeline

	Chapter 6: 2D Elements and User Interfaces
	Introduction
	Rendering text to the screen
	Rendering images to the 2D layer
	Playing a movie file
	Creating an interactive user interface
	Making the user interface data-driven using XML

	Chapter 7: Application Control
	Introduction
	Toggling window and fullscreen modes
	Controlling game state
	Decoupling modules using events
	Handling events more elegantly
	Managing recurring tasks

	Chapter 8: Collision Detection and Physics
	Introduction
	Using the built-in collision detection system
	Using the built-in physics system
	Using the ODE physics engine
	Using the PhysX physics engine
	Integrating the Bullet physics engine

	Chapter 9: Networking
	Introduction
	Downloading a file from a server
	Using assets hosted on a server
	Sending high scores to a server
	Establishing a network connection
	Sending and receiving custom datagrams
	Synchronizing object state between server and client

	Chapter 10: Debugging and Performance
	Introduction
	Debugging Python code
	Debugging C++ code
	Using the PStats tool for finding performance bottlenecks
	Improving performance by flattening scenes
	Implementing performance critical code in C++

	Chapter 11: Input Handling
	Introduction
	Handling keyboard and mouse input
	Implementing an abstraction layer for supporting multiple input methods
	Handling input from an Xbox 360 controller
	Recording and simulating user input
	Reading audio data from a microphone
	Reading video data from a webcam
	Reading input data from a network

	Chapter 12: Packaging and Distribution
	Introduction
	Packing assets into multifiles
	Creating a redistributable game package
	Advanced package creation and hosting
	Embedding a game into a website
	Using website and plugin interoperability

	Chapter 13: Connecting Panda3D with Content Creation Tools
	Introduction
	Setting up the Blender export plugin
	Exporting models from Blender
	Generating model files programmatically
	Using the "Pview" tool to preview models
	Compressing and converting model files using pzip and egg2bam

	Index

