

Inside Microsoft
SharePoint 2013

Scot Hillier
Mirjam van Olst
Ted Pattison
Andrew Connell
Wictor Wilén
Kyle Davis

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Scot Hillier Technical Solutions, LLC, Ted Pattison Group, Inc., Mirjam van Olst, Andrew
Connell, Wictor Wilén, Kyle Davis
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7447-9

2 3 4 5 6 7 8 9 10 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown

Production Editor: Kara Ebrahim

Editorial Production: Online Training Solutions, Inc. (OTSI)

Technical Reviewers: Wayne Ewington and Neil Hodgkinson

Copyeditor: Online Training Solutions, Inc. (OTSI)

Indexer: Angela Howard

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

[2013-11-21]

mailto:mspinput%40microsoft.com?subject=
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction	 xvii

Chapter 1	 SharePoint 2013 developer roadmap	 1

Chapter 2	 SharePoint development practices and techniques	 35

Chapter 3	 Server-side solution development	 71

Chapter 4	 SharePoint apps	 119

Chapter 5	 Client-side programming	 163

Chapter 6	 SharePoint security	 213

Chapter 7	 SharePoint pages	 267

Chapter 8	 SharePoint Web Parts	 309

Chapter 9	 SharePoint lists	 353

Chapter 10	 SharePoint type definitions and templates	 405

Chapter 11	 SharePoint site provisioning	 441

Chapter 12	 SharePoint workflows	 467

Chapter 13	 SharePoint search	 503

Chapter 14	 SharePoint Enterprise Content Management	 541

Chapter 15	 Web content management	 591

Chapter 16	 Business Connectivity Services	 621

Chapter 17	 SharePoint social enterprise features	 675

Index	 727

		 v

Contents

Introduction. xvii

Chapter 1	 SharePoint 2013 developer roadmap	 1
A brief history of SharePoint. 2

Understanding the impact of SharePoint Online on the
SharePoint platform. 3

Examining SharePoint Foundation architecture. 4

Understanding SharePoint farms . 6

Creating web applications . 8

Understanding service applications. 12

Creating service applications in SharePoint Server 2013. 14

Managing sites. 15

Customizing sites. 19

Using SharePoint Designer 2013. 23

Understanding site customization vs. SharePoint development. . . 24

Windows PowerShell boot camp for SharePoint professionals 26

Learn Windows PowerShell in 21 minutes. 26

The Windows PowerShell Integrated Scripting
Environment (ISE). 30

The SharePoint PowerShell snap-in . 31

Summary. .34

Chapter 2	 SharePoint development practices and techniques	 35
Setting up a developer environment. .36

Deciding between virtual and physical . 37

Understanding hardware and software requirements 38

Delivering high-quality solutions. 40

Automating SharePoint administration by using Windows
PowerShell scripts. 42

Using PowerShell to deploy a custom solution 44

Configuring SharePoint service applications. 46

vi	 Contents

Using debugging tools. 52

Working with ULS and Windows event logs. 53

Using the Developer Dashboard. 54

Using the SharePoint Developer Tools in Visual Studio 2012. 55

Choosing a development approach . 59

Using the SharePoint APIs . 61

Understanding the server-side object model. 62

Using the client-side object model. 63

Using the REST APIs. 67

Summary. .69

Chapter 3	 Server-side solution development	 71
Understanding the server-side object model. 73

Developing farm solutions . 76

Creating a SharePoint project in Visual Studio. 77

Designing your SharePoint solution: Features 79

Adding declarative elements . 81

Adding a feature receiver. 84

Understanding the SharePoint root directory 86

Deploying and debugging farm solutions. 89

Updating farm solutions. 94

Upgrading features. 95

Developing sandboxed solutions. 102

Understanding the sandbox execution environment. 104

Creating a SharePoint project for a sandboxed solution 106

Deploying and debugging sandboxed solutions. 109

Updating and upgrading sandboxed solutions. 113

Summary. .117

Chapter 4	 SharePoint apps	 119
Understanding the new SharePoint app model . 119

Understanding SharePoint solution challenges. 120

Understanding the SharePoint app model design goals 122

	 Contents	 vii

Understanding SharePoint app model architecture. 122

Working with app service applications . 123

Understanding app installation scopes. 124

Understanding app code isolation. 125

Understanding app hosting models. 126

Reviewing the app manifest. 130

Setting the start page URL. 132

Understanding the app web . 134

Working with app user interface entry points 137

Using the chrome control. 144

Packaging and distributing apps. 147

Packaging apps. 147

Publishing apps . 152

Installing apps. 155

Upgrading apps. 157

Trapping app life cycle events. 158

Summary. .162

Chapter 5	 Client-side programming	 163
Understanding app designs. 163

Assessing SharePoint-hosted app designs. 164

Assessing cloud-hosted app designs. 164

Introduction to JavaScript for SharePoint developers. 165

Understanding JavaScript namespaces. 165

Understanding JavaScript variables . 166

Understanding JavaScript functions. 167

Understanding JavaScript closures. 168

Understanding JavaScript prototypes . 169

Creating custom libraries. 170

Introduction to jQuery for SharePoint developers. 173

Referencing jQuery. 174

Understanding the global function . 174

Understanding selector syntax. 175

viii	 Contents

Understanding jQuery methods. 175

Understanding jQuery event handling . 176

Working with the client-side object model. 177

Understanding client object model fundamentals 177

Working with the managed client object model. 180

Working with the JavaScript client object model. 188

Working with the REST API. 195

Understanding REST fundamentals . 196

Working with the REST API in JavaScript. 200

Working with the REST API in C# . 206

Summary. .212

Chapter 6	 SharePoint security	 213
Reviewing authentication and authorization. 213

Understanding user authentication. 214

Understanding the User Information List . 216

Working with users and groups. 216

Working with application pool identities. 219

Understanding the SHAREPOINT\SYSTEM account. 220

Delegating user credentials. 221

User impersonation with the user token. 221

Securing objects with SharePoint. 222

Rights and permission levels . 224

Understanding app authentication. 224

Understanding app authentication flow. 233

Understanding app authorization. 234

Managing app permissions . 235

Understanding app permission policies. 235

Requesting and granting app permissions. 236

Requesting app-only permissions. 239

Establishing app identity by using OAuth. 240

Understanding app principals. 242

Developing with OAuth . 247

Establishing app identity by using S2S trusts. 256

	 Contents	 ix

Architecture of an S2S trust. 257

Configuring an S2S trust. 259

Developing provider-hosted apps by using S2S trusts. 263

Summary. .265

Chapter 7	 SharePoint pages	 267
SharePoint and ASP.NET . 267

Learning ASP.NET basics. 267

Understanding how SharePoint relates to IIS web applications . . 271

Understanding the web.config file. 272

Understanding the SharePoint virtual file system. 274

Working with files and folders in SharePoint. 275

Understanding page customization. 277

Using pages in SharePoint. 282

Understanding master pages. 282

Understanding MDS . 287

Understanding content pages. 289

Creating a custom branding solution. 296

Working with application pages. 298

Customizing the ribbon. 303

Understanding the anatomy of the SharePoint ribbon. 303

Adding a custom ribbon control. 304

Summary. .307

Chapter 8	 SharePoint Web Parts	 309
Understanding Web Part fundamentals. 309

Understanding Web Parts . 309

Comparing ASP.NET and SharePoint Web Parts. 310

Understanding App Parts. 311

Understanding Web Part zones. 311

Understanding the Web Part Manager. 312

Understanding static Web Parts. 312

Storing Web Part control description files in the
Web Part Gallery . 313

x	 Contents

Developing and deploying Web Parts . 313

Building your first Web Part. 313

Deploying and uninstalling a Web Part. 317

Deploying a Web Part page with Web Parts. 319

Controlling Web Part rendering. 324

Overriding the RenderContents method. 324

Using CreateChildControls . 325

Responding to events. 325

Combining CreateChildControls and RenderContents. 327

Using Visual Web Parts . 329

Working with Web Part properties. 331

Persisting Web Part properties. 331

Using custom Editor Parts . 333

Exploring advanced Web Part development. 337

Using Web Part verbs. 337

Using Web Part connections. 340

Using parallel and asynchronous execution in Web Parts. 345

Summary. .350

Chapter 9	 SharePoint lists	 353
Creating lists . 353

Working with fields and field types. 357

Performing basic field operations. 358

Working with lookups and relationships. 361

Understanding site columns. 362

Working with content types. 366

Programming with content types. 368

Creating custom content types. 370

Working with document libraries. 372

Creating a document library . 372

Adding a custom document template. 373

Creating document-based content types. 375

Working with folders. 378

	 Contents	 xi

Creating and registering event handlers . 379

Understanding event receiver classes . 380

Understanding remote event receivers. 381

Registering event handlers. 383

Programming before events . 387

Programming after events. 388

Querying lists with CAML. 389

Understanding CAML fundamentals . 389

Querying joined lists. 391

Querying multiple lists . 392

Throttling queries. 394

Working with LINQ to SharePoint. 396

Generating entities with SPMetal . 396

Querying with LINQ to SharePoint. 401

Adding, deleting, and updating with LINQ to SharePoint. 402

Summary. .404

Chapter 10	 SharePoint type definitions and templates	 405
Custom field types. 405

Creating custom field types. 406

Creating custom field controls. 410

JSLink. 420

Custom site columns and content types. 428

Creating site columns and content types by using CAML. 428

Creating site columns and content types by using the
server-side object model. 430

Custom list definitions. 433

Summary. .439

Chapter 11	 SharePoint site provisioning	 441
The GLOBAL site definition. 442

Site definitions. 443

Webtemp*.xml . 443

ONET.xml for site definitions. 445

xii	 Contents

Feature stapling. 448

Order of provisioning when using site definitions. 449

Custom site definitions. 450

Web templates. .451

elements.xml. 451

ONET.xml for web templates. 452

Deploying web templates. 455

Using custom code to create sites. 458

Site templates . 458

Site provisioning providers. 459

Web provisioning events. 461

Web templates and SharePoint apps . 463

Summary. .465

Chapter 12	 SharePoint workflows	 467
Workflow architecture in SharePoint 2013. 467

Installing and configuring a Workflow Manager 1.0 farm. 468

Understanding workflow in SharePoint 2013. 469

Creating custom workflows for SharePoint 2013. 469

Building custom workflows. 470

Custom workflows with Visio 2013 and SharePoint
Designer 2013. 470

Custom workflows with Visual Studio 2012. 476

SharePoint Designer 2013 and web services. 485

Creating custom activities . 487

Using tasks in workflows. 492

Adding tasks to a workflow. 492

Custom task outcomes. 494

Workflow services CSOM and JSOM. 497

Adding custom forms to workflows . 498

Association forms in SharePoint 2013. 498

Initiation forms in SharePoint 2013. 500

Summary. .502

	 Contents	 xiii

Chapter 13	 SharePoint search	 503
Introducing search-based applications. 504

Understanding search architecture. 506

Understanding the indexing process. 507

Understanding the query process. 509

Understanding Keyword Query Language. 510

Creating no-code customizations. 513

Creating simple link queries. 513

Extending the Search Center. 514

Using the Content Search Web Part. 523

Using the client-side API. 523

Using the REST API. 524

Using the CSOM API. 526

Using the script Web Parts . 528

Improving relevancy. 529

Enhancing content processing. 531

Creating .NET Assembly Connectors for search . 534

Search-enabling a model. 534

Implementing security in search results. 537

Crawling the .NET Assembly Connector . 539

Summary. .539

Chapter 14	 SharePoint Enterprise Content Management	 541
Understanding the Managed Metadata Service Application. 541

Understanding managed metadata. 542

Using managed metadata in a custom solution. 545

Understanding content type syndication. 556

Document services. 559

Understanding versioning. 559

Understanding Document IDs. 563

Understanding Document Sets. 567

Using the Content Organizer. 574

Understanding Word Automation Services. 578

xiv	 Contents

Records management . 584

In-place records management. 584

Records archives. 586

eDiscovery. 586

Summary. .589

Chapter 15	 Web content management	 591
Understanding the WCM features. 591

Publishing site templates. 592

Accessing SharePoint publishing files. 594

Mapping to the SharePoint Master Page Gallery. 594

Page layouts. 595

Understanding the page model . 595

Creating a new page layout. 597

Managing the presentation of page fields . 597

Working with edit mode panels . 599

Working with Web Part zones. 600

Understanding device channels. 600

Working with device channel panels. 603

Understanding managed navigation . 604

Working with managed navigation APIs. 604

Creating a navigational term set. 605

Content aggregation. 607

Deciding between the Content Query and
Content Search Web Parts. 609

Working with display templates . 611

Understanding cross-site publishing. 617

Working with catalogs . 617

Summary. .620

Chapter 16	 Business Connectivity Services	 621
Introduction to Business Connectivity Services. 622

Creating simple BCS solutions . 624

	 Contents	 xv

Creating External Content Types. 624

Creating External Lists. 627

Understanding External List limitations. 628

Understanding BCS architecture. 630

Understanding connectors. 631

Understanding Business Data Connectivity 631

Managing the BDC service. 632

Understanding the BDC Server Runtime. 635

Understanding the client cache. 635

Understanding the BDC Client Runtime . 635

Introduction to the Secure Store Service. 635

Understanding package deployment. 639

Understanding authentication scenarios. 639

Configuring authentication models. 639

Accessing claims-based systems. 643

Accessing token-based systems . 643

Managing client authentication. 644

Creating External Content Types. 645

Creating operations. 645

Creating relationships. 648

Defining filters . 649

Using ECTs in SharePoint 2013. 651

Creating custom forms. 652

Using External Data Columns . 652

Using External Data Web Parts. 653

Creating a profile page. 654

Searching External Systems. 655

Supplementing user profiles . 656

Using ECTs in Office 2013. 656

Understanding Outlook integration. 656

Using Word Quick Parts. 657

Creating custom BCS solutions. 657

Using the BDC Runtime object models. 658

Using the Administration Object Model. 661

xvi	 Contents

Creating custom event receivers. 664

Creating .NET Assembly Connectors . 665

Developing SharePoint apps. 670

Summary. .673

Chapter 17	 SharePoint social enterprise features	 675
What’s new in SharePoint 2013. 675

Understanding social components. 676

Working with the social APIs. 677

Understanding user profiles. 678

Retrieving user profile properties. 679

Understanding social feeds. 691

Retrieving posts from your newsfeed. 691

Retrieving posts from a site feed. .700

Posting to your personal feed. 706

Posting to a site feed. 711

Understanding following within SharePoint 2013 712

Following people. 714

Understanding Yammer. 721

Understanding how Yammer can work with SharePoint.721

Retrieving followers and followings from Yammer. 721

Summary. .725

Index	 727

		 xvii

Introduction

The purpose of this book is to help you design and develop custom business apps
and solutions for SharePoint 2013, which includes the two products SharePoint

Foundation and SharePoint Server 2013. Our goal is to teach you how to create, debug,
and deploy the various components of apps and solutions such as Features, Pages, App
Parts, Remote Event Handlers, and Workflows. Once you apply yourself and become
comfortable developing with these building blocks, there’s no limit to the types of apps
and solutions you can create on the SharePoint 2013 platform.

Who this book is for

This book is written for experienced SharePoint developers who are proficient with
Microsoft Visual Studio 2012, the Microsoft .NET Framework 4, and who understand
the fundamentals of the SharePoint object model. The code samples in this book are
written in JavaScript and C# and are intended to represent the spectrum of possible
solutions. The primary audience for the book is SharePoint architects and developers
looking to master SharePoint 2013 development.

Organization of this book

This book is organized into 17 chapters:

■■ Chapter 1, “SharePoint 2013 developer roadmap,” provides a strategic view of
SharePoint development options. The chapter presents the various development
models and how they fit into the overall SharePoint development story.

■■ Chapter 2, “SharePoint development practices and techniques,” provides guid-
ance in setting up your development environment. Additionally, the chapter
covers related technologies that are important for SharePoint development,
such as Windows PowerShell.

■■ Chapter 3, “Server-side solution development,” presents the fundamentals of
sandbox and full-trust solution development. The chapter also presents the
basics of the server-side object model.

■■ Chapter 4, “SharePoint apps,” covers the new app model in detail. This chapter
presents the tools and techniques necessary for developing apps.

xviii   Introduction

■■ Chapter 5, “Client-side programming,” first provides a JavaScript and jQuery
primer for SharePoint developers with an emphasis on professional patterns.
The second half of the chapter presents the fundamentals of the client-side
object model and REST APIs for SharePoint 2013.

■■ Chapter 6, “SharePoint security,” presents the security concepts necessary for
successfully developing solutions and apps. This chapter explains the concepts
behind user authentication and authorization, in addition to the app principal.
This chapter also presents the details behind the claims and OAuth security
models.

■■ Chapter 7, “SharePoint pages,” presents techniques and information for working
with pages in SharePoint solutions and apps. The chapter covers core concepts
such as master pages, content placeholders, and application pages.

■■ Chapter 8, “SharePoint Web Parts,” presents the tools and techniques required
to create Web Parts and app parts.

■■ Chapter 9, “SharePoint lists,” presents the information necessary for creating
lists and performing operations against them. This chapter contains many code
samples for reading and writing, using both server and client technologies.

■■ Chapter 10, “SharePoint type definitions and templates,” covers the techniques
for creating field types and field controls. The second part of the chapter covers
the new JSLink technology and how it can be used to customize views.

■■ Chapter 11, “SharePoint site provisioning,” shows how to create site templates
and site definitions. These templates can be reused in solutions and apps.

■■ Chapter 12, “SharePoint workflows,” presents all the information necessary for
developing custom workflows by using the new Workflow Manager engine.
Techniques for both the SharePoint Designer and Visual Studio are presented.

■■ Chapter 13, “SharePoint search,” presents architecture and development tech-
niques for Enterprise Search. The chapter details the creation of no-code solu-
tions as well as apps.

■■ Chapter 14, “SharePoint Enterprise Content Management,” presents structure
and development techniques for managed metadata, document services, and
records management.

	 Introduction   xix

■■ Chapter 15, “Web content management,” details the significant improvements
made for supporting website development. The chapter presents improvements
in data-driven sites, master page creation, and metadata navigation.

■■ Chapter 16, “Business Connectivity Services,” provides the background and tools
for creating solutions based on data in external systems. The chapter presents
approaches for both solutions and apps.

■■ Chapter 17, “SharePoint social enterprise features,” presents the details of the
new social infrastructure. The chapter also shows how to create solutions that
utilize social features.

Acknowledgments

The process of writing this book really began two years before the release of
SharePoint 2013, when we were fortunate enough to be selected as the team to
create the first SharePoint 2013 training materials for Microsoft. We worked through
many “Dev Kitchens” with the SharePoint team and got great information from
Mike Ammerlann, Rob Howard, Brad Stevenson, Mike Morton, Mauricio Ordonez,
and many others. After learning the technologies, we worked with a great team
headed by Keenan Newton to deliver training to Microsoft personnel around the
country. Later, we worked with Uma Subramanian and the MSDN team to create
samples and videos to be deployed online. Thanks to all these people and everyone
at Microsoft for the wonderful support and opportunities.

Of course, the book could not possibly have come together without the patience
and support of the team at Microsoft Press, starting with our editor, Ken Brown
(O’Reilly Media). Although we frustrated him endlessly at times, he maintained focus
and drove us all to success. We’d also like to thank Kara Ebrahim (Production Editor,
O’Reilly Media), Kathy Krause (Copyeditor, Online Training Solutions, Inc. [OTSI]),
Wayne Ewington (Technical Editor), and Neil Hodgkinson (Technical Editor).

Thanks, everyone. It feels great to be done!

xx   Introduction

Support & feedback

The following sections provide information on errata, book support, feedback, and con-
tact information.

Errata
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed at:

http://aka.ms/InsideSP2013/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://aka.ms/InsideSP2013/errata
mailto:mspinput%40microsoft.com?subject=
mailto:mspinput%40microsoft.com?subject=
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

		 1

C H A P T E R 1

SharePoint 2013 developer
roadmap

Microsoft SharePoint technologies have become increasing popular and have made it into the
mainstream of IT infrastructures used by companies and organizations around the world. Today,

millions of people work with SharePoint technologies every day, including business users, power us-
ers, executives, site administrators, farm administrators, and professional developers.

It is important for you, as a software developer, to view SharePoint technologies as a true plat-
form for professional developers. The key point is that SharePoint technologies serve as a foundation
on top of which you can design and implement business solutions. However, getting started can be
daunting because there are several different versions of the SharePoint platform, and each version
has several different variations.

Over the last decade, most of the companies that have used SharePoint technologies have de-
ployed them as server-side software products on server computers that are under their control. This
is a scenario that is often referred to as SharePoint on-premises. It is also important to note that the
vast majority of SharePoint-related development projects have historically targeted the SharePoint
on-premises scenario. However, this is beginning to change, and the change is occurring at a very
fast pace.

Over the last few years, Microsoft has shifted the focus of their SharePoint adoption strategy from
the original on-premises model to a newer subscription-based model where the SharePoint platform
is made available to customers as a cloud-based service hosted in the Microsoft Office 365 environ-
ment. The hosted version of the SharePoint platform in the Office 365 environment is known as
SharePoint Online.

It’s clear that Microsoft sees SharePoint Online as the future direction of SharePoint technologies.
However, it’s also true that a significantly large portion of the existing SharePoint customer base is
still using the older SharePoint on-premises model. Microsoft’s ongoing effort to move its SharePoint
customer base from the original on-premises model to SharePoint Online raises a few important
questions:

■■ Are the SharePoint on-premises model and SharePoint Online just two different variations of
the same development platform, or do they represent two entirely different platforms?

■■ When developing a business solution for SharePoint 2013, is it important to choose between
targeting SharePoint on-premises and targeting SharePoint Online?

2   Inside Microsoft SharePoint 2013

■■ Can you write a generic business solution that runs equally well in a SharePoint on-premises
environment and in the SharePoint Online environment?

Unfortunately, the answer to each of these questions is “it depends,” because they are all depen-
dent upon the scenario at hand. In one scenario, you might be able to write a generic business solu-
tion that works in on-premises environments and in SharePoint Online. In another scenario, you might
find it necessary to use a development technique that works in on-premises environments but doesn’t
work at all in SharePoint Online. In a third scenario, you might decide to take advantage of features in
the Office 365 environment that are not available in the on-premises environment.

The bottom line is that there are an incredible number of details and techniques that you have to
learn if you want to build a level of expertise across the entire SharePoint platform. The goal of this
book is to cover the SharePoint 2013 development story from end to end to prepare you to make the
correct choices in any SharePoint development scenario you might encounter.

A brief history of SharePoint

Microsoft has released five versions of SharePoint technologies, which are listed in Table 1-1. Each
SharePoint release has included an underlying core infrastructure product and a second product
that adds business value to the infrastructure. The core infrastructure product has always been free
to customers who already have licenses for the underlying server-side operating system, Windows
Server. Microsoft makes money on SharePoint technologies in the on-premises model by selling
customers server-side licenses as well as client access licenses (CALs).

TABLE 1-1  A brief history of SharePoint

Year Core infrastructure product Business value product

2001 SharePoint Team Services SharePoint Portal Server 2001

2003 Windows SharePoint Services 2.0 Microsoft SharePoint Portal Server 2003

2007 Windows SharePoint Services 3.0 Microsoft Office SharePoint Server 2007

2010 Microsoft SharePoint Foundation 2010 Microsoft SharePoint Server 2010

2013 Microsoft SharePoint Foundation 2013 Microsoft SharePoint Server 2013

SharePoint 2001 introduced an environment that allowed users to create sites, lists, and document
libraries on demand based on a data-driven design. The implementation was based on a Microsoft
SQL Server database that tracked the creation of sites and lists by adding records to a static set of da-
tabase tables. This initial version of SharePoint had a couple of noteworthy shortcomings. First, it was
cumbersome to customize sites. Second, the files uploaded to a document library were stored on the
local file system of a single, dedicated web server, which made it impossible to scale out SharePoint
Team Services sites by using a farm of web servers.

SharePoint 2003 was the first version to be implemented on top of the Microsoft .NET Framework
and ASP.NET. This version began to open up new opportunities for professional developers looking to

	 Chapter 1  SharePoint 2013 developer roadmap    3

extend the SharePoint environment with Web Parts and event handlers. Also in this version, Microsoft
altered the implementation for document libraries to store files inside a back-end SQL Server data-
base, which made it possible to scale out SharePoint sites by using a farm of web servers.

SharePoint 2007 introduced many new concepts to the underlying SharePoint architecture,
including site columns, content types, and features and solution packages. Microsoft also improved
the integration of SharePoint with ASP.NET, which made it possible for .NET developers to extend
SharePoint sites by creating familiar ASP.NET components such as master pages, user controls,
navigation providers, authentication providers, and custom HttpModule components.

SharePoint 2010 was the fourth release of SharePoint technologies. It included Microsoft
SharePoint Foundation 2010 and Microsoft SharePoint Server 2010. SharePoint 2010 introduced
the new service application architecture and a significant modernization to the user interface
experience with the server-side ribbon, model dialogs, and new Asynchronous JavaScript and XML
(AJAX) behavior that reduced the need for page post backs. It was also with the SharePoint 2010
release that the Microsoft Visual Studio team released the original version of the SharePoint
Developer Tools, which moved SharePoint developers out of the dark ages and into a far more
productive era.

SharePoint 2013 is the fifth and most recent release of SharePoint technologies. It includes
SharePoint Foundation 2013 and Microsoft SharePoint Server 2013. As you will see, the most signifi
cant changes that Microsoft has made to SharePoint 2013 have been done to adapt the SharePoint
platform for hosted environments in the cloud, such as SharePoint Online in the Office 365 environ-
ment. This is a big change for developers because the SharePoint platform has been split in two.
There is the older, familiar SharePoint platform in scenarios in which a company has deployed
SharePoint on-premises. And now there is a second SharePoint platform in which developers are
called upon to provide business solutions for hosted environments such as SharePoint Online.

Understanding the impact of SharePoint Online on the
SharePoint platform
With its first two releases, Microsoft generated revenue from SharePoint technologies by using only
the on-premises model. More specifically, Microsoft made money by selling SharePoint Server as a
traditional software product that requires the customer to purchase a server-side license for each
server and a client access license (CAL) for each user.

Starting in the SharePoint 2007 life cycle, Microsoft began to sell hosted versions of SharePoint
that were bundled together with other services such as Microsoft Exchange, under the name of Busi-
ness Productivity Online Standard Suite (BPOS). In the SharePoint 2010 life cycle, Microsoft changed
the name of their bundled hosting service from BPOS to Office 365.

SharePoint 2013 represents the version in which Microsoft got serious about adapting the
SharePoint platform for hosted environments such as SharePoint Online. This is evidenced by sig-
nificant investments on the part of Microsoft to re-architect many core aspects of the SharePoint
platform that had been causing scalability issues in SharePoint Online with SharePoint 2010.

4   Inside Microsoft SharePoint 2013

Microsoft made one other big decision that is having a profound impact on every developer that
works with the SharePoint platform. With SharePoint 2013, Microsoft has introduced a new strategy
for developing business solutions based on the new SharePoint app model, which is a 180-degree turn
from anything that has existed before.

With SharePoint 2013, there are now two separate and distinct styles in which you can develop
a business solution. First, there is the original style of SharePoint development based on SharePoint
solutions. Second, there is the new style of development based on SharePoint apps. This means that
you must decide between creating a SharePoint solution and creating a SharePoint app each time you
start a new development project on the SharePoint platform. So which one should you choose? The
answer to that question is easy: it depends.

Examining SharePoint Foundation architecture

At its core, SharePoint Foundation 2013 is a provisioning engine—that is, its fundamental design is
based on the idea of using web-based templates to create sites, lists, and libraries to store and organ
ize content. Templates are used to create both new websites and various elements inside a website,
such as lists, pages, and Web Parts.

SharePoint Foundation is particularly valuable to companies and organizations faced with the task
of creating and administering a large number of websites, because it dramatically reduces the amount
of work required. Someone in the IT department or even an ordinary business user can provision (a
fancy word for create) a site in SharePoint Foundation in less than a minute by filling in a browser-
based form and clicking the OK button. Creating a new page or a new list inside a site is just as easy.

SharePoint Foundation takes care of all the provisioning details behind the scenes by adding and
modifying records in a SQL Server database. The database administrator doesn’t need to create a new
database or any new tables. The ASP.NET developer doesn’t need to create a new ASP.NET website to
supply a user interface. And the system administrator doesn’t need to copy any files on the front-end
web server or configure any Internet Information Services (IIS) settings. It all just works. That’s the
magic of the SharePoint platform.

The architecture of SharePoint Foundation was specifically designed to operate in a web farm envi-
ronment. Figure 1-1 shows a basic diagram of a simple web farm with two front-end web servers and
a database server. In scenarios that have multiple web servers, a network load balancer is used to take
incoming HTTP requests and determine which front-end web server each request should be sent to.

SharePoint Foundation 2013 and SharePoint Server 2013 are available only in 64-bit versions.
They can be installed on a 64-bit version of Windows Server 2012 or Windows Server 2008 R2. Unlike
SharePoint 2010, Microsoft does not support installing SharePoint 2013 on a client operating system
such as Windows 7 or Windows 8. However, you can run Windows 8 and enable Microsoft Hyper-V,
which will allow you to create virtual machines (VMs) based on Windows Server 2012 or Windows
Server 2008 R2. Therefore, you can install SharePoint 2013 on a VM running on Windows 8.

	 Chapter 1  SharePoint 2013 developer roadmap    5

FIGURE 1-1  SharePoint Foundation is designed to scale out by using a farm of web servers.

SharePoint Foundation takes advantage of IIS on front-end web servers to listen for incoming
HTTP requests and to manage the server-side worker processes by using the IIS application pool
infrastructure. The version of IIS depends upon the operating system. Windows Server 2012 will
use IIS 8.0, whereas Windows Server 2008 R2 will use IIS 7.5. The runtime environment of SharePoint
Foundation runs within a worker process launched from the IIS application pool executable named
w3wp.exe. As shown in Figure 1-2, SharePoint Foundation 2013 is built on .NET Framework 4.5.

FIGURE 1-2  The SharePoint Foundation runtime loads into an IIS application pool running ASP.NET 4.5.

6   Inside Microsoft SharePoint 2013

Understanding SharePoint farms
Every deployment of SharePoint Foundation is based on the concept of a farm. Simply stated, a
SharePoint farm is a set of one or more server computers working together to provide SharePoint
Foundation functionality to clients. For simple scenarios, you can set up an on-premises farm by
installing SharePoint 2013 and configuring everything you need on a single server computer or a
single VM. An on-premises farm in a typical production environment runs SQL Server on a separate,
dedicated database server and can have multiple front-end web servers, as shown in Figure 1-3. As
you will learn later in this chapter, a farm can also run one or more application servers in addition to a
database server and a set of web servers.

FIGURE 1-3  A SharePoint farm is a set of servers running SharePoint that are all associated by a single
configuration database.

Each SharePoint farm runs a single SQL Server database known as the configuration database.
SharePoint Foundation creates a configuration database whenever it creates a new farm, in order to
track important farm-wide information. For example, the configuration database tracks which web
servers are associated with the farm, as well as which users have been assigned administrative permis-
sions within SharePoint Foundation at the farm level.

When you are creating a SharePoint 2013 development environment with an on-premises farm,
it is typical to install and configure SharePoint 2013 as a single-server farm by using either Windows
Server 2012 or Windows Server 2008 R2. You have the option of installing a version of SharePoint 2013
on a native installation of Windows Server or on a virtual machine (VM). For example, you can install
a 64-bit version of Windows 8 as a host operating system and configure it to run Hyper-V. Hyper-V
allows you to create a VM on which you can install a 64-bit version of Windows Server 2012 and
SharePoint Server 2013.

	 Chapter 1  SharePoint 2013 developer roadmap    7

As a SharePoint developer, you must remember that farms come in all different shapes and sizes.
Although it is common to write and test your code on a single-server farm, this type of environment
is probably not the type of farm in which your code will be deployed. It can be a big mistake to as-
sume that your target SharePoint production environment is just like your development environment.

Many companies that are invested in on-premises SharePoint development categorize their farms
into three different types. SharePoint developers write and debug SharePoint solutions in develop-
ment farms. Staging farms simulate a more realistic environment and are used to conduct quality
assurance testing on SharePoint solutions. For example, the servers in a staging farm should be built
without installing developer tools such as Microsoft Visual Studio 2012. After a SharePoint solution
or a SharePoint app has been thoroughly tested in a staging farm, it can be deployed in a production
farm, where its functionality is made available to users.

Working with SharePoint 2013 Central Administration
As a SharePoint developer, you must wear many hats. One hat you frequently wear is that of
a SharePoint farm administrator. You should become familiar with the administrative site that
SharePoint Foundation automatically creates for each farm. This administrative site is known as
SharePoint 2013 Central Administration, and its home page is shown in Figure 1-4.

FIGURE 1-4  SharePoint developers should become familiar with SharePoint 2013 Central Administration.

8   Inside Microsoft SharePoint 2013

Figure 1-4 shows the home page of SharePoint 2013 Central Administration in an on-premises
farm with SharePoint Server 2013 installed. If you only install SharePoint Foundation instead of
SharePoint Server 2013, you will not find as many links to administrative pages, because quite a
few are only installed with SharePoint Server 2013. Also note that SharePoint 2013 Central Admini
stration is extensible. If you need to create a SharePoint solution for administrative purposes, you
canintegrate your work into SharePoint 2013 Central Administration by adding custom links and
custom administration pages.

Scenario: Introducing Wingtip Toys
Many of the example configurations and code samples in this book are based on Wingtip Toys,
a company that was fictitiously founded in 1882 by Henry Livingston Wingtip. Wingtip Toys
has a long and proud history of producing the industry’s most unique and inventive toys for
people of all ages. Wingtip Toys has set up an intranet using SharePoint internally to provide
a means of collaboration between its trinket design scientists, its manufacturing team, and its
remote sales force. It has also erected an extranet, using SharePoint to interact with partners
and toy stores around the world. Finally, Wingtip Toys has decided to use SharePoint to create
its Internet-facing site to advertise and promote its famous line of toys and novelties.

Creating web applications
SharePoint 2013 is built on top of Internet Information Services (IIS). SharePoint 2013 is completely
dependent upon IIS because it uses IIS websites to listen for and process incoming HTTP requests.
Therefore, you need to understand exactly what an IIS website really is.

An IIS website provides an entry point into the IIS web server infrastructure. For example, the
default website that is automatically created by IIS listens for incoming HTTP requests on port 80.
You can create additional IIS websites to provide additional HTTP entry points using different port
numbers, different IP addresses, or different host headers. In this book’s scenario, we’ll use host
headers to create HTTP entry points for domain names such as http://intranet.wingtiptoys.com.

SharePoint Foundation creates an abstraction on top of IIS that is known as a web application. At
a physical level, a SharePoint web application is a collection of one or more IIS websites configured
to map incoming HTTP requests to a set of SharePoint sites. The web application also maps each
SharePoint site to one or more specific content databases. SharePoint Foundation uses content
databases to store site content such as list items, documents, and customization information.

	 Chapter 1  SharePoint 2013 developer roadmap    9

Warning: Don’t touch the SharePoint databases
When developing for SharePoint 2013, you’re not permitted to directly access the configuration
database or any of the content databases. For example, you must resist any temptation to write
data access code that reads or writes data from the tables inside these databases. Instead, you
should write code against one of the SharePoint 2013 APIs to reach the same goal, and leave
it to SharePoint 2013 to access the configuration database and content database behind the
scenes.

SharePoint Foundation leverages the ASP.NET 4.0 support in IIS to extend the standard behavior
of an IIS website. It does this by configuring IIS websites to run SharePoint-specific components in
the ASP.NET pipeline by using HttpModule objects. This integration with ASP.NET allows SharePoint
Foundation to take control over every request that reaches an IIS website that has been configured as
a SharePoint web application.

Keep in mind that every SharePoint web application runs as one large ASP.NET application. Con-
sequently, SharePoint Foundation adds a standard ASP.NET web.config file to the root directory of
each IIS website associated with a web application. When you create a web application in SharePoint
Foundation, it creates an IIS website with a root folder containing a web.config file at the following
location:

C:\inetpub\wwwroot\wss\VirtualDirectories

 The fact that there is a one-to-many relationship between a web.config file and SharePoint sites
can be counterintuitive for developers who are migrating from ASP.NET. A single SharePoint site is un-
like an ASP.NET site because it can’t have its own web.config file. That means that a single web.config
file in SharePoint Foundation supplies configuration information for every site in a web application.
This is true even in scenarios where the number of sites in a web application reaches into the hun-
dreds or thousands.

A SharePoint on-premises farm typically runs two or more web applications. The first web ap
plication is created automatically when the farm is created. This web application is used to run
SharePoint 2013 Central Administration. You need at least one additional web application to create
the sites that are used by business users. The IT staff at Wingtip Toys decided to configure their pro-
duction farm with three different web applications used to reach employees, partners, and customers,
as shown in Figure 1-5.

10   Inside Microsoft SharePoint 2013

FIGURE 1-5  Each web application has one or more content databases.

Understanding web applications and user authentication
The first thing to understand is that the SharePoint platform itself does not supply the actual code
to authenticate users. Instead, the SharePoint platform relies on external user authentication systems
such as Windows Server and Active Directory or the built-in support in ASP.NET for forms-based
authentication (FBA). After an external system has authenticated a user and created a security token,
the SharePoint platform is then able to create a profile around that security token to establish and
track the user’s identity inside the SharePoint security system.

The manner in which SharePoint authenticates users is configured at the web application level.
When you create a SharePoint web application, you have the option of creating it in either claims
mode or classic mode. Classic authentication mode is the older style of user authentication that was
used in SharePoint 2007, where user identity is tracked by using native Windows security tokens.
Though classic mode is still supported in SharePoint 2013 for older scenarios, its use is deprecated
and should be avoided. That means new web applications should be configured to use claims-based
security.

The claims-based authentication mode was introduced in SharePoint 2010; it allows the SharePoint
platform to use a single, unified format for all the security tokens that are created during the user

	 Chapter 1  SharePoint 2013 developer roadmap    11

authentication process. More specifically, the user authentication tokens are converted into a special
format for caching known as a FedAuth token. Within developer circles, a FedAuth token is also com-
monly referred to as a claims token.

Let’s walk through the authentication process in a SharePoint web application in a scenario in
which the user is authenticated with Windows authentication. The first part of the authentication
process involves creating a native Windows security token. In the second part of the authentication
process, SharePoint Foundation will convert the Windows security token into a FedAuth token by
using a local service known as the Security Token Service (STS).

You also have the option of configuring a web application in an on-premises farm to support
forms-based authentication by using an ASP.NET authentication provider. In this style of authentica-
tion, SharePoint Foundation once again calls upon the STS to create a FedAuth token for the FBA user
during the user authentication process.

In SharePoint 2010, the FedAuth tokens created during the user authentication process are cached
in memory on a per–web server basis and can be reused across multiple requests from the same user.
SharePoint 2013 further optimizes the caching of FedAuth tokens with a new platform-level service
known as the Distributed Cache Service, which can be configured to maintain a farm-wide cache of
FedAuth tokens.

SharePoint Foundation’s use of claims-based authentication and FedAuth tokens provides another
noteworthy point of flexibility. It opens up the number of identity providers that can be integrated
with a SharePoint farm to provide user authentication. In addition to supporting Windows authentica-
tion and FBA, claims-based security makes it possible to configure a SharePoint web application to
authenticate users by using external identity providers that support an XML-based industry standard
known as Security Assertion Markup Language (SAML). More specifically, SharePoint 2013 supports
identity providers that support the SAML 1.1 specification. Examples of supported providers include
Windows Azure Access Control Service (ACS), Windows Live ID, Google Single Sign-on, and Facebook.

Now that you have learned the fundamentals of how web applications provide the support for
user authentication, let’s examine how you might configure a set of web applications in a real-world
scenario. For example, imagine a scenario in which the IT staff at Wingtip Toys must decide how many
web applications should be created in their production farm.

The Wingtip Toys IT staff decided to create the first web application for the exclusive use of Wing-
tip employees, all of whom have their own Active Directory user accounts. Therefore, the first web
application was configured for intranet usage by requiring Integrated Windows authentication and by
prohibiting anonymous access.

The Wingtip Toys IT staff decided to create a second web application so they could create sites
that could be made accessible to external users such as partners and vendors. The key characteris-
tic of these external users is that they will never have their own Active Directory user accounts and,
therefore, cannot be authenticated by using Windows authentication. Therefore, the Wingtip Toys IT
staff decided to configure the second web application to support user authentication using FBA, so
that these external users can be authenticated without any need for Active Directory user accounts.

12   Inside Microsoft SharePoint 2013

The Wingtip Toys IT staff decided to create a third web application to host any SharePoint site
that requires anonymous access, such as their public website hosted at http://www.wingtiptoys.com.
Although they configured this web application to allow visitors from the Internet to view their public
website anonymously, they also wanted to make logging onto the site an available option so that
customers could create member accounts and customer profiles. Therefore, they configured this web
application with a trust to Windows Live ID. When customers attempt to log onto the Wingtip Toys
public website, they are redirected to the Windows Live ID site and prompted to enter their Windows
Live ID credentials. After the customer is authenticated by Windows Live ID, he is then redirected back
to the Wingtip Toys public website with an established identity.

Understanding service applications
A SharePoint farm must provide an efficient way to share resources across sites running in different
web applications. It must also provide the means for offloading processing cycles for certain types
of processes from front-end web servers to dedicated application servers. To meet this requirement,
SharePoint Foundation uses an architecture based on service applications that was introduced in
SharePoint 2010. Service applications are used to facilitate sharing resources across sites running in
different web applications and different farms. The service application architecture also provides the
means for scaling a SharePoint farm by offloading processing cycles from the front-end web servers
over to dedicated application servers in the middle tier.

A key benefit of the service application architecture is that you can treat a service application as
a moveable entity. After you create a service application, you can configure it for several different
deployment scenarios. In a simple two-tier farms, the service application can be configured to run on
one or more of the web servers in the farm, as shown on the left in Figure 1-6. In scenarios that re-
quire the ability to scale to thousands of users, the same service application can be configured to run
on a dedicated application server such as the one shown on the right in Figure 1-6. In scenarios that
require even greater scale, a service application can be configured to run within its own dedicated
farm of application servers.

FIGURE 1-6  SharePoint farms run service applications in addition to web applications.

	 Chapter 1  SharePoint 2013 developer roadmap    13

The service application architecture of the SharePoint platform was created with extensibility in
mind. Any developer with the proper knowledge and motivation can develop a service application
that can be deployed within a SharePoint 2013 farm. However, this is not an easy undertaking. A ser-
vice application targeting a SharePoint platform must be written to a specific set of requirements. For
example, a service application must query the configuration database about its current deployment
configuration and adjust its behavior accordingly. A service application must be written in such a way
that it can be deployed and configured using nothing more than Windows PowerShell.

When a service application runs across the network on a dedicated application server, it relies on a
proxy component that must be written to run on the web server. The service application proxy is cre-
ated and configured along with the service application. The service application proxy provides value
by abstracting away the code required to discover where the service application lives on the network.
The service application proxy provides additional value by encapsulating the Windows Communication
Foundation (WCF) code used to execute web service calls on the target service application.

The proxy-based design of service applications provides flexibility in terms of deployment and
configuration. For example, you can configure a proxy in one farm to communicate with a service
application in another farm. The proxy simply consults the configuration database and discovers the
correct address for the application server running the service application. The implication here is that
the new service application architecture makes it much easier to share resources across farms while
still controlling what services are made available and how they are consumed.

As a SharePoint developer creating business solutions, it is unlikely that you would ever find the
need or have the proper incentives to develop a custom SharePoint service application. However, you
still need to understand how service applications work and how they fit into the high-level archi-
tecture of SharePoint Foundation. For example, SharePoint Server 2013 delivers a good deal of its
functionality through service applications.

The key point here is that you must learn how to create and configure service applications and ser-
vice application proxies to properly build out a local on-premises farm for SharePoint development.
This can be done most easily by using the Farm Configuration Wizard, which is available in Central
Administration. However, using a custom Windows PowerShell script allows you to create service
applications and service application proxies with far more control and flexibility than is afforded by
the Farm Configuration Wizard.

Building an environment for SharePoint development
If you plan on developing SharePoint solutions or SharePoint apps that will be used within
private networks such as a corporate LAN, it makes sense to build out a development environ-
ment with a local SharePoint 2013 farm. Critical Path Training provides a free download called
the SharePoint Server 2013 Virtual Machine Setup Guide, which provides you with step-by-step
instructions to install all the software you need and to build out a local SharePoint 2013 farm.
You can download the guide from http://criticalpathtraining.com/Members.

http://criticalpathtraining.com/Members

14   Inside Microsoft SharePoint 2013

Creating service applications in SharePoint Server 2013
SharePoint Server 2013 is nothing more than a layer of software that’s been written to run on SharePoint
Foundation. Every installation of SharePoint Server 2013 begins with an installation of SharePoint
Foundation. After installing SharePoint Foundation, the installation for SharePoint Server 2013 then
installs its own templates, components, and service applications. The Standard edition of SharePoint
Server 2013 only supports a subset of the features and services available in the Enterprise edition of
SharePoint Server 2013.

Adding to the complexity is that the feature set of SharePoint Online does not exactly match that
of the on-premises version of SharePoint Server 2013. Therefore, you can really break SharePoint 2013
out into four distinct platforms that all vary in some degree from one another:

■■ SharePoint Foundation 2013

■■ SharePoint Server 2013 Standard edition

■■ SharePoint Server 2013 Enterprise edition

■■ SharePoint Online

To help you understand which service applications are available in each variation of the
SharePoint 2013 platform, Table 1-2 lists some of the SharePoint 2013 service applications in
addition to the editions of SharePoint 2013 that support each of these service applications.

TABLE 1-2  Service applications included with SharePoint 2013 platform

Name Foundation Standard Enterprise Online

Access Services No No Yes Yes

Access Services 2010 No No Yes No

App Management
Service

Yes Yes Yes Yes

Business Data
Connectivity Service

Yes Yes Yes Yes

Excel Services
Application

No No Yes Yes

Machine Translation
Service

No No Yes Yes

PerformancePoint
Service Application

No No Yes No

PowerPoint
Automation Services

No Yes Yes Yes

Managed Metadata
Service Application

No Yes Yes Yes

Search Service
Application

Yes Yes Yes Yes

Secure Store Service No Yes Yes Yes

Site Subscription
Settings Service

Yes Yes Yes Yes

	 Chapter 1  SharePoint 2013 developer roadmap    15

Name Foundation Standard Enterprise Online

State Service Yes Yes Yes Yes

User and Health Data
Collection Service

Yes Yes Yes Yes

User Profile Service
Application

No Yes Yes Yes

Visio Graphics Service No No Yes Yes

Word Automation
Services

No Yes Yes Yes

Work Management
Service Application

No Yes Yes Yes

Workflow Service
Application

Yes Yes Yes Yes

Managing sites
Now that you understand the high-level architecture of a SharePoint farm, you need to know how
SharePoint Foundation creates and manages sites within the scope of a web application. Let’s start by
asking a basic question: What exactly is a SharePoint site?

This question has many possible answers. For example, a site is an endpoint that is accessible from
across a network such the Internet, an intranet, or an extranet. A site is also a storage container that
allows users to store and manage content such as list items and documents. In addition, a site is a
customizable entity that allows privileged users to add pages, lists, and child sites as well as install
SharePoint apps. Finally, a site is a securable entity whose content is accessible to a configurable set
of users.

As a developer, you can also think of a site as an instance of an application. For example, the sci-
entists at Wingtip Toys use a SharePoint site to automate the business process of approving a new toy
idea. When Wingtip scientists have new ideas for a toy, they describe their ideas in Microsoft Word
documents, which they then upload to a document library in the site. The approval process is initiated
whenever a scientist starts a custom approval workflow on one of those documents.

A site can also be used as an integration point to connect users to back-end data sources such
as a database application or a line-of-business application such as SAP or PeopleSoft. The Business
Connectivity Services that ship with SharePoint 2013 make it possible to establish a read-write con-
nection with a back-end data source. One valuable aspect of the Business Connectivity Services
architecture is that this external data often appears to be a native SharePoint list. There are many
user scenarios and developer scenarios in which you can treat external data just as you would treat
a native SharePoint list.

Understanding the role of site collections
Every SharePoint site must be provisioned within the scope of an existing web application. However,
a site can’t exist as an independent entity within a web application. Instead, every site must also be
created inside the scope of a site collection.

16   Inside Microsoft SharePoint 2013

A site collection is a container of sites. Every site collection has a top-level site. In addition to the
top-level site, a site collection can optionally contain a hierarchy of child sites. Figure 1-7 shows a web
application created with a host header path of http://intranet.wingtiptoys.com that contains four site
collections. The first site collection has been created at the root of the web application and contains
just a single, top-level site. Note that the top-level site, the site collection, and the hosting web ap-
plication all have the same URL.

FIGURE 1-7  Each site collection has a top-level site and can optionally contain a hierarchy of child sites.

Only one site collection within a web application can be created at the same URL as the hosting
web application itself. The other three site collections shown in Figure 1-7 have been created at URLs
that are relative to the host header path of the hosting web application. The site collection created at
the relative path of /sites/operations has just a top-level site. The site collection created at the relative
path of /sites/sales contains one level of child sites below the top-level site. The last site collection on
the right, which has been created at the relative path of /sites/financials, contains a more complex
hierarchy with three levels.

When a company begins using SharePoint Foundation or SharePoint Server 2013, one of the first
questions that comes up is how to partition sites across site collections. For example, should you
create one big site collection with lots of child sites, or should you create many individual site collec-
tions? This decision is usually best made after thinking through all the relevant issues discussed in the
next few paragraphs. You must gain an understanding of how partitioning sites into site collections
affects the scope of administrative privileges, security boundaries, backup and restore operations, and
site design.

You could be asking yourself why the SharePoint Foundation architecture requires this special con-
tainer to hold its sites. For starters, site collections represent a scope for administrative privileges. If

	 Chapter 1  SharePoint 2013 developer roadmap    17

you’ve been assigned as a site collection administrator, you have full administrative permissions within
any existing site and any future site created inside that site collection.

Think about the requirements of site management in a large corporation that’s provisioning
thousands of sites per year. The administrative burden posed by all these sites is going to be more
than most IT staffs can deal with in a timely manner. The concept of the site collection is important
because it allows the IT staff to hand off the administrative burden to someone in a business division
who takes on the role of the site collection administrator.

Let’s walk through an example. The Wingtip Toys IT staff is responsible for provisioning new site
collections, and one of the Wingtip business divisions submits a request for a new site. Imagine the
case where the Wingtip Sales Director has put in a request to create a new team site for his sales staff.
A Wingtip IT staff member would handle this request by creating a new site collection with a team
site as its top-level site.

When creating the new site collection, the Wingtip IT staff member would add the Wingtip Sales
Director who requested the site as the site collection administrator. The Wingtip Sales Director would
have full administrative privileges inside the site collection and could add new users, lists, and pages
without any further assistance from the Wingtip IT staff. The Wingtip Sales Director could also add
child sites and configure access rights to them independently of the top-level site.

A second advantage of site collections is that they provide a scope for membership and the con-
figuration of access rights. By design, every site collection is independent of any other site collection
with respect to what security groups are defined, which users have been added as members, and
which users are authorized to perform what actions.

For example, imagine that the Wingtip IT staff has provisioned one site collection for the Sales de-
partment and a second site collection for the Finance department. Even though some users within the
Finance department have administrative permissions within their own site collection, there’s nothing
they can do that will affect the security configuration of the Sales site collection. SharePoint Founda-
tion sees each site collection as an island with respect to security and permissions configuration.

A third reason for site collections is that they provide a convenient scope for backup and restore
operations. You can back up a site collection and later restore it with full fidelity. The restoration of a
site collection can take place in the same location where the backup was made. Alternatively, a site
collection can be restored in a different location—even inside a different farm. This technique for
backing up a site collection and restoring it in another location provides one possible strategy for
moving sites and all the content inside from one farm to another.

A final motivation for you to start thinking about in terms of site collections is that they provide a
scope for many types of site elements and for running custom queries. For example, the server-side
object model of SharePoint Foundation provides you with the capability to run queries that span all
the lists within a site collection. However, there is no query mechanism in the SharePoint server-side
object model that spans across site collections. Therefore, if your application design calls for running
queries to aggregate list data from several different sites, it makes sense to add sites to the same site
collection when they contain lists that must be queried together.

18   Inside Microsoft SharePoint 2013

Imagine a case in which the West Division of the Wingtip Sales team has four field offices. The
Wingtip Sales Director could create a child site for each field office below a site that was created for
the West Division. Now assume that each child site has a Contacts list that is used to track sales leads.
By using programming techniques shown later in this book, you can execute queries at the scope of
the West Division site that would aggregate all the Contacts items found across all of its child sites.
You could execute the same query at a higher scope and get different results. For example, if you
executed the same query scoped to the top-level site, it would aggregate all the Contacts found
throughout the site collection, including both the West Division and the East Division.

Understanding host-named site collections (HNSCs)
The traditional way to manage the URLs of site collections is to create the hosting web application
with a host header path such as http://intranet.wingtiptoys.com. The site collections created inside
this type of web application are known as path-based site collections because they all must be cre-
ated with a URL that starts with the same host header path. When you create path-based site collec-
tions, you must create the URL for each site collection by starting with the host header path defined
by the hosting web application:

■■ http://intranet.wingtiptoys.com

■■ http://intranet.wingtiptoys.com/sites/operations

■■ http://intranet.wingtiptoys.com/sites/sales

■■ http://intranet.wingtiptoys.com/sites/financials

There is a second approach, which provides more flexibility when you are managing the URLs for
the site collections with a web application. This approach requires you to create the hosting web ap-
plication without the traditional host header path. When you create a new web application without
the host header path, you then have the ability to create site collections with unique host names. This
type of site collection is known as a host-named site collection (HNSC).

Consider the following scenario. Imagine you are required to create a set of site collections using
the following domain names:

■■ http://operations.wingtiptoys.com

■■ http://sales.wingtiptoys.com

■■ http://financials.wingtiptoys.com

If you use the older, traditional approach of creating path-based site collections, you would have
to create a separate web application to host each of these site collections. However, this approach is
going to become problematic because it cannot be scaled due to the fact that you are limited in how
many web applications can be created within a single farm. However, if you use an approach based
on host-named site collections, you can create all these site collections and many more with unique
domain names within a single web application.

	 Chapter 1  SharePoint 2013 developer roadmap    19

Note that the creation of host-named collections can be a little tricky at first. That’s because a
host-named site collection cannot be created through Central Administration. You must create a host-
named site collection by using Windows PowerShell.

Customizing sites
SharePoint Foundation provides many user options for configuring and customizing sites. If you’re
logged onto a site as the site collection administrator, site administrator, or a user granted Designer
permissions, you can perform any site customization options supported by SharePoint Foundation. If
you’re logged onto a site without administrative privileges in the role of a contributor, however, you
won’t have the proper permissions to customize the site. Furthermore, if you’re logged on as a con-
tributor, SharePoint Foundation uses security trimming to remove the links and menu commands that
lead to pages with functionality for which you don’t have permissions.

If you’re logged onto a standard team site as a site administrator, you should be able to locate and
open the Site Actions menu by clicking the small gear icon in the upper-right corner of the page, as
shown in Figure 1-8. Note that the gear icon of the SharePoint Site Action menu is easy to confuse
with the gear icon displayed by Windows Internet Explorer, which provides a menu that can be used
to configure browser settings. Remember that the lower gear icon is specific to SharePoint and the
one above it is specific to Internet Explorer.

FIGURE 1-8  SharePoint sites provide the Site Actions menu to users with the correct permissions.

The Site Actions menu provides commands that allow you to edit the current page; to create new
pages, lists, and document libraries; to view site contents; to change the look and feel of the current
site; and to navigate to the Site Settings page shown in Figure 1-9.

20   Inside Microsoft SharePoint 2013

FIGURE 1-9  The Site Settings page is accessible to site administrators on any site.

The Site Settings page provides links to pages that allow you to perform various administrative and
customization tasks. Notice that the Site Settings page for a top-level site contains one section for
Site Administration and a second section for Site Collection Administration. The Site Settings page for
child sites doesn’t include the section for Site Collection Administration.

Figure 1-9 shows several sections of links, including Users and Permissions, Look and Feel, Web
Designer Galleries, Site Actions, Site Administration, and Site Collection Administration, all of which
provide links to various other administrative pages for the current site. If you’re new to SharePoint
Foundation, you should take some time to explore all the administrative pages accessible through the
Site Settings page. Also keep in mind that Figure 1-9 shows only the links on the Site Settings page

	 Chapter 1  SharePoint 2013 developer roadmap    21

of a team site running within a SharePoint Foundation farm. If the site were running in a SharePoint
Server 2013 farm, there would be additional links to even more site administration pages that are not
part of the standard SharePoint Foundation installation.

Creating and customizing pages
The support for wiki page libraries and Web Parts is an aspect of SharePoint Foundation that enables
business users to make quick changes to the content on pages in a SharePoint site. Business users with
no experience in web design or HTML can quickly add and customize webpages. A good example of
this can be seen when creating a new SharePoint 2013 team site. As part of the provisioning process,
SharePoint Foundation automatically creates a new wiki library at the SitePages path off the root of
the site, and it adds a wiki page named Home.aspx. It additionally configures Home.aspx to be the
home page of the site, so it becomes the first page users see when navigating to the site.

Customizing the home page is simple for any user who has the proper permissions. The user can
enter edit mode by using either the Site Actions menu or the ribbon. When in edit mode, the user is
free to simply type text or copy and paste from another application. The Insert tab on the ribbon also
makes it easy for the user to add tables, links, and images.

Web Part technology also plays a prominent role in page customization. Web Parts are based on
the idea that the SharePoint platform and developers supply a set of visual components that users
can add and move around in their pages. Every site collection has a Web Part Gallery, which contains
a set of Web Part template files. This set of Web Part template files determines which types of Web
Parts can be added to pages within the site collection.

Although earlier versions of SharePoint technologies supported Web Parts, they were not as flex-
ible as SharePoint Foundation because Web Parts could be added only to Web Part pages. Starting
with SharePoint 2010, SharePoint Foundation has made it possible to add Web Parts anywhere inside
a wiki page. When you’re editing the content of a wiki page, you can place the cursor wherever you
want and add a new Web Part by using the Insert tab on the ribbon. The new Web Part appears inline
along with your other wiki content.

Creating and customizing lists
The Site Actions menu provides an Add A Page menu command for creating new pages and an Add
An App menu command for creating new lists and document libraries. If you click the Add An App
menu command in the Site Actions menu, SharePoint Foundation displays the Add An App page,
which allows you to create a new list or document library, as shown in Figure 1-10.

22   Inside Microsoft SharePoint 2013

FIGURE 1-10  From the Add An App page, you can create new lists and document libraries.

In addition to list templates, the standard collaboration features of SharePoint Foundation also
include templates for creating several different types of document libraries. Besides the standard
document library type, there are also more specialized document library types for wiki page libraries,
picture libraries, and InfoPath form libraries.

What’s appealing to SharePoint users is that after they create a new list, it’s immediately ready to
use. SharePoint Foundation provides instant gratification by including page templates as part of the
list template itself, making it possible to create each new list and document library with a set of pages
that allow users to add, view, modify, and delete items and documents.

After a list has been created, SharePoint Foundation gives a user the flexibility to further customize
it. SharePoint Foundation provides a List Settings page for each list and document library. Figure 1-11
shows a typical List Settings page. It provides a set of links to secondary pages that allow the user to
modify properties of a list such as its title and description and to configure other important aspects of

	 Chapter 1  SharePoint 2013 developer roadmap    23

the list, including versioning, workflow, and security permissions. The List Settings page also provides
links to add and manage the set of columns behind the list.

FIGURE 1-11  The List Settings page allows you to modify list properties and to add columns.

SharePoint Foundation provides many built-in list templates to track information about common
business items such as tasks, contacts, and scheduled events. For business scenarios in which the
list data that needs to be tracked doesn’t conform to a built-in list template, SharePoint Foundation
makes it easy for a user to create a custom list with a unique set of columns for these ad hoc
situations.

SharePoint Foundation provides a list template named Custom List. When you create a new list
from this template, it will initially contain a single column named Title. A user can add columns
with just a few mouse clicks. Each added column is based on an underlying field type. SharePoint
Foundation supplies a rich set of built-in field types for columns whose values are based on text,
numbers, currency, dates, and yes/no values.

Using SharePoint Designer 2013
Microsoft SharePoint Designer 2013 is a specialized site customization tool. It is a rich desktop ap-
plication that is often easier to use for customizing a site than a browser is. SharePoint Designer 2013
is a free product that can be downloaded from the following URL:

http://www.microsoft.com/en-us/download/details.aspx?id=35491

If you have used a previous version of SharePoint Designer, you might be surprised to find that the
editor window for customizing pages no longer supplies a Design View. The Design View feature of
the page editor has been discontinued in SharePoint Designer 2013. This means that you only have a
Code View editor when working on site pages, master pages, and page layouts.

http://www.microsoft.com/en-us/download/details.aspx%3Fid%3D35491

24   Inside Microsoft SharePoint 2013

SharePoint Designer 2013 is primarily designed to assist users who have been granted Designer
permissions or have been put in the role of site collection administrator or site administrator. The tool
makes it quick and easy to examine the properties and structure of a site and to perform common
site tasks such as adding security groups and configuring permissions. Many users will also prefer the
experience of SharePoint Designer 2013 over the browser when it comes to creating new lists and
adding columns.

SharePoint Designer 2013 also allows a user to perform site customizations that aren’t possible
through the browser. The ability to create and customize custom workflow logic by using a new set
of workflow designers provides a great example. By using SharePoint Designer 2013, an experienced
user can create and design complex workflows on targets such as sites, lists, and document libraries.

In Chapter 12, “SharePoint workflows,” you will learn that SharePoint Designer 2013 supports
the creation of custom workflows in both the new SharePoint 2013 format as well as the older
SharePoint 2010 format. You will learn how custom workflows created with SharePoint Designer
can be packaged and reused across site collections, web applications, and farms.

Understanding site customization vs. SharePoint development
In one sense, SharePoint Foundation lessens the need for professional software developers because
it empowers users to create and customize their own sites. In minutes, a user can create a SharePoint
site, add several lists and document libraries, and customize the site’s appearance to meet the needs
of a particular business situation. An identical solution that has all the rich functionality that Share-
Point Foundation provides out of the box would typically take an ASP.NET development team weeks
or months to complete.

In another sense, SharePoint Foundation provides professional developers with new and exciting
development opportunities. As with any other framework, the out-of-the-box experience with Share-
Point Foundation takes you only so far. At some point, you’ll find yourself needing to create custom
list types and write code for custom SharePoint components such as Web Parts and event handlers.
What is attractive about SharePoint Foundation as a development platform is that it was designed
from the ground up with developer extensibility in mind.

As you begin to design software for SharePoint 2013, it is critical that you differentiate between
customization and development. SharePoint Foundation is very flexible for users because it was
designed to support high levels of customization. As we’ve pointed out, you no longer need to be
a developer to build a complex and highly functional website. Today, many sophisticated users are
capable of customizing SharePoint sites for a large number of business scenarios. Site customization
has its limitations, however. SharePoint Foundation records every site customization by modifying
data within a content database, whether a new list is created or an existing list is customized with
new columns and views. All types of site customization that can be performed by using SharePoint
Designer 2013 are recorded this way.

	 Chapter 1  SharePoint 2013 developer roadmap    25

The fact that all site customization is recorded as a modification to the content database is both a
strength and a weakness for SharePoint Foundation. It is a strength because it provides so much flex-
ibility to users and site administrators doing ad hoc customizations. It is a weakness from the perspec-
tive of a professional software developer because customization changes are hard to version and can
also be hard or impossible to make repeatable across site collections and farms.

Think about a standard ASP.NET development project in which all the source files you’re working
with live within a single directory on your development machine. After you’ve finished the site’s initial
design and implementation, you can add all the site’s source files to a source control management
system such as Team Foundation Server.

By using a source control management system, you can formalize a disciplined approach to de-
ploying and updating an ASP.NET site after it has gone into production. You can also elect to push
changes out to a staging environment where your site’s pages and code can be thoroughly tested
before they are used in the production environment.

As a developer, you should ask yourself the following questions: How do I conduct source control
management of customization changes? How do I make a customization change to a list definition or
a page instance and then move this change from a development environment to a staging environ-
ment and finally to a production environment? How do I make a customization change within a site
and then reuse it across a hundred different sites? Unfortunately, these questions have tough answers,
and usually you’ll find that a possible solution isn’t worth the trouble.

Fortunately, as a developer, you can work at a level underneath the SharePoint Foundation cus-
tomization infrastructure. To be more specific, you can create a SharePoint farm solution that allows
you to work with the low-level source files to create underlying templates for items such as pages and
lists. These low-level source files don’t live inside the content database; instead, they live within the
file system of the front-end web server.

Working at this level is complex and has a steep learning curve. Even so, this low-level approach
lets you centralize source code management and have a more disciplined approach to code sign-off
when moving functionality from development to staging to production. This approach also makes
versioning and reuse of code far more manageable across multiple sites, web applications, and farms.

For the remainder of this book, we differentiate between customization and development accord-
ing to these criteria. SharePoint site customizations are updates to a site accomplished by making
changes to the content database, generally through the web browser or SharePoint Designer 2013. A
site customization never requires the front-end web server to be touched.

SharePoint development, on the other hand, often involves working with farm solutions that
include files that must be deployed to the file system of the front-end web server. In Chapter 3,
“Server-side solution development,” we introduce SharePoint solutions and discuss best practices for
how to package a development effort for deployment within a SharePoint 2013 farm. In Chapter 4,
“SharePoint apps,” we introduce the alternative development approach of creating SharePoint apps.
You will learn that the two approaches are quite different.

26   Inside Microsoft SharePoint 2013

Windows PowerShell boot camp for SharePoint professionals

SharePoint 2013 is the second version of SharePoint technologies in which Microsoft supports admin-
istration through Windows PowerShell scripts. In earlier versions of SharePoint, farm administrators
must use a command-line utility named stsadm.exe to run interactive commands from the console
window and to write MS-DOS–style batch file scripts to automate common administrative tasks such
as creating, backing up, or restoring a new site collection.

SharePoint Foundation still installs the stsadm.exe utility, but it is primarily included to support
backward compatibility with pre-existing scripts migrated from earlier versions. Microsoft recom-
mends using the Windows PowerShell support for writing, testing, and executing scripts that au-
tomate the same types of administrative tasks that you can accomplish by using stsadm.exe, plus a
whole lot more.

The Windows PowerShell support for SharePoint Foundation adds a new required skill for every
farm administrator and every developer moving to SharePoint 2010 or SharePoint 2013. You’re now
required to be able to read, write, and execute Windows PowerShell scripts to automate tasks such as
creating a new web application or a new site collection.

Given the expected percentage of readers without any prior experience with Windows PowerShell,
we decided to conclude Chapter 1 with a fast and furious Windows PowerShell boot camp. Our goal
here is to get you up to speed on Windows PowerShell so that you can start reading, writing, execut-
ing, and debugging Windows PowerShell scripts. So fasten your seat belt.

Learning Windows PowerShell in 21 minutes
Working with Windows PowerShell is much easier than writing MS-DOS–style batch files. It’s easier
because the Windows PowerShell scripting language treats everything as an object. You can create
and program against .NET objects as well as COM objects. Furthermore, Windows PowerShell has
first-rate support for calling out to EXE-based utilities and passing parameters to execute specific
commands.

There are two common ways in which you can use Windows PowerShell. First, you can execute
commands interactively by using the Windows PowerShell console window. Second, you can write
scripts to automate administration tasks. Then you can execute these scripts either on demand or
through some type of scheduling mechanism.

Let’s first get familiar with the Windows PowerShell console window. In Windows Server 2012,
press the Windows logo key and then type PowerShell. In Windows Server 2008 R2, you can launch
the Windows PowerShell console window from the following path from the Windows Start menu:

Start\All Programs\Accessories\Windows PowerShell\Windows PowerShell

When the Windows PowerShell console appears, type and execute the following three commands
interactively:

1.	 Type cd\ and then press Enter. This sets the current location to the root of drive C.

	 Chapter 1  SharePoint 2013 developer roadmap    27

2.	 Type cls and then press Enter. This clears the console window.

3.	 Type 2 + 2 and then press Enter. This performs a mathematical calculation and displays the
result.

If you followed these steps correctly and executed each of the three commands, your console
window should look like the one in Figure 1-12.

FIGURE 1-12  You can execute commands interactively from the Windows PowerShell console window.

Congratulations! You’ve just completed your first lesson. Now you know how to execute a com-
mand interactively from the Windows PowerShell console window. You simply type the command at
the cursor in the Windows PowerShell console window and press Enter.

Windows PowerShell is based on reusable libraries containing functions known as cmdlets (pro-
nounced “command lets”). Cmdlets have names that follow the convention of a common verb fol-
lowed by a noun. For example, the built-in Windows PowerShell libraries provide a cmdlet named
Get-Process, which returns a collection of objects representing the Windows processes running on
the current machine:

PS C:\> Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 94 9 2780 13448 99 0.33 6592 conhost
 83 9 1588 3652 42 0.03 8188 csrss
 130 13 2020 5608 31 0.02 1312 dfssvc
 1126 768 1172456 484268 1693 56.23 1176 DistributedCacheService
 5261 6161 87624 86352 128 0.88 1636 dns
 1197 76 27332 82044 398 11.73 3696 explorer
 531 39 9136 34820 183 2.08 5348 iexplore
 712 53 46252 56792 598 2.06 1504 Microsoft.ActiveDirectory.WebServices
 2045 743 517044 492284 -631 19.44 6748 noderunner
 1954 757 557248 503572 -649 17.98 6796 noderunner
 461 238 343372 383888 1201 152.95 4828 OWSTIMER
 594 39 113076 119668 653 3.03 6676 powershell
 867 473 1674072 94884 552 284.56 1852 sqlservr
 82 8 1388 5296 38 0.02 2016 sqlwriter
 1536 657 378000 210600 1767 8.16 3852 w3wp
 1715 794 916880 758228 -1882 29.83 5244 w3wp
 1672 657 226404 192840 1772 7.33 5360 w3wp
 335 32 32612 36616 547 17.83 2816 WSSADMIN

28   Inside Microsoft SharePoint 2013

Pipelining is an important concept to understand when you are executing cmdlets. The basic idea
is that every cmdlet returns an object or a collection of objects. Pipelining allows you to take the
output results of one cmdlet and pass it as an input parameter to a second cmdlet. The second cmdlet
can execute and then pass its output results to a third cmdlet, and so on. You create a pipeline by typ-
ing a sequence of cmdlets separated by the | (pipe) character:

cmdlet1 | cmdlet2 | cmdlet3

Let’s examine a common scenario in which you need to create a pipeline of two cmdlets to filter
a collection of objects. First you call Get-Process to return a collection of objects, and then you use
pipelining to pass this collection of objects to the Where-Object cmdlet:

PS C:\> Get-Process | Where-Object {$_.ProcessName -like "w*"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 977 135 173372 180504 1511 4.94 2176 w3wp
 773 123 161220 164464 1485 3.36 5112 w3wp
 270 31 25052 17860 496 0.14 2568 WSSADMIN

The Where-Object cmdlet takes a predicate expression enclosed in curly braces as a parameter. In-
side these curly braces, you can use $_ to refer to an object as it’s being filtered. The predicate expres-
sion in this example is {$_.ProcessName -like “w*”}. The filter returns all processes whose process name
starts with “w”.

Windows PowerShell cmdlets such as Where-Object use standard Windows PowerShell comparison
operators. You should memorize these operators because you’ll be using them regularly as you work
with Windows PowerShell. Table 1-3 lists some commonly used Windows PowerShell comparison
operators.

TABLE 1-3  Commonly used Windows PowerShell comparison operators

Operator Purpose

-lt Less than

-le Less than or equal to

-gt Greater than

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

-like Like, using wildcard matches

-notlike Not like, using wildcard matches

You should understand that Windows PowerShell comparison operators that work with strings are
case insensitive by default. However, these operators can be made case sensitive by adding a c imme-
diately after the hyphen. For example, -ceq represents the case-sensitive equal-to operator.

	 Chapter 1  SharePoint 2013 developer roadmap    29

Writing Windows PowerShell scripts
Now that you’ve seen how to execute cmdlets from the Windows PowerShell console window, it’s
time to move on to Windows PowerShell scripting. Windows PowerShell scripts are text files that have
an extension of .ps1. You can create and edit a Windows PowerShell script by using any text editor,
including Notepad.

Before you can begin writing and testing Windows PowerShell scripts, you might be required to
adjust the Windows PowerShell script execution policy on your developer workstation. The reason for
this step is that Windows PowerShell is configured out of the box to prohibit or to prompt the user
during script execution.

You should take note that the installation of SharePoint 2013 actually changes the Windows
PowerShell execution policy of the local machine. By default, the Windows PowerShell execution
policy is set to restricted, which means that scripts have to be digitally signed before they can be
run. However, the installation of SharePoint 2013 lowers the execution policy from restricted to
unrestricted, which allows scripts to run even when they are not digitally signed.

On a developer workstation, it’s common to disable the default execution constraints so that you
can write and test scripts without security errors. You make this adjustment by calling the standard
Windows PowerShell cmdlet named Set-ExecutionPolicy from the Windows PowerShell console to set
the current machine’s execution policy to “bypass”:

Set-ExecutionPolicy "bypass"

After you’ve correctly adjusted the Windows PowerShell execution policy, you can write your first
script. Open Notepad and type in the following one-line script:

Write-Host "Hello World"

Now you need to save the file for the script with a .ps1 extension. First, create a new directory
named Scripts on your local drive C. Next, save your new Windows PowerShell script file as c:\Scripts\
Script1.ps1. Now that you’ve saved the Windows PowerShell script file with a .ps1 extension, you can
execute the script to test your work.

Let’s first execute the script through the Windows PowerShell console window. In the console
window, move to the new directory by executing Set-Location c:\Scripts. Now you can execute the
script by typing .\Script1.ps1 and pressing Enter. When you do this, the message Hello World should
appear in the Windows PowerShell console window.

Now let’s create a Windows batch file so that you can execute the script without having to use the
Windows PowerShell console window. Just create a new text file named RunIt.bat in the same direc-
tory as Script1.ps1, and call powershell.exe and pass the -Command parameter with the following
syntax to execute the script:

powershell.exe -Command "& {.\Script1.ps1}"
pause

30   Inside Microsoft SharePoint 2013

Notice that this example batch file also added a pause operation at the end. This can be handy
because it keeps the Windows PowerShell console window open so that you can view the output of
your Windows PowerShell script.

Finally, you should learn how to directly execute a Windows PowerShell script without any assis-
tance from an MS-DOS batch file. If you right-click a Windows PowerShell script such as Script1.ps1 in
Windows Explorer, you’ll find a Run With PowerShell menu command. If you execute this command,
the Windows operating system takes care of executing the Windows PowerShell script for you.

Executing Windows PowerShell scripts by using the Run With PowerShell command is quick and
easy, but it doesn’t leave the Windows PowerShell console window open when it’s done. If you like
using this technique but you still want to display the Windows PowerShell console window afterward,
you can simply add the Read-Host cmdlet at the bottom of your script, which results in the Windows
PowerShell console window remaining open until you press the Enter key:

Write-Host "Hello World"
Read-Host

The Windows PowerShell Integrated Scripting Environment (ISE)
Although you can use any text editor to write Windows PowerShell scripts, you’ll probably prefer to
use a powerful new utility, the Windows PowerShell Integrated Scripting Environment (ISE), which is
included with the Windows Server operating system.

The Windows PowerShell ISE will be immediately familiar to anyone with experience in Visual Studio.
You can type a script in the top window and then press the F5 key to execute the script in debug
mode. The Windows PowerShell ISE allows you to debug by setting breakpoints and to single-step
through your code. After you’ve launched the Windows PowerShell ISE, type the following script
into the top window and then press F5:

$sum1 = 2 + 2
$sum2 = 3 + 4
$sum3 = $sum1 + $sum2
Write-Host $sum3

This example shows how to create a new variable in a Windows PowerShell script. You simply cre-
ate a new variable name, which begins with the $ character. You don’t need to define variables before
you use them, as you do in C#. Instead, you just create a variable when you begin using it.

Now, let’s write a Windows PowerShell control-of-flow construct. In this case, we create a new
string array by using the proper Windows PowerShell syntax, and then write a foreach loop to enu-
merate each string:

$band = "Paul", "John", "George", "Ringo"

foreach($member in $band) {
 Write-Host $member
}

	 Chapter 1  SharePoint 2013 developer roadmap    31

One aspect of Windows PowerShell that will instantly appeal to .NET developers is that you can
create and program against any .NET object. For example, imagine you want to create an object from
the DateTime class of the .NET Framework. You do this by executing the New-Object cmdlet and pass-
ing the class name and initialization values as parameters:

$date = New-Object -TypeName System.DateTime -ArgumentList @(1882,7,4,0,0,0)
$message = "Wingtip Toys, Inc. was founded on " + $date.ToLongDateString()
Write-Host $message

The preceding script produces the following output:

Wingtip Toys, Inc. was founded on Tuesday, July 04, 1882

In addition to creating new .NET objects, Windows PowerShell allows you to call the static methods
and static properties of classes in the .NET Framework. You do this by typing the namespace-qualified
class name in square brackets, like this: [System.DateTime]. After you type the class name, you add the
:: operator (two colons) and then the call to a static member:

$today = [System.DateTime]::Today
Write-Host $today.ToLongDateString()
Write-Host $today.ToString("MM/dd/yy")
Write-Host $today.AddDays(100).ToString("MMMM d")

If you’re feeling nostalgic, you can even use Windows PowerShell to create and program against
COM objects. For example, let’s say you want to write a Windows PowerShell script that launches
Internet Explorer and navigates to a specific URL. The Windows operating system provides a built-in
COM interface that allows you to launch and control Internet Explorer:

$ie = New-Object -ComObject "InternetExplorer.Application"
$ie.Navigate("http://intranet.wingtiptoys.com")
$ie.Visible = $true

Windows PowerShell snap-ins for SharePoint
Windows PowerShell installs a set of core libraries containing cmdlets such as Write-Host, Get-Process,
and Where-Object. Environments such as SharePoint Foundation add their own library of custom
cmdlets by installing and registering a special type of an assembly DLL known as a Windows
PowerShell snap-in. When you install SharePoint 2013, a Windows PowerShell snap-in named
Microsoft.SharePoint.PowerShell is installed. However, this snap-in doesn’t automatically load into
every Windows PowerShell session. Instead, you have to ensure that the Microsoft.SharePoint.
PowerShell snap-in is loaded before you begin to call the cmdlets specific to SharePoint.

SharePoint Foundation provides a specialized version of the Windows PowerShell console known
as the SharePoint 2013 Management Shell. The main difference between the standard Windows
PowerShell console window and the SharePoint 2013 Management Shell console has to do with which
Windows PowerShell providers get loaded automatically. More specifically, the SharePoint 2013
Management Shell automatically loads the Microsoft.SharePoint.PowerShell snap-in, whereas the
standard Windows PowerShell console does not. In general, you can’t always rely on the SharePoint

32   Inside Microsoft SharePoint 2013

snap-in Microsoft.SharePoint.PowerShell being loaded automatically, so you need to learn how to load
it explicitly within a Windows PowerShell script.

Let’s say you’ve just launched the standard Windows PowerShell console window and you attempt to
execute one of the cmdlets built into SharePoint Foundation, such as Get-SPWebApplication. The call
to this cmdlet will fail unless you’ve already loaded the Microsoft.SharePoint.PowerShell Windows
PowerShell snap-in. Before calling the Get-SPWebApplication cmdlet, you need to load the SharePoint
Management Windows PowerShell snap-ins for SharePoint by using the Add-PSSnapin cmdlet:

Add-PSSnapin Microsoft.SharePoint.PowerShell
Get-SPWebApplication

Executing these two cmdlets in sequence displays the current collection of web applications for the
current farm, excluding the web application for SharePoint 2010 Central Administration:

DisplayName Url
----------- ---
Wingtip Intranet http://intranet.wingtiptoys.com/
Wingtip Extranet http://extranet.wingtiptoys.com/
Wingtip Public Web site http://www.wingtiptoys.com/

Now let’s write a Windows PowerShell script to create a new web application. You can do this by
calling the New-SPWebApplication cmdlet. The call requires quite a few parameters. Note that the
following script creates a “classic mode” web application, which is no longer supported through the
Central Administration interface in SharePoint 2013:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

$name = "Wingtip Intranet Web App"
$port = 80
$hostHeader = "intranet.wingtiptoys.com"
$url = "http://intranet.wingtiptoys.com"
$appPoolName = "SharePoint Default Appl Pool"
$appPoolAccount = Get-SPManagedAccount "WINGTIP\SP_Content"

New-SPWebApplication -Name $name -Port $port -HostHeader $hostHeader -URL $url '
 -ApplicationPool $appPoolName '
 -ApplicationPoolAccount $appPoolAccount

Notice that the call to the New-SPWebApplication cmdlet in the preceding script breaks across
multiple lines for clarity. When you write scripts, however, you must place the entire call to a cmdlet
and all its parameters on a single line. That is, of course, unless you know the special trick of using
the grave accent (`) to add line breaks within a call to a cmdlet inside a Windows PowerShell script, as
shown in the preceding example.

As you can imagine, writing and executing scripts like this can save you quite a bit of time in a pro-
duction farm because the need to perform the same tasks manually through SharePoint 2013 Central
Administration is eliminated. Scripts like this also provide a great way to create consistency in how you
create web applications across farms.

	 Chapter 1  SharePoint 2013 developer roadmap    33

We’ll finish with one more example. Let’s write a script to create a new site collection in the web
application created earlier, which has a team site as its top-level site. You can accomplish this by call-
ing the New-SPSite cmdlet:

Add-PSSnapin Microsoft.SharePoint.PowerShell

$title= "Wingtip Intranet"
$url = "http://intranet.wingtiptoys.com"
$owner = "WINGTIP\Administrator"
$template = "STS#0"

New-SPSite -URL $url -Name $title -OwnerAlias $owner -Template $template

When you create a new site collection by using the New-SPSite cmdlet, you must specify the URL
and title and provide a user account to be configured as the site collection administrator. You can
also specify a template by using the Template parameter, which is applied on the top-level site. In this
example, a template of STS#0 has been applied to create the top-level site as a standard team site.

Now you’ve written a script to create a new site collection. The first time you run it, it works great.
But what happens when you run it a second time? The second attempt to call the New-SPSite cmdlet
fails because a site collection already exists at the target URL.

During development, there’s a common scenario in which you must continually delete and re-
create a site to effectively test and debug your code. Before deleting a site collection, your script
should check to determine whether a target site collection already exists at the target URL by using
the Get-SPSite cmdlet. If the site collection already exists, you can delete it with the Remove-SPSite
cmdlet:

Add-PSSnapin Microsoft.SharePoint.PowerShell

$title= "Wingtip Intranet"
$url = "http://intranet.wingtiptoys.com"
$owner = "WINGTIP\Administrator"
$template = "STS#1"

delete target site collection if it exists
$targetSite = Get-SPSite | Where-Object {$_.Url -eq $url}
if ($targetSite -ne $null) {
 Remove-SPSite -Identity targetSite -Confirm:$false
}

create new site collection
New-SPSite -URL $url -Name $title -OwnerAlias $owner -Template $template

Remember that cmdlets such as New-SPSite return objects that you can program against. For
example, imagine you want to update the title of the top-level site after the site collection has been
created. A site collection object exposes a RootWeb property that allows you to access the top-level
site. The site object provides a Title property that you can modify with a new title. You must call the
site object’s Update method to write your changes back to the content database:

34   Inside Microsoft SharePoint 2013

Add-PSSnapin Microsoft.SharePoint.PowerShell

$title= "Wingtip Dev Site"
$url = "http://intranet.wingtiptoys.com"
$owner = "WINGTIP\Administrator"
$template = "STS#0"

delete target site collection if it exists
$targetSite = Get-SPSite | Where-Object {$_.Url -eq $url}
if ($targetSite -ne $null) {
 Remove-SPSite -Identity targetSite -Confirm:$false
}

$sc = New-SPSite -URL $url -Name $title -OwnerAlias $owner -Template $template
$site = $sc.RootWeb
$site.Title = "My New Site Title"
$site.Update

You’ve just seen an example of writing code against the server-side object model of SharePoint
Foundation. Unfortunately, the Windows PowerShell ISE isn’t able to provide IntelliSense in the same
manner that Visual Studio does. However, the Windows PowerShell ISE still has valuable editing and
debugging features that are easy to learn and use. You should become familiar with this tool because
it provides a quick way to script out changes to the local farm in your development workstation or in
a production environment.

Summary

SharePoint 2013 mainly consists of two products: SharePoint Foundation and SharePoint Server 2013.
Having a solid understanding of SharePoint Foundation is essential even for developers who are only
building software for SharePoint Server 2013. That’s because SharePoint Foundation provides the
underlying infrastructure on which SharePoint Server 2013 is built.

SharePoint Foundation represents different things to different people. To users, SharePoint
Foundation provides the infrastructure for web-based business solutions that scale from simple team-
collaboration sites to enterprise-level applications. To site collection administrators, SharePoint
Foundation provides the capability to customize sites by adding lists and document libraries and by
customizing many aspects of a site’s appearance through the browser or by using a customization
tool such as SharePoint Designer 2013.

To a company’s IT staff, SharePoint Foundation provides a scalable and cost-effective solution for
provisioning and managing a large number of sites in a web farm environment. It also provides a reli-
able mechanism to roll out applications and to version these applications over time.

To a developer, SharePoint Foundation represents a rich development platform that adds value
on top of the underlying ASP.NET platform. Developers build software solutions targeting SharePoint
Foundation by using features and components such as Web Parts, event handlers, and workflows.
Now that you’ve studied the SharePoint developer roadmap and made it through our Windows
PowerShell boot camp, you’re ready to dive into the fundamentals of SharePoint 2013 development.

		 35

C H A P T E R 2

SharePoint development practices
and techniques

Before you can start building a custom Microsoft SharePoint solution you will have to make sure
you set up your development environment correctly. Because the hardware requirements for

SharePoint 2013 are again a lot more demanding than they were for SharePoint 2010, setting up a
new development environment might well mean that you have to acquire new hardware. There might
be quite a bit of time between the moment that you order the hardware, whether from an external
vendor or from an internal department, and when you can actually start using the hardware. This
means that it’s important to start planning your SharePoint customizations early, so that waiting on
the hardware will not interfere with your project planning.

When you have gotten the hardware, you will have to install your development environment. It is
important to do this meticulously, to follow best practices and to make sure you document the entire
configuration. Documentation is important if you have to create a second environment, or if you have
to recreate your development environment.

When your SharePoint environment has been set up properly, you will need proper specifications
so that you can start designing your solution. You will have to decide what type of solution will best
suit your skills, the environment into which the solution will have to be deployed, and the functional-
ity that you have to create. SharePoint 2013 introduces a new development approach, which means
that you can now not only create farm solutions and sandboxes solution, but you can also create
SharePoint apps. SharePoint 2013 also introduces a third application programming interface (API) by
making Representational State Transfer (REST) APIs available that allow you to use simple HTTP re-
quests and responses to perform CRUD (create, read, update, delete) operations on SharePoint data.

All these additions give you more options, but they also require you to make more choices, and
it is important to make deliberate and well-informed choices to make sure that you end up with the
best solution that you could possibly build for your specific situation and scenario. This chapter talks
you through a lot of the choices and can help you make the right decisions.

36   Inside Microsoft SharePoint 2013

Setting up a developer environment

Whenever you are looking at building a custom solution for any platform, one of the things you will
have to determine is what environment you will use to build your custom solution. This is no different
when you want to create a custom solution for SharePoint. Determining the best way to set up your
development environment has always been difficult for SharePoint, and SharePoint 2013 adds even
more complexity to it, with extended hardware requirements and two new types of servers.

Let’s start by looking at the different server roles that you can choose from.

■■ Domain controller

■■ Database server

■■ SharePoint server

•	 Web server

•	 Application server

■■ Office Web Apps server

■■ Windows Azure workflow server

Although it is possible to build a development environment by using a standalone server installa-
tion of SharePoint on a single server without a domain controller or separate computer that is running
Microsoft SQL Server, for practical reasons you will at least need a domain controller, a database
server, and a SharePoint server. For certain types of SharePoint apps you might not need a SharePoint
development environment, because these apps can be hosted on a generic web server that doesn’t
have SharePoint installed on it. However, you should test what your app looks like in a SharePoint
environment before you add the app to the production environment, so you should always use some
sort of test or development environment.

If your development environment is installed in an existing domain, you don’t have to build your
own domain controller; you can simply use an existing one. If you are creating your own domain,
you will have to create a domain controller as well. You can create a single server and use that as the
domain controller, the database server, and the SharePoint server. Be aware, though, that some things
don’t work on a domain controller and some things have to be configured differently. It is important
to keep this in mind while developing and testing custom solutions on your development server.

In SharePoint 2010, Microsoft Office Web Apps came in a separate installation that had to be in-
stalled on at least one of the SharePoint servers in the farm. After installation, they could be config-
ured as service applications. In SharePoint 2013, this is no longer the case. Office Web Apps is now its
own product. Office Web Apps has to be installed in its own separate farm, and it cannot be installed
on a server that also has SharePoint installed on it, because Office Web Apps will completely take
over the Internet Information Services (IIS) on the server. You can install Office Web Apps on one or
more servers and connect the Office Web Apps farm to the SharePoint farm. Having Office Web Apps
installed in its own farm on one or more servers means that it is now more scalable. The Office Web

	 Chapter 2  SharePoint development practices and techniques    37

Apps farm can be connected to one or more SharePoint farms. This means that one Office Web Apps
farm can support the SharePoint servers of several developers.

With SharePoint 2010, you automatically got the SharePoint 2010 workflow host, which was based
on Windows Workflow Foundation 3. Windows Workflow Foundation was a native part of SharePoint,
but the way in which it was implemented meant that customers who were serious about using work-
flow in SharePoint almost always ran into issues with scalability. SharePoint 2013 uses a new work-
flow service, which is built on the Windows Workflow Foundation components of the Microsoft .NET
Framework 4.5. The new workflow service is called Workflow Manager and, like Office Web Apps, is a
separate installation that should be installed on separate servers. After you have created a Workflow
Manager farm consisting of one or more servers, you can connect this farm to your SharePoint 2013
farm. As with Office Web Apps, creating a separate workflow farm means that your environment will
be a lot easier to scale out and a lot more suitable for use in a serious workflow solution or a large
enterprise. Your old SharePoint 2010 workflows will still work, because SharePoint 2013 automatically
installs the SharePoint 2010 workflow engine.

To summarize, if you want to have all SharePoint 2013 functionality available to you in your devel-
opment environment, you will need at least three servers:

■■ A domain controller/database server/SharePoint server

■■ An Office Web Apps server

■■ A Workflow Manager server

You can, of course, have many more: you could split out your domain controller, database server,
and SharePoint server; you could have separate SharePoint web and application servers; and you can
have as many Office Web Apps and Workflow Manager servers as you want. How many servers you
use will mostly depend on the size of the solution that you are building, the type of functionality that
you need, and—let’s face it—your budget.

Deciding between virtual and physical
An important decision that you have to make when you start to think about your development envi-
ronment is whether you will be using virtual or physical servers. You could choose to install a support-
ed server operating system (we’ll get into more detail on that soon) directly on your computer, either
by connecting to an existing domain or turning the computer into a domain controller and installing
SQL Server and SharePoint on it. You can no longer install SharePoint on a client operating system
such as Windows 7 or Windows 8 as you could with SharePoint 2010. However, unlike Windows 7,
Windows 8 does support Hyper-V, which means that you can create your virtual machines in Hyper-V
on your Windows 8 computer. The Windows 8 version of Hyper-V is officially called Client Hyper-V.

As long as you only work on a single project, and you only need a single server (so you don’t
need Workflow Manager or Office Web Apps), you can run your development environment directly
on your computer. However, creating your development environment by using virtual servers is a far
more flexible solution. You can either host the virtual servers on your own computer or on a server
somewhere in the network, or even in the cloud. With today’s hardware requirements (especially the

38   Inside Microsoft SharePoint 2013

memory) and considering the fact that you might need more than one server, running your develop-
ment environment on your computer won’t be a feasible solution for most people, so in a lot of cases
development servers are hosted in a network somewhere. If you are using your development environ-
ment on a daily basis, it is recommended that you make sure that your servers are hosted somewhere
relatively close to you to minimize latency issues and frustrations.

Running the development environment on a virtual server has a few advantages:

■■ Using virtual servers as a development environment means that you can use a different virtual
server for each project you’re working on. When a developer works on more than one project,
it is better not to have the configuration and custom solutions from these projects in a single
environment. Settings or solutions from one project might influence the behavior of the solu-
tions from the second project, which means that you have no way of knowing what is causing
problems and you can’t determine how the solution will behave in the production environment.

■■ Another advantage of working with virtual servers is the fact that it’s easy to create snapshots
and to go back to them. By using snapshots, the developer can run tests and, depending on
the outcome of a test, decide to go back to a snapshot of a previous situation. He can then
make some changes to the solution and run the same tests again.

Also, when project work goes on for a long time, environments sometimes get messy from
testing different solutions and settings, and going back to a snapshot is a very easy way to
clean that up. Using snapshots also means that you can go back to a previous state if a solu-
tion that you deployed or a script that you ran messed up your environment.

■■ Using virtual servers to create development environments also makes it easier to set up a new
development environment when a new developer is added to the project. Later on in this
chapter we will talk in more detail about having a team of developers work on a single project.

■■ In most cases, using virtual servers is also a lot cheaper than using physical servers. If you have
a large physical server, you can run several virtual servers on it. This means you can save on
hardware costs. Also, if you don’t need all your servers at the same time, they can share the
resources, and if you need a new server, you can very quickly set it up, instead of having to
order hardware and wait till it arrives.

Understanding hardware and software requirements
As with every SharePoint version, SharePoint 2013 has its own hardware requirements. Table 2-1
shows an overview of the hardware requirements for SharePoint 2013. As you can see, the amount
of memory needed to run a SharePoint Server development environment has again increased sig
nificantly. There are a couple of things to note:

■■ Single server means that both SharePoint and its databases are running on the same server.

■■ A single server development installation of SharePoint Server 2013 is listed as requiring 24
gigabytes (GB) of RAM. However, the amount of RAM it really needs heavily depends on what
services you are running in the environment. For instance, if you are actively using search, you

	 Chapter 2  SharePoint development practices and techniques    39

probably need 24 GB, or at least something close to that. However, if you are only using web
applications and some of the lighter service applications, you can get away with having a lot
less memory.

■■ The storage on the system drive has to be at least 80 GB. It is very important to note that this
does not include the storage that is needed to store the databases that contain the content
from your SharePoint environment, and it doesn’t include the storage that is needed to store,
for instance, the SharePoint logs. Make sure that you have enough storage on your system;
storage is cheap, and it’s very annoying to have to go into your development server every day
to try and free up some storage so that at least your server will keep running.

TABLE 2-1  Hardware requirements for SharePoint 2013

Type of installation RAM Processor Storage on system drive

Single server development
installation of SharePoint
Foundation 2013

8 GB 64-bit, 4 cores 80 GB

Single server development
installation of SharePoint
Server 2013

24 GB 64-bit, 4 cores 80 GB

SharePoint server in a
SharePoint Server 2013
development environment

12 GB 64-bit, 4 cores 80 GB

Database server in a
SharePoint 2013 develop-
ment environment

8 GB 64-bit, 4 cores 80 GB

SharePoint 2013 also comes with its own software requirements. For a SharePoint 2013 server, the
following software is required:

■■ The 64-bit edition of Windows Server 2008 R2 Service Pack 1 (SP1) Standard, Enterprise, or
Datacenter or the 64-bit edition of Windows Server 2012 Standard or Datacenter

■■ Hotfix: The SharePoint parsing process crashes in Windows Server 2008 R2 (KB 2554876)

■■ Hotfix: FIX: IIS 7.5 configurations are not updated when you use the ServerManager class to
commit configuration changes (KB 2708075)

■■ Hotfix: WCF: process may crash with “System.Net.Sockets.SocketException: An invalid argu-
ment was supplied” when under high load (KB 2726478)

■■ The prerequisites installed by the Microsoft SharePoint Products Preparation Tool

■■ Hotfix: ASP.NET (SharePoint) race condition in .NET 4.5 RTM:

•	 Windows Server 2008 R2 SP1 (KB 2759112)

•	 Windows Server 2012 (KB 2765317)

40   Inside Microsoft SharePoint 2013

For a database server in a SharePoint 2013 farm, the following software is required:

■■ The 64-bit edition of Microsoft SQL Server 2012, or the 64-bit edition of SQL Server 2008 R2
Service Pack 1

■■ The 64-bit edition of Windows Server 2008 R2 Service Pack 1 (SP1) Standard, Enterprise, or
Datacenter or the 64-bit edition of Windows Server 2012 Standard or Datacenter

■■ Hotfix: The SharePoint parsing process crashes in Windows Server 2008 R2 (KB 2554876)

■■ Hotfix: FIX: IIS 7.5 configurations are not updated when you use the ServerManager class to
commit configuration changes (KB 2708075)

■■ Hotfix: ASP.NET (SharePoint) race condition in .NET 4.5 RTM:

•	 Windows Server 2008 R2 SP1 (KB 2759112)

•	 Windows Server 2012 (KB 2765317)

■■ .NET Framework version 4.5

When setting up your development environment, you should always aim to make sure that it’s as
much like the production environment as possible.

Delivering high-quality solutions
To deliver high-quality solutions it is best for the development environment to be as much like the
production environment as possible. Theoretically this is true for all aspects of the environment:
hardware, software, configuration, and data. In most cases, however, the hardware of a development
environment cannot be the same as the hardware of a production environment. This is fine, as long as
you are aware of the differences and what the impact of them might be on your test results.

So that accurate tests can be performed in a development environment, the software should
be the same as the software in the production environment. You should use the same version of
Windows Server and SharePoint and a similar version of SQL Server. If the production environment
has SharePoint Server installed, make sure the development environment doesn’t have SharePoint
Foundation installed. If the production server has a Windows service pack installed on it, make
sure you install the same service pack in the development environment. It also works the other way
around; if the service pack will not be installed in the production environment, do no install it in
the development environment either. If one of the environments gets a SharePoint service pack or
cumulative update installed on it, make sure all environments get that same service pack or cumula-
tive update installed on them.

The way in which you configure your development server should also be as much like the pro-
duction environment as possible. The best thing is to try and get access to the build guide for the
production environment and use that to set up your development environment.

	 Chapter 2  SharePoint development practices and techniques    41

Examples of settings that are important when configuring your development environment are:

■■ Using the default SQL instance or different instances

■■ The authentication type:

•	 NT LAN Manager (NTLM)

•	 Kerberos

•	 Windows claims

•	 Security Assertion Markup Language (SAML) claims

■■ Using host headers on your web application, or Host Header Site Collections

■■ HTTP or HTTPS

■■ The number of web applications

■■ The way in which the farm, application pool, and services accounts are configured and the
level of permissions they have. Make sure you have the same number of managed accounts in
your development environment as in the production environment.

In order to get accurate test results, it is also very helpful to have representative sample data and
test users. The data will help you perform the same type of actions that a user would. If you are able
to load enough sample data into your development environment, it will also help you test the scal-
ability of your solution, at least to a certain extent. Most custom solutions perform very well with only
a couple of documents, users, or sites, but when there are tens of thousands it might be a completely
different story. Even if you can’t test on the scale of your production environment, you should always
keep in mind what numbers your solution will have to cope with after it’s in production. It is always
a good idea to at least make sure that you test whether your application will keep working past the
list view threshold. The list view threshold is a web application setting that can be adjusted in Central
Administration that tells SharePoint how many items can be requested from the database in a single
query. The default list view threshold is 5,000.

As a developer, you will usually log in with an account that has administrative permissions. It’s the
only way in which you can properly develop custom full trust solutions. Do make sure that you are not
logged on as the SharePoint farm account. When you are testing your solution, it is very important
to not only test it using your administrative account, but also with accounts that have Read, Contrib-
ute, and Site Owner permissions. A lot of custom SharePoint solutions will work fine when run by an
administrator, but need more work when a reader or contributor of a site should be able to work with
them as well. For instance, the List view threshold (the throttling feature that specifies the maximum
number of list or library items that a database operation, such as a query, can process at the same
time) will not be applied if you are logging onto your SharePoint environment as a local administrator,
which means that you cannot test the behavior of large lists properly.

42   Inside Microsoft SharePoint 2013

Automating SharePoint administration by using
Windows PowerShell scripts

Windows PowerShell scripts can be used to automate SharePoint installation and management. When
you are using Windows PowerShell scripts to install SharePoint, it is easy to repeat the installation in
exactly the same way. This is very useful when you have to create multiple development environments
or multiple servers in a production environment, or when a farm has to be rebuilt after a system
failure. Be aware that not all steps of the installation can be scripted by using Windows PowerShell, so
you will still have to make sure that all steps are documented as well.

Using Windows PowerShell to manage SharePoint is very useful for repeatable tasks. When you
use a saved script every time, the chances of human errors causing serious problems during mainte-
nance decrease. Windows PowerShell can also be used to fully automate maintenance steps. It would,
for example, be possible to create a Windows PowerShell script that creates a new site collection. The
next step would be to add a couple of parameters and then automatically start the script. You could,
for instance, start the script whenever a new project or customer is added to a Customer Relationship
Management (CRM) system.

Though it is often convenient to use Windows PowerShell to install or configure SharePoint, in
some cases you don’t have a choice because some functionality doesn’t show up in the user interface
and can only be configured by using Windows PowerShell. Examples of this are the multitenancy
features. The multitenancy features are a set of features that allow SharePoint to work as a hosting
platform. They allow for operational service management of SharePoint for one or more divisions,
organizations, or companies. Using the multitenancy features allows SharePoint to separate data,
features, administration, customizations, and operations. In order to set up multitenancy in an envi-
ronment, you have to set up site subscriptions, partitioned service applications, tenant administration
sites, and (optionally) host header site collections and feature packs. All these features can only be
configured by using Windows PowerShell.

If you need to install development environments on a regular basis—for instance, because you are
working on different projects, or because you are working on a long-running project and developers
are coming and going—it is worthwhile to create a Windows PowerShell script to install a develop-
ment environment. Even if you would just use Windows PowerShell to configure SharePoint, this will
save you a lot of time. It will also make sure that your development environments are always config-
ured in exactly the same way. In addition to the fact that doing a scripted installation is often faster,
this approach also allows you to do work on something else while the script is running.

There are two different tools in which you can write and run Windows PowerShell scripts: the
Windows PowerShell console window or the Windows PowerShell Integrated Scripting Environment
(ISE). To make the Windows PowerShell ISE available on your server, you need to install the Windows
PowerShell Integrated Scripting Environment (ISE) Windows feature. You can do this by opening up
the Server Manager, clicking Add Features, and selecting the ISE feature.

If you are using the console environment, you can either use the general console environment or
the SharePoint 2013 Management Shell. You can access the general console environment by selecting

	 Chapter 2  SharePoint development practices and techniques    43

it from the Windows Start menu. If it’s not on the first page, you can get to it from the Windows Start
menu by simply starting to type PowerShell. This will give you the option to select one of the avail-
able Windows PowerShell tools and consoles.

Don’t pick the 32-bit version (x86); SharePoint is a 64-bit product. You can also go to the Windows
Start menu to select the SharePoint 2013 Management Shell. You can find this in the same way as
the general console; go to the Start menu, start typing PowerShell, and select the SharePoint 2013
Management Console.

These are effectively the same environment, except for the fact that in the SharePoint Manage-
ment Shell the Microsoft.SharePoint.PowerShell snap-in has already been loaded. If you are using the
standard console, you will have to load the snap-in yourself, by using the following command:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

You add the -ErrorAction “SilentlyContinue” mainly because the console will throw an error if the
snap-in has already been loaded. You can ignore this, so it will look nicer if you hide the error. You
can also play it safe and check to see whether the snap-in is already loaded before attempting to load
it, by using the following:

$snap = Get-PSSnapin | Where-Object {$_.Name -eq 'Microsoft.SharePoint.PowerShell'}
if ($snap -eq $null) {
 Add-PSSnapin Microsoft.SharePoint.PowerShell
}

If you are creating a larger script, it is probably easier to open up the Windows PowerShell ISE,
because this provides a better editing environment. You will have to load the Microsoft.SharePoint.
PowerShell snap-in into the ISE as well. You can do this by using exactly the same script used for the
console. If you find yourself using the ISE a lot, you can also add the snap-in automatically when
the ISE starts, by adding it to the Windows PowerShell profile. The profile is a Windows PowerShell
script file that runs every time you start Windows PowerShell. It has a .ps1 extension like any normal
Windows PowerShell file, and you can put any valid Windows PowerShell cmdlet in it. The only way
in which the profile file differs from a normal script file is in its name and location.

If you want to use the profile, you will first have to figure out whether a profile already exists on
the server. You can do this by using the Test-Path cmdlet:

Test-Path $profile

If the profile already exists, the Test-Path cmdlet will return True; if it doesn’t exist, it will return
False. You can also just run the $profile cmdlet and use Windows Explorer to browse to the path that
it returns. If the file isn’t there, the profile doesn’t exist:

$profile

You can use the New-Item cmdlet to create a profile if one doesn’t already exist. -path $profile
passes in the full path, and -type file tells the cmdlet that you are trying to create a file:

New-Item -path $profile -type file

44   Inside Microsoft SharePoint 2013

When you open the profile, you will notice that it is completely empty. You can add to it any script
that you want to always be executed before you start working on your scripts. This could, for instance,
be a command telling Windows PowerShell to always go to a default location:

Set-Location C:\scripts

Or you can add the Microsoft.SharePoint.PowerShell snap-in:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

Using Windows PowerShell to deploy a custom solution
As a developer, you may also find Windows PowerShell very useful for creating a deployment script
that can be used to install your custom solution in a SharePoint environment. This will allow you to
distribute your custom solution across test, user acceptance, and production environments a lot more
easily. It will mean that administrators don’t have to perform a lot of manual steps and that you as a
developer don’t have to describe all these steps in a deployment manual.

When using Windows PowerShell to write a deployment script, you will have to take into account
that a previous version of your solution might already be installed in the environment that you are
deploying to. This means that you first have to retract and remove the solution before you can install
and deploy the solution. Retracting a solution forces SharePoint to delete most of the files it copied
during deployment as well as to uninstall features and delete assemblies from the global assembly
cache. After you’ve retracted a solution, you can then remove it, which deletes the solution package
file from the configuration database.

One thing to be aware of is that SharePoint doesn’t clean up after itself very well when you retract
a solution. For instance, SharePoint doesn’t explicitly deactivate features before it retracts the solution
that they are deployed in. Because of this, it is a best practice to make sure that you deactivate all
features in a solution before retracting the solution. Another thing to keep in mind is that SharePoint
doesn’t always delete all files that were deployed using a solution when the solution is retracted.
When it doesn’t, this often is for a good reason (for instance, because it could cause errors if the files
were to be deleted), but it is something to keep in mind because it can cause quite a bit of cluttering,
especially in a development or test environment where solutions are installed and retracted all the
time.

You can retract a solution package by using the Uninstall-SPSolution cmdlet. When calling
Uninstall-SPSolution, you should pass the -Identity parameter and the -Local parameter in the
same manner as when calling Install-SPSolution. You should also pass the -Confirm parameter
with a value of $false because failing to do so will cause the cmdlet to prompt the user, which can
cause problems if the script is not monitored while it runs. After you’ve retracted the solution, you
can then remove it by calling Remove-SPSolution, which instructs SharePoint Foundation to delete
the solution package file from the configuration database:

	 Chapter 2  SharePoint development practices and techniques    45

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$SolutionPackageName = "WingtipDevProject1.wsp"
Uninstall-SPSolution -Identity $SolutionPackageName -Local -Confirm:$false
Remove-SPSolution -Identity $SolutionPackageName -Confirm:$false

These calls to Uninstall-SPSolution and Remove-SPSolution will fail if the solution package isn’t
currently installed and deployed. Therefore, it makes sense to add a call to Get-SPSolution and con-
ditional logic to determine whether the solution package is currently installed and deployed before
attempting to retract or remove it:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$SolutionPackageName = "WingtipDevProject1.wsp"
$solution = Get-SPSolution | where-object {$_.Name -eq $SolutionPackageName}
check to see if solution package has been installed
if ($solution -ne $null) {
 # check to see if solution package is currently deployed
 if($solution.Deployed -eq $true){
 Uninstall-SPSolution -Identity $SolutionPackageName -Local -Confirm:$false
 Remove-SPSolution -Identity $SolutionPackageName -Confirm:$false
 }
}

Now that you’ve made sure that there’s no old version of your solution installed on the farm, you
can add and deploy your solution. Listing 2-1 shows the complete Windows PowerShell script. This
script can be used to deploy a solution that cannot be scoped to a web application. Also, the DLL file
in this solution will be deployed to the global assembly cache. If a solution can be scoped to a web
application, the –AllWebApplications parameter can be used to deploy the solution to all web applica-
tions, or the –WebApplication parameter can be used to specify a specific web application that the
solution should be deployed to.

LISTING 2-1  A Windows PowerShell script to uninstall and install a solution

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$solution = Get-SPSolution | where-object {$_.Name -eq $SolutionPackageName}
if ($solution -ne $null) {
 if($solution.Deployed -eq $true){
 Uninstall-SPSolution -Identity $SolutionPackageName -Local -Confirm:$false
 }
 Remove-SPSolution -Identity $SolutionPackageName -Confirm:$false
}
Add-SPSolution -LiteralPath $SolutionPackagePath
Install-SPSolution -Identity $SolutionPackageName -Local -GACDeployment

46   Inside Microsoft SharePoint 2013

Configuring SharePoint service applications

In SharePoint Server 2010 the concept of service applications was introduced. SharePoint contains
several different service applications, and all of them provide a specific piece of functionality to your
SharePoint farm if they are enabled. All service applications can be shared across web applications,
and some service applications can even be shared across farms. Let’s establish the terminology first.

A service application itself is the logical container of the service. We use the term service application
to describe the services architecture in SharePoint. It is also what is exposed in the Central Administra-
tion site through the Manage Service Applications page. For most service applications, there can be
more than one instance of the service application in a single farm.

The service instance is the actual implementation of the service, the binaries. A service instance
could include Windows Services, configuration, registry settings, timer jobs, and more. The bits that
make up the service instance are deployed to every SharePoint server in the farm.

The service machine instance of a particular service application is the server or servers in the farm
on which the service for that service application runs. You can check where a service is running and
start or stop a service on a particular server by going to the Services On Server page in the Central
Administration site. On this page, you can select a server and then start the services you want to run
on that particular server. When a service runs on more than one server in the farm, software round-
robin load balancing is provided by SharePoint. Not all service applications have an associated service
machine instance. Most service applications can have more than one associated service machine
instance, but some can only have one. Not all services you see on the Services On Server page are
service machine instances of a service application.

The service application endpoint is created when you start a service. Starting the service and thus
creating a service machine instance creates an Internet Information Services (IIS) virtual application in
the SharePoint Web Services IIS website. The virtual application includes a Windows Communication
Foundation (WCF) or .asmx web service. This web service is the service application endpoint. Each ser-
vice application must have its own service application endpoint.

A service application proxy (also called service connection or service association) is a virtual link
between a web application and a service application. The service application proxy also enables cross-
farm services.

	 Chapter 2  SharePoint development practices and techniques    47

A proxy group is a group of service application proxies that are selected for one or more web ap-
plications. By default, all service application proxies are included in the default proxy group. When
you create a web application, you can do one of the following:

■■ Select the default proxy group.

■■ Create a custom proxy group by selecting which service application proxies you want to link
to the web application. These service application proxies will then be included in the proxy
group.

The custom proxy group for one web application cannot be reused with a different web
application.

There are three ways in which you can configure service applications:

■■ By selecting services when you run the SharePoint Products Configuration Wizard

■■ By adding services one by one on the Manage Service Applications page in SharePoint 2013
Central Administration

■■ By using Windows PowerShell

It is not recommended that you use the SharePoint Product Configuration Wizard to configure
service applications. Using the wizard will create the service applications with a set of default settings
that might not be suitable for your environment. If you use the wizard it is also very easy (as easy as
selecting a check box) to create too many service applications. You should always just create the ser-
vice applications that you need in your farm. Every service application consumes a certain amount of
resources, so creating a service application that you don’t need means that you are burning valuable
resources on your server.

To create a service application from the Manage Service Applications page in Central Administra-
tion, you start by clicking the New button on the Manage Service Applications page, as shown in
Figure 2-1. Click Managed Metadata Service to create a managed metadata service application.

48   Inside Microsoft SharePoint 2013

FIGURE 2-1  The Manage Service Applications page in Central Administration

On the next page, you enter a name for the service application and for the database that will store
the contents and configuration of the managed metadata service application that you are creating, as
shown in Figure 2-2. In this example, the name of the service application is Managed Metadata Ser-
vice Application. The name of the database is ManagedMetadata. If this is the first service application
that you are creating, you will also have to create an application pool that it can use. The name of the
application pool in this example is SharePoint Web Services Default. This is the same name that the
wizard would have used for the application pool that it creates if you use it to create service applica-
tions. In most cases, this application pool can be used for most if not all of your service applications.
The account that is used in this example is the WINGTIPTOYS\spservices account. Be aware that the
account that you use as the application pool account must be a managed account. Go to the Config-
ure Managed Accounts page in Central Administration to create a new managed account. All man-
aged accounts should be dedicated service accounts. Selecting Add This Service Application To The
Farm’s Default List means that SharePoint will add the service application to the default proxy group
after you click OK.

Figure 2-3 shows the Manage Service Applications page after the managed metadata service ap-
plication has been created. Creating the managed metadata service application through the Man-
age Service Applications page also automatically creates the managed metadata service application
proxy. Most service applications automatically create their proxy when they are created through the
Central Administration user interface. When Windows PowerShell is used to create the service appli-
cation, you will almost always have to create the service application proxy yourself.

	 Chapter 2  SharePoint development practices and techniques    49

FIGURE 2-2  Creating a Managed Metadata Service Application

50   Inside Microsoft SharePoint 2013

FIGURE 2-3  The Manage Service Applications page with the Managed Metadata Service Application and proxy

Some service applications start their service or services automatically, but for most service applica-
tions you will have to go into the Manage Services On Server page in Central Administration (shown
in Figure 2-4). For the managed metadata service application, you will have to start the Managed
Metadata Web Service on at least one server in the farm. In most development environments you will
only have one SharePoint server, so you can start the service only on that server. Starting the service
will also create a new IIS virtual application in the SharePoint Web Services IIS website. The name of
the virtual application is a GUID, and the application will include the MetadataWebService.svc web
service.

	 Chapter 2  SharePoint development practices and techniques    51

FIGURE 2-4  The Manage Services On Server page

Listing 2-2 shows the Windows PowerShell script that will create the service application, the appli-
cation pool, and the service application proxy and that will start the managed metadata web service.

52   Inside Microsoft SharePoint 2013

LISTING 2-2  A Windows PowerShell script to configure the Managed Metadata Service Application

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

$saAppPoolName = "SharePoint Web Services Default"
$appPoolUserName = "WINGTIPTOYS\spservices"

Gets Application Pool, or creates one
$saAppPool = Get-SPServiceApplicationPool -Identity $saAppPoolName -EA 0
if($saAppPool -eq $null)
{

 Write-Host "Creating Application Pool"
 # Create Application Pool
 $saAppPoolAccount = Get-SPManagedAccount -Identity $appPoolUserName
 $saAppPool = New-SPServiceApplicationPool -Name $saAppPoolName ´
 -Account $saAppPoolAccount
}

$mmsInstanceName = "MetadataWebServiceInstance"
$mmsName = "Managed Metadata Service Application"
$mmsDBName = "ManagedMetadata"

Write-Host "Creating Managed Metadata Service Application & proxy"
$mms = New-SPMetadataServiceApplication -Name $mmsName ´
 -ApplicationPool $saAppPoolName -DatabaseName $mmsDBName
$proxy = New-SPMetadataServiceApplicationProxy -Name "$mmsName Proxy "´
 -ServiceApplication $mms -DefaultProxyGroup
Write-Host "Starting Managed Metadata Web Service"
Get-SPServiceInstance | where {$_.GetType().Name ´
 -eq $mmsInstanceName} | Start-SPServiceInstance
Write-Host "Managed Metadata Service Application successful configured!"

Using debugging tools

While creating a custom solution, you can and probably will use Microsoft Visual Studio to debug
your code in your development environment if you experience any issues or unexpected behavior.
You might even use Visual Studio to do some debugging to simply get a better understanding of
what’s happening behind the scenes in SharePoint. The Visual Studio Debugger is not the only way
to understand and troubleshoot SharePoint and your custom components, though. Other tools that
you can use include:

■■ Unified Logging Service (ULS) and Windows event logs

■■ The Developer Dashboard

■■ Fiddler and other network monitoring tools

	 Chapter 2  SharePoint development practices and techniques    53

Working with ULS and Windows event logs
The ULS logs are SharePoint’s own dedicated log files. Whenever there is problem with a SharePoint
environment, the first place a SharePoint developer or administrator should look for information is in
the ULS logs. One of the advantages of the ULS logs is that they can be used for troubleshooting in all
types of environments. Regardless of whether problems are occurring in a development environment,
in a test or integration environment, or in a production environment, ULS logs should contain valu-
able pointers to what’s happening.

By default, the ULS logs are stored on the file system of every SharePoint server in the <Program
Files Directory>\Common Files\Microsoft Shared\Web Server Extensions\15\LOGS folder, which is
the LOGS folder under the SharePoint root folder. By going into Configure Diagnostic Logging on
the Monitoring page in Central Administration, it is possible to specify the folder where the ULS logs
are stored. Administrators can change the number of days logs are kept and the total amount of disk
space that can be used by the logs. If you are troubleshooting a server that wasn’t configured by you
and the logs are not in the LOGS folder in the SharePoint root folder, you can browse to the Configure
Diagnostic Logging page to find out where the log files are stored on the server. The page can also be
used to change the severity of the events that are logged both to the ULS logs and to the Windows
event logs. Flood protection can be enabled to make sure that SharePoint events won’t flood the
Windows event logs.

The ULS logs are text files that are quite difficult to read and that usually contain a lot of data.
To more easily read events in the ULS logs and also to search, sort, and filter the ULS logs, the ULS
Viewer is a must-have tool for everyone who has to troubleshoot SharePoint. The ULS Viewer can be
downloaded from MSDN at http://archive.msdn.microsoft.com/ULSViewer and is an .exe file that has
to be run on the SharePoint server. It will enable you to start and stop traces and to search through
the logs by using a well-organized user interface instead of a text file.

Troubleshooting information for a SharePoint environment can also be found in the Windows
event logs. On the server, the Windows event logs can be consulted by opening up the Event Viewer.
There is some overlap in the information between the ULS logs and the Windows Event Viewer, but
both also contain specific information that can be valuable for finding the source of the problem.

When an error occurs in SharePoint, an error message will be displayed in the user interface that
contains what is referred to as a correlation ID. A correlation ID is a GUID that uniquely identifies a
particular request. The correlation ID is generated by the SharePoint web server that receives the
request. Every event that is part of the request is tagged with the same ID, and the ID even persists
across different servers in the farm. For instance, if a request was sent to a SharePoint web server, it
will be generated on that server and it will mark all entries in the ULS log that are part of the request
with that particular correlation ID. If, as part of the request, some managed metadata has to be
requested from the Managed Metadata service that runs on a dedicated application server, the same
correlation ID can be found in the ULS logs on that application server. You can even use the correla-
tion ID to trace the request on the server that is running SQL Server by using SQL Profiler to filter out
requests related to the ID.

http://archive.msdn.microsoft.com/ULSViewer

54   Inside Microsoft SharePoint 2013

When an end user encounters an error in a SharePoint environment, that user will usually see an
error message that contains a correlation ID. Even though the ID is of no use to the user himself, users
can be asked to include the ID when they place a call to a helpdesk. Having the ID of the user’s faulty
request can help administrators and developers find out what went wrong with the user’s request and
help solve the issue.

Correlation IDs aren’t just generated for faulty requests; they are generated for all requests. To find
the correlation ID for a successful request, you can use the Developer Dashboard.

Using the Developer Dashboard
The Developer Dashboard was introduced in SharePoint 2010 to show performance and tracing
information for a SharePoint page in a control on the page itself. In SharePoint 2013, the Developer
Dashboard has been dramatically improved. The dashboard is no longer a control on a page; it opens
in a separate dedicated window. The dashboard also no longer just contains information about the
latest request but contains information about several requests, so that you can compare them if you
want to and more easily get an overview. The information on the Developer Dashboard is a lot more
detailed than it was in SharePoint 2010. For instance, you can now easily see the SQL requests and the
time it took to process them, the different scopes and execution times, service calls, and also all ULS
log entries that are related to the selected request. All this can really help you to identify any poten-
tial problems related to a request, because you have all the information SharePoint collected about
the requests in a single place.

By default, the Developer Dashboard is disabled. You can enable it by using Windows PowerShell.
The Windows PowerShell cmdlet only supports On or Off; the OnDemand parameter has been dep-
recated, although On now pretty much acts the way OnDemand did in SharePoint 2010; it displays
an icon in the upper-right corner that allows you to open up the Developer Dashboard. The Windows
PowerShell cmdlet to turn on the Developer Dashboard is displayed in Listing 2-3.

LISTING 2-3  Changing the mode of the Developer Dashboard

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$DevDashboardSettings = [Microsoft.SharePoint.Administration.SPWebService]:: ´
ContentService.DeveloperDashboardSettings
$DevDashboardSettings.DisplayLevel = 'On'
$DevDashboardsettings.Update()

Figure 2-5 shows the Developer Dashboard after the welcome page of an out-of-the-box team site
has been loaded. On the dashboard, you can see different tabs for server information, scopes, SQL
info, ULS information, and a lot more. The Server Info tab contains the total execution time for the
page, the current user, whether the page is published, and the correlation ID. The SQL tab also shows
the execution time for all database queries and for all methods. By using the dashboard you can not
only see how long a page took to load just the out-of-the-box functionality on it, but you can also
see how long it takes your custom component to load. You can identify whether your code executes
any expensive methods or database queries.

	 Chapter 2  SharePoint development practices and techniques    55

FIGURE 2-5  The Developer Dashboard

To write information from your own custom solution to the Developer Dashboard you can
either execute your code in an OnInit or Render override, or you can wrap your code in an
SPMonitoredScope block. Only code from farm solutions can send information to the Developer
Dashboard; the contents of sandboxed solutions or apps cannot send information to the
dashboard.

Using the SharePoint Developer Tools in Visual Studio 2012

The release of SharePoint 2007 was a significant milestone for SharePoint as a development platform
because in this version, Microsoft introduced support for features and solution packages. Soon after
SharePoint 2007 was released, however, it became clear within Microsoft and throughout the indus-
try that more and better developer productivity tools were needed. With SharePoint 2010, Microsoft
extended the developer platform by introducing the SharePoint Developer Tools in Visual Studio 2010.
These new tools made developing for SharePoint 2010 much faster and easier because they automated

56   Inside Microsoft SharePoint 2013

grungy tasks and hid many of the low-level details that developers had to worry about when develop-
ing for SharePoint 2007. For example, every SharePoint project in Visual Studio 2010 is created with
built-in support to generate its output as a solution package. The SharePoint Developer Tools also
integrate commands into the Visual Studio 2010 environment that make it easy to deploy and retract
the solution package for a SharePoint project during testing and debugging.

With the introduction of SharePoint 2013 and Visual Studio 2012, Microsoft has further improved
the SharePoint Developer Tools. For the project types that were available for SharePoint 2010 there
are now also SharePoint 2013 versions. There are also Office add-in project types that can be used to
create add-ins for the Microsoft Office 2013 and Office 2010 applications. The biggest change, how-
ever, is that the SharePoint Developer Tools in Visual Studio 2012 contain two project types that allow
you to create two different types of apps:

■■ Apps for Office 2013

■■ Apps for SharePoint 2013

You can find the app for SharePoint 2013 C# in the New Project dialog box within Visual Studio
2012 by navigating to Visual C#\Office/SharePoint\Apps, as shown in Figure 2-6.

FIGURE 2-6  Selecting the App for SharePoint 2013 project type to create an app

When you click OK you are asked to confirm the name of the app and specify the site to which you
want Visual Studio to deploy the app and how you want to host your app, as shown in Figure 2-7.

	 Chapter 2  SharePoint development practices and techniques    57

FIGURE 2-7  Specifying a name, test site URL, and trust level for an app

SharePoint apps will be discussed in detail in Chapter 4, “SharePoint apps.” For now, you will create
a SharePoint-hosted app, which means that all of the app will be deployed to a SharePoint site. When
you click the Finish button in the SharePoint Customization Wizard, Visual Studio takes a few seconds
to create and configure the new project. Figure 2-8 shows what the new SharePoint project looks like
in Solution Explorer.

FIGURE 2-8  An app's Features node, Package node, and some standard content

58   Inside Microsoft SharePoint 2013

A SharePoint app is created with some default content. There is a style sheet, an app icon image,
a default page, and several JavaScript files. The AppManifest.xml file contains metadata such as the
name and the title of the app, the app icon, and the scopes at which the app needs to have permis-
sions. You use the Features node of the App for SharePoint 2013 project to add new features to the
app. Notice that the Features node of a SharePoint app contains one feature, called Feature1, when
the app is created. Feature1 contains the default content and is web scoped. A feature in a SharePoint
app can only be web scoped, it is not supported to use a SharePoint app to deploy a site, web ap-
plication, or farm-scoped feature. You use the Package node to track project-wide settings related to
building the project into a solution package .wsp file and an app package .app file.

Just like normal SharePoint projects, SharePoint apps also have three special menu commands
to support deployment and packaging of the app: Deploy, Package, and Retract. These menu com-
mands are available when you right-click the top-level project node in Solution Explorer. You can run
the Package command to build a SharePoint project into a solution package. You can use the Deploy
command to run a sequence of deployment steps that deploy the solution package in the local farm
so that you can test and debug your work. The Retract command reverses the act of deployment by
retracting the solution package from the local farm. When you click the Deploy button, Visual Studio
deploys the app to the site you listed in the Customization Wizard. You can find the app on the Site
Contents page and in the navigation pane on the left side of the page, under the Recent heading, as
shown in Figure 2-9. Clicking the app name or icon will open the app’s default.aspx page.

FIGURE 2-9  The WingTip app on the Site Contents page and in the navigation pane on the left side of the page

	 Chapter 2  SharePoint development practices and techniques    59

Choosing a development approach

At least as important as knowing how to create a solution is knowing when to create a solution and
what type of solution to create. Even though this is a book about custom development, the best ap-
proach when using SharePoint is to use out-of-the-box functionality. Customizations are the number-
one cause of problems with SharePoint environments. Knowing this, you have to make sure that when
you create a custom solution, the same functionality couldn’t be achieved by using out-of-the-box
functionality. If you do have to create a custom solution, you have to make sure that you create the
right type of solution and that you build the solution in a way that uses the least amount of resources
from the SharePoint server.

When you open up Visual Studio, the first thing you have to decide is what type of project you
want to create. With the new SharePoint 2013 app model added into the mix, you can now choose
between a SharePoint 2013 farm solution, a SharePoint 2013 sandboxed solution, and a SharePoint
2013 app. There isn’t one right project type; the best type depends on what kind of customizations
you want to build and to what type of environment you want to deploy the customizations.

The best option is always the project type that puts the least amount of load on the SharePoint
server. However, the solution also has to be maintainable and upgradable. The solution should not
be overly complex, so that it can be maintained by others. The solution design should follow best
practices to ensure that it can be upgraded to a next version of SharePoint. Of course, you also have
to make sure that the solution can be deployed to the environment that you are creating the custom-
izations for. To summarize, when you create SharePoint customizations, the following things have to
be taken into account:

■■ Put the least possible load on the SharePoint server.

■■ Keep the customizations as simple as possible.

■■ Make sure you follow best practices, so the solutions don’t block the SharePoint environment
from being upgraded.

■■ Ensure that the solution can be deployed to the target environment.

Because a SharePoint app can’t deploy server-side code to the SharePoint server, that will always
be the project type that puts the least amount of load on the SharePoint server. Sandboxed solutions
can deploy server-side code to the SharePoint server; however, a sandboxed solution can only use a
limited amount of server resources before it is shut down. A farm solution can technically use all the
resources that are available on the server, and because of that, a farm solution can bring down an
entire SharePoint farm. This is not just a theoretical scenario; it actually happens on a regular basis to
both small and really large SharePoint environments.

It is likely that the version of the customizations that you are building is not the last version. Either
the customizations will be a huge hit and users will ask for more functionality, or they aren’t what
users were expecting and they need modifications to fit the user’s needs. To make the solution easy
to maintain, make it as simple as possible. This means that even though your first choice should be to
build a SharePoint app, because that would consume the least amount of SharePoint server resources,

60   Inside Microsoft SharePoint 2013

you shouldn’t do it at all costs. If creating an app would create a solution that is significantly more
complex, the best solution is probably to build a sandboxed or farm solution.

If the SharePoint environment is successful, it’s very likely that at some point the environment will
have to be upgraded to the next version of SharePoint. Some SharePoint customizations can block
the upgrade of a SharePoint environment. For instance, if a solution makes unsupported changes to
the database or to SharePoint files on the file system, it won’t be possible to upgrade the environ-
ment. Also, when certain customizations such as site definitions are involved, it will be significantly
more difficult to move the contents of the SharePoint farm to a cloud-hosted environment. Because
Microsoft has positioned the SharePoint app model as the SharePoint customization type of the
future, and because almost all parts of the SharePoint app live outside of SharePoint, creating apps
is your safest bet when you want to guarantee that your environment can upgrade without being
hindered by the customizations.

Using farm solutions means that the solution will have to be upgraded when the SharePoint farm
gets upgraded. Sandboxed solutions live in the content database and can only affect the site collec-
tion that they are deployed in. This means that the impact they can have on an upgrade to a new
version of SharePoint is a lot smaller than for farm solutions. However, sandboxed solutions are dep-
recated in SharePoint 2013. This means that although both sandboxed solutions that were created for
SharePoint 2010 and new sandboxed solutions created for SharePoint 2013 are still fully supported,
Microsoft is planning to remove support for sandboxed solutions at some point in the future. This
doesn’t necessarily have to be in the next release; it could be in the release after that, or an even later
release. Investing in large-scale sandboxed solutions is probably not a good idea, though.

If your environment is a cloud-hosted environment such as Office 365, you might not have much
of a choice, because you won’t be allowed to deploy full trust solutions, and not all customizations
can be created by using apps. In those cases, you will probably still want to create new sandboxed
solutions. The advice would then be to try and create the solutions in such a way that you can remove
the sandboxed solution without the entire site breaking down. When Microsoft then at some point
removes the support for sandboxed solutions, at least your existing content is still accessible.

When you are upgrading from SharePoint 2010 to SharePoint 2013, you can choose how you want
to upgrade you custom solutions:

■■ You can deploy your SharePoint 2010 solutions as is. Microsoft has designed SharePoint 2013
to make sure that your solutions keep working. This means that the entire solution should
work when a site is in SharePoint 2010 mode. When a site is in SharePoint 2013 mode, most of
the solution should work, but some things might not work. Things that don’t work are mostly
related to functionality that is no longer available in SharePoint. For instance, custom solutions
that use the SharePoint 2010 Web Analytics features will not work in a SharePoint 2013 envi-
ronment, because the Web Analytics Service Application and all related functionality has been
removed. In most cases, you will not just deploy your existing solutions as is. The only case in
which it makes sense to not make any changes and just deploy an existing SharePoint 2010 so-
lution as is to a SharePoint 2013 environment is when the solution is only there to keep existing
SharePoint 2010 sites working in SharePoint 2010 mode in the SharePoint 2013 environment. In
all other cases, you will at least want to recompile your solution.

	 Chapter 2  SharePoint development practices and techniques    61

■■ The second way to move SharePoint 2010 solutions to a SharePoint 2013 environment is to
open the SharePoint 2010 solution in Visual Studio 2012. The solution can then be recompiled
against the SharePoint 2013 DLLs. While you are doing this, you can decide to make some mi-
nor changes to the solution. You should definitely remove any references to functionality that
no longer exists in SharePoint 2013, such as the Web Analytics functionality. Another example
of something that will definitely not work in a SharePoint 2013 mode are SharePoint 2010
visual designs. Any master pages and style sheets that were created for SharePoint 2010 will
not work in sites that are in SharePoint 2013 mode. Normally SharePoint will just not use the
SharePoint 2010 designs in SharePoint 2013 mode sites. However, if you had a stapling feature
in SharePoint 2010 that stapled a custom design to sites in the environment, especially if it
stapled the design to all sites in the environment by stapling it to the GLOBAL site definition,
you will want to remove the stapling feature before moving the solution to SharePoint 2013.
Stapling a SharePoint 2010 design to the GLOBAL site definition and deploying it to SharePoint
2013 can make it impossible to create any fully functional sites, either by using out-of-the-box
site definitions or custom web templates.

■■ The third approach that can be taken when moving solutions from SharePoint 2010 to Share-
Point 2013 is to rebuild the solution to use the new SharePoint 2013 functionality where pos-
sible. Rebuilding the solution could mean replacing custom features with new out-of-the-box
functionality. In a lot of cases, the aim should be to minimize the amount of customizations
in an environment, which means that cutting customizations in favor of new out-of-the-box
functionality is a very valid change to invest in. Do keep in mind, though, that in order to be
able to upgrade existing sites you might need to have certain SharePoint 2010 customizations
deployed in your environment, even if you don’t want to actively use them anymore in your
SharePoint 2013 environment. There are also cases in which a customization can’t be replaced
by out-of-the-box functionality but could be replaced by SharePoint apps, by an application
that runs external to SharePoint and that uses the SharePoint Web Services or the vastly im-
proved SharePoint Client Object Model. This should only be done if replacing the functionality
by using a SharePoint app or an external solution doesn’t make the solution significantly more
complex. If that is not the case, rebuilding functionality as a SharePoint app or as an external
service will give you practice and experience in using the new development options, and it will
make sure that your solution is easier to deploy in hosted environments. Assuming that the
SharePoint app model is here to stay, it will also make sure that your solution becomes more
future proof.

Using the SharePoint APIs

In SharePoint 2013, you can now choose from three different APIs: the server-side object model
(SSOM), the client-side object model (CSOM), and the REST API. All three APIs give you the option to
build customizations for your SharePoint environment. This section will provide an overview of the
three different APIs. Each API will then be used extensively in examples throughout the book. For
specific detailed coverage of CSOM and REST, see Chapter 5, “Client-side programming.”

62   Inside Microsoft SharePoint 2013

Understanding the server-side object model
The core server-side object model of SharePoint Foundation is loaded through an assembly named
Microsoft.SharePoint.dll. When you reference this assembly within a Visual Studio 2012 project, you
can start programming against the classes in the server-side object model, such as SPSite, SPWeb, and
SPList. There are two initial requirements for a Visual Studio project that programs against the server-
side object model by using the Microsoft.SharePoint assembly. First, the project must be configured
to use .NET Framework 4 or 4.5 as its target framework. Pay extra attention if you are upgrading a
SharePoint 2010 solution, because that will have been built using the .NET Framework 3.5 as its target
framework. The second requirement is that your project must have a platform target setting that is
compatible with a 64-bit environment, which is essential for properly loading the Microsoft.SharePoint
assembly.

Another critical requirement for any application or component that is programmed against the
server-side object model is that the application or component must be deployed and run on a
SharePoint server in the farm in which you want to use the component. The deployment of applica-
tions or components that use the SharePoint server-side object model should always be done by
using a SharePoint Solution or .wsp file. To deploy the solution, you will need access to at least one
SharePoint server in the farm where the solution should be deployed. In most production environ-
ments, this means that you will hand off the solution and a document that describes how to deploy
the solution to the administrator of the server. In your development environment, Visual Studio will
usually do the deployment for you.

You can also create client applications with Visual Studio 2012 that program against the server-side
object model. For example, you can create a standard console application that uses the server-side
object model to access a site and the elements inside the site, such as lists and items. However, keep
in mind that any client application that depends on the Microsoft.SharePoint assembly can be run
only when launched on a server that has SharePoint installed on it and that is part of a SharePoint
farm. This means that it’s not likely that you will encounter real-world scenarios that call for creating
client applications that use the server-side object model. Even so, creating simple console applica-
tions that program against the Microsoft.SharePoint assembly in your development environment can
be useful, because it gives you a quick and easy way to write and test code as you begin learning the
server-side object model.

Most of the SharePoint Foundation APIs reside in Microsoft.SharePoint.dll. However, if you are build
ing a custom solution ,using the server-side object model you might also want to use SharePoint Server
APIs and functionality. The bulk of the SharePoint Server APIs reside in Microsoft.Office.Server.dll;
however, this isn’t the only available DLL that contains SharePoint Server APIs. For a full list of
SharePoint APIs and the DLLs in which you can find them, see the MSDN page .NET server API
reference for SharePoint 2013 at http://msdn.microsoft.com/en-us/library/jj193058.aspx.

http://msdn.microsoft.com/en-us/library/jj193058.aspx

	 Chapter 2  SharePoint development practices and techniques    63

Using the client-side object model
SharePoint 2010 introduced the SharePoint Foundation client-side object model, which allows devel-
opers to use SharePoint content and objects in their client-side solutions. As a developer, you could
now create a very simple solution that would be deployed into a SharePoint site or onto a user’s
desktop and that could read or manage data in a SharePoint site.

In SharePoint 2010, the client-side object model was only available for SharePoint Foundation
objects. In SharePoint 2013, however, the client-side object model has again been vastly improved
by making a lot of the SharePoint Server objects available through the client-side object model. In
SharePoint 2010 there were three client-side object models, and in SharePoint 2013 there are four.
SharePoint 2013 allows you to choose between the Managed, Silverlight, Mobile, and JavaScript
object models. Each of the four object models provides an object interface to SharePoint functional-
ity that is based on the objects available in the Microsoft.SharePoint namespace. All four client-side
object models also have support for at least part of the SharePoint Server 2013 functionality, but not
all of them include the same SharePoint Server 2013 components.

The four client-side object models also all have their own usages. Each of the four object models
presents an object interface in front of a service proxy. Developers write client-side code by using
the object model, but the operations are batched and sent as a single XML request to the Client.svc
service. When the XML request is received, the Client.svc service makes calls to the server-side object
model on behalf of the client. The results of the server-side calls are then sent back to the calling cli-
ent in the form of a JavaScript Object Notation (JSON) object.

The object model for Microsoft Silverlight can be used to build Silverlight applications, Web Parts,
ASP.NET applications, apps for SharePoint and Office, and Silverlight applications for phones that use
SharePoint data or SharePoint objects. A Silverlight application is compiled into an .xap file that can
pretty much be stored anywhere. Examples of where .xap files can be deployed are a client computer,
the file system of a SharePoint server, a list in a SharePoint library, and an external (web) server. The
Silverlight client-side object model is contained in assemblies in the LAYOUTS\ClientBin folder. The
following DLLs are available:

■■ Microsoft.SharePoint.Client.Silverlight.dll

■■ Microsoft.SharePoint.Client.Silverlight.Runtime.dll

■■ Microsoft.SharePoint.Client.DocumentManagement.Silverlight.dll

■■ Microsoft.SharePoint.Client.Publishing.Silverlight.dll

■■ Microsoft.SharePoint.Client.Search.Applications.Silverlight.dll

■■ Microsoft.SharePoint.Client.Search.Silverlight.dll

64   Inside Microsoft SharePoint 2013

■■ Microsoft.SharePoint.Client.Taxonomy.Silverlight.dll

■■ Microsoft.SharePoint.Client.UserProfiles.Silverlight.dll

■■ Microsoft.SharePoint.Client.WorkflowServices.Silverlight.dll

■■ Microsoft.Office.Client.Policy.Silverlight.dll

■■ Microsoft.Office.Client.TranslationServices.Silverlight.dll

The Mobile object model can be used to create applications that run on Windows Phones. The
Mobile client-side object model is a special version of the Silverlight client-side object model. The
Mobile object model contains most of the same functionality as the Silverlight object model. A couple
of areas are missing, but when you are creating a Windows Phone application using the Mobile object
model you can use the REST APIs to access these areas. The Mobile client-side object model also con-
tains some functionality that is specific to phones, such as APIs that enable a phone app to register for
notifications from the Microsoft Push Notification Service. The Mobile client-side object model can be
found in the same folder as the Silverlight client-side object model, in the LAYOUTS\ClientBin folder.
The DLLs that are available for the Mobile client-side object model are:

■■ Microsoft.SharePoint.Client.Phone.dll

■■ Microsoft.SharePoint.Client.Phone.Runtime.dll

■■ Microsoft.SharePoint.Client.DocumentManagement.Phone.dll

■■ Microsoft.SharePoint.Client.Publishing.Phone.dll

■■ Microsoft.SharePoint.Client.Taxonomy.Phone.dll

■■ Microsoft.SharePoint.Client.UserProfiles.Phone.dll

■■ Microsoft.Office.Client.Policy.Phone.dll

■■ Microsoft.Office.Client.TranslationServices.Phone.dll

The Managed object model can be used to create .NET applications that run on Windows operat-
ing systems that aren’t phones or SharePoint servers. This means that the Managed object model can
be used to create applications that run on client computers, or on Windows web servers not running
SharePoint. The Managed object model can be found in the ISAPI folder and is contained in the fol-
lowing DLLs:

■■ Microsoft.SharePoint.Client.dll

■■ Microsoft.SharePoint.Client.Runtime.dll

■■ Microsoft.SharePoint.Client.ServerRuntime.dll

■■ Microsoft.SharePoint.Client.DocumentManagement.dll

■■ Microsoft.SharePoint.Client.Publishing.dll

■■ Microsoft.SharePoint.Client.Search.Applications.dll

	 Chapter 2  SharePoint development practices and techniques    65

■■ Microsoft.SharePoint.Client.Search.dll

■■ Microsoft.SharePoint.Client.Taxonomy.dll

■■ Microsoft.SharePoint.Client.UserProfiles.dll

■■ Microsoft.SharePoint.Client.WorkflowServices.dll

■■ Microsoft.Office.Client.Education.dll

■■ Microsoft.Office.Client.Policy.dll

■■ Microsoft.Office.Client.TranslationServices.dll

■■ Microsoft.Office.SharePoint.ClientExtensions.dll

The last client-side object model is the JavaScript object model. The JavaScript object model can
be used in inline script or in separate .js files. Using the JavaScript client-side object model is an excel-
lent way to add custom SharePoint code to a SharePoint-hosted app. The JavaScript object model
is different from the other three in that it is not contained in a set of DLLs. Instead, it is contained in
a JavaScript library, inside of .js files. The many .js files that make up the JavaScript client-side object
model are located in the LAYOUTS folder. The core SharePoint functionality can be found in SP.js and
in SP.Core.js.

Though the four client-side object models don’t contain exactly the same functionality, Microsoft
has taken great care to ensure that the four models return objects that behave similarly. This means
that if you know how to write code against one of the models, you can easily port that code to either
of the other three models. Table 2-2 shows some of the main objects supported by each model along
side the related object from the server-side model.

TABLE 2-2  Equivalent objects in the server and client models

Server model Managed model Silverlight model Mobile model JavaScript model

SPContext ClientContext ClientContext ClientContext ClientContext

SPSite Site Site Site Site

SPWeb Web Web Web Web

SPList List List List List

SPListItem ListItem ListItem ListItem ListItem

SPField Field Field Field Field

As in the standard code you write against the server-side object model, code written for client
object models requires a starting point in the form of a context object. The context object pro-
vides an entry point into the associated API that can be used to gain access to other objects. When
you have access to the objects, you can interact with the scalar properties of the object freely (for
example, Name, Title, Url, and so on). Listing 2-4 shows how to create a context in each of the models
and return an object representing a site collection. After the site collection object is returned, the Url
property is examined. Code for the server model is included for comparison.

66   Inside Microsoft SharePoint 2013

LISTING 2-4  Creating contexts

//Server Object Model
SPSite siteCollection = SPContext.Current.Site;
string url = siteCollection.Url;

//Managed Client Object Model
using (ClientContext ctx = new ClientContext("http://intranet.wingtiptoys.com"))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//Silverlight Client Object Model
using (ClientContext ctx =
 new ClientContext("http://intranet.wingtiptoys.com"))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//Mobile Client Object Model
using (ClientContext ctx =
 new ClientContext("http://intranet.wingtiptoys.com"))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//JavaScript Client Object Model
var siteCollection;
function getSiteCollection
{
 var ctx = new SP.ClientContext("/");
 siteCollection = ctx.get_site;
 ctx.load(site);
 ctx.executeQueryAsync(success, failure);
}

function success {
 string url = siteCollection.get_url;
}

function failure {
 alert("Failure!");
}

	 Chapter 2  SharePoint development practices and techniques    67

The ClientContext class in the Managed, Silverlight, and Mobile object models inherits from the
ClientContextRuntime class. By using the ClientContext class, you can get a valid run-time context by
passing in the URL of a site. In addition, this class provides several members that are needed to access
data and invoke methods on the server.

The SP.ClientContext class in the JavaScript client object model inherits from the SP.ClientContext
Runtime class and provides equivalent functionality to the ClientContext class found in the Managed,
Silverlight, and Mobile client object models. As with the Managed and Silverlight models, you can
get a run-time context in the JavaScript model by using the SP.ClientContext class and passing a URL.
Unlike the other client object models, however, the JavaScript model also allows you to get a run-time
context to the current site by using a constructor with no arguments, so the example above could be
rewritten as simply var ctx = new SP.ClientContext.

All four client-side object models only communicate with the SharePoint server when the code
calls the ExecuteQuery or ExecuteQueryAsync method. This is to prevent the object models from
making too many calls to the SharePoint server and from affecting the SharePoint server’s health by
querying the server too much. This means that when you are writing your code, you have to really
think about when the statements that you are writing actually have to be executed on the server. You
will want to minimize traffic to the server, but you will need to communicate with the server if you
want to request data from, or send data into, the SharePoint environment.

The ExecuteQuery method creates an XML request and passes it to the Client.svc service. The client
then waits synchronously while the batch is executed and the JSON results are returned. The Execute-
QueryAsync method, which is used in the Silverlight and Mobile client object models, sends the XML
request to the server, but it returns immediately. Designated success and failure callback methods
receive notification when the batch operation is complete.

The JavaScript model works like the Managed and Silverlight models by loading operations and
executing batches. In the case of the JavaScript model, however, all batch executions are accom-
plished asynchronously. This means that you must call the ExecuteQueryAsync method and pass in
the name of functions that will receive success and failure callbacks, as shown earlier in Listing 2-4.

Using the REST APIs
The most lightweight option for performing relatively simple operations on data in SharePoint lists
and sites is to use the REST capabilities that are built into SharePoint 2013. The SharePoint 2013
implementation of a REST web service uses the Open Data Protocol (OData) to perform CRUD
operations on data in SharePoint. Using REST allows your code to interact with SharePoint by using
standard HTTP requests and responses. Table 2-3 shows the mapping between HTTP verbs and data
operations.

68   Inside Microsoft SharePoint 2013

TABLE 2-3  Mapping between HTTP verbs and data operations

HTTP verb Data operation

GET Retrieve

POST Create

PUT Update all fields

DELETE Delete

MERGE Update specified fields

The Client.svc web service handles the HTTP request and serves a response in either Atom or JSON
format.

To access any object on a site by using a RESTful call, the URL you should use will start with the
following construction:

http://<server>/<site>/_api

To access an actual object within the site you simply add the object to the URL:

//Access a site collection
http://<server>/<site>/_api/site

//Access a specific site
http://<server>/<site>/_api/web

//Access a list in a specific site
http://<server>/<site>/_api/web/lists('GUID')

You can use the querystring syntax to specify parameters for the methods that you call by using a
RESTful HTTP request:

//Apply a "blank" site site definition to a SharePoint site
http://<server>/<site>/_api/web/applyWebTemplate?template="STS#1"

The query strings can become rather complex, but because of that the queries that can be per
formed are rather powerful as well. You can select, sort, page, filter, and expand data by using a
RESTful query. The filtering allows both numeric and string comparisons as well as date and time
comparisons. The next example of a RESTful query requests the FirstName, LastName, and Phone-
Number columns from a list with a specific GUID and filters the items by items where the FirstName
starts with an a:

http://<server>/<site>/_api/web/lists('GUID')/items?$select=FirstName,LastName,
PhoneNumber$filter=startWith(FirstName, a)

	 Chapter 2  SharePoint development practices and techniques    69

Summary

In this chapter, all the basics of developing a custom SharePoint solution have been touched on. The
first step is to determine what type of development environment you need to create the solution
that you want to create, or to complete the project that you are working on. When you have your
hardware and the design of the development environment in place, you can install and configure it
manually, but you can also use Windows PowerShell to configure your server. Especially if you need to
create multiple development environments, scripting the installation and configuration can save you
time and will help to ensure that all development environments are identical.

The next step is to determine a development approach. The best approach for your solution
depends on the functionality that you want to build and on the environment that the solution should
be deployed to. If the solution has to be deployed to a cloud-hosted environment, creating a farm
solution is not an option, because you won’t be able to deploy it. The most future-proof approach is
to create a SharePoint app. However, some of the functionality that you might want to build might
not be able to be created by using a SharePoint app (yet). This forces you to make a decision between
creating an app that implements as much of the functionality as possible and creating a farm solu-
tion that implements the exact functionality that you are looking for. If you deploying a farm solution,
you will have to upgrade it if you want to upgrade your environment, and at some point in the future
Microsoft might remove support for farm solutions completely. Although it will be a while before this
happens, it should already be a consideration when you are determining the development approach
you are going to use for your solution.

After your solution is deployed, you might have to debug it. There are several debugging tools
that can be used to debug custom SharePoint solutions. The best tool to use depends on the type of
problem you are trying to debug and on what type of environment your solution is in. The ULS and
Windows Event Logs, and the Developer Dashboard, can give you valuable information from all types
of environments and are all useful tools to help you identify the cause of a problem on your farm.

		 71

C H A P T E R 3

Server-side solution development

Microsoft SharePoint 2013 offers a new way to customize your SharePoint environment called
the SharePoint app model. However, the approaches you used to customize your SharePoint

environment prior to SharePoint 2013 are for the most part still valid. You can still build farm solutions
and sandboxed solutions. This chapter walks you through how to create farm and sandboxed solu-
tions and talks about dos and don’ts for both approaches. It also guides you through what’s different
in SharePoint 2013 compared to SharePoint 2010, both in terms of changes to the tools and object
model and in terms of changes to the guidance around using farm and sandboxed solutions.

A farm solution is a solution that will be deployed via the SharePoint Central Administration
website or Windows PowerShell. Someone with access to the SharePoint server will upload the solu-
tion by using Windows PowerShell, and the solution will be stored in the Farm Solutions store, which
is persisted in the SharePoint Configuration Database. This is the database that also stores a lot of
the farm settings for the SharePoint farm. It is not a content database, which means that there are
no SharePoint site settings and site content stored in it. After the solution has been added to the
Farm Solutions store it can be deployed, which means that the files packaged in the solution can be
deployed to the right locations and that users and administrators can start using the functionality that
was packaged in the solution. Deployment can either be done through Central Administration or via
Windows PowerShell. The Windows PowerShell script to upload and deploy a SharePoint solution can
be found in Listing 2-1 in Chapter 2, “SharePoint development practices and techniques.”

A sandboxed solution is a solution that is uploaded to a site collection’s Solution Gallery. Sand-
boxed solutions can be uploaded and activated by site collection administrators. The sandbox
solution will also be stored in the content database that the site collection is stored in. A sandboxed
solution and its contents will not be deployed to the SharePoint server’s file system. The functional-
ity from a sandboxed solution is only available in the site collection or collections where it has been
deployed.

To build farm or sandboxed solutions for SharePoint 2013 you use Microsoft Visual Studio 2012
Professional, Premium, or Ultimate, including the SharePoint Developer Tools. As shown in Figure 3-1,
the SharePoint Developer Tools can be installed as an optional feature during Visual Studio installation.

72   Inside Microsoft SharePoint 2013

FIGURE 3-1  Selection of optional features during the Visual Studio 2012 installation

The new SharePoint Developer Tools include support for building farm solutions, sandboxed solu-
tions, and SharePoint and Office apps. As in SharePoint 2010, you will need a SharePoint farm on your
development server to build farm or sandboxed solutions. The farm can be either a SharePoint Server
or a SharePoint Foundation farm. In general the recommendation is to make sure that the SharePoint
version that you use in your development environment is the same as the version used in the produc-
tion environment.

The first time you start Visual Studio after installing it, Visual Studio asks for your default
environment settings, as shown in Figure 3-2. The options don’t include settings for “SharePoint
Development,” so you’ll have to make do with one of the other options. The options that come closest
are either Web Development or Visual C# Development Settings. For this example, we chose Web
Development.

	 Chapter 3  Server-side solution development    73

FIGURE 3-2  Choosing the default environment settings for Visual Studio 2012

Visual Studio 2012 is now fully installed; however, Visual Studio 2012 doesn’t include the
templates for SharePoint and Microsoft Office 2013 development. The Office Developer Tools for
Visual Studio 2012 can be downloaded separately from http://www.microsoft.com/web/handlers/
WebPI.ashx?command=GetInstallerRedirect&appid=OfficeToolsForVS2012GA. After the installation
is complete, you can open Visual Studio and either watch some of the introductory videos or start
a new project.

Understanding the server-side object model

SharePoint’s high-level architecture is based upon a hierarchy of components:

■■ The highest level is the farm. This is the collection of all physical and logical components that
make up an environment.

■■ At the next level are the most important and most notable physical components, the servers.
A small development farm can consist of a single server, whereas a large production environ-
ment can contain dozens of servers.

■■ The third level is the web application. Web applications are the highest level of logical com-
ponent. Each web application has its own website in Internet Information Services (IIS). Most
farms have between 2 and 10 web applications. Every farm has a Central Administration web
application; without it the farm will not be supported or operational.

http://www.microsoft.com/web/handlers/WebPI.ashx?command=GetInstallerRedirect&appid=OfficeToolsForVS2012GA
http://www.microsoft.com/web/handlers/WebPI.ashx?command=GetInstallerRedirect&appid=OfficeToolsForVS2012GA

74   Inside Microsoft SharePoint 2013

■■ The next level is the content database. Content databases are SQL databases that contain all
of the data and many of the settings that are stored in site collections.

■■ Site collections themselves are the next level. They are logical containers within a web ap-
plication. Within a site collection, a visual design, navigation, workflows, and policies can be
shared. A farm should contain no more than 250,000 “non-personal” site collections. On top
of the 250,000 non-personal site collections it is also possible to have 500,000 personal sites
(also known as my sites).

■■ Within site collections, up to 250,000 sites can be created.

■■ Sites contain lists and libraries that are used to store files, documents, and items. Examples of
libraries are a document library, a pages library, and a picture library. Examples of lists are a
tasks list, a calendar, and an announcements list.

■■ This bring us to the lowest level, the items. An item can be a document, a picture, a page, a
task, an announcement, or a calendar item. A folder is also considered an item.

This hierarchy can also be found in the server-side object model, in Microsoft.SharePoint.dll. The
names of the objects are pretty self-explanatory if you understand the SharePoint hierarchy, as shown
in Table 3-1.

TABLE 3-1  SharePoint server-side object model components and namespaces

SharePoint component Server-side OM object Namespace

Farm SPFarm Microsoft.SharePoint.Administration

Server SPServer Microsoft.SharePoint.Administration

Web application SPWebApplication Microsoft.SharePoint.Administration

Content database SPContentDatabase Microsoft.SharePoint.Administration

Site collection SPSite Microsoft.SharePoint

Site SPWeb Microsoft.SharePoint

List/library SPList Microsoft.SharePoint

Item SPItem Microsoft.SharePoint

The only thing that stands out when you compare the component names to the object names are the
SPSite and the SPWeb objects. A site collection is represented by the SPSite object, and a site is an
SPWeb object.

Listing 3-1 shows an example of how the objects that represent the SharePoint hierarchy can
be used in a custom solution. Be aware that the example in Listing 3-1 is iterating through all objects
in the farm, which is a very poor practice. The code in the listing only serves as an example to dem-
onstrate the different objects. If you are using the server-side object model in a farm solution, the
resources you can use are not limited or controlled by the system. By the time your solution has used
all of the available resources, it’s likely that you will have also brought down the entire farm. This
means that building farm solutions using the server-side object model comes with a lot of power,
but also with a lot of responsibility.

	 Chapter 3  Server-side solution development    75

Iterating over SharePoint objects such as site collections, sites, lists, or items will seldom cause
problems in a development environment. However, if you are creating a solution that iterates over
SharePoint objects, try to estimate how many objects you will be iterating over in the production
environment. Also consider how that may change over time—for instance, in a year from now. You
might very well end up iterating over more objects than you can or should iterate over, especially if
your code called synchronously, while a user is waiting for it. In that case, the best way to avoid this
would be to build your solution so that you don’t need the iteration, maybe using search instead. If
that’s not an option, you can create a (timer) job that runs at night when there are not as many users
using the environment and cache the results in a custom database or XML file.

LISTING 3-1  An example of how to use the main objects that make up the SharePoint hierarchy

SPFarm farm = SPFarm.Local;
hierarchyInfo += "Farm: " + farm.Name + "</br></br>";
SPServerCollection servers = farm.Servers;

foreach (SPServer server in servers)
{
 hierarchyInfo += "Server: " + server.DisplayName + "</br>";
}

SPWebService service = farm.Services.GetValue<SPWebService>("");
foreach (SPWebApplication webApplication in service.WebApplications)
{
 hierarchyInfo += "
Web Application: " + webApplication.Name + "</br>";

 foreach (SPContentDatabase database in webApplication.ContentDatabases)
 {
 hierarchyInfo += "Content Database: " + database.Name + "</br>";

 foreach (SPSite site in database.Sites)
 {
 hierarchyInfo += "Site Collection: " + site.Url + "</br>";

 foreach (SPWeb web in site.AllWebs)
 {
 hierarchyInfo += "Site: " + web.Title + "</br>";

 foreach (SPList list in web.Lists)
 {
 if (!list.Hidden)
 {
 hierarchyInfo += "List: " + list.Title + "</br>";
 hierarchyInfo += "Items: " + list.ItemCount + "</br>";
 }
 }
 web.Dispose();
 }
 site.Dispose();
 }
 }
}

76   Inside Microsoft SharePoint 2013

In a sandboxed solution, you can only access objects that are within the boundaries of the site
collection to which the solution is deployed. This means that you can use one SPSite object, the SPSite
object that represents the site collection that the solution is deployed to. Within that site collection,
you can iterate through the SPWeb, SPList, and SPListItem objects. Keep in mind, though, that a
sandboxed solution is only allowed to consume a limited amount of resources. These resources are
normalized to Resource Points. When the Resource Points of a specific site collection have been used
up, all sandboxed solutions in that site collection are shut down until the Resource Points are reset.
This happens once every 24 hours by default. This makes iterating through objects in a sandboxed
solution a risky exercise, because it can quickly consume many of the available Resource Points. If the
site collection that the solution is deployed to grows, it might use a lot of memory and cause issues
not just for your solution, but also for other sandboxed solutions in that site collection. When you are
designing and building a sandboxed solution, it is important to constantly be aware that the solution
should minimize resource usage and ensure that the resources used are as predictable as possible,
regardless of the size of the environment. The good news, though, is that you can’t hurt the entire
farm from a sandboxed solution—you will only affect the site collection.

Another thing that is crucial to understand when working with the server-side object model is that
the original SharePoint objects are created in unmanaged code, in Component Object Model (COM).
Some of the current objects are only wrappers around these COM objects, and because of that, they
are not automatically disposed of. If you are using a lot of these objects—for example, when you’re
iterating through them—you will create a memory leak that can cause serious problems in your
environment. The objects that we have to be worried about in the earlier example are the SPSite and
SPWeb objects. We have to dispose of these objects in the solutions.

The code in Listing 3-1 disposes of the SPSite and SPWeb objects by using SPSite.Dispose() and
SPWeb.Dispose(). It is also possible to leverage Using statements to make sure that objects are auto-
matically disposed of. Because not all SPSite and SPWeb objects should be disposed of, it is important
that you gain some understanding of when objects should be disposed of and when they shouldn’t. A
very extensive article on the subject can be found on MSDN (http://msdn.microsoft.com/en-us/library/
ee557362.aspx). This article was written for SharePoint 2010 but is still relevant for SharePoint 2013.
There is also a tool that can help, SPDisposeCheck. You can run this tool against your code, or include
the SPDisposeCheck rules in the static code analysis tool of your choice (for instance, FXCop) to check
your code for memory leaks before you deploy it. Because SPDisposeCheck can occasionally report
false positives, you should not just rely on the tool, you should also study the article to gain a good
understanding of when objects should be disposed of.

Developing farm solutions

Now it’s time to open up Visual Studio and create a new project. In this section, you will create a new
Visual Studio project that will contain a SharePoint 2013 farm solution, a feature, some declarative
elements, and a feature receiver. After that, you will make some changes to the solution and look at
how to upgrade existing solutions and features.

http://msdn.microsoft.com/en-us/library/ee557362.aspx
http://msdn.microsoft.com/en-us/library/ee557362.aspx

	 Chapter 3  Server-side solution development    77

Creating a SharePoint project in Visual Studio
Start a new project by clicking the New Project link on the left side of the screen. The next step is to
select a project template. Depending on how you installed Visual Studio, you will be able to select
different project templates for different types of projects and different programming languages. The
SharePoint project templates are available in Microsoft Visual Basic and Microsoft Visual C#. By de-
fault, Visual Basic is selected; if you want to use Visual C# to create SharePoint solutions, you will have
to select Visual C# and choose Office | SharePoint. This gives you the option to choose between Apps,
Office Add-ins, and SharePoint Solutions. Select SharePoint Solutions and choose the SharePoint 2013
- Empty Project template, as shown in Figure 3-3. By choosing the empty project template you will
give yourself maximum flexibility.

FIGURE 3-3  Creating a new SharePoint 2013 empty project

After you click OK, the SharePoint Customization Wizard starts (see Figure 3-4). From here you
can choose a URL of the team site that Visual Studio will use as the URL of the site to which the solu-
tion will be deployed, and with which the solution can be debugged. When you enter the URL in the
SharePoint Customization Wizard, you must provide the URL to a site that is accessible within the
local SharePoint farm. The SharePoint Developer Tools use this site URL when testing and debugging
the project. The wizard also allows you to choose between a sandboxed solution and a farm solution.
WingtipToysSolution will be deployed as a farm solution to http://wingtiptoys. You will find that the
solution really is rather empty after creation; it only contains the absolute basics.

http://wingtiptoys

78   Inside Microsoft SharePoint 2013

FIGURE 3-4  Selecting a site for debugging and choosing between a farm and sandboxed solution

When the new project is created, it is automatically opened and will always show the Solution
Explorer. In the Solution Explorer, as shown in Figure 3-5, you can view the contents of your solution.
Like all Visual Studio projects, a SharePoint project contains standard nodes such as Properties and
References. SharePoint projects have two additional nodes that exist only within SharePoint proj-
ects: the Features node and the Package node. You use the Features node to add new features to a
SharePoint project. Notice that the Features node is empty when you create a new SharePoint project
by using the empty SharePoint project template. You use the Package node to track project-wide set-
tings related to building the project into a SharePoint solution package, or .wsp file.

All SharePoint projects also have two special menu commands: Deploy and Retract. These menu
commands, exclusive to SharePoint projects, are available when you right-click the top-level project
node in the Solution Explorer. These two menu commands are shown in Figure 3-5. You can use the
Deploy command to run a sequence of deployment steps that deploy the solution package to the
local farm and the site that you selected in the customization wizard, so that you can test and debug
your work. The Retract command reverses the act of deployment by retracting the solution package
from the local farm and site.

	 Chapter 3  Server-side solution development    79

FIGURE 3-5  The Solution Explorer showing an empty SharePoint project

Designing your SharePoint solution: Features
You now have an empty SharePoint project and can start adding files to it. These files will create the
actual functionality that the solution will provide. When you start adding SharePoint files into the so-
lution, features will be added to the Features node automatically. For most files, a web-scoped feature
will be created with the name Feature 1. Web-scoped means that the feature can be activated at the
lowest level at which features can be activated, which is the subsite or SPWeb level. In all cases you
will want to rename the feature so that the name of the feature describes what kind of functionality
it contains. It is also a best practice to put the scope of the feature in the name. If you were deploy-
ing a custom contacts list, for instance, you could call the feature Web-ContactsList. A feature also has
a title and a description. This is displayed in the user interface after deployment, so it should be some-
thing descriptive that will tell the person who is thinking about activating the feature what functional-
ity will be added to the site when the feature is activated.

80   Inside Microsoft SharePoint 2013

It is important to design the features that you use to add functionality properly. First of all, you
have to determine what type of SharePoint files or artifacts you are creating in your solution, and in
what scope these artifacts have to be activated. You can choose between the following scopes:

■■ Farm

■■ Web application

■■ Site

■■ Web

Farm-scoped features contain functionality that should be available in the entire farm. An example
is a web template that should be available for users everywhere to create sites based on it. Web
application–scoped features contain functionality that is targeted at a specific web application. An
example is a timer job. A site-scoped feature is used to add functionality to specific site collections,
such as content types and site columns. A web-scoped feature, as shown in Figure 3-6, could be used
to add a custom type of list or library to a subsite.

FIGURE 3-6  A solution containing a custom web-scoped feature that contains a list instance

	 Chapter 3  Server-side solution development    81

When you are designing your solution and its features, it is important that you create the right
amount of features for the right reasons. There is no magic number; as with everything related to
SharePoint, the right amount of features depends on your solution. You will definitely need differ-
ent features for functionality that has to be activated at a different scope. This is relatively easy to
determine. Some SharePoint artifacts can only be activated at a specific scope. Content types and site
columns, for instance can only be activated at the site collection level, so they will always be activated
by using a site-scoped feature. Lists are a bit more difficult; they can be activated at the site collection
or subsite level. It is up to you to determine whether you want the list to always be created in the root
site of a site collection, or whether you want the list to be available on subsites as well. If you want
users of subsites to be able to use the list, you can activate it by using a web-scoped feature. Farm-
scoped and web application–scoped features can only be managed from Central Administration or by
using Windows PowerShell. This means that they can only be activated or deactivated by SharePoint
administrators who have access to the server. Site-scoped and web-scoped features can be activated
by site collection administrators (site) or site owners (web).

When you have several features that can be activated at the same scope, think about whether you
always want the artifacts to be activated and deactivated at the same time, as well as whether they
should be updated at the same time, and whether the different artifacts are part of the same piece of
functionality, or whether they are completely different things. For instance, site columns and content
types, and master pages and style sheets, are often activated at the site collection level. Activating
site columns and content types at the same time makes sense, and updates to both are often de-
ployed at the same time. Master pages and style sheets, however, provide a completely different type
of functionality (a custom look and feel for the site), and it’s likely that when a column is added to the
site, the visual design won’t change. Similarly, when the visual design changes, that doesn’t necessarily
mean that the content types on the site collection would have to change. In this case, you would likely
create two features:

■■ Site-ColumnsAndContentTypes

■■ Site-WingtipToysDesign

Try to make sure that the feature names have a reasonable length. If names get too long, it can
cause problems with deployment.

Adding declarative elements
Let’s add a list to the solution. You can do this by right-clicking the project node in the Solution Ex-
plorer and clicking Add and New Item. Next you can select the type of item to add to your solution.
For this example, choose List and call it WingtipContacts (see Figure 3-7).

82   Inside Microsoft SharePoint 2013

FIGURE 3-7  Adding a new list to the custom SharePoint solution

In the next dialog box, you can choose the display name of the list and whether you want the list
to be customizable or non-customizable. You can also choose what type of list you want to base your
custom list on.

If you create a customizable list, you will create a custom list definition and a custom list instance.
With the custom list definition, you will be adding a new list template or a new type of list to the site.
Users can use this custom list type to create their own list instances based on it. When you create a
custom list definition, you choose a list type that you will use as a basis for your custom list type. Us-
ing this as a starting point, you can then add, remove, or modify columns and views that are created
when a list instance is created based on your custom list definition. A custom list instance is also cre-
ated when the feature that your list is part of is activated.

If you create a non-customizable list, you are only creating a custom list instance, based on the list
type that you select as the basis for your custom list instance in Visual Studio. When the feature that
the list instance is part of is activated, the list instance will be created on the site. In this example, you
will be creating a non-customizable list, and thus a list instance (see Figure 3-8).

	 Chapter 3  Server-side solution development    83

FIGURE 3-8  Creating a non-customizable list and selecting a base list type

After you add the list instance to the solution, a feature will be created. The feature will be called
Feature 1, and it will be web scoped. The list instance will be added to the feature automatically.
Rename the feature to Web-ContactsList and leave the scope at Web. If you are creating mul-
tiple SharePoint artifacts in the same solution and you want to use multiple features to activate the
artifacts in your SharePoint environment, you will have to make sure that you manage your features
properly. Whenever a new artifact is added to your solution, SharePoint will add it to a feature. This
might not be the right feature, though. And even if you add your artifact to the right feature, it will
not be automatically removed from any other features to which it was added, so make sure you
actively check all features to make sure that they contain the right artifacts before you deploy your
solution.

Figure 3-9 shows the designer view of the WingtipToys contacts list instance. Here you can fill in a
title, description, and URL, and choose whether the list should be displayed on the Quick Launch bar
on the left side of the screen and whether the list should be hidden or not. The title and description
are seen by users who are working with the list, so make sure this is something they can relate to.

84   Inside Microsoft SharePoint 2013

FIGURE 3-9  Solution containing a custom list instance and a single feature

Adding a feature receiver
Every feature can have a feature receiver added to it. You can use a feature receiver to write an event
handler that will fire when a feature is activated or deactivated. For both events, you can choose
whether to fire the event handler synchronously while the feature is being activated or deactivated,
or whether to fire it asynchronously after the feature has been activated or deactivated. The code you
write in these event handlers can access the SharePoint server-side object model, and it can use the
properties to access and modify the site collection or site on which the feature is activated or deacti-
vated. For example, you can write an event handler that fires during feature activation and performs
routine initialization tasks such as creating new lists and adding list items. You can also extend the site
by adding pages, navigation links, and Web Part instances.

To create a feature receiver, right-click the feature’s top-level node and click Add Event Receiver.
When you add an event receiver by using this technique, the SharePoint Developer Tools do quite
a bit of work for you behind the scenes. First, they add a source file, which is based on either C# or
Visual Basic, depending on the language of the underlying project. If you create a feature receiver for
the feature named Web-ContactsList, the SharePoint Developer Tools create a C# source file named
Web-ContactsList.EventReceiver.cs. The SharePoint Developer Tools also add configuration data
behind the scenes that hooks up the feature receiver to the feature by adding the ReceiverClass and
ReceiverAssembly attributes to the feature, so that SharePoint recognizes the feature receiver and so
that the event handlers added to the feature receiver are executed at the correct times.

	 Chapter 3  Server-side solution development    85

The source file created for the feature receiver contains a class definition for the feature receiver
that inherits from the SPFeatureReceiver class. The feature receiver contains method stubs that are
commented out that represent the events that you can handle. You simply uncomment the stubs and
add your custom code. The SharePoint Developer Tools also add a special GUID attribute when creat-
ing a new feature receiver class, to give it a unique identifier. You shouldn’t remove the GUID attribute
from a feature receiver class, because the SharePoint Developer Tools use the GUID behind the scenes
during the packaging process.

In the following example, you will add code for the FeatureActivated and FeatureDeactivating meth
ods so that you can run custom C# code whenever the feature is activated or deactivated. Listing 3-2
shows the stubs for the different events for which you can create event handlers. Implementations
have been created for the FeatureActivated and FeatureDeactivating events. When the feature is
activated, a custom view is added to the Project Contacts list that shows a first name, last name,
company, email address, and mobile phone number for a contact. The event handler also makes
sure that the list is displayed on the Quick Launch bar on the left side of the screen. When the fea
ture is deactivated, you remove the custom view and also remove the link to the list from the Quick
Launch bar. Note that when the feature is deactivated, you can still access the list by browsing to the
Site Contents page. SharePoint doesn’t clean up by deleting the list that was created when the feature
was activated. This is a good thing; if SharePoint deleted the list, users might lose data because the
feature is deactivated. You should be aware of this yourself as well. Although using an event receiver
to clean up after yourself is a good thing in almost all cases, you should make sure not to delete a
user’s data while cleaning up.

LISTING 3-2  A feature receiver class with implemented event handlers

using System;
using System.Runtime.InteropServices;
using System.Security.Permissions;
using Microsoft.SharePoint;
using System.Collections.Specialized;

namespace WingtipToysSolution.Features.Web_ContactsList
{
 /// <summary>
 /// This class handles events raised during feature activation,
 /// deactivation, installation, uninstallation, and upgrade.
 /// </summary>
 /// <remarks>
 /// The GUID attached to this class may be used during packaging
 /// and should not be modified.
 /// </remarks>

 [Guid("05a2eb8a-16e6-4cae-9cb1-4a181c94fd1e")]
 public class Web_ContactsListEventReceiver : SPFeatureReceiver
 {
 string _viewName = "Project Contacts";

86   Inside Microsoft SharePoint 2013

 public override void FeatureActivated(SPFeatureReceiverProperties properties)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 SPList contactsList = web.GetList("/Lists/WingtipContacts");
 contactsList.OnQuickLaunch = true;

 SPViewCollection listViews = contactsList.Views;
 StringCollection viewFields = new StringCollection();
 viewFields.Add("FirstName");
 viewFields.Add("Title");
 viewFields.Add("Company");
 viewFields.Add("Email");
 viewFields.Add("CellPhone");

 listViews.Add(_viewName, viewFields, string.Empty, 30, true, true);
 contactsList.Update();
 }

 public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
 {
 SPWeb web = properties.Feature.Parent as SPWeb;
 SPList contactsList = web.GetList("/Lists/WingtipContacts");
 contactsList.OnQuickLaunch = false;

 SPView listView = contactsList.Views[_viewName];
 contactsList.Views.Delete(listView.ID);
 contactsList.Update();
 }

 }
}

Understanding the SharePoint root directory
The fundamental architecture of SharePoint Foundation relies on a set of template files that are
stored in a special directory on the local file system of each SharePoint server. This folder is called
the SharePoint root directory. On a SharePoint 2007 server, the name of this folder was 12; on a
SharePoint 2010 server, it was 14. On a SharePoint 2013 server, the root folder is called 15, but you
will find that all SharePoint 2013 servers also contain a 14 folder. This folder is used to make sure
that site collections can run in SharePoint 2010 mode. When you run in SharePoint 2010 mode, a site
collection on SharePoint 2013 looks like a SharePoint 2010 site. This is mainly useful when you are
upgrading an environment from SharePoint 2010 to SharePoint 2013. Typically the root directory can
be found at the following path:

C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15

	 Chapter 3  Server-side solution development    87

If you’ve installed only SharePoint Foundation and not SharePoint Server 2013, the SharePoint
root directory contains a stock set of images, templates, features, and pages. If you install SharePoint
Server 2013, the SharePoint root directory contains the same stock files for SharePoint Foundation
and also a wealth of template files to provide additional functionality beyond that supplied by
SharePoint Foundation.

When you are creating a SharePoint solution that is to be deployed as a farm solution, many of the
types of template files that you add to your solution will be deployed in specific directories within
the SharePoint root directory. Table 3-2 lists some of the more commonly used directories, along
with the types of template files they contain.

TABLE 3-2  SharePoint solution file locations in the SharePoint root directory

Path relative to SharePoint root directory Template file types

/ISAPI Web services (.svc, .ashx, and .asmx)

/Resources Resource files (.resx)

/TEMPLATE/ADMIN Application pages used exclusively in Central
Administration

/TEMPLATE/CONTROLTEMPLATES ASP.NET user controls (.ascx)

/TEMPLATE/FEATURES Feature files

/TEMPLATE/IMAGES Images

/TEMPLATE/LAYOUTS Application pages (.aspx)

/TEMPLATE/LAYOUTS/1033/STYLES CSS Files (.css)

/TEMPLATE/LAYOUTS/ClientBin CSOM files (.jz, .xap)

Several SharePoint artifacts that are part of the SharePoint Development Tools are deployed to
the SharePoint root directory when a project is deployed, either by using Visual Studio or by using
Windows PowerShell. For instance, features and the files that they contain are automatically deployed
to the /TEMPLATE/FEATURES folder in the SharePoint root directory. You can also use Visual Studio
to add files to the SharePoint root directory in a different way. When you right-click the project name
and click Add, you can choose to add a mapped folder (see Figure 3-10). You can map a folder to any
subfolder of the SharePoint root directory. When you add a file to a mapped folder in Visual Studio,
the file will be deployed to the mapped directory in the SharePoint root directory when the solution
isdeployed. The SharePoint Development Tools have made it easy by creating two shortcuts for creating
mapped folders to the IMAGES and the LAYOUTS folders.

88   Inside Microsoft SharePoint 2013

FIGURE 3-10  Adding mapped folders to a SharePoint solution in Visual Studio

You will now add an image to the example solution that you will deploy to the IMAGES directory in
the SharePoint root directory. Just right-click the top-level project node in Solution Explorer, expand
the Add menu, and click the SharePoint “Images” Mapped Folder command. After you’ve created the
Images folder inside your project, you should be able to observe that the SharePoint Developer Tools
automatically created a child folder with the same name as the current project. In this example, the
SharePoint Developer Tools created an Images folder inside the project that contains a child folder
named WingTipToysSolution, as shown in Figure 3-11. This child folder is added to make sure that you
can never accidentally overwrite out-of-the-box SharePoint files or files deployed by using a different
custom solution. It is a best practice to always use a namespaced subfolder when deploying files into
the SharePoint root directory, and the Developer Tools make this an easy best practice to follow.

	 Chapter 3  Server-side solution development    89

FIGURE 3-11  A mapped Images folder used to deploy files to the IMAGES folder in the RootFiles folder.

You can add custom image files to this folder, such as Contacts.png and SiteIcon.png, the ones
shown in Figure 3-11. You can add files to a mapped folder by right-clicking the child folder (in this
case, the one named WingTipToysSolution) and then clicking Add | Existing Items. When the result-
ing dialog box opens, you can navigate to the folder on your development workstation that contains
the files you want, and select them to be copied into your mapped folder. You can also browse to the
files you want to include in the solution by using Windows Explorer. You can then simply copy the files
and paste them into the WingtipToysSolution folder by right-clicking the folder and choosing Paste.
Mapped folders don’t have to be added to features to be deployed; they are automatically deployed
when the .wsp solution is deployed.

Deploying and debugging farm solutions
Now that you have a SharePoint project with a list, a feature, a feature receiver, and two images, it’s
time to package and deploy the solution.

90   Inside Microsoft SharePoint 2013

If you expand the Package node in a SharePoint project, you’ll find an inner node named Package.
package. If you double-click this node, the SharePoint Developer Tools display the Package Designer.
In the lower left-hand corner of the Package Designer are three tabs: Design, Advanced, and Mani-
fest. These tabs allow you to switch back and forth between different views of the project’s solution
package. The Design view allows you to add features and files to the package. By default, all features
and files that don’t have the NoDeployment property set on them are added to the package by the
Developer Tools. The Manifest view reveals the XML that is written into the manifest.xml file when the
SharePoint Developer Tools builds the project into a solution package. In most scenarios, a devel-
oper doesn’t need to inspect or care about the XML that goes into the manifest.xml file. After all, the
SharePoint Developer Tools take care of creating the package for you.

In other scenarios, however, a developer will need to directly edit the manifest.xml file. For ex-
ample, when you need to add an XML element that the SharePoint Developer Tools don’t directly
support, such as the ActivationDependencies element, you have to add it manually to manifest.xml.

If you look at the Package node in Solution Explorer in Figure 3-11, you’ll notice a source file
named Package.Template.xml. If you open this file, you’ll find that it has a top-level Solution element
but no inner elements. All you need to do is add the ActivationDependencies element to this file inside
the Solution element. When the SharePoint Developer Tools generate the manifest.xml file, they
merge the XML elements they create behind the scenes with any XML elements you have added to
Package.Template.xml. By using this technique, you can call on your knowledge of SharePoint devel-
opment to supplement what the SharePoint Developer Tools support directly.

When your solution is properly packaged up, you can deploy it. If you right-click the top-level
project node inside Solution Explorer to display the shortcut menu, you’ll find a Deploy command
and a Retract command. You’ll use these commands constantly when you test and debug SharePoint
projects.

You might be wondering what happens when you execute the Deploy command. The answer is,
it depends. More specifically, it depends on which deployment configuration your project is using.
You can view and modify the available deployment configurations for a SharePoint project on the
SharePoint tab of the project properties dialog box, as shown in Figure 3-12. Every new SharePoint
project is created with two deployment configurations, Default and No Activation. You can add more
deployment configurations if you want something different. However, you can’t modify the Default
and No Activation configurations. You can only modify deployment configurations you’ve added.

	 Chapter 3  Server-side solution development    91

FIGURE 3-12  A SharePoint project's project properties dialog box showing deployment configurations

Notice the two text boxes on the SharePoint tab: Pre-Deployment Command Line and Post-
Deployment Command Line. By using these text boxes, you can add command-line instructions
that will execute either just before or directly after the active deployment configuration is processed.
For example, you can add a command-line instruction to call a custom Windows PowerShell script.
This ability to change or modify the deployment configuration for a SharePoint project provides a
convenient degree of flexibility. The SharePoint Developer Tools allow you to control the processing
that occurs behind the Deploy and Retract commands by using units of execution known as deploy-
ment steps.

To view the deployment steps within a specific deployment configuration, select that deployment
configuration on the SharePoint tab and then click the View button. Figure 3-13 shows the sequence
of deployment steps for the Default deployment configuration. First, the target IIS application pool is
recycled. Then, any previous deployment of the solution package is retracted and removed. Next, the
latest build of the project’s solution package is installed and deployed. Finally, any project features
that have a Scope setting of either Web or Site are automatically activated.

92   Inside Microsoft SharePoint 2013

FIGURE 3-13  The deployment steps of the Default deployment configuration

On the left side of the View Deployment Configuration dialog box shown in Figure 3-13, there is
a list of available deployment steps that come out of the box with the SharePoint Developer Tools. If
you add a new deployment configuration, you can use this screen to add the steps you want in your
custom deployment configuration.

To deploy your solution to your development server, all you have to do now is click the Deploy
command. However, if you want to deploy your solution on a separate test server or even a pro-
duction server, you need to get the .wsp solution package and move that to the server you want to
deploy it to. When the Deploy or Publish command is run, the .wsp package is created and put in the
bin\Debug or bin\Release folder of the project, depending on whether you have your build configura-
tion set to Debug or Release. If you were to deploy your solution to a production environment, you
should create a Release build by using Deploy or Publish. However, if you want to deploy to your
development server and you want to test and potentially debug your solution, you should create a
Debug build. When you’ve got the package, you can copy it to the server or farm you want to deploy
it to and run the Windows PowerShell scripts from Chapter 2 to install it.

	 Chapter 3  Server-side solution development    93

Go ahead and deploy your solution to your development environment by clicking the Deploy
command. If you want to see how your code is executed, you can debug your solution. You will use
debugging to step through the execution of the code-behind in your solution one line at a time. This
can be useful if you are seeing issues you can’t explain, or if you are seeing results you didn’t expect.
You can start debugging by pressing F5 or by opening up the Debug menu in Visual Studio 2012 and
clicking Start Debugging, or you can attach your project to a process by clicking Attach To Process.
Code that is called from the browser usually runs in the w3wp.exe process, so by attaching your
project to the w3wp.exe processes, you can browse your SharePoint site as you normally would, and
Visual Studio will hold execution when a breakpoint is hit. You can then go into your solution and step
through your code to monitor exactly what happens during execution.

For the WingtipToysSolution example, you can use both approaches. Click Start Debugging. The
solution will be rebuilt and deployed, and a new browser window will open with the site that you have
set as the site the solution should be deployed to. Debugging will have to be enabled in the web.con-
fig of the site; if this is not yet the case, Visual Studio 2012 will prompt you about this and will offer to
resolve it, as shown in Figure 3-14.

FIGURE 3-14  Visual Studio 2012 offering to enable debugging on the web application

The only code-behind in WingtipToysSolution is in the feature receiver, so you should set a break-
point in the event receiver code. The breakpoints from Figure 3-15 will be hit when the feature is
either activated or deactivated. You can then use F11 and F10, or Step Into and Step Over, to step
through the code. You can check the values of individual objects and variables to make sure that
these are what you expect them to be.

94   Inside Microsoft SharePoint 2013

FIGURE 3-15  Debugging event receivers in Visual Studio 2012

Updating farm solutions
After one of your solution packages has been deployed in a production farm, you might need to up-
date some of the files that have already been deployed. SharePoint supports the concept of updating
a solution package. This technique allows you to replace existing files that have already been de-
ployed, as well as to deploy new files that weren’t part of the original solution package deployment.

For example, imagine a simple scenario in which WingtipToysSolution.wsp has already been
deployed and its feature definition has been activated in several sites. What if, after the fact, Wingtip
Toys decides that they want to add a custom document library to the solution as well? SharePoint
makes it easy to accommodate this change. You can simply update your Visual Studio project by
adding a document library and a feature. Then you can rebuild the solution package and run the
Update-SPSolution cmdlet to deploy the updated solution:

$SolutionPackageName = "WingtipToysSolution.wsp"
$SolutionPackagePath = "C:\Solutions\WingtipToysSolution.wsp"
Update-SPSolution -Identity $SolutionPackageName
 -LiteralPath $SolutionPackagePath
 -Local -GACDeployment

	 Chapter 3  Server-side solution development    95

As you’ll learn in the next section, using the technique of updating a solution provides the means
to update a feature definition when you need to upgrade a feature. Updating a solution also provides
a simple way to replace files and components with enhanced versions. For example, imagine that
you need to fix a bug in the C# code you’ve written inside the ActivateFeature event handler, or you
want to replace an existing image of a logo with a new one. You can simply update the code or
the image and build a new version of the solution package. When you update the solution, the old
copy of WingtipToysSolution.dll in the global assembly cache is replaced with the new copy, and the
SharePoint worker process restarts to ensure that the new version gets loaded.

A lot of the things that you can do by updating a solution can also be done by retracting and
reinstalling a solution, as long as you are not using the feature upgrade functionality described in the
next section. Microsoft considers updating the solution to be a best practice at this point, though,
and also enforces it when solutions are deployed to SharePoint Online dedicated environments.

There is currently no Upgrade command available to upgrade solutions directly from Visual Studio
2012. You could solve this by creating a new deployment configuration that doesn’t contain the deploy-
ment steps for Retract Solution or Add Solution. Then you could add a Post-Deployment Command
Line instruction call to a custom Windows PowerShell script that runs the Update-SPSolution cmdlet.

Another approach is to either create or find a custom deployment step that adds the functional-
ity you need. This option is possible because the team that created the SharePoint Developer Tools
designed deployment steps to be extensible. A developer can create a custom extension for Visual
Studio 2012 and the SharePoint Developer Tools that adds custom deployment steps. Within the
SharePoint developer community, Visual Studio extensions that extend the SharePoint Developer
Tools with a custom deployment step for updating solutions—and much more—are already available.

Upgrading features
SharePoint Foundation supports feature activation at four different levels: site, site collection, web
application, and farm. Whenever a feature definition is activated, SharePoint Foundation creates a
feature instance that tracks metadata about the underlying feature definition. The feature instance
tracks feature properties such as Id, Title, and Version. The Version property of a feature instance rep-
resents the current version of the feature definition at the time of activation. After you’ve pushed a
feature definition into a production farm and it has been activated, you might be required to update
it to deal with changing business requirements. You can define upgrade actions inside a feature defi-
nition that will be processed when a feature instance is upgraded to the new version. Upgrade actions
can be created inside the feature.xml file by using declarative XML and can also execute custom event
handlers written in C# or Visual Basic.

After you’ve updated a feature definition in a Visual Studio project such as WingtipToysSolution,
you can rebuild the solution package and push the new version out into a production farm or a stag-
ing farm by using the Update-SPSolution cmdlet. However, pushing out a new version of a feature
definition by using Update-SPSolution is only half the story.

96   Inside Microsoft SharePoint 2013

The farm now has an updated feature definition, but all the existing feature instances are still
based on a previous version of the feature definition. You have a couple of different options with re-
gard to how to go about updating existing feature instances. You can either update feature instances
one at a time by querying for the ones that need to be updated, or you can update all of them at the
same time by running either the SharePoint Products Configuration wizard or PSConfig.

Updating a feature definition with upgrade actions
SharePoint Foundation tracks the version numbers for feature definitions by using a four-part number
similar to version numbers for assemblies in the Microsoft .NET Framework. The initial version of the
WingtipToys Contacts List feature had a version number of 1.0.0.0. This version number will have to be
specified explicitly when the initial version of a feature is created, because by default it will be set to
0.0.0.0. All the sites in which the WingtipToys Contacts List feature has been activated also have ver-
sion 1.0.0.0 feature instances.

The initial version of the WingtipToys Contacts List feature definition includes a single element
manifest named elements.xml. This element manifest is referenced by using an ElementManifest ele-
ment in the feature.xml file:

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="WingtipToys Contact List"
 Id="593228ab-7fcd-4a81-a4b8-ea77b2cbe1cc"
 Scope="Web">
 <ElementManifests>
 <ElementManifest Location="WingtipContacts\Elements.xml" />
 </ElementManifests>
</Feature>

Now you’ll begin updating the Wingtip Contacts List feature definition. Start by incrementing the
Version number. You can do this in the feature’s property pane, as shown in Figure 3-16.

The next step is to add a new ListInstance element to the feature definition to create a Calendar
along with the Contacts list, to store appointments in. You can add the calendar as a separate feature,
or you could add the ListInstance XML for the calendar into the Contacts list element.xml file. Neither
of these options would allow you to use the feature upgrade framework, though, and both would
require you to come up with a solution to update existing instances or sites. Adding the XML into an
existing elements.xml is not a recommended approach, but in certain scenarios, adding a different
feature can be a valid option. In this case, however, you will want to use the feature upgrade frame-
work, so in order to do that you will add a new element manifest file to the Contacts List feature. This
element manifest will have to contain the elements that you want to provision during the upgrade
process.

	 Chapter 3  Server-side solution development    97

FIGURE 3-16  Updating the version number of a feature in the feature’s property pane

To create the Calendar list instance, follow the same steps that you did for the Contacts list
instance, but this time base your list instance on a Calendar list, instead of a Contacts list. The list
instance will automatically be added to the feature, but it will only be created when the feature is acti-
vated. This means that the Calendar will not be created on sites that already have the first instance of
the feature activated on them. To add the new Calendar list to sites that have the first instance of the
feature activated on them, you have to modify the feature.xml file. You can do this by going to the
Manifest tab of the feature in Visual Studio 2012 and displaying the Edit options. You can now add
an UpgradeActions element inside the top-level Feature element. The UpgradeActions element can
optionally contain a VersionRange element that defines a BeginVersion attribute and an EndVersion
attribute. If no VersionRange is specified, the upgrade action will be applied to all instances of the
feature, regardless of their version. Inside the VersionRange element (or the UpgradeActions element
if no VersionRange is specified), you should add an ApplyElementManifests element with an inner
ElementManifest element. By making the following modification to the feature.xml file, you can en-
sure that SharePoint will inspect the Calendar’s elements.xml file during the feature upgrade process
for a site and provision the Calendar list (see Listing 3-3). Visual Studio and the SharePoint Developer
Tools will merge the changes that you make with the generated feature.xml contents.

98   Inside Microsoft SharePoint 2013

LISTING 3-3  Adding an element manifest file to the UpgradeActions element in the feature.xml file to upgrade
existing feature instances

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="WingtipToys Contact List" Id="593228ab-7fcd-4a81-a4b8-ea77b2cbe1cc"
 ReceiverAssembly="WingtipToysSolution, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=d829d679b4cb139f"
 ReceiverClass="WingtipToysSolution.Features.
 Web_ContactsList.Web_ContactsListEventReceiver"
 Scope="Web"
 Version="2.0.0.0">
 <UpgradeActions>
 <VersionRange BeginVersion="0.0.0.0" EndVersion="2.0.0.0">
 <ApplyElementManifests>
 <ElementManifest Location="ContactsCalendar\Elements.xml" />
 </ApplyElementManifests>
 </VersionRange>
 </UpgradeActions>
 <ElementManifests>
 <ElementManifest Location="WingtipContacts\Elements.xml" />
 <ElementManifest Location="ContactsCalendar\Elements.xml" />
 </ElementManifests>
</Feature>

The updated version of feature.xml has two different references to ContactsCalendar\Elements.xml.
The first reference is used when an older feature instance is upgraded to version 2.0.0.0. The second
reference is used by SharePoint when a user activates the Wingtip Contact list feature definition in a
site for the first time, using version 2.0.0.0. In this case, the feature instance is never upgraded, but the
feature definition must still provision a Calendar list.

Adding code-behind custom upgrade actions
Earlier in this chapter, you saw how to extend a feature definition with a feature receiver by creating
a public class that inherited from SPFeatureReceiver. In addition to the event handler methods you
added, FeatureActivated and FeatureDeactivating, you will now add another event handler method,
FeatureUpgrading, which must be overwritten to execute code during a custom upgrade action. The
FeatureUpgrading event handler is a bit more complicated than the event handlers for FeatureActivated
and FeatureDeactivating. When you add a feature receiver to a feature, the SharePoint Developer
Tools will add ReceiverAssembly and ReceiverClass attributes to the UpgradeActions element, as shown
in Listing 3-4. To add upgrade steps, you must add one or more CustomUpgradeAction elements
inside the UpgradeActions element and optionally also inside a VersionRange element.

	 Chapter 3  Server-side solution development    99

LISTING 3-4  Defining code-behind upgrade actions by adding a ReceiverAssembly and a ReceiverClass property
to the UpgradeActions element and a CustomUpgradeAction to the feature.xml file

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="WingtipToys Contact List"
 Id="593228ab-7fcd-4a81-a4b8-ea77b2cbe1cc"
 ReceiverAssembly="WingtipToysSolution, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=d829d679b4cb139f"
 ReceiverClass="WingtipToysSolution.
 Features.Web_ContactsList.Web_ContactsListEventReceiver"
 Scope="Web"
 Version="2.0.0.0">
 <UpgradeActions
 ReceiverAssembly="WingtipToysSolution, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=d829d679b4cb139f"
 ReceiverClass="WingtipToysSolution.Features.Web_ContactsList.
 Web_ContactsListEventReceiver">
 <VersionRange BeginVersion="0.0.0.0" EndVersion="2.0.0.0">
 <CustomUpgradeAction Name="UpdateContactsListTitle">
 <Parameters>
 <Parameter Name="NewListTitle">New and improved Contacts</Parameter>
 </Parameters>
 </CustomUpgradeAction>
 <ApplyElementManifests>
 <ElementManifest Location="ContactsCalendar\Elements.xml" />
 </ApplyElementManifests>
 </VersionRange>
 </UpgradeActions>
 <ElementManifests>
 <ElementManifest Location="WingtipContacts\Elements.xml" />
 <ElementManifest Location="ContactsCalendar\Elements.xml" />
 </ElementManifests>
</Feature>

As shown in Listing 3-4, a CustomUpgradeAction element is defined with the Name attribute and
a parameter collection, which here contains only a single entry. It is essential to understand that the
FeatureUpgrading event handler will execute once for each CustomUpgradeAction element. If you
don’t add at least one CustomUpgradeAction element, the FeatureUpgrading event handler will never
fire.

You can add as many CustomUpgradeAction elements as you want. When you implement the
FeatureUpgrading event handler, you can use the parameter named upgradeActionName to deter
mine which custom upgrade action is being processed, and you can use the argument-named
parameters to retrieve the parameters defined by the currently processing custom upgrade action.

In this case, the only custom upgrade action is named UpdateContactsListTitle, and it contains
a single parameter, NewListTitle. The implementation of the FeatureUpgrading event handler in
Listing 3-5 uses a C# switch statement to execute the correct code for the custom upgrade action,
named UpdateContactsListTitle. Notice how the implementation must retrieve the value for the
NewListTitle parameter to properly update the list title.

100   Inside Microsoft SharePoint 2013

LISTING 3-5  The FeatureUpgrading method, which executes once for each CustomUpgradeAction element

public override void FeatureUpgrading(SPFeatureReceiverProperties properties,
 string upgradeActionName,
 System.Collections.Generic.IDictionary<string, string> parameters)
{
 // perform common initialization for all custom upgrade actions
 SPWeb web= properties.Feature.Parent as SPWeb;

 if (web != null)
 {
 SPList contactsList = web.GetList("/Lists/WingtipContacts");

 // determine which custom upgrade action is executing
 switch (upgradeActionName)
 {
 case "UpdateContactsListTitle":

 //*** begin code for UpdateContactsListTitle upgrade action
 string newListTitle = parameters["NewListTitle"];
 contactsList.Title = newListTitle;
 contactsList.Update();
 //*** end for UpdateSiteTitle upgrade action

 break;
 default:
 // unexpected feature upgrade action
 break;
 }
 }
}

We’ve now walked through adding an UpgradeActions element to the feature.xml file to upgrade
a feature instance from version 1.0.0.0 to version 2.0.0.0. Keep in mind that this structure of the
UpgradeActions element provides a good deal of flexibility to help you deal with future updates.
Consider the scenario of pushing out a version 3.0.0.0 update. You might need to upgrade some fea-
ture instances that are currently in version 1.0.0.0, in addition to feature instances that are in version
2.0.0.0. You can add multiple VersionRange elements to differentiate between these two scenarios.
VersionRange elements are processed in the order in which they are specified. If VersionRange ele-
ments overlap, all upgrade actions that apply to a feature instance will be executed. In the following
example, the first two actions will both be applied to feature instances that are currently on version
1.0.0.0:

<UpgradeActions>

 <VersionRange BeginVersion="1.0.0.0" EndVersion="2.0.0.0">
 <!-- upgrade actions for upgrading from version 1 to 2 -->
 </VersionRange>

	 Chapter 3  Server-side solution development    101

 <VersionRange BeginVersion="1.0.0.0" EndVersion="3.0.0.0">
 <!-- upgrade actions for upgrading from version 1 to 3 -->
 </VersionRange>

 <VersionRange BeginVersion="2.0.0.0" EndVersion="3.0.0.0">
 <!-- upgrade actions for upgrading from version 2 to 3 -->
 </VersionRange>

</UpgradeActions>

Upgrading feature instances
After you’ve updated the feature definition, you must then push out the updated files by using the
Update-SPSolution cmdlet, as shown earlier in the chapter. You’re still not done, however, because you
still have to make sure that all existing feature instances are updated as well. You can either update
feature instances one at a time by querying for the ones that need to be updated, or you can update
all of them at the same time by running the SharePoint Products Configuration wizard or PSConfig.

To run the SharePoint Products Configuration wizard, start it by selecting it from the Start menu if
you are running Windows Server 2008 R2, or you can select the app tile if you are running Windows
Server 2012. After the wizard is started, you can simply click Next until the end. Be aware, though,
that running the wizard means that your SharePoint farm will temporarily be offline because the IIS
sites and the SharePoint timer job will be reset. Microsoft also uses this approach to update existing
features. This is one of the reasons why you always have to run the Configuration wizard or PSConfig
after installing a SharePoint Cumulative Update (CU) or Service Pack (SP).

If you prefer a more gracious approach, you will have to put more effort into updating existing
feature instances. You must run a query to find all the feature instances that need to be updated,
and you must then call the Upgrade method on each feature instance to trigger the feature upgrade
process. When the Upgrade method is called on a feature instance, SharePoint triggers the upgrade
actions you’ve defined in your feature definition.

You can use the server-side object model to query for all the feature instances that require an up-
grade. The SPWebApplication class exposes a QueryFeatures method that accepts the GUID identifier
for a feature definition and returns all the associated feature instances. The QueryFeatures method
has an overloaded implementation, which also allows you to filter the query based on whether the
feature instance is up to date with the farm’s current version of the feature definition. Here’s a simple
C# console application that executes a query to retrieve all feature instances requiring upgrade and
explicitly calls the Upgrade method:

// get reference to target web application
Uri webAppUrl = new Uri("http://wingtiptoys");
SPWebApplication webApp = SPWebApplication.Lookup(webAppUrl);

// query web application for feature instances needing an upgrade
Guid featureDefinitionId = new Guid("593228ab-7fcd-4a81-a4b8-ea77b2cbe1cc ");
SPFeatureQueryResultCollection features =
 webApp.QueryFeatures(featureDefinitionId, true);

102   Inside Microsoft SharePoint 2013

// enumerate through feature instances and call Upgrade
foreach (SPFeature feature in features) {
 feature.Upgrade(true);
}

Although the C# code from the console application is easy to read and understand, it doesn’t pro-
vide a practical way to upgrade feature instances in a production farm. It makes more sense to add
the equivalent code to a Windows PowerShell script. The Windows PowerShell script in Listing 3-6 has
been written to upgrade all the feature instances in the web application at http://wingtiptoys.

LISTING 3-6  A Windows PowerShell script that explicitly upgrades feature instances

Add-PSSnapin Microsoft.SharePoint.Powershell -ErrorAction "SilentlyContinue"
$WebAppUrl = "http://wingtiptoys"
$featureId = New-Object System.Guid
 -ArgumentList "593228ab-7fcd-4a81-a4b8-ea77b2cbe1cc"

$webApp = Get-SPWebApplication $WebAppUrl
$features = $webApp.QueryFeatures($FeatureId, $true)

foreach($feature in $features){
 $feature.Upgrade($true)
}

Now that you’ve seen the entire process, let’s summarize how feature upgrade works. Remember
that feature upgrade only makes sense in a scenario in which a feature definition has been deployed
and feature instances have already been created. The first step is to update the feature definition
to include one or more upgrade actions. The second step is to rebuild the solution package and
push the updates out into the farm by using the Update-SPSolution cmdlet. The final step is to run a
Windows PowerShell script or use another approach to trigger the upgrade process on specific feature
instances, or to run the SharePoint Products Configuration wizard to upgrade all feature instances.
When you trigger the upgrade process, SharePoint begins to process your upgrade actions.

Developing sandboxed solutions

Sandboxed solutions were introduced in SharePoint 2010. They are SharePoint solutions that are
packaged into .wsp files, just like farm solutions. They are deployed into the site collection Solution
Gallery by site collection administrators. When the code from a sandboxed solution is executed, it
runs in a partially trusted environment referred to as the sandbox. The sandbox has been designed
to bring greater stability to a SharePoint farm by restricting actions that could cause problems with
performance, security, or other areas. This stability is achieved by limiting the functionality accessible
to custom code solutions through the use of code access security (CAS) policies, by restricting access
to portions of the object model, by limiting the amount of resources that can be used by a sandboxed

	 Chapter 3  Server-side solution development    103

solution, and by the fact that the code from a sandboxed solution runs in a different process than the
SharePoint farm.

Prior to SharePoint 2010, the vast majority of custom code had to be deployed to the global as-
sembly cache. Because of this, developers often operated with full trust in the SharePoint server not
only to call any part of the object model, but also to access databases, web services, directories, and
more. The result of this situation was that nearly all code in the farm ran with full trust and potentially
with access to all data and functionality in SharePoint and to all resources on the SharePoint servers.
The drawback of this approach is that the SharePoint farm was (and is) occasionally destabilized by
custom code. In fact, the most common problem that Microsoft sees when they get a support call is
poorly behaving custom code.

As an example, consider the case in which an intermediate-level SharePoint developer is writing a
Web Part designed to aggregate all sites that a user has access to within the web application to dis-
play on the intranet home page. Suppose that the developer building the Web Part is unaware of fact
that he should use search to get a list of all sites for a particular user, and instead he loops through all
the sites in the web application. The developer will also have to use elevated privileges with the Web
Part code to ensure that the Web Part can iterate through all sites without throwing access-denied
errors for users who don’t have access to all sites. This simple Web Part could easily destabilize the
entire farm.

If there are many sites looping, through all of them will take a long time and use a lot of
memory. If the developer is unaware that he will have to dispose of all Microsoft.SharePoint.SPSite
and Microsoft.SharePoint.SPWeb objects, he will create a serious memory leak that will quickly
destabilize the farm. If this simple Web Part is deployed to the global assembly cache, it will have
no limitations on the resources it can consume. If the Web Part is then put on the home page of
the portal, it could be hit by potentially thousands of users. It wouldn’t be long before the farm
was brought to a standstill because of low memory availability. This is not just a made-up example;
this has brought down a large farm on its launch day in real life.

Part of the sandboxed solution capability has been deprecated in SharePoint 2013. Although the
sandbox is still a great way to create declarative solutions by using Collaborative Application Markup
Language (CAML), avoid creating new sandboxed solutions containing a lot of code-behind. Code-
behind in sandboxed solutions will still work in SharePoint 2013, but because the sandbox is depre-
cated, there is no way to tell what will happen in future versions of SharePoint. If you have a choice, it
would be better to use a SharePoint app. You don’t always have a choice, though, because SharePoint
apps have their own limitations, and you can’t deploy farm solutions to a hosted environment such as
SharePoint Online.

If you have to use code-behind in your sandboxed solution, it’s worth trying to build it in a way
that allows you to remove the solution without breaking your site. If you use code-behind to config-
ure a site or a list, for instance, removing the solution won’t break the configured site or list, so there
is no real risk.

104   Inside Microsoft SharePoint 2013

The following is a list of supported CAML elements that you can use in your declarative sandboxed
solutions:

■■ ContentType

■■ CustomAction

■■ Field

■■ ListInstance

■■ ListTemplate

■■ Module

■■ PropertyBag

■■ Receivers

■■ WebTemplate

■■ WorkflowActions

■■ WorkflowAssociation

Understanding the sandbox execution environment
The sandbox is a separate process in which a SharePoint solution runs in isolation. This separate proc
ess exposes a subset of the Microsoft.SharePoint namespace that an assembly can call. Additionally,
the process runs under a CAS policy that restricts programmatic access to any resource outside the
sandbox. Enabling sandboxed solutions in a SharePoint farm is simple and can be done by starting
the SharePoint Foundation User Code Service on the Central Administration\System Settings\Manage
Services On Server page. The User Code Service is responsible for managing the execution of sand-
boxed solutions across the farm. Each server in the farm that will participate in hosting sandboxed
solutions must have the User Code Service enabled. Generally, this service simply runs under the Farm
account. If you have installed your SharePoint server by using a standalone installation, the User Code
Service will run under the Network Service account. When this service is enabled, you can begin run-
ning sandboxed solutions.

Although the User Code Service is responsible for managing the execution of sandboxed solutions
throughout the farm, several other components and processes are involved in the system. These com
ponents and processes include the Execution Manager, the Worker Service, and the Worker Service Proxy.
Figure 3-17 shows an architectural diagram of the sandboxing system.

The sandboxing system uses a component named the Execution Manager to handle the loading
and execution of sandboxed solution code. The Execution Manager runs within the IIS application
pool and is responsible for making a call out to the User Code Service (SPUCHostService.exe) request-
ing that a sandboxed solution be loaded.

	 Chapter 3  Server-side solution development    105

As stated earlier, the User Code Service can be running on many different servers in the farm.
You specify load balancing execution across the servers in the farm through administrative settings
in Central Administration\System Settings\Manage User Solutions. By using these options, you can
choose to execute the sandboxed solution on the same server where the user request was made or on
a dedicated set of servers. In either case, the User Code Service makes a request of the Worker Service
(SPUCWorkerProcess.exe) to load the sandboxed solution.

FIGURE 3-17  The sandbox executing code in an isolated, partially trusted worker process

After the assembly of a sandboxed solution is loaded into the Worker Service, its code can be
executed. A pool of AppDomains is maintained within SPUCWorkerProcess.exe, and an available
AppDomain is used to execute the request. Only one request at a time is executed in any AppDomain,
so there won’t be conflicts between the solutions.

As mentioned previously, execution of the code is limited to a subset of the Microsoft.SharePoint
namespace and subject to CAS policy restrictions. Any calls to the SharePoint object model are first
filtered against the subset object model to prevent any disallowed calls and then executed against
the full object model, which runs in the Worker Service Proxy. When the code execution completes,
the results are bubbled back up to the client request, which has been waiting synchronously for the
request to complete. The final page is then drawn and delivered to the user.

If you know which processes are supporting the sandbox, you can debug your solutions. In a
full-trust solution, you can debug code by attaching to the w3wp.exe process. However, sandboxed
solutions are running in a separate process, so you must attach the Visual Studio 2012 debugger to

106   Inside Microsoft SharePoint 2013

the SPUCWorkerProcess.exe process instead. If you use F5 to debug your solution, Visual Studio will
automatically attach to the right process.

The components that make up the sandboxing system can be found in the SharePoint System Direc-
tory at C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15\UserCode. In this
directory, you’ll find SPUCHostService.exe, SPUCWorkerProcess.exe, and SPUCWorkerProcessProxy.exe.
Along with the executables, you’ll also find a web.config file that references the CAS policy restric-
tions, in the file C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15\CONFIG\
wss_usercode.config. Finally, this folder also contains a subfolder named Assemblies. The Assemblies
folder contains the assemblies Microsoft.SharePoint.dll, Microsoft.SharePoint.SubsetProxy.dll, and
Microsoft.SharePoint.UserCode.dll, which support the object model subset.

Creating a SharePoint project for a sandboxed solution
When you create a new SharePoint solution in Visual Studio 2012, the SharePoint Customization
Wizard offers you the option to deploy your solution either as a farm solution or as a sandboxed
solution. Farm solutions have been discussed extensively in the previous section. If you choose to
create a sandboxed solution, it will not be deployed to Central Administration, but instead it will be
deployed directly to a site collection.

The WingtipToysSolution project has been created with two ListInstance items, which are used to
create a Contacts list and Calendar list. These list instances are fully compatible with the sandbox. The
solution also contains a feature receiver that adds a new view to the list and that adds a link to the list
to the Quick Launch bar. In SharePoint 2013 this is also fully compatible with sandboxed solutions. In
future versions of SharePoint, the feature receiver code might not be supported in a sandboxed solu-
tion anymore, but removing the code-behind from the WingtipToysSolution won’t break any sites on
which the feature is currently activated. It is therefore safe to deploy the entire WingtipToysSolution
as a sandboxed solution. If you are building the solution from scratch, though, you might want to try
and find a different solution for the feature receiver to avoid possible rework on the solution in the
future. To convert the WingtipToysSolution from a farm solution to a sandboxed solution, all you have
to do is change the Sandboxed Solution property of the project in the project property pane from
False to True.

Now it’s time to walk through an example of creating a sandboxed solution. You’ll start again by
creating an empty SharePoint project, naming it WingtipToysSandbox. When you click OK to create
the new project, the Visual Studio SharePoint Customization Wizard allows you to select Deploy As A
Sandboxed Solution, as shown in Figure 3-18.

	 Chapter 3  Server-side solution development    107

FIGURE 3-18  Creating a sandboxed solution

After you create the project in Visual Studio, you can alter the deployment target by edit
ing the Sandboxed Solution property of the project in the project property pane. Along with
changing the deployment target, the Sandboxed Solution property also determines whether the
System.Security.AllowPartiallyTrustedCallers attribute appears in the AssemblyInfo file. By default,
assemblies targeting the sandbox have this attribute and assemblies targeting the farm do not.

From the perspective of Visual Studio, there is no difference between a sandboxed solution and a
farm solution. Both solutions are packaged and built in exactly the same manner. The differences are
strictly related to the deployment target and the functionality that you can use in the solution. If you
do try to use functionality that is not available in a sandboxed solution, Visual Studio will throw an
error when it tries to compile the solution.

Now you will add a custom content type and a custom site column to the WingtipToysSandbox so-
lution. The content type is called Toys and will be added to a list that will contain a list of toys. The site
column that will be added to the content type is Age Group, indicating what age group the toys are
suitable for. Both the content type and the site column will be added to a site by using a single site
collection–scoped feature called Site-WingtipContentTypes. Listing 3-7 shows the content type, and
Listing 3-8 shows the site column. The structure of the solution and the Sandboxed Solution property
of the project are displayed in Figure 3-19.

108   Inside Microsoft SharePoint 2013

LISTING 3-7  The XML used to create a custom site column

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{742e3245-a013-4537-82d3-727ddbfb981a}"
 Name="AgeGroup"
 DisplayName="Age Group"
 Type="Choice"
 Required="TRUE"
 Group="WingtipToys Columns">
 <CHOICES>
 <CHOICE>0-1</CHOICE>
 <CHOICE>1-3</CHOICE>
 <CHOICE>3-6</CHOICE>
 <CHOICE>6-9</CHOICE>
 <CHOICE>9-12</CHOICE>
 <CHOICE>12+</CHOICE>
 </CHOICES>
 </Field>
</Elements>

LISTING 3-8  The XML used to create a custom content type

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Item (0x01) -->
 <ContentType ID="0x01007E6057B85C8A465D9A695CC2E60AB705"
 Name="Toys"
 Group="WingtipToys Content Types"
 Description="Content type used to store information about toys"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef ID="{742e3245-a013-4537-82d3-727ddbfb981a}"
 DisplayName="Age Group"
 Required="TRUE"
 Name="AgeGroup" />
 </FieldRefs>
 </ContentType>
</Elements>

	 Chapter 3  Server-side solution development    109

FIGURE 3-19  Solution Explorer and project properties of a sandboxed solution project in Visual Studio

Deploying and debugging sandboxed solutions
When the Sandboxed Solution property is set to True, selecting Build | Deploy Solution deploys the
solution to the site collection’s Solution Gallery. This new gallery is the repository for all sandboxed
solutions uploaded within the site collection. You can access the gallery from the Site Settings page,
in the Galleries area, by using the Solutions link. Figure 3-20 shows the Solution Gallery with the up-
loaded solution.

FIGURE 3-20  The Solution Gallery allowing a site collection owner to upload and activate a sandboxed solution

110   Inside Microsoft SharePoint 2013

Keep in mind that there is a terminology difference between the two deployment methods. Farm
solutions are installed and deployed. Sandboxed solutions are uploaded and activated. The installa-
tion step in a farm deployment is similar to the upload step in a sandboxed deployment. Likewise, the
deploy step in a farm deployment is similar to the activate step in a sandboxed deployment. The one
notable difference is that the activation of a sandboxed solution automatically activates any feature
scoped to the level of the site collection.

For the content type and site column elements defined in the CAML earlier, there is no difference
in behavior between a sandboxed solution or a farm solution. Even at this point, however, you can no-
tice a significant difference in the deployment process. When a solution is deployed to the farm-level
gallery, the farm administrator must become involved. This requirement gives the farm administrator
significant control over the solution, but he will also have to make time to deploy the solution and
can be called responsible for a solution that is being deployed to the farm. Because of that, he should
review the solution, or have someone other than the original development team do a review for him.

A SharePoint solution designed for the sandbox, such as the WingtipToysSandbox solution, doesn’t
require farm-level deployment. Instead, the sandbox approach allows the site collection administrator
to upload the solution and deploy it without involving the farm administrator. The farm administrator
is thus relieved from the burden of dealing with solution deployment, and the site collection admin-
istrator is empowered to make decisions regarding the functionality available in the site collection.
Furthermore, the sandbox is protecting the farm from instability by isolating the solution.

Because a site collection administrator can upload and activate a sandboxed solution, it is very dif-
ficult, if not impossible, for a farm administrator to keep track of what sandboxed solution is deployed
where. It might be useful for the administrator to know this, though, so that she can identify sand-
boxed solutions that are deployed in a lot of sites and that might have to be rebuilt as farm solutions
to reduce maintenance; or if a farm has to be upgraded to a new version of SharePoint, so that she
can warn site collection administrators that their sandboxed solutions might not work anymore after
the upgrade.

To solve this problem, you can create a custom solution validator that runs whenever a solution is
activated within a site collection. Your custom solution validator can write some information about
the activated sandboxed solution to a dedicated list somewhere in the SharePoint environment.
Validators can also be used to do some testing on a solution that is being activated and can help you
decide whether you want to allow or prohibit a solution. For example, you can decide to allow only
sandboxed solutions with assemblies that have been compiled by using your company’s private sign-
ing key.

	 Chapter 3  Server-side solution development    111

To develop a validator, you create a class that inherits from Microsoft.SharePoint.UserCode.
SPSolutionValidator. The SPSolutionValidator class in turn inherits from the Microsoft.SharePoint.
Administration.SPPersistedObject class, which means that SPSolutionValidator can serialize its state
into the SharePoint database. The impact of this capability is that you can use a generic List<string>
collection to store any information you want to support validation. For example, you could use this
approach to store information about known bad publishers.

When you inherit from the SPSolutionValidator class, you must provide a System.Runtime.
InteropServices.Guid for your validator that is surfaced as the ProviderID property of the validator.
Your validator must provide a default constructor that takes no arguments, as well as a construc-
tor that takes a Microsoft.SharePoint.UserCode.SPUserCodeService object. In the second constructor,
you must set the Signature property to a unique value. Listing 3-9 shows a basic validator class with
constructors.

LISTING 3-9  A listing showing that a solution validator class must inherit from SPSolutionValidator

[Guid("D1735DCC-141F-4F1A-8DFE-8F3F48DACD1F")]
public class SimpleSolutionValidator : SPSolutionValidator {
 [Persisted]
 List<string> allowedPublishers;

 private const string validatorName = "Simple Solution Validator";

 public SimpleSolutionValidator() { }
 public SimpleSolutionValidator(SPUserCodeService userCodeService)
 : base(validatorName, userCodeService) {
 this.Signature = 5555;
 }
}

After coding the basic class and constructors, you must override the ValidateSolution and
ValidateAssembly methods. ValidateSolution is called once for each solution, and ValidateAssembly
is called once for each assembly within each solution. The ValidateSolution method receives a
SPSolutionValidationProperties object, which contains information about the solution. The Validate-
Assembly method receives a SPSolutionValidationProperties object as well, but it also receives a
SPSolutionFile object with additional information about the assembly being validated. Listing 3-10
shows the ValidateSolution and ValidateAssembly methods, which for the sake of this demonstration
are simply checking whether the name of any file in the solution or assembly begins with the string
“Bad_”. If any file begins with this string, the file fails validation.

112   Inside Microsoft SharePoint 2013

LISTING 3-10  A solution validator preventing a sandboxed solution from activating by setting the isValid
property to false

public override void
 ValidateSolution(SPSolutionValidationProperties properties) {
 base.ValidateSolution(properties);
 bool isValid = true;

 //Check the name of the package
 if (properties.PackageFile.Location.StartsWith("Bad_",
 StringComparison.CurrentCultureIgnoreCase)) {
 isValid = false;
 }

 //Look at the files in the package
 foreach (SPSolutionFile file in properties.Files) {
 if (file.Location.StartsWith("Bad_",
 StringComparison.CurrentCultureIgnoreCase))
 isValid = false;
 }

 //set error handler
 properties.ValidationErrorMessage = "Failed simple validation.";
 properties.ValidationErrorUrl =
 "/_layouts/Simple_Validator/ValidationError.aspx?SolutionName="
 + properties.Name;
 properties.Valid = isValid;
}

public override void ValidateAssembly(
 SPSolutionValidationProperties properties, SPSolutionFile assembly) {
 base.ValidateAssembly(properties, assembly);
 bool isValid = true;

 //Check the name of the assembly
 if (assembly.Location.StartsWith("Bad_",
 StringComparison.CurrentCultureIgnoreCase))
 isValid = false;

 //set error handler
 properties.ValidationErrorMessage = "Failed simple validation.";
 properties.ValidationErrorUrl =
 "/_layouts/Simple_Validator/ValidationError.aspx?SolutionName="
 + properties.Name;
 properties.Valid = isValid;
}

When a solution fails validation, you can elect to display an error page. The ValidationErrorMessage
and ValidationErrorUrl properties are used to set the values for handling validation errors. Typically,
you simply create an application page in the LAYOUTS directory that is called when validation fails.

	 Chapter 3  Server-side solution development    113

Before a custom solution validator can be used, it must be registered with the farm. This means
that you can’t deploy any custom solution validators to a cloud-hosted environment to which you
cannot deploy a farm solution. To register the validator with the farm, you use a feature receiver in
a farm-level feature. In fact, it’s best to package the custom validator, application page, and feature
receiver into a single feature. This way, the farm administrator can simply activate a single farm-level
feature and the validator will be active. Listing 3-11 shows a feature receiver for registering and un-
registering a custom validator.

LISTING 3-11  A feature receiver used to register a solution validator

public class FeatureEventReceiver : SPFeatureReceiver {
 public override void
 FeatureActivated(SPFeatureReceiverProperties properties) {
 SPUserCodeService userCodeService = SPUserCodeService.Local;
 SPSolutionValidator validator =
 new SimpleSolutionValidator(userCodeService);
 userCodeService.SolutionValidators.Add(validator);
 }

 public override void
 FeatureDeactivating(SPFeatureReceiverProperties properties) {
 SPUserCodeService userCodeService = SPUserCodeService.Local;
 SPSolutionValidator validator =
 new SimpleSolutionValidator(userCodeService);
 userCodeService.SolutionValidators.Remove(validator.Id);
 }
}

If after deployment of your sandboxed solution you want to debug the solution, you can use F5 or
open up the Debug menu in Visual Studio 2012 and click Start Debugging. You can also attach your
project to the process that the solution runs in by clicking Attach To Process and then selecting the
SPUCWorkerProcess.exe process. From that point on, debugging a sandboxed solution is exactly the
same as debugging a farm solution. The only difference is the process in which the solution runs.

Updating and upgrading sandboxed solutions
Just as with farm solutions, you might want to make changes to a sandboxed solution after it has
been deployed and after features from it have been activated on sites. Sandboxed solutions and the
features in them can be upgraded, just like farm solutions and features. The way upgrading the solu-
tions and features works is a bit different for sandboxed solutions, though.

Let’s start by creating a feature upgrade action for the Toys content type that you created earlier.
You will add an extra column to the content type to store the price of the toys. Listing 3-12 shows the
XML for the new site column. You have to add a new site column to the solution or a new elements
file to the AgeGroup site column to ensure that you can add the column when upgrading existing
instances of the feature.

114   Inside Microsoft SharePoint 2013

LISTING 3-12  A custom site column

<Field
 ID="{f75c27ba-e321-4bbe-a30b-be0e085a5517}"
 Name="ToysPrice"
 DisplayName="Price"
 Type="Currency"
 LCID="1033"
 Decimals="2"
 Required="TRUE"
 Group="WingtipToys Columns">
 </Field>

Next you will add the new column to the Toys content type. You can add the column to the
elements.xml file directly by modifying the XML, or you can use the designer and simply select the
new Price column, as shown in Figure 3-21.

FIGURE 3-21  Using the designer view to add a new site column to a content type in Visual Studio

By doing this you have ensured that new instances of the Site-WingtipContentTypes feature will
add both columns to the Toys content type. However, in order to make sure you can add the new
column to existing instances of the feature and content type as well, you have to first increase the
version number of the Site-WingtipContentTypes feature.

Next you can add UpgradeActions to the feature. Just as when you were upgrading a farm solu-
tion, you will use a VersionRange and an ApplyElementManifests element. This time, you will also use
the AddContentTypeField element to add the new Price field to existing instances of the content type.
Listing 3-13 contains the complete XML of the Site-WingtipContentTypes feature.

	 Chapter 3  Server-side solution development    115

LISTING 3-13  A feature that uses the UpgradeActions and AddContentType elements to add a new content type
to existing instances

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="WingtipToysSandbox WingtipToys Content Types"
 Description="This feature contains the WingtipToys
 Content Types and Site Columns"
 Id="d531e843-9706-48d1-bd38-bae81c916ec7"
 Scope="Site"
 Version="2.0.0.0">
 <UpgradeActions>
 <VersionRange EndVersion="2.0.0.0">
 <ApplyElementManifests>
 <ElementManifest Location="Price\Elements.xml" />
 </ApplyElementManifests>
 <AddContentTypeField
 ContentTypeId="0x01007E6057B85C8A465D9A695CC2E60AB705"
 FieldId="{f75c27ba-e321-4bbe-a30b-be0e085a5517}"
 PushDown="TRUE" />
 </VersionRange>
 </UpgradeActions>
 <ElementManifests>
 <ElementManifest Location="AgeGroup\Elements.xml" />
 <ElementManifest Location="Toys\Elements.xml" />
 </ElementManifests>
</Feature>

The solution is now ready to be deployed. Upgrading a sandboxed solution is accomplished by
creating a new solution (.wsp) file with a different name than the previous version, but with the same
solution ID. When you subsequently deploy the new solution version by uploading it into the Solu-
tion Gallery of a site collection, SharePoint will recognize that the ID matches an existing solution and
prompt you to upgrade the solution. After the solution is upgraded, the old solution is automatically
deactivated. Unlike upgrading farm solutions, upgrading sandboxed solutions doesn’t require any ad-
ditional steps such as upgrading feature instances using SPFeature.Upgrade or running PSConfig.

Testing the upgrade of your sandboxed solution from Visual Studio requires some additional
configuration steps. First you have to create a new deployment configuration by opening up the
properties of the project and going to the SharePoint tab. Click the New button and call the new
deployment configuration Upgrade Sandboxed Solution. The previous version of the solution must
be in the Solution Gallery when you upload the new version of the solution, so you don’t want to
retract the solution. All you need is the Add Solution step in the deployment steps, as shown in Figure
3-22. The next step to enable upgrading of your sandboxed solution is to double-click Package and
to adjust the name of the package; for instance, by adding v2 to it.

116   Inside Microsoft SharePoint 2013

FIGURE 3-22  The deployment steps of the Upgrade Sandboxed Solution deployment configuration

Now you can right-click the project and click Deploy. This will automatically deactivate the previ-
ous version of the solution and activate the new version (see Figure 3-23). It will also automatically
upgrade all existing instances of the feature in the site collection. Note that this behavior is different
from the feature upgrade behavior of a farm solution, where you have to explicitly upgrade existing
instances of the feature after a new version of a solution has been deployed.

	 Chapter 3  Server-side solution development    117

FIGURE 3-23  The Solution Gallery containing the previous and the new versions of the sandboxed solution

Summary

When you are developing SharePoint solutions, there are innumerable options to customize your
SharePoint environment. You can add functionality to it by creating farm solutions or sandboxed
solutions.

Farm solutions are deployed to Central Administration and are available in the entire farm. Deploy-
ing a farm solution requires farm administrator access and access to at least one of the SharePoint
servers in the farm. Code from a farm solution can run under full trust permissions and can use as
many resources as there are available in the farm. This means that creating farm solutions gives you
great power, but with that great power comes great responsibility. A badly built farm solution could
bring down an entire SharePoint farm.

Sandboxed solutions are deployed to a site collection’s Solution Gallery, and functionality from
them is only available in the site collection in which it is deployed. A sandboxed solution can also only
access data and objects from within the site collection. The amount of resources that a sandboxed
solution can consume is limited by the number of resource points that are assigned to a site collec-
tion. Using code-behind in sandboxed solutions is deprecated in SharePoint 2013. This means that
although you can still use sandboxed solutions with code-behind in them and they will work fine, if
you are creating new sandboxed solutions, the use of code-behind is discouraged. It would be better
to try to find an alternative. Sandboxed solutions will provide the developer with less flexibility and
power, but they will prevent that developer from bringing down the SharePoint farm.

		 119

C H A P T E R 4

SharePoint apps

Let’s begin with a bit of history so that you can understand why and how the Microsoft SharePoint
app model came about. It was back with SharePoint 2007 that Microsoft first invested in trans-

forming SharePoint technologies into a true development platform by introducing features and farm
solutions. With the release of SharePoint 2010, Microsoft extended the options available to develop-
ers by introducing sandboxed-solution deployment as an alternative to farm-solution deployment.
With SharePoint 2013, Microsoft has now added a third option for SharePoint developers with the
introduction of SharePoint apps.

When developing for SharePoint 2013, you must learn how to decide between using a farm
solution, a sandboxed solution, or a SharePoint app. To make this decision in an informed manner,
you must learn what’s different about developing SharePoint apps. As you will learn in this chapter,
SharePoint app development has several important strengths and a few noteworthy constraints when
compared to the “old school” approach of developing SharePoint solutions for SharePoint 2010.

As you begin to get your head around what the new SharePoint app model is all about, it’s help-
ful to understand one of Microsoft’s key motivations behind it. SharePoint 2007 and SharePoint 2010
have gained large-scale adoption worldwide and have generated billions of dollars in revenue, pri
marily from the companies and organizations that have installed SharePoint on their own hardware
in an on-premises farm. And whereas previous versions of SharePoint have been very successful prod-
ucts with respect to all these on-premises farms, Microsoft’s success and adoption rate in hosted
environments such as Microsoft Office 365 have been far more modest.

The release of SharePoint 2013 represents a significant shift in Microsoft’s strategy for evolving
the product. Microsoft’s focus is now on improving how SharePoint works in the cloud, and especially
with Office 365. Microsoft’s primary investment in SharePoint 2013 has been to add features and
functionality that work equally well in the cloud and in on-premises farms.

Understanding the new SharePoint app model

The move from SharePoint solutions development to SharePoint app development represents a
significant change in development technique and perspective. However, Microsoft is not making this
change just for the sake of making a change; there are very valid technical reasons that warrant such a
drastic shift in the future of the SharePoint development platform.

120   Inside Microsoft SharePoint 2013

To fully understand Microsoft’s motivation for beginning to transition away from SharePoint
solutions to the new SharePoint app model, you must first understand the challenges presented by
SharePoint solutions development. Therefore, this section begins by describing the limitations and
constraints imposed by SharePoint solution development. After that, the discussion turns to the
design goals and architecture of the new SharePoint app model and addresses how this architecture
improves upon the limitations and constraints imposed by SharePoint solution development.

Understanding SharePoint solution challenges
The first issue with SharePoint solutions development is that most of the custom code written by
developers runs within the SharePoint host environment. For example, managed code deployed in a
farm solution runs within the main SharePoint worker process (w3wp.exe). Managed code deployed
by using a sandboxed solution runs within the SharePoint sandboxed worker process (SPUCWorker-
Process.exe).

There are two primary reasons why Microsoft wants to change this behavior to no longer allow
custom code to run within the SharePoint environment. The first reason has to do with increasing the
stability of SharePoint farms. This one should be pretty obvious. Eliminating any type of custom code
that runs within the SharePoint environment results in lower risk, fewer problems, and greater stability
for the hosting farm.

The second reason has to do with the ability to upgrade an on-premises farm to newer versions of
SharePoint. SharePoint solutions are often developed with full trust and perform complex operations.
These solutions are often tightly bound to a particular feature set, which means that they might not
move gracefully to the next version of SharePoint. Fearing the necessity of performing a complete
rewrite of dozens of solutions, many customers have delayed upgrading their SharePoint farms.

Because many SharePoint customers have postponed the upgrade of their production on-premises
farms for months, and sometimes years, until they have had time to update their SharePoint solution
code and test it against the new version of Microsoft.SharePoint.dll, it was high on the priority list of
issues to address when Microsoft began to design SharePoint 2013.

Another significant challenge with SharePoint solution development has to do with security and
permissions. The root issue is that code always runs under the identity and with the permissions of a
specific user. As an example, think about the common scenario in which a site administrator activates
a feature from a SharePoint solution that has a feature receiver. There is a security issue in that a
SharePoint solution with a feature receiver is able to execute code that can do anything that the site
administrator can do. There really isn’t a practical way to constrain the SharePoint solution code so
that it runs with a more restricted set of permissions than the user who activated the feature has.

Most SharePoint professionals are under the impression that code inside a sandboxed solution is
constrained from being able to perform attacks. This is only partially true. The sandbox protects the
farm and other site collections within the farm, but it does not really protect the content of the site
collections in which a sandboxed solution is activated. For example, there isn’t any type of enforce-
ment to prohibit the feature activation code in a sandboxed solution from deleting every item and
every document in the current site collection.

	 Chapter 4  SharePoint apps    121

Another concern with sandboxed solutions is that there’s no ability to perform impersonation.
Therefore, custom code in a sandboxed solution always runs as the current user. This can be very lim-
iting when the current user is a low-privileged user such as a contributor or a visitor. There is no way
to elevate privileges so that your code can do more than the current user can do.

Farm solutions, on the other hand, allow for impersonation. This means that a developer can el-
evate privileges so that farm solution code can perform actions even when the current user does not
possess the required permissions. However, this simply replaces one issue with another.

A farm solution developer can call SPSecurity.RunWithElevatedPrivileges, which allows custom code
to impersonate the all-powerful SHAREPOINT\SYSTEM account. When code runs under this identity, it
executes with no security constraints whatsoever. The code can then essentially do whatever it wants
on a farm-wide basis. This type of impersonation represents the Pandora’s box of the SharePoint de-
velopment platform, because a farm solution could perform an attack on any part of a farm in which
it’s deployed, and it must be trusted not to do so. As you can imagine, this can cause anxiety with
SharePoint farm administrators who are much fonder of security enforcement than they are of trust.

In a nutshell, the security issues with SharePoint solutions stem from the fact that you cannot ef-
fectively configure permissions for a specific SharePoint solution. This limitation cannot be overcome,
because the SharePoint solution development model provides no way to establish the identity of
SharePoint solution code independent of user identity. Because there is no way to establish the iden-
tity of code from a SharePoint solution, there is no way to configure permissions for it.

The last important challenge of SharePoint solution development centers around installation and
upgrade. The installation of farm solutions is problematic because it requires a farm administrator and
it often requires restarting Internet Information Services (IIS) on all the front-end web servers, causing
an interruption in service. Although the deployment of a sandboxed solution doesn’t involve these
problems, it raises other concerns. Business users often have trouble finding and uploading sand-
boxed solutions in order to activate them. Furthermore, a business user is given very little informa-
tion to indicate whether or not to trust a sandboxed solution before activating it and giving its code
access to all the content within the current site collection.

Of all the issues surrounding SharePoint solution development, nothing is more prone to error and
less understood than the process for upgrading code from one version of a SharePoint solution to an-
other. Even though Microsoft added support for feature upgrade and assembly version redirection in
SharePoint 2010, it is not widely used. The required steps and the underlying semantics of the feature
upgrade process have proven to be too tricky for most developers to deal with. Furthermore, the vast
majority of professional SharePoint developers have made the decision never to change the assembly
version number of the assembly dynamic-link library (DLL) deployed with a SharePoint solution. That’s
because creating and managing the required assembly redirection entries across a growing set of
web.config files is just too difficult and error prone.

You have just read about the most significant challenges with respect to SharePoint solution devel-
opment. Here is a summary of these challenges:

■■ Custom code running inside the SharePoint host environment poses risks and compromises
scalability.

122   Inside Microsoft SharePoint 2013

■■ Custom code with dependencies on in-process DLLs causes problems when migrating from
one version of SharePoint to the next.

■■ A permissions model for custom code based entirely on the identity of the current user is
inflexible.

■■ User impersonation addresses the too-little-permissions issue but replaces it with the too-
many-permissions issue, which is even worse.

■■ SharePoint solutions lack effective support and easily understood semantics for distribution,
installation, and upgrade.

Understanding the SharePoint app model design goals
The SharePoint app model was designed from the ground up to remedy the problems with
SharePoint solutions that were discussed in the previous section. This means that the architecture
of the SharePoint app model is very different from that of SharePoint solutions, which represent
SharePoint’s original development platform. This new architecture was built based on the follow-
ing design goals:

■■ Apps must be supported in Office 365 and in on-premises farms.

■■ App code never runs within the SharePoint host environment.

■■ App code programs against SharePoint sites by using web service entry points to minimize
version-specific dependencies.

■■ App code is authenticated and runs under a distinct identity.

■■ App permissions can be configured independently of user permissions.

■■ Apps are deployed by using a publishing scheme based on app catalogs.

■■ Apps that are published in a catalog are easier to discover, install, and upgrade.

You have now seen the design goals for the new SharePoint app model and you have read about
the motivating factors behind them. This should provide you with greater insight and a better appre-
ciation of why Microsoft designed the SharePoint app model the way it did. Now it’s time to dive into
the details of the SharePoint app model and its underlying architecture.

Understanding SharePoint app model architecture

Microsoft designed the SharePoint app model to work in the Office 365 environment as well as within
on-premises farms. However, developing for Office 365 introduces a few important new concepts
that will be unfamiliar to many experienced SharePoint developers. One of the new concepts that is
essential to the development of SharePoint apps is a SharePoint tenancy.

A SharePoint tenancy is a set of site collections that are configured and administrated as a unit.
When a new customer establishes an Office 365 account to host its SharePoint sites, the Office 365

	 Chapter 4  SharePoint apps    123

environment creates a new tenancy. The customer’s business users who access the tenancy are known
(not surprisingly) as tenants.

When the Office 365 environment creates a new tenancy for a customer, it creates an administra-
tive site collection that is accessible to users who have been configured to play the role of tenant
administrator. A tenant administrator can create additional site collections and configure the set of
services that are available to all the sites running within the tenancy.

The concept of tenancies was first introduced in SharePoint 2010 to support hosting environments
such as Office 365. Although the creation and use of tenancies is essential to the Office 365 environ-
ment, their use has not been widely adopted in on-premises farms. This is primarily due to the fact
that SharePoint farm administrators can create site collections and configure the services available to
users within the scope of a web application.

The architecture of the SharePoint app model requires apps to always be installed and run within
the context of a specific tenancy. This can be a bit confusing for scenarios in which you want to install
SharePoint apps in an on-premises farm that doesn’t involve the explicit creation of tenancies. How-
ever, SharePoint 2013 is able to support installing and running SharePoint apps in on-premises farms
by transparently creating a farm-wide tenancy behind the scenes; this is known as the default tenancy.

Working with app service applications
SharePoint 2013 relies on two service applications to manage the environment that supports SharePoint
apps. The first service application is the App Management Service, which is new in SharePoint 2013.
The second service application is the Site Subscription Settings Service, which was introduced in
SharePoint 2010. A high-level view of a SharePoint 2013 farm running these two service applications
is shown in Figure 4-1.

FIGURE 4-1  A SharePoint farm that supports apps requires an instance of the App Management Service and the
Site Subscription Settings Service.

124   Inside Microsoft SharePoint 2013

The App Management Service has its own database that is used to store the configuration details
for apps as they are installed and configured. The App Management Service is also responsible for
tracking other types of app-specific configuration data that deals with app security principals, app
permissions, and app licensing.

The Site Subscription Settings Service takes on the responsibility of managing tenancies. Each time
a new tenancy is created, this service adds configuration data for it in its own database. The Site Sub-
scription Settings Service is particularly important to the SharePoint app model due to the require-
ment that SharePoint apps must always be installed and run within the context of a specific tenancy.

When you are working within the Office 365 environment, you never have to worry about creat-
ing or configuring these two service applications, because they are entirely managed behind the
scenes. However, things are different when you want to configure support for SharePoint apps in an
on-premises farm. In particular, you must explicitly create an instance of both the App Management
Service and the Site Subscription Settings Service.

Creating an instance of the App Management Service is easier because it can be done manually
via Central Administration or by using the Farm Creation Wizard. Creating an instance of the Site
Subscription Settings Service is a bit trickier because it must be done by using Windows PowerShell.
However, when you create an instance of the Site Subscription Settings Service by using Windows
PowerShell, it automatically creates the default tenancy, which then makes it possible to install
SharePoint apps in sites throughout the farm.

Building an environment for SharePoint app development
If you plan to develop SharePoint apps that will be used within private networks such as cor-
porate LANs, it makes sense to build out a development environment with a local SharePoint
2013 farm. Critical Path Training provides a free download called the SharePoint Server 2013
Virtual Machine Setup Guide, which provides you with step-by-step instructions to install all the
software you need. You can download the guide from www.criticalpathtraining.com/Members.

Understanding app installation scopes
A SharePoint app must be installed before it can be made available to users. When you install a
SharePoint app, you must install it within the context of a target web. After the app has been in-
stalled, users can then launch the app and begin to use it. The site from which an app has been
launched is known as the host web.

There are two different scopes in which you can install and configure a SharePoint app. The sce-
nario that is easier to understand is when an app is installed at a site scope. In this scenario, the app is
installed and launched within the scope of the same SharePoint site. In this scenario, the host web will
always be the same site where the app has been installed.

www.criticalpathtraining.com/Members

	 Chapter 4  SharePoint apps    125

SharePoint apps can also be installed and configured at the tenancy scope. In this scenario, an app
is installed in a special type of SharePoint site known as an app catalog site. After the app has been
installed in an app catalog site, the app can then be configured so that users can launch it from other
sites. In this scenario, the host web will not be the same site where the app has been installed.

The ability to install and configure apps at tenancy scope is especially valuable for scenarios in
which a single app is going to be used by many different users across multiple sites within an Office
365 tenancy or an on-premises farm. A single administrative user can configure app permissions and
manage licensing in one place, which avoids the need to install and configure the app on a site-by-
site basis. The topic of installing apps will be revisited in greater detail at the end of this chapter.

This book discusses many different scenarios in which SharePoint apps behave the same way,
regardless of whether they have been installed in an Office 365 tenancy or in an on-premises farm.
Therefore, the book frequently uses the generic term SharePoint host environment when talking
about scenarios that work the same way across either environment.

Understanding app code isolation
When you develop a SharePoint app, you obviously need to write custom code to implement your
business logic, and that code must run some place other than on the web servers in the hosting
SharePoint farm. The SharePoint app model provides you with two places to run your custom code.
First, a SharePoint app can contain client-side code that runs inside the browser on the user’s com-
puter. Second, a SharePoint app can contain server-side code that runs in an external website that is
implemented and deployed as part of the app itself.

There are many different ways in which you can design and implement a SharePoint app. For
example, you could create a SharePoint app that contains only client-side resources such as web-
pages and client-side JavaScript code that are served up by the SharePoint host environment. This
type of app is known as a SharePoint-hosted app because it is contained entirely within the app web.
You could write a SharePoint-hosted app that uses Microsoft Silverlight, Microsoft VBScript, Flash, or
whatever client-side technology you prefer.

Now imagine that you want to create a second SharePoint app in which you want to write server-
side code in a language such as C#. This type of SharePoint app will require its own external website
so that your server-side code has a place to execute outside of the SharePoint host environment. In
SharePoint 2013 terminology, a SharePoint app with its own external website is known as a cloud-
hosted app, and the external website is known as the remote web. The diagram in Figure 4-2 shows
the key architectural difference between a SharePoint-hosted app and a cloud-hosted app.

126   Inside Microsoft SharePoint 2013

FIGURE 4-2  A cloud-hosted app differs from a SharePoint-hosted app in that it has an associated remote web,
which makes it possible for the developer to write server-side code.

From the diagram in Figure 4-2, you can tell that both SharePoint-hosted apps and cloud-hosted
apps have a start page that represents the app’s primary entry point. With a SharePoint-hosted app,
the app’s start page is served up by the SharePoint host; however, with a cloud-hosted app, the start
page is served up from the remote web. Therefore, the SharePoint host environment must track the
remote web URL for each cloud-hosted app that has been installed so that it can redirect users to the
app’s start page.

There is infrastructure in the SharePoint host environment that creates a client-side JavaScript
component known as an app launcher, which is used to redirect the user from a page served up by
the SharePoint host environment over to the remote web.

When you decide to develop a cloud-hosted SharePoint app, you must often take on the respon-
sibility of hosting the app’s remote web. However, this responsibility of creating and deploying a
remote web along with a SharePoint app also comes with a degree of flexibility. You can implement
the remote web associated with a SharePoint app by using any existing web-based development
platform.

For example, the remote web for a cloud-hosted SharePoint app could be implemented by using a
non-Microsoft platform such as Java, LAMP, or PHP. However, the easiest and the most common ap-
proach for SharePoint developers is to design and implement the remote web for cloud-hosted apps
by using ASP.NET web forms or MVC4.

Understanding app hosting models
Thus far, this chapter has discussed how a SharePoint app can be categorized as either a SharePoint-
hosted app or a cloud-hosted app. However, the SharePoint app model actually defines three app
hosting models, not just two.

	 Chapter 4  SharePoint apps    127

Any time you create a new SharePoint app project in Microsoft Visual Studio 2012, you must pick
from one of the following three app hosting model:

■■ SharePoint-hosted

■■ Provider-hosted

■■ Autohosted

This chapter has already explained SharePoint-hosted apps. Recall that a SharePoint-hosted app
is simply an app that adds its start page and all its other resources into the SharePoint host environ-
ment during installation. Now it’s time to explain the differences between the other two app hosting
models.

A provider-hosted app and an autohosted app are just two variations of the hosting model for a
cloud-hosted app. Both types of apps have an associated remote web that is capable of hosting the
app’s start page and any other resources the app requires. Furthermore, both provider-hosted apps
and autohosted apps can and often will host their own custom databases to store app-specific data.
The difference between these two different app hosting models involves how the remote web and its
associated database are created when an app is deployed and installed.

It makes sense to begin by first examining the hosting model for a provider-hosted app. Imagine
a scenario in which a developer has just finished testing and debugging a provider-hosted app that
has a remote web with its own custom database. Before the app can be installed in a SharePoint host
environment, the developer or some other party must first deploy the website for the remote web to
make it accessible across the Internet or on a private network.

The custom database used by the remote web must also be created on a database server and
made accessible to the remote web as part of the deployment process. When the remote web and its
custom database are up and running, the provider-hosted app can then be installed in a SharePoint
tenancy and made available to the customer’s users, as depicted in Figure 4-3.

FIGURE 4-3  Many provider-hosted apps have their own database.

128   Inside Microsoft SharePoint 2013

After a provider-hosted app has been deployed, the company that developed the app usually as-
sumes the responsibility for its ongoing maintenance. For example, if a company develops a provider-
hosted app and deploys its remote web on one or more of its local web servers, it must ensure that
those web servers remain healthy and accessible. If it deploys the remote app for its provider-hosted
app in a hosting environment such as Windows Azure, it must pay a monthly fee for the hosting
services. Furthermore, it will be responsible for backing up the app’s database and then restoring it if
data becomes lost or corrupt.

Keep in mind that a provider-hosted app can be installed in more than one SharePoint site. Fur-
thermore, a provider-hosted app can be installed in many different SharePoint sites that span across
multiple customers and multiple SharePoint host environments. This is a common scenario, and it is
known as multitenancy. What is critical to acknowledge is that multitenancy introduces several note-
worthy design issues and deployment concerns. Let’s look at an example.

Think about a scenario involving multitenancy in which a provider-hosted app has been installed
by many different customers and the number of users is continually growing larger. All these users
will be accessing the same remote web through a single entry point, which is the app’s start page, as
shown in Figure 4-4.

FIGURE 4-4  A provider-hosted app in a multitenant environment must be designed to scale and to isolate data
on a customer-by-customer basis.

As you can imagine, a provider-hosted app in this type of multitenant scenario must have a way to
scale up as the number of users increases. Furthermore, this type of app should generally be designed
to isolate the data for each customer to keep it separate from the data belonging to other customers.
You would never want one customer accessing another customer’s data. Depending on the custom-
ers’ industry, there could even be government regulations or privacy concerns that prevent the app
from storing data for different customers within the same set of tables or even within the same
database.

	 Chapter 4  SharePoint apps    129

The important takeaway is that multitenancy introduces complexity. The development of a
provider-hosted app that will be used in a multitenant scenario typically requires a design that
isolates data on a customer-by-customer basis. As you can imagine, this increases both the time
and the cost associated with developing a provider-hosted app.

Now that you have seen some of the inherit design issues that arise due to multitenancy, you will
be able to more fully appreciate the benefits of the hosting model for autohosted apps. Autohosted
apps offer value because they relieve the developer from having to worry about many of the issues
involved with app deployment, scalability, and data isolation.

The first thing to understand about autohosted apps is that they are only supported in the Office 365
environment. Although this constraint might change in future releases, with SharePoint 2013 you can-
not install an autohosted app in an on-premises farm. The reason for this is that the hosting model for
autohosted apps is based on a private infrastructure that integrates the Office 365 environment with
Windows Azure and its ability to provision websites and databases on demand.

The central idea behind the hosting model for autohosted apps is that the Office 365 environment
can deploy the remote web on demand when an app is installed. You can also configure an autohosted
app so that it creates its own private database during app installation. Again, the Office 365 environ-
ment and its integration with Windows Azure is able to create a SQL Azure database on demand and
then make it accessible to the remote web.

Autohosted apps offer value over provider-hosted apps because the Office 365 environment trans-
parently handles the deployment of the remote web and potentially the creation of a custom data-
base, as well. Autohosted apps also transfer the ongoing cost of ownership of the remote web and its
database from the developer over to the customer who owns the Office 365 tenancy where the app
has been installed. Therefore, the app developer doesn’t have to worry about babysitting web servers,
backing up databases, or coming up with a strategy for scaling up the remote web as the number of
users increases.

The benefits of an autohosted app over a provider-hosted app also extend into app design, which
can serve to lower development costs. That’s because each customer gets his own private database
whenever he installs an autohosted app, as illustrated in Figure 4-5. The benefit is that the developer
isn’t required to add complexity to the app’s design and implementation to provide isolation because
each customer’s data is isolated automatically.

130   Inside Microsoft SharePoint 2013

FIGURE 4-5  An autohosted app is able to create its remote web and a database on demand as part of the app
installation process.

Reviewing the app manifest
Every SharePoint app requires an XML file called AppManifest.xml, which is known as the app
manifest. The app manifest contains essential metadata for the app that is read and tracked by
the SharePoint host environment when an app is installed. Listing 4-1 presents a simple example
of what the app manifest looks like for a SharePoint-hosted app.

LISTING 4-1  An app manifest

<App xmlns=http://schemas.microsoft.com/sharepoint/2012/app/manifest
 Name="MySharePointApp"
 ProductID="{b93e8f64-4d14-4c72-be47-3b89f7f5fdf6}"
 Version="1.0.0.0"
 SharePointMinVersion="15.0.0.0" >

	 Chapter 4  SharePoint apps    131

 <Properties>
 <Title>My SharePoint App</Title>
 <StartPage>~appWebUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 </Properties>

 <AppPrincipal>
 <Internal />
 </AppPrincipal>

</App>

The app manifest contains a top-level <App> element that requires a set of attributes such as
Name, ProductID, and Version. Within the <App> element there is an inner <Properties> element
that contains important child elements such as <Title> and <StartPage>. The <Title> element con-
tains human-readable text that is displayed to the user in the app launcher. The <StartPage> element
contains the URL that the SharePoint host environment uses in the app launcher to redirect the user
to the app’s start page.

Listing 4-1 shows the minimal amount of metadata required in an app manifest; however, the
app manifest for most real-world apps will contain a good deal more. The app manifest often
contains addition metadata to configure other essential aspects of an app, such as app-level events,
authentication, permissions, and the SharePoint services that an app requires from the SharePoint
host environment. Table 4-1 lists the most common elements you might be required to add to an app
manifest.

TABLE 4-1  The elements used in the app manifest file

Element Purpose

Name Used to create the URL to the app web.

ProductID Used to identify the app.

Version Used to indicate the specific version of the app.

SharePointMinVersion Used to indicate the version of SharePoint.

Properties\Title Used to provide text for the app launcher.

Properties\StartPage Used to redirect the user to the app’s start page.

Properties\WebTemplate Used to supply a custom site template for the app web.

Properties\InstalledEventEndpoint Used to execute custom code during installation.

Properties\UpgradedEventEndpoint Used to execute custom code during upgrade.

Properties\UninstallingEventEndpoint Used to execute custom code during uninstallation.

AppPrincipal\Internal Used to indicate that there is no need for external au-
thentication. This is what is always used for SharePoint-
hosted apps.

AppPrincipal\RemoteWebApplication Used to indicate that the app is provider-hosted and
requires external authentication.

AppPrincipal\AutoDeployedWebApplication Used to indicate that the app is autohosted and requires
external authentication.

132   Inside Microsoft SharePoint 2013

Element Purpose

AppPermissionRequests\AppPermissionRequest Used to add permission requests that must be granted
during app installation.

AppPrerequisites\AppPrerequisite Used to indicate what SharePoint services must be en-
abled in the SharePoint host environment for the app to
work properly.

RemoteEndpoints\RemoteEndpoint Used to configure allowable domains for cross-domain
calls using the web proxy.

Using the app manifest designer in Visual Studio 2012
When you are working with the app manifest in a SharePoint app project, Visual Studio 2012 provides
the visual designer shown in Figure 4-6. This visual designer eliminates the need to edit the XML in
the AppManifest.xml file by hand. The designer provides drop-down lists that make editing more
convenient and adds a valuable degree of validation as you are selecting the app start page or con-
figuring permission requests, feature prerequisites, and capability prerequisites.

FIGURE 4-6  Visual Studio 2012 provides a visual editor for editing the app manifest.

Although you should take advantage of the visual designer whenever you can to edit the app
manifest, it is important to understand that it cannot make certain types of modifications that you
might require. Therefore, you should also become accustomed to opening the AppManifest.xml file
in code view and making changes manually to the XML within. Fortunately, in times when you need
to manually edit the AppManifest.xml file, Visual Studio 2012 is able to provide IntelliSense, based on
the XML schema behind the app manifest.

Setting the start page URL
Every app has a start page whose URL must be configured by using the <StartPage> element within
the app manifest. The SharePoint host environment uses this URL when creating app launchers that
redirect the user to the app’s start page. For a SharePoint-hosted app, the start page must be located
in a child site known as the app web, which will be discussed in more detail later in this chapter. For a
cloud-hosted app, the start page will usually be located in the remote web.

	 Chapter 4  SharePoint apps    133

When you are configuring the URL within the <StartPage> element for a SharePoint-hosted app,
you must use a dynamic token named ~appWebUrl, as demonstrated in the following:

~appWebUrl/Pages/Default.aspx

This use of the ~appWebUrl token is required because the actual URL to the app’s start page
will not be known until the app has been installed. The SharePoint host environment is able to
recognize the ~appWebUrl token during app installation, and it replaces it with the absolute URL
to the app web.

In the case of a provider-hosted app, whose start page exists within the remote web, the <Start-
Page> element can be configured with the actual URL that is used to access the start page where the
remote web has been deployed, such as in the following:

https://RemoteWebServer.wingtipToys.com/MyAppsRemoteWeb/Pages/Default.aspx

When you are debugging provider-hosted apps and autohosted apps, you can use a convenient
dynamic token named ~remoteAppUrl that eliminates the need to hardcode the path to the remote
web during the development phase. For example, you can configure the <StartPage> element with
the following value:

~remoteAppUrl/Pages/Default.aspx

The reason this works during debugging is due to some extra support in Visual Studio 2012.
When you create a new SharePoint app project and select the option for a provider-hosted app or an
autohosted app, Visual Studio 2012 automatically creates a second project for the remote web that is
configured as the web project. Whenever you debug the Visual Studio solution containing these two
projects, Visual Studio 2012 performs a substitution to replace ~remoteAppUrl with the current URL of
the web project. After the substitution, the app manifest contains a start page URL that looks like this:

https://localhost:44300/Pages/Default.aspx

The key point is that Visual Studio 2012 replaces the ~remoteAppUrl token during a debugging
session before the app manifest is installed into the SharePoint host environment. This provides you
with a convenience in the debugging phase of a SharePoint app project.

Now think about what happens after you have finished testing and debugging an app and its
remote web. Visual Studio 2012 provides a Publish command with which you can build a final version
of the AppManifest.xml file that will be distributed along with your app. In this case, what will Visual
Studio 2012 do with the ~remoteAppUrl token? The answer is different depending on whether the
app is an autohosted app or a provider-hosted app.

When you use the Publish command with an autohosted app, Visual Studio 2012 builds a final ver-
sion of the AppManifest.xml in which the ~remoteAppUrl token remains within the <StartPage> ele-
ment. This is done because the actual URL to the remote web of an autohosted app will not be known
until the app installation process has started and the Office 365 environment has created the remote
web. You can tell that the ~remoteAppUrl token is replaced by Visual Studio 2012 in some scenarios
and by the Office 365 environment in other scenarios.

134   Inside Microsoft SharePoint 2013

When you use the Publish command with a provider-hosted app, the final version of the App
Manifest.xml cannot contain the ~remoteAppUrl token. You must know the URL to the remote
web ahead of time. Therefore, when it is used with a provider-hosted app, the Publish command
prompts you for several pieces of information, including the actual URL where the remote web will
be deployed.

When you are creating the URL for the <StartPage> element, it is a standard practice to include a
query string that contains another dynamic token named {StandardTokens}, as demonstrated in the
following example:

~remoteAppUrl/Pages/Default.aspx?{StandardTokens}

The {StandardTokens} token is never replaced by Visual Studio 2012. Instead, this dynamic token re-
mains inside the final version of the app manifest that is installed in the SharePoint host environment.
The SharePoint host environment performs a substitution on the {StandardTokens} token whenever it
creates the URL for an app launcher. This substitution involves replacing the {StandardTokens} token
with a standard set of query string parameters that are frequently used in SharePoint app develop-
ment, such as the SPHostUrl parameter and the SPLangauge parameter, as shown in the following:

default.aspx?SPHostUrl=http%3A%2F%2Fwingtipserver&SPLanguage=en%2DUS

When you implement the code behind the start page of a SharePoint app, you can generally ex-
pect that the page will be passed the two query string parameters named SPLanguage and SPHostUrl,
which are used to determine the language in use and the URL that points back to the host web. In
some scenarios, the SharePoint host environment will add additional query string parameters beyond
these two.

Understanding the app web
Each time you install a SharePoint app, you must install it on a specific target site. A SharePoint app
has the ability to add its own files to the SharePoint host environment during installation. For ex-
ample, a SharePoint-hosted app must add a start page and will typically add other resources as well,
such as a CSS file and a JavaScript file to implement the app’s user experience. The SharePoint host
environment stores these files in the standard fashion by adding them to the content database associ-
ated with the site in which the app is being installed.

Beyond adding basic files such as a start page and a JavaScript file, a SharePoint app also has the
ability to create other SharePoint-specific site elements in the SharePoint host during installation, such
as lists and document libraries. Let’s look at an example.

Imagine that you want to create a simple SharePoint app to manage customers. During installa-
tion, the app can be designed to create a customer list by using the standard Contacts list type along
with a set of pages designed to provide a snazzy user experience for adding and finding customers.
Your app could additionally be designed to create a document library upon installation, so that the
app can store customer contracts as Microsoft Word documents, where each Word document would
reference a specific customer item in the customers list.

	 Chapter 4  SharePoint apps    135

So where does the SharePoint host environment store the content added by an app during instal-
lation? The answer is inside a special child site that the SharePoint host environment creates under the
site where the app has been installed. This child site is known as the app web.

The app web is an essential part of the SharePoint app model because it represents the isolated
storage that is owned by an installed instance of a SharePoint app. The app web provides a scope for
the app’s private implementation details. Note that an app by default has full permissions to read and
write content within its own app web. However, a SharePoint app has no other default permissions to
access content from any other location in the SharePoint host environment. The app web is the only
place an app can access content without requesting permissions that then must be granted by a user.

There is a valuable aspect of the SharePoint app model that deals with uninstalling an app and
ensuring that all the app-specific storage is deleted automatically. In particular, the SharePoint host
environment will automatically delete the app web for an app whenever the app is uninstalled. This
provides a set of cleanup semantics for SharePoint apps that is entirely missing from the development
model for SharePoint solutions. When an app is uninstalled, it doesn’t leave a bunch of junk behind.

Understanding the app web hosting domain
Now it’s time to focus on the start page for a SharePoint-hosted app. As you have seen, the start page
for a SharePoint-hosted app is added to the app web during installation. Consider a scenario in which
you have installed a SharePoint app with the name MyFirstApp in a SharePoint team site, and that it is
accessible through the following URL:

https://intranet.wingtip.com.

During app installation, the SharePoint host environment creates the app web as a child site under
the site where the app is being installed. The SharePoint host environment creates a relative URL for
the app web based on the app’s Name property. Therefore, in this example, the app web is created
with a relative path of MyFirstApp. If the app’s start page, named default.aspx, is located in the app
web within the Pages folder, the relative path to the start page is MyFirstApp/Pages/default.aspx.
Your intuition might tell you that the app’s start page will be accessible through a URL that combines
the URL of the host web together with the relative path to the app’s start page, as in the following:

https://intranet.wingtip.com/MyFirstApp/Pages/default.aspx

However, this is not the case. The SharePoint host environment does not make the app web or
any of its pages accessible through the same domain as the host web that is used to launch the app.
Instead, the SharePoint host environment creates a new unique domain on the fly each time it creates
a new app web, as part of the app installation process. By doing so, the SharePoint host environment
can isolate all the pages from an app web in its own private domain. The start page for a SharePoint-
hosted app is made accessible through a URL that looks like this:

https://wingtiptenant-ee060af276f95a.apps.wingtip.com/MyFirstApp/Pages/Default.aspx

At this point, it should be clear why you are required to configure the <StartPage> element for a
SharePoint-hosted app by using the ~appWebUrl token. The URL to the app web is not known until

136   Inside Microsoft SharePoint 2013

the SharePoint host environment creates the new domain for the app web during installation. After
creating the domain for an app web, the SharePoint host environment can replace the ~appWebUrl
token with an actual URL.

Let’s examine the URL that is used to access the app web in greater detail. Consider the following
URL, which is used to access an app web in an on-premises farm:

wingtiptenant-ee060af276f95a.apps.wingtip.com/MyFirstApp

The first part of the app web URL (wingtiptenant) is based on the name of the tenancy where the
app has been installed. This value is configurable in an on-premises farm. In the Office 365 environ-
ment, the tenancy name is established when the customer creates a new account, and it cannot be
changed afterward.

The second part of the app web URL (ee060af276f95a) is known as an APPUID. This is a unique
14-character identifier created by the SharePoint host environment when the app is installed. Re-
member that the APPUID is really an identifier for an installed instance of an app, as opposed to an
identifier for the app itself.

The third part of the app web URL (apps.wingtip.com) is the app web hosting domain. You have the
ability to configure this in an on-premises farm to whatever value you would like. Just ensure that
you have also configured the proper Domain Name System (DNS) setting for this domain so that it
resolves to an IP address pointing to the web servers or servers of your on-premises farms. In Office
365, the app web hosting domain is always sharepoint.com.

Now ask yourself this fundamental question: why doesn’t the SharePoint host environment serve
up pages from the app web by using the same domain as the host web from which the app has been
launched? The reasons why the SharePoint host environment serves up pages from the app web in
their own isolated domain might not be obvious. There are two primary reasons why the SharePoint
app model does this. Both of these reasons are related to security and the enforcement of permis-
sions granted to an app.

The first reason for isolating an app web in its own private domain has to do with preventing
direct JavaScript calls from pages in the app web back to the host web. This security protection of the
SharePoint app model builds on the browser’s built-in support for prohibiting cross-site scripting (XSS).
Because JavaScript code running on pages from an app web originates from a different domain, this
code cannot directly call back to the host web. More specifically, calls from JavaScript running on app
webpages do not run with the same established user identity as JavaScript code behind pages in the
host web. Therefore, the JavaScript code running on app webpages doesn’t automatically receive the
same set of permissions as JavaScript code running on pages from the host web.

The second reason for creating an isolated domain for each app web has to do with processing
of JavaScript callbacks that occur on the web server of the SharePoint host environment. Because
the SharePoint host environment creates a new unique domain for each app web, it can determine
exactly which app is calling when it finds a JavaScript callback originating from a page in an app web.

The key point is that the SharePoint host environment is able to use an internal mechanism to
authenticate an app that uses JavaScript callbacks originating from its app web. As a result, the

	 Chapter 4  SharePoint apps    137

SharePoint host environment can enforce a security policy based on the permissions that have been
granted to the app.

Remember that a SharePoint app has a default set of permissions by which it can access its app
web but has no other permissions, by default, to access any other site. The ability of the SharePoint
host environment to authenticate an app by inspecting the URL of incoming calls originating from
the app web hosting domain is essential to enforcing this default permissions scheme.

Working with app user interface entry points
Every SharePoint app requires a start page. As you know, the URL to the start page is used within an
app launcher to redirect the user from the host web to the start page. This type of entry into the user
interface of the app is known as a full immersion experience because the app takes over the user inter-
face of the browser with a full-page view.

The user interface guidelines of SharePoint app development require the app start page to provide
a link back to the host web. This requirement exists so that a user can always return to the host web
from which the app has been launched. When you are developing a SharePoint-hosted app, there is a
standard master page used in app webs named app.master that automatically adds the required link
back to the host web for you.

When you are developing a cloud-based app with the start page in the remote web, you cannot
rely on a SharePoint master page to automatically provide the link on the start page to redirect the
user back to the host web. Instead, you must use a technique that involves reading the SPHostUrl
parameter, which is passed to the start page in the query string. This is one of the key reasons why
you always want to follow the practice of adding the {StandardTokens} token to the start page URL of
a cloud-hosted app.

There are several different techniques that you can use in the code behind a start page in the
remote web to read the SPHostUrl parameter value from the query string and use it to configure the
required link back to the host web. For example, you can accomplish this task with server-side C#
code or with client-side JavaScript code.

In addition to the required start page, a SharePoint app can optionally provide two other types
of entry points, known as app parts and UI custom actions. Unlike the start page, app parts and UI
custom actions are used to extend the user interface of the host web.

Building app parts
An app part is a user interface element that is surfaced on pages in the host web by using an IFrame.
After an app with an app part has been installed, a user can then add an app part to pages in the host
web by using the same user interface experience that is used to add standard Web Parts.

You implement an app part in Visual Studio 2012 by using a client Web Part. This makes most
developers ask, “What’s the difference between an app part and a client Web Part?” The best way
to think about this is that the term “app part” is meant for SharePoint users, whereas the term “client
Web Part” is used by developers to describe the implementation of an app part.

138   Inside Microsoft SharePoint 2013

Despite having similar names, client Web Parts are very different from the standard Web Parts that
are familiar to most SharePoint developers. In particular, a client Web Part cannot have any server-
side code that runs within the SharePoint host environment. The implementation of a client Web Part
must follow the rules of SharePoint app development.

Client Web Parts are supported under each of the three app hosting models. You implement a
client Web Part in a SharePoint-hosted app by using HTML, CSS, and JavaScript. In a cloud-hosted
app, you also have the option of implementing the behavior for a client Web Part by using server-side
code in the remote web.

At first, many developers assume that a client Web Part is nothing more than an IFrame wrapper
around an external webpage. However, the client Web Part provides significant value beyond that.
When you configure the URL within a client Web Part, you can use the same tokens as with the start
page, such as ~appWebUrl, ~remoteAppUrl, and {StandardTokens}. Client Web Parts also support
adding custom properties, as well. Furthermore, the page behind a client Web Part is often passed
contextual security information that allows it to call back into the SharePoint host environment with
an established app identity.

When you want to add a new client Web Part to a SharePoint app project, you use the Add New
Item command. The Add New Item dialog box in Visual Studio 2012 provides a Client Web Part item
template, as shown in Figure 4-7.

FIGURE 4-7  The Add New Item dialog box provides item templates for adding client Web Parts and UI custom
actions.

When you add a new project item for a client Web Part, Visual Studio 2012 adds an elements.
xml file to the SharePoint app project that contains a ClientWebPart element. The following code is

	 Chapter 4  SharePoint apps    139

a simple example of the XML definition for a client Web Part in a SharePoint-hosted app project that
is implemented by using a page inside the app web:

<ClientWebPart Name="MyAppPart" Title="My App Part" Description="My description"
 DefaultWidth="300" DefaultHeight="200" >

 <Content Type="html" Src="~appWebUrl/Pages/AppPart1.aspx" />

</ClientWebPart>

As you can tell from this example, the content displayed in a client Web Part is configured by as-
signing a URL to the Src attribute of the <Content> element. The webpage that is referenced by this
URL is usually added to either the app web or to the remote web. However, you can even reference
a webpage on the Internet that is neither in an app web nor in a remote web. The only important
restriction is that the webpage cannot be returned with the X-Frame-Options header in the HTTP re-
sponse. This is a header used by some websites to prevent its pages from being used inside an IFrame
with a type of attack known as clickjacking.

Here is something that can catch you off guard when creating a client Web Part in a SharePoint-
hosted app: the default behavior of SharePoint 2013 is to add the X-Frame-Options header with a
value of SAMEORIGIN in the HTTP response when it serves up pages from a SharePoint site. The result
of this is that a page served up from the app web will not work when you attempt to use it as the
page behind a client Web Part. The way to deal with this problem is to add the following directive to
the top of any page in the app web referenced by a client Web Part, to suppress the default behavior
of adding the X-Frame-Options header:

<WebPartPages:AllowFraming ID="AllowFraming1" runat="server" />

When you develop client Web Parts, you can add custom properties. The real value of custom
properties is that they can be customized by the user in the browser in the same way that a user
customizes the properties of standard Web Parts. You define a custom property by adding a
<Properties> element into the <ClientWebPart> element and then adding a <Property> element
within that, as illustrated in Listing 4-2.

LISTING 4-2  Client Web Part properties

<Properties>
 <Property
 Name="MyProperty"
 Type="string"
 WebBrowsable="true"
 WebDisplayName="My Custom Property"
 WebDescription="Insightful property description"
 WebCategory="Custom Properties"
 DefaultValue="Some default value"
 RequiresDesignerPermission="true" />
</Properties>

140   Inside Microsoft SharePoint 2013

After you have added a custom property, you must then modify the query string at the end of
the URL that is assigned to the Src attribute in the <Content> element. You do this by adding a query
string parameter and assigning a value based on a pattern by which the property name is given an
underscore before it and after it. Thus, for a property named MyProperty, you should create a query
string parameter and assign it a value of _MyProperty_. This would result in XML within the <Content>
element that looks like the following:

<Content
 Type="html"
 Src="~appWebUrl/Pages/AppPart1.aspx?MyPropertyParameter=_MyProperty_"
/>

Note that you can use any name you want for the query string parameter itself. It’s when you as-
sign a value to the parameter that you have to use the actual property name and follow the pattern
of adding the underscores both before and after.

Building UI custom actions
A UI custom action is a developer extension in the SharePoint app model with which you can add cus-
tom commands to the host site. The command for a UI custom action is surfaced in the user interface
of the host site by using either a button in the ribbon or a menu command in the menu associated
with items in a list or documents in a document library. This menu is known as the Edit Control Block
(ECB) menu. It is the act of installing an app with UI custom actions that automatically extends the
user interface of the host site with ribbon buttons and ECB menu commands.

As in the case of the client Web Part, UI custom actions are supported in each of the three app
hosting models. However, a UI custom action is different than the client Web Part because its purpose
is not to display content in the host web. Instead, it provides an executable command for business
users with which they can display a page supplied by the app. The page that is referenced by a UI
custom action can be in either the app web or the remote web.

As a developer, you have control over what is passed in the query string for a UI custom action.
This makes it possible to pass contextual information about the item or the document on which the
command was executed. This in turn makes it possible for code inside the app to discover informa-
tion, such as the URL that can be used to access the item or document, by using either the client-side
object model (CSOM) or the new Representational State Transfer (REST) API, which is discussed in
Chapter 5, “Client-side programming.”

Keep in mind that an app will require additional permissions beyond the default permission set
in order to access content in the host web. This topic is discussed in Chapter 6, “SharePoint security.”
This chapter will only discuss how to create a UI custom action that passes contextual information to
a page supplied by the app. Chapter 6 also covers what’s required to actually use this information to
call back into the SharePoint host environment.

	 Chapter 4  SharePoint apps    141

In the dialog box shown earlier in Figure 4-7, you can tell that Visual Studio 2012 provides a project
item template named UI Custom Action. When you use this item template to create a new UI custom
action, Visual Studio 2012 adds a new elements.xml file to your SharePoint app project. When you
look inside the elements.xml file you find a <CustomAction> element that you can modify to define
either an ECB menu item or a button on the ribbon.

Many SharePoint developers already have experience working with custom actions in SharePoint
2007 and SharePoint 2010. The good news is that the manner in which you edit the XML within the
<CustomAction> element for a SharePoint app project works the same way as it does for a SharePoint
solution project. The bad news is that many of the custom actions that are available when developing
farm solutions are not available when developing a SharePoint app.

In particular, a SharePoint app only allows for UI custom actions that create ECB menu commands
and ribbon buttons. The SharePoint app model imposes this restriction to provide a balance between
functionality and security concerns. Furthermore, you are prohibited from adding any custom JavaScript
code when you configure the URL for a UI custom action in a SharePoint app. If this restriction were
not enforced, JavaScript code from the app could call into the host site without being granted the
proper permissions.

Suppose that you want to create a UI custom action to add a custom ECB menu item to all the
items in every Contacts list within the host site. You can structure the <CustomAction> element to
look like that presented in Listing 4-3.

LISTING 4-3  A custom action definition

<CustomAction
 Id="CustomAction1"
 RegistrationType="List"
 RegistrationId="105"
 Location="EditControlBlock"
 Sequence="100"
 Title="Send Contact To App">

 <UrlAction Url="~appWebUrl/Pages/Action1.aspx" />

</CustomAction>

When you install an app with this UI custom action, it registers an ECB menu command for every
item in lists that have a list type ID of 105. This is the ID for the Contacts list type. After the app is in-
stalled, the host web will provide a custom menu item on the ECB menu for each item in any Contacts
list. An example of what the ECM menu command looks like is shown in Figure 4-8.

142   Inside Microsoft SharePoint 2013

FIGURE 4-8  A UI custom action can be used to add a custom menu command to the ECB menu associated with
an item or a document.

The default action of a UI custom action is to redirect the user to the page referenced by the URL
configured within the <UrlAction> element. This makes sense for a scenario in which you want to
move the user from the host web into the full-immersion experience of the app in order to do some
work. However, this default behavior will provide a distracting user interface experience for a scenario
in which a user wants to return to the host web immediately after viewing the page displayed by
the app. For these scenarios, you can modify the UI custom action to display the page from the app
as a dialog box in the context of the host web. This type of user interface experience is much better
because the user can view a page from the app without ever leaving the host web.

Listing 4-4 demonstrates the technique to display the page referenced by a UI custom action as
a dialog box, which involves adding three attributes to the <CustomAction> element. First, you add
the HostWebDialog attribute and assign it a value of true. Next, you add the HostWebDialogWidth
attribute and the HostWebDialogHeight attribute and assign them values to set the width and height
of the dialog box.

LISTING 4-4  Displaying a referenced page

<CustomAction
 Id="CustomAction1"
 RegistrationType="List"
 RegistrationId="105"
 Location="EditControlBlock"
 Sequence="100"
 Title="Display more information about this contact"
 HostWebDialog="TRUE"
 HostWebDialogWidth="480"
 HostWebDialogHeight="240" >

 <UrlAction Url="~appWebUrl/Pages/Action1.aspx" />

 </CustomAction>
</Elements>

	 Chapter 4  SharePoint apps    143

Now, let’s go into more detail about configuring the Url attribute of the <UrlAction> element.
When you configure the URL, you can use the same familiar tokens that you use with the start page
and with client Web Parts, such as ~appWebUrl, ~remoteAppUrl, and {StandardTokens}, as shown in
the following code:

<UrlAction Url="~appWebUrl/Pages/Action1.aspx" />

However, UI custom actions support several additional tokens beyond what is available for start
pages and client Web Parts. These are the tokens that make it possible to pass contextual information
about the item or document on which the command was executed. For example, you can pass the
site-relative URL to the item or document by using the {ItemURL} token:

<UrlAction Url="~appWebUrl/Pages/Action1.aspx?ItemUrl={ItemURL}" />

In most scenarios, you will also need the absolute URL to the root of the host web, which can be
passed by using the {HostUrl} token. Note that the Url is configured by using an XML attribute, so you
cannot use the “&” character when combining two or more parameters together. Instead, you must
use the XML-encoded value, which is &, as shown in the following example:

<UrlAction Url="~appWebUrl/Pages/Action1.aspx?HostUrl={HostUrl}&ItemURL={ItemUrl}" />

Note that the SharePoint host environment substitutes values into these tokens by using standard
URL encoding. This means that you must write code in the app to use a URL decoding technique be-
fore you can use these values to construct a URL that can be used to access the item or document.

Table 4-2 lists the tokens that can be used in UI custom actions, beyond those that are also
supported in start pages and client Web Parts. Note that some of the tokens work equally well
regardless of whether the UI custom action is used to create an ECB menu item or a button on the
ribbon. However, the {ListId} and {ItemId} tokens work with ECB menu items but not with buttons in
the ribbon. Conversely, the {SelectedListId} and {SelectedItemId} tokens work with buttons on the
ribbon but not with ECB menu items.

TABLE 4-2  The extra tokens available for configuring the URL for a UI custom action

Token Purpose

{HostUrl} Provides an absolute URL to the root of the host site

{SiteUrl} Provides an absolute URL to the root of the current site collection

{Source} Provides a relative URL to the page that hosts the custom action

{ListUrlDir} Provides a site-relative URL to the root folder of the current list

{ListId} Provides a GUID-based ID of the current list (ECB only)

{ItemUrl} Provides a site-relative URL to the item or document

{ItemId} Provides an integer-based ID of the item or document (ECB only)

{SelectedListId} Provides a GUID-based ID of the selected list (ribbon only)

{SelectedItemId} Provides an integer-based ID of the selected item or document
(ribbon only)

144   Inside Microsoft SharePoint 2013

Using the chrome control

Although apps are isolated from the host web, the end user should feel like the app is just a natural
extension of the host web. To achieve a seamless feel, apps should take on some of the styling ele-
ments of the host web and provide a navigation system that incorporates a link back to the host web.
If you are creating a SharePoint-hosted app, these issues are addressed by the app project template in
Visual Studio. However, if you are creating a provider-hosted or autohosted app, the remote web will
need some help in achieving these goals. This is the purpose of the chrome control.

With the chrome control, a remote web can use the header elements of a specific SharePoint site
(usually the host web) without knowing the styles ahead of time. In addition to styling, the chrome
control also provides a link back to the host web. Optionally, the chrome control can define a drop-
down list box similar to the Site Settings menu, and a Help menu. Figure 4-9 shows a remote web
displaying a table of contacts with the host web chrome visible at the top of the page. The figure also
shows the link back to the host web, as well as the drop-down list.

FIGURE 4-9  The chrome control lets the app take on the styling of its parent web.

The chrome control is contained within the sp.ui.controls.js library, which is located in the LAYOUTS
directory. The simplest way to use the library is to copy it into the remote web project. The library
contains the definition for the SP.UI.Controls.Navigation object, which can retrieve the style sheet
from the host web for use in the remote web. The SP.UI.Controls.Navigation object makes a call to the
defaultcss.ashx handler to retrieve the URL for the host web style sheet. The host web style sheet is
then downloaded for use by the chrome control. The chrome control then generates a header section
for the app into a target <div> element, which you specify.

	 Chapter 4  SharePoint apps    145

The chrome control relies on four parameters in the query string for its functionality: SPHostUrl,
SPHostTitle, SPAppWebUrl, and SPLanguage. If your app uses the {StandardTokens} query string in
the manifest and has an associated app web, then the start page URL will include the SPHostUrl,
SPAppWebUrl, and SPLanguage parameters. However, you will need to add the {HostTitle} token to
include the SPHostTitle parameter, as shown in Figure 4-10.

FIGURE 4-10  The start page query string can include additional parameters.

You can use the chrome control either programmatically or declaratively. When it is used program-
matically, you typically provide a target <div> element in the app page and create a library to set the
options for the SP.UI.Controls.Navigation object. Listing 4-5 presents a complete library for using the
chrome control.

LISTING 4-5  Using the chrome control

"use strict";

var WingtipToys = window.WingtipToys || {};

WingtipToys.ChromeControl = function () {

 render = function () {
 var options = {
 "appIconUrl": "../Images/AppIcon.png",
 "appTitle": "SharePoint 2013 MVC App",
 "appHelpPageUrl": "../Help?" + document.URL.split("?")[1],
 "settingsLinks": [
 {
 "linkUrl": "../Contacts/ReadAll?" + document.URL.split("?")[1],
 "displayName": "Contacts"
 },
 {
 "linkUrl": "../Welcome/Message?" + document.URL.split("?")[1],
 "displayName": "Home"
 }
]
 };

 var nav = new SP.UI.Controls.Navigation(
 "chrome_ctrl_placeholder",
 options
);
 nav.setVisible(true);
 },

146   Inside Microsoft SharePoint 2013

 getQueryStringParameter = function (p) {
 var params =
 document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");
 if (singleParam[0] == p)
 return decodeURIComponent(singleParam[1]);
 }
 }

 return {
 render: render
 }
}();

$(document).ready(function () {
 WingtipToys.ChromeControl.render();
});

When the ready event of the document fires, the render method of the WingtipToys.ChromeControl
object is called. This method sets the options for the SP.UI.Controls.Navigation object. Notice that
the options make it possible for the icon, title, help link, and navigation links to be defined. After it is
defined, the SP.UI.Controls.Navigation object is instantiated with the options and the identifier of the
<div> element where the chrome should be rendered.

When using the chrome control declaratively, you set the options directly in the markup of the
target <div> element. The chrome control will automatically render within the target <div> element
if it declares the data-ms-control=”SP.UI.Controls.Navigation”. attribute. Listing 4-6 demonstrates the
declarative equivalent of Listing 4-5.

LISTING 4-6  Using the chrome control declaratively

<div
 id="chrome_ctrl_container"
 data-ms-control="SP.UI.Controls.Navigation"
 data-ms-options=
 '{
 "appIconUrl": "../Images/AppIcon.png",
 "appTitle": "SharePoint 2013 MVC App",
 "appHelpPageUrl": "../Help?" + document.URL.split("?")[1],

	 Chapter 4  SharePoint apps    147

 "settingsLinks": [
 {
 "linkUrl": "../Contacts/ReadAll?" + document.URL.split("?")[1],
 "displayName": "Contacts"
 },
 {
 "linkUrl": "../Welcome/Message?" + document.URL.split("?")[1],
 "displayName": "Home"
 }
]
 }'>
</div>

Packaging and distributing apps

The final section of this chapter examines how SharePoint apps are distributed and deployed into
production, as well as how apps are managed over time. First, you will learn about the details of how
apps are packaged into redistributable files. After that, you will learn how these files are published
and installed to make SharePoint apps available to users. As you will find, the SharePoint app model
provides valuable support for managing apps in a production environment and upgrading to newer
versions.

Packaging apps
A SharePoint app is packaged up for deployment by using a distributable file known as an app pack-
age. An app package is a file built by using the zip archive file format and requires an extension of
.app. For example, if you create a new SharePoint-hosted app project named MySharePointApp, the
project will generate an app package named MySharePointApp.app as its output.

Note that the zip file format for creating an app package is based on the Open Package Con
vention (OPC). This is the same file format that Microsoft Office began using with the release of
Office 2007, for creating Word documents (.docx) and Microsoft Excel workbooks (.xslx).

The primary requirement for an app package is that it contains the app manifest as a top-level file
named AppManifest.xml. As discussed earlier in this chapter, the SharePoint host environment relies
on metadata contained in the app manifest so that it can properly configure an app during the instal-
lation process.

An app package will usually contain an app icon file named AppIcon.png. The AppIcon.png file,
like many of the other files in an app package, is paired with an XML file. For the app icon, the file
is named AppIcon.png.config.xml. The purpose of this XML file is to assign the AppIcon.png file an
identifying GUID.

148   Inside Microsoft SharePoint 2013

Understanding the app web solution package
In addition to the AppManifest.xml file, the app package often contains additional files that are used
as part of the app’s implementation. For example, the app package for a SharePoint-hosted app con-
tains a file for the app’s start page along with other resources used by the start page, such as a CSS
file and a JavaScript file. These are example of files that are added to the app web as part of the app
installation process.

The distribution mechanism used by a SharePoint app to add pages and lists to the app web dur-
ing installation is a standard solution package, which is a cabinet (CAB) file with a .wsp extension. If
this sounds familiar, that’s because the solution package file embedded within an app package has
the same file format as the solution package files that developers have been using to deploy Share-
Point solutions in SharePoint 2007 and SharePoint 2010. The one key difference is that the solution
package used by the SharePoint app model to add files to an app web is not a stand-alone file.
Instead, it is embedded as a .wsp file within the app package, as shown in Figure 4-11.

FIGURE 4-11  Elements added to an app web during the installation of an app are packaged in a solution package
file that is embedded inside the app package file.

When a user installs a SharePoint app, the SharePoint host environment examines the app package
to determine if it contains an inner solution package. It is the presence of an inner solution package
within the app package file that specifies to the SharePoint host environment whether it needs to
create an app web during installation. If the app package does not contain an inner solution package,
the SharePoint host environment installs the app without creating an app web.

	 Chapter 4  SharePoint apps    149

The app web solution package contains a single web-scoped feature. The SharePoint host environ-
ment activates this feature automatically on the app web immediately after the app web is created.
This feature is what makes it possible to add declarative elements such as pages and lists to the app
web as the app is installed.

An app web solution package cannot contain a .NET assembly DLL with server-side code. There-
fore, you can say that the app web solution package embedded inside an app package is constrained
because it must be a fully declarative solution package. This is different from the solution packages
for farm solutions and sandboxed solutions, which can contain assembly DLLs with custom .NET code
written in either C# or VB.NET.

Keep in mind that the installation of a SharePoint app doesn’t always result in the creation of an
app web. Some apps are designed to create an app web during installation, and some are not. A
SharePoint-hosted app is the type of app that will always create an app web during installation. This
is a requirement because a SharePoint-hosted app requires a start page that must be added to the
app web.

However, things are different with a cloud-hosted app. Because a cloud-hosted app usually has a
start page that is served up from a remote web, it does not require the creation of an app web during
installation. Therefore, the use of an app web in the design of a provider-hosted app or an autohosted
app is really just an available option as opposed to a requirement, as it is with a SharePoint-hosted app.

When you design a provider-hosted app or an autohosted app, you have a choice of whether
to create an app web during installation to store private app implementation details inside the
SharePoint host. Some cloud-hosted apps will store all the content they need within their own
external database and will not need to create an app web during installation. Other cloud-hosted
apps can be designed to create an app web during installation for scenarios in which it makes sense
to store content within the SharePoint host environment for each installed instance of the app.

Packaging host web features
This chapter has already discussed client Web Parts and UI custom actions. As you recall, these two
types of features are used to extend the user interface of the host web, as opposed to many of the
other types of elements in an app that are added to the app web. For this reason, the XML files con-
taining the definitions of client Web Parts and UI custom actions are not deployed within a solution
package embedded within the app package. Instead, the XML files that define client Web Parts and UI
custom actions are added to the app package as top-level files.

Consider an example SharePoint app named MyAppParts that contains two client Web Parts. The
contents of the app package for this app will contain a top-level elements.xml file for each of the client
Web Parts and a top-level feature.xml file for the feature that hosts them. When Visual Studio 2012
creates these XML files and builds them into the output app package file, it adds a unique GUID to
each file name to avoid naming conflicts, as illustrated in Figure 4-12.

150   Inside Microsoft SharePoint 2013

FIGURE 4-12  The XML files that define client Web Parts and UI custom actions are packaged as top-level files
within the app package.

The feature that hosts client Web Parts and UI custom actions is a web-scoped feature known as a
host web feature. The SharePoint host environment is able to detect a host web feature inside an app
package during app installation and activate it in the host web. When an app with a web host feature
is installed at tenancy scope, that feature will be activated in more than one site.

Packaging for autohosted apps
When it comes to packaging a SharePoint app for distribution, autohosted apps are more complicated
and deserve a little extra attention. The extra complexity is required because the app package for an
autohosted app must contain the resources required to create an ASP.NET application on demand to
deploy the remote web. An autohosted app can also be designed to create a SQL Azure database as
well during the app installation process.

When you create a new autohosted app, Visual Studio 2012 creates two projects. There is one
project for the app itself and a second web project for an ASP.NET application to implement the
remote web. For example, if you create a new autohosted app using the name MyAutoHostedApp,
Visual Studio 2012 creates an app project named MyAutoHostedApp and an ASP.NET project named
MyAutoHostedAppWeb and adds them to a single Visual Studio solution.

What is important to understand is that the app package built for the MyAutoHostedApp project
must contain all the necessary files to deploy the ASP.NET project named MyAutoHostedAppWeb.
This is a requirement because the installation of this app package must provide the Office 365 envi-
ronment with the means to provision the remote web as a Windows Azure application. This is what
makes it possible for an autohosted app to create its own remote web during the installation process.

Visual Studio 2012 relies on a packaging format that Microsoft created especially for the Windows
Azure environment, by which all the files and metadata required to deploy an ASP.NET application are
built into a single zip file for distribution. This zip file is known as a web deploy package. When used

	 Chapter 4  SharePoint apps    151

within the SharePoint app model, the web deploy package is embedded within the app package of an
autohosted app for distribution.

When Visual Studio 2012 builds the web deploy package for an autohosted app, it creates the
file by combining the app package name together with a web.zip extension. For example, an app
package named MyAutohostedApp.app will have an embedded web deploy package named
MyAutohostedApp.web.zip.

Now consider the scenario in which an autohosted app has an associated SQL Azure database. The
Office 365 environment must create this database on demand during app installation. Therefore, the
app package must contain the resources required to create a SQL Azure database containing stan-
dard database objects, such as tables, indexes, stored procedures, and triggers.

The SharePoint app packaging model takes advantage of a second packaging format that Microsoft
created for Windows Azure known as a Data Tier Application package. In this packaging format, the
metadata required to automate the creation of a SQL Azure database is defined in XML files that are
built into a zip file with an extension of .dacpac. The name of the Data Tier Application package is
typically based on the name of the database. For example, a SQL Azure database named MySqlData-
base will have an associated Data Tier Application package named MySqlDatabase.dacpac. If you look
inside a Data Tier Application package, you can locate a file named model.xml, which defines the
database objects that need to be created.

Figure 4-13 shows the layout of an app package for an autohosted app that will trigger the Office 365
environment to create a remote web and a SQL Azure database as part of the app installation proc
ess. Remember that the web deploy package is required in an autohosted app package, whereas the
Data Tier Application package is optional.

FIGURE 4-13  An autohosted app package contains a web deploy package to create the remote web and a Data
Tier Application package to create a SQL Azure database.

152   Inside Microsoft SharePoint 2013

When you create an autohosted app, Visual Studio 2012 automatically creates the web project
and takes care of setting up all that’s required to build the web deploy package into the app pack-
age. However, you have to take a few extra steps to create a SQL database project and configure it to
properly build the Data Tier Application package into the app package.

The first step is to create a new SQL database project in Visual Studio 2012 and add it to the same
solution that contains the autohosted project. Next, on the Properties page of the SQL database proj-
ect, go to the Project Settings tab and change the target platform setting to SQL Azure. This is the
step that changes the project output to a Data Tier Application package. After this, you must build
the SQL database project at least once to build the Data Tier Application package.

The final step is to configure the app project to reference the Data Tier Application package. You
can accomplish this by using the property sheet for the autohosted app project. You will find a proj-
ect property named SQL Package. After you configure the SQL Package property to point to the Data
Tier Application package (.dacpac) file, you have made the necessary changes so that Visual Studio 2012
can begin building the Data Tier Application package into the app package file.

Publishing apps
The app package is a distributable file that’s used to publish SharePoint apps. After the app pack-
age has been published, it is available for users to install. In the case of SharePoint-hosted apps and
autohosted apps, the app package contains all the resources required to deploy the app during the
installation process. However, provider-hosted apps require the developer to deploy the remote web
independently of the publication process and the installation process.

You publish a SharePoint app by uploading its app package file to one of two different places.
First, you can publish an app by uploading its app package to the public Office Store. This is the right
choice to make your app available to the general public, including users with SharePoint tenancies in
Office 365.

The second way to publish a SharePoint app is by uploading the app package to a special type of
site known as an app catalog site. This is the option to use when you want to make the app available
only to users within a specific Office 365 tenancy or within a specific on-premises farm.

Publishing SharePoint apps to the Office Store
To publish an app to the public Office Store, the developer must first create a dashboard seller ac-
count. You can create this type of account by navigating to https://sellerdashboard.microsoft.com in
your browser and logging on with a valid Windows Live ID. After you have logged on, you can create
a new dashboard seller account that is either an individual account or a company account.

A very appealing aspect of publishing apps to the Office Store with a dashboard seller account is
that it provides assistance with the management of licensing as well as collecting money from cus-
tomers through credit card transactions. When you create a dashboard seller account, you are able to
create a second payout account from which you supply Microsoft with the necessary details, so when

https://sellerdashboard.microsoft.com

	 Chapter 4  SharePoint apps    153

it collects money from customers purchasing your apps, it can transfer the funds you have earned to
either a bank account or a PayPal account.

After you have gone through the process of creating a dashboard seller account, it takes a day or
two for this new account to be approved. When your account has been approved, you can then begin
to publish your apps in the Office Store. The Office Store supports publishing three types of apps:
SharePoint apps, Apps for Office, and Windows Azure Catalog Apps.

You publish a SharePoint app by uploading its app package file and filling in the details associ-
ated with the app. For example, the publishing process for the Office Store requires you to provide
a title, version number, description, category, logo, and at least one screen shot that shows potential
customers what your app looks like.

When you publish a SharePoint app, you can also indicate via the seller dashboard whether your
app is free or must be purchased. If you publish an app for purchase, you can specify the licensing
fee for each user or for a specified number of users. There is even an option to configure a free trial
period for an app that has an associated licensing fee.

After you have uploaded an app and provided the required information, the app must then go
through an approval process. The approval process involves checking the app package to ensure that
it only contains valid resources. There are also checks to validate that the app meets the minimum
requirements of the user experience guidelines. For example, there is a check to ensure that the start
page for the app contains the required link back to the host web.

After the app has been approved, it is then ready for use and is added to the public Office Store,
where it can be discovered and installed by SharePoint users.

Publishing apps to an app catalog
What should you do if you want to publish an app but you don’t want to publish it to the Office
Store? For example, imagine a scenario in which you don’t want to make an app available to the
general public. Instead, you want to publish the app to make it available to a smaller audience, such
as a handful of companies who are willing to pay you for your development effort. The answer is to
publish the app to an app catalog site.

An app catalog site contains a special type of document library that is used to upload and store
app package files. Along with storing the app package file, this document library also tracks vari-
ous types of metadata for each app. Some of this metadata is required, whereas other metadata is
optional.

In the Office 365 environment, the app catalog site is automatically added when a tenancy is
created for a new customer. However, this is not the case in an on-premises farm. Instead, you must
explicitly create the app catalog site by using the Central Administration site or by using Windows
PowerShell. Furthermore, the app catalog is created at web application scope, so you must create a
separate app catalog site for each web application.

You must have farm administrator permissions within an on-premises farm to create an app cata-
log site. You begin by navigating to the home page of Central Administration. On the home page,

154   Inside Microsoft SharePoint 2013

there is a top-level Apps link. When you click the Apps link, you will be redirected to a page with a
group of links under the heading of App Management. Within this group of links, locate and click the
link titled Manage App Catalog.

The first time you click the Manage App Catalog link, you are redirected to the Create App Catalog
page, which you can use to create a new app catalog site, as shown in Figure 4-14. Note that the app
catalog site must be created as a top-level site within a new site collection. On the Create App Catalog
page, you can select the target web application that will host the new app catalog site.

FIGURE 4-14  Central Administration provides the Create App Catalog page, which makes it possible for you to
create an app catalog site within a specific web application.

Note that you can also use the Create App Catalog page to configure user access permissions to
the app catalog site. Remember that providing users with access to the app catalog site is what makes
it possible for them to discover and install apps of their own. You must provide read access to users if
you want them to have the ability to discover apps and install them at site scope. However, you might
decide against configuring user access to the app catalog site if you plan to install apps at tenancy
scope.

After you have created the app catalog site within an on-premises farm, you should navigate to
it and inspect what’s inside. You will find that there is a document library called Apps for SharePoint
that is used to publish SharePoint apps. There is a second document library called Apps for Office that
is used to publish apps created for Office applications such as Word and Excel.

You publish a SharePoint app by uploading its app package to the Apps for SharePoint document
library. The SharePoint host environment is able to automatically fill in some of the required app
metadata such as the Title, Version, and Product ID by reading the app manifest while the app pack-
age is uploaded. However, there is additional metadata that must be filled in manually or by some
other means. A view of apps that have been published in the Apps for SharePoint document library is
presented in Figure 4-15.

	 Chapter 4  SharePoint apps    155

FIGURE 4-15  The Apps for SharePoint document library tracks the app package file and associated metadata for
published apps.

You will also notice that the app catalog site supports the management of app requests from
users. The idea here is that a user within a site can request an app from the Office Store. The app
catalog administrator can view this request and decide whether to purchase the app or not. If the
app request seems appropriate, the app catalog administrator can purchase the app and make it
available for site-scope installation. Alternatively, the app catalog administrator can make the app
available to the requester by using a tenancy-scoped installation.

Installing apps
After an app has been published, it can be discovered and installed by a user who has administrator
permissions in the current site. The Site Contents page contains a tile labeled Add An App. Clicking this
tile redirects the browser to the main page for installing apps. This page displays apps that have been
published to the app catalog site. Remember that an Office 365 tenancy has a single app catalog site,
but on-premises farms have an app catalog site for each web application. Therefore, you will not find
apps that have been published to an app catalog site in a different web application.

A user requires administrator permissions within a site to install an app. If you are logged on with
a user account that does not have administrator permissions within the current site, you will not be
able to view apps that have been published in the app catalog site. This is true even when your user
account has been granted permissions on the app catalog site itself.

After you locate an app you want to install, you can simply click its tile to install it. The app instal-
lation process typically prompts you to verify whether you trust the app. A page appears that displays
a list of the permissions that the app is requesting, along with a button allowing you to grant or deny
the app’s permission request. You must grant all permissions that the app has requested to continue
with the installation process. There is no ability to grant one requested permission to an app while
denying another. Granting permissions to an app during installation is always an all-or-nothing
proposition.

After the app has been installed, you will find a tile for it on the Site Content page. This tile repre-
sents the app launcher that a user can click to be redirected to the app’s start page. The app title also
displays an ellipse you can click to display menu for app management, as illustrated in Figure 4-16.

156   Inside Microsoft SharePoint 2013

FIGURE 4-16  When an app has been installed, it can be launched and managed through its tile, which is displayed
on the Site Content page.

Recall from earlier in the chapter what happens during app installation. Some apps require an app
web. When this is the case, the app web is created as a child site under the current site where the app
has been installed. If the app contains host feature elements such as client Web Parts and UI custom
actions, these user interface extensions will be made available in the host site, as well.

Installing apps at tenancy scope
You have seen that the app catalog site provides a place where you can upload apps in order to publish
them. When an app has been published in the app catalog site, a user within the same Office 365
tenancy or within the same on-premises web application can discover the app and install it at site
scope. However, the functionality of an app catalog site goes one step further. It plays a central role in
installing apps at tenancy level.

You install an app at tenancy scope by installing it in an app catalog site. Just as with a site-scoped
installation, you must first publish the app by uploading it to the Apps for SharePoint document
library in the app catalog site. After publishing the app, you should be able to locate it on the Add
An App page of the app catalog site and install it just as you would install an app in any other type of
site. However, things are a bit different after the app has been installed in an app catalog site. More
specifically, the app provides different options in the menu that is available on the Site Content page,
as shown in Figure 4-17.

FIGURE 4-17  After an app has been installed in an app catalog site, it provides a Deployment menu, with which
you can make the app available for use in other sites.

	 Chapter 4  SharePoint apps    157

As shown in Figure 4-17, an app that has been installed in an app catalog site has a Deployment
menu command that is not available in any other type of site. When you click the Deployment menu
command, you are redirected to a page on which you can configure the app so that you can make it
available to users in other sites.

You have several different options when you configure an app in an app catalog site to make it
available in other sites. One option is to make the app available to all sites within the scope of the app
catalog site. Or you can be more selective and just make the app available in sites that were created
by using a specific site template or sites created under a specific managed path. There is even an op-
tion to add the URLs of site collections one by one, if you need fine-grained control.

After you configure the criteria for a tenancy-scoped app installation to indicate the sites in which
it can be used, you will find that the app does not appear in those sites instantly. That’s because
the SharePoint host environment relies on a timer job to push the required app metadata from the
app catalog site to all the other sites. By default, this timer job is configured to run once every five
minutes. During your testing you can speed things up by navigating to the Central Administration
site and locating the timer job definition named App Installation Service. The page for this timer job
definition provides a Run Now button that you can click to run the job on demand.

Upgrading apps
The upgrade process designed by the SharePoint app model provides a much better experience com-
pared to the upgrade process used with SharePoint solutions. When apps are published, the Office
Store and app catalog sites always track their version number. When an app is installed, the Share-
Point host environment detects this version number and records it for the installed app instance.

Take a simple example. Imagine you have uploaded version 1.0.0.0 of an app. After that, the app is
installed in several sites via site-scoped installation. The SharePoint host environment remembers that
each of these sites has installed version 1.0.0.0 of the app.

Now, imagine that you want to further develop your app. Maybe you need to fix a bug, improve
its performance, or extend the app’s functionality. After you have finished your testing, you decide
to update the version number to 2.0.0.0 and to publish the new version in the same app catalog site
where you installed the original version.

One important aspect of the upgrade process of the SharePoint app model is that an updated
version of an app is never forced upon the user who installed the app. Instead, the user is notified that
a new version of the app is available. This user can then decide to do nothing or to update the app to
the new version. Figure 4-18 shows the notification that the SharePoint host environment adds to the
app tile on the Site Contents page.

158   Inside Microsoft SharePoint 2013

FIGURE 4-18  The tile for an app displays a notification when an updated version has been published to the Office
Store or to the app catalog site.

The notification depicted in Figure 4-18 contains an update link that a user can click to be redirected
to a page with a button that activates the upgrade process. What actually occurs during the upgrade
process differs depending on whether the app is a SharePoint-hosted app or a cloud-hosted app.

When you are working on an updated version of a SharePoint-hosted app, you have the ability to
change some of the metadata in the app manifest and to add new elements into the app web. For
example, you could add a new page named startv2.aspx to the app web and then modify the app
manifest to use this start page instead of the start page that was used in original version of the app.
You could also add other, new app web elements such as JavaScript files, lists, and document libraries.
Many of the techniques used to upgrade elements in the app web are based on the same techniques
developers have been using with feature upgrade in SharePoint solutions.

When it comes to updating a cloud-hosted app, things are different. That’s because most of the
important changes to the app’s implementation are made to the remote web and not to anything
inside the SharePoint host environment. If you are working with a provider-hosted app, you must roll
out these changes to the remote web before you publish the new version of the app to the Office
Store or any app catalog site.

It’s equally important that the updated version of the remote web must continue to support
customers who will continue to use the original version of the app. Remember; there is nothing that
forces the user to accept an update. You should expect that some customers will be happy with the
original version and will be opposed to upgrading to a new version of an app.

After you have pushed out one or more updates to a provider-hosted app, you must begin to
track what version each customer is using. One technique to accomplish this task is to provide a dif-
ferent start page for each version of the app. Many provider-hosted apps will go a step further and
store the current version of app in a customer profile that is tracked in a custom database behind the
remote web.

Trapping app life cycle events
One favorable aspect of the SharePoint app model for developers is the ability to design a cloud-hosted
app with custom server-side code that is automatically executed when an app is installed, upgraded, or
uninstalled. By taking advantage of the ability to add code behind these three app life cycle events, you
can program against the host web and the app web with logic to initialize, update, and clean up site

	 Chapter 4  SharePoint apps    159

elements in the SharePoint environment. These app life cycle events also provide the necessary triggers
for updating the custom database used by provider-hosted apps and autohosted apps.

The architecture of app events is based on registering app event handlers in the app manifest
that cause the SharePoint host environment to call out to a web service entry point in the remote
web. Due to the architecture’s reliance on a server-side entry point, app events are not supported
in SharePoint-hosted apps. Therefore, you can only use the app events in autohosted apps and
provider-hosted apps.

It’s relatively simple to add support for app events to the project for an autohosted app or a
provider-hosted app. The property sheet for the app project contains three properties named Handle
App Installed, Handle App Uninstalling, and Handle App Upgraded, as shown in Figure 4-19.

FIGURE 4-19  The property sheet for a SharePoint app project provides three properties that you can use to add
support for app event handling.

The default value for each of these app event properties is false. The first time you change one of
these properties to a value of true, Visual Studio 2012 adds a web service entry point into the web
project with a name of AppEventReceiver.svc. Visual Studio 2012 also adds the required configuration
information into the app manifest file, as well. If you enable all three events, the <Properties> element
within <App> element of the app manifest will be updated with the following three elements:

<InstalledEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</InstalledEventEndpoint>
<UninstallingEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</UninstallingEventEndpoint>
<UpgradedEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</UpgradedEventEndpoint>

160   Inside Microsoft SharePoint 2013

After you have enabled one or more of the app events, you can then begin to write the code
that will execute when the events occur. You write this code in the code-behind file named App
EventReceiver.svc.cs. If you examine this file, you will find that Visual Studio 2012 has created
a class named IRemoteEventService (shown in the following code), which implements a special
interface that the SharePoint team created for remote event handling:

public class AppEventReceiver : IRemoteEventService {
 public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {}
 public void ProcessOneWayEvent(RemoteEventProperties properties) { }
}

The IRemoteEventService interface is used with app events and also with other types of remote
event handlers, as well. There are two methods named ProcessEvent and ProcessOneWayEvent. The
SharePoint host environment makes a web service call that executes the ProcessEvent method when
it needs to inspect the response returned from the remote web. The ProcessOneWayEvent method
is called for cases in which the SharePoint host environment needs to trigger the execution of code
in the remote web but doesn’t need to inspect the response. App events always trigger to the
ProcessEvent method, so you can leave the ProcessOneWayEvent method empty in the AppEvent
Receiver.svc.cs file.

If you have registered for the AppInstalled event, the ProcessEvent method will execute whenever
a user is installing the app. It is critical to supply robust error handling, because an unhandled excep-
tion will be returned to the SharePoint host environment and cause an error in the app installation
process.

When you implement the ProcessEvent method, you must return an object created from the
SPRemoteEventResult class, as demonstrated in the following:

public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {
 // return an SPRemoteEventResult object
 SPRemoteEventResult result = new SPRemoteEventResult();
 return result;
}

The SPRemoteEventResult class was designed to allow code in the remote web to relay contextual
information back to the SharePoint host environment. For example, imagine that you have detected
that the installer’s IP address is located in a country that you do not want to support. You can tell the
SharePoint host environment to cancel the installation process and pass an appropriate error mes-
sage, as shown here:

SPRemoteEventResult result = new SPRemoteEventResult();
result.Status = SPRemoteEventServiceStatus.CancelWithError;
result.ErrorMessage = "App cannot be installed due to invalid IP address";
return result;

	 Chapter 4  SharePoint apps    161

The ProcessEvent method passes a parameter named properties, which is based on a type named
RemoteEventProperties. You can use this parameter to access important contextual information such
as the URL of the host web and the security access token required to call back into the SharePoint
host environment. Listing 4-7 shows that the properties parameter also provides an EventType prop
erty, with which you can determine which of the three app events has caused the ProcessEvent
method to execute.

LISTING 4-7  Handling events

public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {

 // obtain context information from RemoteEventProperties property
 string HostWeb = properties.AppEventProperties.HostWebFullUrl.AbsolutePath;
 string AccessToken = properties.AccessToken;

 // handle event type
 switch (properties.EventType) {
 case RemoteEventType.AppInstalled:
 // add code here to handle app installation
 break;
 case RemoteEventType.AppUpgraded:
 // add code here to handle app upgrade
 break;
 case RemoteEventType.AppUninstalling:
 // add code here to handle app uninstallation
 break;
 default:
 break;
 }

 // return an SPRemoteEventResult object
 SPRemoteEventResult result = new SPRemoteEventResult();
 return result;

}

Note that debugging app event handlers can be especially tricky to set up, and in many situations
it doesn’t work at all. That’s because the SharePoint host environment must be able to call back into
the remote web. For cases in which you have installed the app into an Office 365 tenancy for testing,
it is a web server in the Office 365 environment that will be issuing the call to the remote web. This
web server hosted in the Office 365 environment must be able to locate and access the web server
hosting the remote web. Therefore, attempting to debug an app event handler for which the remote
web is configured to use a host name such as localhost or to use a host domain name that only re-
solves to the proper IP address inside your testing environment will not work.

162   Inside Microsoft SharePoint 2013

Summary

This chapter provided you with an introduction to SharePoint apps. You learned about the pain points
of SharePoint solution development and the design goals that influenced how the architecture of the
SharePoint app model was created. You also learned many details about app hosting models, user
interface design, publishing, installation, and upgrading. Now it’s time to move ahead and begin
learning about how to write code in an app that accesses the SharePoint host environment by using
the CSOM and the new REST API.

		 163

C H A P T E R 5

Client-side programming

The Microsoft SharePoint 2013 app model does not support running server-side code within
the SharePoint host environment. As a result, SharePoint developers cannot use the server-side

application programming interface (API) in apps. Instead, app developers must use the client-side
API, which consists of the client-side object model (CSOM) and the Representational State Transfer
(REST) API.

This chapter demonstrates the use of CSOM and REST in the various app designs. Along the way,
it introduces the required technical concepts necessary to understand the app designs and the best
practices for developing them. The chapter starts with a short JavaScript primer followed by a review
of the various patterns for creating reusable and maintainable libraries in JavaScript. It then covers the
fundamentals of the CSOM and REST object models.

Because app security is covered in Chapter 6, “SharePoint security,” the examples in this chapter
steer clear of situations that involve advanced app authentication. Instead, this chapter focuses on
the fundamentals necessary to successfully develop apps against CSOM and REST. The patterns and
principles presented in this chapter are subsequently applied in samples throughout the book.

Understanding app designs

When you are developing apps, you can program CSOM and the REST API by using either C# or
JavaScript. C# is used in remote webs associated with provider-hosted or autohosted apps. JavaScript
can run in the browser in SharePoint-hosted, provider-hosted, or autohosted apps. The combination
of languages and APIs results in the 12 different permutations shown in Table 5-1.

TABLE 5-1  App designs

Language API SharePoint-hosted Provider-hosted Autohosted

JavaScript CSOM Supported Cross-Domain Calls Cross-Domain Calls

JavaScript REST Supported Cross-Domain Calls Cross-Domain Calls

C# CSOM Not Supported Supported Supported

C# REST Not Supported Supported Supported

Although the choices outlined in Table 5-1 offer a lot of flexibility, you will find that some app
designs are much more natural choices than others. For example, if you want to do most of your
development in C#, you will find that CSOM in a provider-hosted or autohosted app is the most

164   Inside Microsoft SharePoint 2013

straightforward design. On the other hand, if you mostly want to create SharePoint-hosted apps for
Microsoft Office 365, JavaScript against the REST API will be the easiest design. The following sections
discuss these designs in detail.

Assessing SharePoint-hosted app designs
SharePoint-hosted apps can never use C# code and must use always use JavaScript. Developers can
use either REST or CSOM (also known as the JavaScript Object Model, JSOM). For most development,
REST is preferred over JSOM. REST is an Internet standard that many technologies—such as jQuery—
already use. Your app code is simply more “standard” when you use REST. REST techniques with
JavaScript are covered in the section “Working with the REST API in JavaScript” later in this chapter.

Though REST is more of a standard than JSOM, there are legitimate advantages to using JSOM
over REST. The most important advantage is that JSOM is currently a superset of REST functionality.
There are some operations that can’t be performed in REST. However, most of the basic operations—
such as list operations—are fully supported in REST. The second advantage of JSOM is that it currently
has much better documentation than the REST API. This is because it has been around since 2010.
The REST documentation will catch up over time, but right now it is often frustrating to do anything
beyond list operations. Finally, JSOM payloads are smaller than REST payloads. Some non-scientific
Fiddler analysis has shown REST payloads to be as much as twice the size of JSOM payloads. JSOM
techniques are covered in the section “Working with the JavaScript client object model” later in this
chapter.

Assessing cloud-hosted app designs
Cloud-hosted apps (meaning both provider-hosted and autohosted) can use JavaScript or C# against
both the CSOM and REST APIs. However, it is important to understand when to use each approach.
The most important consideration in this regard is the architecture of your SharePoint farm and
whether it is completely on premises, completely in the cloud, or a hybrid.

When working with apps hosted completely in the cloud, you often have to work with OAuth
tokens. The TokenHelper class, which is included in the Microsoft Visual Studio 2012 project template,
makes this much easier. So immediately you can see that C# is a better choice than JavaScript where
tokens are important. When working with apps hosted completely on premises, you do not have the
benefit of using OAuth. However, you can still make use of the TokenHelper class, which supports ad-
ditional functionality for server-to-server (S2S) authentication. The TokenHelper class, OAuth, and S2S
are covered in detail in Chapter 6.

When you have concluded that C# is the way to go, you’ll discover that writing CSOM code is
much easier than REST. CSOM can be used synchronously in the managed object model, which makes
the code very simple and straightforward. CSOM techniques are covered in the section “Working with
the managed client object model” later in this chapter. REST calls, on the other hand, have some seri-
ous drawbacks. First, they require asynchronous round trips to the server to acquire the FormDigest
from SharePoint as part of the authentication process. Second, you have to create POST messages by

	 Chapter 5  Client-side programming    165

hand in code, which can be messy. Both of these concerns are demonstrated in the section “Working
with the REST API in C#” later in this chapter.

When working in hybrid environments, you may have the situation in which a call from a Share-
Point Online app must be made back to an on-premises farm. In this case, the use of the TokenHelper
class will likely be precluded by a firewall. In this situation, the best approach is to use either the REST
or JSOM cross-domain library. These libraries allow cross-domain calls directly from JavaScript, which
will allow the call to made regardless of an intervening firewall. The cross-domain libraries are covered
in detail in Chapter 6.

Introduction to JavaScript for SharePoint developers

JavaScript takes on increased importance in app development. Therefore, this section presents a brief
overview of the JavaScript language and its key characteristics from the perspective of an experienced
SharePoint programmer. Although you have probably written some JavaScript, you might not have
taken the time to understand JavaScript at the level necessary to be successful in writing SharePoint
apps. If you are a JavaScript expert, you can certainly skip this section. If you have only used JavaScript
casually in your past SharePoint solutions, you should read this section thoroughly and pay special
attention to the discussion in the section “Creating Custom Libraries.”

Understanding JavaScript namespaces
As a SharePoint developer, you have probably written at least some JavaScript in a webpage; thus,
you understand that JavaScript code is made up of functions. These functions can be written directly
into the webpage by using script tags or referenced in separate library files. If you are more of a casu-
al JavaScript developer, however, you might not be aware that simply writing a named function places
that function in the global namespace. The global namespace is the container into which all variables
and functions are placed by default. In the browser, this container is the window object. Cluttering the
global namespace with functions can easily lead to naming conflicts and “spaghetti” code.

In addition to the global namespace, you can define your own custom namespaces. Namespaces
in JavaScript are essentially just containing objects defined within the global namespace. By using
custom namespaces, you can isolate your code from other JavaScript in the page. This is essential for
preventing naming conflicts. Custom namespaces are one of the few things that should be defined
within the global namespace. Most variables and functions are generally defined within a custom
namespace. The following code shows how to define a custom namespace:

var Wingtip = window.Wingtip || {};

In the sample code, a new namespace named Wingtip is defined. The code sets a global variable
named Wingtip to either reference an existing global variable or create a new one if it does not exist
already. This is the standard approach to creating namespaces because this line of code can exist in
several different libraries without causing a naming conflict. The first library loaded with this code
present establishes the namespace definition for those loaded later.

166   Inside Microsoft SharePoint 2013

Understanding JavaScript variables
Variables in JavaScript can be declared either in a namespace or within a function. Unlike C# variables,
JavaScript variables are not declared by using a data type keyword. Instead, JavaScript uses the var
keyword to define a variable. Although it is not strictly required, variables should always be declared
by using the var keyword. This is important because when it is not used, the variable is automatically
defined within the global namespace. When the var keyword is used outside of a function, the associ-
ated variable is always defined within the global namespace. When it is used within a function, the
associated variable is scoped to the function only. The following code shows an example of a global
variable, global function, and local variable:

<script type="text/JavaScript">
 var myGlobalVar = "This is a global variable";
 function myGlobalFunction() {
 alert("This function is defined in the global namespace");
 for (var i=0; i<5; i++) {
 alert("This variable is local to the function: " + i);
 }
 }
</script>

Variables can be defined within a custom namespace by simply referencing the namespace when
using the variable. The code that follows shows how to create a variable within a custom namespace.
The section “Creating custom libraries” later in this chapter expands upon this idea significantly to
show how to encapsulate code and keep it out of the global namespace:

var Wingtip = window.Wingtip || {};
var window.Wingtip.myNamespaceVar = "This is a variable defined within a namespace";

Although JavaScript does not have specific data type keywords, a declared variable does have a
type based on the value it holds. Variable types can be examined by using the typeof operator. The
typeof operator returns one of the following values when applied to a variable or function parameter:

■■ undefined

■■ string

■■ number

■■ Boolean

■■ function

■■ object

Because JavaScript is very loose with rules concerning variable and object definitions, you should
be sure to always use strict JavaScript in your apps. Strict JavaScript is an improved version of JavaS-
cript that can be enabled by adding the line “use strict” at the top of any library or function. Strict
JavaScript will prevent you from making many common mistakes in your code.

	 Chapter 5  Client-side programming    167

The following lists some of the key restrictions enabled by strict JavaScript.

■■ Cannot use a variable without declaring it

■■ Cannot write to a read-only property

■■ Cannot add properties to non-extensible objects

■■ Cannot illegally delete functions and variables

■■ Cannot define a property more than once in an object literal

■■ Cannot use a parameter name more than once in a function

■■ Cannot use reserved words, eval, or arguments as names for functions and variables

■■ The value of this in a function is no longer the window object

■■ Cannot declare functions inside of statements

■■ Cannot change the members of the arguments array

Understanding JavaScript functions
When writing functions, you need to understand that the function signature consists of the function
name, parameters, and scope. In C# programming against the SharePoint server-side API, the calling
code should match the function signature by passing in parameters that are typed appropriately.
Furthermore, an error is thrown when the calling code does not match the function signature. In
JavaScript, however, no error is thrown when the list of parameters passed to a function does not
match the function signature. Instead, all parameters are available within a function through the
arguments array. Consider the following JavaScript function:

function Add(){
 var sum = 0;
 for (var i=0; i<arguments.length; i++) {
 sum += arguments[i];
 }
 return sum;
}

The Add function definition does not include any parameters. Instead, the function looks through
the arguments array and simply adds together the values contained within it. Because of this, the fol-
lowing calls to the Add function will all succeed:

var sum1 = Add();
var sum2 = Add(7);
var sum3 = Add(7,11);
var sum4 = Add(7,11,21,36);

Functions in JavaScript are actually objects. As such, they can be assigned to a variable. The vari-
able referencing the function can then be invoked as if it were the name of the function. A function
can also be defined without a name, making it an anonymous function. The following code shows an
example of an anonymous function assigned to a variable named talk and then invoked:

168   Inside Microsoft SharePoint 2013

var talk = function() {
 alert("hello there!");
};
talk();

Understanding JavaScript closures
Because anonymous functions can be assigned to a variable, they can also be returned from other
functions. Furthermore, the local variables defined within the containing function are available
through the returned anonymous function. This concept is called a closure. Consider the following
code, which returns an anonymous function from a containing named function:

function echo (shoutText) {
 var echoText = shoutText + " " + shoutText;
 var echoReturn = function() { alert(echoText); };
 return echoReturn;
}

Because the return value from the named function is an anonymous function, the code that fol-
lows can be used to invoke the returned function. When the returned function is invoked, the browser
displays the text “Hello! Hello!”:

echo("Hello!")();

What is interesting in this example is the fact that the anonymous function is using the local vari-
able echoText within its body, and the local variable is available even after the function returns. This is
possible because the returned value is essentially a pointer to the anonymous function defined within
the named function, which means that the local variables do not go out of scope after the named
function completes. This is the essence of a closure in JavaScript.

At first glance, closures might appear to be more of a curiosity than a useful construct. However,
closures are essential to the process of creating encapsulated JavaScript that is maintainable. Consider
the following code:

function person (name) {
 var talk = function() { alert("My name is " + name); };
 return {
 speak:talk
 };
}

In the preceding example, an anonymous function is assigned to the local variable talk. The return
value of the function is an object that has a key speak, which references the value talk. By using this
type of closure, the function can be invoked by using method syntax, which returns the message “My
name is Brian Cox”:

person("Brian Cox").speak();

Notice how the code that invokes the function appears almost as if it is object oriented. Even
though JavaScript is clearly not object oriented, by using closures you can create functions that look

	 Chapter 5  Client-side programming    169

and feel more familiar to C# developers and significantly improve maintainability. This concept results
in several development patterns that are investigated in the section “Creating custom libraries” later
in this chapter.

Understanding JavaScript prototypes
A JavaScript object is really just an unordered collection of key-value pairs. Objects can be created
with the key-value pairs defined at the moment the object is created. The keys are then used to access
the values. The following code shows a simple customer object with a name property defined:

customer = {Name: "Brian Cox"};
alert("My name is " + customer["Name"]);

Every JavaScript object is based on a prototype, which is an object that supports the inheritance of
its properties. With prototypes, you can define the structure of an object and then use that structure
to create new object instances. Listing 5-1 shows an example of defining a prototype and creating an
object from it.

LISTING 5-1  Creating an object from prototypes

var human = Object.create(null);

Object.defineProperty(human, "name",
 {value: "undefined",
 writable: true,
 enumerable: true,
 configurable: true}
);

var customer = Object.create(human);

Object.defineProperty(customer, "title",
 {value: "undefined",
 writable: true,
 enumerable: true,
 configurable: true}
);

customer["name"] = "Brian Cox";
customer["title"] = "Developer";
alert("My name is " + customer["name"]);
alert("My title is " + customer["title"]);

In Listing 5-1, a null human prototype is created and then a single name property is defined. The
human prototype is then used to create an instance called customer. The customer prototype is then
modified to contain a title property. If you call a property on an object but the property does not
exist, JavaScript will look for the property by following the prototype chain up the inheritance tree. In
this case, the name property of the customer is defined in the human prototype.

170   Inside Microsoft SharePoint 2013

Using prototypes is very efficient when you are creating large numbers of objects because the
functions do not need to be created for each instance. This behavior results in development patterns
that are presented in the next section.

Creating custom libraries
Even though the function-based nature of JavaScript makes it deceptively easy to get started, most
developers who are new to the language simply write global functions directly in the webpage. This
practice, however, is seriously flawed because naming conflicts will inevitably arise between functions
in libraries. Furthermore, writing reams of functions in the global namespace is simply unmaintain-
able. This section examines several approaches for creating custom libraries that are efficient and
maintainable.

Understanding the singleton pattern
The singleton pattern creates a single instance of an object that encapsulates code within it. The
singleton pattern is a straightforward implementation of an object designed to encapsulate code
and keep it out of the global namespace. As an example, consider the following code that sets up a
custom namespace and then defines a singleton:

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Customer = {

 name: "Brian Cox",
 speak: function() { alert("My name is " + this.name); }

};

Within the Customer object, each member is added by declaring a publicly accessible key, followed
by the definition of a function or object as the value. Note the use of the this keyword within the
speak function to reference the name member object. Calling code might interact with the publically
accessible members as shown in the following code:

Wingtip.Customer.speak();

The singleton pattern does a nice job of encapsulating code into the Customer object outside of
the global namespace. Additionally, the calling code is straightforward, readable, and maintainable.
The entire Customer definition could subsequently be packaged into a separate file (for example,
wingtip.customer.js) and reused across several apps. The obvious disadvantage of this pattern is that
you can only have one customer. In a typical SharePoint app, you are going to need to create many
customer instances.

	 Chapter 5  Client-side programming    171

Understanding the module pattern
The module pattern and its variants use a function instead of an object as the basis for encapsulation.
The advantage of the module pattern is that it can support private members, public members, and
multiple instances; the exact support is based on the pattern variant you use.

The standard module pattern uses a self-invoking function as the container. The standard module
pattern can be regarded as an improved version of the singleton pattern because it still only supports
one instance. Listing 5-2 shows an example of the module pattern.

LISTING 5-2  The module pattern

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Customer = function () {

 //private members
 var name = "Brian Cox",
 talk = function() {alert("My name is " + name);};

 //public interface
 return {
 fullname: name,
 speak: talk
 }

}();

In Listing 5-2, notice that the function definition is followed by a set of parentheses. It is these
parentheses that make the function self-invoking. The return value is an object whose key-value pairs
reference the private members, which effectively creates a public interface for the library. The follow-
ing code shows how the module is called:

alert(Wingtip.Customer.fullname);
Wingtip.Customer.speak();

Note that the return value doesn’t have to actually provide a key-value pair for every one of the
private members. When the return value reveals only a subset of the members, the pattern is said
to be a variant of the module pattern known as the revealing module pattern. The revealing module
pattern allows for the definition of private members that are inaccessible through the public interface.
Listing 5-3 shows an example that uses get and set functions to access the name member.

172   Inside Microsoft SharePoint 2013

LISTING 5-3  The revealing module pattern

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Customer = function () {

 //private members
 var name,
 setname = function(n) { name = n; },
 getname = function() { return name; },
 talk = function() {alert("My name is " + name);};

 //public interface
 return {
 set_name: setname,
 get_name: getname,
 speak: talk
 }

}();

If the parentheses are removed from the function, it is no longer self-invoking. To make use of the
module, you must create an instance referenced by a new variable. Using this variant of the module
pattern, you can create multiple customer instances for use, which should feel very familiar to C#
developers. The following code shows how to create an instance if the module were not self-invoking:

var customer1 = new Wingtip.Customer();
customer1.set_name("Brian Cox");
customer1.speak();

Understanding the prototype pattern
Unlike previous patterns, the prototype pattern does not rely on closures to achieve its functionality.
Instead, it relies on the inheritance of the prototype chain. The prototype provides a means of defin-
ing members in a single place for use by many instances. Every object in JavaScript has a prototype
property with which you can expand to include new members. This sets up a very interesting pattern
that you can use to define a prototype that can be used to create instances later. If you’re a C# devel-
oper, this feels a lot like defining a class from which instances are created. The following code shows
an example of the prototype pattern:

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Customer = function (n) {
 this.name = n;
};

Wingtip.Customer.prototype.speak = function() {
 alert("My name is " + this.name);
}

	 Chapter 5  Client-side programming    173

The prototype pattern begins with the definition of a function. This function often accepts ini-
tialization parameters, which are stored in variables defined within the prototype by using the this
keyword. The initial function definition acts as the constructor for new instances, which means that
the variables defined within it are also defined for each instance as part of the prototype.

The prototype associated with a function can easily be extended by referencing the prototype
property and adding a new member. In the example, a speak function is added to the prototype. As
an alternative, you can also define the prototype as an object containing many functions, as shown in
the following code:

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Customer = function (n) {
 this.name = n
};
Wingtip.Customer.prototype = {
 get_name: function() { return this.name; },
 set_name: function(n) { this.name = n; },
 speak: function() { alert("My name is " + this.name); }
};

The prototype pattern can also be combined with the module pattern by simply defining a self-
invoking function in the prototype. Additionally, defining members separately is not required; you
could simply define all members in the constructor, as shown in the code that follows. In summary,
you can create hybrid patterns by combining several concepts together:

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Customer = function (n) {
 this.name = n;
 this.speak = function() { alert("My name is " + this.name); };
};

After the prototype is defined, you can create instances by using the new keyword. Each instance
inherits the definition of the function prototype. The code that follows shows how to create an
instance and invoke a function. The resulting code has a decidedly object-oriented feel that should
make C# programmers comfortable:

var customer1 = new Wingtip.Customer("Brian Cox");
customer1.speak();

Introduction to jQuery for SharePoint developers

In the same way that developers can build and reuse their own JavaScript libraries, third parties have
created JavaScript libraries that can simply be referenced and used in app development. Although
there are many third-party libraries available on the Internet, one library, jQuery, is so popular that it
has almost become synonymous with JavaScript itself.

174   Inside Microsoft SharePoint 2013

The reason for the popularity of jQuery is that it does two very important things extremely well:
it makes it easy to select elements from the document object model (DOM) and then perform op-
erations on the selected elements. jQuery is so important that Microsoft has included it in the app
project template in Visual Studio 2012. Therefore, SharePoint app developers must understand
how to use the jQuery library. The following sections present a brief introduction to jQuery from a
SharePoint app developer perspective. Readers who want complete coverage of the library should
visit the jQuery website at http://www.jquery.com.

Referencing jQuery
To include any JavaScript library in an app, you must reference it by using a script tag. The script tag
refers to the location of the library so that it can be downloaded. In the Visual Studio app project
template, the jQuery library is included as a file and referenced in the Default.aspx page, as shown in
the following code:

<script type="text/javascript" src="../Scripts/jquery-1.6.2.min.js"></script>

Along with directly hosting the jQuery library in your app, you can also choose to use a content
delivery network (CDN). A CDN hosts the jQuery library in the cloud so that it is always available. Ref-
erencing a CDN can improve performance of public-facing apps because the library is downloaded
in parallel and cached. The same version of the library can then be used across several different apps.
The following code shows how to reference the Microsoft CDN for jQuery:

<script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.8.0.min.js" type="text/javascript">
</script>

Understanding the global function
The jQuery library is encapsulated in a single function named jQuery, which is known as the global
function. By using the global function, you can easily select elements from the DOM, which is fun-
damental to any JavaScript solution. To select DOM elements, the global function is invoked and
selector syntax is passed. The following code shows the traditional method of selecting elements in
JavaScript by using the getElementById method, contrasted with the jQuery approach:

var elem1 = document.getElementById("displayDiv");
var elem2 = jQuery("#displayDiv");

In the preceding code, the jQuery selector syntax uses the hash sign to indicate that the selector
corresponds to the ID of the desired element. You can simplify this code even further because the
jQuery library uses the $ symbol as an alias for the global function. Therefore, the following code is
equivalent:

var elem1 = document.getElementById("displayDiv");
var elem2 = $("#displayDiv");

http://www.jquery.com

	 Chapter 5  Client-side programming    175

Understanding selector syntax
At first, it might seem that selecting DOM elements by using jQuery is not that exciting. The power
of jQuery, however, lies in the fact that the selector syntax is identical to that used in cascading style
sheets (CSS). This means that you can use a rich, familiar selector syntax to reference any part of
the DOM, which becomes a powerful and efficient way to manipulate the DOM elements. Table 5-2
shows common selection operations and how to accomplish them in jQuery.

TABLE 5-2  jQuery selector syntax

Operation Example Description

Select elements by type $("p") Selects all paragraph elements in the
page

Select elements by ID $("#container") Selects the element whose ID is “con-
tainer”

Select elements by class $(".emphasis") Selects all elements with a class attri-
bute of “emphasis”

Select elements by type and ID $("div#displayDiv") Select the div element whose ID is
“displayDiv”

Select elements by ancestor and de-
scendant

$("div#displayDiv p") Select all paragraph elements within
the div whose ID is “displayDiv”, re-
gardless of where they are inside the
div element

Select elements based on their parent $("div#displayDiv > p") Select all paragraph elements that
are children of the div whose ID is
“displayDiv”

Select the first child of a parent $("ul#displayList > li:first") Select the first list item element
in the unordered list whose ID is
“displayList”

Select the last child of a parent $("ul#displayList > li:last") Select the last list item element
in the unordered list whose ID is
“displayList”

Select elements by attribute $("input[name='firstName']") Select the input element whose name
attribute is “firstName”

After you understand the common selection operations, you can move ahead to combine them in
order to create more sophisticated selectors. The jQuery library also supports a number of extensions
that provide yet more capabilities. A complete description of supported selectors is available on the
jQuery website at http://api.jquery.com/category/selectors/.

Understanding jQuery methods
After you have selected DOM elements, you will want to manipulate them. This is where jQuery meth-
ods come into play. The jQuery library has a tremendous number of methods that perform all kinds of
useful DOM manipulations. These manipulations are always performed on the collection of elements
returned from the jQuery global function. Table 5-3 shows some commonly used jQuery methods.

http://api.jquery.com/category/selectors/

176   Inside Microsoft SharePoint 2013

TABLE 5-3  Common jQuery methods

Method Example Description

Read the HTML within an element var x = $("#displayDiv").html(); Returns the inner HTML of the ele-
ment whose ID is “displayDiv”

Modify the HTML within an element $("#displayDiv").
html("<p>Hello</p>")

Sets the inner HTML of the element
whose ID is “displayDiv”

Read the text of an element $("ul#displayList > li:first").
text();

Returns the text of the first list item
in the unordered list whose ID is
“displayList”

Modify the text of an element $("ul#displayList > li:first").
text("Item 1");

Sets the text of the first list item
in the unordered list whose ID is
“displayList”

Read the value of a style property var x = $("#displayDiv").
css("marginTop");

Returns the value of the “margin-top”
CSS property for the element whose
ID is “displayDiv”

Set the value of a style property $("#displayDiv").
css("marginTop","5px");

Sets the value of the “margin-top”
CSS property for the element whose
ID is “displayDiv” to “5px”

Add a CSS class to an element $("#displayDiv").
addClass("emphasis")

Adds the CSS class named “emphasis”
to the element whose ID is
“displayDiv”

Remove a CSS class from an element $("#displayDiv").
removeClass("emphasis")

Removes the CSS class named
“emphasis” from the element
whose ID is “displayDiv”

Hide an element $("#displayDiv").hide() Hides the element whose ID is
“displayDiv”

Show an element $("#displayDiv").show() Shows the element whose ID is
“displayDiv”

Toggle the display of an element $("#displayDiv").toggle() Hides the element whose ID is
“displayDiv” if it is visible; otherwise,
shows it

jQuery supports many methods for manipulating DOM elements beyond what is shown in
Table 5-3. The complete reference of supported methods is available at http://api.jquery.com/
category/manipulation. Furthermore, jQuery methods can be chained together so that you can
perform several operations in a single line of code. The following code changes the inner HTML
of an element, adds a class, and then displays the result, all in a single line:

$("displayDiv").html("<p>Hello</p>").addClass("emphasis").show();

Understanding jQuery event handling
Along with selecting and manipulating elements, you can use jQuery to attach event handlers to
DOM elements. By handling events in jQuery, you can keep your JavaScript code out of the webpage
and contained within custom libraries. This approach makes your code much more maintainable and
isolated than using a more traditional approach to bind events to DOM elements.

http://api.jquery.com/category/manipulation
http://api.jquery.com/category/manipulation

	 Chapter 5  Client-side programming    177

The basic approach for binding events is to select the target DOM element by using the global
function and then bind the event. The code to run in response to the event can be defined directly
in the binding as an anonymous function. The following code shows a simple example of binding the
click event of all paragraph elements:

$("p").click(function (e) {
 alert($(e.target).text());
});

Notice in the preceding code that the function handling the click event is defined in line with the
binding. Additionally, notice how the element that caused the event can be determined by selecting
e.target within the function. Complete documentation for the events supported by the jQuery library
is available at http://api.jquery.com/category/events.

Of all the events available in jQuery, the most important is the ready event of the document object.
This event fires when the DOM is ready for selection and manipulation. The SharePoint-hosted app
project template in Visual Studio 2012 automatically adds this event handler into the Apps.js library of
the app to act as the starting point. This is a pattern that you should follow in your apps as well.

Working with the client-side object model

SharePoint 2010 introduced the client-side object model (CSOM) as a way to program against a
Windows Communication Foundation (WCF) endpoint in SharePoint by using a style that mimicked
server-side API development. Prior to the introduction of CSOM, SharePoint developers had only a
limited set of web services available for use from client-side code. With the introduction of CSOM,
developers had a way to access a significant portion of core SharePoint functionality from C# (called
the Managed Client Object Model), JavaScript, and Silverlight. Although the Silverlight CSOM is still
available in SharePoint 2013, its primary role is for creating mobile apps, so this chapter focuses on
the managed and JavaScript implementations of CSOM.

Understanding client object model fundamentals
The managed and JavaScript client object models are maintained in separate libraries, which are
located under the SharePoint system directory. The managed client object model is contained in the
assemblies Microsoft.SharePoint.Client.dll and Microsoft.SharePoint.ClientRuntime.dll, which can be
found in the ISAPI folder. The JavaScript client object model is contained in the library sp.js, which is
located in the LAYOUTS folder. Although each of the models provides a different programming inter-
face, each interacts with SharePoint through a WCF service named Client.svc, which is located in the
ISAPI directory. Figure 5-1 shows a basic architectural diagram for the client object models.

http://api.jquery.com/category/events

178   Inside Microsoft SharePoint 2013

FIGURE 5-1  An overview of the client object model architecture

In SharePoint 2013, CSOM has been greatly expanded to include functionality from workloads
outside of SharePoint Foundation. By using CSOM, app developers now have client-side access to
Enterprise Search, Business Connectivity Services, Managed Metadata, Social, and much more. This
additional functionality is made available through separate assemblies and libraries that can be refer-
enced in your apps.

Each of the object models presents an object interface in front of a service proxy. Developers write
client-side code by using the object model, but the operations are batched and sent as a single XML
request to the Client.svc service. When the XML request is received, the Client.svc service makes calls
to the server-side object model on behalf of the client. The results of the server-side calls are then
sent back to the calling client in the form of a JavaScript Object Notation (JSON) object.

Understanding contexts
As in the standard code you write against the server-side object model, CSOM requires a starting
point in the form of a context object. The context object provides an entry point into the associated
API that can be used to gain access to other objects. When you have access to the objects, you can
interact with the scalar properties of the object freely (for example, Name, Title, Url, and so on).
Listing 5-4 shows how to create a context in each of the models and return an object representing
asite collection. When the site collection object is returned, the Url property is examined.

	 Chapter 5  Client-side programming    179

LISTING 5-4  Creating contexts

//Managed Client Object Model
string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//JavaScript Client Object Model
var siteCollection;
var ctx = new SP.ClientContext.get_current();
siteCollection = ctx.get_site();
ctx.load(siteCollection);
ctx.executeQueryAsync(success, failure);

function success() {
 var url = siteCollection.get_url();
}
function failure() {
 alert("Failure!");
}

The ClientContext class in the managed object model inherits from the ClientContextRuntime class.
By using the ClientContext class, you can get a valid runtime context by passing in the URL of a site.
In Listing 5-4, the URL of the app web is retrieved from the SPAppWebUrl querystring parameter.
This URL is always available to the remote web and can be used to create a client context in scenarios
where the SharePoint app is using the “internal” security principal. Scenarios that use OAuth tokens
for app authentication are covered in Chapter 11, “SharePoint site provisioning.”

The SP.ClientContext object in the JavaScript client object model inherits from the SP.ClientContext
Runtime object and provides equivalent functionality to the ClientContext class found in the managed
client object model. As in the managed model, you can get a runtime context in the JavaScript model
by using the SP.ClientContext class and passing a URL. In Listing 5-4, the context is created by using
the get_current method, which returns a client context for the app web.

Loading and executing operations
The ClientContextRuntime class used by the managed client defines two methods for loading objects:
Load and LoadQuery. You use these load methods to designate objects that should be retrieved from
the server. The Load method specifies an object or collection to retrieve, whereas you use the Load-
Query method to return collections of objects by using a Language-Integrated Query (LINQ) request.

180   Inside Microsoft SharePoint 2013

Executing the Load or LoadQuery method does not cause the client to communicate with the
server. Instead, it adds the load operation to a batch that will be executed on the server. In fact, you
can execute multiple load methods (as well as other operations) before calling the server. Each opera-
tion is batched waiting for your code to initiate communication with server. To execute the batched
operations, your code must call the ExecuteQuery method in managed code or the ExecuteQuery-
Async method in JavaScript. The ExecuteQuery method creates an XML request and passes it to the
Client.svc service synchronously. The ExecuteQueryAsync method sends the request asynchronously.
Designated success and failure callback methods receive notification when the asynchronous batch
operation is complete.

The sample code in Listing 5-4 uses the Load method to request an object representing the cur-
rent site collection. When an object is returned, you can generally access any of the scalar properties
associated with the object. In cases for which you do not want to return all of the scalar properties
for a given object, you can designate the properties to return. In the managed object, properties are
designated by providing a series of lambda expressions. In the JavaScript object model, properties are
designated by name. This technique helps to minimize the amount of data sent between the client
and server. The following code shows how to request only the Title and ServerRelativeUrl properties
for a web object:

//Managed CSOM references properties via lambda expressions
ctx.Load(site, s=>s.Title, s=>s.ServerRelativeUrl);

//JavaScript CSOM references properties by name
ctx.Load(site, "Title", "ServerRelativeUrl");

Working with the managed client object model
Because the managed client object model is supported by Microsoft IntelliSense, is checked at com-
pile time, and functions synchronously, many developers choose to develop apps that use remote
webs and the managed CSOM to communicate with SharePoint. Using the managed client object
model is a simple matter of setting a reference to the assemblies Microsoft.SharePoint.Client.dll and
Microsoft.SharePoint.ClientRuntime.dll, adding a using statement for the Microsoft.SharePoint.Client
namespace, and writing code. This section details how to perform basic operations with the managed
client object model.

Returning collections
When working with the client object models, you will quite often be interested in returning col-
lections of items such as all the lists in a site or all of the items in a list. Collections of items can be
returned by using either the Load or LoadQuery method. When specifying the items of a collection
to return, you can use the Load method along with a LINQ query formatted by using method syntax.
Additionally, you can use the LoadQuery method with a LINQ query formatted by using query syntax.
Listing 5-5 shows how to return all of the list titles in a site for which the Title is not NULL.

	 Chapter 5  Client-side programming    181

LISTING 5-5  Returning collections by using LINQ

string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 //Method Syntax
 ctx.Load(ctx.Web,
 w => w.Lists.Include(l => l.Title).Where(l => l.Title != null));
 ctx.ExecuteQuery();

 foreach (List list in ctx.Web.Lists)
 {
 Response.Write(list.Title);
 }

 //Query Syntax
 var q = from l in ctx.Web.Lists
 where l.Title != null
 select l;

 var r = ctx.LoadQuery(q);
 ctx.ExecuteQuery();

 Response.Write("");
 foreach (var i in r)
 {
 Response.Write("");
 Response.Write(i.Title);
 Response.Write("");
 }
 Response.Write("");
}

Handling errors
Because of the disconnected nature of the client object model, error handling is especially important.
You might see errors thrown when you attempt to access an object or value that has not yet been
retrieved from the server. You might also see errors if you create a query that is not meaningful in the
current context, such as trying to retrieve list items before loading the associated list. Finally, you must
deal with errors that happen in the middle of batch operations on the server. All of these situations
mean that you must pay special attention to error handling in your CSOM solutions.

If you attempt to access a scalar property that has not been retrieved, you will receive a Property-
OrFieldNotInitializedException error. If you make a request to the server that is deemed invalid, you
will receive a ClientRequestException error. If your LINQ query is invalid, you will receive an Invalid-
QueryExpressionException error. General errors thrown on the server during execution of a request
will result in a ServerException error. Listing 5-6 shows code that generates the various runtime errors
you might see when working with the managed client object model.

182   Inside Microsoft SharePoint 2013

LISTING 5-6  Handling request errors

string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 try
 {
 //Fails because the object was not initialized
 //Requires Load() and ExecuteQuery()
 Response.Write(ctx.Web.Title);
 }
 catch (PropertyOrFieldNotInitializedException x)
 {
 Response.Write("<p>Property not initialized. " + x.Message + "</p>");
 }

 try
 {
 //Fails because Skip() and Take() are meaningless
 //in the context of a list collection
 ctx.Load(ctx.Web, w => w.Lists.Skip(5).Take(5));
 ctx.ExecuteQuery();
 }
 catch (InvalidQueryExpressionException x)
 {
 Response.Write("<p>Invalid LINQ query. " + x.Message + "</p>");
 }

 try
 {
 //Fails because InvalidObject is a meaningless object
 InvalidObject o = new InvalidObject(ctx, null);
 ctx.Load(o);
 ctx.ExecuteQuery();
 }
 catch (ClientRequestException x)
 {
 Response.Write("<p>Bad request. " + x.Message + "</p>");
 }

 try
 {
 //Fails because the list does not exist
 //The failure occurs on the server during processing
 ctx.Load(ctx.Web,w=>w.Lists);
 List myList = ctx.Web.Lists.GetByTitle("Non-Existent List");
 myList.Description = "A new description";
 myList.Update();
 ctx.ExecuteQuery();

 }

	 Chapter 5  Client-side programming    183

 catch (ServerException x)
 {
 Response.Write("<p>Exception on server. " + x.Message + "</p>");
 }
}

After you have looked over the errors that can occur during operations, the ServerException error
should stand out as noteworthy. This is because the ServerException error is thrown when an opera-
tion fails on the server. Furthermore, the failing operation could be in the middle of a large batch
of operations, which can lead to unpredictable behavior. The fundamental challenge with the batch
model embodied in the client object model is that you need a way to respond to errors that happen
on the server so that the remainder of the batch operations can finish processing. The ServerExcep-
tion error is thrown on the client after the batch has failed, which gives you no opportunity to correct
the error.

Fortunately, CSOM provides a mechanism for sending error-handling instructions to the server
along with the batch operations. You can use the ExceptionHandlingScope object to define a try-
catch-finally block that embodies server-side operations. If errors occur during processing on the
server, they are handled on the server by the code embodied in the ExceptionHandlingScope object.
Listing 5-7 shows how exception-handling scopes are implemented in the managed client object
model.

LISTING 5-7  Handling errors in a scope

string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 //Set up error handling
 ExceptionHandlingScope xScope = new ExceptionHandlingScope(ctx);

 using (xScope.StartScope())
 {
 using (xScope.StartTry())
 {
 //Try to update the description of a list named "My List"
 List myList = ctx.Web.Lists.GetByTitle("My List");
 myList.Description = "A new description";
 myList.Update();
 }

184   Inside Microsoft SharePoint 2013

 using (xScope.StartCatch())
 {
 //Fails if the list "My List" does not exist
 //So, we'll create a new list
 ListCreationInformation listCI = new ListCreationInformation();
 listCI.Title = "My List";
 listCI.TemplateType = (int)ListTemplateType.GenericList;
 listCI.QuickLaunchOption = Microsoft.SharePoint.Client.QuickLaunchOptions.On;
 List list = ctx.Web.Lists.Add(listCI);
 }
 using (xScope.StartFinally())
 {
 //Try to update the list now if it failed originally
 List myList = ctx.Web.Lists.GetByTitle("My List");
 if(myList.Description.Length==0)
 {
 myList.Description = "A new description";
 myList.Update();
 }
 }
 }

 //Execute the entire try-catch as a batch!
 ctx.ExecuteQuery();
}

The most important aspect of the code shown in Listing 5-7 is that the ExecuteQuery method is
called only once, and it appears after the code in the exception-handling scope. This means that all
of the operations defined in the exception-handling scope are sent to the server in a single batch. Ini-
tially, the server tries to update the description of the target list. If this operation fails, the exception-
handling scope assumes it is because the list does not exist. Therefore, the exception-handling scope
creates a new list with the correct name. Finally, the description is updated for the newly created list.

The exception-handling scope provides a powerful way for you to deal with errors that occur during
batch processing, but it does require some additional planning. For example, the code in Listing 5-7
assumes that any failure is the result of a nonexistent list. However, there are other reasons why the
operation could fail, such as the end user not having the rights to update the list. Fortunately, the
ExceptionHandlingScope method provides properties that help you to understand exactly what went
wrong on the server. The ServerErrorCode, ServerErrorValue, and ServerStackTrace properties can all
be used to analyze the server error and make a decision about how to proceed.

Creating, reading, updating, and deleting
In the conditional scope shown in Listing 5-7, a new list is created if the user has the appropriate
permissions. Creating new lists and items by using the managed client object model is done with the
creation information objects. By using the ListCreationInformation and ListItemCreationInformation
objects, you can define all of the necessary values for a list or item and then send that data with the
batch back to the server. Listing 5-8 shows how to use these objects to create a new list and list item.

	 Chapter 5  Client-side programming    185

LISTING 5-8  Creating a list and list item

string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 //Create a new list
 ListCreationInformation listCI = new ListCreationInformation();
 listCI.Title = "My List";
 listCI.Description += "A list for use with the Client OM";
 listCI.TemplateType = (int)ListTemplateType.GenericList;
 listCI.QuickLaunchOption = Microsoft.SharePoint.Client.QuickLaunchOptions.On;
 List list = ctx.Web.Lists.Add(listCI);
 ctx.ExecuteQuery();

 //Create a new list item
 ListItemCreationInformation listItemCI = new ListItemCreationInformation();
 ListItem item = list.AddItem(listItemCI);
 item["Title"] = "New Item";
 item.Update();
 ctx.ExecuteQuery();
}

If you would like to return items from a list by using CSOM, you must write Collaborative Appli-
cation Markup Language (CAML) queries. CAML queries are created for the managed client object
model via the CamlQuery object. This object has a ViewXml property that accepts a CAML query
designating the items to return. Listing 5-9 demonstrates running a CAML query against a list.

LISTING 5-9  Using CAML to return list items

string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 //Read the Site, List, and Items
 ctx.Load(ctx.Web);

 List myList = ctx.Web.Lists.GetByTitle("My List");
 ctx.Load(myList);

 StringBuilder caml = new StringBuilder();
 caml.Append("<View><Query>");
 caml.Append("<Where><Eq><FieldRef Name='Title'/>");
 caml.Append("<Value Type='Text'>New Item</Value></Eq></Where>");
 caml.Append("</Query><RowLimit>50</RowLimit></View>");

 CamlQuery query = new CamlQuery();
 query.ViewXml = caml.ToString();
 ListItemCollection myItems = myList.GetItems(query);
 ctx.Load(myItems);

186   Inside Microsoft SharePoint 2013

 ctx.ExecuteQuery();
 Response.Write("<p>Site: " + ctx.Web.Title + "</p>");
 Response.Write("<p>List: " + myList.Title + "</p>");
 Response.Write("<p>Item Count: " + myItems.Count.ToString() + "</p>");
}

Updating through the managed client object model is straightforward. In most cases, you will
simply set the value of a property and then call the appropriate Update method. Listing 5-10 pre
sents samples of updating the site, list, and list item from Listing 5-9.

LISTING 5-10  Update operations

//Update the Site, List, and Items
ctx.Web.Description = "Client OM samples";
ctx.Web.Update();

myList.Description = "Client OM data";
myList.Update();

foreach (ListItem myItem in myItems)
{
 myItem["Title"] = "Updated";
 myItem.Update();
}

ctx.ExecuteQuery();
Response.Write("<p>Site: " + ctx.Web.Description + "</p>");
Response.Write("<p>List: " + myList.Description + "</p>");
Response.Write("<p>Item Count: " + myItems.Count.ToString()+ "</p>");

Deleting objects with the managed client object model involves calling the DeleteObject method.
This method is the same across most objects that can be deleted. The following code shows how to
delete the list created earlier:

myList.DeleteObject();
ctx.ExecuteQuery();

Along with lists, you’ll also want to work with libraries. Document libraries are handled in the man-
aged client object model much as lists are handled. Of course, the major difference is in handling
documents. Fortunately, uploading documents to libraries by using the managed client object model
is very similar to doing so using the server object model; you must upload the document using the
URL of the folder in which you want to store the document. Listing 5-11 shows a full set of create,
read, update, and delete operations around a file and a document library.

	 Chapter 5  Client-side programming    187

LISTING 5-11  Working with document libraries

string appWebUrl = Page.Request["SPAppWebUrl"];
using (ClientContext ctx = new ClientContext(appWebUrl))
{
 //Get site
 Web site = ctx.Web;
 ctx.Load(site);
 ctx.ExecuteQuery();

 //Create a new library
 ListCreationInformation listCI = new ListCreationInformation();
 listCI.Title = "My Docs";
 listCI.Description = "A library for use with Client OM";
 listCI.TemplateType = (int)ListTemplateType.DocumentLibrary;
 listCI.QuickLaunchOption = Microsoft.SharePoint.Client.QuickLaunchOptions.On;
 List list =site.Lists.Add(listCI);
 ctx.ExecuteQuery();

 //Create a document
 MemoryStream m = new MemoryStream();
 StreamWriter w = new StreamWriter(m);
 w.Write("Some content for the document.");
 w.Flush();

 //Add it to the library
 FileCreationInformation fileCI = new FileCreationInformation();
 fileCI.Content = m.ToArray();
 fileCI.Overwrite = true;
 fileCI.Url = appWebUrl + "/My%20Docs/MyFile.txt";
 Folder rootFolder = site.GetFolderByServerRelativeUrl("My%20Docs");
 ctx.Load(rootFolder);
 Microsoft.SharePoint.Client.File newFile = rootFolder.Files.Add(fileCI);
 ctx.ExecuteQuery();

 //Edit Properties
 ListItem newItem = newFile.ListItemAllFields;
 ctx.Load(newItem);
 newItem["Title"] = "My new file";
 newItem.Update();
 ctx.ExecuteQuery();

 //Delete file
 newItem.DeleteObject();
 ctx.ExecuteQuery();
}

188   Inside Microsoft SharePoint 2013

Working with the JavaScript client object model
The JavaScript client object model is really only a viable choice in SharePoint-hosted apps where C#
code is not allowed and the pages have an associated SharePoint context. The SharePoint 2013 app
project template for SharePoint-hosted apps provides some initial template code to implement a
welcome message. This code is a good place to see the fundamentals of JSOM in action. Listing 5-12
comes from the app project template for a SharePoint-hosted app.

LISTING 5-12  Visual Studio 2012 app project template code

'use strict';

var context = SP.ClientContext.get_current();
var user = context.get_web().get_currentUser();

$(document).ready(function () {
 getUserName();
});
function getUserName() {
 context.load(user);
 context.executeQueryAsync(onGetUserNameSuccess, onGetUserNameFail);
}
function onGetUserNameSuccess() {
 $('#message').text('Hello ' + user.get_title());
}
function onGetUserNameFail(sender, args) {
 alert('Failed to get user name. Error:' + args.get_message());
}

The code in Listing 5-12 creates two variables in the global namespace named context and user, to
reference objects needed globally. The context variable is used to set up the SharePoint context on
the client side so that calls can be made back to the Client.svc endpoint. and the user variable refer-
ences the current app user. Note that this template code violates the best practice of encapsulating
code in a separate namespace. Therefore, it is best to simply delete all of the template code when
creating your own apps.

To populate the variables, a call is made to the load method to specify that the scalar proper-
ties should be loaded, and then a call to the executeQueryAsync method is made to make an asyn-
chronous call to the Client.svc endpoint. In the app project code, the round trip populates not only
information about the app web, but also information about the current user. Combining operations
in this way makes CSOM programming more efficient. Two callback functions, which the template
code names onGetUserNameSuccess and onGetUserNameFail, are passed. The first callback function is
called if the round trip completes without errors. The second callback function is called if errors occur.

Returning collections
The JavaScript client object model supports both a load and loadQuery method. The loadQuery
method can be used to store a collection into a variable other than the one referencing the desired
collection. In either method, you can use query strings to request that collections be included in the

	 Chapter 5  Client-side programming    189

returned results. Listing 5-13 illustrates how to use the JavaScript client object model to return all of
the list titles in the app web along with the field names and descriptions for each list.

LISTING 5-13  Returning collections with JavaScript

"use strict";

var Wingtip = window.Wingtip || {}

Wingtip.Collections = function () {

 //private members
 var site,
 listCollection,

 getListCollection = function () {
 var ctx = new SP.ClientContext.get_current();
 site = ctx.get_web();
 ctx.load(site);
 listCollection = site.get_lists();
 ctx.load(listCollection,
 'Include(Title,Id,Fields.Include(Title,Description))');
 ctx.executeQueryAsync(success, failure);
 },

 success = function () {

 var html = [];

 //List Information
 html.push("");
 var listEnumerator = listCollection.getEnumerator();
 while (listEnumerator.moveNext()) {

 //List Title
 html.push("");
 html.push(listEnumerator.get_current().get_title());
 html.push("");

 //Field Names
 var fieldEnumerator =
 listEnumerator.get_current().get_fields().getEnumerator();
 while (fieldEnumerator.moveNext()) {
 html.push("");
 html.push(fieldEnumerator.get_current().get_title());
 html.push("");
 }

 html.push("");
 }
 html.push("");

190   Inside Microsoft SharePoint 2013

 //Show results
 $("#displayDiv").html(html.join(''));
 },

 failure = function (sender, args) {
 alert(args.get_message());
 }

 //public interface
 return {
 execute: getListCollection
 }
}();

$(document).ready(function () {
 Wingtip.Collections.execute();
});

Handling errors
Just like the managed client object model, the JavaScript client object model must deal with the
potential for server-side errors during the round trip. Because the JavaScript client object model can
only make asynchronous calls, the basic error-handling pattern involves the definition of success and
failure callback methods. However, you can also use error scopes in your JavaScript. Listing 5-14 shows
how to set up error scopes in JavaScript. The sample performs the same functionality as presented in
Listing 5-7, wherein managed code was used.

LISTING 5-14  JavaScript CSOM error scopes

"use strict";

var Wingtip = window.Wingtip || {}

Wingtip.ErrorScope = function () {

 //private members
 var site,

 scope = function () {

 //Get Context
 var ctx = new SP.ClientContext.get_current();

 //Start Exception-Handling Scope
 var e = new SP.ExceptionHandlingScope(ctx);
 var s = e.startScope();

 //try
 var t = e.startTry();

	 Chapter 5  Client-side programming    191

 var list1 = ctx.get_web().get_lists().getByTitle("My List");
 ctx.load(list1);
 list1.set_description("A new description");
 list1.update();

 t.dispose();

 //catch
 var c = e.startCatch();

 var listCI = new SP.ListCreationInformation();

 listCI.set_title("My List");
 listCI.set_templateType(SP.ListTemplateType.announcements);
 listCI.set_quickLaunchOption(SP.QuickLaunchOptions.on);

 var list = ctx.get_web().get_lists().add(listCI);

 c.dispose();

 //finally
 var f = e.startFinally();

 var list2 = ctx.get_web().get_lists().getByTitle("My List");
 ctx.load(list2);
 list2.set_description("A new description");
 list2.update();

 f.dispose();

 //End Exception-Handling Scope
 s.dispose();

 //Execute
 ctx.executeQueryAsync(success, failure);

 },

 success = function () {
 alert("Success");
 },

 failure = function (sender, args) {
 alert(args.get_message());
 }

 //public interface
 return {
 execute: scope
 }
}();

$(document).ready(function () {
 Wingtip.ErrorScope.execute();
});

192   Inside Microsoft SharePoint 2013

Creating, reading, updating, and deleting in the JavaScript client object model
Creating, reading, updating, and deleting list items by using the JavaScript client object model is more
complex than with the managed client object model. The additional complexity comes from not only
the asynchronous calls, but also the need to properly encapsulate the JavaScript so that it’s separated
from the global namespace. Listing 5-15 shows the basic structure of a JavaScript library used to per-
form create, read, update, and delete (CRUD) operations on a contacts list contained in a SharePoint-
hosted app.

LISTING 5-15  CSOM library structure

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.Contacts;
Wingtip.ContactList = function () {

 //private members
 var createItem = function (lname, fname, wphone) {
 },
 readAll = function () {
 },
 readAllSuccess = function () {
 },
 updateItem = function (id, lname, fname, wphone) {
 },
 removeItem = function (id) {
 },
 success = function () {
 readAll();
 },
 error = function (sender, args) {
 alert(args.get_message());
 }

 //public interface
 return {
 createContact: createItem,
 updateContact: updateItem,
 deleteContact: removeItem
 }

}();

$(document).ready(function () {
 Wingtip.ContactList.createContact("Cox", "Brian", "555-555-5555");
 alert("Contact Created!");
 Wingtip.ContactList.updateContact(1, "Cox", "Brian", "111-111-1111");
 alert("Contact Updated!");
 Wingtip.ContactList.deleteContact(1);
 alert("Contact Deleted!");
});

	 Chapter 5  Client-side programming    193

Before examining the implementation details for the CRUD operations, take some time to study
the structure of the library. Listing 5-15 contains the definition of a namespace object and a self-
invoking function, which should be familiar from other examples in this chapter. In this case, however,
a new property named Wingtip.Contacts is also defined. This property is used to hold a reference to
the list items between asynchronous calls to the SharePoint server. Within the self-invoking function,
all of the CRUD operations are defined, but only the create, update, and delete functions are revealed
through the public interface of the library. These functions are called from some example code con-
tained in the ready event handler.

Creating new contacts is done in the createItem function. This function uses the SP.ListItemCreation
Information object to define a new list item. The first name, last name, and phone number are set on
the new item, and the item is added to the list. Note that in a contacts list, the “Title” field is actually
the last name of the contact. Listing 5-16 presents the code for adding a new item.

LISTING 5-16  Creating new items

createItem = function (lname, fname, wphone) {
 var ctx = new SP.ClientContext.get_current();
 var list = ctx.get_web().get_lists().getByTitle("Contacts");
 ctx.load(list);
 var listItemCreationInfo = new SP.ListItemCreationInformation();
 var newContact = list.addItem(listItemCreationInfo);
 newContact.set_item("Title", lname);
 newContact.set_item("FirstName", fname);
 newContact.set_item("WorkPhone", wphone);
 newContact.update();
 ctx.executeQueryAsync(success, error);
}

After each create, update, or delete operation, the list is read and redrawn. The readAll func-
tion reads every item in the list by using a CAML query and then creates an HTML table to hold the
contacts. The HTML is rendered in a div via jQuery. Listing 5-17 demonstrates how the list is read and
drawn. Note the use of the Wingtip.Contacts property to reference the list data between asynchro-
nous calls to the server.

194   Inside Microsoft SharePoint 2013

LISTING 5-17  Rendering the list items

readAll = function () {
 var ctx = new SP.ClientContext.get_current();
 var query = "<View><Query><OrderBy><FieldRef Name='Title'/>" +
 "<FieldRef Name='FirstName'/></OrderBy></Query>" +
 "<ViewFields><FieldRef Name='ID'/><FieldRef Name='Title'/>" +
 "<FieldRef Name='FirstName'/><FieldRef Name='WorkPhone'/></ViewFields></
View>";
 var camlQuery = new SP.CamlQuery();
 camlQuery.set_viewXml(query);
 var list = ctx.get_web().get_lists().getByTitle("Contacts");
 ctx.load(list);
 Wingtip.Contacts = list.getItems(camlQuery);
 ctx.load(Wingtip.Contacts, 'Include(ID,Title,FirstName,WorkPhone)');
 ctx.executeQueryAsync(readAllSuccess, error);
},

readAllSuccess = function () {
 var html = [];
 html.push("<table><thead><tr><th>ID</th><th>First Name</th>");
 html.push("<th>Last Name</th><th>Title</th></tr></thead>");

 var listItemEnumerator = Wingtip.Contacts.getEnumerator();

 while (listItemEnumerator.moveNext()) {
 var listItem = listItemEnumerator.get_current();
 html.push("<tr><td>");
 html.push(listItem.get_item("ID"));
 html.push("</td><td>");
 html.push(listItem.get_item("FirstName"));
 html.push("</td><td>");
 html.push(listItem.get_item("Title"));
 html.push("</td><td>");
 html.push(listItem.get_item("WorkPhone"));
 html.push("</td><td>");
 }

 html.push("</table>");
 $('#displayDiv').html(html.join(''));
}

Updating list items is accomplished by using the updateItem function. This function retrieves the
item to be updated by its ID in the list. The new values for the fields are applied to the list item and
the item is updated. After the round trip to the server, the table is redrawn with the new values for the
list item visible. Listing 5-18 shows the code for updating items.

	 Chapter 5  Client-side programming    195

LISTING 5-18  Updating list items

updateItem = function (id, lname, fname, wphone) {
 var ctx = new SP.ClientContext.get_current();
 var list = ctx.get_web().get_lists().getByTitle("Contacts");
 ctx.load(list);
 var listItem = list.getItemById(id);
 listItem.set_item("Title", lname);
 listItem.set_item("FirstName", fname);
 listItem.set_item("WorkPhone", wphone);
 listItem.update();
 ctx.executeQueryAsync(success, error);
}

Deleting list items is done by using the removeItem function. The function retrieves the item to
delete by its ID. The deleteObject method is then called to remove the designated item from the
list. After the item is removed asynchronously, the table is redrawn with the remaining list items.
Listing 5-19 presents the code for deleting items.

LISTING 5-19  Deleting list items

removeItem = function (id) {
 var ctx = new SP.ClientContext.get_current();
 var list = ctx.get_web().get_lists().getByTitle("Contacts");
 ctx.load(list);
 var listItem = list.getItemById(id);
 listItem.deleteObject();
 ctx.executeQueryAsync(success, error);
}

Working with the REST API

If you are planning to create apps that are based primarily on JavaScript, you will be interested in the
Representational State Transfer (REST) API. Making REST calls from JavaScript is considerably easier
than making the equivalent CSOM calls. Furthermore, several libraries such as jQuery provide addi
tional support for REST calls. All of this makes the REST API an attractive approach for app development.

196   Inside Microsoft SharePoint 2013

Understanding REST fundamentals
Remote Procedure Call (RPC) is a software architecture that uses a generated client-side proxy to
communicate with a remote web service. Simple Object Access Protocol (SOAP) is the protocol that
is used along with the RPC architecture in classic SharePoint web services. When developers think
about making RPCs to SharePoint, they most often think about calling into a SOAP web service to
perform tasks such as retrieving user profile information, running a search, or interacting with a list.

REST is a software architecture that uses uniform resource identifiers (URIs) to specify operations
against a remote service. Open Data Protocol (OData) is the protocol that is used along with REST to
access many cloud-based services. Although SharePoint developers are most familiar with the RPC/
SOAP approach, the REST/OData approach has become important when developing cloud-based
solutions.

REST-based (known more commonly as “RESTful”) solutions use standard HTTP GET, POST, PUT,
and DELETE verbs to perform CRUD operations against a remote source. Support for the standard
HTTP verbs provides easy cross-platform data access and makes REST ideally suited for cloud-based
apps. The OData protocol returns results in either the Atom Publishing Protocol (AtomPub) or JSON.

SharePoint 2010 introduced support for RESTful access to list data through the listdata.svc web
service. In SharePoint 2013, the listdata.svc service is still available, but it should not be used for any
new development. Instead, the client.svc service has been expanded to include significant support
for RESTful operations. Nearly all of the APIs available through CSOM have a corresponding RESTful
endpoint. Additionally, the client.svc endpoint can be reached through the alias _api, which makes
forming appropriate URIs more natural. Figure 5-2 presents a basic architectural diagram of the
SharePoint 2013 REST infrastructure.

FIGURE 5-2  An overview of the SharePoint 2013 REST architecture

	 Chapter 5  Client-side programming    197

The essential task required to use the REST capabilities in SharePoint 2013 is to create the correct
URI. One of the nice things about REST is that you can enter URIs directly in the browser and immedi-
ately see the result of the HTTP GET operation. By using this approach, you can experiment with the
URIs quite easily to ensure that they return the desired results. For a SharePoint site collection located
at wingtip.com, Listing 5-20 shows the returned XML from the URI http://wingtip.com/_api/site, which
returns the site collection properties.

LISTING 5-20  Site collection properties

<?xml version="1.0" encoding="utf-8" ?>
<entry xml:base="http://wingtip.com/_api/" xmlns="http://www.w3.org/2005/Atom"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:georss="http://www.georss.org/georss" xmlns:gml="http://www.opengis.net/gml">
 <id>http://wingtip.com/_api/site</id>
 <category term="SP.Site"
 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <link rel="edit" href="site" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/EventReceivers"
 type="application/atom+xml;type=feed"
 title="EventReceivers" href="site/EventReceivers" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Features"
 type="application/atom+xml;type=feed" title="Features" href="site/Features" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Owner"
 type="application/atom+xml;type=entry" title="Owner" href="site/Owner" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/RecycleBin"
 type="application/atom+xml;type=feed" title="RecycleBin" href="site/RecycleBin" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/RootWeb"
 type="application/atom+xml;type=entry" title="RootWeb" href="site/RootWeb" />
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/
UserCustomActions"
 type="application/atom+xml;type=feed" title="UserCustomActions"
 href="site/UserCustomActions" />
 <title />
 <updated>2012-08-27T12:14:20Z</updated>
 <author>
 <name />
 </author>
 <content type="application/xml">
 <m:properties>
 <d:AllowDesigner m:type="Edm.Boolean">true</d:AllowDesigner>
 <d:AllowMasterPageEditing m:type="Edm.Boolean">true</d:AllowMasterPageEditing>
 <d:AllowRevertFromTemplate m:type="Edm.Boolean">true</
d:AllowRevertFromTemplate>

198   Inside Microsoft SharePoint 2013

 <d:AllowSelfServiceUpgrade m:type="Edm.Boolean">true</d:AllowSelfServiceUpgrade>
 <d:AllowSelfServiceUpgradeEvaluation
 m:type="Edm.Boolean">true</d:AllowSelfServiceUpgradeEvaluation>
 <d:CompatibilityLevel m:type="Edm.Int32">15</d:CompatibilityLevel>
 <d:Id m:type="Edm.Guid">eb53c264-14db-4989-a395-b93cbe8b178c</d:Id>
 <d:LockIssue m:null="true" />
 <d:MaxItemsPerThrottledOperation m:type="Edm.Int32">5000</d:MaxItemsPerThrottledOpe
ration>
 <d:PrimaryUri>http://wingtip.com/</d:PrimaryUri>
 <d:ReadOnly m:type="Edm.Boolean">false</d:ReadOnly>
 <d:ServerRelativeUrl>/</d:ServerRelativeUrl>
 <d:ShowUrlStructure m:type="Edm.Boolean">true</d:ShowUrlStructure>
 <d:UIVersionConfigurationEnabled
 m:type="Edm.Boolean">false</d:UIVersionConfigurationEnabled>
 <d:UpgradeReminderDate m:type="Edm.DateTime">1899-12-30T00:00:00</
d:UpgradeReminderDate>
 <d:Url>http://wingtip.com</d:Url>
 </m:properties>
 </content>
</entry>

The main entry point for RESTful URIs is through the _api endpoint, which is referenced through
either the site collection or site. Using the site collection or site URI as the root establishes the context
for the RESTful operation. The following code shows a typical entry point:

http://wingtip.com/_api

Following the root reference is the namespace, which refers to the workload that you want to
reference, such as search or taxonomy. Table 5-4 shows some sample namespaces in URIs. If the func-
tionality you are invoking resides in SharePoint Foundation, no namespace is required. If the function-
ality resides in one of the many other available namespaces, it can be difficult to determine the exact
URI without some form of documentation.

TABLE 5-4  Namespace sample URIs

Sample URI Description

http://wingtip.com/_api/ SharePoint Foundation namespace

http://wingtip.com/_api/search Enterprise search namespace

http://wingtip.com/_api/sp.userProfiles.peopleManager User profiles namespace

The namespace in the URI is followed by a reference to the object, property, indexer, or method
target that you want to invoke. Objects can include site collections, sites, lists, and list items. After an
object is referenced, you can go on to reference the properties, indexers, and methods of the object.
Table 5-5 shows several sample URIs referencing objects, properties, indexers, and methods.

	 Chapter 5  Client-side programming    199

TABLE 5-5  Object sample URIs

Sample URI Description

http://wingtip.com/_api/site Site collection object

http://wingtip.com/_api/web Site object

http://wingtip.com/_api/site/url Site collection URL property

http://wingtip.com/_api/web/lists Site lists collection

http://wingtip.com/_api/web/lists(‘25e2737d-f23a-4fdb-
ad5a-e5a94672504b’)

Site lists collection indexer

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’) Site lists collection method

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/
items

List items collection

The RESTful URI ends with any OData query operators to specify selecting, sorting, or filtering.
The $select operator is used to specify what fields to return from the query of a collection, such as
list items or fields. The $order operator specifies the sort order of the results. In general, if you do
not provide a $select operator in your URI, all items in the collection are returned, with the exception
of any field or property that might be particularly large. The $select operator also supports return-
ing projected fields from related lookup lists by using the $expand operator. Table 5-6 shows several
sample URIs selecting items to return.

TABLE 5-6  Selecting and sorting items

Sample URI Description

http://wingtip.com/_api/web/lists/getbytitle(‘Modules’)/
items

Select all fields in Modules list.

http://wingtip.com/_api/web/lists/getbytitle(‘Modules’)/
items?
$select=Title

Select Title field in Modules list.

http://wingtip.com/_api/web/lists/getbytitle(‘Modules’)/
items?
$select=Title,Instructor/FullName&$expand=Instructor/
FullName

Select the Title and Instructor fields from the Modules list.
The Instructor field is a lookup from another list, so ex-
pand the selection to include the FullName field from the
list used as a lookup.

http://wingtip.com/_api/web/lists/getbytitle(‘Modules’)/
items?
$select=Title&$order=Modified

Select Title field in Modules list and sort by the modified
date.

You use the $filter operator to filter the results of the RESTful operation. The RESTful URI can
include numeric comparisons, string comparisons, and date/time functions. Table 5-7 shows sample
URIs that filter returned collections.

200   Inside Microsoft SharePoint 2013

TABLE 5-7  Filtering items

Sample URI Description

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/
items?$filter=FirstName eq ‘Brian’

Return the item from the Contacts list, for which the
FirstName is equal to “Brian”

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/it
ems?$filter=startswith(FirstName,’B’)

Return all items from the Contacts list, for which the
FirstName starts with the letter B

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/
items?$filter=month(Modified) eq 8

Return all items from the Contacts list modified in August

The $top and $skip operators are used to implement paging for results. The $top operator specifies
how many results to return. You can use the $skip operator to pass over a specified number of items.
Table 5-8 lists a few examples using these operators.

TABLE 5-8  Paging items

Sample URI Description

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/
items?$top=5

Return the first five items in the Contacts list

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/
items?$top=5&$skip=5

Return the second page of results, with five results on
each page

http://wingtip.com/_api/web/lists/getbytitle(‘Contacts’)/it
ems?$sort=Title&$top=5&$skip=5

Return the second page of results, sorted by Last Name
(Note: The Title field in a contacts list actually contains
the last name)

Working with the REST API in JavaScript
When you choose to use JavaScript with your app, you will find that by using the REST API, you can
write cleaner code than with CSOM. Furthermore, you will find built-in support for REST in the jQuery
library, which makes it much easier to use than CSOM. This section details the fundamental operations
necessary to work with the REST API through JavaScript.

Performing basic operations
The section “Working with the JavaScript client object model” earlier in this chapter explained the
SharePoint-hosted app project template code in CSOM. As a starting point for understanding REST,
Listing 5-21 shows that CSOM code rewritten by using the REST API. Comparing the two implementa-
tions reveals that the REST version is more compact.

LISTING 5-21  Welcoming the current user

$(document).ready(function () {
 $.getJSON(_spPageContextInfo.webServerRelativeUrl + "/_api/web/currentuser",
 function(data) {
 $("#message").text('Hello ' + data.d.Title);
 });
});

	 Chapter 5  Client-side programming    201

As discussed in the section “Understanding jQuery event handling” earlier in this chapter, the
function ready is called when the jQuery library is loaded. The RESTful URI in Listing 5-22 is created
by using the _spPageContextInfo object to retrieve a reference to the webServerRelativeUrl property.
This property returns a URL, which can be concatenated with /_api to form the root of the URI. The
_spPageContextInfo object is added to the ASPX pages in your app by the SPWebPartManager control,
which means that you can depend on using it to form RESTful URIs in your apps.

The rewritten code makes use of the jQuery.getJSON method to retrieve information about the
current user. As the name implies, the data returned from the call is in JSON format. JSON format is
easy to transform into a JavaScript object, which simplifies your coding. Notice how easily the Title
property for the current user is retrieved from the JSON results.

The jQuery.getJSON method is a shorthand Asynchronous JavaScript and XML (AJAX) function
that simplifies RESTful calls where JSON is returned. For more control over the call, you can use the
jQuery.ajax method. Listing 5-22 shows the equivalent call made by using the jQuery.ajax method.

LISTING 5-22  Using the jQuery.ajax method

$(document).ready(function () {
 $.ajax(
 {
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/currentuser",
 type: "GET",
 headers: {
 "accept": "application/json;odata=verbose",
 },
 success: function (data) {
 $("#message").text('Hello ' + data.d.Title);
 },
 error: function (err) {
 alert(JSON.stringify(err));
 }
 }
);
});

Performing CRUD in REST
Much like CSOM CRUD operations, CRUD operations in REST should be encapsulated by using one of
the JavaScript library patterns. When you create your RESTful libraries, they can have a structure that
is very similar to the ones created for CSOM. Listing 5-23 demonstrates a basic library structure for
encapsulating RESTful CRUD operations on a contacts list.

202   Inside Microsoft SharePoint 2013

LISTING 5-23  REST library structure

"use strict";

var Wingtip = window.Wingtip || {};
Wingtip.ContactList = function () {

 //private members
 var createItem = function (lname, fname, wphone) {
 },
 readAll = function () {
 },
 readAllSuccess = function (data) {
 },
 updateItem = function (id, lname, fname, wphone) {
 },
 removeItem = function (id) {
 }

 //public interface
 return {
 createContact: createItem,
 updateContact: updateItem,
 deleteContact: removeItem
 }

}();

$(document).ready(function () {
 Wingtip.ContactList.createContact("Cox", "Brian", "555-555-5555");
 alert("Contact Created!");
 Wingtip.ContactList.updateContact(1, "Cox", "Brian", "111-111-1111");
 alert("Contact Updated!");
 Wingtip.ContactList.deleteContact(1);
 alert("Contact Deleted!");
});

The library structure in Listing 5-23 is similar to the structure used for the CSOM library presented
in Listing 5-15. The primary difference between this REST library and the CSOM library is that no
additional variable is required to reference objects between round trips to the server. Of course, the
implementation details will be drastically different.

Creating new items is done by constructing a URI that refers to the collection to which the new
items are to be added, and using the POST verb to send an object containing the data for the new
item. Whenever a RESTful operation changes a SharePoint resource, the request must include a form
digest. The form digest is a security validation that guarantees that the app page has not changed
since it was delivered from the server. The easiest way to obtain the form digest is simply to read it
from the form digest control on the app page. Listing 5-24 shows how to create a new item in a list
by using this technique.

	 Chapter 5  Client-side programming    203

LISTING 5-24  Creating new items in a list

createItem = function (lname, fname, wphone) {
 $.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('Contacts')/items",
 type: "POST",
 data: JSON.stringify(
 {
 '__metadata': {
 'type': 'SP.Data.ContactsListItem'
 },
 'Title': lname,
 'FirstName': fname,
 'WorkPhone': wphone
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 },
 success: function () {
 readAll();;
 },
 error: function (err) {
 alert(JSON.stringify(err));
 }
 });
}

Along with the form digest, the create operation must also include the type metadata for the item
that is being created. The type metadata is unique to the list and can be discovered by examining the
metadata returned from a read operation. For list items, the type metadata generally follows the pat-
tern SP.Data, concatenated with the name of the list, concatenated with ListItem. In Listing 5-25, the
type metadata is SP.Data.ContactsListItem.

Reading items is a straightforward operation that uses a RESTful URI to request the items. This
URI is called by using an HTTP GET verb. In the sample library, all successful calls to create, update, or
delete an item result in redrawing the list in an HTML table. Listing 5-25 shows how to retrieve the list
items and render a simple HTML table to display them.

204   Inside Microsoft SharePoint 2013

LISTING 5-25  Reading items and presenting them in an HTML table

readAll = function () {
 $.ajax(
 {
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('Contacts')/items/" +
 "?$select=Id,FirstName,Title,WorkPhone" +
 "&$orderby=Title,FirstName",
 type: "GET",
 headers: {
 "accept": "application/json;odata=verbose",
 },
 success: function (data) {
 readAllSuccess(data);
 },
 error: function (err) {
 alert(JSON.stringify(err));
 }
 }
);
},

readAllSuccess = function (data) {
 var html = [];
 html.push("<table><thead><tr><th>ID</th><th>First Name</th>" +
 "<th>Last Name</th><th>Title</th></tr></thead>");

 var results = data.d.results;

 for(var i=0; i<results.length; i++) {
 html.push("<tr><td>");
 html.push(results[i].ID);
 html.push("</td><td>");
 html.push(results[i].FirstName);
 html.push("</td><td>");
 html.push(results[i].Title);
 html.push("</td><td>");
 html.push(results[i].WorkPhone);
 html.push("</td></tr>");
 }
 html.push("</table>");
 $('#displayDiv').html(html.join(''));
},

Updating items is accomplished by creating a RESTful URI that refers to the item that will be
updated. Just like item creation, item updating also requires the request to include a form digest. The
URI is then invoked by using a PUT, PATCH, or MERGE verb. When a PUT operation is used, you must
specify all writable properties in the request. When a PATCH or MERGE operation is used, you can
specify only the properties you want to change. Although MERGE and PATCH accomplish the same
task, the PATCH operation is considered more standard. Listing 5-26 shows how to update a list
item by using the PATCH operation.

	 Chapter 5  Client-side programming    205

LISTING 5-26  Updating items

updateItem = function (id, lname, fname, wphone) {
 $.ajax(
 {
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('Contacts')/getItemByStringId('" +
 id + "')",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify(
 {
 '__metadata': {
 'type': 'SP.Data.ContactsListItem'
 },
 'Title': lname,
 'FirstName': fname,
 'WorkPhone': wphone
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 "IF-MATCH": "*",
 "X-Http-Method": "PATCH"
 },
 success: function (data) {
 readAll();
 },
 error: function (err) {
 alert(JSON.stringify(err));
 }
 }
);
},

When performing updates on list items, you can use ETags for concurrency control. ETags are ver-
sion numbers assigned at the list-item level. This number determines whether the list item was altered
by another process since your code last read the data. You can find the ETag for a list item by reading
it from the metadata. Listing 5-25 could be updated to display ETag values by reading them with the
following code:

results[i].__metadata.etag

ETag values are sent during an update operation via the IF-MATCH header. If the ETag sent in the
update process is different from the ETag currently assigned to the list item, the update will fail. If you
want to force an update regardless of ETag values, you can pass IF-MATCH:*, which is the approach
taken in Listing 5-26.

206   Inside Microsoft SharePoint 2013

Deleting an item is accomplished by first constructing a URI that references the target item to
delete. The URI is invoked by using an HTTP DELETE verb. The delete operation must provide a form
digest and an ETag value. Listing 5-27 shows the implementation of a delete operation.

LISTING 5-27  Deleting items

removeItem = function (id) {
 $.ajax(
 {
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('Contacts')/getItemByStringId('" +
 id + "')",
 type: "DELETE",
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 "IF-MATCH": "*"
 },
 success: function (data) {
 readAll();
 },
 error: function (err) {
 alert(JSON.stringify(err));
 }
 }
);
},

Working with the REST API in C#
Using the REST API from a C# application is certainly possible, but it is easily the least attractive of
all the programming options. You will find that retrieving form digests, parsing out properties, and
creating payloads can be tedious and messy. This section details the steps necessary to work with the
REST API in C#.

Performing basic operations
In the section “Working with the REST API in JavaScript” earlier in this chapter, the SharePoint-hosted
app project template code was rewritten to use REST. As a starting point to understanding how to
use REST in C#, Listing 5-28 shows the same code rewritten in a provider-hosted app. The code runs
within the Page_Load event and welcomes the user to the app.

	 Chapter 5  Client-side programming    207

LISTING 5-28  Welcoming the current user

protected void Page_Load(object sender, EventArgs e)
{
 //Construct URI
 string appWebUrl = Page.Request["SPAppWebUrl"];
 Uri uri = new Uri(appWebUrl + "/_api/web/currentuser");

 //Perform GET operation
 HttpWebRequest restRequest = (HttpWebRequest)WebRequest.Create(uri);
 restRequest.Credentials = CredentialCache.DefaultCredentials;
 restRequest.Method = "GET";
 HttpWebResponse restResponse = (HttpWebResponse)restRequest.GetResponse();

 //Parse out Title
 XDocument atomDoc = XDocument.Load(restResponse.GetResponseStream());
 XNamespace ns = "http://schemas.microsoft.com/ado/2007/08/dataservices";
 message.Text = "Hello " + atomDoc.Descendants(ns + "Title").First().Value;
}

The code in Listing 5-28 begins by constructing a URI to request the current user object from the
REST API. The URI is invoked by using the HttpWebRequest object, which uses the HTTP GET verb and
returns the data in AtomPub format. Finally, the Title property is extracted from the returned XML
document by using LINQ-to-XML. You can see that the mechanics of using the REST API are the same
in C# as they are in JavaScript, but the implementation is not as clean.

Performing CRUD in C#
Performing CRUD operations with C# against the REST API can be a bit challenging. This is because
you must go through an extra step to retrieve a form digest and because you must create the proper
XML payloads manually. Fortunately, you can encapsulate the basic CRUD functionality in a static class
to make it easier. Listing 5-29 shows a basic class structure for encapsulating CRUD operations against
the REST API. In keeping with previous examples, the class targets a contacts list in the app.

208   Inside Microsoft SharePoint 2013

LISTING 5-29  A class for REST operations

namespace Wingtip
{
 public static class Contacts
 {
 public static string AppWebUrl;
 public static void CreateItem(string LastName,
 string FirstName,
 string WorkPhone){}
 public static List<TableRow> ReadAll(){}
 public static void UpdateItem(string ID,
 string LastName,
 string FirstName,
 string WorkPhone){}
 public static void RemoveItem(string ID){}
 private static string GetFormDigest(){}
 }
}

The structure of the static class in Listing 5-29 is similar to that of libraries that were shown previ-
ously in JavaScript, which contained methods for creating, reading, updating, and deleting. When
using C# against the REST API, however, there are two new elements to consider. First, a static variable
AppWebUrl is added to make the root URL of the app available to all the methods. Second, a private
method named GetFormDigest is added to retrieve the form digest when necessary.

When you use C# against the REST API, it will always be from a remote web. Therefore, you don’t
have the luxury of the form digest control being present on the app page. Because of this, you must
make a separate RESTful call back to SharePoint solely to retrieve a form digest that can be used in
the CRUD operations. Listing 5-30 shows the implementation of the GetFormDigest method, which
returns the form digest as a string.

LISTING 5-30  Retrieving the form digest

private static string GetFormDigest()
{
 Uri uri = new Uri(AppWebUrl + "/_api/contextinfo");
 HttpWebRequest restRequest = (HttpWebRequest)WebRequest.Create(uri);
 restRequest.Credentials = CredentialCache.DefaultCredentials;
 restRequest.Method = "POST";
 restRequest.ContentLength = 0;

 HttpWebResponse restResponse = (HttpWebResponse)restRequest.GetResponse();
 XDocument atomDoc = XDocument.Load(restResponse.GetResponseStream());
 XNamespace d = "http://schemas.microsoft.com/ado/2007/08/dataservices";
 return atomDoc.Descendants(d + "FormDigestValue").First().Value;
}

	 Chapter 5  Client-side programming    209

Creating new items in C# requires the same basic approach as in JavaScript. A URI is constructed
that refers to the collection to which the new items are to be added, and the POST verb is used to
send an XML chunk containing the data for the new item. In C#, you must create the XML manually
and substitute in the new values. Listing 5-31 shows the code to create a new item in the contacts list.

LISTING 5-31  Creating new items in a contacts list

public static void CreateItem(string LastName, string FirstName, string WorkPhone)
{
 Uri uri = new Uri(AppWebUrl +
 "/_api/web/lists/getByTitle('Contacts')/items");

 string itemXML = String.Format(@"
 <entry xmlns='http://www.w3.org/2005/Atom'
 xmlns:d='http://schemas.microsoft.com/ado/2007/08/dataservices'
 xmlns:m='http://schemas.microsoft.com/ado/2007/08/dataservices/metadata'>
 <category term='SP.Data.ContactsListItem'
 scheme='http://schemas.microsoft.com/ado/2007/08/dataservices/scheme' />
 <content type='application/xml'>
 <m:properties>
 <d:FirstName>{0}</d:FirstName>
 <d:Title>{1}</d:Title>
 <d:WorkPhone>{2}</d:WorkPhone>
 </m:properties>
 </content>
 </entry>", FirstName, LastName, WorkPhone);

 HttpWebRequest restRequest = (HttpWebRequest)WebRequest.Create(uri);
 restRequest.Credentials = CredentialCache.DefaultCredentials;
 restRequest.Method = "POST";
 restRequest.Headers["X-RequestDigest"] = GetFormDigest();
 restRequest.Accept = "application/atom+xml";
 restRequest.ContentType = "application/atom+xml";
 restRequest.ContentLength = itemXML.Length;
 StreamWriter sw = new StreamWriter(restRequest.GetRequestStream());
 sw.Write(itemXML);
 sw.Flush();

 HttpWebResponse restResponse = (HttpWebResponse)restRequest.GetResponse();
}

Reading items is fairly straightforward. You can simply create the URI referencing the items to
return and make the call. Listing 5-32 illustrates the implementation of the ReadAll method for the
sample. In this case, the method returns a collection of type TableRow, which is subsequently added
to an ASP.NET Table control to display the items.

210   Inside Microsoft SharePoint 2013

LISTING 5-32  Reading list items

public static List<TableRow> ReadAll()
{
 Uri uri = new Uri(AppWebUrl +
 "/_api/web/lists/getByTitle('Contacts')/items/" +
 "?$select=Id,FirstName,Title,WorkPhone" +
 "&$orderby=Title,FirstName");

 HttpWebRequest restRequest = (HttpWebRequest)WebRequest.Create(uri);
 restRequest.Credentials = CredentialCache.DefaultCredentials;
 restRequest.Method = "GET";

 HttpWebResponse restResponse = (HttpWebResponse)restRequest.GetResponse();
 XDocument atomDoc = XDocument.Load(restResponse.GetResponseStream());
 XNamespace a = "http://www.w3.org/2005/Atom";
 XNamespace d = "http://schemas.microsoft.com/ado/2007/08/dataservices";

 List<TableRow> rows = new List<TableRow>();
 foreach (var entry in atomDoc.Descendants(a + "entry"))
 {
 TableRow r = new TableRow();
 TableCell c1 = new TableCell();
 c1.Text = entry.Descendants(d + "Id").First().Value;
 TableCell c2 = new TableCell();
 c2.Text = entry.Descendants(d + "FirstName").First().Value;
 TableCell c3 = new TableCell();
 c3.Text = entry.Descendants(d + "Title").First().Value;
 TableCell c4 = new TableCell();
 c4.Text = entry.Descendants(d + "WorkPhone").First().Value;
 r.Cells.Add(c1);
 r.Cells.Add(c2);
 r.Cells.Add(c3);
 r.Cells.Add(c4);
 rows.Add(r);
 }
 return rows;
}

Updating items is also done by using the same basic approach presented with JavaScript. A URI is
constructed that refers to the item to be updated. The XML chunk containing the new property values
must be created and a form digest must be added to the headers. Additionally, the PATCH method is
used to allow only the desired properties to be updated. Finally, the corresponding ETag value must
be supplied or an asterisk used to force an update. Listing 5-33 shows the complete implementation
of the method to update items in the contacts list.

	 Chapter 5  Client-side programming    211

LISTING 5-33  Updating items in a contacts list

public static void UpdateItem(string ID, string LastName, string FirstName, string
WorkPhone)
{
 Uri uri = new Uri(AppWebUrl +
 "/_api/web/lists/getByTitle('Contacts')/items(" + ID + ")");

 string itemXML = String.Format(@"
 <entry xmlns='http://www.w3.org/2005/Atom'
 xmlns:d='http://schemas.microsoft.com/ado/2007/08/dataservices'
 xmlns:m='http://schemas.microsoft.com/ado/2007/08/dataservices/metadata'>
 <category term='SP.Data.ContactsListItem'
 scheme='http://schemas.microsoft.com/ado/2007/08/dataservices/scheme' />
 <content type='application/xml'>
 <m:properties>
 <d:FirstName>{0}</d:FirstName>
 <d:Title>{1}</d:Title>
 <d:WorkPhone>{2}</d:WorkPhone>
 </m:properties>
 </content>
 </entry>", FirstName, LastName, WorkPhone);

 HttpWebRequest restRequest = (HttpWebRequest)WebRequest.Create(uri);
 restRequest.Credentials = CredentialCache.DefaultCredentials;
 restRequest.Method = "POST";
 restRequest.Headers["X-RequestDigest"] = GetFormDigest();
 restRequest.Headers["IF-MATCH"] = "*";
 restRequest.Headers["X-Http-Method"] = "PATCH";
 restRequest.Accept = "application/atom+xml";
 restRequest.ContentType = "application/atom+xml";
 restRequest.ContentLength = itemXML.Length;
 StreamWriter sw = new StreamWriter(restRequest.GetRequestStream());
 sw.Write(itemXML);
 sw.Flush();

 HttpWebResponse restResponse = (HttpWebResponse)restRequest.GetResponse();
}

Deleting items is a simple operation compared to the other methods. To delete an item, a URI is
constructed that refers to the item to be deleted. A form digest is sent in the headers, and the DELETE
verb is used to indicate that the target item should be deleted. There is no XML chunk to create for
this operation. Listing 5-34 shows the implementation details for deleting items from the contacts list.

212   Inside Microsoft SharePoint 2013

LISTING 5-34  Deleting items from a contacts list

public static void RemoveItem(string ID)
{
 Uri uri = new Uri(AppWebUrl +
 "/_api/web/lists/getByTitle('Contacts')/items(" + ID + ")");

 HttpWebRequest restRequest = (HttpWebRequest)WebRequest.Create(uri);
 restRequest.Credentials = CredentialCache.DefaultCredentials;
 restRequest.Method = "DELETE";
 restRequest.Headers["X-RequestDigest"] = GetFormDigest();
 restRequest.Headers["IF-MATCH"] = "*";
 restRequest.Accept = "application/atom+xml";
 restRequest.ContentType = "application/atom+xml";

 HttpWebResponse restResponse = (HttpWebResponse)restRequest.GetResponse();
}

Summary

Client-side programming against SharePoint 2013 apps is a new paradigm for all SharePoint devel
opers. Even though previous versions of SharePoint supported some of the capabilities found in
SharePoint 2013, most developers concentrated on writing server-side code. With the introduction
of the app model, SharePoint developers must now become experts in client-side programming.

There are four options for client-side programming: JavaScript against CSOM, JavaScript against
REST, C# against CSOM, and C# against REST. When creating SharePoint-hosted apps, you will find
that JavaScript against the REST API is generally the best choice. When creating provider-hosted or
autohosted apps, you will likely find that C# against CSOM is the best fit. In any case, as a SharePoint
developer, you will need to focus on client-side programming much more than you have in the past.

		 213

C H A P T E R 6

SharePoint security

Let’s begin with a basic question: what is a security principal? In a common scenario in a Windows
network environment, a security principal can be a user with an account in Active Directory. But

the concept of a security principal goes far beyond that. A security principal can also be a user with an
account in some other type of identity management system such as Microsoft ASP.NET forms-based
authentication (FBA), Microsoft Account, or Facebook.

There are also common scenarios in which a security principal will not have a one-to-one mapping
to a human being. For example, an Active Directory security group is a type of security principal, as is
an FBA role. A computer becomes a first-class security principal when it is added to an Active Directory
domain. In this chapter, you will also see that a Microsoft SharePoint app can also play the role of a
first-class security principal, as well.

SharePoint 2010 includes support for authenticating users and providing them with controlled
access to SharePoint resources. However, the security infrastructure becomes more complex in
SharePoint 2013 due to the new requirements to add support for authenticating apps and managing
app permissions. The goal of this chapter is to explain how security works for both users and apps in
SharePoint 2013.

Reviewing authentication and authorization

A computer security system performs two basic functions: authentication and authorization. Although
you probably already understand these two concepts, this section will provide a quick review, because
fully understanding them is critical to all the other material in this chapter.

A security system uses authentication to determine the identity of a caller. The first part of the
authentication process attempts to map the caller to an existing security principal. For example, au-
thentication could map the caller to a user account in an Active Directory domain. When the authen-
tication process is successful, the system establishes the caller’s identity by creating a security token
that contains attributes of the security principal in question.

For example, the Windows operating system creates a special type of security token known as
a Windows security token when it authenticates a user. A Windows security token is an in-memory
data structure that contains the user’s logon name and a list of security groups in which the user is a
member.

214   Inside Microsoft SharePoint 2013

If the authentication process asks the question, “Who are you?”, the authorization process asks,
“What can you do?” The authentication process must occur before the authorization process. This is
because you must determine the caller’s identity before you can determine what the caller can do.

Before the authorization process can begin, the authentication process must create a security to-
ken that maps the caller to a security principal. During the authorization process, the system examines
information inside the security token to determine whether the caller should be allowed access to the
resource(s) being requested.

Understanding user authentication

Every version of SharePoint has provided support for authenticating users and configuring user per
missions. However, SharePoint 2013 is the first version to add support for authenticating apps. This
chapter will first discuss user authentication in detail before proceeding to discuss app authentication.

The first thing to understand is that the SharePoint platform itself does not supply the actual
code to authenticate users. Instead, the SharePoint platform relies on external user authentication
systems such as Windows Server and Active Directory or the built-in support in ASP.NET for FBA. After
an external system has authenticated a user and created a security token, the SharePoint platform is
then able to create a profile around that security token to establish and track the user’s identity inside
the SharePoint security system.

Let’s quickly revisit how user authentication has evolved in SharePoint over the last decade.
SharePoint 2003 was pretty limited because it only offered support for Windows authentication.
This meant that each and every authenticated user required an Active Directory account.

SharePoint 2007 took a step ahead by adding support for ASP.NET FBA. The new support for
FBA was welcomed by developers and system integrators, especially for common scenarios such as
extranets and publically facing Internet sites for which it was impractical to create and maintain an
Active Directory account for each user or site member.

However, it was with SharePoint 2010 that Microsoft really changed how user authentication
works, with the introduction of claims-based security. Prior to SharePoint 2010, the SharePoint
platform tracked user identity by using the security token created by the underlying authentication
system. For example, SharePoint 2007 tracks user identity via two types of security tokens: Windows
security tokens, which are created by Windows Server; and FBA security tokens, which are created by
the ASP.NET runtime.

With claims-based security, the SharePoint platform moved to a single, unified format for the
security tokens that are created during the user authentication process. More specifically, the user
authentication process creates security tokens by using an XML-based standard known as Security
Assertion Markup Language (SAML). Within developer circles, this type of security token is commonly
referred to as a SAML token.

	 Chapter 6  SharePoint security    215

Let’s walk through the authentication process in a SharePoint environment configured for claims-
based security. In this scenario, the user is authenticated by using either Windows security or FBA. The
first part of the authentication process essentially remains unchanged with respect to the fact that
it creates a Windows security token or an FBA token. The end of the authentication process is where
things are different. This is because any Windows security token or FBA token must be converted into
a SAML token.

Every SharePoint web server runs a local service known as the Security Token Service (STS). The
STS is responsible for converting Windows security tokens and FBA tokens into SAML tokens as the
final part of the authentication process. In SharePoint 2010, these SAML tokens are cached in
memory on a per–web server basis and can be reused across multiple requests from the same user.
SharePoint 2013 further optimizes the caching of SAML tokens with the Distributed Cache Service,
which can be configured to maintain a farm-wide cache of SAML tokens.

SharePoint’s adoption of claims-based security and SAML tokens has another significant effect: it
has dramatically increased the number of identity providers that can be integrated with a SharePoint
farm. In addition to supporting Windows authentication and FBA, claims-based security makes it pos-
sible for a SharePoint farm to authenticate users by using external identity providers such as Windows
Azure Access Control Service (ACS), Windows Account, Google, and Facebook.

Configuring web applications
The manner in which SharePoint authenticates users is configured at the web application level. When
you create a web application in a SharePoint farm, you have the option of creating it in either claims
mode or classic mode. A web application created in claims mode authenticates users as described in
the previous section. The important point is that a SAML token is created during the user authentica-
tion process to establish user identity.

SharePoint’s support for creating classic-mode web applications is provided for backward com-
patibility, and creating a web application in this mode should be avoided except for rare scenarios in
which a SharePoint farm contains content migrated from earlier versions that rely on older custom
components that need to be rewritten before they can support running within a claims-mode web
application.

The bottom line is that you should avoid creating classic-mode web applications in SharePoint
2013 except for scenarios in which you are forced into it to support legacy components. With
SharePoint 2013, Microsoft has deprecated the use of classic-mode web applications and removed
the ability to create them through Central Administration. The only way to create a classic-mode
web application is by using Windows PowerShell.

A significant reason to avoid the use of classic-mode web applications is that they do not support
installing and running SharePoint apps. All of Microsoft’s design and testing of the SharePoint app
model assumes that apps are always installed on sites hosted by claims-mode web applications. For
the remainder of this chapter you can assume that any discussion of a web application is referring to a
claims-mode web application.

216   Inside Microsoft SharePoint 2013

Understanding the User Information List
SharePoint stores and maintains a user information profile for authenticated users at the site collec-
tion level. There is only one user information profile per user that extends across all the sites for a site
collection. User profile information is maintained in a hidden list known as the User Information List.
You can view this list by browsing to the URL http://[sitecollection]/_catalogs/users/simple.aspx. Here
you will find basic information, such as logon names and display names for the users. Because the
User Information List is just a standard SharePoint list, it can be accessed by using the SPList object. Of
course, you must have the appropriate permissions to access the list, because it is a securable object
that can be seen only by site collection administrators.

The User Information List maintains only a subset of information about users. If you are using
SharePoint Server and have the User Profile Service application configured to import profiles, then
this information will be used to fill in the User Information List. Two timer jobs, User Profile to Share-
Point Full Synchronization and User Profile to SharePoint Quick Synchronization, run to copy infor-
mation from the user profiles to the User Information List. User profiles are updated either through
synchronization with an external repository such as Active Directory Domain Services (AD DS) or
when the user manually enters information into the profile.

Working with users and groups
There are two types of security principals within SharePoint: users and groups. The SharePoint object
model defines the SPPrincipal class, which provides the base functionality for assigning permissions to
a principal. The SharePoint object model subsequently defines two classes that derive from SPPrincipal:
SPUser and SPGroup. These two classes extend this base class with their own unique methods and
properties for working with users or groups.

The request of an authenticated user runs under the context of an SPUser object and carries a
security token. When you create an object reference to an SPSite, SharePoint creates an instance of
the SPUserToken and the SPUser. This always happens in the context of the site collection, and it is
the user who creates the instance reference that SharePoint uses for authorization. As code attempts
to access resources, SharePoint checks this user’s security token against access-control lists (ACL) to
determine whether it should grant or deny access.

A SharePoint object can either use its own ACL or inherit the ACL of a parent object. By default,
most items within the SharePoint object model inherit the parent’s ACL. For example, a newly created
document library inherits the ACL of its parent site; and a newly created document automatically
inherits the ACL of its parent document library. However, it’s also possible to configure any document
with its own unique ACL to give it an access control policy that differs from other documents within
the same document library. This can be done through either the user interface or custom code. To
return the parent object containing the ACL used by any securable object in SharePoint, retrieve its
FirstUniqueAncestorSecurableObject property.

It is important to note that SharePoint manages users and groups and enforces authorization at
the scope of the site collection. Rights assigned to a user in one site collection never affect what the

	 Chapter 6  SharePoint security    217

user can do in another site collection. It is by design that SharePoint treats each site collection as its
own independent item with respect to authorization and access control.

The SharePoint object model tracks user identities by using the SPUser class. If you want to access
the SPUser object for the current user, you use the CurrentUser property of the SPWeb object associ-
ated with the current site. The following simple example shows you how to return the current user
using server and client APIs:

//Server-Side Object Model
SPUser currentUser = SPContext.Current.Web.CurrentUser;

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var user = ctx.get_web().get_currentUser();
ctx.load(user);
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/currentUser",
 type: "GET",
 headers: {
 "accept": "application/json;odata=verbose",
 }
});

The current user is always the user who was authenticated when the SPSite site collection object
was created. If your code is running in the SharePoint website context, this is the authenticated user.
If your code is running in the context of a console application, the current user is the user whose
Windows principal was used to create the initial SPSite reference. You cannot switch the security
context of the site collection or its objects after it is created; it is always the user principal who first
accessed the site collection that is the current user.

Assigning permissions directly to users is usually not a scalable and maintainable solution, espe-
cially across large enterprises with many users and sites. Not only does it complicate user mainte-
nance, as ACLs grow larger they can decrease the performance of SharePoint significantly. This is not
an issue unique to SharePoint; it is the same issue solved by AD DS users and groups for any other
application. SharePoint solves the problem in the same way—by defining groups.

SharePoint supports the creation of groups within a site collection to ease the configuration of
authorization and access control. Groups are never created in the context of the site—they are always
created in the context of the site collection and assigned to a site. For example, assume that there is a
site located at /wingtiptoys/sales, and that the /wingtiptoys/sales site reference is the current context
returned from SPContext.Current.Web. Given this environment, SPWeb.Groups would return the group
collection of the sales site. This would be a subset of the groups available in the site collection, which
is available through the SPWeb.SiteGroups property. The following code shows how to list the groups
available to a given site:

218   Inside Microsoft SharePoint 2013

//Server-Side Object Model
SPWeb site = SPContext.Current.Web;
SPGroupCollection groups = site.Groups;

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var groups = ctx.get_web().get_siteGroups();
ctx.load(groups);
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/siteGroups",
 type: "GET",
 headers: {
 "accept": "application/json;odata=verbose",
 }
});

Groups cannot be added to a site directly—they must be added to the site collection. If you try to
add a group to the site’s Groups collection, you’ll get an exception stating, “You cannot add a group
directly to the Groups collection. You can add a group to the SiteGroups collection.” This situation
occurs because SPGroup is always created at the Site Collection level and assigned to the site. How-
ever, this still does not associate the group with the site, nor would it be useful within the site with-
out any permissions. To add the group to the site, create a new SPRoleAssignment by associating an
SPRoleDefinition with the SPGroup, and then add that role assignment to the site, as in the following
code sample:

// Server-Side Object model
SPWeb site = SPContext.Current.Web;
site.SiteGroups.Add("WingtipToysSuperUsers",site.CurrentUser,
site.CurrentUser,"A group to manage Wingtip Toys Security");
SPGroup secGroup = site.SiteGroups["WingtipToysSuperUsers"];
SPRoleAssignment roleAssignment = new SPRoleAssignment(secGroup);
SPRoleDefinition roleDefinition = site.RoleDefinitions["Full Control"];
roleAssignment.RoleDefinitionBindings.Add(roleDefinition);
site.RoleAssignments.Add(roleAssignment);

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var createInfo = new SP.GroupCreationInformation();
createInfo.set_title("WingtipToysSuperUsers");
createInfo.set_description("A group to manage Wingtip Toys Security");
var newGroup = ctx.get_web().get_siteGroups().add(createInfo);
ctx.load(newGroup);
var roleDefBinding = SP.RoleDefinitionBindingCollection.newObject(ctx);
var roleDef = ctx.get_web().get_roleDefinitions().getByType("Full Control");
roleDefBinding.add(roleDef);
var roleAssignments = ctx.get_web().get_roleAssignments();
roleAssignments.add(newGroup, roleDefBinding);
ctx.executeQueryAsync(success, failure);

	 Chapter 6  SharePoint security    219

As with Groups and SiteGroups, multiple collections can be used to access site users. Table 6-1 lists
user-related properties of the SPWeb site object and when to use them.

TABLE 6-1  SPWeb user properties

Property Description

AllUsers Used to access any user who has accessed the site as a member of a domain group
that is a site member, or any user who is explicitly a member of the site. For example,
the user Terry Adams (WINGTIP\terrya) may be a member of the WINGTIP\sales
group. If WINGTIP\sales has access to the Sales site and Terry has visited the site (as
a member of the WINGTIP\sales group), he would gain access through the AllUsers
collection. Because it is the largest collection of users available (being a combination
of the SiteUsers, Users, and group memberships), you generally use the AllUsers col-
lection when you want to access a user.

CurrentUser Returns the current user who created the reference to the SPSite site collection. This
is generally the user who is accessing the SharePoint website.

SiteUsers Used to access the collection of users in the site collection. This is a subset of the
AllUsers collection.

Users The smallest collection of users, containing only the users explicitly added to a
SharePoint site.

Working with application pool identities
The application pool identity plays a large role in SharePoint applications. Besides running the web
application, this account is used as the Windows account that connects to the SharePoint Content and
Configuration databases, and it is the Windows account used when running code in the SPSecurity.Run
WithElevatedPrivileges method. When you create a new web application through the SharePoint
Central Administration application, you should create it to run inside a new or existing application
pool, separate from the Central Administration application pool. Moreover, application pools for web
applications that are accessible to users should be configured with a domain account that is not as
privileged as the user account for the Central Administration application pool. For example, there is
no reason why SharePoint code running within any application pool other than the Central Admin-
istration application pool would ever need to create a new content database or configure database
security permissions.

Consider what happens when you create a new web application through the SharePoint Central
Administration application. When you do this, you get to determine whether SharePoint creates a new
application pool for this web application or uses an existing application pool. If you tell SharePoint
to create a new application pool, you must supply the name and password of a valid Windows user
account. When SharePoint creates the new content database, it grants this user account the SPData-
Access role for that content database. SharePoint also grants the database roles public and WSS_
Content_Application_Pools to this user account in the configuration database. You should note that
user accounts that provide application pool identities must also be added to the local group named
WSS_WPG, so that they have the proper permissions to access SharePoint system files and specific
locations within the Windows Registry and IIS Metabase.

220   Inside Microsoft SharePoint 2013

Understanding the SHAREPOINT\SYSTEM account
The SHAREPOINT\SYSTEM account is an identity to which SharePoint maps internally when code is
running under the identity of the hosting application pool. The SHAREPOINT\SYSTEM account is not
recognized by Windows because it exists only within the content of the SharePoint runtime environ-
ment. This enables SharePoint to use a statically named account for system-related activity regardless
of which Windows user account has been configured for the hosting application pool.

For example, if you switch the application pool from WINGTIPTOYS\SP_WorkerProcess1 to
WINGTIPTOYS\SP_WorkerProcess2, code running as system code still acts and is audited as the
SHAREPOINT\SYSTEM account. However, it is also important to remember that SHAREPOINT\
SYSTEM is not recognized by the Windows security subsystem. Therefore, code in SharePoint
running as system code is recognized by any resource outside of SharePoint under the identity
of the hosting application pool when it attempts to access external resources, such as the local file
system or a Microsoft SQL Server database.

Escalating privileges
The SPSecurity class provides a static method named RunWithElevatedPrivileges, which enables
server-side code to execute as system code running under the identity of SHAREPOINT\SYSTEM. This
allows code to run in an escalated security context to perform actions as the system. This method
should be used with care and should not expose direct access to system resources; rather, it should
be used when you need to perform actions on behalf of the system. The method is simple. You can
either create a delegate to a public void method or simply write code within an inline delegate. The
signature looks like the following:

SPSecurity.RunWithElevatedPrivileges(delegate
{
 // Code runs as the SHAREPOINT\SYSTEM user
});

Code within the delegate runs under the SHAREPOINT\SYSTEM security principal. As covered in
the section “Working with application pool identities” earlier in this chapter, this account uses the ap-
plication pool identity when passing credentials to external resources, but it uses the system account
internally. To modify SharePoint content under the system credentials, you need to create a new
SPSite site collection that generates a new security context for objects referenced from the site, as in
the following example. You cannot switch the security context of the SPSite after it has been created,
but must instead create a new SPSite reference to switch user contexts. The following code uses the
system credentials to add a list item using the profile data of the current web user:

SPSecurity.RunWithElevatedPrivileges(
 delegate {
 using (SPSite site = new SPSite(web.Site.ID)) {
 using (SPWeb web2 = site.OpenWeb) {
 SPList theList = web2.Lists["visitors"];
 SPListItem record = theList.Items.Add();

	 Chapter 6  SharePoint security    221

 record["User"] = SPContext.Current.Web.CurrentUser;
 record.Update();
 }
 }
);

Delegating user credentials
Within application code running in the SharePoint web application, the code runs under the creden-
tials of the application pool while impersonating the calling user. This condition enables SharePoint
to secure objects, including sites, lists, and list items, by using the calling user’s identity. Identity is
configured automatically through the web.config setting <identity impersonate=”true” />. This is true
for both the web application and web service endpoints. When calling web services, you can use this
identity to authenticate to remote endpoints by setting the credentials to the default credentials.
Note that to pass credentials to back-end services, the SharePoint server must be set up with the
rights to delegate credentials in AD DS. For web service requests to the same box, delegation is not
required. The following code example uses the credentials of the current user to authenticate a web
request against a web data source:

WebRequest xmlReq = WebRequest.CreateDefault(xmlUri);
xmlReq.Credentials = CredentialCache.DefaultCredentials;

In addition to the current user’s credentials, you can access the application pool identity by using
the SPSecurity method RunWithElevatedPrivileges:

SPSecurity.RunWithElevatedPrivileges(delegate {
 WebRequest xmlReq = WebRequest.CreateDefault(xmlUri);
 // Uses the app pool credentials:
 xmlReq.Credentials = CredentialCache.DefaultCredentials;
});

User impersonation with the user token
There are two primary ways to create a security context associated with an SPSite. One is to use
the current Windows or claims identity, which is the default method whether you are accessing the
site from the SharePoint web application or an administrative console. This is also the method used
with the SPSecurity.RunWithElevatedPrivileges delegate—the current principal, which happens to be
SHAREPOINT\SYSTEM, is used to create the site security context.

The other way to create an SPSite security context is by using an SPUserToken object. The SPUser-
Token is the token created upon authentication. It references the principal of the user from the identi-
ty store with its groups and roles. In the case of a Windows identity, this token is used to query AD DS
for the TokenGroups property. These tokens time out after 24 hours, making them a good candidate
for system code that needs to impersonate users in the case of workflow actions or post-processing
of list data that happens slightly after the original action (not days later). This token timeout value can
be set by using the Windows PowerShell console. When the user token is used in the constructor of

222   Inside Microsoft SharePoint 2013

SPSite the code can make changes to the SharePoint object model just as if the actual user were mak-
ing the changes.

You can request the token for any user in the system by using the UserToken property of the SPUser
class. If the current user is not the user requested, SharePoint builds the token independently from
the user’s Security ID and group membership. You can then pass this token to the SPSite constructor
to create a new impersonated security context.

For example, consider an event receiver attached to a custom list that will fire when new items are
created. Each time a new item is created, the code will create an announcement with the credentials
of the user in a separate Announcements list. To create the item under the impersonated security
context, simply obtain a user token from the SPUser profile that created the object and pass that
into the SPSite constructor. When the item is inserted into the Announcements list, it will be as if the
impersonated user created the item, even though the event receiver is running under the identity of
SHAREPOINT\SYSTEM:

public override void ItemAdded(SPItemEventProperties properties) {
 DisableEventFiring();
 string CompanyName = properties.ListItem["Company"].ToString();
 properties.ListItem["Company"] = FormatStringValue(CompanyName);
 properties.ListItem.Update();

 SPUserToken token =
 properties.OpenWeb.AllUsers[properties.UserLoginName].UserToken;

 using(SPSite site = new SPSite(properties.SiteId, token))
 {
 using(SPWeb web = site.OpenWeb(properties.WebUrl))
 {
 SPListItem announcement = web.Lists["Announcements"].Items.Add();
 announcement["Title"] = properties.ListItem["Company"].ToString();
 announcement["Body"] = "A new company was added!";
 announcement.Update();
 }
 }

Within this code sample, we are using the AllUsers property of the site. Users are available through
a reference to the site (the SPWeb class). Three user collections are available within the site, and choos-
ing which one to use may be confusing. See Table 6-1, earlier in this chapter, for a description of the
options and guidance on when to use each one.

Securing objects with SharePoint
The SPWeb, SPList, and SPListItem classes in SharePoint inherit from the abstract class SPSecurable
Object, which encapsulates the functionality necessary to secure them from unauthorized access.
Table 6-2 lists the members of the SPSecurableObject class.

	 Chapter 6  SharePoint security    223

TABLE 6-2  SPSecurableObject members

Member Description

BreakRoleInheritance Creates a unique role that does not inherit from the
parent object

CheckPermissions Checks to see if the current user has a given set of
permissions

DoesUserHavePermissions Indicates whether a user has a specified set of permissions

GetUserEffectivePermissionInfo Returns detailed information about the permissions for a
specified user in the current context

GetUserEffectivePermissions Gets the effective permissions for a specified user in the
current context

ResetRoleInheritance Removes unique permissions and inherits from the parent

AllRolesForCurrentUser Returns the roles for the current user

EffectiveBasePermissions Gets the effective permissions for a specified user in the
current object

FirstUniqueAncestorSecurableObject Gets the object where inherited role assignments are
defined

HasUniqueRoleAssignments Indicates whether the object has unique role assignments
or inherits from a parent object

ReusableAcl Gets the access control list for the object

RoleAssignments Gets the role assignments for the object

SPSecurableObject provides a method for checking whether permissions exist, as well as a method
for demanding that the permissions exist. The first method, DoesUserHavePermissions, is used to
query for permissions and returns a Boolean value, whereas the second method, CheckPermissions,
throws a security exception if the permission does not exist. Because this interface is common
throughout the object model, it is easy to learn how to use it throughout your code. For example,
to check whether the current user has permissions to view list items, you can call the DoesUserHave-
Permissions method of the SPWeb class, passing in the ViewListItems permission flag, as follows:

//Server-Side object model
SPWeb web = SPContext.Current.Web ;
if (web.DoesUserHavePermissions(SPBasePermissions.ViewListItems){
 // Enumerate lists
}

//JavaScript Client Object Model
var deferred = $.Deferred();
var ctx = new SP.ClientContext.get_current();
var permSet = new SP.BasePermissions();
permSet.set(SP.PermissionKind.viewListItems);
var flag = ctx.get_web().doesUserHavePermissions(permSet);
ctx.executeQueryAsync(success, failure);

224   Inside Microsoft SharePoint 2013

The SPList is also an SPSecurableObject, which means that you can apply the same principles to
checking permissions on lists. To check the user’s permission to view list items within a specific list, call
the list’s DoesUserHavePermissions method. Likewise, the same method is available in other objects,
such as the SPListItem class, which can be used to ensure that the user has permissions to the item or
document.

Rights and permission levels
Rights within SharePoint are defined by permissions within the SPBasePermissions enumeration. This
enumeration is a flags-based enumeration in which multiple permissions can be combined to create
a permission set. SPBasePermissions are aggregated into roles with the SPRoleDefinitions within the
site context, in which permissions are role-based. You will most likely assign a role when assigning
permissions to a security principal; when validating rights for an action on a particular object, you
will check the permission itself. To assign roles to a security principal, use the SPRoleDefinition class.
Bydefault, each site creates the following role definitions, exposing them through the web’s Role
Definition property: Full Control, Design, Contribute, Read, and Limited Access. These roles, along
with their aggregated permissions, are listed in Table 6-3. Permissions are stored in the ACL for each
SPSecurableObject and cached in the binary ReusableAcl property. The ACL defines permissions for
all users in the site collection on each object. These permissions are always accessed from the object
(remember that object references always are accessed through the user and always contain permis-
sion information).

TABLE 6-3  Default SharePoint site roles

Site role SPBasePermissions

Full Control FullMask

Design ViewListItems, AddListItems, EditListItems, DeleteListItems, ApproveItems, OpenItems,
ViewVersions, DeleteVersions, CancelCheckout, ManagePersonalViews, ManageLists,
ViewFormPages, Open, ViewPages, AddAndCustomizePages, ApplyThemeAndBorder,
ApplyStyleSheets, CreateSSCSite, BrowseDirectories, BrowseUserInfo, AddDelPrivate
WebParts, UpdatePersonalWebParts, UseClientIntegration, UseRemoteAPIs,
CreateAlerts, EditMyUserInfo

Contribute ViewListItems, AddListItems, EditListItems, DeleteListItems, OpenItems, ViewVersions,
DeleteVersions, ManagePersonalViews, ViewFormPages, Open, ViewPages, Create
SSCSite, BrowseDirectories, BrowseUserInfo, AddDelPrivateWebParts, Update
PersonalWebParts, UseClientIntegration, UseRemoteAPIs, CreateAlerts, EditMyUserInfo

Read ViewListItems, OpenItems, ViewVersions, ViewFormPages, Open, ViewPages,
CreateSSCSite, BrowseUserInfo, UseClientIntegration, UseRemoteAPIs, CreateAlerts

Limited Access ViewFormPages, Open, BrowseUserInfo, UseClientIntegration, UseRemoteAPIs

Understanding app authentication

From the very beginning of the design phase, Microsoft created the SharePoint 2013 app model
so that apps could be authenticated and recognized as first-class security principals. The obvious
benefit here is that app permissions can be configured independently of user permissions. To achieve

	 Chapter 6  SharePoint security    225

this goal, however, Microsoft had to build new infrastructure into SharePoint 2013 that is capable of
authenticating incoming calls from apps and tracking app identity.

If you already have a firm understanding of how SharePoint authenticates users, you should not
assume that anything is the same with respect to how it authenticates apps. The authentication
mechanisms used for apps are completely different. SharePoint 2013 supports three different types
of app authentication:

■■ Internal app authentication

■■ External app authentication using OAuth

■■ External app authentication using S2S high-trust

Note that app authentication is supported only in scenarios in which an app is calling to the
SharePoint host environment by using the client-side object model (CSOM) or the REST API.
SharePoint 2013 does not support app authentication in any other endpoints beyond these. This
means it is not possible to develop and deploy a set of custom web service entry points that sup-
port app authentication.

Whenever the SharePoint host environment receives an incoming call that targets either CSOM or
the REST API, it must decide how to authenticate the call. First, the SharePoint host environment must
determine whether the call was initiated by a user or by an app. If the call was initiated by an app, the
SharePoint host environment must also determine whether to use internal authentication or external
authentication.

The SharePoint host environment inspects an incoming request to see what type of security token
has been passed. If an incoming call contains a special type of security token used for app authentica-
tion known as an access token, the SharePoint host will know the call was made by an app. In this sce-
nario, the SharePoint host environment authenticates the caller by using external app authentication.

If the SharePoint host environment sees a SAML token in an incoming request, it knows that there
is already an authenticated user associated with the call. However, at this point the SharePoint host
environment cannot yet assume that call was initiated by a user as opposed to an app. The SharePoint
host environment must additionally inspect the target URL to determine whether the call was initiated
by a user or by an app.

If an incoming request with a SAML token maps to a target URL within a domain associated with
an app web, the SharePoint host environment will assume that the call was made by an app. In this
scenario, the SharePoint host environment uses internal authentication to authenticate the app and
establish its identity. If an incoming request with a SAML token does not map to a target URL within a
domain associated with an app web, the SharePoint host environment will know that the call was not
made by an app, and it will initialize the call context by using just the user’s identity.

The diagram in Figure 6-1 shows four different scenarios for CSOM and REST API calls that target
a SharePoint 2013 site. The first call (at the top) is a client-side CSOM or REST API call that has been
executed from a page in the host web. The SharePoint host environment authenticates this type of
call by using standard user authentication, which results in the creation of a SAML token.

226   Inside Microsoft SharePoint 2013

FIGURE 6-1  The SharePoint environment inspects the security tokens that are passed with incoming calls to
determine which type of authentication to use.

The second call in Figure 6-1 (second down from the top) is similar to the first call in that the
SharePoint host environment uses the standard user authentication process to create a SAML token
with the user’s identity. However, the second call is treated differently because it targets the domain
of an app web. The fact that this call targets an app web is what leads the SharePoint host environ-
ment to authenticate the calling app by using internal app authentication.

The third and fourth calls in Figure 6-1 both carry an access token instead of a SAML token. When
the SharePoint host environment sees an access token in an incoming CSOM or REST API call, it can
assume that it should authenticate the app by using external authentication. The difference between
the third call and the fourth call involves whether the access token carries a user identity along with
the app identity. The third call is an example of the more common scenario in which the access token
includes the identity of the current user in addition to the identity of the app. The fourth call shows
an example of an access token that contains an app identity but no user identity. The use of this type
of access token containing an app-only identity is not as common but is useful in specific scenarios,
which will be described later in this chapter.

	 Chapter 6  SharePoint security    227

Using internal authentication
The most common scenario in which the SharePoint host environment uses internal authentication
involves client-side calls that are initiated from pages in an app web. The SharePoint host environment
creates an isolated domain whenever it creates an app web during app installation. The cross-site
scripting (XSS) restrictions in the browser ensure that CSOM and REST API calls made from pages in
the app web target endpoints within the same domain. This makes it possible for the SharePoint host
environment to map an incoming call that targets an app web domain to a specific installed instance
of an app.

When the SharePoint host environment has determined that an incoming call targets a URL that
maps to a specific app, it uses internal authentication to initialize the call context with the app’s iden-
tity. Because this scenario involves an incoming call with a SAML token, the SharePoint host environ-
ment can further initialize the call context with the user’s identity in addition to the app’s identity.

SharePoint-hosted apps always use internal authentication. That’s because all the pages for a
SharePoint-hosted app must be added to an app web. This means that the SharePoint host envi-
ronment can always use internal authentication to authenticate any CSOM or REST API call from a
SharePoint-hosted app.

The app manifest for a SharePoint-hosted app should be configured to support internal authenti-
cation. This is accomplished in the app manifest by adding an <AppPrincipal> element with an inner
<Internal> element:

<AppPrincipal>
 <Internal />
</AppPrincipal>

Using the cross-domain library
SharePoint-hosted apps are not the only type of app that can use internal authentication. A second
scenario in which internal authentication is used involves client-side calls initiated from a cloud-
hosted app using the cross-domain library. The cross-domain library is a JavaScript library included
with SharePoint 2013 with which a cloud-hosted app can issue client-side calls to the SharePoint host
environment from pages in the remote web.

The cross-domain library has been added to SharePoint 2013 to address the scenario in which a
cloud-hosted app calls back into the SharePoint host environment by using client-side calls instead of
server-side calls. For example, your user interface design might favor client-side calls over server-side
calls to give pages in the remote web more of a Web 2.0 look and feel.

228   Inside Microsoft SharePoint 2013

Note that CSOM and REST API calls that are executed by using the cross-domain library must be
routed through the app web of the calling app. Although cloud-hosted apps do not usually require
an app web, this is a scenario in which they do. Therefore, you must configure a cloud-hosted app to
create an app web if you plan to use the cross-domain library.

The cross-domain library is contained in the JavaScript file SP.RequestExecutor.js, which is located
in the LAYOUTS directory. The cross-domain library can be used when a remote web needs to ac-
cess data in an app web, but barriers such as a firewall prevent the normal approach of calling back
through CSOM with an OAuth token. The cross-domain library works in concert with several compo-
nents to make cross-site calls possible. Figure 6-2 shows the complete architecture.

FIGURE 6-2  The cross-domain architecture uses a JavaScript library and ASPX page to facilitate communication.

At the heart of the cross-domain call architecture is the AppWebProxy.aspx page, which provides
the functionality to execute the object model commands requested by the remote web on the target
app web. Because the AppWebProxy.aspx page is located in the LAYOUTS directory, its location is
well known to every remote web. The remote web loads the SP.RequestExecutor object and initializes
it with the URL of the target app web. At this point, the SP.RequestExecutor object creates a hidden
IFrame within the remote web and loads the AppWebProxy.aspx page from the target app web. The
SP.RequestExecutor object uses the HTML5 postMessage API to send commands from the remote
web to the AppWebProxy.aspx page, which in turn executes them against the target app web. Any
response passes back across the IFrame to the remote web.

	 Chapter 6  SharePoint security    229

When the cross-domain library is first invoked, the user of the remote web will likely not be signed
in to the target app web. In this case, the cross-domain library returns a 401 unauthorized response.
The library subsequently redirects the user to the SharePoint logon page. After the user logs on, the
cross-domain library attempts the original call again.

For a remote web to access an app web by using the cross-domain library, the target app web
must explicitly permit the call. If the app is using the Internal principal, the AllowedRemoteHostUrl
attribute must be set in the app manifest. If you are creating a provider-hosted or autohosted app,
the domain you register for OAuth authentication will automatically be trusted for calls to the cross-
domain library. The app must also be provided with specific permission grants in the app manifest,
just as it would for any OAuth calls. Finally, the app web associated with the remote web needs to
provide the URL to the target app web as a querystring parameter in the <StartPage> element of the
manifest.

In many cases, the target app web and the app web associated with the remote web will be the
same. This is the scenario in which the remote web wants to call back into the associated app web but
is blocked by a firewall. The target app web can be different, however. All that is required is that the
target app web allows the remote web to make the call and the app web associated with the remote
web requests for the appropriate permission grants. The following code shows some typical settings
for app webs that might or might not be in the same manifest, depending upon your scenario:

<AppPrincipal>
 <Internal AllowedRemoteHostUrl="http://crossdomain.wingtip.com/" />
</AppPrincipal>
<Properties>
 <Title>Cross Domain App</Title>
 <StartPage>
 ~remoteAppUrl/Welcome/Message?{StandardTokens}&SPSourceAppUrl=
 http://app-4d277429be4d8d.apps.wingtiptoys.com/cloudhosted/CrossDomainSourceApp
</StartPage>
</Properties>

The simplest way to start using the cross-domain library is to add it directly to the remote web
project. After that, an instance of the SP.RequestExecutor object can be initialized. The URL for the tar-
get app web is retrieved from the querystring passed to the remote web and used in the initialization
process. After the initialization process is complete, RESTful requests can easily be made to the target
app web. Listing 6-1 shows a sample that reads list items from a contacts list in the target app web.

230   Inside Microsoft SharePoint 2013

LISTING 6-1  Reading list items across domains

"use strict";

var WingtipToys = window.WingtipToys || {};
WingtipToys.CrossDomain = function () {

 load = function () {
 var appweburl = getQueryStringParameter("SPSourceAppUrl");
 var executor = new SP.RequestExecutor(appweburl);

 executor.executeAsync(
 {
 url:
 appweburl +
 "/_api/web/lists/getByTitle('Contacts')/items/" +
 "?$select=Id,FirstName,Title,WorkPhone,Email" +
 "&$orderby=Title,FirstName",
 method: "GET",
 headers: { "Accept": "application/json;odata=verbose" },
 success: successHandler,
 error: errorHandler
 })
 },

 successHandler = function (data) {
 //Take action on returned data
 },

 errorHandler = function (data, errorCode, errorMessage) {
 //Handle the error
 },

 getQueryStringParameter = function (paramToRetrieve) {
 //Get querystring value and return it
 }

 return {
 load: load
 }

}()

$(document).ready(function () {
 Wingtip.CrossDomain.load();
});

	 Chapter 6  SharePoint security    231

Using the web proxy
The web proxy is a server-side proxy that can make calls to services in other domains and return
them to an app. The web proxy differs from the cross-domain library in that it supports calling any
endpoint, not just those contained in an app web. The web proxy is ideal for accessing multiple data
sources and creating mashed-up displays in your apps.

You access the web proxy through the SP.WebRequestInfo object, which is available in the sp.js
library. To use the web proxy, you instantiate and initialize the SP.WebRequestInfo object with a REST-
ful URI. The proxy is then invoked, which creates an asynchronous RESTful call. The returned XML can
then be processed to extract the desired values. Listing 6-2 shows part of a custom library that makes
a call to the publically available MusicBrainz API to search for songs based on the name of an artist.

LISTING 6-2  Using the web proxy

"use strict";

var WingtipToys = window.WingtipToys || {};
WingtipToys.ResponseDocument;

WingtipToys.SongViewModel = function () {

 var load = function (artist) {

 var ctx = SP.ClientContext.get_current();
 var request = new SP.WebRequestInfo();

 request.set_url(
 "http://www.musicbrainz.org/ws/2/recording?query=artist:" + artist
);
 request.set_method("GET");
 window.WingtipToys.ResponseDocument = SP.WebProxy.invoke(ctx, request);

 ctx.executeQueryAsync(onSuccess, onError);

 },

 onSuccess = function () {
 var xmlDoc = $.parseXML(window.WingtipToys.ResponseDocument.get_body());
 //Process XML to extract values
 },

 onError = function (err) {
 alert(JSON.stringify(err));
 };

 return {
 load: load
 };
}();

232   Inside Microsoft SharePoint 2013

For cross-domain calls to succeed by using the web proxy, the app must explicitly declare that a
domain is trusted. This is accomplished by setting the <RemoteEndpoint> element in the app mani-
fest. The following code shows how the element is set for the MusicBrainz sample:

<RemoteEndpoints>
 <RemoteEndpoint Url="http://www.musicbrainz.org"/>
</RemoteEndpoints>

Using external authentication
There are many scenarios in which a cloud-hosted app makes CSOM and REST API calls to a SharePoint
host that cannot be authenticated by using internal authentication. In these scenarios, the app must be
configured to use external authentication. The key difference with external authentication is that the
app must include an access token when calling to the SharePoint host environment.

There are two ways in which you can configure an app to use external authentication. The first is
based on OAuth authentication, which is the only type of external authentication supported in the
Microsoft Office 365 environment. The second way is based on server-to-server authentication, which
is only supported in on-premises farms.

OAuth authentication requires integration with Windows Azure ACS. That means that the remote
web of the app requires access to Windows Azure ACS running in the cloud to acquire access tokens.
However, this is relatively simple to set up, because the required integration between the Office 365
environment and Windows Azure ACS is automatically configured for you. Your primary requirement
when configuring OAuth authentication is to register an app security principal that will have an
identifying GUID known as a client ID. The details of how to configure OAuth authentication as well as
how to implement an app to acquire access tokens from Windows Azure ACS will be discussed later in
this chapter.

Server-to-server (S2S) authentication doesn’t require an app to access Windows Azure ACS or any
other authentication service in the cloud. The only computers involved in the S2S authentication pro-
cess are the web server running the remote web and a SharePoint web server in an on-premises farm.
This makes this form of external authentication ideal for scenarios in which you want to avoid depen-
dencies on servers across the Internet where everything needs to run inside a single, private network.

S2S authentication is configured by establishing a trust between the web servers in an on-premises
SharePoint farm and the web server running the remote web of a provider-hosted app. This trust is
created by using an X.509 certificate with a public/private key pair. At a high level, S2S authentication
is based on the app creating an access token and signing it with the private key. Web servers in the
SharePoint farm then authenticate these access tokens by using the public key.

At this point, you should have a high-level understanding of how external authentication works.
External authentication can be configured by using either OAuth authentication or S2S authentica-
tion. In either case, the remote web passes an access token that allows the SharePoint host environ-
ment to authenticate the app and establish the app’s identity.

Although an access token is required to contain information about the app’s identity, it can option-
ally contain information about the identity of the current user, as well. Therefore, some access tokens

	 Chapter 6  SharePoint security    233

carry information about the identity of both the app and the current user, whereas other access
tokens only carry information about the identity of the app.

Understanding app authentication flow
Now that you have learned about the fundamental differences between internal authentication and
external authentication, it’s time to walk through the authentication flow used by the SharePoint host
environment.

Remember that app authentication is only supported in endpoints based on CSOM and the REST
API. Therefore, the SharePoint host environment uses only standard user authentication for any re-
quest that is not based on CSOM or the REST API. This includes scenarios for page requests from both
the host web and the app web.

When the SharePoint host environment processes a CSOM call or a REST API call, it must do more
work to determine which type of authentication to use. The diagram in Figure 6-3 shows a flow chart
that details the complexity and the factors that the SharePoint host environment uses to choose the
correct type of authentication.

The first question the SharePoint host environment asks after starting the authentication process
for a CSOM or REST API call is whether the call carries a SAML token with a user identity. If the incom-
ing call does carry a SAML token, the next question is whether the request targets an app web or
not. If the call does not target an app web, then the SharePoint host environment uses standard user
authentication and sets up the call context with just the user identity. Note that this is exactly what
SharePoint does for any request that does not target a CSOM or REST API endpoint.

When an incoming call with a SAML token targets the domain of an app web, the SharePoint host
environment determines that it must authenticate the app that is associated with that app web. It
then uses internal authentication to authenticate the app and it sets up the call context with the app
identity as well as with the user identity it finds in the SAML token.

When an incoming call carries an access token instead of a SAML token, the SharePoint host
environment determines that the call is from an app and that it must use external authentication to
authenticate it. The SharePoint host environment starts the external authentication process by deter-
mining whether the access token is an OAuth token or an S2S token and then validating the authen-
ticity of the access token.

After the access token has been validated, the SharePoint host environment can then extract infor-
mation about the identity of the app. The SharePoint host environment also inspects the access token
to see if it carries information about the identity of the current user. If it does, the SharePoint host
environment sets up the call context with both the app identity and the user identity. If the access
token does not contain information about the identity of a user, it sets up the call context only with
the app identity.

The last scenario involves a request that carries neither a SAML token nor an access token. In this
case, the SharePoint host environment can establish neither app identity nor user identity. This leads
to the SharePoint host environment setting up the call context by using anonymous access. A call

234   Inside Microsoft SharePoint 2013

executing under anonymous access will experience an access denied error in all scenarios except the
case in which the site has been configured to allow CSOM and REST API calls from an anonymous user.

FIGURE 6-3  This flowchart details the authentication flow that the SharePoint host environment uses to process
incoming calls that target CSOM and REST API endpoints.

Understanding app authorization

This chapter has already explained the various ways in which SharePoint 2013 is able to authenticate
apps. The process of app authentication is what makes it possible to establish an app identity and to
map incoming calls from an app to a unique ID for the app, which is tracked in the App Management
Service database known as the app identifier. This, in turn, makes it possible for the SharePoint host
environment to create and track app permissions by associating each one with an app identifier.

	 Chapter 6  SharePoint security    235

Managing app permissions
When you begin to think about app identity and app permissions, you should keep in mind that an
app must be installed before it can be used and that the installation of an app creates a new app
instance. For example, if you install the same SharePoint app into two different Office 365 tenancies,
you will create two separate app identities as opposed to creating a single app identity that is recog-
nized across tenancy boundaries.

SharePoint 2013 uses app identifiers that are made by combining a GUID that identifies the app
instance together with the unique identifier for the hosting tenancy. Each time the SharePoint host
environment creates an app permission, it must tag this permission with an app identifier to map it
back to an installed instance of an app.

Note that much of the Microsoft documentation on app security often uses the generic term
“realm” in place of the SharePoint-specific term “tenancy.” When you hear someone talking about the
hosting realm for an app, he is really just talking about the tenancy in which the app was installed.
The realm identifier is really just the identifier for the current tenancy.

When you install a SharePoint-hosted app, the app identifier is created and configured automati-
cally as part of the app installation process. After a SharePoint-hosted app has been installed, the
SharePoint host environment is able to use internal authentication to map CSOM and REST API calls
from pages in the app web to an existing app identifier. The process of internal authentication was
discussed in depth earlier in this chapter.

Managing app identifiers becomes more complicated with apps that use external authentication.
In certain scenarios, you must explicitly create the app identifier by registering an app principal before
the app is installed. It is the act of registering the app principal that actually creates the app identifier.
The details of when and how to register app principals will be covered later in this chapter; however,
you now have the required background to begin learning about how SharePoint 2013 manages app
permissions.

Understanding app permission policies
Now it’s time to discuss what happens after a call from an app has been authenticated and mapped
to an app identifier. That’s the point in time when the SharePoint host environment inspects permis-
sions on the target object to determine whether the calling app should be able to succeed in what it
is attempting to do. If the SharePoint host environment does not find that the correct set of permis-
sions has been granted to the app, an access denied error will be returned to the caller.

As you might expect, an app must be granted the appropriate app permission to read or modify
an object in a SharePoint site such as a list or a list item. Moreover, the default authorization policy
for apps requires the current user to have the appropriate permissions as well. Let’s look at a simple
example to illustrate how the default app authorization policy works.

Imagine that an app has been granted write access to the host web. This means that it has the
required permissions to create a new list item in the host site. However, for the app to create a new
list item by using CSOM or the REST API, the current user requires the permissions to create a new list

236   Inside Microsoft SharePoint 2013

item, as well. When the app is launched by a site administrator, it can succeed in creating a list in the
host web. If the app is launched by a user without write permissions, such as a visitor, an attempt by
the app to create a new list item will fail with an access denied error.

A key point here is that the default app authorization policy used for calls from apps checks user
permissions as well as app permissions. Therefore, you need to understand how the SharePoint host
environment manages user permissions as well as app permissions before you can fully understand
how the app authorization process works. For this reason, this chapter will review how user permis-
sions are managed for those readers who require this background. After that, the chapter will then
focus on creating and managing app permissions. As you will see, the way in which the SharePoint
host environment manages app permissions is significantly different from the way it manages user
permissions.

Requesting and granting app permissions
The SharePoint host environment configures a set of default permissions for an app to provide it with
full control over its app web. This means that an app which creates an app web during installation
always has a place to create new lists and document libraries without having to request additional
permissions.

In many scenarios, the default permissions granted to an app will not suffice. Think about the com-
mon scenario in which an app is required to create a new list in the host site. In such a scenario, an
app will require additional permissions beyond the default app permissions.

An app acquires additional permissions by using permission requests. A permission request
is an XML-based element that the app developer adds to the app manifest file. When a user or
administrator attempts to install a SharePoint app that contains one or more permissions requests,
the SharePoint host environment displays a prompt asking the installing user to grant or deny the
permissions that the app has requested.

Figure 6-4 shows the dialog box that the SharePoint host environment uses to prompt the person
who is installing an app with permission requests. The user must either click the Trust It button to
grant the app’s permission requests or click the Cancel button to deny them.

FIGURE 6-4  The user is prompted to grant or deny permission requests when an app is installed.

	 Chapter 6  SharePoint security    237

If the user clicks the Cancel button to deny the app’s permission requests, the SharePoint host
environment aborts the installation. In other words, you must grant all the permissions requested by
an app to install it. It is not possible to selectively grant some permissions an app has requested while
denying other permission requests. Granting permission requests during app installation is an all-or-
nothing proposition.

It is also important to note that a user must possess any permissions that are granted to an app.
For example, an app might request write capabilities on the site collection or the tenancy in which the
host web is located. The user must also possess write permissions on the hosting site collection or the
hosting tenancy in order to grant that permission to an app during installation. Therefore, you can
encounter scenarios in which a site administrator cannot install an app because the app is requesting
permissions that the installing user does not possess.

If the installing user clicks the Trust It button to grant the app’s permission requests, the SharePoint
host environment tracks these permissions in one or more of the SharePoint databases. The permis-
sions that are specific to a site or a site collection are stored in the content database associated with
the hosting site collection. Other types of permissions that are scoped above the site-collection level
are stored in the App Management Service database.

Permission requests are created by adding <AppPermissionRequest> elements into the App
Manifest.xml file within the scope of a top-level <AppPermissionRequests> element. Each <App
PermissionRequest> element must contain the Scope attribute and the Right attribute, as shown
in the following code:

<AppPermissionRequests>

 <AppPermissionRequest
 Scope="http://sharepoint/content/sitecollection/web"
 Right="Read" />

 <AppPermissionRequest
 Scope="http://sharepoint/content/sitecollection/web/list"
 Right="Write" />

</AppPermissionRequests>

The Scope attribute is used to define the type of object for which the permissions are being re-
quested. The value of the Scope attribute is a URI that contains several distinct parts. Consider the URI
value of the Scope attribute from the previous listing:

http://sharepoint/content/sitecollection/web

The first part of the Scope URI defines the Product, which in this example is sharepoint. In some sce-
narios, an app might need to request permissions from another Microsoft product such as exchange
or lync.

The second part of the Scope URI defines the permission provider, which in this example is content.
SharePoint 2013 provides several other permission providers such as search, social, and bcs.

238   Inside Microsoft SharePoint 2013

The final part of the Scope URI defines the target object type, which in this example is sitecollection/
web. This is the target object type used to define the host web. Note that this Scope URI will also
include any child sites below the host web.

The Right attribute defines the type of permission you are requesting. The SharePoint Foundation
platform defines four common rights, which include Read, Write, Manage, and FullControl. The vari-
ous teams that have created SharePoint 2013 have tried to use these four basic rights as consistently
as possible. However, some permission providers have added addition rights beyond these four. For
example, the search permission provider defines the QueryAsUserIgnoreAppPrincipal right:

<AppPermissionRequest
 Scope="http://sharepoint/search"
 Right="QueryAsUserIgnoreAppPrincipal"
/>

You can encounter scenarios in which the Scope attribute does not provide enough control to
specify a certain type of object. For example, imagine that you have an app that needs the Manage
right on all document libraries in the host web. The Scope attribute will let you define a more general
target object type for all lists, including document libraries as well as all the other list types:

<AppPermissionRequest
 Scope="http://sharepoint/content/sitecollection/web/list"
 Right="Manage"
/>

However, the app that requests permissions with this Scope URI is requesting the Manage right on
every type of list, which is more permissions than the app actually needs. You can add a <Property>
element into an <AppPermissionRequest> element to filter the object type beyond what is possible by
using the Scope URI alone. Here’s an example of adding the BaseTemplateId property with a value of
101 to filter the permission request to just document libraries:

<AppPermissionRequest
 Scope="http://sharepoint/content/sitecollection/web/list"
 Right="Manage" >

 <!-- add filter property to permission request -->
 <Property Name="BaseTemplateId" Value="101" />

</AppPermissionRequest>

In certain cases, you are not required to make direct edits to the AppManifest.xml file to add
permission requests. The Permissions tab of the app Manifest Designer supplied by Microsoft Visual
Studio 2012 makes it easy to add and configure permissions requests without having to work with the
XML elements directly. Figure 6-5 shows what the Permissions tab looks like when you are configuring
permission requests.

	 Chapter 6  SharePoint security    239

FIGURE 6-5  The Permissions tab of the app manifest designer specifies requested rights for the app.

There are several different types of permissions that an app can request in SharePoint 2013.
Table 6-4 provides a listing of the more common ones that can be used in app development in
SharePoint 2013.

TABLE 6-4  Permission types in SharePoint 2013

Object type Scope URI Rights

Tenancy http://sharepoint/content/tenant Read, Write, Manage, FullControl

Site collection http://sharepoint/content/sitecollec-
tion

Read, Write, Manage, FullControl

Host web http://sharepoint/content/sitecollec-
tion/web

Read, Write, Manage, FullControl

Lists http://sharepoint/content/sitecollec-
tion/web/list

Read, Write, Manage, FullControl

Search http://sharepoint/search QueryAsUserIgnoreAppPrincipal

BCS http://sharepoint/bcs/connection Read

Taxonomy http://sharepoint/taxonomy Read, Write

Social core http://sharepoint/social/core Read, Write, Manage, FullControl

User profiles http://sharepoint/social/tenant Read, Write, Manage, FullControl

News feed http://sharepoint/social/microfeed Read, Write, Manage, FullControl

Requesting app-only permissions
For certain scenarios, the authorization system for SharePoint apps makes it possible for an app to
call into the SharePoint host environment with an app identity but not a user identity. This relaxes
the rules of app authorization because only the app needs permissions to access an object instead of
both the app and the current user. In such a scenario, calls from an app are authorized by using app-
only permissions.

240   Inside Microsoft SharePoint 2013

App-only permissions are used for two specific scenarios. The first scenario is to elevate the per-
missions of the app above the permissions of the current user. For example, consider the case in which
the app has been granted permissions to create a new list but the current user doesn’t possess the
same permissions. With the default app authorization policy, the app cannot create a new list. How-
ever, an app using app-only permissions would be able to create a new list even when the current
user doesn’t have those permissions.

The second scenario for using app-only permissions involves an app that accesses the SharePoint
host environment in a time when there is no current user. Imagine a scenario in which an app has
been automated to run a job every night at midnight to update a set of documents in the host web.
In this scenario there is no current user. However, the app still needs to be authorized to access the
host web.

You must make a modification to the AppManifest.xml file if you require an app to make calls that
are authorized by using app-only permissions. The way this is accomplished is by adding the Allow
AppOnlyPolicy attribute to the <AppPermissionRequests> element in the app manifest:

<AppPermissionRequests AllowAppOnlyPolicy="true" >

 <AppPermissionRequest
 Scope="http://sharepoint/content/sitecollection/web"
 Right="Manage" />

</AppPermissionRequests>

Adding the AllowAppOnlyPolicy attribute to the <AppPermissionRequests> element alone is not
enough to execute calls from an app run with the app-only policy. You must additionally create an
access token with an app identity but not a user identity. The details of how to create an app-only
access token will be covered in the next section of this chapter.

It is worth noting that running with app-only permissions is only possible when external authen-
tication is being used. Executing calls from an app with app-only permissions is not possible when
internal authentication is used. Therefore, running with app-only permissions is not possible from
SharePoint-hosted apps. Calls from a SharePoint-hosted app will always require app permissions and
user permissions to succeed.

Establishing app identity by using OAuth
OAuth is a standard Internet protocol for authentication and authorization that provides a cross-
platform mechanism for managing app identity and app permissions. Although the original version,
OAuth 1.0, is still being used by some software companies, a second version, OAuth 2.0, was created
to simplify development while still providing app authentication and specific authorization flows for
web apps, desktop applications, and mobile devices.

Today the OAuth 2.0 protocol is used by software companies such as Microsoft, Google, Facebook,
and Salesforce.com. When Microsoft began to design the external authentication infrastructure
for provided-hosted apps and autohosted apps in Office 365, it made a decision to build its
implementation on top of the OAuth 2.0 protocol. More specifically, it decided that access tokens

	 Chapter 6  SharePoint security    241

used for external authentication in the Office 365 environment would be created in accordance with
the OAuth 2.0 specification.

Microsoft’s implementation of OAuth 2.0 is built on top of the Windows Azure ACS. ACS is a
cloud-hosted service on the Internet that is sponsored by Microsoft. The SharePoint host environ-
ment in Office 365 has been configured with a trust to ACS. This allows ACS to act as a security token
service (STS) that creates access tokens that can be authenticated by Office 365. In most cases, the
access tokens created by ACS will contain both an app identity and a user identity. However, ACS is
also capable of creating access tokens with only an app identity for scenarios in which an app requires
app-only permissions.

Note that the OAuth 2.0 specification provides a way to add permissions into an access token.
However, this aspect of the OAuth specification not used in the SharePoint 2013 implementation.
SharePoint 2013 makes use of OAuth for app authentication but not for any type of authorization
or permissions management. Instead, it tracks and manages app permissions independently of the
app authentication scheme in use so that app permissions work the same way as you switch between
internal app authentication and external app authentication using either OAuth or S2S authentication.

Understanding where OAuth fits in
At a high level, it is fair to say that OAuth is primarily used for external app authentication in the
Office 365 environment, whereas S2S authentication is used for external app authentication in on-
premises farms. A common question is whether a company can use OAuth in on-premises farms. The
answer to this question is—of course—it depends.

Although it is technically possible to configure OAuth support for external app authentication in
an on-premises farm, you have to remember that the OAuth implementation in SharePoint 2013 is
tightly coupled to Windows Azure ACS. The technical requirements for configuring OAuth support
in an on-premises farm include obtaining an Office 365 tenancy from Microsoft and synchronizing
user accounts between the on-premises farm and this Office 365 tenancy. Additional configuration is
required to create trusts so that the local on-premises SharePoint farm and the remote web can both
communicate with Windows Azure ACS.

The key takeaway is that OAuth is only supported in scenarios in which it is acceptable to have
dependencies on Microsoft-hosted authentication servers in the cloud. OAuth cannot be used in a
scenario in which you are required to avoid dependencies outside the LAN in which you are hosting
an on-premises SharePoint farm and the remote web for a provider-hosted app.

Understanding OAuth terms and concepts
The OAuth 2.0 protocol defines a flow for app authentication, which involves the following four
participants:

■■ Content owners

■■ Client app

242   Inside Microsoft SharePoint 2013

■■ Content server

■■ Authentication server

Content owners represent the users who can grant access to the content in a site. In a SharePoint 2013
environment, a content owner has permissions to access objects such as sites, lists, and items, and can
consequently grant these same permissions to an app.

The client app represents that part of a website that runs across the network. In a SharePoint 2013
environment, the client app is the portion of the app that runs in the remote web.

The content server is the web server that hosts the site with content. In a SharePoint 2013 envi-
ronment, the content server is a web server hosted within the Office 365 environment that provides
access to SharePoint sites within an Office 365 tenancy for a specific customer.

The authentication server is a server that creates access tokens used for app authentication. The auth
entication server must be trusted by both the content server and the client app. In a SharePoint 2013
environment, the authentication server is always Windows Azure ACS.

Understanding app principals
The SharePoint 2013 implementation of the OAuth protocol requires any app using external authen-
tication to have an associated security principal known as an app principal. You can think of an app
principal as a type of security account similar to a user account. The app principal for a cloud-hosted
app in the Office 365 environment must be registered within the context of an Office 365 tenancy. A
key point is that the app principal is similar to a user account because it is used to establish an identity
during the app authentication process.

When you register an app principal within the context of an Office 365 tenancy, the SharePoint
host environment tracks it in the App Management Service database. As part of the same registra-
tion process, the Office 365 environment also forwards information about the new app principal to
Windows Azure ACS. This makes it possible for Windows Azure ACS to keep its configuration data for
app principals in sync with each Office 365 tenancy.

The profile for an app principal contains five important properties:

■■ Client ID

■■ Client secret

■■ Title

■■ App host domain

■■ Redirect URL

The client ID is a GUID that is used to identify the app principal associated with a cloud-hosted
app. Note that the client ID is sometimes referred to as the app ID. Don’t be confused into thinking
that the client ID and the app ID are different. They are just two terms that are used to refer to the
same thing.

	 Chapter 6  SharePoint security    243

The client secret (also known as the app secret) is a security key created by using a Base64-encod-
ed string that is used to perform symmetric encryption. The client secret is shared between the client
app, the hosting Office 365 tenancy, and Windows Azure ACS. The client secret is an integral part of
the app authentication process because it facilitates communication among these three parties in a
way that makes it possible for messages to be encrypted and authenticated.

The title is a human-readable string for the app principal that is displayed to users within the
Office 365 tenancy.

The app host domain is the base URL for the domain in which the remote web is hosted. The
registration of the app host domain is important because it makes it possible for both the hosting
Office 365 tenancy and Windows Azure ACS to ensure that calls from the remote web of an app have
originated from the well-known URL.

The redirect URL is a property that is used in scenarios in which external applications and external
websites need to request permissions on the fly. This property is optional. You can register an app
principal without a redirect URL. The scenario in which a redirect URL is used will be covered later in
this chapter.

Deploying the remote web by using Secure Sockets Layer
Note that the remote web associated with an app in a production environment should always
be deployed by using Secure Sockets Layer (SSL). The reason for this is that SSL significantly
lowers the risk of an attack by which the attacker calls to the Office 365 host environment pre-
tending to originate from the app host domain when in fact it is being made from some other
domain.

Registering app principals
When it comes to registering the app principal for an autohosted app, things are pretty easy. That’s
because the app principal is registered transparently behind the scenes as part of the app installation
process.

When it comes to registering the app principal for a provider-hosted app, there are extra steps
involved. The app principal must be explicitly registered by a user that possesses administrative per-
missions within the hosting Office 365 tenancy.

There are several ways in which you can register an app principal for a provider-hosted app in an
Office 365 tenancy. The easiest way to do so is to use a standard application page named AppReg-
New.aspx that was added to SharePoint 2013, as shown in Figure 6-6. As you can see, the AppReg-
New.aspx page uses the terms App Id and App Secret instead of client ID and client secret. However,
you have already learned that these are just different terms that refer to the client ID and the client
secret.

244   Inside Microsoft SharePoint 2013

FIGURE 6-6  The AppRegNew.aspx page can be used to register an app principal for a provider-hosted app.

A second way to register an app principal for a provider-hosted app in the Office 365 environ-
ment involves using the SharePoint Online Windows PowerShell Library. This is a Windows PowerShell
library that you install on a local computer that provides cmdlets with which you can create a remote
connection to your Office 365 tenancy. After you have established an authenticated connection, the
SharePoint Online Windows PowerShell Library provides additional cmdlets with which you can man-
age various aspects of your Office 365 tenancies, including creating and managing app principals.

Understanding app authentication flow in Office 365
The OAuth 2.0 protocol involves passing various types of security tokens between Windows Azure
ACS, the hosting Office 365 tenancy, and the remote web. The following list shows the different types
of security tokens that are passed between the participants when authenticating an app by using
OAuth:

■■ Context token

■■ Refresh token

■■ Access token

■■ Authorization code

The context token is a security token that’s used to pass contextual information such as the
identity of the current user, the URL of the host web, and the ID of the current tenancy. The context
token is created by Windows Azure ACS and initially passed to the SharePoint host environment. The

	 Chapter 6  SharePoint security    245

SharePoint host environment is then able to pass the context token to the remote web, where it can
be accessed and used by server-side code in the remote web.

The refresh token is included within the context token that is passed to the remote web. The value
of the refresh token is that it can be used by code in the remote web to obtain an access token from
Windows Azure ACS.

When a refresh token is created, it’s good for a period of six months, whereas an access token is
only good for 12 hours. Therefore, it often makes sense for an app to store refresh tokens in a data-
base from which they can be retrieved and reused to create access tokens on demand.

The access token is what the server-side code in the remote web actually needs to execute authen-
ticated calls back to the SharePoint host environment by using CSOM or the REST API. Therefore, the
remote web requires code to explicitly call into Windows Azure ACS and obtain access tokens when
needed. After the code in the remote web has retrieved an access token, it must pass the access token
in an HTTP header each time it makes a CSOM or REST API call by using programming techniques
that will be discussed later in this chapter.

An authorization code is a special type of security token used in a scenario in which an external
website that has never been installed as a SharePoint app wants to acquire permissions on the fly to
call into a SharePoint site. The use of authorization codes will be explained later in this chapter.

Now that you have learned about the different types of security tokens, you can understand how
the app authentication flow works in a typical scenario with a cloud-hosted app that has been in-
stalled in an Office 365 tenancy. Figure 6-7 shows 10 different stages within the OAuth authentication
flow as security tokens are passed back and forth between the Office 365 tenancy, Windows Azure
ACS, and the remote web of the cloud-hosted app.

FIGURE 6-7  The authentication flow for an external app involves SharePoint, Azure, the app itself, and the end user.

246   Inside Microsoft SharePoint 2013

Let’s begin with stage 1, when the user first accesses a page in a SharePoint site within an Office 365
tenancy. The user is authenticated and a SAML token is created that contains information about the
user identity such as the user’s logon name.

In stage 2, the user navigates to the Site Contents page in which the SharePoint host environment
must display a tile that the user can employ to launch the app. When the SharePoint host environ-
ment needs to create a tile with an app launcher, it must first call to Windows Azure ACS and request
creation of a context token.

When the SharePoint host environment calls to Windows Azure ACS to create a context token, it
passes information about the current user, the host web, and the current tenancy. Windows Azure
ACS needs this information because it must add information about the current user, the host web,
and the current tenancy inside the context token. In stage 3, Windows Azure ACS creates the context
token and returns it to the SharePoint host environment.

In stage 4, the SharePoint host environment has the context token returned from Windows Azure
ACS. The SharePoint host environment makes use of the context token by adding it into the JavaScript
code for the app launcher on the Site Contents page.

Stage 5 occurs when the user clicks the tile for the app on the Site Contents page and launches
the app. The JavaScript code behind the app launcher redirects the user to the app’s start page in the
remote web by using an HTTP POST request. When the HTTP POST request is executed, the context
token is passed to the remote web by using a form variable named SPAppToken.

In stage 6 the client app retrieves the context token from SPAppToken in the incoming request to
the state page. The client app is then able to read what’s inside the context token to obtain informa-
tion about the current user, the host web, and the current tenancy. The client app also has the ability
to extract the refresh token from the context token.

Stage 6 is where the client app calls to Windows Azure ACS to request an access token. When
requesting an access token, the client app must pass the refresh token. In stage 7, Windows Azure
ACS creates the access token from the refresh token and passes it back to the client app. Note that
Windows Azure creates an access token that has both the identity of the app as well as the identity
of the current user.

After the client app has obtained an access token from Windows Azure ACS, it is finally at a point
at which it can make an authenticated call to the host web by using either CSOM or the REST API.
Stage 8 shows the client app making a CSOM or REST API call on the host web. When making this
type of call, the client app must include explicit programming to ensure that the access token is
passed in each call using an HTTP header.

In Stage 9, the SharePoint host environment is able to authenticate the call from the app by
using the access token. As long as the SharePoint host environment is able to determine that the
authenticated app and the current user both have the proper permissions, it returns content back
to the client app.

	 Chapter 6  SharePoint security    247

In the final stage, stage 10, the client app is able to return a page from the remote web that dis-
plays content from the host web that was retrieved during stages 8 and 9. At this point, you have seen
the end-to-end flow of authentication that’s used in an OAuth scenario.

Developing with OAuth
There are three important requirements to keep in mind when developing cloud-hosted apps that
will be installed within an Office 365 tenancy. First, the app manifest file must be properly configured
to indicate whether the app is a provider-hosted app or an autohosted app. Second, the web.config
file in the ASP.NET project for the remote web must be configured to track the client ID and the client
secret. Finally, you must write server-side code that creates and manages access tokens.

The app manifest file for a provider-hosted app must be configured with a <RemoteWeb
Application> element that contains an inner ClientId attribute that tracks the GUID identifying
an app principal:

<AppPrincipal>
 <RemoteWebApplication ClientId="00000000-0000-0000-0000-000000000001" />
</AppPrincipal>

If you are developing an autohosted app, on the other hand, the app manifest should be config-
ured with an <AutoDeployedWebApplication> element. The <AutoDeployedWebApplication> element
is different from the <RemoteWebApplication> element because it does not contain an attribute for a
client ID:

<AppPrincipal>
 <AutoDeployedWebApplication/>
</AppPrincipal>

The next aspect of configuring a cloud-hosted app for use in the Office 365 environment is con-
figuring the web.config file of the remote web with two settings that are set the same, regardless of
whether you are developing a provider-hosted app or an autohosted app. In particular, you must
add two appSettings variables into the web.config file to track the client ID and the client secret. These
appSettings variables must be named ClientId and ClientSecret:

<configuration>
 <appSettings>
 <add key="ClientId" value="00000000-0000-0000-0000-000000000001" />
 <add key="ClientSecret" value="rdYuzdeP9LX67rJJLTDjL1E5pvqbrLe4VTs2apITF4g=" />
 </appSettings>
</configuration>

248   Inside Microsoft SharePoint 2013

At this point, you might be wondering what these two appSettings variables are for. As it turns out,
these two variables are used by a utility class named TokenHelper that Visual Studio 2012 automati-
cally adds to ASP.NET projects that will be used to implement a remote web. The last step in getting
up and running with OAuth is learning how to program with the TokenHelper class to create access
tokens and to pass these access tokens when making CSOM and REST calls back to the SharePoint
host environment.

Programming with the TokenHelper class
If you plan on developing cloud-hosted apps, you must learn to work with the TokenHelper class. The
TokenHelper class provides a public set of static methods for working with several different types of
security tokens including context tokens, refresh tokens, and, most importantly, the access tokens.

Let’s start with a simple example. The following code shows an implementation for the Page_Load
method. This code is very similar to the “hello world” code snippet that Visual Studio 2012 automati-
cally adds to the start page of a cloud-hosted app that uses OAuth. This code has been written to
retrieve the context token passed by the SharePoint host environment and then to obtain an access
token from Windows Azure ACS:

protected void Page_Load(object sender, EventArgs e) {

 // get context token from incoming HTTP form variable
 var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);

 // get host web URL from incoming query string parameter
 var hostWeb = Page.Request["SPHostUrl"];

 // call to Window Azure ACS to acquire access token
 using (var clientContext =
 TokenHelper.GetClientContextWithContextToken(hostWeb,
 contextToken,
 Request.Url.Authority)) {

 // Make CSOM call to SharePoint host passing access token
 clientContext.Load(clientContext.Web, web => web.Title);
 clientContext.ExecuteQuery();

 // display site title on start page
 Response.Write(clientContext.Web.Title);
 }
}

Now that you have seen a simple example of using the TokenHelper class, it’s time to explain how
to program against this class in a bit more detail. When a user is redirected from a host web in an
Office 365 tenancy to the start page in the remote web, the SharePoint host environment passes
several important pieces of data to the app’s remote web by using an HTTP POST operation.

	 Chapter 6  SharePoint security    249

For example, the SharePoint host environment passes several querying string parameters, includ-
ing one named SPHostUrl, which contains the base URL of the host web. When you are writing server-
side code behind the start page for a cloud-hosted app, you can retrieve the host web URL by using
the following code:

string urlHostWeb = Request.QueryString["SPHostUrl"]

In addition to query string parameters, the SharePoint host environment also passes several form
parameters when posting to the start page in the remote web, including one named SPAppToken,
which contains the context token. You can access the context token as a raw string by using the fol-
lowing code:

string contextTokenString = Request.Form["SPAppToken"]

As you have already seen, you can retrieve the context token by using a TokenHelper method
named GetContextTokenFromRequest. When you make the call to GetContextTokenFromRequest,
you pass the ASP.NET Request object as the one and only parameter value:

// when calling GetContextTokenFromRequest, you must pass the ASP.NET Request object
string contextTokenString = TokenHelper.GetContextTokenFromRequest(Request);

The code demonstrates passing the context token as a raw string when calling GetClientContext
WithContextToken. The implementation of this method extracts the refresh token from the context
token and then uses it to call to Windows Azure ACS to obtain an access token. After the access token
has been returned, the GetClientContextWithContextToken method uses it to initialize a CSOM session
with a special client context that automatically passes the access token when sending a request to
execute CSOM commands on the SharePoint host environment.

If you need to read information from inside the context token, you can convert the context token
string to a strongly typed object by calling the TokenHelper method ReadAndValidateContextToken:

string remoteWebUrl = Request.Url.Authority;
string contextTokenString = TokenHelper.GetContextTokenFromRequest(Request);

SharePointContextToken contextToken;
contextToken = TokenHelper.ReadAndValidateContextToken(contextTokenString, remoteWebUrl);

The call to ReadAndValidateContextToken returns a SharePointContextToken object that makes the
information inside the context token accessible to your code through simple properties. The code in
Listing 6-3 demonstrates the type of information that you can read from the context token.

250   Inside Microsoft SharePoint 2013

LISTING 6-3  Accessing information within the context token

string remoteWebUrl = Request.Url.Authority;
string contextTokenString = TokenHelper.GetContextTokenFromRequest(Request);

SharePointContextToken contextToken;
contextToken = TokenHelper.ReadAndValidateContextToken(contextTokenString, remoteWebUrl);

// ID of the current user on behalf of which the current call is executing
string nameId = contextToken.NameId;

// Client ID of the app principal used for external authentication
string clientId = contextToken.ActorToken.ActorToken.Id;

// ID of the hosting tenancy in Office 365
string realm = contextToken.Realm;

// Environment ID for Office 365
string targetPrincipalName = contextToken.TargetPrincipalName;

// ID of the authentication server which is Windows Azure ACS
string issuer = contextToken.Issuer;

// URL used when communicating with Windows Azure ACS
string securityTokenServiceUri = contextToken.SecurityTokenServiceUri;

// time when context token became valid
DateTime validFrom = contextToken.ValidFrom;

// time when context token expires
DateTime validTo = contextToken.ValidTo;

// refresh token
string refreshToken = contextToken.RefreshToken;

// caching key for caching refresh tokens and access tokens
string cacheKey = contextToken.CacheKey;

If you look toward the end of Listing 6-3, you can see that the code demonstrates how to retrieve
both the refresh token and the cache key from the context token. The refresh token is what the app
must pass to Windows Azure ACS to obtain an access token. Although you do not have to work di-
rectly with refresh tokens in all scenarios, it can be helpful to store refresh tokens in a database, where
they are good for 6 months, to retrieve access tokens. Remember that an access token is only good
for 12 hours.

Recall that all refresh tokens and the majority of access tokens contain information about one
specific user. Therefore, any scheme you design to cache or store refresh tokens and/or access tokens
must ensure that caching is user-specific when required. It would be bad to use the refresh token as-
sociated with one user to retrieve an access token for a different user.

	 Chapter 6  SharePoint security    251

The context token contains a special string value named cacheKey. The cache key holds a string
value that will always be unique for the combination of current user, host web site, and app. The idea
is that you can use the cacheKey as a dictionary lookup key when caching or storing access tokens in
memory or refresh tokens inside a database.

Working with access tokens
At this point, you have already seen the code required to execute CSOM commands by using OAuth.
Executing a REST API call by using OAuth is different because you must work directly with access
tokens in your code. Listing 6-4 shows the code required to retrieve an access token. After the access
token has been acquired, it must be converted into a string and added as an HTTP header before the
REST API call is made.

LISTING 6-4  Making a simple REST API call by using OAuth

// get context token as a SharePointContextToken object
string remoteWebUrl = Request.Url.Authority;
string contextTokenString = TokenHelper.GetContextTokenFromRequest(Request);
SharePointContextToken contextToken;
contextToken = TokenHelper.ReadAndValidateContextToken(contextTokenString,
 remoteWebUrl);

// retrieve host web information
string hostWebUrl = Request.QueryString["SPHostUrl"];
Uri hostWebUri = new Uri(hostWebUrl);
string hostWebAuthority = hostWebUri.Authority;

// get access token by passing context token and host web authority
OAuth2AccessTokenResponse accessToken = TokenHelper.GetAccessToken(contextToken,
 hostWebAuthority);

// get access token as a Base64 encoded string
string accessTokenString = accessToken.AccessToken;

// prepare HttpWebRequest to execute REST API call
HttpWebRequest request1 =
 (HttpWebRequest)HttpWebRequest.Create(hostWebUrl.ToString() + "/_api/Web/title");

// add access token string as Authorization header
request1.Headers.Add("Authorization", "Bearer " + accessTokenString);

// execute REST API call and inspect response
HttpWebResponse response1 = (HttpWebResponse)request1.GetResponse();
StreamReader reader1 = new StreamReader(response1.GetResponseStream());
XDocument doc1 = XDocument.Load(reader1);
string SiteTitle = doc1.Root.Value;

252   Inside Microsoft SharePoint 2013

Let’s step through some of the code in Listing 6-4. There is a call to the TokenHelper method Get
AccessToken, which retrieves an access token from Windows Azure ACS. When you call GetAccessToken,
you must pass a strongly typed context token and the authority of the host web:

// get access token by passing context token and host web authority
OAuth2AccessTokenResponse accessToken = TokenHelper.GetAccessToken(contextToken,
 hostWebAuthority);

// get access token as a Base64 encoded string
string accessTokenString = accessToken.AccessToken;

When passing the second parameter for the host web authority, you must pass the URL of the
host web but without the protocol in front. For example, the host web authority is a string such as
tenancy01.sharepoint.com, as opposed to the host web URL, which has the protocol at the beginning
with a value such as https://tenancy01.sharepoint.com.

You can see that calling GetAccessToken returns a strongly typed object of type OAuth2Access
TokenResponse. However, you must usually work with the access token in its raw form as a Base64-
encoded string. You retrieve the string for the access token by reading the AccessToken property
of the OAuth2AccessTokenResponse object.

The code in Listing 6-4 demonstrates creating an HttpWebRequest object and adding the string-
based access token as an HTTP header named Authorization. You should take note that the Authoriza-
tion header value is created by combining the word “Bearer” together with the access token, with a
blank space between them:

string restUri = hostWeb + "/_api/Web/title";
HttpWebRequest request1 = (HttpWebRequest)HttpWebRequest.Create(restUri);

// add access token to Authorization header
request1.Headers.Add("Authorization", "Bearer " + accessTokenString);

JavaScript Object Notation Web Tokens
OAuth security tokens such as context tokens, refresh tokens, and access tokens are created by
using the JSON Web Token (JWT) standard. A JWT is created in a text-based, human-readable
format by using JavaScript Object Notation (JSON), which allows you to read the information
inside:

{ "token_type":"Bearer",
 "access_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik5HVEZ2k5HVE2ZEst...",
 "expires_in":"43199",
 "not_before":"1355269661",
 "expires_on":"1355312861",
 "resource":"00000003-0000-0ff1-ce00-000000000000/tenancy01.sharepoint.com@23d..." }

	 Chapter 6  SharePoint security    253

Although JWTs are initially created in a human-readable form, they must be converted into
a Base64-encoded format before they are passed across the network. After a security token has
been converted into a Base64-encoded format, it loses any trace of human readability:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdWQiOiJmOWI0NmIwZi04YjM2LTQ2ODYtYW
Y5Mi0wMmRhODY3NGNiYzEvbG9jYWxob3N0OjQ0MzA0QDIzZDk0OWFlLWIzNzEtNGJmMS1iNzVmL
Tg5ZjAwMjk5NDY1ZiIsImlzcyI6IjAwMDAwMDAxLTAwMDAtMDAwMC1jMDAwLTAwMDAwMDAwMDAwM
EAyM2Q5NDlhZS1iMzcxLTRiZjEtYjc1Zi04OWYwMDI5OTQ2NWYiLCJuYmYiOjEzNTUyNjk2NTgsI
mV4cCI6MTM1NTMxMjg1OCwiYXBwY3R4c2VuZGVyIjoiMDAwMDAwMDMtMDAwMC0wZmYxLWNlMDAtM
DAwMDAwMDAwMDAwQDIzZDk0OWFlLWIzNzEtNGJmMS1iNzVmLTg5ZjAwMjk5NDY1ZiIsImFwcGN0e
CI6IntcIkNhY2hlS2V5XCI6XCJnK2k1UVFLYjZnMnRt

Working with app-only access tokens
In the majority of scenarios, an access token will carry the identity of the current user in addition to
the identity of the app itself. However, there are scenarios for which it makes sense to create an access
token that contains an app identity but no user identity. This type of security token is known as an
app-only access token.

As discussed earlier in the chapter, there are two primary scenarios in which you should use app-
only access tokens. The first scenario involves a requirement to elevate the permissions for an app so
that they are not constrained by the permissions of the current user. For example, an app-only access
token makes it possible for an app to create a list in the host web even when the current user lacks
the permissions to do so.

The second scenario in which it makes sense to create app-only access tokens is during a time
when there is no current user. This might be the case if an app runs a batch job every night at mid-
night to update a set of document in the host web. In this scenario, the app is running but not in
the context of any specific user. However, the app is still required to create an access token to make
CSOM or REST API calls against the host web.

You can retrieve an app-only access token by calling the TokenHelper method named GetAppOnly-
AccessToken. This method accepts three parameters, including the target principal name, the host web
authority, and the realm that identifies the hosting tenancy in Office 365:

// get app-only access token as a strongly typed object
OAuth2AccessTokenResponse appOnlyAccessToken =
 TokenHelper.GetAppOnlyAccessToken(contextToken.TargetPrincipalName,
 hostWebAuthority,
 contextToken.Realm);

// get access token in a string form to pass across the network
string appOnlyAccessTokenString = appOnlyAccessToken.AccessToken;

254   Inside Microsoft SharePoint 2013

After you have obtained the app-only access token from Windows Azure ACS and converted it
into its string format, you can use it to set up the Authorization header, just as you do with standard
access tokens. If you want to execute CSOM commands by using app-only permissions, you must first
obtain the string value for an app-only access token. You can pass the app-only access token string
when calling the GetClientContextWithAccessToken method to establish a new CSOM session, which
executes its commands by using app-only permissions:

ClientContext appOnlyClientContext =
 TokenHelper.GetClientContextWithAccessToken(hostWebUrl,
 appOnlyAccessTokenString);

The SHAREPOINT\APP account
When the SharePoint host environment authenticates an app by using an access token con-
taining a user identity, it uses the user identity to initialize the calling context. However, things
are different when the SharePoint host environment authenticates a call from an app that
has passed an app-only access token. When the SharePoint host environment authenticates
a CSOM or REST API call with an app-only access token, it initializes the calling context with a
special SharePoint system account named SHAREPOINT\APP.

Acquiring permissions on the fly by using authorization code
So far, this chapter has discussed authentication and authorization scenarios involving SharePoint
apps that have been installed into a specific SharePoint tenancy. SharePoint 2013 provides another
option, which can be used by standard websites that were not developed as SharePoint apps. This
allows any type of website on the Internet to request permissions to access a SharePoint 2013 site
on the fly.

Although this approach does not involve creating or installing a SharePoint app, it does require
you to preregister an app principal within the scope of the target tenancy where the permissions will
be requested. Enabling this capability for an external website to request permissions on the fly is the
primary scenario in which you must register an app principal with a redirect URL.

For example, imagine that you have developed an ASP.NET website whose base URL is https://
appserver.wingtip.com, and you want this website to be able to request permissions from a Share-
Point site in Office 365 on the fly. First, you need to register an app principal in the scope of the host
tenancy for the SharePoint site. When registering the app principal you must set the redirect URL to
point to a page in the ASP.NET website such as https://appserver.wingtip.com/RedirectAccept.aspx.

	 Chapter 6  SharePoint security    255

After you have registered the app principal with the proper redirect URL, the next step involves
writing code in the external website to create the authorization URL. This step is greatly simplified if
you add the TokenHelper class that is also used in the remote web of a cloud-hosted app. The Token-
Helper class provides a method named GetAuthorizationUrl.

The code in Listing 6-5 demonstrates how to call the GetAuthorizationUrl method in an exter-
nal website. This method accepts three parameters: the URL of the host web, the permission being
requested (for example, Web.Read), and a redirect URL. The redirect URL is important because it is
what the SharePoint host environment uses to call back to the external website if a user with sufficient
permissions grants the permission request.

LISTING 6-5  The code required to generate a permission request by using an authorization URL.

string urlHostWeb = "https://tenancy01.sharepoint.com/";
string urlRedirectAccept = "https://AppServer.wingtip.com/ RedirectAccept.aspx";
string urlAuthorization = TokenHelper.GetAuthorizationUrl(urlHostWeb,
 "Web.Read",
 urlRedirectAccept);

// redirect
Response.Redirect(urlAuthorization, true);

The GetAuthorizationUrl method parses together a URL that targets a standard SharePoint 2013
application page named OAuthAuthorize.aspx. The authorization URL also includes query string
parameters to pass a GUID for the client ID, the requested permissions, and the redirect URL. As
shown in Listing 6-5, you can redirect the user to the authorization URL automatically by calling
Response.Redirect.

When the user is redirected to the authorization URL within the host web, the SharePoint host
environment responds by displaying a page with which the user can either grant or deny the permis-
sion request. Just as in the case of a permission request in a SharePoint app, a user must possess any
permissions that are granted in a permission request. If the user grants the permission request, the
SharePoint host environment responds by passing an authorization code back to the external website
by using an HTTP POST operation that targets the page configured as the redirect URL. Listing 6-6
shows an example of code behind the redirect page that has been written to retrieve the authoriza-
tion code and use it to create an access token. The authorization code is passed from the SharePoint
host environment to the redirect page by using a query string parameter named code.

256   Inside Microsoft SharePoint 2013

LISTING 6-6  An external website acquiring an authorization code to access a SharePoint site

string authorizationCode = Request.QueryString["code"];
string targetPrincipalName = "00000003-0000-0ff1-ce00-000000000000"; // Office 365 ID
string targetRealm = "79597708-fc2e-4c79-acfa-710bb435db25"; // tenancy ID
string urlHostWeb = "https://tenancy01.sharepoint.com/ "; // host web
string urlRedirectAccept = "https://AppServer.wingtip.com/RedirectAccept.aspx";
Uri uriRedirectAccept = new Uri(urlRedirectAccept);

ClientContext context =
 TokenHelper.GetClientContextWithAuthorizationCode(urlHostWeb,
 targetPrincipalName,
 authorizationCode,
 targetRealm,
 uriRedirectAccept);

context.Load(context.Web);
context.ExecuteQuery();
context.Dispose();

After you have retrieved an authorization code, you can pass it in a call to the GetClientContext
WithAuthorizationCode method or an overloaded implementation of the GetAccessToken method.
Thecode in Listing 6-6 demonstrates calling the GetClientContextWithAuthorizationCode method
to create a CSOM client context with an access token that makes it possible for the website to make
CSOM calls on the host web.

Establishing app identity by using S2S trusts
In this chapter, you have learned that SharePoint 2013 supports external app authentication by using
both OAuth and S2S trusts. Although OAuth is primarily intended for use in the Office 365 envi-
ronment, the S2S trust infrastructure was specifically designed to work in on-premises farms with
provider-hosted apps.

Using an S2S trust for external app authentication is similar to using OAuth in the sense that code
in the remote web passes an access token when calling to the SharePoint host environment. However,
the manner in which the access token is created and the parties involved are very different.

One significant difference from using OAuth is that an S2S trust does not require any communi-
cations with Windows Azure ACS or any other authentication server in the cloud. The only servers
involved in an S2S trust are the web server that hosts the remote web and the web servers of an
on-premises SharePoint 2013 farm. Therefore, all of the servers required with an S2S trust can all run
within the same LAN or private network.

A second significant difference involves authenticating the current user. When using OAuth, the
SharePoint host environment authenticates the current user and then passes this user’s identity to the
remote web by using the context token.

	 Chapter 6  SharePoint security    257

Things work very differently when using an S2S trust. The SharePoint host environment doesn’t
pass the identity of the current user to the remote web. In fact, the SharePoint host environment
doesn’t pass a context token at all. The context token, which is a central figure in OAuth, doesn’t even
exist in the authentication flow of an S2S trust.

When a provider-hosted app is configured to authenticate by using an S2S trust, its remote web
takes on the responsibility of authenticating the current user independently of any user authentica-
tion that has taken place in the SharePoint host environment. After the remote web has authenticated
the current user, it can then create an access token that contains both the app identity and the iden-
tity of the current user.

When you are using OAuth, the remote web must call to Windows Azure ACS to acquire an access
token. However, a provider-hosted app using an S2S trust can create an access code on its own by
using the TokenHelper class.

After the remote web for a provider-hosted app has created an S2S access token, it can then pass
the access token to the SharePoint host environment when executing CSOM command or REST API
calls. The programming aspects of passing the access token string using the Authentication header in
a provider-hosted app by using an S2S trust work the same way as with OAuth.

High-trust configurations vs. full-trust configurations
A provider-hosted app using an S2S trust is often referred to as a high-trust configuration.
The term “high trust” is used to imply that the provided-hosted app authenticates the current
user independently of the SharePoint host environment. When the provider-hosted app makes
a CSOM or REST API call, the SharePoint host environment cannot verify the identity of the
current user. Therefore, the SharePoint host environment must trust that the provider-hosted
app has properly authenticated the user and passed the true identity of the current user in the
access token.

Do not confuse the term “high trust” with “full trust.” Code that runs with full trust, such as
server-side code in a farm solution, runs without security restrictions. Full-trust code can do
whatever it wants to do. This is very different from a provider-hosted app running at high trust,
which is constrained by whatever set of permissions has been granted to the app.

Architecture of an S2S trust
The architecture of an S2S trust is based on a X.509 certificate, which contains a public/private key
pair. The public and private keys are used to perform asymmetric encryption. The critical underlying
concept is that the provider-hosted app uses the private key to sign the access token. The SharePoint
host environment uses the public key to verify that the access token has been created and signed by
a party that possesses the private key. This, in turn, makes it possible for the SharePoint host environ-
ment to authenticate calls from a provider-hosted app that is configured to use an S2S trust.

258   Inside Microsoft SharePoint 2013

Figure 6-8 shows the high-level architecture of an S2S trust. Unlike in a scenario involving OAuth,
the remote web does not need to communicate with Windows Azure ACS to acquire access tokens.
Instead, it is able to create access tokens on its own, which must be signed with the private key. One
important observation is that the remote web requires access to the private key at runtime whenever
it needs to create an access token.

A second requirement for an S2S trust is that the hosting SharePoint farm must be configured with
a special type of secure token service known as a trusted security token issuer. You will learn how to
configure a trusted security token issuer using a public key file and a Windows PowerShell script later
in this chapter.

Let’s follow the stages of the S2S authentication flow that are shown in Figure 6-7. In stage 1, the
user navigates to a SharePoint site and is prompted to log on. When the user supplies a valid set of
credentials and logs on, the SharePoint host environment creates a SAML token to track the user’s
identity. However, the identity of the user is never passed to a provider-hosted app using an S2S trust.

In stage 2, the user navigates to the Site Settings page and sees the tile for a provider-hosted app,
which has been configured to use an S2S trust. When the user clicks this tile, the SharePoint host envi-
ronment uses an app launcher to redirect the user to the start page in the remote web.

FIGURE 6-8  An S2S trust is based on a public/private key pair that allows apps to create access tokens that carry a
digital signature.

	 Chapter 6  SharePoint security    259

When the SharePoint host environment redirects the user to the start page of a provider-hosted
app with an S2S trust, it passes many of the same query string parameters as in an OAuth scenario,
such as the SPHostUrl parameter. However, the SharePoint host environment does not pass a context
token. This means that the SharePoint host environment passes nothing to indicate who the user is.
This puts the responsibility on the remote web to authenticate the user.

Stage 3 occurs after the user has been authenticated and there is a need to create an access
token. When code in the remote web creates an access token by using the TokenHelper class, it adds
information into the access token about the identity of the app and the identity of the current user.
Next, the remote web must acquire the value of the private key file to sign the access token. After the
remote web has created and signed the access token, it can pass the access token by using the Autho-
rization header each time it executes a CSOM command or a REST API call.

In stage 4, the SharePoint host environment uses external authentication to authenticate a call
from a provider-hosted app that is using the S2S trust. For this to work, the hosting SharePoint farm
must first be configured with a trusted security token issuer that is based on the public key. During
the external authentication process, the SharePoint host environment inspects the access token and
uses the trusted security token issuer to verify its authenticity.

Configuring S2S trusts for Microsoft products
The infrastructure for configuring S2S trusts within a SharePoint 2013 farm wasn’t just created
exclusively for custom app development. When configuring a SharePoint 2013 farm, it is
sometimes necessary to create S2S trusts for Microsoft products such as Microsoft Exchange
2013 and Workflow Manager. Configuring an S2S trust makes it possible for these Microsoft
products to call into the SharePoint host environment with a distinct app identity and with a
set of preconfigured permissions.

Configuring an S2S trust
The first step in configuring an S2S trust for a provider-hosted app is generating a public/private key
pair by creating an X.509 certificate. To obtain an X.509 certificate for use on production servers, it
is recommended that you go through an established certification authority (CA) that has experience
creating professional-grade certificates. For development and other scenarios with lower security
concerns, you can create the required X.509 certificate with a public/private key pair by using two
command-line tools named makecert.exe and certmgr.exe that are available on any web server on
which SharePoint 2013 has been installed.

The Windows PowerShell script shown in Listing 6-7 demonstrates how to create an X.509 certifi-
cate with a public/private key pair. You use the makecert.exe tool to create a certificate file named
appserver.wingtip.com.cer that contains both the public key and the private key. Use the certmgr.exe
tool to register the certificate with IIS so that it can be used to enable SSL on an IIS website.

260   Inside Microsoft SharePoint 2013

LISTING 6-7  A Windows PowerShell script creating an X.509 certificate with a public/private key pair

$makecert = "C:\Program Files\Microsoft Office Servers\15.0\Tools\makecert.exe"
$certmgr = "C:\Program Files\Microsoft Office Servers\15.0\Tools\certmgr.exe"

specify domain name for SSL certificate (optional)
$domain = "appserver.wingtip.com"

create output directory to create SSL certificate file
$outputDirectory = "c:\Certs\"
New-Item $outputDirectory -ItemType Directory -Force -Confirm:$false | Out-Null

create file name for SSL certificate files
$publicCertificatePath = $outputDirectory + $domain + ".cer"
$privateCertificatePath = $outputDirectory + $domain + ".pfx"

Write-Host "Creating .cer certificate file..."

& $makecert -r -pe -n "CN=$domain" -b 01/01/2012 -e 01/01/2022 -eku 1.3.6.1.5.5.7.3.1
 -ss my -sr localMachine -sky exchange -sy 12
 -sp "Microsoft RSA SChannel Cryptographic Provider" $publicCertificatePath

Write-Host "Registering certificate with IIS..."
& $certmgr /add $publicCertificatePath /s /r localMachine root

get certificate to obtain thumbprint
$publicCertificate = Get-PfxCertificate -FilePath $publicCertificatePath
$publicCertificateThumbprint = $publicCertificate.Thumbprint

Get-ChildItem cert:\\localmachine\my |
 Where-Object {$_.Thumbprint -eq $publicCertificateThumbprint} |
 ForEach-Object {
 Write-Host " .. exporting private key for certificate (*.PFK)"
 $privateCertificateByteArray = $_.Export("PFX", "Password1")
 [System.IO.File]::WriteAllBytes($privateCertificatePath, $privateCertificateByteArray)
 Write-Host " Certificate exported" -ForegroundColor Gray
 }

There is code at the end of the Windows PowerShell script in Listing 6-7 that exports the certifi-
cate’s private key to a password-protected file named appserver.wingtip.com.pfx. This means that the
remote web requires access to this PFX file and the password in order to retrieve the private key to
sign access tokens.

After you have created the .cer file with the public key, you must copy it to a web server in the
hosting SharePoint farm to create a trusted security token issuer. The Windows PowerShell script in
Listing 6-8 shows how to create the trusted-security token issuer by using a Windows PowerShell
cmdlet for SharePoint named New-SPTrustedSecurityTokenIssuer. Note that a trusted security-token
issuer is registered with an identifying GUID. You should record this GUID because it must be used
from the provider-hosted app.

	 Chapter 6  SharePoint security    261

LISTING 6-8  A Windows PowerShell script for SharePoint to register a trusted security-token issuer

Add-PSSnapin "Microsoft.SharePoint.PowerShell"

$issuerID = "11111111-1111-1111-1111-111111111111"
$targetSiteUrl = "http://wingtipserver"
$targetSite = Get-SPSite $targetSiteUrl
$realm = Get-SPAuthenticationRealm -ServiceContext $targetSite

$registeredIssuerName = $issuerID + '@' + $realm

$publicCertificatePath = "C:\Certs\appserver.wingtip.com.cer"
$publicCertificate = Get-PfxCertificate $publicCertificatePath

Write-Host "Create token issuer"
$secureTokenIssuer = New-SPTrustedSecurityTokenIssuer '
 -Name $issuerID '
 -RegisteredIssuerName $registeredIssuerName '
 -Certificate $publicCertificate '
 -IsTrustBroker

Although this example demonstrates registering a trusted-security token issuer by using a pub-
lic key from a .cer file, SharePoint 2013 also supports registering one by using a metadata endpoint
exposed by the provider-hosted app. This is typically the way registering is done when the app is a
product such as Exchange 2013 or Workflow Manager.

After you have registered a trusted security-token issuer, the next step is to register an app principal.
This can be done by using the AppRegNew.aspx page in exactly the same way you would register an
app principal for an app that uses OAuth. You can also register the app principal for an S2S trust by us-
ing a Windows PowerShell cmdlet for SharePoint named Register-AppPrincipal, as shown in Listing 6-9.

LISTING 6-9  Registering the app principal for an S2S trust with Register-AppPrincipal

register an app principal for a provider-hosted app using an S2S trust
$appDisplayName = "My S2S High Trust App"
$clientID = "22222222-2222-2222-2222-222222222222"

$targetSiteUrl = "https://intranet.wingtip.com"
$targetSite = Get-SPSite $targetSiteUrl
$realm = Get-SPAuthenticationRealm -ServiceContext $targetSite

$fullAppPrincipalIdentifier = $clientID + '@' + $realm

Write-Host "Register new app principal"
$registeredAppPrincipal = Register-SPAppPrincipal '
 -NameIdentifier $fullAppPrincipalIdentifier '
 -Site $targetSite.RootWeb '
 -DisplayName $AppDisplayName'

262   Inside Microsoft SharePoint 2013

There are a few scenarios in which the Register-SPAppPrincipal cmdlet does not provide enough
control to properly configure an app principal. More specifically, the Register-SPAppPrincipal cmdlet
does not allow you to configure an app domain for the remote web nor a redirect URI. For scenarios
in which you need to configure an app principal with an app domain and/or a redirect URI, you can
write a Windows PowerShell script for SharePoint that uses the SPAppPrincipalManager class in the
server-side object model, as shown in Listing 6-10.

LISTING 6-10  Registering an app principal by using the SPAppPrincipalManager class

Add-PSSnapin "Microsoft.SharePoint.PowerShell"

set initialization values for new app principal
$appDisplayName = "App Principal for My High Trust App"
$clientID = "33333333-3333-3333-3333-333333333333"
$appHostDomainUrl = "http://localhost:43002/"
$appRedirectUrl = $appHostDomainUrl + "redirect.aspx"

provide site inside target tenancy (aka realm)
$targetSiteUrl = "http://wingtipserver"

get App Principal Manager
$web = Get-SPWeb $targetSiteUrl
$appPrincipalManager = [Microsoft.SharePoint.SPAppPrincipalManager]::GetManager($web)

initialize creation parameters for App Principal host domain
$applicationEndPointAuthorities = new-object System.Collections.Generic.List[string]
$applicationEndPointAuthorities.Add($appHostDomainUrl);

initialize creation parameters for App Principal security credentials
$symmetricKey = New-Object System.Security.SecureString;
$datetimeNow = [System.DateTime]::Now

$credential = [Microsoft.SharePoint.SPAppPrincipalCredential]::CreateFromSymmetricKey($sy
mmetricKey,
 $datetimeNow,
 $datetimeNow)

create new object for App Principal creation parameters
$creationParameters =
New-Object Microsoft.SharePoint.SPExternalAppPrincipalCreationParameters(
 $clientID,
 $appDisplayName,
 $applicationEndPointAuthorities,
 $credential)
assign redirect Uri to creation parameters
$creationParameters.RedirectAddresses.Add((New-Object System.Uri $appRedirectUrl))

create app principal
$appPrincipal = $appPrincipalManager.CreateAppPrincipal($creationParameters)

	 Chapter 6  SharePoint security    263

Developing provider-hosted apps by using S2S trusts
Before you begin to develop a provider-hosted app with an S2S trust, you should first complete the
following steps.

1.	 Create a .cer certificate file containing a public/private key pair.

2.	 Use the .cer file to register a trusted security token issuer.

3.	 Register an app principal with a client ID to help track app identity.

4.	 Export the private key to a password-protected .pfx file.

5.	 Make the .pfx file accessible on the server running the remote web.

After you have completed these steps, it is relatively simple to create a new provider-hosted app
with Visual Studio 2012 and configure it to use an S2S trust. The first step is to update the app mani-
fest with the client ID of an app principal that has already been registered:

<AppPrincipal>
 <RemoteWebApplication ClientId="22222222-2222-2222-2222-222222222222" />
</AppPrincipal>

The next step is to update the web.config file of the remote web with four appSettings variables
that track the IDs of the trusted security token issuer and the app principal as well as the file path
and password required to extract the private key from the .pfx file at run time. Note that these four
appSettings variables are used by Microsoft-supplied code in the TokenHelper class. The information
in these four variables is used each time the TokenHelper class creates an S2S access token:

<appSettings>
 <add key="ClientId" value="22222222-2222-2222-2222-222222222222" />
 <add key="ClientSigningCertificatePath" value="C:\Certs\appserver.wingtip.com.pfx" />
 <add key="ClientSigningCertificatePassword" value="Password1" />
 <add key="IssuerId" value="11111111-1111-1111-1111-111111111111" />
</appSettings>

At this point, you have seen all the steps required to configure an S2S trust. All that’s left to do is
to write the code to create access tokens and to pass them to the SharePoint host environment in the
Authentication header. The code in Listing 6-11 demonstrates how to create an S2S access token by
calling the GetS2SAccessTokenWithWindowsIdentity method of the TokenHelper class. After you have
created an S2S access token string, you can add it as an Authorization header by using exactly the
same code you would use in an app that uses OAuth.

264   Inside Microsoft SharePoint 2013

LISTING 6-11  Creating an S2S access token

string hostWebUrl = Request.QueryString["SPHostUrl"];
Uri hostWebUri = new Uri(hostWebUrl);
WindowsIdentity currentUser = Request.LogonUserIdentity;

string accessTokenString =
 TokenHelper.GetS2SAccessTokenWithWindowsIdentity(hostWebUri, currentUser);

// prepare HttpWebRequest to execute REST API call
HttpWebRequest request1 =
 (HttpWebRequest)HttpWebRequest.Create(hostWebUrl.ToString() + "/_api/Web/title");

// add access token string as Authorization header
request1.Headers.Add("Authorization", "Bearer " + accessTokenString);

// execute REST API call and inspect response
HttpWebResponse response1 = (HttpWebResponse)request1.GetResponse();
StreamReader reader1 = new StreamReader(response1.GetResponseStream());
XDocument doc1 = XDocument.Load(reader1);
string SiteTitle = doc1.Root.Value;

Calling TrustAllCertificates
While you are working in a development environment, it is common to use test certificates
as opposed to production-grade certificates. The TokenHelper class provides a static method
named TrustAllCertificates, which can be called if you need to relax the rules used in the certifi-
cate verification process.

TokenHelper.TrustAllCertificates();

A call to TrustAllCertificates can be helpful to get things working in a development environ-
ment where you are using test certificates. However, any calls to TrustAllCertificates should be
removed before your code goes into production.

	 Chapter 6  SharePoint security    265

Summary

This chapter explained the concepts, configuration details, and programming techniques associated
with app authentication and app permission management. You learned that SharePoint 2013 authen-
ticates CSOM and REST API calls from apps by using either internal authentication or external authen-
tication. SharePoint-hosted apps use internal authentication, whereas external authentication is used
by cloud-hosted apps that have server-side code running inside the remote web.

The chapter also explained how SharePoint 2013 manages app permissions and enforces a security
policy that by default requires both the app and the current user to possess the required permissions
to accomplish a specific task. In certain scenarios, you can execute calls with app-only permissions so
that your code is not constrained by the permissions of a specific user.

The security model for SharePoint apps often requires you to add permission requests to the app
manifest file. Permission requests are the mechanism that your app uses to acquire the permissions it
needs to read and modify content in the host web.

The second half of the chapter discussed configuration details and programming techniques that
are specific to OAuth and S2S trusts. You saw that OAuth and S2S trusts both require you to write
code to obtain access tokens and to pass them to the SharePoint host environment by using the
Authorization header. However, you also learned that there is quite a difference between the way that
OAuth and S2S trusts work behind the scenes.

		 267

C H A P T E R 7

SharePoint pages

One of the most fundamental aspects of Microsoft SharePoint or any web-based system, for that
matter, is the pages. Pages in SharePoint are an important foundation of the infrastructure and

of custom solutions, whether those solutions are farm solutions, sandboxed solutions, or SharePoint
apps. Pages are used for a variety of scenarios, for instance, presenting information or hosting logic.
Users need pages to display their content, applications need pages to render their UIs, and SharePoint
needs pages to render lists, libraries, and so on.

This chapter explains how SharePoint works with pages. It begins with a discussion of the infra-
structure and plumbing that is done with Microsoft ASP.NET and Microsoft Internet Information
Services (IIS) to build the SharePoint virtual file system. This is an important area to know and can
affect how you design and develop your solutions. Next, this chapter explains the different kinds of
pages in SharePoint and how SharePoint uses the master page concept. You learn about features such
as delegate controls, the Minimal Download Strategy (MDS), and the SharePoint ribbon.

SharePoint and ASP.NET

SharePoint is built on top of Microsoft .NET Framework 4.5 and ASP.NET, and it uses much of the
ASP.NET core functionality. SharePoint uses the Web Forms technology and not frameworks such as
the ASP.NET Model-View-Controller (MVC) framework. Understanding how SharePoint uses ASP.NET
is fundamental if you are aspiring to do advanced SharePoint development. The next few sections
review how a SharePoint site is hosted as an ASP.NET application in IIS and how SharePoint uses the
ASP.NET framework to build its hierarchies of site collections, sites, and pages.

Learning ASP.NET basics
Before you enjoy the magic of SharePoint and the power of ASP.NET, it’s a good idea to review some
ASP.NET basics. Many books are written on this topic, and if you’re not familiar with ASP.NET, you
might want to have access to one or two of these books. Having a good understanding of ASP.NET
makes your life as a SharePoint developer a lot easier.

268   Inside Microsoft SharePoint 2013

Understanding ASP.NET and IIS
ASP.NET is a hugely popular server-side web application framework, based on Microsoft .NET, which
you use to create fast, dynamic, and robust web applications. ASP.NET applications are typically hosted
on the Windows Server operating system in IIS. One IIS website can contain one or more ASP.NET
applications, each one hosted in a virtual directory, and the virtual directories are hierarchal, located
within the IIS website. Each virtual directory is usually mapped to the physical path of the web server.
The name of the virtual directory becomes a part of the URL of the site. Typically, all virtual directories
share the same application pool. An application pool is the process that executes the code (the w3wp.exe
process). The IIS website can also contain an application, which is a special form of virtual directory in
which a separate or dedicated application pool is used, usually to ensure process isolation. Several IIS
websites can share the same application pool and still have application isolation thanks to the .NET
AppDomain provided by the .NET Framework.

The configuration for an ASP.NET application is stored in the configuration file called Web.config.
This configuration file is very much like any other .NET application .config file, but it contains specific
settings for ASP.NET. By default, each virtual directory or application in IIS can have its own Web.config
file to override or set location specific settings. You learn more about the Web.config file and
SharePoint in just a bit.

Using ASP.NET Web Forms
There are multiple ways to use ASP.NET to serve content and respond to requests. The most conven-
tional way is by using .aspx pages, which is what SharePoint uses, but there are a plethora of alterna-
tives, such as using ASP.NET MVC or the new ASP.NET Razor view engine. In the past, most SharePoint
development focused on .aspx pages and the concept called Web Forms. Web Forms are composed
of two components: the UI and the code-behind. Each component typically resides in two different
files. The UI resides in the .aspx file, and the code-behind resides in .aspx.cs when working with C#, or
.aspx.vb when working with Microsoft Visual Basic. The code-behind class contains the implementa-
tion of the object for the page, inheriting from the System.Web.UI.Page class.

The UI component of a Web Form consists of typical HTML controls (or tags) and Web Forms con-
trols, also called server-side controls. Listing 7-1 shows a typical ASP.NET .aspx page.

	 Chapter 7  SharePoint pages    269

LISTING 7-1  Simple ASP.NET Web Forms page with a Label server-side control

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="MyWebForm.aspx.cs" Inherits="Pages.ASPNET.MyWebForm" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="theLabel" runat="server" />
 </div>
 </form>
</body>
</html>

The .aspx page contains a combination of traditional HTML tags and Web Forms controls. The first
line contains the page directive, which tells the compiler that this is an ASP.NET page and should be
compiled. It also tells the parser the name of the code-behind file and what Page class this file should
inherit from.

The elements within the page marked with the attribute runat=”server” are processed and parsed
on the server before being sent to the client. In Listing 7-1, the Web Forms control asp:Label repre-
sented a simple label control. To write dynamic content to this label, you can use the Page object of
the page, implemented in the code-behind shown in Listing 7-2. The code-behind file is a C# file with
the extension .aspx.cs.

LISTING 7-2  Code-behind for an ASP.NET Web Forms page that sets the value of a server-side control

namespace Pages.ASPNET
{
 public partial class MyWebForm : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 theLabel.Text = "Hello ASP.NET!";
 }
 }
}

The code-behind contains a class for the specific page referenced in Listing 7-2, inheriting from
System.Web.UI.Page. In this case you use a method—the Page_Load method—to set the value of the
label control. This method is added by Microsoft Visual Studio 2012 when you create the page, and is
executed when the page is loaded.

270   Inside Microsoft SharePoint 2013

If this Web Form was a part of a Visual Studio solution and you chose to publish it, Visual Studio
would compile the .aspx.cs file into a .NET assembly. To run the Web Form, you would need to deploy
the .aspx file to an IIS site and the assembly file into a folder called /bin on that IIS site. When a user
requested this Web Forms .aspx page, the ASP.NET parser would read the .aspx file parse and convert
the HTML and Web Forms controls into a control-tree, which represents the hierarchy of the controls.
Next, it would create a source file with a new class that derived from the class specified in the page
directive. Then it would compile this source file to an in-memory assembly that would be used to
execute requests for this specific Web Form. The in-memory assembly lives as long as the IIS applica-
tion pool is running or until the .aspx file is changed. If the file is changed, or rather the date and time
stamp on the file is changed, the ASP.NET runtime will notice that, causing a recompile of the page.

Using ASP.NET master pages
To create a consistent look, feel, and behavior for all the pages in your web application, ASP.NET uses
a concept called master pages. A master page defines the outline of a page and contains placeholder
controls. These placeholder controls are then used by the pages that are using the master page (known
as content pages) to build the complete page. For instance, the master page can define the navigation
of the website, the footer, and other common features, whereas the content page defines the actual
content and logic for the particular page.

A master page is very similar to a standard .aspx page. Instead of having the .aspx file name exten-
sion, however, a master page uses the .master extension. The page directives are replaced by a master
directive, which contains one or more content placeholders. Suppose you converted the .aspx page
in Listing 7-2 to one master page and one content page. Listing 7-3 shows the implementation of the
master page and Listing 7-4 shows the content page.

LISTING 7-3  A master page that contains one PlaceHolder control that can be used by pages that are using the
master page

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="MyMaster.master.cs" Inherits="Pages.ASPNET.MyMaster" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder ID="mainContentArea" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

	 Chapter 7  SharePoint pages    271

Listings 7-3 and 7-4 have two main differences from the original .aspx page in Listing 7-1. First,
there is a master directive at the top instead of a page directive. A master directive works in the same
way as the page directive for the .aspx page, and in this case, the master page also has a code-behind
page with the extension .master.cs. The second difference is the area in which the label control previ-
ously was located. This is now replaced by a ContentPlaceHolder control with the name mainContent
Area.

To use this master page file on your Web Form, you need to add a new attribute to the page direc-
tive, clear out the redundant controls, and add a Content control, in which you place the label control.
Listing 7-4 shows the result of the content page.

LISTING 7-4  A Web Forms page that uses a master page and uses the Content control to add content to the
PlaceHolder defined in the master page

<%@ Page Language="C#"
 MasterPageFile="~/MyMaster.master" AutoEventWireup="true"
 CodeBehind="MyWebForm.aspx.cs" Inherits="Pages.ASPNET.MyWebForm" %>
<asp:Content ID="Content1" ContentPlaceHolderID="mainContentArea" runat="server">
 <asp:Label ID="theLabel" runat="server" />
</asp:Content>

In the page directive, you added the MasterPageFile attribute and pointed it to the master page
in the ASP.NET application root; the rest of the attributes are left intact. All the HTML and ASP.NET
controls are replaced by a single content control, in which you added the label control.

You just read a quick introduction to how ASP.NET pages work and how master pages are used to
separate the UI from the page logic. SharePoint relies on this ASP.NET Web Forms concept, and it is
very important that you understand Web Forms before you develop pages for SharePoint.

Understanding how SharePoint relates to IIS web applications
This section focuses on SharePoint, specifically on how SharePoint relates to ASP.NET and IIS. All content
within SharePoint is hosted inside a SharePoint Web Application. Note that a SharePoint Web Applica-
tion is not the same as an IIS web application. A SharePoint Web Application is a boundary for a lot
of configurations such as authentication settings, databases, and security policies. A SharePoint farm
has at least one web application, which is the one hosting Central Administration, and most farms
have at least two web applications: Central Administration and one or more web applications hosting
SharePoint content.

272   Inside Microsoft SharePoint 2013

When a web application is created in SharePoint, a new IIS website is also created. This IIS website
is the host and entry point for all SharePoint site collections and sites within that web application. All
the ASP.NET settings for the IIS website will be used by all sites in the web application. Examples of
settings are authentication methods and cache settings. If you’re familiar with ASP.NET, you know that
ASP.NET stores a lot of configuration information in Web.config, which is stored in each ASP.NET appli-
cation. The Web.config file exists in the file system of the server, typically in C:\inetpub\wwwroot\wss\
virtualdurectories\<id> for SharePoint Web Applications. A SharePoint Web Application can also use
multiple IIS websites through a technique called extending SharePoint Web Applications. Extending a
SharePoint Web Application is of interest when you need to have different configuration settings for
the same web application, because extending a SharePoint Web Application creates an additional IIS
website, which has its own set of configurations.

Understanding the Web.config file
As mentioned earlier in this chapter, the configuration for an ASP.NET application is stored in the
Web.config file. SharePoint is no different in this aspect. When a new SharePoint web application is
provisioned and the IIS website is created, SharePoint creates the Web.config file and adds all the
required settings to it so that SharePoint can work. Without a correctly configured Web.config file,
SharePoint will not work. Usually you should avoid making changes to Web.config, but there are a
few exceptions, which you learn about later in this chapter. Although you might want to modify
Web.config, doing so could cause problems in addition to the lack of supportability. For instance, a
SharePoint farm typically consists of more than one web server, so any changes made to the Web.config
file requires you to make sure that the Web.config files are in sync on all machines. And if you add
another web server to your SharePoint farm, SharePoint creates a new Web.config file, ignoring any
customizing you might have handled on other machines. ASP.NET developers, and to some degree
SharePoint developers, historically have stored configuration data in Web.config, however, this is very
risky. There are plenty of other good ways to store configuration settings, such as by using SharePoint
lists, property bags on farms, site collections, and site levels, or by using custom configuration objects
in SharePoint.

SharePoint actually configures quite a lot in the Web.config file. In addition to using the standard
configuration Section groups in Web.config, SharePoint has its own Section group named SharePoint
and another called microsoft.sharepoint.client. Listing 7-5 shows the different sections that are specific
to SharePoint in Web.config.

	 Chapter 7  SharePoint pages    273

LISTING 7-5  Settings specific to SharePoint in Web.config

<configuration>
 <configSections>
 <sectionGroup name="SharePoint">
 <section name="SafeControls"/>
 <section name="RuntimeFilter"/>
 <section name="WebPartsLimits"/>
 <section name="WebPartCache"/>
 <section name="WebPartWorkItem"/>
 <section name="WebPartControls"/>
 <section name="SafeMode"/>
 <section name="MergedActions"/>
 <section name="PeoplePickerWildcards"/>
 <section name="WorkflowServices"/>
 <section name="BlobCache"/>
 <section name="OutputCacheProfiles"/>
 <section name="ObjectCache"/>
 <section name="MediaAssets"/>
 <section name="ApplicationAuthentication"/>
 </sectionGroup>
 </configSections>
 <microsoft.sharepoint.client>
 <serverRuntime/>
 </microsoft.sharepoint.client>
 <SharePoint>
 <SafeMode/>
 <WebPartLimits/>
 <WebPartControls/>
 <SafeControls/>
 <PeoplePickerWildCards/>
 <WorkflowServices/>
 <MergedActions/>
 <BlobCache/>
 <ObjectCache/>
 <OutputCacheProfiles/>
 <MediaAssets/>
 <RuntimeFilter/>
 </SharePoint>
</configuration>

Some of these customizations are of interest because they help you understand how SharePoint
actually works; for instance, later in this chapter, we discuss the SafeMode and the SafeControls
sections. Most of these sections should be manually configured, but there are a few exceptions. For
instance, the SharePoint BLOB cache is handled by the BlobCache section. By default, it is turned off,
and to turn it on, you need to modify Web.config. Some of these sections are discussed in more detail
later in this chapter, such as the SafeMode and SafeControls section, and some are discussed in other
chapters.

274   Inside Microsoft SharePoint 2013

Tip  After working with your web application for a while, you might notice that in the IIS
virtual directory for the website are many Web.config .bak files, sometimes hundreds. This
is normal on a developer’s machine. Every time SharePoint needs to make a change to the
Web.config file, SharePoint automatically creates a backup file before making the configu-
ration changes. On your developer machine, you can delete these files.

As a developer, one of the first things you will want to do is configure the Web.config file for
debugging and turn off the SharePoint friendly error message page. If you ŕe using Visual Studio 2012
and start debugging your first farm solution on a web application, Visual Studio will ask you if this
should be done automatically. If you choose to opt out or manually debug it yourself, you need to
modify the Web.config file in three different places:

■■ The debug attribute of the /configuration/system.web/compilation element should be set to
true.

■■ The mode attribute of the /configuration/system.web/customErrors element should be set to
off.

■■ The CallStack attribute of the /configuration/SharePoint/SafeMode element should be set to
true.

The first modification tells the compiler to compile assemblies in debug mode, and the second
modification makes sure that the yellow ASP.NET error page is shown instead of the user-friendly
SharePoint error page. The final modification tells SharePoint to propagate any error messages up
the call stack.

Understanding the SharePoint virtual file system
When the IIS website receives a user request, it must find out which page to render. This request is
sent through the ASP.NET pipeline. The pipeline contains a set of HTTP modules that the request will
go through before eventually ending up in an HTTP handler. Each HTTP module subscribes to one or
more events in the ASP.NET pipeline and acts on events such as authentication, request mapping, and
request execution. The HTTP handlers are responsible for the actual processing of the request, for
instance, the request of a Web Forms .aspx page or a web service .asmx file.

SharePoint adds its own set of HTTP modules and handlers when the Web.config is created for
a SharePoint web application. Most importantly, SharePoint adds the SPRequestModule. It is in this
module that SharePoint does the majority of hooks into the ASP.NET pipeline. This module is also
responsible for the SharePoint virtual file system.

The root directory of the IIS website for a SharePoint Web Application does not contain a lot of
files. Basically, it consists of the Web.config file and a couple of directories. So where is SharePoint
storing all the files and pages in the SharePoint sites? SharePoint is built to host thousands of sites
and pages and to handle all this on a large scale and synchronized over a multitude of servers, so
these files cannot be stored in the file system. The site collections, sites, lists, list items, and pages

	 Chapter 7  SharePoint pages    275

are stored in databases, called content databases. Any page within a site will have an entry in one of
the content databases. To build a file system with these databases, SharePoint uses an ASP.NET fea-
ture called virtual path provider. Instead of using the default ASP.NET virtual path provider, which maps
a request to the corresponding file in the file system, SharePoint has its own virtual path provider,
implemented in the internal SPVirtualPathProvider class.

This virtual path provider is responsible for finding the correct page among the databases connected
to the web application. However, some pages, called application pages, are not served through the
content databases, and these reside in the file system. These physical files are stored in the SharePoint
root and are served through one of the IIS virtual directories. The most common of these IIS virtual
directories is the _layouts\ folder, which is mapped to the Template\Layouts folder in the SharePoint
Root. In previous versions of SharePoint, this part was straightforward, but in SharePoint 2013, this
mapping is getting a bit trickier. The _layouts virtual directory is mapped to the SharePoint 2010
\Template\Layouts folder, whereas the _layouts\15\ virtual directory is mapped to the SharePoint
2013 \Template\Layouts folder. The reasoning behind this is to not break compatibility when you’re
updating a site collection or solution from SharePoint 2010 to SharePoint 2013. This virtual directory
is also mapped to the root of each site collection so that the directory can always be reached through
\~sitecollection_layouts. You learn later in this chapter about how to create and deploy application
pages.

When the request is handled by the SharePoint module and the SharePoint virtual path provider,
the virtual path provider first tries to find out whether the request targets one of the files in the file
system, which exists in one of the virtual directories. If the request does, that file will be used when
processing the request. If the request does not belong to any virtual directory, it is assumed to exist in
one of the content databases, and the SharePoint virtual path provider will locate the file within one
of the content databases.

Working with files and folders in SharePoint
SharePoint provides several application programming interfaces (APIs) that can be used to work with
pages, files, and folders in the SharePoint virtual file system. The most common ones are the server-
side API and the client-side object model (CSOM), introduced in SharePoint 2010. There are also
alternatives such as WebDAV and the new Representational State Transfer (REST) APIs. Which model
you choose largely depends on what you are building: a server-side component, a SharePoint app, a
companion application, and so on.

The server-side object model is the method that gives you the most flexibility when working with
files and folders. Creating a new document library on a SharePoint site is a good example of this and
illustrates some of the interesting aspects of SharePoint. The following snippet will create a new docu-
ment library in the current site:

SPWeb currrentWeb = SPContext.Current.Web;
currentWeb.Lists.Add(
 "Specifications",
 "Library for specifications documents",
 SPListTemplateType.DocumentLibrary);

276   Inside Microsoft SharePoint 2013

In this preceding code, you’re adding a new list of the type DocumentLibrary; a document library
is just a special version of a SharePoint list. When this library is created, SharePoint provisions a folder
in the root of the site (SPWeb) with the name as specified in the code. It also provisions a subfolder
called Forms and a set of files in that folder. The Forms folder is hidden from the users, but it can be
seen in SharePoint Designer, for example, as shown in Figure 7-1. The files in this Forms folder are
used by SharePoint when users are uploading, adding, or modifying the properties of those files.
There is also one file per public view of the folder. These views are normal content pages on the
SharePoint site and can be modified by using the UI, SharePoint Designer, or code. You examine how
these content pages works in the “Understanding content pages” section later in this chapter.

FIGURE 7-1  Every document library has a hidden folder called Forms.

Files and folders within a SharePoint site can exist in a library or outside a library. For instance,
when a SharePoint Team site is provisioned, its home page is located in a library called Site Pages at
the address /SitePages/Home.aspx, but it also provisions a few files directly at the root of the site.
There are a few important differences between files inside a library and files provisioned outside of a
library. Files outside of a library cannot have any file properties; these files don’t have versioning and
you can’t control permissions.

To work with files and folder by using the server-side object model, you use the SPFile and SP-
Folder objects. Files are retrieved by using the web relative URL:

SPWeb currrentWeb = SPContext.Current.Web;
SPFile defaultFile = currentWeb.GetFile("default.aspx");
SPFile homeFile = currentWeb.GetFile("SitePages/Home.aspx");

The first retrieved file fetches a file existing directly in the root of the web, which is not in a docu-
ment library, and the second file fetches a file existing in the Site Pages document library. If you spec-
ify a URL to a file that does not exist, you do not get an exception or a null value returned. Instead, a
normal SPFile object is returned but with the property Exists set to false.

After you have the SPFile object, you can perform operations on the file, such as read, update, and
delete. To delete a file, you use the Delete method, and to retrieve its contents, you use OpenBinary
or OpenBinaryStream. You can programmatically add a new file to the site in several ways. You could
read a file from the file system, or you could read a file from a memory stream, which could be a re-
sult of a file upload, for example. The sample code in Listing 7-6 illustrates how to dynamically create
an .aspx page in memory and then add it to a document library.

	 Chapter 7  SharePoint pages    277

LISTING 7-6  Creating a SharePoint .aspx page dynamically by using server-side code

string title = "A dynamically generated HTML page";
StringBuilder sb = new StringBuilder();
sb.Append("<%@ Page %>");
sb.Append("<html>");
sb.Append("<head>");
sb.AppendFormat("<title>{0}</title>", title);
sb.Append("</head>");
sb.Append("<body>");
sb.AppendFormat("<h1>{0}</h1>", title);
sb.Append("</body>");
sb.Append("</html>");

SPWeb web = SPContext.Current.Web;
SPList sitePages = web.Lists.TryGetList("Site Pages");
if(sitePages != null)
{
 sitePages.RootFolder.Files.Add(
 "demo.aspx",
 System.Text.Encoding.UTF8.GetBytes(sb.ToString())
);
}

The source code of the .aspx page is created by using the .NET object StringBuilder, and in this case
you’re just adding an ASP.NET page directive, some HTML, and simple heading text. After the data for
the file is created, you retrieve the Site Pages library. To get this library, you first need to get the SPList
object of the library. Notice that I use the TryGetList method, which returns null if the list cannot
be found and does not throw an exception. You use this list object to retrieve the root folder of the
library, the RootFolder property, and then with that folder access the Files collection and use the Add
method to add the file. You must specify the URL of the file; in this case, you use the overload of the
Add method that takes a byte array so that the StringBuilder object is converted to a string and then
to a byte array.

Most of these operations are also accessible when using the CSOM, the REST API, or WebDAV
operations, which allow you to work with files and folders in companion applications, such as apps for
Windows 8 and Windows Phone 8. It also allows you to access, modify, and provision new files in the
host web from a SharePoint app.

Understanding page customization
Suppose you have a page or file that should exist in all or many of your sites in your set of thousands
of sites, and the page is not an application page. Having thousands of copies of that page would
cause both performance and storage issues in addition to complex upgrade scenarios. SharePoint
handles this through a process called page customization. When a page is created in SharePoint as
a result of a site being created or a Feature being activated, that page can exist in the physical file
system, and only a reference is created in the content database. The file existing in the file system is

278   Inside Microsoft SharePoint 2013

a template file for the files existing in the sites. In earlier versions of SharePoint, this template file was
referred to as a ghosted file. Such a file solves a lot of potential problems. You have only one copy of
the file to process, maintain, and update.

Understanding uncustomized pages
A page is called uncustomized, or ghosted, when the actual file (the template file) resides in the file
system and is referenced from a site. For instance, when you create a new site collection, a set of
files are added to it. One file that is always provisioned is the master page. Because this file is provi-
sioned to every site collection you create, you could have thousands of these; it would be a bad idea
to create a new copy of the file and its contents into every site collection. Thus, SharePoint creates a
reference in the site collection and the virtual file system that points to the file on the disk. An uncus-
tomized file does not have to be an .aspx file; it can be any kind of file type.

An uncustomized file gives you several benefits, both from a development perspective and from
a farm maintenance perspective. As long as the page is uncustomized, any updates in the file on the
file system are reflected in the site collections. Assume the opposite: if you had a copy in every site
collection or site, any update to that file would have to be done in all the sites, requiring you to create
either Feature upgrades or Windows PowerShell scripts, introducing upgrade complexity. Because the
file resides only in the file system, the content databases contain fewer BLOBs, which saves you space
in the content databases. Uncustomized .aspx pages also have the benefit of being compiled at the
first request time, compared to customized pages, which aren’t. Historically, this has been a point of
performance discussions, but with current hardware and compilers, this is less of an issue.

Worth noticing here is that uncustomized pages can be created only by using full trust solutions. If
you are building a sandboxed solution or SharePoint app, all pages you provision will be customized.
Only full trust solutions have access to the file system.

Understanding customized pages
When a page is provisioned from a SharePoint app or a sandboxed solution, or when it is uploaded to
SharePoint by the user or programmatically, that page and its contents are stored only in the content
database. These pages are called customized (or unghosted). If you modify an uncustomized page,
for example, you modify the uncustomized master page of a site collection, and the file becomes a
customized page; its contents are from now on stored only in the content database. When building
SharePoint apps or sandboxed solutions, all of the assets in your solution will be customized.

Even though it has been changed, a previously uncustomized page will always keep a reference to
its template file. As a site owner, you always have the possibility of reverting the page to its original
state and discarding all customizations.

Restoring a customized page that has a template file to its uncustomized state can be done pro-
grammatically, and you can check the customization status of a page at any time. You can do it by
using SharePoint Designer 2013 or by using the server-side API. To revert the file to its uncustomized
state by using SharePoint Designer, you select the file, right-click it, and then select Reset To Site Defi-
nition. Figure 7-2 shows a file that has been modified from its uncustomized state.

	 Chapter 7  SharePoint pages    279

FIGURE 7-2  A page that is customized from its uncustomized state displays a blue information icon in SharePoint
Designer 2012.

To check a file’s customization state and eventually restore it to its uncustomized state by using
the server-side API, you use the following code—for example, in a Web Part or the code-behind of
the page:

SPFile file = SPContext.Current.Web.GetFile("SitePages/Home.aspx");
if (file.CustomizedPageStatus == SPCustomizedPageStatus.Customized)
{
 file.RevertContentStream();
}

On the first line of the preceding code, you grab the file from the current SPWeb instance, using
the site relative URL. On the second line of the code, the CustomizedPageStatus property is evaluated
to determine whether the retrieved page has the status set to Customized. If it does, the RevertContent-
Stream method is called on the file object to restore its state to uncustomized. All customizations in
the file are lost, and the file contents of the template file are now to be used instead.

Note that the SPCustomizedPageStatus enumeration actually has three values: Uncustomized,
Customized, and None. At this point, you might know what the first two enumeration values mean,
but what does the third one None mean? A file or page with the CustomizedPageStatus set to None
implies that the file has been created dynamically or uploaded to SharePoint and does not have any
corresponding template file. This file or page cannot be reverted to its original state. A page added
by using SharePoint apps or sandboxed solutions always has this status set to None. For instance,
the pages that you dynamically created in Listing 7-6 do not have a template file and thus cannot be
restored.

Note  When a site collection is updated from SharePoint 2010 mode to SharePoint 2013,
the site collection administrator can perform a Health Check, which checks the health of
the site collection according to a set of rules. One of these rules checks whether any pages
in the site collection are customized and can be restored to their uncustomized state.

280   Inside Microsoft SharePoint 2013

Understanding Safe Mode parsing
Earlier in this chapter, you learned that uncustomized pages are compiled the first time they are used,
whereas customized pages are not. Recall from the discussion of ASP.NET basics that one of the core
features of ASP.NET is that pages are compiled at the first request to improve performance and
resource utilization. Uncustomized pages are parsed and compiled in direct mode by the standard
ASP.NET parser. The benefit of this is, of course, performance, and only one compiled copy is needed
because uncustomized files share the same template file. However, what happens to customized
pages then?

You can have hundreds of thousands, if not millions, of customized pages in SharePoint. Compiling
every single one of them would cause a huge memory footprint. SharePoint has a concept called Safe
Mode parsing, which is used for customized pages or pages without a template file, such as pages
supplied by a SharePoint app. These pages are not compiled but instead parsed on every request.
They are parsed in Safe Mode, as opposed to direct mode. Customized pages are not required to be
compiled because there are a couple of restrictions set on them:

■■ Inline code is not allowed. Having that would require compilation and would introduce severe
security holes.

■■ All controls in the page must be registered as safe in the Web.config file. This allows farm
administrators to have control over which controls can be used in a web application.

The Safe Mode parsing not only protects your servers from running out of memory but also serves
as a security barrier. Only code admitted to the servers by the farm administrators are allowed to run
in compiled or direct mode. A site owner cannot upload a file through the UI or modify a file with in-
line code by using SharePoint Designer and have that file execute on the server. SharePoint Designer
is so smart that it does not allow you to save pages containing inline code. However, users can add
controls that are registered as safe in these customized pages.

By default, most of the ASP.NET and the SharePoint controls and Web Parts are registered as safe.
All controls that are registered as safe can be found in Web.config under the SafeControls element
in the SharePoint section. If you’re building your own farm solution and add custom controls or Web
Parts, these custom controls or Web Parts must be registered as safe. Visual Studio 2012 will do the
work for you in most cases, such as add a Web Part. But if you’re creating a custom control, you need
to make sure that it is registered as safe. There are two ways to do this. The preferred option is to
either use an existing SharePoint Project Item or add a new empty SharePoint Project Item and then
modify its properties. In the SharePoint Project Item Properties window is a collection called Safe
Control Entries. To add a new safe control registration, click Add, and then modify the Namespace
property of that new safe control, as shown in Figure 7-3. All added safe controls will then be added
to the solution manifest file.

	 Chapter 7  SharePoint pages    281

FIGURE 7-3  You can use Visual Studio 2012 to add custom safe control entries by modifying the Safe Control
Entries property of the SharePoint Project Item.

You can also add your safe controls directly to the solution manifest file by using the Package
Designer in Visual Studio 2012. Open the Manifest tab, and then expand the Edit Options at the
bottom. Listing 7-7 shows how you can edit the solution manifest file XML to create a custom safe
control entry.

LISTING 7-7  Manually modifying the solution manifest file to add a custom safe control

<Solution xmlns="http://schemas.microsoft.com/sharepoint/">
 <Assemblies>
 <Assembly
 Location="$SharePoint.Project.AssemblyFileName$"
 DeploymentTarget="GlobalAssemblyCache">
 <SafeControls>
 <SafeControl
 Assembly="$SharePoint.Project.AssemblyFullName$"
 Namespace="Pages.CustomControls"
 TypeName="*"/>
 </SafeControls>
 </Assembly>
 </Assemblies>
</Solution>

282   Inside Microsoft SharePoint 2013

The package manifest modification in Listing 7-7 adds a new SafeControl entry to the Web.config
file for the current project assembly and for all controls existing under the namespace called Pages.
CustomControls. Note how the Visual Studio 2012 replaceable tokens are used to avoid entering the
full name of the assembly, and also note the option to modify the assembly name and versions with-
out making changes to the package manifest modification.

All custom-added safe control entries are merged with the ones created by the SharePoint Project
Item into the solution manifest file. After the solution package is deployed to a web application, the
entries are merged with the Web.config. When the solution package is retracted, the retraction pro-
cess makes sure that any safe control entries in the Web.config file are removed. You do not need to
change this manually in the Web.config file.

Note  Safe Mode parsing is controlled in the Web.config file of the web application. In the
SharePoint section of the Web.config file is an element called SafeMode. Under this element
is another element called PageParserPaths, which can contain exceptions to the Safe Mode
parsing. Using PageParserPath elements, you have to option to use direct mode parsing on
specific folders or sites and therefore bypass the security imposed by Safe Mode parsing.
You can do these overrides for any virtual URL except for pages hosted in SharePoint App
Webs. You typically don’t need to and should not modify the Safe Mode parsing settings,
because of security risks.

Using pages in SharePoint

The page rendering system in SharePoint is based on ASP.NET Web Forms. This has its benefits and
drawbacks. It is a well-known and proven programmable model, but it does not have all of the flex-
ibility of more modern frameworks such as the ASP.NET MVC framework. SharePoint uses and extends
the Web Forms pattern, and it is really important to understand how pages are rendered by using
master pages. SharePoint pages can be divided into two major categories: site pages and applica-
tion pages. In this section, you learn about how to create master pages and both site and application
pages, and how to package these customizations into deployable solutions.

Understanding master pages
Master pages were introduced with ASP.NET more than a decade ago. As described earlier in this
chapter, master pages can best be described as a template with a set of placeholders in which content
and logic can be inserted. Master pages allow you to have a similar UI for all pages within a site col-
lection. Note that we said Site Collection here. In SharePoint, master pages are stored on a per–Site
Collection basis, in a specific gallery called the Master Page Gallery (/_catalogs/masterpage) in the
root web of the site collection. Depending on how you deploy your solution, the master page within a
gallery could be a file on the SharePoint sever file system or exist as a customized file in only a specific
site collection. Refer to the preceding discussion about customized and uncustomized files.

	 Chapter 7  SharePoint pages    283

Understanding SharePoint 2013 default master pages
SharePoint 2013 comes with a set of master pages; some are new to the 2013 version, and some
are in the product for compatibility with previous versions. There was a huge difference in the mas-
ter pages between SharePoint 2007 and SharePoint 2010, and the SharePoint 2010 master pages
(v4.master) were built specifically to handle the visual upgrade scenario in which the sites were up-
dated from SharePoint 2007 to SharePoint 2010, but the SharePoint 2007 UI was used. In SharePoint
2013, this visual upgrade option is no longer available. The upgrade mechanism is far better, and you
can actually run the whole site collection in SharePoint 2010 mode instead of just emulating the 2010
UI. You can create trial site collections, which essentially are an exact copy of your site collections, and
test how they look when upgraded to SharePoint 2013. This allows you to fix the UI and other issues
before upgrading the original site to SharePoint 2013.

In SharePoint 2013, two new master pages are provisioned in addition to those provided by Share-
Point 2010. These are the default master pages provisioned in sites in SharePoint 2013:

■■ seattle.master  New default SharePoint 2013 master page

■■ oslo.master  New alternative SharePoint 2013 master page

■■ v4.master  SharePoint 2010 default master page

■■ minimal.master  SharePoint 2010 minimal master page

The main differences between the master pages seattle.master and oslo.master are that when you’re
using oslo.master, the top navigation pane is replaced with the left navigation pane, and the side bar
on the left disappears, giving you more real estate for content on the page. The built-in feature called
Change The Look, or Design Gallery, takes advantage of these two master pages. The design you
choose determines which master page is used.

Dissecting the seattle.master file
As just described, the default master page in SharePoint 2013 is called seattle.master. The SharePoint
2013 master page is one of the core pieces in the UI and interaction of SharePoint, and you need to
understand how it is constructed and works. A poorly crafted custom master page can potentially
break the UI in a lot of ways. We recommend that you always start with the seattle or oslo master
pages when you’re building a master page that will be used for intranet/collaboration scenarios. If
you’re building a public-facing website, it’s a different story—you have much more flexibility.

The best way to understand the SharePoint 2013 master page is by examining it. Listing 7-8, which
shows parts of seattle.master, highlights some of the features of the master page that you should
understand as a SharePoint developer or designer. If you worked with SharePoint 2010, you will find
some aspects are familiar and others are new. First, SharePoint 2013 has been built with web standards
in mind, and you will find that the generated HTML is much more compliant with modern web brow
sers. Support for Windows Internet Explorer 7 is not available in SharePoint 2013. But before going
further into the details, review the outline shown in Listing 7-8.

284   Inside Microsoft SharePoint 2013

LISTING 7-8  Outline of seattle.master showing some of the content placeholders and delegate controls

<%@ Master Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<SharePoint:SPHtmlTag dir=" ID="SPHtmlTag" runat="server">
 <head runat="server">
 <SharePoint:PageTitle runat="server">
 <asp:ContentPlaceHolder id="PlaceHolderPageTitle" runat="server">
 <SharePoint:ProjectProperty Property="Title" runat="server" />
 </asp:ContentPlaceHolder>
 </SharePoint:PageTitle>
 <SharePoint:AjaxDelta ID="DeltaPlaceHolderAdditionalPageHead"runat="server">
 <asp:ContentPlaceHolder ID="PlaceHolderAdditionalPageHead" runat="server" />
 <SharePoint:DelegateControl runat="server"
 ControlId="AdditionalPageHead" AllowMultipleControls="true" />
 <asp:ContentPlaceHolder ID="PlaceHolderBodyAreaClass" runat="server" />
 </SharePoint:AjaxDelta>
 </head>
 <body>
 <SharePoint:SharePointForm runat="server" >
 <asp:ScriptManager ID="ScriptManager" runat="server" />
 <div id="suiteBar"> </div>
 <div id="s4-ribbonrow"> <div>
 <div id="s4-workspace">
 <div id="s4-bodyContainer">
 <div id="s4-titlerow"> <div>
 <div id="contentRow">
 <div id="sideNavBox"> </div>
 <div id="contentBox">
 <div id="notificationArea"></div>
 <SharePoint:AjaxDelta runat="server">
 <asp:ContentPlaceHolder ID="PlaceHolderMain" runat="server" />
 </SharePoint:AjaxDelta>
 </div>
 </div>
 </div>
 </div>
 </SharePoint:SharePointForm>
 </body>
</SharePoint:SPHtmlTag>

One of the things you might have noticed when looking at the code in Listing 7-8 is that the
standard HTML tags <HTML>, <TITLE>, and <FORM> that were used in previous master pages for
SharePoint (v4.master) are now replaced with SharePoint-specific web controls: SPHtmlTag, PageTitle,
and SharePointForm, respectively. The latter two are required because of MDS.

You might also have noticed that the master page contains a lot of content placeholders, which
you learned about earlier. The content placeholders are paramount, and there are a total of 34 of
them in the seattle.master, though only a few are shown in Listing 7-8. When building your cus-
tom master page, you must not forget to include all of these content placeholders, because various

	 Chapter 7  SharePoint pages    285

features in SharePoint are dependent on them, and omitting one might break your whole site. If you
do not want to show the content placeholder and its content, just add the Visible attribute to the
control and set its value to false, or place the placeholder in a control or an element that has its Visible
attribute set to false. The content placeholders make it easy for page developers to insert their own
content and controls into the pages.

Using delegate controls
What if you want to insert something on all pages in the farm or in just one site? SharePoint has the
answer for that: delegate controls, which are declared by using the DelegateControl control. Delegate
controls allow you to add one or more web controls to a specific location in all pages on a farm, in a
web application, in a site collection, and at the site level. Delegate control locations and characteris-
tics are specified in the master page. A delegate control can allow only one control to be rendered or
multiple controls to be rendered by using the AllowMultipleControls property. There are several pre-
defined delegate controls in the SharePoint 2013 master pages, some of which existed in SharePoint
2010. SharePoint itself uses delegate controls heavily.

To add a custom control to a delegate control, you need to create a feature in a SharePoint solu-
tion, the scope of which determines where the delegate control should be applied. One of the most
common delegate control locations to use is the AdditionalPageHead delegate control location. This
location is in the head element definition of the master page, and it allows multiple controls. This del-
egate control could be used to insert a client-side script on all pages, perhaps based on some server-
side condition. To understand this, you will build a quick delegate control that shows the name of
the current server as a SharePoint notification message. First, you need to create a new Visual Studio
SharePoint 2013 farm solution. Note that delegate controls can be used only by farm solutions. The
control that you’re going to add is created as an ASP.NET WebControl and is implemented as shown
in Listing 7-9.

LISTING 7-9  A simple WebControl that shows the name of the current server via the SharePoint notification
message

public class ServerNameControl: WebControl
{
 protected override void OnPreRender(EventArgs e)
 {
 string script = string.Format("SP.UI.Notify.addNotification('Current server: {0}');",
 System.Environment.MachineName);
 ScriptManager.RegisterStartupScript(this.Page, typeof(ServerNameControl),
 "currentServer", script, true);
 }
}

All this custom web control does is create a JavaScript string that uses the SP.UI.Notify.addNotifica-
tion method to show the name of the current machine. This script is then registered with the Script-
Manager. To connect this control to the delegate control AdditionalPageHead in the master page,

286   Inside Microsoft SharePoint 2013

you need to add an Empty element SharePoint Project Item to the solution and add the following
Collaborative Application Markup Language (CAML):

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Control Id="AdditionalPageHead"
 ControlAssembly="$SharePoint.Project.AssemblyFullName$"
 ControlClass="Pages.DelegateControl.DemoControl"
 Sequence="100"/>
</Elements>

This elements manifest contains a Control element that uses the Id attribute to tell SharePoint which
delegate control to connect to. In this case, you’re using a web control, and you need to specify the
control assembly and class name. Finally, the Sequence attribute is used to tell SharePoint in which
order to add the controls. For delegate controls, which allow only one single control, the control with
the lowest sequence number is chosen. The Control element also supports using a control template
(.ascx file) instead of a web control. To use a control template, you need to specify the ControlSrc
attribute instead of the ControlAssembly and ControlClass. When the empty element SharePoint Project
Item was added, Visual Studio automatically added a feature to the solution with the scope set to Web.
You can change this scope to the scope of your choice.

You need to do one final task before you can deploy and test this delegate control: make the web
control a safe control, as discussed earlier in this chapter, in the “Understanding Safe Mode parsing”
section. Right-click the SharePoint Project Item you created, and then click Safe Control Entries. Add
a new entry and modify the namespace so that it matches the namespace where you created the
control.

Now it’s time to test the delegate control. Deploy the solution and browse to the site where you
deployed it. When browsing between pages, you should see a notification message displaying the
name of the current server, as shown in Figure 7-4.

FIGURE 7-4  A notification message from the delegate control that is added to all pages within a site

Referencing master pages in SharePoint
You’ve learned how to reference master pages in ASP.NET by using the MasterPageFile Page directive
and the name of the master page file. If you review the source code of a SharePoint page, you might
notice that it is not referencing a master page by its name directly. Instead SharePoint uses dynamic
tokens to specify the master page file:

<%@Page MasterPageFile="~masterurl/default.master" %>

The ~masterurl/default.master is a dynamic token that during runtime is replaced with the de-
fault master page of the site. The default master page URL is stored in the MasterUrl property of the
SPWeb object as a server relative full path to the master page. There is also another secondary master
page dynamic token called ~masterurl/custom.master. This token is mapped to the CustomMasterUrl

	 Chapter 7  SharePoint pages    287

of the SPWeb object. The custom master URL is not used by content pages by default in SharePoint,
except when using publishing sites, and you are free to use it if you need an alternative master page
for your customizations and pages. Both the MasterUrl and CustomMasterUrl are by default using the
seattle.master and have the value of /_catalogs/masterpage/seattle.master.

Understanding MDS
Another control that makes the master page even more interesting is the AjaxDelta control. This is a
brand new control in SharePoint 2013, and it is used to mark regions in the master page that can be
updated dynamically when using MDS. You could say that it resembles ASP.NET UpdatePanels, but the
AjaxDelta control is smarter.

SharePoint 2013 has been optimized for performance in several ways. One of the focus areas has
been client-side code and perceived performance, specifically the way in which SharePoint 2013
renders pages. The order and way that JavaScripts and other client-side assets have been optimized
gets users working with the UI faster. Second, the introduction of MDS improves the interface so that
subsequent page reloads after the first page is rendered are much faster. This speed is achieved by
a combination of client-side JavaScript and server-side code that calculates which parts of the page
have changed so that only those changed pieces are sent back to the client. We will now walk through
how MDS works, and explain how you can take advantage of it and what you need to think of as a
developer when working with sites using MDS.

Improving performance with MDS
If you’ve worked with SharePoint 2013, you might have noticed that the page URLs on team sites is
very different from page URLs in previous versions of SharePoint. When browsing to a site by using
MDS, users are redirected to a page at /_layouts/15/start.aspx:

http://wingtiptoys/_layouts/15/start.aspx

This is a page requiring very few calculations and renders fast. It will, while displaying a friendly
“Working on it” message, load the real home page of the site being visited. The Home page is loaded
dynamically by using a JavaScript object called the DeltaManager, implemented in start.js. This JavaS-
cript object makes an asynchronous call to the actual page requested by using an extra set of query
string parameters. The HTTP request could look like this:

http://wingtiptoys/SitePages/Home.aspx?AjaxDelta=1&isStartPlt1=1365200007233

The AjaxDelta=1 parameter tells SharePoint that this is an MDS request, and only the delta parts
of the page should be returned. The second parameter is the current time stamp and indicates that
this is the initial MDS request sent. When the result of the MDS request is returned, the DeltaManager
updates the delta parts of the page and, at the same time, changes the URL and appends the relative
path to the current page:

http://wingtiptoys/_layouts/15/start.aspx#/SitePages/Home.aspx

288   Inside Microsoft SharePoint 2013

The DeltaManager not only handles content updates in the delta parts, it also loads and executes
any new JavaScripts sent back in the MDS response. The perceived performance by the user is
improved because of faster page transitions and because the used bandwidth is reduced as a result
of only the deltas sent over the wire. The MDS response could also result in a full reload of the page
if any incompatibles with MDS are found in the page, and you learn more details about later in this
section.

More Info  For more in-depth information about the MDS request and response, go to the
following blog post by Wictor Wilén: http://www.wictorwilen.se/sharepoint-2013---introduc-
tion-to-the-minimal-download-strategy-mds.

Understanding the MDS feature
MDS is implemented as a web-scoped SharePoint Feature and can be enabled or disabled on sites.
The Feature is called Minimal Download Strategy, and its folder name is MDSFeature. By default, it is
enabled on team sites, wiki sites, blog sites, and elsewhere, as shown in Figure 7-5. It is not enabled
and will not work on any publishing sites.

FIGURE 7-5  MDS is a web-scoped Feature that can be enabled or disabled on demand.

The enabled MDS feature turns on or off a property on the SPWeb object called EnableMinimal-
Download. When that property is set to true, SharePoint tries to use MDS when browsing between
pages.

Working with MDS requirements and compliance
You’ve examined the outline of the default SharePoint 2013 seattle.master master page, and you
should have seen the presence of the AjaxDelta controls. These controls are one of the requirements
for MDS. They mark the areas where content can be changed dynamically—that is, during a page
transition, the contents of the AjaxDelta controls can be replaced, whereas the markup that is not in
an AjaxDelta control is persistent between page navigations.

All pages that are requested by using MDS must be derived from the SharePoint DeltaPage class.
This base class is a requirement for doing the necessary delta calculations, and most of the default
SharePoint pages inherit from this class. Pages not inheriting from this class force a full reload of the
page. Not only are the pages required to derive from this base class, but all controls present on the
requested pages must be MDS-compliant. Being MDS-compliant means that the controls or Web
Parts have been explicitly marked with the MdsCompliantAttribute and the IsCompliant property set
to true. If the DeltaPage detects any control without this attribute or with the IsCompliant property
set to false, it returns a message to the client DeltaManager that a full page reload is required. The

http://www.wictorwilen.se/sharepoint-2013---introduction-to-the-minimal-download-strategy-mds
http://www.wictorwilen.se/sharepoint-2013---introduction-to-the-minimal-download-strategy-mds

	 Chapter 7  SharePoint pages    289

MdsCompliantAttribute can be set on classes or on an assembly, making all controls within that as-
sembly compliant or not compliant. The attribute is used as follows:

[MdsCompliant(true)]
public class MdsCompliantWebPart: WebPart {
 ...
}

The client DeltaManager object always sends information about the current master page and its
version in the MDS request. The DeltaPage uses this information to determine if the master page has
been changed, which requires a full reload of the page.

A special control called PageRenderMode can be inserted on any page to control the MDS status.
It can be used to disable MDS for a specific page if required. This control is, for instance, inserted into
master pages that are converted as a result of using the Design Manager. To prohibit a page from be-
ing rendered by using MDS, insert the following snippet into any page or master page:

<SharePoint:PageRenderMode runat="server" RenderModeType="Standard"/>

Understanding content pages
Up until now, you’ve focused on master pages and how pages are rendered. Now it’s time to re-
view the most common type of page in SharePoint: content pages, also known as site pages. As
you learned earlier in the chapter, content pages are pages where the actual content of the website
resides; they are editable by the site owners and members by using either a browser or SharePoint
Designer. Content pages can be created by users, but many are automatically created when a site is
created. For instance, as shown earlier, the view, edit, and add forms for lists and libraries are created
for you. They are normal content pages and can be customized as such. This section explains how to
create a new content page and how to package it into a solution for deployment.

Creating a content page
You are going to build a simple content page by using the default SharePoint 2013 master page,
based on the knowledge you’ve gathered so far. This is how you would create a simple content page
by using one of the content placeholders in the master page:

<%@Page MasterPageFile="~masterurl/default.master"%>
<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
<h1>This is the simplest Content page ever</h1>
</asp:Content>

You specify the default master page dynamic token to give you the default master page on the site,
which is seattle.master unless changed. Next, you specify one asp:Content control with the attribute
ContentPlaceHolderId set to PlaceHolderMain. This control contains some simple HTML markup that
will be replaced in the specified content placeholder in the master page. This page can now be added
to a SharePoint site as previously done. You can create the page directly in SharePoint Designer 2013,
or you can even create it in Notepad and upload it to a document library. You will also learn how to
provision a page by using a SharePoint feature, which is the preferred way of adding content pages.

mailto:%25@Page%20MasterPageFile=%22~masterurl/default.master%22%25

290   Inside Microsoft SharePoint 2013

Deploying a content page
So far, you’ve learned how to use the server-side API to add a new file, and you’ve learned that pages
can be added by using SharePoint Designer 2013 or by uploading them to a library. Most often you
will want to package your solution into a SharePoint solution package (a WSP file), or if you’re building
a SharePoint app, you will want to create an app package. Both of these ways of packaging solutions
use basically the same approach when deploying pages. In this section, you build a WSP package by
using Visual Studio 2013, add a custom content page to the solution, and then finally deploy the page
to SharePoint. You start doing this by using a farm solution and then later explore what it looks like in
a sandbox solution and an app scenario.

Create a new, empty SharePoint 2013 project and choose to deploy it as a farm solution. After
the project is created, add a Module SharePoint Project Item and name it Pages. When the Module
SharePoint Project Item is added to the project, it includes one elements manifest file (Elements.xml)
and one sample file (Sample.txt). You cannot add a content page to a Module SharePoint Project Item
with any out-of-the-box feature and template in Visual Studio, but you can either copy the file you
created in the previous example into this SharePoint Project Item or just rename the sample file to a
desired file name for the content page. For instance, rename it to SimpleContentPage.aspx. Visual
Studio displays a warning when you edit the file name extension, but you can ignore this because you
want to edit the file name extension. Then all you need to do is copy and paste the contents from the
simple page in the previous sample into the file. Note that if you had the file open before changing
the extension of the file, you need to close and reopen the file so that Visual Studio can load the cor-
rect editor.

Now consider the elements manifest file, which controls how the page should be deployed and
provisioned in the site. The manifest file uses CAML to describe what you want to do. In this case, the
Module element is used to specify which files to provision to a site, how to provision them, and where
they should be provisioned. After adding the simple page or renaming the default sample file, the
CAML should look like Listing 7-10.

LISTING 7-10  The default Module SharePoint Project Item elements manifest file after adding a content page

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="Pages">
 <File Path="Pages\SimpleContentPage.aspx"
 Url="Pages/SimpleContentPage.aspx" />
 </Module>
</Elements>

You can tell from the code that Visual Studio has automatically updated the File element with the
name of the content page. Also notice that the relative path to the pages contains a reference to a
folder with the name of the Module SharePoint Project Item. To change the target location of the
deployed file, update the Url attribute of the File element. For instance, to deploy the file to the root
of the site, change the File element:

<File Path="Pages\SimpleContentPage.aspx" Url="SimpleContentPage.aspx" />

	 Chapter 7  SharePoint pages    291

When you added the Module SharePoint Project Item to the Visual Studio project, Visual Studio
automatically created a SharePoint Feature for you under the Features node in Solution Explorer. You
can rename the Feature name and you can modify the Feature’s properties by double-clicking it. You
should give the Feature a more appropriate name than the one generated by default. The default
scope of the Feature is Web, which means that this Feature can be enabled on any website and the
file will be provisioned on the sites where it’s enabled. For a Module element, you could also set the
scope to Site, which allows you to deploy this module only to a site collection and the page to be
provisioned on the root web of that site collection. Your Solution Explorer should look something like
the one in Figure 7-6 after you rename the Feature.

Tip  For full CAML references and more about the options for the Module and File ele-
ments, go to the MSDN website and look at the SharePoint Features schema: http://msdn.
microsoft.com/en-us/library/ms414322.aspx.

FIGURE 7-6  Visual Studio Solution Explorer displays the Module SharePoint Project Item.

If you now deploy this solution to SharePoint either by using the F5 debugging method or the
Deploy Solution method, you can browse to the site and the URL you specified as the target URL for
the content page, and you should be able to get there. Because this is a farm solution, you can also
browse to any other site and enable the Feature and see the page being provisioned. The SharePoint
solution that you’ve just built does not contain any artifacts that require server-side code, and you can
easily change this solution into a sandboxed solution by selecting the Project node in Solution Explorer
and then switching to the Properties Window by pressing F4. In this window, change the Sandboxed
Solution property to True to make the project a sandboxed solution, which you can deploy to a specific
site collection on your on-premises farms or in a cloud service, such as Microsoft Office 365 and
Microsoft SharePoint Online.

When you deployed the solution as a farm solution and activated the Feature on a site, the page
was provisioned as an uncustomized page. When you deploy by using a sandboxed solution, the page
is provisioned as a customized page. If you’re building a SharePoint app and deploying pages to the
app web, the same syntax and methodology is used.

http://msdn.microsoft.com/en-us/library/ms414322.aspx
http://msdn.microsoft.com/en-us/library/ms414322.aspx

292   Inside Microsoft SharePoint 2013

Note  When you inactivate the Feature, any files provisioned by using the Module element
will remain provisioned. If you retract the solution from SharePoint, any uncustomized pages
provisioned through the Module element will throw an exception. The template file is re-
moved from the file system, but the content page still remains in the site. To fix this, you
should programmatically implement code that cleans this up when the Feature is deacti-
vated. A similar sample of this is provided in Chapter 8, “SharePoint Web Parts.”

Creating a Web Part page
A specific type of content page, called a Web Part page, is perhaps the most common type of con-
tent page in SharePoint. The Web Part page allows the users to add content to the pages directly in
the web UI. The content can be Web Parts or wiki content. To create a Web Part page, you need to
perform some modifications to the page directive. You might have noticed in the previous sample
(Listing 7-10), that if you browse back and forth between the simple page and other pages in a team
site, the simple page does not use MDS and requires a full page reload. This is because the page does
not have a base class; specifically, it does not have a base class that derives from the DeltaPage class.
To build a Web Part page that can use MDS, you need to choose the correct base class and specify it
in the page directive. SharePoint 2013 has two base classes for Web Part pages:

■■ WebPartPage

■■ WikiEditPage	

Both of these page classes exist in the Microsoft.SharePoint.WebPartPages namespace. The Web-
PartPage class is the base class for all content pages. It’s a page type specifically created for hosting
Web Parts, which you learn about in Chapter 8. The WikiEditPage inherits from the WebPartPage and
has support for handling wiki content. The default team site Start page is based on the WikiEditPage.
The WikiEditPage can be used only in libraries that have the content type Wiki Page enabled because
it is storing the wiki content in a field called Wiki Content. The WebPartPage is used by the forms for
lists and libraries. Both of these two page types inherit from the DeltaPage, which was discussed in
the section “Minimal Download Strategy requirements and compliance” earlier in this chapter. There
are many more page classes defined in the various SharePoint assemblies that are specifically built to
handle different scenarios. Publishing pages are one of those page classes and are discussed later in
the chapter, in the “Understanding publishing pages” section. Depending on your needs, you can also
create your own custom page class and make that inherit from any one of these base classes.

	 Chapter 7  SharePoint pages    293

If you want to use the WikiEditPage as the base class and the standard SharePoint 2013 master
page, the page implementation would look like this:

<% @Page Language="C#" MasterPageFile="~masterurl/default.master" Inherits="Microsoft.
SharePoint.WebPartPages.WikiEditPage, Microsoft.SharePoint,
Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
 <h1>This is the simplest MDS Content page ever</h1>
</asp:Content>

You need to deploy this wiki-based Web Part page into a document library with the Wiki Page
content type. The default team site template has a library called Site Contents that has this Wiki Page
content type enabled by default. To properly deploy the file, you could use an elements manifest like
this:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="Pages" Url="SitePages">
 <File Path="Pages\SimpleContentPage.aspx"
 Url="SimpleContentPage.aspx" Type="GhostableInLibrary" />
 </Module>
</Elements>

In the preceding elements manifest are two changes to the previous sample, which are apparent
in Listing 7-10. The first change is the addition of a Url attribute to the Module element. This allows
you to specify a base URL for all files within that Module, and all Url attributes on the File elements are
relative to that base URL. The second change is a new attribute on the File element called Type, with
the value GhostableInLibrary. This attribute tells SharePoint that you would like to make the file that is
added to the library an uncustomized file.

If you now deploy this solution to a site, you will note that it looks exactly the same as the simple
page that was built in the “Deploying a content page” section, but browsing to and from the page
reveals that the page uses MDS. This page can’t still be edited in the UI, because there’s just static
content within it.

To make the page a real Web Part page that can be edited in the UI, you must add one or more
Web Part zones and/or a wiki field. A Web Part zone is a container control that allows users to dynami-
cally add controls into it. These controls must be Web Parts, which are discussed more in Chapter 8
along with the zones. Web Parts are also configurable by the user in the web interface. Each Web Part
has a set of properties and optionally a set of custom properties that can be changed. The Web Part
zone is responsible for persisting the Web Parts added to a zone and its properties. The wiki zone is
a special form of control that allows HTML markup to be mixed with Web Parts. The wiki zone can be
used only on pages inheriting from the WikiEditPage because it requires some extra plumbing.

294   Inside Microsoft SharePoint 2013

To create a new Web Part page and define two zones, add a new file to the Module element in
the previous sample, and make sure that Type is set to GhostableInLibrary and that the new file is
deployed to the Site Pages library or to a document library. Listing 7-11 shows a page inheriting from
the WebPartPage class, which contains HTML markup and two Web Part zones, one on the left side
and one on the right side.

LISTING 7-11  Editable content pages that are created by creating pages inheriting from the WebPartPage class
and that contain Web Part zones

<% @Page Language="C#" MasterPageFile="~masterurl/default.master"
 Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage, Microsoft.SharePoint,
 Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages"
 Namespace="Microsoft.SharePoint.WebPartPages"
 Assembly="Microsoft.SharePoint,
 Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">
<h1>This is a Web Part page with zones</h1>
<div>
 <div style="float:left;width:50%">
 <WebPartPages:WebPartZone ID="left" Title="Left" runat="server">
 </WebPartPages:WebPartZone>
 </div>
 <div style="float:right;width:50%">
 <WebPartPages:WebPartZone ID="right" Title="Right" runat="server">
 </WebPartPages:WebPartZone>
 </div>
</div>
</asp:Content>

When the updated solution with the new Web Part page is deployed, you can browse to the page
and click the Edit button on the ribbon. In edit mode are the two Web Part zones, which can be used
to add Web Parts, as shown in Figure 7-7.

	 Chapter 7  SharePoint pages    295

FIGURE 7-7  Web Part pages can be edited directly in the browser and are an easy way for users to customize
their sites.

You should now be familiar with the concept of content pages and how you create, package, and
deploy them. Most of the methods discussed work in all deployment models: farm solutions, sand-
boxed solutions, and even SharePoint apps. If you need to further customize the content pages, you
can create your own base classes as long as they derive from the WebPartPage class or at least the
System.Web.UI.Page class. This option is available only in farm solutions but provides many possibili-
ties for customizing your pages.

Understanding publishing pages
For more advanced scenarios, when you require even more control of the content and layout in
the pages, you can use the SharePoint Server 2013 set of Features. Use the Publishing Features in
SharePoint Server to create content pages, called publishing pages, by using templates, called page
layouts. These are more advanced content pages than those discussed earlier in this chapter, but
all the content pages share the same base classes—the WebPartPage class and the DeltaPage class.
Although the publishing pages inherit from the DeltaPages, they do not take advantage of MDS,
because none of the publishing controls are marked as MDS-compliant. In Chapter 15, “Web content
management,” the Publishing Features of SharePoint are discussed in more detail.

296   Inside Microsoft SharePoint 2013

Creating a custom branding solution
One of the most common customizations of any SharePoint installation is branding of the UI. This
customization might be simple, such as a custom cascading style sheet (CSS) file that overrides the
default SharePoint style sheets, or something more advanced, such as a heavily customized master
page and lots of design artifacts. In the next sections, you learn how you to create a reusable solution
that deploys a custom master page.

Creating a custom master page
To create a custom master page, you have several options ranging from using a copy of the default
master pages to starting with a blank solution and building your own master page. Which approach
you take often varies depending on your requirements. For instance, if you’re building a collaborative
intranet solution, it is often a good idea to start from one of the default master pages and customize
that to your needs, whereas if you’re building a public-facing Internet site, you often start from an
HTML mockup and convert that into a master page. SharePoint Server 2013 introduces a new feature
called Design Manager that can help you do this automatically. It’s a very interesting feature that al-
lows you to convert an ordinary HTML page into a SharePoint master page.

In the following sample, you deploy a copy of the default seattle.master page. You also create a
scoped site collection Feature that modifies the default master page to the custom master page when
activated, and then when deactivated, restores the original master page settings.

Start by creating a new farm solution project, and add a Module element named SiteBranding.
Visual Studio 2012 automatically creates a Feature for you when the SharePoint Project Item is added,
so make sure to change the scope of that Feature from Web to Site. To add the default seattle.master
to the module, you copy and paste the original file from the SharePoint root into the SiteBranding
SharePoint Project Item, and then rename it to something appropriate. You then need to make sure
that this module deploys the files to the Master Page Gallery by setting the Url attribute of the Module
element to _catalogs/masterpage. You also need to set some properties of the master page file. To tell
SharePoint that it is a master page, you set the content type of the item to the master page content
type id, and to make the master page available to the SharePoint 2013 UI, you set the UIVersion to
15. Finally, you set the title of the page by using the Title property. Listing 7-12 shows the required
modifications to the elements manifest.

	 Chapter 7  SharePoint pages    297

LISTING 7-12  Master page provisioned into the Master Page Gallery, with content type and UIVersion specified

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="SiteBranding" Url="_catalogs/masterpage">
 <File Path="SiteBranding\CustomBranding.master"
 Url="SiteBranding/CustomBranding.master"
 Type="GhostableInLibrary">
 <Property Name="ContentTypeId" Value="0x010105" />
 <Property Name="UIVersion" Value="15" />
 <Property Name="Title" Value="Custom Branding master page" />
 </File>
 </Module>
</Elements>

Adding a feature receiver
The project now deploys only the master page to the Master Page Gallery with the correct set of
properties, but to make this master page the default master page, you need to write some code.
This activation code will be implemented as a Feature receiver on the site collection–scoped Feature.
Listing 7-13 shows the feature activation, which sets the master page on all the sites within the site
collection.

LISTING 7-13  Feature activation, which automatically configures the new master page on all sites within the site
collection

public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 if (site != null)
 {
 SPWeb rootWeb = site.RootWeb;
 string masterurl = rootWeb.ServerRelativeUrl;
 if (!masterurl.EndsWith("/"))
 {
 masterurl += "/";
 }
 masterurl += "_catalogs/masterpage/SiteBranding/CustomBranding.master";
 // iterate through all the webs in the site collection
 foreach (SPWeb web in site.AllWebs)
 {
 web.Properties["OldMasterUrl"] = web.MasterUrl;
 web.MasterUrl = masterurl;
 web.Update();
 web.Dispose();
 }
 }
}

298   Inside Microsoft SharePoint 2013

The FeatureActivated method is called when the Feature is activated on a site collection, and it
builds a URL to the custom master page, which is deployed into the Master Page Gallery of the root
web of the site collection. The method then goes through all the sites in the site collection and sets
the MasterUrl property of the SPWeb object to the URL of the custom master page. At the same time,
the code is also storing the old value of the MasterUrl property into the property bag of the SPWeb
object so that the old value can be used when you deactivate the Feature and restore the settings of
the site. Also note that you’re using the AllWebs property of the SPSite object, which requires properly
disposing of all the SPWeb objects to avoid memory leaks.

When the Feature is deactivated, you need to restore the master page settings on all the sites.
Listing 7-14 shows the FeatureDeactivating method of the Feature receiver.

LISTING 7-14  The deactivated Feature resetting the master page customization

public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 if (site != null)
 {
 // iterate through all the webs in the site collection
 foreach (SPWeb web in site.AllWebs)
 {
 if(!String.IsNullOrEmpty(web.Properties["OldMasterUrl"])) {
 web.MasterUrl = web.Properties["OldMasterUrl"];
 web.Update();
 }
 web.Dispose();
 }
 }
}

The FeatureDeactivating method looks very similar to the FeatureActivating method. It will go
through all the subwebs and reset the master page to the original value.

Working with application pages
SharePoint not only has content pages, which as you know are mainly used for users to consume and
work with, but also has another page type called application pages. These differ from content pages
in several ways. Content pages lives in the sites and in the content databases, as previously discussed,
whereas the application pages live outside the content databases and in the IIS virtual directory called
_layouts, which is one of the reasons application pages are called layout pages. The main purpose of
application pages is for administration, and they have no customization options. For instance, the Home
page of a site can be different from one site to another, but settings pages should look exactly the
same independent of the site you’re in, except for the actual settings values. This IIS virtual directory
called _layouts exists in the root of each site collection, thanks to the virtual file system, but all of
these virtual _layouts folders are mapped to the same physical file location, TEMPLATE\LAYOUTS
under the SharePoint root.

	 Chapter 7  SharePoint pages    299

Understanding application page anatomy
Application pages are just like content pages based on the DeltaPage base class, which means that
they can use MDS. Application pages have two specific derived base classes:

■■ UnsecuredLayoutsPageBase

■■ LayoutsPageBase

These two base types are defined in the Microsoft.SharePoint.WebControls namespace. The Layouts
PageBase inherits from the UnsecuredLayoutsPageBase, and the main difference between the two is
that the LayoutsPageBase has built-in logic for checking permissions. The UnsecuredLayoutsPageBase
has a set of overridable methods and properties that, for example, allows you to configure whether
the application page permits anonymous users. All custom applications should derive from one of
these two base types, and typically LayoutsPageBase is used.

Creating an application page
Application pages can be deployed through custom solutions and are often used to provision admin-
istrative pages. Because deploying application pages involves adding files to the file system, they are
available only in farm solutions. All application pages are also deployed to all sites and site collections,
so there is no granularity.

Visual Studio 2013 and the SharePoint tools contain an item template for application pages that
can be used to create new application pages. To add a new application page, select the Project node
in Solution Explorer, right-click Add, and then click New Item. In the Add New Item dialog box, select
the Application Page (Farm Solution Only) template, name it, and then click Add. Visual Studio adds
the required references to your project, adds a new SharePoint Mapped folder to the Layouts folder if
it is not already present, and then creates a subfolder within that mapped folder to which it adds your
custom application page, as shown in Figure 7-8.

FIGURE 7-8  Custom application pages are added to the Layouts folder in the Visual Studio project.

The custom application page has one .aspx file and a code-behind file. The code-behind file speci-
fies that the custom application page inherits from LayoutsPageBase. Notice that the Page directive
in the .aspx file does not have a typical MasterPageFile attribute. Instead, it has another attribute
called DynamicMasterPageFile. This attribute allows you to use the dynamic tokens to specify master

300   Inside Microsoft SharePoint 2013

pages, ~masterurl/default.master or ~masterurl/custom.master, which you learned about earlier in this
chapter. Another and perhaps more important aspect of Application pages is that SharePoint has a
built-in safeguard for specific application pages that makes sure the pages are rendered even when
the master page fails to render. It does this by falling back on the default master page (seattle.master).
To protect an application page, you set the RequiresHighAvailablilty property, inherited from Unse-
curedLayoutsPageBase, to true in the constructor of the custom application page.

Now you will modify this custom application page so that it renders some information about the
current site collection. In the .aspx, Web Forms page controls and markup are added to the content
placeholders. The item template defines four of the content placeholders by default, but you can add
or remove them as necessary. This is how the markup looks for a sample custom application page that
shows some more details of the site collection:

<asp:Content ID="Main" ContentPlaceHolderID="PlaceHolderMain" runat="server">
<fieldset>
 <legend>Site Information</legend>
 Content database name: <asp:Label ID="contentDatabase" runat="server" />

 Is Evaluation site: <asp:Label ID="isEvalSite" runat="server" />
</fieldset>
</asp:Content>

<asp:Content ID="PageTitle" ContentPlaceHolderID="PlaceHolderPageTitle" runat="server">
Site Information
</asp:Content>

<asp:Content ID="PageTitleInTitleArea" ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea"
 runat="server" >
Site Information
</asp:Content>

The content placeholder PlaceHolderMain is used for the body of the page. It contains two Label
controls that are set in the code-behind. You use PageTitle and PageTitleInTitleArea to display the
name of the page. The code-behind for the page looks like this:

public partial class CustomApplicationPage : LayoutsPageBase
{
 protected void Page_Load(object sender, EventArgs e)
 {
 contentDatabase.Text = SPContext.Current.Site.ContentDatabase.Name;
 isEvalSite.Text = SPContext.Current.Site.IsEvalSite.ToString();

 }
}

In the Page_Load method, the two Label controls are set with values from two site collection proper-
ties: one displays the name of the content database in which the site collection is stored, and the other
one shows whether the site is an upgrade evaluation site. After the project is deployed, you need to
browse to the page. The only way to get to the page is to manually enter its URL into the browser, but
you’ll fix this. The URL to the page is the name of the site or web, to which you append _layouts/15, and

	 Chapter 7  SharePoint pages    301

then append the name of the folder created by Visual Studio and the name of the application page. The
page should look like Figure 7-9.

FIGURE 7-9  Custom application pages are deployed to the virtual _layouts directory and can be accessed from
any site within the farm.

Securing the application page
A user who knows the actual URL of the application page and is a visitor to the site has access to ap-
plication pages, unless the site has been configured otherwise. More specifically, the permission level
called View Application Pages is required to give users access to application pages, and the Visitors
group has that permission level by default. You cannot set permissions on application pages as you
can do on content pages in document libraries. Fortunately, the built-in logic in LayoutsPageBase
allows you to specify required permissions for the application page.

The LayoutsPageBase has a Boolean property called RequireSiteAdministrator. By default, this
property is set to false, and if it is set to true, only site collection administrators are allowed to view
the page. If you want more fine-grained permissions, you use a property called RightsRequired that
specifies a SPBasePermissions object with the required permissions. If you want only users who have
the permission level View Web Analytics Data to be able to access the application page, you need to
override the RightsRequired property:

protected override SPBasePermissions RightsRequired
{
 get
 {
 return SPBasePermissions.ViewUsageData;
 }
}

After redeploying the solution, users without the View Web Analytics Data permission level will get
the Access Denied page for the site. To view this page, users need both the View Web Analytics Data
permissions and the View Application Pages permissions. The property RequireDefaultLayoutsRights

302   Inside Microsoft SharePoint 2013

has the default value set to true. This means that the permissions check that is done will use the
permissions specified in RightsRequired and View Application Pages. To use only the RightsRequired
permissions, you need to override the RequireDefaultLayoutsRights and make sure it returns false.

You should be aware of one more aspect regarding permissions for application pages. By default,
the permission check is done in the ASP.NET event OnLoadComplete. You can change this to either
handle the check in the OnPreInit event or not do the check at all. This is configured by using the
RightsCheckMode property, which is an enumeration of type RightCheckModes.

Adding navigation support to the application page
Application pages are not part of the navigation unless you make them available. There are several
ways to accomplish this, and your approach depends on what you need. For instance, one applica-
tion page might be accessible through a link in a custom Web Part, or another might be accessible
through the ribbon (you examine this later in the chapter, in the “Customizing the ribbon” section).
Most often, application pages are configured so that they are a part of the site settings navigation.

To make the custom application page a part of the site navigation, you use a custom action, which is
an extension to the UI. Custom actions are defined declaratively by using CAML in an elements manifest
file. Custom actions are very versatile and configurable and can be used to add links, scripts, menu
items, and so on. In this scenario, where you want to add a link into site settings under the Site Collec-
tion Administration group, you start by adding a new empty Element SharePoint Project Item to the
solution. In the elements manifest file, Elements.xml, the following CAML is added to create the link:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Title="Site Information" Id="CustomSiteInformation"
 Location="Microsoft.SharePoint.SiteSettings" GroupId="SiteCollectionAdmin"
 Rights="ViewUsageData">
 <UrlAction Url="~site/_layouts/15/Pages.ApplicationPages/CustomApplicationPage.aspx"/>
 </CustomAction>
</Elements>

The CustomAction element defines the custom action and is given a Title, which is what will be
displayed as the link. The location of the link is determined by the Location and GroupId attribute. In
this case, you specify the location of the Site Settings page, and the group is Site Collection Adminis-
tration. (For a full reference of the possible Location and GroupId values, refer to the Microsoft MSDN
website at http://msdn.microsoft.com/en-us/library/bb802730.aspx.) Even though specifying the required
permissions is not required, you do the check in the application page. Hiding the link from users who
cannot access the page is a good convention. You do this by using the Rights attribute, in which you
specify the same permissions you implemented in the preceding code-behind. Finally, you need to
specify the URL for the application page by using the UrlAction element. Note that the URL is specified
with ~sitecollection, which indicates that you should use the current site collection as the base for the
URL. If you wanted to refer to site-scoped properties, you would use the ~site token instead.

	 Chapter 7  SharePoint pages    303

Customizing the ribbon

The ribbon menu introduced in Microsoft Office 2007 made its way into SharePoint 2010 and has
continued to evolve in SharePoint 2013. The ribbon menu is customizable and, in many cases, is the
preferred location for UI customizations because the ribbon is available on most pages, accessible,
adapted for touchscreen-enabled interfaces, and gives the users a great user experience.

The SharePoint ribbon can be customized by using custom actions, and the customization can be
done by using farm solutions, sandboxed solutions, and SharePoint apps. Using farm solutions gives
you the most flexibility and allows you to add everything from custom contextual tabs to new groups
and even remove controls and groups. Sandboxed solutions allows you to add new controls to exist-
ing groups, and SharePoint apps allows you to customize the ribbon on both the host and app web.

Understanding the anatomy of the SharePoint ribbon
Before you dive into customizing the ribbon, it is essential to know its different components, all of
which are customizable. Figure 7-10 shows the different parts of the ribbon.

FIGURE 7-10  The ribbon menu consists of tabs, groups, controls, and tool tabs.

The tabs are the top-level element of the ribbon, and each tab has one or more groups. Tabs can
be contextual and only appear when a specific Web Part or other component is selected. For instance,
if you’re working on a Publishing page and choose an image, the Image tool tab will appear. Each
group contains one or more ribbon controls. These are some of the available controls:

■■ Button

■■ CheckBox

■■ ComboBox

■■ DropDown

304   Inside Microsoft SharePoint 2013

■■ FlyoutAnchor

■■ GalleryButton

■■ Label

■■ SplitButton

■■ TextBox

■■ ToggleButton

Each tab, group, and control can be associated with one or more actions. For instance, the Toggle-
Button control has one action that is executed when the control is loaded, which can be used to set its
state, and another action that is fired when the user clicks the control. The events are implemented as
JavaScript functions.

The SharePoint ribbon also adapts to the size of the screen, just as the Office ribbon does. Each
group and control has an associated group template that defines how it should scale. If you are build-
ing your own tabs, you must define your own group template and scalings. But if you are adding a
group or control to an existing tab, you should use the template defined by that tab.

The default ribbon components are defined in the Cmdui.xml file that is located in the SharePoint
root in the \Template\Global\XML folder. If you’re going to customize the ribbon, we recommend that
you take a look at this one but do not modify it.

Adding a custom ribbon control
There are several ways to customize the ribbon. You can use the server-side object model, which is
available only for farm solutions, and you can use CAML and a declarative approach. Custom ribbon
controls most often also involve a lot of JavaScript code, especially if you’re using some of the more
advanced controls such as the GalleryButton or ComboBox.

You are going to create a simple ribbon extension that will contain a Button control that will report
the customization status of the current page. First you need to find out the location, and specifically
the ID, of the Ribbon group where you want to place the Button control. The easiest way to do this is
to use the Internet Explorer Developer Tools and locate the element ID of the group (see Figure 7-11).
You use this ID for two tasks: first, you use it in the elements manifest to specify the location; and sec-
ond, you use it to find out which template alias to use. The template alias is connected to the group
template and defines how the control should handle rendering when the ribbon is resized. To get the
correct template alias, you open the Cmdui.xml file and search for a Group element with the ID equal
to the ID located by using the Internet Explorer Developer Tools. Review any of the child controls of
that Group element and inspect the TemplateAlias attribute. The group might use multiple different
template aliases. You have to test to find out which one suits your needs.

	 Chapter 7  SharePoint pages    305

FIGURE 7-11  Internet Explorer Developer Tools can be used to find out the IDs of ribbon tabs, groups, and controls.

In this case, you want to add a custom button to the Page Actions group. Using the Internet Explorer
Developer Tools, you can tell that that group has an ID of Ribbon.WikiPageTab.PageActions. Using the
Cmdui.xml file, you learn that the controls of the Page Actions group are using a template alias called
o2. Now you have the necessary information to proceed and build the button.

In a new or existing project, which could be a farm solution or a sandboxed solution, add a new
Empty element. You will use this elements manifest and declare a new CustomAction, but instead of
adding an UrlAction element as you did previously, you will add another element called CommandUI-
Extension. Another difference from the previous sample shown in the “Adding navigation support
to the application page” section, is that you specify the Location attribute of the CustomAction to
CommandUI.Ribbon. It takes quite a few lines of CAML to construct and define the ribbon control,
as illustrated in Listing 7-15.

LISTING 7-15  The complete CAML required to declare the custom ribbon button

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Location="CommandUI.Ribbon" Id="CustomRibbonExtension" Sequence="1000">
 <CommandUIExtension>

 <CommandUIDefinitions>
 <CommandUIDefinition Location="Ribbon.WikiPageTab.PageActions.Controls._children">
 <Button Id="CustomRibbonButton" Alt="Page information" Sequence="1000"
 Command="CheckPageInfo" LabelText="Page information" TemplateAlias="o2"
 Image16by16="/_layouts/15/images/sytelshs.png"
 Image32by32="/_layouts/15/images/styleshh.png"/>
 </CommandUIDefinition>
 </CommandUIDefinitions>

306   Inside Microsoft SharePoint 2013

 <CommandUIHandlers>
 <CommandUIHandler Command="CheckPageInfo" CommandAction="javascript:
function checkPageInfo() {
 var context = SP.ClientContext.get_current();
 var list = context.get_web().get_lists().getById(
 new SP.Guid(_spPageContextInfo.pageListId));
 var item = list.getItemById(_spPageContextInfo.pageItemId);
 var file = item.get_file()
 context.load(file)
 context.executeQueryAsync(function() {
 switch(file.get_customizedPageStatus()) {
 case SP.CustomizedPageStatus.none:
 alert('Page has never been cached'); break;
 case SP.CustomizedPageStatus.uncustomized:
 alert('Page is cached and not customized'); break;
 case SP.CustomizedPageStatus.customized:
 alert('Page is cached and customized'); break;
 }
 },function() {
 alert('An error occurred')
 })
}
checkPageInfo();
"/>
 </CommandUIHandlers>
 </CommandUIExtension>
 </CustomAction>
</Elements>

As revealed in the preceding CAML, the CommandUIExtension element has two child elements:
CommandUIDefinitions and CommandUIHandlers. CommandUIDefinitions contains the definition of
the UI, such as tabs, groups, and controls, and CommandUIHandlers contains the commands that the
different controls act upon. In this case, you’re adding only one definition element, CommandUIDefi-
nition, and you specify the location in the ribbon for that element by using the Location attribute.
Here you use the ID that you previously extracted by using the Internet Explorer Developer Tools, and
because you want to add a button as a child to the group, you must append Controls._children to that
ID to specify the location.

Next you define the actual Button control. Each control requires a unique ID, a sequence, and a
template alias; some controls have additional required attributes. For this Button control, you specify
a label, alternative text, and two images that will be used at different scalings, and you add the tem-
plate alias that you found in the Cmdui.xml file. Finally, you add a command to the control. The value
of the Command attribute should point to a CommandUIHandler element, defined in CommandUI-
Handlers. This tells SharePoint to trigger the handler when a user clicks the button.

The handler is defined in a CommandUIHandler element. In this case, you define one handler that
has a Command attribute equal to the Command attribute of Button control, and then you specify
a block of JavaScript in the CommandAction attribute. CommandAction could also contain a URL,
which would redirect the user to the specified URL instead of executing JavaScript. If you’re building

	 Chapter 7  SharePoint pages    307

a SharePoint app and adding a ribbon extension to it, you must specify a URL here; you cannot use
JavaScript.

The JavaScript in the handler uses the JavaScript client-side object model and retrieves the cus-
tomization status of the current page. If it succeeds, it displays a JavaScript alert box with the current
status of the page.

When this project is deployed to SharePoint, either as a farm solution or sandboxed solution,
and you browse to a wiki page, the button is displayed, as shown in Figure 7-12. Clicking the button
should report the customization status of the current page.

FIGURE 7-12  The custom ribbon extension is displayed in the Page Actions group.

You’ve completed the ribbon sample. Ribbon customizations can be far more advanced; you can
declare custom tabs, and Web Parts can have contextual tabs. If you need to create more advanced
client-side code by using JavaScript, you can use the Ribbon Page Components model, which allows
for very dynamic ribbon extensions.

Summary

This chapter provided a quick ASP.NET recap and discussed the details of the SharePoint virtual
file system. You learned how to create and deploy different kinds of pages in SharePoint, and you
learned how to create a quick ribbon extension. The chapter covers the basic knowledge a SharePoint
developer needs, whether you are a professional developer or are building custom solutions by using
SharePoint Designer. Any kind of project will contain some form of deployed pages, for example,
SharePoint-hosted apps. You will use a lot of what you learned in this chapter in Chapter 8, which
focuses on Web Parts—one of the original cornerstones of SharePoint.

		 309

C H A P T E R 8

SharePoint Web Parts

If you ask any Microsoft SharePoint developer what they built first for SharePoint, the vast majority
will answer “a Web Part.” Web Parts are one of the fundamental building blocks of SharePoint and,

in combination with site pages, allow users to customize SharePoint in many different and interesting
ways.

In this chapter, you first review Web Part fundamentals and their relationship to ASP.NET. and then
you examine the different pieces that together build the Web Part framework. The chapter covers
building Web Parts by using Microsoft Visual Studio 2012 and explains how to package Web Parts for
use in sites. You continue the development process by learning about some of the options you have
when developing the UI and interacting with Web Parts, and you learn about how to personalize and
customize your Web Part.

The last part of this chapter discusses some of the more advanced Web Part development scenari-
os such as Web Part connections, which allows the end-users to combine the powers of multiple Web
Parts to create their own dashboards or mashups. The chapter ends by taking a look at asynchronous
and parallel execution of Web Parts, which might be needed to improve the performance of your
Web Parts.

Understanding Web Part fundamentals

Your Web Part journey begins by reviewing the history of Web Parts and how ASP.NET uses Web
Parts. To understand how Web Parts are developed, used, and managed in ASP.NET and SharePoint,
you need to learn about the required components so that your Web Parts work as expected. Even
though you might be familiar with Web Parts from ASP.NET or your earlier SharePoint experience, this
section should be a valuable read. If you have been working with Web Parts only in SharePoint, you
might find this section particularly interesting.

Understanding Web Parts
This chapter starts by discussing what a Web Part is but doesn't go into the details yet; there is plenty
of time for that in the remainder of this chapter! Web Parts are one of the more important features of
SharePoint, and without Web Parts, SharePoint might not have been as successful as it is. Web Parts
are not unique to SharePoint, because every portal platform has similar concepts that are called dif-
ferent names, such as portlets or widgets.

310   Inside Microsoft SharePoint 2013

Web Parts can be described as applications within the portal or page. They can be self-contained
or cooperate with other Web Parts, they can display information, and they can ask for information
from users. Users can add Web Parts to pages, selecting different Web Parts from a gallery and creat-
ing their own unique pages and experiences. The Web Parts themselves can have different configura-
tions, even for different users. SharePoint uses Web Parts a lot; each list view, and each list form or
document library, is displayed through a Web Part—a List Viewer Web Part.

Comparing ASP.NET and SharePoint Web Parts
Web Parts is not a SharePoint-specific concept but rather an ASP.NET concept; they first appeared in
ASP.NET 2.0. But the Web Part concept was created much earlier, before SharePoint existed, by the
Digital Dashboard Resource Kit. The Web Part concept was then inherited by SharePoint 2001 and
eventually was ported to the Microsoft .NET Framework 1.1. ASP.NET 2.0 refined the implementation
and made the Web Part concept a part of ASP.NET 2.0. When SharePoint 2007 was released based
on ASP.NET 2.0, the default Web Part implementation was based on the ASP.NET 2.0 Web Part
framework.

A Web Part is essentially a specific derivative of the System.Web.UI.WebControls.WebControl con-
trol, as illustrated in Figure 8-1. All custom Web Parts must derive from the abstract WebPart class,
defined in the System.Web.UI.WebControls.WebParts namespace. The WebPart class also implements
some specific interfaces that define the Web Part (IWebPart) and define the behavior of the Web Part
(IWebEditable and IWebActionable).

FIGURE 8-1  This Visual Studio class diagram shows a simplified view of the WebPart class inheritance.

Just like any control in .NET, Web Parts can have properties. There is a difference between the
properties of normal web controls and the properties of Web Parts. The values of a Web Part prop-
erty can be modified and persisted by users provided that the Web Part has a parent control that is
a Web Part zone. The property values can be persisted on a page or per-user basis. You learn more
about Web Part properties and zones later in this chapter, in the “Understanding Web Part zones”
section.

SharePoint contained the first implementation of Web Parts in the .NET Framework, using the
SharePoint-specific class WebPart, in the Microsoft.SharePoint.WebPartPages namespace. This is the
same class name that is used by the ASP.NET WebPart class, which might be a bit confusing. The
SharePoint class was created before ASP.NET implemented the Web Part framework, and the Share-
Point implementation still exists for backward compatibility. Many of the out-of-the-box Web Parts in
SharePoint use this class as the base class. It is worth noting that when ASP.NET implemented the Web
Part framework and SharePoint 2007 was released, the SharePoint Web Part class was reengineered to
be derived from the ASP.NET Web Part class.

	 Chapter 8  SharePoint Web Parts    311

A common question among SharePoint developers is which Web Part implementation to use: the
SharePoint or the ASP.NET implementation. In most cases, the ASP.NET Web Part implementation is
the recommended starting point. The SharePoint Web Part implementation contains a lot of inter-
nal (to SharePoint and Microsoft) functionality for caching and manipulating how the Web Parts are
stored and managed. But there are a few scenarios where the SharePoint implementation can be of
value for all developers. Whereas the ASP.NET Web Part implementation has not changed in ASP.NET
4.0, the SharePoint 2013 Web Part implementation has been updated with some new features, for
example, features for better management of Composed Looks, which is the new theming engine in
SharePoint 2013.

One important aspect to keep in mind with regard to the SharePoint Web Part implementation is
that the SharePoint sandbox supports only the ASP.NET implementation of Web Parts. Even though
code-based sandboxed solutions are deprecated in SharePoint 2013, there might be scenarios when
you would like to create a sandboxed Web Part. If that is the case, you must use the ASP.NET Web
Part implementation as the base for your Web Part.

Understanding App Parts
Web Parts are available only in farm or sandboxed solutions, not in SharePoint apps. If you need to
build a Web Part–similar experience for hosted scenarios, you should look into the App Part or Client
Web Part concepts, which are not discussed in this chapter. A Client Web Part can be provisioned by
a SharePoint app into the host web. This is an ASP.NET Web Part called ClientWebPart that renders an
iframe element with a page from the SharePoint app, and allows for a customizable set of parameters.
You can read more about App Parts in Chapter 4, “SharePoint apps.”

Understanding Web Part zones
For Web Parts to be fully functional, they must exist in a Web Part zone. The Web Part zone is an
ASP.NET control called WebPartZone. The Web Part zone defines a region in the page where Web
Parts can be hosted, and the responsibility of the Web Part zone control is to lay out the Web Parts.
SharePoint uses its own derivative of the ASP.NET WebPartZone control. It has the same class name
WebPartZone and is defined in the Microsoft.SharePoint.WebPartPages namespace. The following
code shows adding a zone to a Web Part page, as discussed in Chapter 7, “SharePoint pages”:

<WebPartPages:WebPartZone runat="server" ID="zone"
 Title="The Zone" LayoutOrientation="Horizontal"/>

The Web Part zone determines how the Web Parts are rendered on the page. Table 8-1 shows
some of the more common configuration properties for the SharePoint Web Part zone. The ID prop-
erty should be treated carefully. After a Web Part zone is used on a page and a Web Part is added to
that zone, the id of the zone is used when storing the Web Part state in SharePoint. If you remove the
zone or change its id without removing the Web Parts, the saved Web Part state will be orphaned in
the SharePoint databases. But after you change the id back to its original value or add another zone
with the same id as the previous zone, the Web Parts are once again available.

312   Inside Microsoft SharePoint 2013

TABLE 8-1  Common SharePoint WebPartZone properties

Property name Description

ID The ID of the Web Part zone.

Title The title of the Web Part zone.

LayoutOrientation Determines in which direction the Web Parts should be rendered; Horizontal
or Vertical (default).

AllowLayoutChange Boolean value that indicates whether the users are allowed to add, remove,
or close Web Parts in the zone, or change specific layout properties of the
Web Parts. Default is true.

AllowCustomization Boolean value that indicates whether the users are allowed to modify the
properties of Web Parts.

AllowPersonalization Boolean value that indicates whether the users are allowed to personalize
the Web Parts in the zone.

PartChromeType Defines the chrome for the zone. Allowed values are Default, TitleAndBorder,
None, TitleOnly, and BorderOnly.

Understanding the Web Part Manager
One of the most important components of the Web Part framework is the Web Part Manager. The
Web Part Manager is responsible for serializing and deserializing the Web Parts and their properties
from persisted storage. ASP.NET implements the WebPartManager object, and SharePoint has its own
derivative of that object called the SPWebPartManager (defined in the Microsoft.SharePoint.WebPart-
Pages namespace). The SharePoint Web Part Manager is responsible for retrieving and storing the
Web Part data in the SharePoint content databases.

A Web Part Manager object is required on all Web Part pages. As described in Chapter 7 in the
context of the master page, SharePoint adds the SPWebPartManager to the default master pages.
You should also add this if you’re creating your own master page. When a page is loaded, the Web
Part Manager loads the Web Part from the persisted storage, including its state and the shared or
personal settings of the Web Part, and populates the Web Part zones.

Understanding static Web Parts
Web Parts are essentially ASP.NET web controls and can be used as such. You don’t need to add a
Web Part to a Web Part zone; a Web Part can be added to a page directly just like any ASP.NET con-
trol. When a Web Part is added to a page outside of a Web Part zone, that Web Part is referred to as
a static Web Part. Static Web Parts do not have all the unique features that Web Parts located in Web
Part zones have. For instance, a static Web Part cannot be customized or personalized; a zone and a
Web Part Manager are required to persist the properties of the Web Part.

	 Chapter 8  SharePoint Web Parts    313

Storing Web Part control description files in the
Web Part Gallery
At this point, you are familiar with the components required to get the Web Part framework to func-
tion and render properly. But how do users discover and add Web Parts to pages? In SharePoint, Web
Parts that should be available to users to select from should be published to the Web Part Gallery.
The Web Part Gallery is a specific catalog in SharePoint located in the root web of all site collections
(/_catalogs/wp/). The Web Part Gallery can be found in the user interface by going to Site Settings
and choosing Web Parts in the Web Designer Galleries.

This gallery contains Web Part control description files. These files are often referred to as the Web
Parts themselves, but they are more like templates of the Web Parts. A Web Part control description file
is an XML file containing a reference to the Web Part type and assembly, and a set of default values
for the Web Part’s properties. When a Web Part is added to a zone by using a Web Part control de-
scription file, the Web Part Manager imports the XML file and instantiates a new instance of the Web
Part type. The Web Part Gallery also adds metadata to the Web Part control description file, such as a
description, group, and recommended settings. You examine these files more when you build a Web
Part later in this chapter, in the “Building your first Web Part” section.

The Web Part Gallery contains two types of XML files: one having the .dwp extension and one hav-
ing the .webpart extension. The .dwp format is the former format of the Web Part control description
files and uses the version 2 (SharePoint 2003) schema for Web Parts, whereas the .webpart files use
version 3 of the schema (SharePoint 2007 and newer versions). Version 3 of the schema is the newest
version, and you should use it in your projects; you will use it throughout the samples in this chapter.

Developing and deploying Web Parts

Now it’s time to build some Web Parts. The Microsoft Office and SharePoint tools in Microsoft
Visual Studio 2012 are excellent for building Web Parts and give you a lot of aid to properly implement
them. In this section, you build a Web Part from the very beginning, deploy it to the Web Part Gallery,
and then verify that it works as expected. The chapter also describes how you can provision Web Part
pages prepopulated with Web Parts.

Building your first Web Part
In this sample, you focus on how to create a Web Part by using Visual Studio 2012 and how to prop-
erly deploy it to a site collection. You first need to create a new Visual Studio 2012 solution. When
choosing the Visual Studio project, you have two options: create an empty project, SharePoint 2013
- Empty Project; or use the predefined Visual Web Part project, SharePoint 2013 - Visual Web Part.
The Visual Web Part is discussed in the “Using Visual Web Parts” section later in this chapter, so in this
case you start with the empty project, which provides more opportunity to discuss the different parts
of a Web Part solution in more detail. As is typical when creating a SharePoint project in Visual Studio,
the wizard asks which trust level you would like to use. In this sample, choose a farm solution, because

314   Inside Microsoft SharePoint 2013

code-based sandboxed solutions are deprecated, and you can do a lot more interesting things with
farm solutions.

Next, you need to add a Web Part to this project. The preferred way is to use the Visual Studio
SharePoint Project Item for this. Visual Studio 2012 has three Web Part item templates:

■■ Web Part

■■ Visual Web Part

■■ Silverlight Web Part

The difference between the Visual Web Part and the Web Part SharePoint Project Item is that the
Visual Web Part uses an .ascx user control to build the UI for the Web Part, and the nonvisual Web
Part SharePoint Project Item requires you to build your control hierarchy and rendering. The Visual
Web Part does not deploy an .ascx file to SharePoint, which was the initial case with Visual Studio
2010. Instead Visual Studio 2012 compiles the .ascx file and merges it with your code-behind file. The
Visual Web Part is the preference if you like to have more separation between the user interface and
the logic in your Web Part.

This sample uses the nonvisual Web Part SharePoint Project Item. After you add the project item to
the project, Visual Studio adds a few files to the project, as shown in Figure 8-2. The new project item
creates a new node in Solution Explorer with the name of the Web Part. Under that node, it will add
three files:

■■ Elements.xml  The element manifest for the Web Part containing a Module element to de-
ploy the Web Part control description file to the Web Part Gallery

■■ WebPart1.cs  The actual Web Part implementation

■■ WebPart1.webpart  The Web Part control description file that will be deployed to the Web
Part Gallery

If you don’t have a site-scoped Feature in your project, Visual Studio will also add a new Feature to
the project. Web Parts must be deployed through a site-scoped Feature because the Web Part Gallery
exists only on the site collection level in the root web.

FIGURE 8-2  The Visual Studio solution adds a Web Part project item.

	 Chapter 8  SharePoint Web Parts    315

Implementing the Web Part
Examining the Web Part class file reveals that it derives from the ASP.NET WebPart class. This is the
default, and recommended, method for creating a new Web Part. The generated class file contains
an override for the CreateChildControls method (which is discussed in more detail later in this chapter,
in the “Using CreateChildControls” section). Now you need to make sure that the Web Part writes a
Hello message to the current user. Listing 8-1 shows how a new LiteralControl object is added to the
Controls collection of the Web Part and how the current user’s name is retrieved by using the SPContext
object.

LISTING 8-1  A Web Part that writes a line of text containing the current user’s display name

namespace WingTipWebParts.WebPart1
{
 [ToolboxItemAttribute(false)]
 public class WebPart1: WebPart
 {
 protected override void CreateChildControls()
 {
 this.Controls.Add(
 new LiteralControl(
 String.Format("Hello {0}!", SPContext.Current.Web.CurrentUser.Name)));
 }
 }
}

Microsoft Visual Studio also automatically adds a safe control entry for this Web Part. You can lo-
cate it if you right-click the Web Part project item in Solution Explorer, click Properties, and select the
safe control entry’s property, as shown in Figure 8-3.

FIGURE 8-3  Visual Studio automatically adds safe control entries for the Web Parts that are added through a
Web Part project item.

316   Inside Microsoft SharePoint 2013

Examining the Web Part control description file
The next file to examine is the Web Part control description file, or the .webpart file. This file is also
automatically generated when the Web Part SharePoint Project Item is added to the project. This file
will be added to the Web Part Gallery to provide users with an easy and user-friendly way to locate
the Web Part when they want to edit Web Part pages. This template file allows you to specify a title
and description for the Web Part, in addition to other default property values that will be used when
adding the Web Part to a page.

Listing 8-2 shows the .webpart file after modifying the Title and Description properties and after
adding one of the Web Part default properties—Height. The Web Part control description file is
divided into two sections. The first one, under the metaData element, defines which Web Part type
to use and also includes the default error message that should be shown if an error occurs when the
Web Part Manager imports the file. The second part, under the data element, defines all the property
values that should be used for the Web Part instance when the instance is added to a page from the
Web Part Gallery. Each property has a name, a type, and a value. Notice that this value is only the start
value; after the Web Part is added to a page, any changes in the .webpart file will not be reflected in the
Web Parts. Think of the .webpart file as a template or configuration of a Web Part instance.

LISTING 8-2  Modified Web Part control description file

<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="WingTipWebParts.WebPart1.WebPart1,
 $SharePoint.Project.AssemblyFullName$" />
 <importErrorMessage>$Resources:core,ImportErrorMessage;</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="Title" type="string">Hello user!</property>
 <property name="Description" type="string">
 Says hello to the current user</property>
 <property name="Height" type="string">200px</property>
 </properties>
 </data>
 </webPart>
</webParts>

If this was a Web Part that you didn’t want the users to add to pages, for example, you wanted it
to be added to pages by using only code, you could delete this file. The Web Part would still work but
would not be available for selection in the Web Part Gallery.

	 Chapter 8  SharePoint Web Parts    317

Understanding the element manifest
The element manifest is responsible for deploying the Web Part control description file to the Web
Part Gallery. The file contains a Module element, which you already examined in Chapter 7, targeted
at the Web Part Gallery. The List attribute of the Module element is set to 113, which is the ID of the
Web Part Gallery list template and defined in the global Onet.xml file, and the Url attribute points to
the actual Web Part Gallery URL at _catalogs/wp.

The Module element contains a File element that represents the Web Part control description file.
Typically you don’t need to change anything here unless you want to change the file name of the
deployed .webpart file (the Url attribute). However, under the File element is one Property element
with the Name attribute set to Group. This specific element defines in which group in the Web Part
Gallery the Web Part should be available. By default, the element is set to Custom, and you should
always change this value to something more appropriate. For instance, use your project, company, or
customer name, or use one of the default categories. Listing 8-3 shows the Web Part control descrip-
tion file with a modified Group property.

LISTING 8-3  The element manifest containing a Module element that provisions the Web Part control description
file to the Web Part Gallery

<Elements xmlns="http://schemas.microsoft.com/sharepoint/" >
 <Module Name="WebPart1" List="113" Url="_catalogs/wp">
 <File Path="WebPart1\WebPart1.webpart"
 Url="WingTipWebParts_WebPart1.webpart" Type="GhostableInLibrary">
 <Property Name="Group" Value="Wingtip" />
 </File>
 </Module>
</Elements>

Deploying and uninstalling a Web Part
At this point, you are ready to deploy your first Web Part. You can use F5 debugging to deploy the
solution and automatically activate the feature on the site you specified when the project was created.
Visual Studio will start a new instance of your web browser and go to the Home page of the site. If
you edit that page and choose to add a new Web Part by using the ribbon menu, you will discover
that the Web Part Gallery and Web Part are deployed into the category called Wingtip, which was the
group specified in the element manifest. In the Parts pane, the title, defined in the Web Part control
description file, is visible, and to the far right both the title and description are visible after the Web
Part is selected. Figure 8-4 shows this simple Web Part in the Web Part Gallery. Click Add to add the
Web Part to the page.

318   Inside Microsoft SharePoint 2013

FIGURE 8-4  There is one Web Part Gallery per site collection, and that gallery contains Web Parts organized by
category.

When the Web Part is added to the page, the page reloads and the Web Part is rendered. The page
displays the title of the Web Part and renders the contents as specified in the implementation of the
custom Web Part class, as shown in Figure 8-5.

FIGURE 8-5  A custom Web Part displays the name of the current user.

You’ve learned how to build a very simple Web Part as a farm solution, and you’ve learned about
the different pieces needed to properly provision the Web Part so that it is available from the Web
Part Gallery. This Web Part doesn’t use any restricted APIs or anything that is scoped outside of the
site collection, so you can change the Sandboxed Solution property of the project so that the project
is targeted for sandboxed deployment; you can just redeploy it and it will work.

When you’re using Visual Studio and perform F5 debugging, after you stop your debugging ses-
sion, the solution by default is retracted, but not completely. If you added one of your Web Parts to
a page during the debugging session, that Web Part will still be on that page and produce an error
message, because SharePoint cannot find the assembly and control, which was retracted when the
debugging session ended. Also, the Web Part control description file provisioned to the Web Part
Gallery will still be there. SharePoint does not automatically remove items provisioned by the Module
element when the solution is retracted. So users editing a page will still believe that they can use the
Web Part, and when they try to add it, they will get an error message stating that “The operation
could not be completed because the item was removed from the gallery.” It is good practice to miti-
gate this by using a Feature receiver on your Web Part Features. You do this by adding a new event
receiver to the Web Part, which you learned to do in previous chapters, and then implementing the
FeatureDeactivating of the Feature receiver, as illustrated in Listing 8-4. Note that this event will fire

	 Chapter 8  SharePoint Web Parts    319

only when the Feature is deactivated, not when it is uninstalled, so you should deactivate the feature
before uninstalling.

LISTING 8-4  The FeatureDeactivating method of the Feature receiver, used to remove the Web Part templates
from the Web Part Gallery

public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 if (site != null)
 {
 SPList gallery = site.RootWeb.GetCatalog(SPListTemplateType.WebPartCatalog);
 foreach (SPListItem item in gallery.Items.Cast<SPListItem>().ToArray())
 {
 SPFile file = item.File;
 using (XmlReader reader = XmlReader.Create(file.OpenBinaryStream()))
 {
 XDocument doc = XDocument.Load(reader);
 var typeName = from element in doc.Descendants()
 where element.Name.LocalName == "type"
 select element.Attribute("name");
 if (typeName.Count() == 1)
 {
 Type type = Type.GetType(typeName.First().Value);
 if (type.Assembly.FullName == this.GetType().Assembly.FullName)
 {
 item.Delete();
 }
 }
 }
 }
 }
}

The Feature deactivation code in Listing 8-4 reads the XML definition for all the Web Part control
description files and takes a look at the type of the control in the file by using a Linq-to-XML query.
This requires you to add using statements for System.Linq, System.Xml, and System.Xml.Linq in your
code file. The code compares this control type with the type of the current assembly and, if they are
the same, removes the template file. This ensures that any Web Parts from the current assembly are
removed.

Deploying a Web Part page with Web Parts
In Chapter 7, you focused on how to deploy site pages and learned briefly about Web Part pages.
Typically, you want to deploy Web Part pages, or wiki pages that contain a default set of Web Parts.
You now examine two approaches: the first is a purely declarative approach, and the second uses an
object called SPLimitedWebPartManager. Finally, you learn about the special case when you have a
wiki page.

320   Inside Microsoft SharePoint 2013

Deploying Web Parts by using a declarative approach
One approach to deploying Web Parts is to use a declarative approach. The benefit of the declara-
tive method is that it works both with farm solutions as well as sandboxed solutions. To deploy a Web
Part page with a Web Part, you start by deploying the page by using a Module element, just as you
did in Chapter 7. You need to add a new .aspx page to the Module SharePoint Project Item. Listing 8-5
shows the source for the Web Part page, which contains two zones, one on the left side and one on
the right.

LISTING 8-5  A custom Web Part page with two zones, named Left and Right.

<%@Page Language="C#" MasterPageFile="~masterurl/default.master"
 Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage, Microsoft.SharePoint,
 Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.WebPartPages"
 Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c" %>
<asp:Content ID="Content1" ContentPlaceHolderId="PlaceHolderMain" runat="server">
<div>
 <div style="float:left;width:50%">
 <WebPartPages:WebPartZone ID="left" Title="Left" runat="server">
 </WebPartPages:WebPartZone>
 </div>
 <div style="float:right;width:50%">
 <WebPartPages:WebPartZone ID="right" Title="Right" runat="server">
 </WebPartPages:WebPartZone>
 </div>
</div>
</asp:Content>

Next, you modify the element manifest for the Module SharePoint Project Item. Assume you want
to deploy this page to a team site and the Site Pages library. To do this, you specify a Url attribute
pointing to that library on the Module element, as illustrated in Listing 8-6; you update the File ele-
ment with a modified Url attribute so that the page will be provisioned in the root of that library; and
you set the Type property.

The next modification to the element manifest is adding a new element as a child to the File ele-
ment: the AllUsersWebPart element. This element is used to add a Web Part to a specific zone. Listing
8-6 shows how the AllUsersWebPart is given a unique ID in addition to the name of a Web Part zone
and the order within that zone. The contents of the element is identical to the data in the Web Parts
control description file deployed to the Web Part Gallery. Note that that XML is enclosed in CDATA
tags because the contents of the AllUsersWebPart must be text data.

	 Chapter 8  SharePoint Web Parts    321

LISTING 8-6  Element manifest with a Module provisioning a Web Part page and two Web Parts

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="PageModule" Url="SitePages">
 <File Path="PageModule\WebPartPage.aspx" Url="WebPartPage.aspx"
Type="GhostableInLibrary">
 <AllUsersWebPart ID="LeftWebPart" WebPartOrder="0" WebPartZoneID="Left">
 <![CDATA[
 <webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="WingTipWebParts.WebPart1.WebPart1,
 $SharePoint.Project.AssemblyFullName$" />
 <importErrorMessage>$Resources:core,ImportErrorMessage;</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="Title" type="string">Hello user!</property>
 <property name="Height" type="string">200px</property>
 </properties>
 </data>
 </webPart>
 </webParts>
]]>
 </AllUsersWebPart>
 </File>
 </Module>
</Elements>

The File element can have zero or more AllUsersWebPart elements, which means that you can de-
ploy a complete dashboard of Web Parts. Just make sure that all Web Parts have unique IDs. You can
use this method to deploy your Web Parts or the out-of-the-box Web Parts.

Just as you learned about removing the Web Part control description file from the Web Part Gallery,
you should consider removing the custom provisioned pages. Remember that any customizations that
the user has made to the pages will be lost if you decide to remove the pages.

Deploying a Web Part by using SPLimitedWebPartManager
If you need to work with existing pages, or you want a more programmatic and dynamic approach
to deploying Web Parts, you could use the SPLimitedWebPartManager object. This is a special object
that gives you access to a limited set of operations on the Web Part Manager object, specifically when
no HttpContext is present, such as in a Feature receiver activated through Windows PowerShell. You
can use the SPLimitedWebPartManager to add, edit, and remove Web Parts in addition to connecting
and disconnecting them, which is discussed in the “Using Web Part connections” section later in this
chapter.

322   Inside Microsoft SharePoint 2013

The SPLimitedWebPartManager object works only with Web Part pages, which have Web Part
zones. You should not use it on wiki pages. Listing 8-7 shows site-scoped Feature activation code that
retrieves a Web Part page from the root web, the same page created in Listing 8-6, and adds a new
Image Web Part to the zone with the ID equal to “Right”.

LISTING 8-7  Web Parts added programmatically when a feature is activated by using a Feature receiver

public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 if (site != null)
 {
 SPFile page = site.RootWeb.GetFile("SitePages/WebPartPage.aspx");
 using (SPLimitedWebPartManager manager =
 page.GetLimitedWebPartManager(PersonalizationScope.Shared))
 {
 ImageWebPart image = new ImageWebPart();
 image.ImageLink = "_layouts/15/images/homepage.gif";
 image.ChromeType = PartChromeType.None;
 manager.AddWebPart(image, "Right", 0);
 }
 }
}

The SPLimitedWebPart manager must always be created from a SPFile object and with a person-
alization scope. The personalization scope can either be Shared or User. The shared scope means that
you’re editing the state of the page that is shared among all users, whereas the user scope is for the
current user only.

To add a Web Part to a zone by using SPLimitedWe bPartManager, you only need to create the
Web Part control and initialize the properties with the values you need for your solution. Then you
use the AddWebPart method to add the Web Part to a zone by using the zone ID and the order num-
ber in the zone. Using 0 (zero) as the zone index adds the Web Part as the first Web Part in that zone.

Deploying Web Parts to wiki pages
Wiki pages are a special version of Web Part pages that have a wiki zone in which you can alternate
wiki content and Web Parts. To insert a Web Part into a wiki zone, adding the Web Part to a hidden
Web Part zone and inserting special markup into the wiki zone that references the Web Part in the
hidden zone is required. Fortunately, a helper method does all of this for you. Listing 8-8 shows how
to insert a Web Part into a wiki zone.

	 Chapter 8  SharePoint Web Parts    323

LISTING 8-8  Using the WikiEditPage.InsertWebPartIntoWikiPage method to add Web Parts to wiki pages

SPFile homepage = web.GetFile("SitePages/Home.aspx");
WikiEditPage.InsertWebPartIntoWikiPage(
 homepage,
 new ImageWebPart()
 {
 ImageLink = "_layouts/15/images/homepage.gif",
 ChromeType = PartChromeType.None
 },
 0);

The file retrieved in this case is the Home page of a team site. Using the static method InsertWeb-
PartIntoWikiPage of the WikiEditPage class, you specify the page, the Web Part, and the desired inser-
tion position for the Web Part. The position in this case is not the order of the Web Parts but rather
the position in the markup of the wiki zone.

Deploying Web Parts by using client-side code
When working with Web Parts, you’re not restricted to using only Collaborative Application Markup
Language (CAML) or full trust code; you also have the option of using the client-side object model
(CSOM), and in SharePoint 2013, even the Representational State Transfer (REST) APIs. These options
are very useful when you want to build SharePoint apps or remote applications for hosted services
such as SharePoint Online.

The SPLimitedWebPartManager has its own REST endpoint, and it can be used to retrieve and edit
Web Parts. To get a list of all the Web Parts, the following REST Uniform Resource Identifier (URI)
could be used:

http://wingtiptoys/_api/web/getfilebyserverrelativeurl('/SitePages/WebPartPage.aspx')
/getlimitedwebpartmanager(1)/WebParts

The preceding URI retrieves the page by its server relative URL and then retrieves the limited Web
Part Manager, passing in 1 as a parameter, which indicates the shared scope. Finally, the URI retrieves
all the Web Parts on that page. To retrieve data about one specific Web Part, you retrieve the ID from
the REST GET query and pass that into the following URI, replacing the GUID with your ID:

http://wingtiptoys/_api/web/getfilebyserverrelativeurl('/SitePages/WebPartPage.aspx')
/getlimitedwebpartmanager(1)/WebParts
/GetById('6c5ee333-cf88-4c32-a192-3152c4f10f8c')/WebPart

324   Inside Microsoft SharePoint 2013

Controlling Web Part rendering

You just built a very simple Web Part that rendered a simple piece of text on a page. Now you learn
how to control the rendering and create a good user experience. There are several approaches to
this, and different methods are favored by different developers. The methods discussed here aren’t
specific to SharePoint but rather reflect standard ASP.NET control development.

Overriding the RenderContents method
One of the simplest approaches for rendering the Web Part contents, which gives you full control of
the generated output, is to override the RenderContents method. The RenderContents method takes
a HtmlTextWriter object as an argument, and you use this object to render the exact HTML that you
would like your Web Part to show. Listing 8-9 shows how to override this method and write an HTML
heading.

LISTING 8-9  A Web Part overriding the RenderContents method to create the UI

using Microsoft.SharePoint;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;

namespace WebParts.Rendering.OverrideRenderContents
{
 public class OverrideRenderContents : WebPart
 {
 protected override void RenderContents(HtmlTextWriter writer)
 {
 writer.RenderBeginTag(HtmlTextWriterTag.H1);
 writer.Write("Hello " + SPContext.Current.Web.CurrentUser.Name);
 writer.RenderEndTag();
 }
 }
}

The overwritten RenderContents method uses the HtmlTextWriter and its methods to render HTML
content. You use the RenderBeginTag to render the start tag of an H1 element and then write normal
text. Finally, you must end the H1 element by using the RenderEndTag method. This is a straightfor-
ward method that allows you to have full control of the generated HTML.

It is very important to note that you override only the RenderContents method and not the Render
method. The Render method renders the necessary chrome that a Web Part needs to be functional,
and is responsible for calling the RenderContents method. The chrome of a Web Part is, for instance,
the top bar and title of the Web Part and the Web Part menu.

	 Chapter 8  SharePoint Web Parts    325

Using CreateChildControls
Another approach to rendering the Web Part contents is to override the CreateChildControls method.
This is also the method that Visual Studio suggests when you create a Web Part project item, and this
method should be the starting point for the vast majority of your Web Parts. Instead of working with
the HTML elements directly through the HtmlTextWriter, you build a control tree of ASP.NET and HTML
controls. The default implementation of the RenderContents method will traverse the control tree and
render each control and its child controls in the order in which they are added to the control tree.
The WebPart has a property called Controls that is inherited from the System.Web.UI.Control object.
This property is a collection of Control objects, and this collection of objects is the control tree. In
Listing 8-10, you build exactly the same Web Part as you built in Listing 8-9, but this time you do so
by adding ASP.NET controls to the control tree.

LISTING 8-10  Web Part overriding the CreateChildControls method to build the control tree and UI

using Microsoft.SharePoint;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls.WebParts;

namespace WebParts.Rendering.OverrideCreateChildControls
{
 public class OverrideCreateChildControls : WebPart
 {
 protected override void CreateChildControls()
 {
 HtmlGenericControl heading = new HtmlGenericControl("h1");
 heading.InnerText = "Hello " + SPContext.Current.Web.CurrentUser.Name;
 this.Controls.Add(heading);
 }
 }
}

First, you need to create the H1 element, and you do this by using the HtmlGenericControl and
passing in the element name. The inner text of the element is set by using the InnerText property.
Then, you need to add this control to the Web Parts control tree by using the Add method of the
Controls property. When this Web Part is rendered on a page, the default RenderContents imple-
mentation traverses the control tree and renders the added HtmlGenericControl.

Responding to events
One benefit of using the ASP.NET controls is having the abstraction layer over the actual HTML, which
lets ASP.NET control the generated HTML. Another benefit of using ASP.NET controls is that you can
take advantage of ASP.NET Web Forms features such as events, callbacks, and view state.

326   Inside Microsoft SharePoint 2013

It’s time to examine a more advanced scenario in which you expect the users to enter data and
want the Web Part to act upon that data. Listing 8-11 shows a Web Part that has a text box in which
the users can view and edit the title of the current site (SPWeb). It also has a button that updates the
title of the web when clicked. You extend this sample by adding a validation control that makes sure
that the user doesn’t specify an empty title, and you add a Label control that shows an indication that
the web title has been updated.

LISTING 8-11  Web Part that has a button in the UI and uses server-side code to respond to click events

using Microsoft.SharePoint;
using System;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace WebParts.Rendering.EventHandlersWebPart
{
 public class EventHandlersWebPart : WebPart
 {
 protected Button button;
 protected TextBox textBox;
 protected Label message;
 protected RequiredFieldValidator validator;

 protected override void CreateChildControls()
 {
 textBox = new TextBox();
 textBox.Text = SPContext.Current.Web.Title;
 textBox.ID = "titleTextBox";
 this.Controls.Add(textBox);

 button = new Button();
 button.Text = "Update Title";
 button.Click += button_Click;
 this.Controls.Add(button);

 message = new Label();
 this.Controls.Add(message);

 validator = new RequiredFieldValidator();
 validator.ControlToValidate = textBox.ID;
 validator.ErrorMessage = "You must supply a title";
 this.Controls.Add(validator);
 }

 void button_Click(object sender, EventArgs e)
 {
 SPContext.Current.Web.Title = textBox.Text;
 SPContext.Current.Web.Update();
 message.Text = "Title updated";
 }
 }
}

	 Chapter 8  SharePoint Web Parts    327

In the Web Part, you define the four controls—the text box, button, validation control, and mes-
sage—as protected members. In CreateChildControls, you instantiate every one of these controls, set
properties on them, and then add them to the control tree. In the text box, you set the default value
to the title of the current site, and you also need to specify an ID for that control. That ID is required
by the validation control so that the validation control knows which control to validate. You give the
button a title and then do something interesting: you add a custom event handler, which should be
invoked whenever the button is clicked. This is an ASP.NET feature that will do a post-back to the
page when the button is clicked and then invoke the event handler specified on the Click event.

The event handler for the Click event is implemented in the button_Click method, and it takes the
value from the text box and sets it as the new title for the current web. It will also update the message
control to notify the user that the title has been updated.

The drawback with this method is that each control is rendered one after the other, meaning that
you have less control of the look and feel of the Web Part. Of course, you could add even more ASP.NET
controls such as HtmlTable, HtmlTableRow, and HtmlTableCell to control the rendering. If you have a
more advanced UI for your Web Part, adding controls will result in a lot of controls and a large control
tree, which impacts the server-side processing in terms of CPU and memory usage. In many cases, it
also results in code that is really hard to follow.

Combining CreateChildControls and RenderContents
One way to improve the rendering if you require more styling of your Web Parts is to combine the
CreateChildControls and RenderContents methods. You define the controls that require interaction in
CreateChildControls and control the layout in the RenderContents method. Listing 8-12 shows how to
alter the previous Web Part by overriding the RenderContents method, and then render out the four
controls in an HTML table. This approach also separates the logic a bit from the design.

328   Inside Microsoft SharePoint 2013

LISTING 8-12  Using RenderContents and the CreateChildControls method to have better control of the UI

protected override void RenderContents(System.Web.UI.HtmlTextWriter writer)
{
 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Table);

 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Tr);
 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Td);
 writer.Write("Site title: ");
 writer.RenderEndTag();

 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Td);
 textBox.RenderControl(writer);
 validator.RenderControl(writer);
 writer.RenderEndTag();
 writer.RenderEndTag();

 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Tr);
 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Td);
 button.RenderControl(writer);
 writer.RenderEndTag();

 writer.RenderBeginTag(System.Web.UI.HtmlTextWriterTag.Td);
 message.RenderControl(writer);
 writer.RenderEndTag();
 writer.RenderEndTag();

 writer.RenderEndTag();
}

In the RenderContents method, you render an HTML table with rows and columns (Tr and Td tags,
respectively). In the table cells in which you want the controls to be rendered, you use the RenderCon-
trol of those controls you added and pass in the HtmlTextWriter object. In this way, you can create a
more appealing UI without adding a lot of objects to the control tree, which is shown in Figure 8-6.

FIGURE 8-6  Override the RenderContents method of the Web Part to have more control over the Web Part
rendering.

	 Chapter 8  SharePoint Web Parts    329

Using Visual Web Parts
In all examples in this chapter, you must create objects or write one tag at a time to generate the UI.
As soon as you have more than a handful of controls, getting an overview of what the interface actu-
ally looks like is difficult. If you’ve previously worked with ASP.NET, you are likely used to a more visual
approach when building controls and pages. Fortunately, Visual Studio 2012 provides another Web
Part project item called a Visual Web Part. A Visual Web Part is essentially a user control (.ascx) that
you use to build the UI so that you can mix HTML content with server-side controls. It even allows you
to do this in a design surface. Figure 8-7 shows you how the design surface might look when you cre-
ate a Visual Web Part with the same functionality as in the Web Part in Listing 8-12.

FIGURE 8-7  Visual Web Parts allow you to create the UI by using the design mode in Visual Studio 2012.

Each time you save the .ascx file in Visual Studio 2012, a partial class file is generated from the
.ascx file that builds the control tree from the HTML content and the server-side controls. Figure 8-8
shows you the Visual Web Part SharePoint Project Item and the generated file that has the extension
of .ascx.g.cs.

FIGURE 8-8  A Visual Web Part uses a control template when building the UI, and Visual Studio automatically
generates a .cs file for the control template when saved.

The code in the user control file (.ascx) looks like the code in Listing 8-13, but the page directives
that are automatically added by Visual Studio are omitted in the listing. The content is a mix of HTML
tags and ASP.NET server-side controls, and this approach gives much better separation of the UI de-
sign from the business logic in the code-behind file, which you examine next.

330   Inside Microsoft SharePoint 2013

LISTING 8-13  The contents of the Visual Web Part .ascx file, allowing for a combination of HTML markup and ASP.
NET server-side controls

<table>
 <tr>
 <td>
 Site title:
 </td>
 <td>
 <asp:TextBox ID="siteTitle" runat="server"/>
 <asp:RequiredFieldValidator ID="rfv" ControlToValidate="siteTitle"
 ErrorMessage="You must supply a title" runat="server"/>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Button runat="server" Text="Update Title" OnClick="button_Click" />
 </td>
 <td>
 <asp:Label runat="server" ID="message"/>
 </td>
 </tr>
</table>

Using Solution Explorer in Visual Studio 2012, you can expand the Visual Web Part SharePoint
Project Item and drill down to the .ascx.g.cs file and open it. In that file is the precompiled imple
mentation of the markup you wrote in the user control. You should not modify this file; if you do,
any modifications will be overwritten every time you save the user control (.ascx) file.

Each Visual Web Part has a code-behind file, which should contain the logic for the Web Part. List-
ing 8-14 shows you how the Page_Load method is modified to set the initial values of the server-side
controls. It also shows the server-side event handler for the button click event, button_Click, which
looks exactly the same as in the previous implementation of this Web Part, seen in Listing 8-11.

LISTING 8-14  The server-side code of a Visual Web Part user control

protected void Page_Load(object sender, EventArgs e)
{
 siteTitle.Text = SPContext.Current.Web.Title;
}
protected void button_Click(object sender, EventArgs e)
{
 SPContext.Current.Web.Title = siteTitle.Text;
 SPContext.Current.Web.Update();
 message.Text = "Title updated";
}

	 Chapter 8  SharePoint Web Parts    331

In Listing 8-13 and Listing 8-14, the Visual Web Part contains fewer lines of code and an easier-to-
follow implementation. Visual Web Parts are a good starting point if you need to build a Web Part
that has a rich UI because they allow you to work with the UI in a much easier way. Worth noticing
is that even though you have good control of the actual markup rendered, all HTML markup will be
precompiled into ASP.NET objects and a control tree, and you should thoroughly consider the perfor-
mance implications of such a solution. Every control that ASP.NET needs to keep track of adds to the
amount of CPU and RAM used, and the View State might grow larger. For a Web Part that is exten-
sively used throughout a farm, this could cause a performance bottleneck.

Working with Web Part properties

So far this chapter has discussed the rendering of Web Parts and how you can provision Web Parts
to the Web Part Gallery so that users can add and remove Web Parts from pages. But one of the
core pieces in the Web Part framework is that all Web Part instances can have properties that can be
modified by the users and that are persisted (in the case of SharePoint, the persistent storage is the
content databases). This section covers how to make Web Part properties persistent and how to make
them editable by users through the UI. It also examines more deeply how to customize the edit inter-
face for Web Part properties, specifically by using Editor Parts.

Persisting Web Part properties
To add a property to a Web Part that can be persisted, you first need to add a property and then
mark that property by using the Personalizable attribute:

[Personalizable]
public string Text { get; set; }

When SharePoint, or rather the Web Part Manager, sees this attribute on a Web Part property,
it serializes and persists the value of the attribute. When rendering the page where the Web Part is
placed, the Web Part Manager deserializes the value and sets the property on that Web Part. To set
this value, either you could use the programmatic approach, which is to use SPLimitedWebPartMan-
ager, or you could set the default value by using the Web Part control description file, which is done
by adding a new property element to the properties element:

<properties>
 <property name="Text" type="string">This is some random text</property>
</properties>

Remember that this default value is used only if the Web Part is added through the Web Part Gal-
lery, not if it is added to a page through code. For properties that require a value, it is always good to
also set the default value in the constructor of the Web Part.

By default, any property that is using the Personalization attribute can be personalized because
the default personalization scope of the attribute is set to User scoped. When the personalization
scope is set, User users are allowed to override the persisted value when personalizing the Web Part,

332   Inside Microsoft SharePoint 2013

and the value of the property will persisted on a per-user basis. To prohibit this behavior, you can set
the personalization scope to Shared. Properties with a Shared personalization scope can be edited
only in the shared view of the page:

[Personalizable(PersonalizationScope.User)] // same as [Personalizable]
public string Property { get; set; }
[Personalizable(PersonalizationScope.Shared)] //
public string SharedOnlyProperty { get; set; }

To allow the users to actually edit the properties from the web UI, you need to declare another
couple of attributes on the property. The following snippet shows how a typical Web Part property
could look:

[Personalizable]
[WebBrowsable]
[WebDisplayName("Text content")]
[WebDescription("Text displayed in Web Part")]
[Category("Wingtip")]
public string Text { get; set; }

First, you use the Personalizable attribute to tell the Web Part Manager that the property value
should be persisted, in this case by using the User personalization scope. Then you add another
couple of attributes that tell SharePoint how you want to enable editing in the web interface. The
WebBrowsable attribute tells SharePoint that you would like the users to be able to edit the property
and to generate a default input interface for this property. In this case, the property is of the type
string, so a text box will be rendered as the input field. The WebDisplayName attribute allows you to
specify a user-friendly display name for the property, and WebDescription allows you to provide a
description. Finally, the Category attribute allows you to specify a name for the category in which you
want the property to be visible. If you omit the Category attribute, the property will end up in the
Miscellaneous category.

The UI generated for editing the property is based on the type of the property. The types in Table
8-2 are natively supported by SharePoint. Figure 8-9 shows you how the edit interface looks for the
standard types.

TABLE 8-2  Common SharePoint WebPartZone properties

Property type Edit interface generated

string or char Text box

bool Check box

int, byte, sbyte, short, ushort, uint, long, ulong, double,
float, or decimal

Text box that validates that the value is numeric

DateTime Text box that requires a valid date value or date and time
value

Unit Text box that requires a valid unit (for example, 30px,
30pt)

Enumerations Drop-down list box with available enumeration values

	 Chapter 8  SharePoint Web Parts    333

As long as the value of the property type can be represented by and converted to a string, you
have another option, which is to use the TypeConverter attribute to specify which converter object
type to use. The property value is editable through a text box and only values that can be converted
by using the specified TypeConverter are allowed to be stored. This is, for instance, how a property
that has the Guid type could be made editable:

[Personalizable]
[WebBrowsable]
[Category("Wingtip")]
[TypeConverter(typeof(GuidConverter))]
public Guid VanityGuid { get; set; }

The TypeConverter attribute specifies that the Guid property should be converted from and to a
string representation that uses the GuidConverter type converter class from the System.Component-
Model namespace. This property is shown in Figure 8-9.

FIGURE 8-9  Web Part properties can be editable through the web interface if they are of types that SharePoint
recognize.

Using custom Editor Parts
Although in most cases, the default generated user interface for Web Part properties might be suf-
ficient, in some cases you will want to have more control over how the properties are edited. For
instance, you might have dependencies between properties, you might want to add validation rules,
or you might need to load data from another source. Luckily, these scenarios have been considered!

You are going to create a Web Part that has a property that contains the title of a list in the current
site and shows the number of items in that list. Listing 8-15 shows how you could implement that
property and the CreateChildControls for such a Web Part. Worth noting is that the code specifically
sets the WebBrowsable attribute to false. Not having the WebBrowsable attribute present is the same

334   Inside Microsoft SharePoint 2013

thing as specifying it as false, but in this case, you do it to explicitly show in the source code that you
do not want the standard generated interface for that property.

LISTING 8-15  A Web Part with one personalizable property that cannot be edited in the web interface

public class CustomWebPart : WebPart
{
 [Personalizable]
 [WebBrowsable(false)]
 public string ListTitle { get; set; }

 protected override void CreateChildControls()
 {
 if (!String.IsNullOrEmpty(ListTitle))
 {
 SPList list = SPContext.Current.Web.Lists.TryGetList(ListTitle);
 if (list != null)
 {
 this.Controls.Add(new LiteralControl(
 String.Format("The list '{0}' contains {1} items",
 ListTitle, list.ItemCount)));
 return;
 }
 }
 this.Controls.Add(new LiteralControl("List not found or selected"));
 }
}

To create a custom user interface to edit the Web Part properties, you need to create an Editor
Part. An Editor Part is a specialized control that can retrieve from and set property values on a Web
Part. To create an Editor Part, you create a normal C# class file and choose to inherit from the Editor-
Part class, which is a part of ASP.NET:

class CustomWebPartEditorPart: EditorPart { }

You build the UI of the Editor Part in exactly the same way you build it by using a Web Part. The
most common approach is to use the CreateChildControls method to build a control tree. For this
sample, you want the user to choose one list from the current site by using a drop down list. The
CreateChildControls method of the Editor Part could look like the code in Listing 8-16.

	 Chapter 8  SharePoint Web Parts    335

LISTING 8-16  The CreateChildControls method of the Editor Part

protected DropDownList dropDown;
protected override void CreateChildControls()
{
 this.Title = "Custom properties";

 this.Controls.Add(new LiteralControl("List:"));

 dropDown = new DropDownList();

 SPContext.Current.Web.Lists.Cast<SPList>().
 Where(l => !l.Hidden).
 Select(l => l.Title).ToList().
 ForEach(t => dropDown.Items.Add(
 new ListItem(t, t)));

 this.Controls.Add(dropDown);
}

The DropDownList object is defined as a protected object in the class so that it is available for all
methods in the class; you will need it later. The first thing you do in the CreateChildControls method
is to set the title of the Editor Part by using the Title property. Although doing this is not necessary,
it is a good practice. Next, you add descriptive text before you create the actual drop-down list. The
drop-down list box is populated with the titles of all the lists in the current site, and then it is added
to the control tree.

After building the Editor Part UI, you need to implement two abstract methods: SyncChanges and
ApplyChanges. The SyncChanges method synchronizes the properties from the Web Part to the Editor
Part, and ApplyChanges applies the property values to the Web Part. The implementation of both
methods is in Listing 8-17.

LISTING 8-17  Implementation of the abstract SyncChanges and ApplyChanges methods in the Editor Part

public override void SyncChanges()
{
 EnsureChildControls();
 CustomWebPart wp = this.WebPartToEdit as CustomWebPart;
 dropDown.SelectedValue = wp.ListTitle;
}
public override bool ApplyChanges()
{
 EnsureChildControls();
 CustomWebPart wp = this.WebPartToEdit as CustomWebPart;
 wp.ListTitle = dropDown.SelectedValue;
 return true;
}

336   Inside Microsoft SharePoint 2013

Both methods start by calling the EnsureChildControls method, which is important. The Ensure
ChildControls method, which is defined in the System.Web.UI.Control class, makes sure that the
CreateChildControls method is called before proceeding. In this case, you rely on the fact that the
drop-down list box is created and has values; if the EnsureChildControls method wasn’t called, you
could potentially get a null reference exception in the methods. Next, the code retrieves a reference to
the Web Part that is using the Editor Part, which is done by using the WebPartToEdit property, which
is then type-converted to the needed Web Part type. The SyncChanges method copies the Web
Part property values into the Editor Part controls, and ApplyChanges copies the property values in
the other direction, and set the values on the Web Part. The ApplyChanges method must return true
when it successfully copies the values from the Editor Part to the Web Part and, if anything fails,
should return false, prohibiting the Web Part from persisting the change.

You have done everything you need to do to implement a custom property editing interface by
using an Editor Part. You next must connect this Editor Part to the Web Part by overriding the Create
EditorParts method in the Web Part. The CreateEditorParts method is defined in the IWebEditable
interface, which the WebPart class implements. Listing 8-18 shows how the CreateEditorParts method
should be overridden in this case.

LISTING 8-18  Implementation of the IWebEditable CreateEditorParts method in the Web Part

public override EditorPartCollection CreateEditorParts()
{
 List<EditorPart> editors = new List<EditorPart>();
 EditorPart editorPart = new CustomWebPartEditorPart();
 editorPart.ID = this.ID + "_editorPart";
 editors.Add(editorPart);
 return new EditorPartCollection(editors);
}

In this overridden method, you start by creating a List<EditorPart> object to which you will add
the custom Editor Part classes. It is possible to have more than one Editor Part. Then you create a new
instance of the Editor Part, and before you add the object to the list, you must set the ID of the Editor
Part. Finally, you convert the list of Editor Parts to an EditorPartCollection object and return that.

The end result of this custom Editor Part looks like Figure 8-10. You’ve just learned how you can
create a complete custom editor interface for your Web Part properties and implement logic, valida-
tion, and data retrieval.

FIGURE 8-10  Custom Editor Parts are always listed at the top of all Editor Parts.

	 Chapter 8  SharePoint Web Parts    337

Exploring advanced Web Part development

This last part of the chapter explains some of the more advanced Web Part development concepts.
When used properly, these can give that little extra specialness to your Web Parts. You start by exam-
ining Web Part verbs and how to extend the default Web Part menu. You then learn about the Web
Part Connections feature, which really shows the strengths in the Web Part framework and allows the
user to build even more advanced Web Part pages. Finally, this chapter examines the case in which
you are executing, for instance, web service requests in your Web Part, and it shows you how to do
this asynchronously to improve performance. The chapter also explains how to take advantage of the
.NET Framework 4.0+ parallel features to boost the performance of your Web Parts.

Using Web Part verbs
All Web Parts have a menu in the upper-right corner containing a set of menu options, also known as
Web Part verbs, such as Minimize, Delete, Close, Export, and Edit (My) Web Part. The menu options
shown depend on the Web Part, the user’s permissions, settings on the Web Part, and whether the
user is in edit mode. If none of the verbs are present, no menu is shown. The default verbs are added
by the Web Part zone. For a specific Web Part, you can control some of the built-in verbs. The Web-
Part class has a set of properties that can be used to control this, which are listed in Table 8-3. You use
these properties to configure your own Web Parts either by overriding the property or by specifying
the property in the Web Part control description file:

<property name="AllowClose" type="bool">False</property>

TABLE 8-3  Web Part properties to control the Web Part menu

Property name Purpose

AllowClose Set to false to prohibit closing of the Web Part.

AllowConnect Set to false to prohibit Web Part connections.

AllowEdit Set to false to prohibit the users from editing the Web Part.

AllowHide Set to false to prohibit hiding the Web Part.

AllowMinimize Set to false to prohibit minimizing the Web Part.

AllowZoneChange Not directly tied to the Web Part menu but related. Set to false
to prohibit changing Web Part zone for the Web Part.

The Web Part framework allows you to add custom verbs to a Web Part. You can do this through
the IWebActionable interface, which the WebPart class implements. There are two types of verbs that
you can add: client-side verbs, which execute a JavaScript function on the client, or server-side verbs,
which execute code on the server. Using both client-side and server-side verbs can be a very good
way to add options to your Web Part. For instance, consider how you could implement a Web Part
verb that allows you to shift between a basic mode and a detailed mode of a Web Part. To persist the
selected display state, you use a property on the Web Part, which is defined as follows:

[Personalizable]
public bool ShowDetails { get; set; }

338   Inside Microsoft SharePoint 2013

To add verbs to a Web Part menu, you must override the Verbs method of the IWebActionable
interface. The default Web Part implementation returns an empty WebPartVerbCollection. Listing 8-19
shows how a server-side verb is being added to a Web Part. To create a new verb, the WebPartVerb
class is used, and the constructor determines whether the verb is a server-side or client-side verb.
There is also a constructor that allows you to define a verb that executes both client-side and server-
side code.

LISTING 8-19  Overriding the Verbs property of a Web Part to extend the Web Part menu with new verbs

public override WebPartVerbCollection Verbs
{
 get
 {
 List<WebPartVerb> verbs = new List<WebPartVerb>();
 WebPartVerb detailsVerb = new WebPartVerb(this.ID + "_details", toggleDetails);
 detailsVerb.Text = "Show details";
 detailsVerb.Checked = this.ShowDetails;
 verbs.Add(detailsVerb);
 return new WebPartVerbCollection(base.Verbs, verbs);
 }
}

The overridden Verbs method creates a new WebPartVerb object by using the constructor that cre-
ates a server-side verb. The first parameter to the constructor is a unique ID for this Verb, constructed
from the ID of the Web Part, and the second parameter is the name of the delegate method, shown in
Listing 8-20, which should be invoked when the verb is selected on the Web Part menu. You must also
set the Text property of the Web Part verb, which is the displayed text on the menu. In this case, you
also use the Checked property of the verb; this is a property that can be used to indicate a checked
state. Finally, you create a new WebPartVerbCollection object by using a List<WebPartVerb> contain-
ing the custom verbs. This implementation also uses the constructor of the WebPartVerbCollection
that can take another WebPartVerbCollection object and merge it with the new verbs. This is done just
in case the code inherits from another custom Web Part that has its own set of custom verbs.

	 Chapter 8  SharePoint Web Parts    339

LISTING 8-20  A server-side verb callback that automatically updates a personalizable property of the current
Web Part

private void toggleDetails(object sender, WebPartEventArgs eventArgs)
{
 this.ShowDetails = !this.ShowDetails;
 SPFile file = SPContext.Current.File;
 using (var manager = file.GetLimitedWebPartManager(PersonalizationScope.User))
 {
 DetailsWebPart wp = manager.WebParts[this.ID] as DetailsWebPart;
 wp.ShowDetails = this.ShowDetails;
 manager.SaveChanges(wp);
 }
}

The toggleDetails delegate method that is invoked when the verb is selected on the Web Part menu
changes the value of the ShowDetails property. Then the delegate method retrieves the current Web
Part page and uses the SPLimitedWebPartManager to update this property change, because in this
case you want to persist this property change.

Implementing a client-side Web Part verb is very similar to implementing a server-side verb. The
difference is that you aren’t specifying a delegate method but rather a JavaScript string to execute:

WebPartVerb clientVerb = new WebPartVerb(this.ID + "_clientVerb", "alert('Client-side Verb')");
clientVerb.Text = "Client-side Verb";
verbs.Add(clientVerb);

The constructor determines that the verb is a client-side Web Part verb because it is being passed
a string as the second argument. The string passed into the constructor must be a valid JavaScript
snippet that can be evaluated. If you’re adding this code snippet to the same verb collection that
contains the server-side verb, the Web Part menu would look like Figure 8-11.

FIGURE 8-11  The Web Part menu for a Web Part can be customized with custom actions, called verbs.

340   Inside Microsoft SharePoint 2013

Using Web Part connections
One of the really interesting features of Web Parts is their ability to connect to each other. One
Web Part can connect to one or more other Web Parts and then send information from the single
Web Part to the others. This feature is very useful when building Web Part pages and dashboards,
and by using it, the user can filter information in other Web Parts. Many of the default Web Parts in
SharePoint 2013 support connections, and if you’re using the Server edition of SharePoint 2013, you
also get access to a set of specific filter Web Parts that can be used to filter the contents of other
Web Parts.

A Web Part connection always has one provider and one consumer Web Part. The provider Web
Part sends information to the consumer Web Part. Filter Web Parts, for instance, are provider Web
Parts, and they send filtering information to the consuming Web Part. A Web Part can either be
a consumer, a provider, or both. The connection set between a provider and a consumer needs a
contract that both the provider and consumer understand. This contract is defined as a .NET Frame-
work interface, which is implemented by the provider Web Part and used by the consumer Web Part.
A provider Web Part can support multiple contracts, which means that it can implement multiple
connection interfaces. The consumer can consume multiple contracts, but it cannot consume multiple
connections of the same type. The Web Part framework comes with a set of predefined contracts that
can be used to connect custom Web Parts to the out-of-the-box Web Parts, such as the XSLT List View
Web Part:

■■ IWebPartField  Sends one cell or field of data

■■ IWebPartRow  Sends one row of data

■■ IWebPartTable  Sends a full table of data

■■ IWebPartParameters  Sends one cell or field of data based on a parameter

The default connection interfaces are very generic and are based on callbacks in the interface.
These interfaces allow the consumer to call back into a method in the provider and retrieve the re-
quired data instead of just retrieving data from the provider.

Web Part connections are a part of the ASP.NET Web Part infrastructure, even though connections
existed in SharePoint prior to ASP.NET 2.0. Web Part connections prior ASP.NET, or SharePoint Web
Part connections, worked in similarly to the ASP.NET connections except regarding some important
aspects. The connections that were used in earlier versions of SharePoint had the concept of client-
side connections, which is not available in the ASP.NET Web Part infrastructure. Connections before
ASP.NET could also connect across pages, which the today’s connections cannot.

To understand the details of Web Part connections and how to build consumers and providers,
you will create one provider Web Part that allows you to select one list from the lists available in the
current site, and one consumer Web Part that reads the chosen list from the provider Web Part and
shows details about the list. After you build these two Web Parts, you learn about how to connect
them by using the UI and the SPLimitedWebPartManager, and how to connect them declaratively in
a SharePoint Feature.

	 Chapter 8  SharePoint Web Parts    341

Building a provider Web Part
The very first task you need to perform is building the provider. This is a simple Web Part that hosts a
drop-down list box, with the visible lists in the current site. Whenever a list is selected in the drop-
down list box, the code gets the ID, a Guid, for the list and stores it in a local variable. Listing 8-21
shows the full implementation of such a Web Part.

LISTING 8-21  The base Web Part implementation for the provider Web Part

public class ListChooserWebPart : WebPart
 protected Guid selectedList;
 protected DropDownList dropDown;
 protected override void CreateChildControls()
 {
 this.Controls.Add(new LiteralControl("Choose list:
"));
 dropDown = new DropDownList();
 SPContext.Current.Web.Lists.Cast<SPList>().
 Where(l => !l.Hidden).ToList().
 ForEach(list => dropDown.Items.Add(
 new ListItem(list.Title, list.ID.ToString())));

 if (selectedList == Guid.Empty)
 {
 selectedList = Guid.Parse(dropDown.Items[0].Value);
 }
 dropDown.SelectedValue = selectedList.ToString();
 dropDown.AutoPostBack = true;
 dropDown.SelectedIndexChanged += (s,e) => {
 selectedList = Guid.Parse(dropDown.SelectedValue);
 };
 this.Controls.Add(dropDown);
 }
}

The Web Part creates a DropDownList object and populates the drop-down list box with all the
available and visible lists in the current site. The drop-down list box is also configured to automati
cally do a postback whenever its list is changed. It uses a lambda expression that is fired when the list
is changed, and it stores the current ID of the list.

To be able to use this Web Part as a provider Web Part, you need to define a contract that the
consumer can use. This contract is created by using an interface. In this case, all you need to expose
to the consumer is the ID of the selected list. Listing 8-22 shows the interface you need as the
connection contract.

342   Inside Microsoft SharePoint 2013

LISTING 8-22  A custom contract, or connection interface, that will be used to connect provider and consumer
Web Parts

public interface IListProvider
{
 Guid ListID {get;}
}

After you have the interface defined, you must implement that interface in the provider Web Part.
First, make sure the interface is listed in the class definition:

public class ListChooserWebPart : WebPart, IListProvider

Next, implement the property that the interface is exposing. You had already stored the list ID in a
local variable, so you need only to return that value:

public Guid ListID
{
 get
 {
 return selectedList;
 }
}

The final task you need to perform on the provider Web Part is to create a connection provider
endpoint. This must be a method that returns an object implementing the connection interface type.
In most cases, this is the Web Part itself. This method must be marked with the ConnectionProvider at-
tribute, as in the following snippet. The attribute allows you to specify a display name for the connec-
tion. You can optionally add a unique ID. In this case, also declare that this connection allows multiple
consumers by using the AllowsMultipleConnections property:

[ConnectionProvider("List", AllowsMultipleConnections = true)]
public IListProvider SetListConnection()
{
 return this;
}

This code is all you need to build the connection provider Web Part. But to test it, you need to
build a consumer that uses this connection contract.

Building a consumer Web Part
The consumer Web Part does not need to implement the connection interface—it just needs to have
a consumer connection endpoint, very much like the provider connection endpoint. This must be a
method that takes the connection interface as an argument, and it has to be marked with the Con-
nectionConsumer attribute. Listing 8-23 shows how this could be implemented in a consumer Web
Part. The consumer connection endpoint, the GetListConnection method, stores the reference in a
local variable to the connection provider.

	 Chapter 8  SharePoint Web Parts    343

LISTING 8-23  Implementation of the consumer connection endpoint in the consumer Web Part

IListProvider provider;

[ConnectionConsumer("List")]
public void GetListConnection(IListProvider listProvider) {
 provider = listProvider;
}

After the consumer connection endpoint is in the consumer Web Part, you can use the connec-
tion information in the Web Part. Listing 8-24 implements the CreateChildControls method for the
consumer Web Part. The method does a check whether the Web Part has a connection. If it does not,
it renders an error message, and if it is connected, you use the information sent to the Web Part by
the provider and generate the Web Part UI. Remember to always implement a check to determine
whether the Web Part is connected. When you add the Web Part to a page, the Web Part will not be
connected until you connect it.

LISTING 8-24  CreateChildControls using information sent from the provider Web Part to create the UI of the
consumer Web Part

protected override void CreateChildControls()
{
 if (provider == null)
 {
 this.Controls.Add(new LiteralControl("Not connected!"));
 }
 else
 {
 try
 {
 SPList list = SPContext.Current.Web.Lists[provider.ListID];
 this.Controls.Add(new LiteralControl("You selected: " + list.Title));
 }
 catch (Exception)
 {
 this.Controls.Add(new LiteralControl("List not found..."));
 }
 }
}

Connecting Web Parts
You just created one provider Web Part and one consumer Web Part that understand each other
through using the connection interface. Now it is time to connect these Web Parts. It can be done
in the web interface or by using SharePoint Designer 2013. In the web interface, you connect Web
Parts by editing the page and choosing to edit either the consumer or the provider Web Part. If any

344   Inside Microsoft SharePoint 2013

compatible consumer or provider is found, a Connections menu option is available on the Web Part
menu, as shown in Figure 8-12.

FIGURE 8-12  You connect Web Parts by using the Web Part menu and choosing either the consumer or the
provider Web Part.

You can also create a connection in a programmatic way; for instance, by using a Feature receiver.
Recall how you previously added Web Parts by using a Feature receiver. (You can refer to Listing 8-7
to review how you did this.) You can use SPLimitedWebPartManager not only to add Web Parts to
a page but also to connect them together by using the SPWebPartConnection object. Listing 8-25
shows an excerpt from a Feature receiver and how the provider and consumer Web Parts are added
to the page and then connected.

LISTING 8-25  Web Part connections added through code by using SPLimitedWebPartManager

SPFile page = site.RootWeb.GetFile("SitePages/WebPartPage2.aspx");
using (SPLimitedWebPartManager manager =
 page.GetLimitedWebPartManager(PersonalizationScope.Shared))
{
 ListChooserWebPart.ListChooserWebPart provider =
 new ListChooserWebPart.ListChooserWebPart();
 provider.ID = "Provider";
 manager.AddWebPart(provider, "Left", 0);

 ListInfoWebPart.ListInfoWebPart consumer = new ListInfoWebPart.ListInfoWebPart();
 consumer.ID ="Consumer";
 manager.AddWebPart(consumer, "Right", 0);

 SPWebPartConnection connection = new SPWebPartConnection()
 {
 ProviderID = "Provider",
 ConsumerID = "Consumer",
 ID = "Connection"
 };
 manager.SPWebPartConnections.Add(connection);
 manager.SaveChanges(provider);
 manager.SaveChanges(consumer);
}

	 Chapter 8  SharePoint Web Parts    345

The Web Parts are created and added to the Web Part zone, and you must be sure to set their
IDs. Then you create a new object of type SPWebPartConnection. That object is populated with the
ID of both the provider and consumer Web Parts in addition to its own unique ID. In the case where
you have multiple consumer or provider endpoints, you must also specify the name of the endpoints.
Finally, you add that connection to the limited Web Part Manager and save the Web Parts.

If you prefer to do this declaratively, you use basically the same approach. Assume you deploy a
Web Part page by using the Module element, and the consumer and provider Web Parts by using the
AllUsersWebPart element, as child elements to a File element. Then you connect the Web Parts by us-
ing the WebPartConnection element, which also must be a child element of the File element:

<WebPartConnection
 ProviderID="Provider"
 ConsumerID="Consumer"
 ConsumerConnectionPointID=""
 ProviderConnectionPointID=""
 ID="Connection"/>

Just as you did in the Feature receiver, you need to specify the ID of the consumer and provider
and give the connection and ID. You also must specify the endpoint IDs when declaratively creating
connections. In this case, you leave the endpoint names empty, because you have only one endpoint
on both the Web Parts.

You’ve just explored one of the more interesting features of the Web Part framework. By creating
connectable Web Parts, you give your users a lot of power to build their own dashboards or mashups
by using Web Part pages and Web Parts.

Using parallel and asynchronous execution in Web Parts
Once in a while, you are required to build a Web Part that performs some long-running operations,
such as reading data from databases or web services. If you don’t have the possibility of moving this
executing to the client side or outside of SharePoint, you need to make sure that you implement the
server side thoroughly and use good code patterns and practices. The .NET Framework 4.0 and .NET
Framework 4.5 introduce a lot of new features for executing code in parallel or asynchronously, and
some of those features can be used in SharePoint development. The following sections describe how
to take advantage of these features.

Using parallel execution
One of the options you have with .NET Framework 4.0 is to execute code in parallel. By using the Par-
allel class in the System.Threading.Tasks namespace, you can do work in parallel. Even though parallel
execution does not reduce stress on the system—most likely the opposite—it can, if used correctly,
improve perceived performance. This means that if you have the resources available, you can execute
logic in parallel so that the end users receive their information faster.

When building Web Parts, there is often the need to do several lookups, web service calls, or queries
to lists or the search index. These tasks were often done synchronously in the Web Parts, and the total

346   Inside Microsoft SharePoint 2013

time to load the Web Part was the sum of all the tasks. By using parallel execution, you can initiate
each query or call so that each runs in parallel, and use the resources on the server more efficiently.
The time it takes to perform the tasks is equal to the longest running task.

Consider this simple example. In Listing 8-26 are parts of a Web Part that calculates the total number
of tasks from a specific list in each site assigned to the current user in the current site collection.
If there are a large number of sites, all these CAML queries typically would be executed one after
another. By using the ForEach method on the Parallel class, the code can, in parallel, walk through all
the sites in the site collection and do the CAML query.

LISTING 8-26  Example of using the .NET Framework 4.0 Parallel object to execute code in parallel

long totaltasks = 0;
string queryText =
 "<Where><Eq><FieldRef Name='AssignedTo' LookupId='True' /><Value Type='UserMulti'>" +
 SPContext.Current.Web.CurrentUser.ID +
 "</Value></Eq></Where>";
Parallel.ForEach(SPContext.Current.Site.AllWebs, web =>
{
 SPList list = web.Lists.TryGetList("Shared Tasks");
 if (list != null)
 {
 SPQuery query = new SPQuery();
 query.Query = queryText;
 SPListItemCollection tasks = list.GetItems(query);
 Interlocked.Add(ref totaltasks, (long)tasks.Count);
 }
 web.Dispose();
});

A couple of things are important to notice in the code. First, you need to dispose the SPWeb objects,
and for easier reading, any exception handling has been omitted. Second, you cannot simply increment
the totaltasks variable; you must use the atomic Interlocked.Add method to increment the value of the
variable, because each parallel execution will run on its own thread.

Warning  You have to be very careful when using the parallel features in .NET Framework 4.0
and SharePoint. All objects executing in parallel have to be thread-safe, and most of the
SharePoint objects are not. For instance, you will get exceptions if you try to perform paral-
lel execution on all the lists in one single web.

	 Chapter 8  SharePoint Web Parts    347

Using asynchronous execution
Many of these long-running operations consist of calls to external sources, which means that Share-
Point is idling, waiting for the data to return from the external source. In this case, you can take
advantage of asynchronous features in ASP.NET. Even though a lot of features in ASP.NET 4.5 create
asynchronous methods and pages, not all of them can be used in SharePoint 2013 because of its
configuration.

There are options for building asynchronous Web Parts, however, by using the asynchronous page
tasks. Asynchronous page tasks are an ASP.NET 2.0 feature but still a valid option. To illustrate this,
you’ll walk through the creation of a Web Part that reads OData (Open Data Protocol) from an ex-
ternal source. If one or more of these Web Parts are on a page, each request to the data source runs
sequentially for each Web Part, one at a time. For instance, if the request takes one second and you
have four Web Parts, the page load time will be at least four seconds. This demonstration uses the
OData Northwind test service to retrieve product information. You can find this test service at http://
services.odata.org/Northwind/Northwind.svc/.

First, you add three properties to the Web Part that allows you to specify how many products you
want to retrieve and how to sort them. You also make these personalizable through the web UI. The
UI will be a bulleted list with the product names, and you will also add a Label control that shows any
error messages:

[Personalizable, WebBrowsable]
public string OrderBy { get; set; }
[Personalizable, WebBrowsable]
public int Items { get; set; }
[Personalizable, WebBrowsable]
public bool SortAscending { get; set; }

protected BulletedList products;
protected Label errorMessage;

The Web Part control description file is also updated with these properties so that you have default
values on the properties. A good convention is also to set default values in the constructor of the Web
Part in case a user programmatically adds this Web Part to a page and forgets to set any values on
the properties:

<property name="Items" type="int">10</property>
<property name="OrderBy" type="string">UnitPrice</property>
<property name="SortAscending" type="bool">true</property>

To load the products from the Northwind test service, create a local method called LoadProducts,
shown in Listing 8-27. This method ensures that the UI controls are present, and then constructs a
REST query by using the Web Part properties. Finally, it uses the WebClient object to download the
OData XML and parse it.

http://services.odata.org/Northwind/Northwind.svc/
http://services.odata.org/Northwind/Northwind.svc/

348   Inside Microsoft SharePoint 2013

LISTING 8-27  Implementation of loading product information from the OData Northwind test service and popu-
lating a drop-down list box with the product names

void LoadProducts()
{
 EnsureChildControls();
 errorMessage.Text = String.Empty;
 products.Items.Clear();

 string restUrl = String.Format("http://services.odata.org/Northwind/Northwind.svc/"
 +"Products?$top={0}&$orderby={1}+{2}",
 Items, OrderBy, SortAscending ? "asc" : "desc");

 using (WebClient client = new WebClient())
 {
 try
 {
 client.Encoding = System.Text.Encoding.UTF8;
 string data = client.DownloadString(restUrl);

 XNamespace ns = "http://schemas.microsoft.com/ado/2007/08/dataservices";
 XElement element = XElement.Parse(data);
 var names = element.Descendants(ns + "ProductName").Select(d => d.Value);
 names.ToList().ForEach(n => products.Items.Add(new ListItem(n)));
 }
 catch (WebException we)
 {
 errorMessage.Text = we.Message;
 }
 }
}

The REST query is sent to the Northwind test service endpoint, and the code is using Linq-to-XML
to retrieve the product names from the returned data. Each product name is then added to the bul-
leted list. If any error message is returned from the REST call, such as time-outs or invalid queries, this
error will be written in the error message label.

In this case, you build the UI by overriding the CreateChildControls method, and it is in this method
that you register—not start—the asynchronous call. You could also register the asynchronous call in
any postback event handlers, or even as late as in the OnPreRender method. This is because of how
the asynchronous execution is implemented in ASP.NET. If an ASP.NET page has a registered asyn-
chronous task, the thread that the page is executing on will be returned to the thread pool after the
OnPreRender method. This is to prohibit running all these tasks sequentially on the same thread and
blocking other threads from executing. Then the ASP.NET framework picks up one new thread from
the thread pool for each asynchronous task, executes the tasks, and waits for them to finish or time
out. After all the asynchronous tasks are complete, a new primary thread is retrieved from the thread

	 Chapter 8  SharePoint Web Parts    349

pool, and the page execution continues on that thread. This process means that you cannot start any
external calls in the RenderContents method, and you cannot use any of the results from the asyn-
chronous tasks until after the OnPreRender has executed.

The CreateChildControls method for the Northwind products Web Part, shown in Listing 8-28,
initializes the two controls and then registers the asynchronous task. Also notice how you added the
SPMonitoredScope class to create a monitored scope. It is a good practice to use monitored scopes
so that you can use, for instance, the Developer Dashboard to monitor performance of methods and
sections in your Web Parts. When running this Web Part at a later time, you can view in the Developer
Dashboard that nearly no time was spent in the CreateChildControls. You can use this as an exercise
and change the implementation of this method from asynchronous to synchronous to compare the
difference.

LISTING 8-28  Asynchronous tasks can be created to prohibit execution of long-running operations on the main
thread

private Action asyncTask;
protected override void CreateChildControls()
{
 using (SPMonitoredScope scope = new SPMonitoredScope("Async CreateChildControls"))
 {
 products = new BulletedList();
 this.Controls.Add(products);
 errorMessage = new Label();
 errorMessage.ForeColor = System.Drawing.Color.Red;
 this.Controls.Add(errorMessage);

 asyncTask = new Action(LoadProducts);

 PageAsyncTask task1 = new PageAsyncTask(OnBegin, OnEnd, OnTimeOut, null, true);
 this.Page.RegisterAsyncTask(task1);
 }
}

After creating the controls, you declare an Action delegate for the product loader method. It is this
delegate that will be executed asynchronously. Asynchronous page tasks are created by instantiating
a new object of the class PageAsyncTask. The constructor of this object takes five arguments. The first
one is the begin handler and is the method that will be executed to start the asynchronous execution.
The second and third are two methods that are used when the execution ends and when it times out.
The fourth argument can be used to send parameters to the task, and the fifth one indicates, in this
case, that you can run this task in parallel with other tasks. Finally, you register the task with the page,
so that it can start the asynchronous task later in the page life cycle.

350   Inside Microsoft SharePoint 2013

The three methods OnBegin, OnEnd, and OnTimeOut, which you added to the PageAsyncTask,
are implemented in Listing 8-29. The OnBegin method uses the Action delegate that was previously
created and calls its BeginInvoke method to start the execution. This method returns an IAsyncResult
object, which is used by the framework to keep track of the status of the asynchronous operation. The
OnEnd method is called when the execution completes successfully, within the time-out limits, and
the OnTimeOut method will be called if the asynchronous call times out.

LISTING 8-29  Asynchronous page tasks, which must contain methods to start, end, and handle the time-out of
the task

public IAsyncResult OnBegin(object sender, EventArgs e, AsyncCallback callback,
 object data)
{
 return asyncTask.BeginInvoke(callback, data);
}
public void OnEnd(IAsyncResult result)
{
 asyncTask.EndInvoke(result);
}
public void OnTimeOut(IAsyncResult result)
{
 errorMessage.Text = "Operation timed out...";
}

The default time-out value for asynchronous operations in ASP.NET is 45 seconds, but SharePoint
lowers this time-out to 7 seconds. This is configured in the Web.config file of the SharePoint Web ap-
plication in the pages element:

<pages asyncTimeout="7"/>

You should usually not edit this value, but if you know that your asynchronous operation can take
longer time than 7 seconds, or you don’t want those long time-outs, you can set a temporary longer
or shorter value in your Web Part. You do this by changing the settings of the AsyncTimeout property
of the ASP.NET Page object:

this.Page.AsyncTimeOut = new TimeSpan(0,0,15);

Now you’re all set with your asynchronous Web Part. To see any visible benefits from the asyn-
chronous operations, you should add two or more of these Web Parts to a page and then monitor the
requests by using the Developer Dashboard.

	 Chapter 8  SharePoint Web Parts    351

Summary

This chapter covered one of the historically most predominant features of SharePoint—Web Parts.
Web Parts have come a long way since their initial implementation and now are a part of the ASP.NET
framework. This chapter discussed the Web Part framework and its important aspects, and how you
can take advantage of its features. After covering the fundamentals, you created Web Parts by using
Visual Studio 2012. This chapter explained all the different aspects you need to keep in mind to use
Web Parts to create a deployable solution.

You explored in depth how to render the UI of Web Parts and how to make them customizable by
using Web Part properties. It is the personalized properties that make Web Parts unique and so easy
to work with. By taking advantage of these properties, you can create Web Parts that your users will
love to use.

Finally, you examined some of the more advanced Web Parts development topics, such as ex-
tending the Web Part menu with verbs and how to make Web Parts connectable by using Web Part
connections. Both of these features are very interesting if you want to make easy-to-use and reusable
Web Parts for your organization or customers. The last part of the advanced topics section discussed
parallel and asynchronous execution of Web Parts, which is essential to know when you’re dealing
with long-running calls and operations.

		 353

C H A P T E R 9

SharePoint lists

One of the greatest strengths of Microsoft SharePoint is that it enables users to create lists and
to customize them for specific business scenarios. Users can create a new custom list and add

whatever columns are required for their current business needs. All the details of how SharePoint
tracks the schema definition for columns in a list and how it stores list items in the content database
are handled behind the scenes. This approach allows business users to rapidly create light business
applications with no involvement from the IT department.

Although lists make it easy to create simple no-code solutions, they are also the foundation of
many SharePoint solutions and apps. Developers often rely on lists as the primary data source for so-
lutions and apps because they can be easily accessed through the application programming interface
(API) and also provide a ready user interface that supports full create, read, update, delete (CRUD)
operations. All this makes the SharePoint list a critical piece of infrastructure and one that developers
should know well.

Creating lists

When a user creates a new list, SharePoint allows the user to select a list template from a collection
available in the current site. Table 9-1 shows a listing of commonly used list templates supplied by
SharePoint Foundation. Each list has both a type and an identifier, which are used to identify classes
of lists in solutions and apps. This table is just a small sampling of the available lists. In SharePoint
Server Enterprise, for example, there are more than 50 different list types available.

TABLE 9-1  Common list templates and IDs

Template name Template type Template type ID

Custom List GenericList 100

Document Library DocumentLibrary 101

Survey Survey 102

Links List Links 103

Announcements List Announcements 104

Contacts List Contacts 105

Calendar Events 106

Tasks List Tasks 107

354   Inside Microsoft SharePoint 2013

Template name Template type Template type ID

Discussion List DiscussionBoard 108

Picture Library PictureLibrary 109

Form Library XMLForm 115

Wiki Page Library WebPageLibrary 119

As you can imagine, there are many ad hoc scenarios in which creating a list does not require the
assistance of a developer. Users who are skilled in SharePoint site customization are more than capa-
ble of creating lists and configuring them to achieve a desired goal. At the same time, however, there
are definitely scenarios in which it makes sense to automate the creation of lists by using a SharePoint
solution. This is especially true when the process for creating a specific set of lists must be repeatable
across different sites or different farms.

New lists can be created in solutions or apps using a feature that contains a ListInstance element.
The ListInstance element sets the attributes TemplateType and FeatureId to identify the list template
and the list feature, respectively. The list template type is an identifying number such as one of those
listed in Table 9-1. The feature ID is obtained from the Feature.xml file of the feature that defined the
list template schema. For example, the following ListInstance element will create a new Contacts list:

<ListInstance
 TemplateType="105"
 FeatureId="00bfea71-7e6d-4186-9ba8-c047ac750105"
 Title="Customers"
 Description="Wingtip customers list "
 Url="Lists/Customers"
 OnQuickLaunch="TRUE" >
</ListInstance>

Chapter 3, “Server-side solution development,” introduced the fundamentals of server-side solu-
tion development along with the Visual Studio 2012 list designer, which is used to create new lists in
solutions and apps. The list designer is valuable because it saves developers from having to figure out
the required template types and feature IDs for lists. Additionally, the list designer results in a purely
declarative solution, which is preferred because it will work in all types of solutions and apps.

Although creating lists declaratively is useful, you also have the option of creating lists program-
matically. You can use either the server-side object model (SSOM), the client-side object model
(CSOM), or the Representational State Transfer (REST) interface to create lists. Listing 9-1 shows a
sample of each approach.

	 Chapter 9  SharePoint lists    355

LISTING 9-1  Creating lists programmatically

//Server-Side Object Model
SPWeb site = SPContext.Current.Web;
string ListTitle = "Contacts";
string ListDescription = "Wingtip customers list";
Guid ListId = site.Lists.Add(ListTitle, ListDescription, SPListTemplateType.Contacts);
SPList list = site.Lists[ListId];
list.OnQuickLaunch = true;
list.Update();

//Client-Side Object Model
var ctx = new SP.ClientContext.get_current();
var createInfo = new SP.ListCreationInformation();
createInfo.set_title("Contacts");
createInfo.set_templateType(SP.ListTemplateType.contacts);
var newList = ctx.get_web().get_lists().add(createInfo);
ctx.load(newList);
ctx.executeQueryAsync(success, failure);

//REST interface
$.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify(
 { '__metadata': { 'type': 'SP.List' },
 'Title': 'Contacts',
 'BaseTemplate': 105
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 }
});

Looking at the declarative and code-based options for creating lists can be a bit overwhelming.
With four different approaches, developers could easily become confused as to which is the best ap-
proach. The declarative approach is simple because it uses tools integrated into Visual Studio 2012.
However, the declarative approach does have a noteworthy disadvantage: There is no graceful way to
handle conflicts. For example, suppose that a user attempts to activate a feature with the ListInstance
element in a site that already contains a list with the same title. The feature activates successfully, but
the feature’s attempt to create the list silently fails due to the conflict, leaving the functionality of the
feature in an unpredictable state. For apps, this is generally not a problem because each app instance
can create its own set of lists.

356   Inside Microsoft SharePoint 2013

Developers clearly have more control when creating a list programmatically. Developers can, for
example, query the Lists collection of the current site to see if there is an existing list with the same
title before attempting to create a new list. If there is a list with a conflicting title, you can delete
that list or change its title to ensure that your code can create the new list with the desired title
successfully.

Another advantage of using code to create lists instead of using the declarative ListInstance ele-
ment is that you have more control over configuring list properties. Listing 9-2 demonstrates how to
configure a list to appear on the Quick Launch bar, support attachments, and allow versioning.

LISTING 9-2  Configuring lists programmatically

//Server-Side Object model
Guid ListId = site.Lists.Add(ListTitle, ListDescription, SPListTemplateType.Contacts);
list = site.Lists[ListId];
list.OnQuickLaunch = true;
list.EnableAttachments = false;
list.EnableVersioning = true;
list.Update();

//Client-Side Object Model
var ctx = new SP.ClientContext.get_current();
var list = ctx.get_web().get_lists().getByTitle("Contacts")
ctx.load(list);
var.list.set_onQuickLaunch(quickLaunch);
list.set_enableAttachments(attachments);
list.set_enableFolderCreation(folders);
list.set_enableVersioning(versions);
ctx.executeQueryAsync(success, failure)

//REST Interface
$.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('" + title + "')",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify(
 { '__metadata': { 'type': 'SP.List' },
 'OnQuickLaunch': quickLaunch,
 'EnableAttachments': attachments,
 'EnableVersioning': versions
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 "IF-MATCH": "*",
 "X-Http-Method": "PATCH"
 }
});

	 Chapter 9  SharePoint lists    357

Working with fields and field types

Each SharePoint list contains a collection of fields that define what users see as columns. A field can
be created inside the context of a single list. These are the types of fields that we will discuss first.
However, a field can also be defined within the context of a site, which makes it possible to reuse it
across multiple lists. These types of fields are known as site columns, and they will be introduced in
the “Understanding site columns” section later in the chapter.

Every field is defined in terms of an underlying field type. Table 9-2 shows a list of field types that
SharePoint Foundation displays to users when they are adding a new field to a list by using the Create
Column page. Note that in addition to the field types included with SharePoint Foundation, there are
extra field types installed by SharePoint Server 2013. Additionally, it’s possible to develop custom field
types in a SharePoint solution to extend the set of field types available for use within a farm. Custom
field types are covered in Chapter 10, “SharePoint type definitions and templates.”

TABLE 9-2  SharePoint Foundation field types

Field type Display name

Text Single Line Of Text

Note Multiple Lines Of Text

Choice Choice

Integer Integer

Number Number

Decimal Decimal

Currency Currency

DateTime Date And Time

Lookup Lookup

Boolean Yes/No

User Person Or Group

URL Hyperlink Or Picture

Calculated Calculated

At a lower level, SharePoint classifies lists by using base types. Standard lists have a base type of 0,
whereas document libraries have a base type of 1. There also are less frequently used base types for
discussion forums (3), vote or survey lists (4), and issue lists (5). The base type defines a common set of
fields, and all list types configured to use that base type automatically inherit those fields.

For example, all five base types define a field named ID. This field enables SharePoint to track
each item in a list behind the scenes with a unique integer identifier. All five base types also define
fields named Created, Modified, Author, and Editor. These fields allow SharePoint to track when and by
whom each item was created and last modified.

358   Inside Microsoft SharePoint 2013

Performing basic field operations
Every list contains special fields named Title, LinkTitle, and LinkTitleNoMenu. The Title field contains
text that represents the list item. The LinkTitle field and the LinkTitleNoMenu field are computed fields
based on the value in the Title field and cannot be edited. The LinkTitle field is used to render the Edit
Control Block (ECB) menu shown in Figure 9-1.

This field is special for lists because it contains the value that is rendered inside the Edit Control
Block (ECB) menu shown in Figure 9-1. Though the Title field contains the value rendered inside
the ECB menu, it is not actually the field that SharePoint uses to create the ECB menu within a view.
Instead, SharePoint uses a related field named LinkTitle, which reads the value of the Title field and
uses it to render the ECB menu. The LinkTitleNoMenu field can be used to display the value of the
Title field in a hyperlink that can be used to view an item.

FIGURE 9-1  The Edit Control Block menu

Each field in a list has an internal name as well as a display name. After a field has been created, its
internal name can never be modified. However, the display name can be modified. For example, the
out-of-the-box Contacts list modifies the display name of the Title field to “Last Name”. As a result,
the Last Name column provides the ECB menu in a Contacts list.

The display name of the Title field can be modified directly in the browser or through code. As an
example, imagine that you need a list to track product categories, so you create a new list by using
the custom list template. The SPList class provides a Fields collection, from which you can retrieve
the Title field. After you have obtained an SPField reference to the Title field, you can modify its
display name by using the Title property of the SPField class and then save your changes by calling the
Update method. Listing 9-3 shows how to accomplish this modification by using different approaches.

	 Chapter 9  SharePoint lists    359

LISTING 9-3  Modifying a field programmatically

//Server-Side Object Model
SPList list = SPContext.Current.Web.Lists["ProductCategories"];
SPField fldTitle = list.Fields.GetFieldByInternalName("Title");
fldTitle.Title = "Category";
fldTitle.Update();

//Client-Side Object Model
var ctx = new SP.ClientContext.get_current();
var field = ctx.get_web().get_lists().getByTitle("ProductCategories")
 .get_fields().getByInternalNameOrTitle("Title");
ctx.load(field);
field.set_title("Category");
field.update();
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax(
 {
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('ProductCategories')" +
 "/fields/getByInternalNameOrTitle('Title')",

 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify(
 { '__metadata': { 'type': 'SP.Field' },
 'Title': "Category"
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 "IF-MATCH": "*",
 "X-Http-Method": "PATCH"
 }
 });

Now that we have covered the basics of fields and field types, let’s write the code required to add
a few custom fields to a new list. The Fields collection supports an Add method that can easily be used
to add new fields. Additionally, the AddFieldAsXml method allows you to structure an XML chunk to
define the new field. These different approaches are shown in Listing 9-4 using the various APIs.

360   Inside Microsoft SharePoint 2013

LISTING 9-4  Adding fields to a list programmatically

//Server-Side Object Model
list.Fields.Add("ProductDescription", SPFieldType.Text, false);

//JavaScript Client Object Model
var xmlDef = "<Field DisplayName='ProductDescription' Type='Text'/>";
var ctx = new SP.ClientContext.get_current();
var field = ctx.get_web().get_lists().getByTitle("Products")
 .get_fields().addFieldAsXml(xmlDef, false,
 SP.AddFieldOptions.addToNoContentType);
field.update();
ctx.load(field);
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax(
 {
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('Products')/fields",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify(
 { '__metadata': { 'type': 'SP.Field' },
 'Title': 'ProductDescription',
 'FieldTypeKind': SP.FieldType.text
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 }
 }
);

Note that the previous code avoids using spaces when creating the field names. If you create a
field with a space in its name, SharePoint creates the internal name by replacing each space with
x0020. This means that calling the Add method and passing a name of “List Price”, for example,
would create a field with an internal name of List_x0020_Price. Most developers prefer to create
fields by using a name without spaces.

The properties of the field, such as DefaultValue, represent common properties that are shared
across all field types. However, specific field types have associated classes that inherit from SPField.
Examples of these field type classes include SPFieldBoolean, SPFieldChoice, SPFieldCurrency, SPField-
DateTime, SPFieldDecimal, SPFieldNumber, SPFieldText, SPFieldUrl, and SPFieldUser. Although the
REST API lets you use an endpoint against the underlying type, when you are using the server-side
or client-side object model you must convert a field to one of these specific field types. The following
code shows an example:

//Server-Side Object Model
SPList list = SPContext.Current.Web.Lists["Products"];
SPFieldCurrency fld =

	 Chapter 9  SharePoint lists    361

 (SPFieldCurrency)list.Fields.GetFieldByInternalName("ListPrice");
fld.MinimumValue = 0;
fld.MaximumValue = 10000;
fld.Update();

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var field = ctx.get_web().get_lists().getByTitle("Products")
 .get_fields().getByInternalNameOrTitle("ListPrice");
var fieldAsNumber = ctx.castTo(field, SP.FieldNumber);
fieldAsNumber.set_minimumValue(0);
fieldAsNumber.set_maximumValue(10000);
fieldAsNumber.update();
ctx.load(field);
ctx.executeQueryAsync(success, failure);

Working with lookups and relationships
SharePoint Foundation supports lookup fields, which make it possible for users to update a field value
by using a drop-down menu populated by the field values in another list. For example, imagine that
you want to add a field to a list of products that lets the user pick a product category. You can accom-
plish this by adding a new lookup field to the products list. Listing 9-5 shows how to do this by using
both the server-side and client-side object models.

LISTING 9-5  Establishing list relationships programmatically

//Server-Side Object Model
string LookupFieldDisplayName = "Category";
SPList LookupList = site.Lists["Product Categories"];
Guid LookupListID = LookupList.ID;
list.Fields.AddLookup(LookupFieldDisplayName, LookupListID, true);
SPFieldLookup fldLookup = (SPFieldLookup)list.Fields["Category"];
fldLookup.Indexed = true;
fldLookup.RelationshipDeleteBehavior = SPRelationshipDeleteBehavior.Restrict;
fldLookup.Update();

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var xmlDef = "<Field DisplayName='Category' Type='Lookup'/>";
var field = ctx.get_web().get_lists().getByTitle("Products").get_fields()
 .addFieldAsXml(xmlDef, false, SP.AddFieldOptions.addToNoContentType);
var lookupField = ctx.castTo(field, SP.FieldLookup);
lookupField.set_lookupList({GUID});
lookupField.set_lookupField("Title");
lookupField.set_relationshipDeleteBehavior(SP.RelationshipDeleteBehavior.restrict);
lookupField.update();
ctx.executeQueryAsync(success, failure)

362   Inside Microsoft SharePoint 2013

When a list is used as a lookup, it can have a relationship that allows you to prevent users from
deleting any item in the lookup list that is currently being used by any item in the master list. This
is accomplished by setting the RelationshipDeleteBehavior property to restricted delete. Under this
setting, attempting to delete an item from the lookup list that is in use will then result in an error. In
some scenarios, however, it makes more sense to create a relationship with cascading delete behavior.
When a user deletes an item in the lookup list under this setting, all the list items that have been as-
signed that lookup will be deleted as well.

Though there is definite value in the support for defining list relationships, it is important that
you don’t overestimate what it really does. It cannot be used to create the same level of referential
integrity that can be achieved between two tables in a Microsoft SQL Server database. That means
that it does not really prevent the possibility of orphaned items, such as when you have products that
are not assigned to an existing product category. The value of creating the relationship with delete
behavior simply relieves you of additional development work, such as writing an event handler to
achieve something such as cascade delete behavior.

Understanding site columns

As you have seen, SharePoint supports the creation of fields within the scope of a list. SharePoint also
supports the creation of site columns, which are fields created within the scope of a site. The advan-
tage of a site column is that it represents a field that can be reused across multiple lists.

Every site within a site collection contains its own site columns gallery. When you add a site column
to a site columns gallery, that site column is available for use within the current site, as well as in all
the child sites in the site hierarchy below it. When you add a site column to the site column gallery of
a top-level site in a site collection, it is available for use throughout the entire site collection. For this
reason, site columns are generally added to the site columns gallery of top-level sites instead of child
sites.

SharePoint automatically adds a standard set of site columns to the site columns gallery of every
top-level site by using a hidden feature. Table 9-3 shows a small sampling of this standard set of site
columns that are always available for use in every SharePoint site.

TABLE 9-3  Sampling of site columns

Internal name Display name Field type

ID ID Counter

Title Title Text

LinkTitle Title Computed

LinkTitleNoMenu Title Computed

Author Created By User

Created Created DateTime

	 Chapter 9  SharePoint lists    363

Internal name Display name Field type

Editor Modified By User

Modified Modified DateTime

FirstName First Name Text

HomePhone Home Phone Text

CellPhone Mobile Number Text

WorkPhone Business Phone Text

EMail E-Mail Text

HomeAddressStreet Home Address Street Text

HomeAddressCity Home Address City Text

HomeAddressStateOrProvince Home Address State Or Province Text

HomeAddressPostalCode Home Address Postal Code Text

WorkAddress Address Note

WorkCity City Text

WorkFax Fax Number Text

WorkState State/Province Text

WorkZip ZIP/Postal Code Text

StartDate Start Date DateTime

Birthday Birthday DateTime

SpouseName Spouse Text

As you can see, the standard set of site columns includes the common fields that the SharePoint
Foundation base types add to every list, such as ID, Title, Author, Created, Editor, and Modified. It also
includes site columns that are used by standard list types such as Announcements, Contacts, Calendar,
and Tasks.

SharePoint Foundation adds more than 400 site columns into the site column gallery of every top-
level site. However, many of these site columns are hidden, including quite a few that are included
only for backward compatibility with earlier versions. Site administrators can view the site columns
that are not hidden by using a standard application page named mngfield.aspx, which is accessible
via the Site columns link in the Galleries section of the Site Settings page of a top-level site.

When you need to add a new field to a list, you should determine whether there is already an
existing site column that meets your needs. In general, it is preferable to reuse an existing site column
instead of creating a new field inside the scope of a list. This is especially true in scenarios where mul-
tiple lists require a field with common properties. By updating a site column, you can automatically
push your changes to any list within the current site collection that contains a field based on that site
column. The use of site columns also makes writing queries easier because you can standardize field
names across multiple lists.

364   Inside Microsoft SharePoint 2013

The SPWeb class provides a Fields collection that makes it possible to enumerate through the site
columns in the site column gallery for the current site. It is important to understand that the site col-
umns available for use in a site include the site columns in the local site column gallery as well as the
site columns in the galleries of all parent sites. The SPWeb class provides a second collection property
named AvailableFields, which allows you to enumerate through all site columns that can be used in
the current site. Listing 9-6 shows how to retrieve a site column from the AvailableFields collection.

LISTING 9-6  Retrieving columns programmatically

//Server-Side Object Model
SPField fld = SPContext.Current.Web.AvailableFields.GetFieldByInternalName("Title");

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var column = ctx.get_web().get_availableFields().getByInternalNameOrTitle("Title");
ctx.load(column);
ctx.executeQueryAsync(success, failure)

//REST Interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/availableFields/getByInternalNameOrTitle('" + internalFieldName +
"')",
 type: "GET",
 headers: { "accept": "application/json;odata=verbose", }
});

When should you access site columns through the Fields collection rather than the AvailableFields
collection? The first observation is that accessing the Title field through the Fields collection works
only when your code is executed in the context of a top-level site. This code will fail when executed
within the scope of a child site. Therefore, accessing site columns through the AvailableFields collec-
tion can offer more flexibility. However, you should note that you cannot modify a site column that
has been accessed through the AvailableFields collection. If you plan to modify a site column, you
must access it by using the Fields collection in the context of the site where it exists.

In addition to using the standard site columns provided by SharePoint Foundation, you can also
create your own manually by using the browser or with code by using the server-side object model.
You will find that writing the code for creating a new site column is just like writing the code for creat-
ing a new field in a list. The main difference is that you call the Add method on the Fields collection
of a site instead of the Fields collection of a list. Listing 9-7 demonstrates how to create a new site
column in the current site. You could also choose to add the site column to the root site of the current
site collection so that it would be available to all sites. This can even be done by using client-side code
from an app, as long as the app has the Manage permission for the host site collection.

	 Chapter 9  SharePoint lists    365

LISTING 9-7  Creating a site column programmatically

//Server-Side Object Model
SPWeb site = SPContext.Current.Web;
site.Fields.Add("EmployeeNumber", SPFieldType.Text, true);
SPField fld = site.Fields.GetFieldByInternalName("EmployeeNumber");
fld.Title = "Employee Number";
fld.Group = "Wingtip Toys";
fld.Update();

//JavaScript Client Object Model
var xmlDef = "<Field DisplayName='EmployeeNumber' Type='Text'/>";
var ctx = new SP.ClientContext.get_current();
var field = ctx.get_web().get_fields().addFieldAsXml(
 xmlDef, false, SP.AddFieldOptions.addToNoContentType);
ctx.load(field);
field.set_group("Wingtip Toys");
field.updateAndPushChanges(false);
ctx.executeQueryAsync(success, failure)

//REST Interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/fields",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify(
 { '__metadata': { 'type': 'SP.Field' },
 'Title': 'EmployeeNumber',
 'FieldTypeKind': 2,
 'Group': 'Wingtip Toys'
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 }
});

A significant benefit to using site columns is that they can be used to update multiple lists at once.
Imagine a scenario where you have created 10 different lists within a site collection that contain fields
based on the site choice column named EmployeeStatus. What would you need to do if you wanted
to add a new choice value to the EmployeeStatus site column and make it available for use in any of
those lists? The answer is that you can simply add the new choice value to the site column and then
call the Update method with a value of true to push your changes to all the lists within the current site
collection that contain fields based on the site column. Listing 9-8 shows the approach.

366   Inside Microsoft SharePoint 2013

LISTING 9-8  Adding choices programmatically

//Server-Side Object Model
SPWeb site = SPContext.Current.Site.RootWeb;
SPFieldChoice fld =
 (SPFieldChoice)site.Fields.GetFieldByInternalName("EmployeeStatus");
fld.Choices.Add("Contractor");
fld.Update(true);

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var column = ctx.get_web().get_fields().getByInternalNameOrTitle("EmployeeStatus");
ctx.load(column);
var choiceColumn = ctx.castTo(column, SP.FieldChoice);
ctx.load(choiceColumn);
choiceColumn.set_choices("Contractor");
choiceColumn.updateAndPushChanges(true);
ctx.executeQueryAsync(success, failure)

Working with content types

SharePoint 2013 supports a flexible and powerful mechanism for designing lists known as a content
type. A content type is an entity that uses site columns to define a schema of fields for an item in a
list or a document in a document library. It’s important to understand that content types, like site
columns, are defined independently outside the scope of any list or document library. A content
type defines a field collection that is reusable across multiple lists or multiple document libraries.
Furthermore, content types can be updated to make sweeping changes to many lists at once, such as
ascenario in which you need to add a new field to accommodate changing business requirements.

Every site within a site collection contains a content types gallery. The content types gallery for a
site can be viewed and administered through an application page named mngctype.aspx, which is
accessible through the Site Content Types link in the Galleries section of the Site Settings page.

Content type visibility behaves just as it does for site columns. When you add a content type to the
content types gallery of a specific site, that content type is available for use within the current site, as
well as in all the child sites in the site hierarchy below it. When you add a content type to the content
types gallery of a top-level site, it is available for use throughout the entire site collection.

SharePoint Foundation automatically adds a standard set of content types to the content types
gallery of every top-level site. Table 9-4 shows a partial listing of the standard content types that
SharePoint Foundation makes available within every site. This table lists each content type with its
ID and name along with the name of its parent content type.

	 Chapter 9  SharePoint lists    367

TABLE 9-4  A partial listing of the standard SharePoint Foundation content types

ID Name Parent

0x01 Item System

0x0101 Document Item

0x0102 Event Item

0x0104 Announcement Item

0x0105 Link Item

0x0106 Contact Item

0x0108 Task Item

0x0120 Folder Item

0x010101 Form Document

0x010102 Picture Document

0x010105 Master Page Document

0x010108 Wiki Page Document

0x010109 Basic Page Document

0x012002 Discussion Folder

0x012004 Summary Task Folder

Content types are defined based upon the principles of inheritance. Every content type that you
can create or use inherits from another content type. SharePoint Foundation provides a special hidden
content type named System, which exists at the very top of the inheritance hierarchy above Item. How-
ever, as a developer, you will never deal directly with the System content type or program against it.
Therefore, the Item content type can be considered the parent of all other content types in SharePoint.

Each content type has a string-based ID that begins with the ID of its parent content type. The
Item content type has an ID based on the hexadecimal number 0x01. Because every content type
inherits from Item, all content types have an ID that begins with 0x01. For example, the Document
content type, which inherits from Item, has an ID of 0x0101. Content types that inherit from Docu-
ment have IDs that begin with 0x0101, such as Form, which has an ID of 0x010101, and Picture, which
has an ID of 0x010102.

If you create a new content type through the browser or code, SharePoint will create a new con-
tent type ID for you. SharePoint creates a content type ID by parsing together the base content type
ID, followed by 00 and a new GUID. For example, if you create a new content type that inherits from
Document, SharePoint will create a content type ID that looks something like the following:

0x010100F51AEB6BBC8EA2469E1617071D9FF658

368   Inside Microsoft SharePoint 2013

The inheritance-based architecture of content types yields quite a bit of power. For example, con-
sider what happens if you add a new site column to the Document content type in the content types
gallery of a top-level site. You would effectively be adding the site column to all the content types
that inherit from Document, which provides a simple and effective way to add a new field to every
document library in a site collection.

Content types go beyond defining a set of fields. A content type can also define behaviors with
event handlers and workflow associations. For example, consider what would happen if you register
an event handler on the Document content type in the content types gallery of a top-level site. You
would effectively be registering the event handler on every document in the site collection, including
those documents based on derived content types such as Form, Picture, Master Page, Wiki Page, and
Basic Page.

Programming with content types
The SPWeb class provides a ContentTypes collection that makes it possible to enumerate through the
content types in the content types gallery of the current site. Following the same pattern as for site
columns, you can also use a second collection named AvailableContentTypes, which allows you to
enumerate the aggregation of content types in the content types gallery of the current site and all
parent sites. Listing 9-9 shows how to retrieve a content type when you know its name or ID.

LISTING 9-9  Retrieving a content type programmatically

//Server-Side Object Model
SPWeb site = SPContext.Current.Web;
SPContentType ctype = site.ContentTypes["WingtipToysProduct"];

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var ctype = ctx.get_web().get_contentTypes().getById("0x010100F51AEB6BBC8EA2469E1617071D9
FF658");
ctx.load(ctype);
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/contentTypes/getById('0x010100F51AEB6BBC8EA2469E1617071D9FF658')",
 type: "GET",
 headers: {
 "accept": "application/json;odata=verbose",
 }
});

	 Chapter 9  SharePoint lists    369

When would you want to access a content type through the ContentTypes collection rather than
the AvailableContentTypes collection? The first observation is that the line of code that accesses the
content type through the ContentTypes collection will fail if it is ever executed within the context of a
child site. Therefore, accessing content types with the AvailableContentTypes collection is more flex-
ible if you need to write code that might execute in the context of a child site. This behavior is similar
to the behavior of site columns.

However, another important point is that a content type that has been retrieved through the
AvailableContentTypes collection is read-only and cannot be modified. Therefore, you must retrieve a
content type by using the ContentTypes collection inside the context of the site where it exists if you
need to modify it. Remember that all the standard SharePoint Foundation content types are added to
the content types gallery of each top-level site.

Each content type is made up of a set of site columns. Although each content type defines a col-
lection of site columns, it doesn’t just track a collection of site columns by using SPField objects as you
might expect. Instead, it tracks each site column by using an SPFieldLink object. You can think of an
SPFieldLink object as a layer on top of an SPField object that the content type can use to customize
default property values of the underlying site column.

Consider a scenario in which you might want to add the standard site column named Company
to an existing content type. This is accomplished by adding a new field to the collection of field links.
Listing 9-10 adds the site column to an existing content type, and then pushes the change to every list
and document library that uses it.

LISTING 9-10  Adding site columns to a content type programmatically

//Server-Side Object Model
SPContentType ctype = site.ContentTypes["WingtipToysProduct"];
SPField companyField = site.Fields.GetFieldByInternalName("Company");
ctype.FieldLinks.Add(new SPFieldLink(companyField));
ctype.Update(true, false);

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var field = ctx.get_site().get_rootWeb().get_fields()
 .getByInternalNameOrTitle("Company");
var ctype = ctx.get_site().get_rootWeb().get_contentTypes()
 .getById("0x010100F51AEB6BBC8EA2469E1617071D9FF658");
ctx.load(ctype);
ctx.load(field);
var createInfo = new SP.FieldLinkCreationInformation();
createInfo.set_field(field);
var fieldLink = ctype.get_fieldLinks().add(createInfo);
ctype.update (true);
ctx.load(fieldLink);
ctx.executeQueryAsync(success, failure);

370   Inside Microsoft SharePoint 2013

Note that the call to Update in the server-side code passes a second parameter with a value of
false. This second parameter requires some explanation. There are some content types in the standard
set of content types added by SharePoint Foundation that are defined as read-only content types. If
you do not pass a value of false for the second parameter, the call to Update fails when it attempts to
modify one of these read-only content types. When you pass a value of false, the call to Update suc-
ceeds because it ignores any failures due to the inability to update read-only content types.

Creating custom content types
You will never create a content type from scratch. Instead, you always select an existing content type
to serve as the base content type for the new content types you are creating. For example, you can
create the most straightforward content type by inheriting from the content type named Item. This
automatically provides your new content type with the standard fields and behavior that are common
across all content types. Alternatively, you can elect to inherit from another content type that inherits
from the Item content type, such as Announcement, Contact, Task, or Document. Beyond creating a
new content type manually by using the browser, you can also do it declaratively with Collaborative
Application Markup Language (CAML), or programmatically.

Adding a new content type declaratively is straightforward when you are using Visual Studio 2012.
Simply select the option to add a new item to your app or solution and select Content Type. A wizard
then walks you through selecting from the available content types from which to inherit. You can
then easily add existing site columns to the content type. If you need a custom site column, it can also
be added as a new item. The end result is an Elements.xml file containing the declarative definition of
the new content type, as shown in the following code:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Document (0x0101) -->
 <ContentType ID="0x010100FD82D89E067A4B0C8D0E7474FA662E70"
 Name="FinancialDocument"
 Group="Financial"
 Description="Financial Content Type"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef ID="{a93bbb3e-2a86-4763-bfb5-9c86849d1630}"
 DisplayName="Amount"
 Required="FALSE"
 Name="Amount" />
 </FieldRefs>
 </ContentType>
</Elements>

To create a new content type with server-side code, you must call the SPContentType class con-
structor, passing three parameters. The first parameter is the SPContentType object associated with
the parent content type you want to inherit from. The second parameter is the target content types
collection, which should typically be the ContentTypes collection of a top-level site. The third param-
eter is the string name of the content type to be created. After you have created an SPContentType

	 Chapter 9  SharePoint lists    371

object and initialized its properties, such as Description and Group, you must call the Add method on
the ContentTypes property of the target site to actually save your work in the content database. The
following code shows how this works:

SPWeb site = SPContext.Current.Site.RootWeb;
string ctypeName = "FinancialDocument";
SPContentType ctypeParent = site.ContentTypes["Document"];
SPContentType ctype = new SPContentType(ctypeParent, site.ContentTypes, ctypeName);
ctype.Description = "A new content type";
ctype.Group = "Financial Content Types";
site.ContentTypes.Add(ctype);

When creating a new content type by using CSOM, the process is similar to the server-side exam-
ple. When creating a new content type by using REST, the process uses a POST method but requires
the same basic information. Listing 9-11 shows each approach.

LISTING 9-11  Creating content types programmatically

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var parent = ctx.get_web().get_contentTypes().getById("0x0101");
ctx.load(parent);
var createInfo = new SP.ContentTypeCreationInformation();
createInfo.set_name("FinancialDocument");
createInfo.set_description("A new content type");
createInfo.set_parentContentType(parent);
var newCtype = ctx.get_site().get_rootWeb().get_contentTypes().add(createInfo);
ctx.load(newCtype);
ctx.executeQueryAsync(success, failure)

//REST Interface
$.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/site/rootWeb/contentTypes",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify({
 '__metadata': { 'type': 'SP.ContentType' },
 'Name': contentTypeName,
 'Description': description,
 'Id': {
 '__metadata': { 'type': 'SP.ContentTypeId' },
 'StringValue': createCTypeId(parentId)
 }
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 }
});

372   Inside Microsoft SharePoint 2013

Working with document libraries

A document library is really just a specialized type of list. The main difference between a document
library and other types of lists is that a document library is designed to store documents instead of
merely list items. Every item in a document library is based on a file stored inside the content data-
base. You can add extra fields to a document library just as you can to a standard list. This is a com-
mon practice because the fields in a document library allow you to track document metadata that is
stored outside the document file.

Document libraries have an underlying base type of 1, which defines several document-related
fields. For example, SharePoint tracks the name of each file in a document library by using a field
named FileLeafRef, which has a display name of Name. There is a second field named FileRef, with a
display name of URL Path, which contains the file name combined with its site-relative path. There
is another field named FileDirRef, with a display name of Path, which contains the site-relative path
without the file name.

The ECB menu works differently in document libraries than in standard lists. More specifically,
SharePoint populates the ECB menu for a document by using the file name instead of the Title field.
SharePoint uses a related field named LinkFilename, which reads the file name from the FileLeafRef
field and uses it to render the ECB menu. There is a third related field named LinkFilenameNoMenu,
which can be used to display the file name in a hyperlink that can be used to navigate to the View
Properties page associated with a document.

You can program against a document library by using the SPList class just as you would with any
other type of list. The server-side object model also provides the SPDocumentLibrary class, which
inherits from SPList. SPDocumentLibrary extends SPList with additional functionality that is specific to
document libraries. After you obtain an SPList reference to a document library from the Lists collec-
tion of a site, you can convert the SPList reference to an SPDocumentLibrary reference to access the
extra methods and properties that are only available with document libraries, as shown in the follow-
ing code:

SPDocumentLibrary DocLib = (SPDocumentLibrary)site.Lists["Product Proposals"];

Creating a document library
You can create a document library declaratively by creating a ListInstance element with a Template
Type value of 101 and the GUID that identifies the DocumentLibrary feature provided by SharePoint.
The following code shows a sample in CAML:

<ListInstance
 TemplateType="101"
 FeatureId="00bfea71-e717-4e80-aa17-d0c71b360101"
 Url="ProductProposals"
 Title="Product Proposals"
 Description=""
 OnQuickLaunch="TRUE" />

	 Chapter 9  SharePoint lists    373

If you prefer to create document libraries by using code, you can do so just as you do when
creating a standard list. The only difference is that you pass a list template parameter with an SPList-
TemplateType enumeration value of DocumentLibrary. Refer to the code in the section “Creating lists”
earlier in this chapter for details.

Adding a custom document template
One unique characteristic of document libraries is that they provide support for document templates.
For example, you can create a document template by using Microsoft Word that allows users to cre-
ate documents that already contain the company letterhead; or you can create a document template
using Microsoft Excel that allows users to create documents for expense reports that have a structure
predefined by the accounting department. A user can then create a new document from a document
template by using the New Document menu on the Documents tab of a document library.

A document library is initially configured with a generic document template. However, you can
update it to utilize a custom document template. One approach is to upload the custom document
template file by using a Module element. SharePoint contains a special folder named Forms inside the
root folder of each document library. The Forms folder is the proper location in which to upload the
document template for a document library. The following code shows the declarative CAML necessary
to define a document template within a Module element:

<Module Name="ProductProposalTemplates" Url="ProductProposals" List="101" >
 <File Path="ProductProposalTemplates\Proposal.dotx"
 Url="Forms/Proposal.dotx"
 Type="GhostableInLibrary" />
</Module>

The Url attribute of the Module element contains the site-relative URL of the document library,
which in this case is ProductProposals. This is required so that the files inside this Module element are
provisioned relative to the root of the document library instead of the root of the site. You should
also notice that the Module element includes a List attribute with a value of 101, which is required
to indicate that the target location exists inside the scope of a document library. The Url attribute
of the File element contains a path to provision the document template file in the Forms folder. The
Type attribute is configured with a value of GhostableInLibrary, which tells SharePoint to provision the
template within a document library.

As an alternative to using a declarative Module, you can upload the document template program-
matically. In the server-side object model, the SPFolder object provides a Files collection property
with an Add method, which makes it possible to upload a copy of the document template file. When
you call the Add method on a Files collection object to create a new file such as a document template,
you can pass the contents of the file by using either a byte array or an object based on the Stream
class, as shown in the following code:

SPDocumentLibrary DocLib = (SPDocumentLibrary)site.Lists[DocLibID];
SPFolder formsFolder = DocLib.RootFolder.SubFolders["Forms"];
formsFolder.Files.Add("Specification.dotx", {Stream Object});
DocLib.DocumentTemplateUrl = @"ProductSpecifications/Forms/Specification.dotx";
DocLib.Update();

374   Inside Microsoft SharePoint 2013

When using the client-side object model or REST interface through JavaScript, you must create a
mechanism for selecting and reading the document template into a variable. This is accomplished by
using an input element of type file and the FileReader object. The following code snippet shows some
HTML and JavaScript for selecting files:

<input id="inputFile" type="file" />
<input id="uploadButton" type="button" value="Upload" class="app-button"/>

$("#uploadButton").click(function () {
 var buffer;
 var error;
 var file = document.getElementById("inputFile").files[0];
 var filename = document.getElementById("inputFile").value;

 var reader = new FileReader();
 reader.onload = function (e) {
 buffer = e.target.result;
 };
 reader.onerror = function (e) {
 error = e.target.error;
 };
 reader.readAsArrayBuffer(file);
});

The input element of type file creates a control that allows users to browse for and select files.
The FileReader object can read the selected files into a buffer by referencing the files collection of
the control. The FileReader reads the selected file asynchronously and fires the onload event when
finished. The FileReader should use the readAsArrayBuffer method, which returns an array that is com-
patible with both the client-side object model and REST. At this point, the buffer containing the file
can be retrieved from the result property. The contents of the buffer can be used with the client-side
object model to upload the file into the Forms folder, as shown in the following code:

var ctx = new SP.ClientContext.get_current();
var createInfo = new SP.FileCreationInformation();
createInfo.set_content(buffer);
createInfo.set_overwrite(true);
createInfo.set_url("template.dotx");
var files =
ctx.get_web().getFolderByServerRelativeUrl("ProductSpecifications/Forms").get_files();
ctx.load(files);
files.add(createInfo);
ctx.executeQueryAsync(success, failure);

Note that the JavaScript client object model can only upload files up to 1.5 megabytes (MB) in size.
If you need to upload larger files, then you must use the REST interface. The REST interface supports
uploading documents as large as 2 gigabytes (GB). The following code shows the endpoint to use for
uploading with the REST interface:

	 Chapter 9  SharePoint lists    375

$.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/GetFolderByServerRelativeUrl(' ProductSpecifications/Forms ')/Files" +
 "/Add(url='template.dotx', overwrite=true)",
 type: "POST",
 data: buffer,
 processData: false,
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 "content-length": content.length
 }
});

After the document template is uploaded, you must write code to configure the DocumentTempla-
teUrl property of the document library. This code ensures that the template is used for the creation of
new documents. The following code shows how to do this with server-side and client-side code:

//Server-Side Object Model
SPWeb site = SPContext.Current.Web;
SPDocumentLibrary libProposals;
libProposals = (SPDocumentLibrary)site.Lists["Product Proposals"];
string templateUrl = @"ProductProposals/Forms/Proposal.dotx";
libProposals.DocumentTemplateUrl = templateUrl;
libProposals.Update();

//JavaScript Client-Side Object Model
var ctx = new SP.ClientContext.get_current();
var library = ctx.get_web().get_lists().getByTitle('ProductSpecifications')
ctx.load(library);
library.set_documentTemplateUrl('ProductSpecifications/Forms/Proposal.dotx');
library.update();
ctx.executeQueryAsync(success, failure);

Creating document-based content types
You can create custom content types for tracking documents. This design approach provides the
same type of advantages as creating content types for standard lists. For example, you can create
a content type that defines a custom set of site columns for tracking document metadata and then
reuse that content type across many document libraries. If you design document libraries by using
custom content types, you also have the ability to add new columns to a content type and push the
changes to many document libraries at once. Custom content types for document libraries generally
inherit from the Document content type. One unique aspect of content types that inherit from the
Document content type is that they add support for document templates.

After you have created a new content type, your next step is to upload a copy of the document
template file. Uploading a file for the content type document template is done in the same way as for
a document library. However, the tricky part is knowing where to upload this file. SharePoint creates a

376   Inside Microsoft SharePoint 2013

dedicated folder for each site content type in the virtual file system of the hosting site within a special
folder named _cts. When you create a new content type, SharePoint automatically creates a new
folder for it at _cts/[Content Type Name]. This is the location where you should upload the document
template.

After you have uploaded a copy of the document template file, you can then configure the content
type to use it by modifying its DocumentTemplate property. In order to properly set the document
template, you must know the content type ID and the name of the file to use. Listing 9-12 shows how
this is accomplished for a content type named “Invoice”.

LISTING 9-12  Setting a document template URL programmatically

//Server-Side Object Model
SPWeb site = SPContext.Current.Site.RootWeb;
SPContentType ctype = site.ContentTypes["Invoice"];
ctype.DocumentTemplate("Invoice.docx");

//JavaScript Client-Side Object Model
var ctx = new SP.ClientContext.get_current();
var ctype = ctx.get_web().get_contentTypes().getById("0x0101adbc123")
ctx.load(ctype);
ctype.set_documentTemplate("Invoice.docx");
ctype.update();
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/contentTypes/getById('0x0101adbc123')",
 type: "POST",
 contentType: "application/json;odata=verbose",
 data: JSON.stringify({
 '__metadata': { 'type': 'SP.ContentType' },
 'DocumentTemplate': 'Invoice.docx'
 }),
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 "IF-MATCH": "*",
 "X-Http-Method": "PATCH"
 }
});

After the content types are created and the templates defined, the content types can be used
in a document library. To add new content types to a document library, the ContentTypesEnabled
property must be set to true. After that, new content types can be added to the collection as shown
in Listing 9-13.

	 Chapter 9  SharePoint lists    377

LISTING 9-13  Adding content types to a library programmatically

//Server-Side Object Model
SPWeb site = SPContext.Current.Site.RootWeb;
SPDocumentLibrary DocLib = (SPDocumentLibrary)site.Lists["FinancialDocuments"];
DocLib.ContentTypes.Add(site.AvailableContentTypes["Invoice"]);

//JavaScript Client-Side Object Model
var ctx = new SP.ClientContext.get_current();
var library = ctx.get_web().get_lists().getByTitle("FinancialDocuments");
ctx.load(library);
var ctype = ctx.get_web().get_contentTypes().getById('0x0101adbc123');
ctx.load(ctype);
library.get_contentTypes().addExistingContentType(ctype);
ctx.executeQueryAsync(success, failure);

//REST Interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle('FinancialDocuments')" +
 "/contentTypes/addAvailableContentType('0x0101adbc123')",
 type: "POST",
 contentType: "application/json;odata=verbose",
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val(),
 }
});

There is a dual aspect to programming documents in a document library. Though you can pro-
gram against a document library by using an SPList object, you can also program against a document
by using an SPListItem object. However, each document is also represented in the server-side object
with an SPFile object. That means you can program against a document in a document library as
either an SPListItem or SPFile object. You can obtain the file associated with an item through the File
property by using either server-side or client-side code.

The SPListItem object can be used to read or update fields just as you would read or update fields
for an item in a standard list. The SPFile object, on the other hand, can be used to control other
aspects of the document, such as versioning, check-in, and checkout, as well as reading from and
writing to the document’s content.

When the server-side object model is used, the contents of the document can be accessed
through the SPFile.OpenBinaryStream method. When the managed client object model is used, the
contents can be accessed through the File.OpenBinaryDirect and File.SaveBinaryDirect methods.
When the REST API is used, the contents are accessed by referencing the file followed by the $value
method, as shown here:

http://site/_api/web/GetFileByServerRelativeUrl('filepath')/$value

378   Inside Microsoft SharePoint 2013

Working with folders
Many document libraries contain folders in addition to documents. Folders, like files, are stored as
items within a document library and show up as SPListItem objects in the Items collection. This can
be confusing if you are expecting a classic treeview structure within the library. Instead of navigating
a tree, you can inspect a SPListItem property named FileSystemObjectType before attempting to
process an item as an SPFile object, as shown in Listing 9-14.

LISTING 9-14  Identifying folder items

//Server-Side Object Model
SPWeb site = SPContext.Current.Site.RootWeb;
SPDocumentLibrary DocLib = (SPDocumentLibrary)site.Lists["FinancialDocuments"];
foreach (SPListItem item in docLib.Items) {
 if (item.FileSystemObjectType == SPFileSystemObjectType.File) {
 // process item as document
 SPFile file = item.File;
 }
}

//JavaScript Client Object Model
var enumerator = listItems.getEnumerator(); //Returned from async call
while (enumerator.moveNext()) {
 var listItem = enumerator.get_current();
 if (listItem.get_fileSystemObjectType() === SP.FileSystemObjectType.file) {
 //process item as document
 }
}

//REST interface
var results = data.d.results; //Returned from async call
for (var i = 0; i < results.length; i++) {
 if (results[i].FileSystemObjectType === SP.FileSystemObjectType.file) {
 //process item as document
 }
}

One last point to keep in mind is that discovering documents by enumerating through the Items
collection of a document library finds all documents without regard to whether they exist in the root
folder or in folders nested below the root folder. If you would rather enumerate through only the
documents in the root folder of a document library, you can use a different approach by using the
SPFolder and SPFile classes. Listing 9-15 shows how to access only documents located in the root
folder of the library.

	 Chapter 9  SharePoint lists    379

LISTING 9-15  Accessing the root folder programmatically

//Server-Side Object model
SPWeb site = SPContext.Current.Site.RootWeb;
SPDocumentLibrary DocLib = (SPDocumentLibrary)site.Lists["FinancialDocuments"];
foreach (SPFile file in docLib.RootFolder.Files) {
 // program against file using SPFile class
}

//JavaScript Client Object Model
var ctx = new SP.ClientContext.get_current();
var list = ctx.get_web().get_lists().getByTitle("FinancialDocuments");
ctx.load(list);
var files = list.get_rootFolder().get_Files();
ctx.load(files);
ctx.executeQueryAsync(success, failure);

//REST interface
$.ajax(
{
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/web/lists/getByTitle ('FinancialDocuments')/rootFolder/files",
 type: "GET",
 headers: {
 "accept": "application/json;odata=verbose",
 }
});

Creating and registering event handlers

SharePoint supports event notification on host objects such as sites, lists, content types, and apps.
This support is valuable to developers because it makes it possible to write event handlers, which are
methods that are executed automatically in response to actions such as creating a new list, updating
an item in a list, and deleting a document.

Events can be separated into two main categories: before events and after events. Before events
fire before the corresponding event action occurs and before SharePoint Foundation has written any
data to the content database. A key point is that a before event is fired early enough that it supports
the cancellation of the event action that triggers it. Therefore, before events are often used to per-
form custom validations.

After events fire after the event action has completed and after SharePoint has written to the con-
tent database to commit the event action. After events do not support cancelling the event action.
Instead, after events are used to execute code in response to an event action. A common example is
sending out email notifications to let all the members of a site know when a new document has been
uploaded.

380   Inside Microsoft SharePoint 2013

SharePoint uses a special naming convention for events. Before events are based on methods
whose names end with ing. For example, before events have names such as WebAdding, WebDeleting,
ItemAdding, and ItemUpdating. The methods for after events have names that end with ed, such as
WebProvisioned, WebDeleted, ItemAdded, and ItemUpdated.

Each event handler is executed under a specific synchronization mode. The two supported syn-
chronization modes are synchronous and asynchronous. Before events are always executed under a
synchronization mode of synchronous. A key point is that synchronous event handlers have a block-
ing nature because they run on the same thread that is processing the event action.

By default, SharePoint executes after events under a synchronization mode of asynchronous.
The main difference is that asynchronous event handlers execute on a separate thread so they do
not block the response that is sent back to the user. Imagine a scenario where a user uploads a new
document and an after event responds by sending out a series of email notifications to more than
100 users. The asynchronous nature of an after event doesn’t require the user who has uploaded the
document to wait while the code in the event handler is sending out email messages. The response
page is returned to the user while the after event continues to execute.

Although SharePoint Foundation executes after events asynchronously by default, you have the
option of configuring an after event to run as a synchronous event. Configuring an after event to run
synchronously can be a useful technique in a scenario where code executed by the after event makes
an update to an item that must be seen immediately.

Understanding event receiver classes
Event handling with the server-side object model in SharePoint solutions is based on event receiver
classes. You create a new event receiver class by inheriting from one of the following event receiver
base classes that are defined inside the Microsoft.SharePoint assembly:

■■ SPItemEventReceiver

■■ SPListEventReceiver

■■ SPEmailEventReceiver

■■ SPWebEventReceiver

■■ SPWorkflowEventReceiver

The SPItemEventReceiver class provides event handling support for when users add, modify, or
delete items in a list or documents in a document library. The SPListEventReceiver class provides event
handling support for when users create and delete lists, as well as when users modify a list’s fields
collection. The SPEmailEventReceiver class provides event handling support for when users send email
messages to an email-enabled list.

The SPWebEventReceiver class provides event handling support for when users create new child sites
within a site collection. The SPWebEventReceiver class also provides event handling support for when
users move or delete sites, including both child sites and top-level sites. The SPWorkflowEventReceiver

	 Chapter 9  SharePoint lists    381

class provides event handling support for when users start a workflow instance as well as event handling
support to signal when a workflow instance has completed or has been postponed.

After you have created a class that inherits from one of the event receiver base classes, you imple-
ment the event receiver class by overriding methods that represent event handlers. As an example,
Listing 9-16 creates an event handler for an announcements list. The event handler adds a notice and
tracking number to each announcement when it is added to the list. Furthermore, the handler pre-
vents the deletion of any items from the list.

LISTING 9-16  Server-side event handler

public class ItemReceiver : SPItemEventReceiver
{
 public override void ItemAdding(SPItemEventProperties properties)
 {
 properties.AfterProperties["Body"] += "\n ** For internal use only ** \n";
 }

 public override void ItemAdded(SPItemEventProperties properties)
 {
 properties.ListItem["Body"] +=
 "\n Tracking ID: " + Guid.NewGuid().ToString() + " \n";
 properties.ListItem.Update();
 }

 public override void ItemDeleting(SPItemEventProperties properties)
 {
 properties.Cancel = true;
 properties.Status = SPEventReceiverStatus.CancelWithRedirectUrl;
 properties.ErrorMessage = "Items cannot be deleted from this list.";
 }
}

Understanding remote event receivers
Event handling in apps is based upon a completely different architecture known as remote event
receivers. Remote event receivers are similar in concept to the standard event handlers except that
the receiver is a remote service endpoint instead of an assembly. Remote event receivers support
events at the web, app, list, and list-item level, which can be both synchronous and asynchronous.

Remote event receivers can be added to an app through either the Add New Item dialog box or
the Properties dialog box. If the remote event receiver is to handle anything other than app life cycle
events, it should be added to the app by using the Add New Item dialog box. If the remote event
receiver is to handle one of the app life cycle events, it is added by setting one of the event properties
for the app, as shown in Figure 9-2 and detailed in Chapter 4, “SharePoint apps.”

382   Inside Microsoft SharePoint 2013

FIGURE 9-2  Setting an app life cycle event

If the remote event receiver is added through the Add New Item dialog box, you will be further
prompted to select the event scope and event types to handle. After the scope and type are defined,
Visual Studio will automatically add a new web project to your app to handle the events. This web
project is automatically set as the associated remote web for the app so that it will start during the
debugging process.

Remote event receivers implement the IRemoteEventService interface. This interface consists of
two methods: ProcessEvent and ProcessOneWayEvent. You use the ProcessEvent method to handle
synchronous events and the ProcessOneWayEvent method to handle asynchronous events. The new
web project comes with template code that implements the IRemoteEventService interface and uses
the TokenHelper class to retrieve a CSOM ClientContext for calling back into SharePoint. Listing 9-17
implements a remote event handler for an announcements list similar to what is shown in Listing 9-16.

LISTING 9-17  Remote event receiver

public class AnnouncementsReceiver : IRemoteEventService
{
 public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties)
 {
 SPRemoteEventResult result = new SPRemoteEventResult();
 switch (properties.EventType)
 {
 case SPRemoteEventType.ItemAdding:
 result.ChangedItemProperties.Add("Body", "\n ** For internal use only **
\n");
 break;
 case SPRemoteEventType.ItemDeleting:
 result.ErrorMessage = "Items cannot be deleted from this list";
 result.Status = SPRemoteEventServiceStatus.CancelWithError;
 break;
 }
 return result;
 }

	 Chapter 9  SharePoint lists    383

 public void ProcessOneWayEvent(RemoteEventProperties properties)
 {
 HttpRequestMessageProperty requestproperty =
 (HttpRequestMessageProperty)OperationContext.Current.
 IncomingMessageProperties[HttpRequestMessageProperty.Name];
 string contexttokenstring = requestproperty.Headers["x-sp-accesstoken"];
 if (contexttokenstring != null)
 {
 SharePointContextToken contexttoken =
 TokenHelper.ReadAndValidateContextToken(
 contexttokenstring, requestproperty.Headers[HttpRequestHeader.Host]);
 Uri sharepointurl = new Uri(properties.ItemEventProperties.WebUrl);
 string accesstoken = TokenHelper.GetAccessToken(
 contexttoken, sharepointurl.Authority).AccessToken;
 using (ClientContext clientcontext =
 TokenHelper.GetClientContextWithAccessToken(
 sharepointurl.ToString(), accesstoken))
 {
 if (properties.EventType == SPRemoteEventType.ItemAdded)
 {
 List list =
 clientcontext.Web.Lists.GetByTitle(
 properties.ItemEventProperties.ListTitle);
 clientcontext.Load(list);
 ListItem item =
 list.GetItemById(properties.ItemEventProperties.ListItemId);
 clientcontext.Load(item);
 clientcontext.ExecuteQuery();
 item["Body"] += "\n Tracking ID: " + Guid.NewGuid().ToString() + "
\n";
 item.Update();
 clientcontext.ExecuteQuery();
 }
 }
 }
 }
}

Registering event handlers
After you create an event receiver, you must bind one or more of its event handler methods to a host
object by using event registration. The types of objects that support event registration include site
collections, sites, lists, content types, and documents. Note that only certain types of event handlers
are supported by each type of host object. For example, you can register a ListAdded event handler
with a site collection or a site, but that event type is not supported by host objects such as lists, con-
tent types, or documents. Likewise, you can register an ItemUpdating event handler with a list, content
type, or document, but that event type is not supported by site collections or sites.

384   Inside Microsoft SharePoint 2013

The simplest and most common technique for registering an event handler is to use a declarative
Receivers element in a CAML file. Listing 9-18 shows the CAML for registering the event receiver in
Listing 9-16.

LISTING 9-18  Registering an event receiver

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Receivers ListTemplateId="104" Scope="Web">
 <Receiver>
 <Name>ItemReceiverItemAdding</Name>
 <Type>ItemAdding</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>AnnouncementHandler.ItemReceiver.ItemReceiver</Class>
 <SequenceNumber>10000</SequenceNumber>
 </Receiver>
 <Receiver>
 <Name>ItemReceiverItemDeleting</Name>
 <Type>ItemDeleting</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>AnnouncementHandler.ItemReceiver.ItemReceiver</Class>
 <SequenceNumber>10000</SequenceNumber>
 </Receiver>
 <Receiver>
 <Name>ItemReceiverItemAdded</Name>
 <Type>ItemAdded</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>AnnouncementHandler.ItemReceiver.ItemReceiver</Class>
 <SequenceNumber>10000</SequenceNumber>
 <Synchronization>Synchronous</Synchronization>
 </Receiver>
 </Receivers>
</Elements>

The registration file for a remote event receiver is nearly identical to the one used for a server-side
event receiver. The only difference is that the file adds a Url element that refers to the endpoint of the
remote event receiver. This is the endpoint that is invoked when the event occurs. Listing 9-19 shows
the registration CAML for the remote event receiver described in Listing 9-17.

	 Chapter 9  SharePoint lists    385

LISTING 9-19  Registering a remote event receiver

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Receivers ListTemplateId="10000">
 <Receiver>
 <Name>AnnouncementsReceiverItemAdding</Name>
 <Type>ItemAdding</Type>
 <SequenceNumber>10000</SequenceNumber>
 <Url>http://webs.wingtiptoys.com/AnnouncementsReceiver.svc</Url>
 </Receiver>
 <Receiver>
 <Name>AnnouncementsReceiverItemDeleting</Name>
 <Type>ItemDeleting</Type>
 <SequenceNumber>10000</SequenceNumber>
 <Url>http://webs.wingtiptoys.com/AnnouncementsReceiver.svc</Url>
 </Receiver>
 <Receiver>
 <Name>AnnouncementsReceiverItemAdded</Name>
 <Type>ItemAdded</Type>
 <SequenceNumber>10000</SequenceNumber>
 <Url>http://webs.wingtiptoys.com/AnnouncementsReceiver.svc</Url>
 </Receiver>
 </Receivers>
</Elements>

Although registering event handlers declaratively by using a Receivers element works in the major-
ity of scenarios, there are a few cases for which it doesn’t suffice. For example, you cannot register an
event handler on a host object such as a content type or an individual document by using a declara-
tive Receivers element. These types of event registration must be accomplished by using code.

Host object types that support events such as SPContentType expose a collection property named
EventReceivers. The EventReceivers collection property exposes an Add method that has five different
overloaded implementations. The most straightforward implementation of the Add method accepts
three parameters: the event type, the four-part assembly name, and the namespace-qualified name
of the event receiver class. Listing 9-20 shows an example of implementing the FeatureActivated
method for a site collection–scoped feature that registers an event handler on the Item content type
by using an event receiver class named ItemContentTypeEvents.

386   Inside Microsoft SharePoint 2013

LISTING 9-20  Registering an event receiver by using a feature receiver

public override void FeatureActivated(SPFeatureReceiverProperties properties) {
 SPSite siteCollection = (SPSite)properties.Feature.Parent;
 SPWeb site = siteCollection.RootWeb;

 // retrieve content type
 SPContentType ctypeItem = site.ContentTypes["Item"];

 // register event handler for content type
 string ReceiverAssemblyName = this.GetType().Assembly.FullName;
 string ReceiverClassName = typeof(ItemContentTypeEvents).FullName;
 ctypeItem.EventReceivers.Add(SPEventReceiverType.ItemDeleting,
 ReceiverAssemblyName,
 ReceiverClassName);

 // push updates to all lists and document libraries
 ctypeItem.Update(true, false);
}

Though calling the Add method with these three parameters provides the easiest approach for
registering an event handler, it provides the least flexibility. For example, you cannot assign registra-
tion properties for receiver data or synchronization. To obtain more control, you can register the
event handler by calling another implementation of the Add method, one that takes no parameters
and returns an SPEventReceiverDefinition object, as shown in the following code:

SPContentType ctypeItem = site.ContentTypes["Item"];
string ReceiverAssemblyName = this.GetType().Assembly.FullName;
string ReceiverClassName = typeof(ItemContentTypeEvents).FullName;

// register event handler by creating SPEventReceiverDefinition object
SPEventReceiverDefinition def = ctypeItem.EventReceivers.Add();
def.Type = SPEventReceiverType.ItemDeleting;
def.Assembly = ReceiverAssemblyName;
def.Class = ReceiverClassName;
def.SequenceNumber = 100;
def.Data = "MyData";
def.Update();

// push updates to all lists and document libraries
ctypeItem.Update(true, false);

Remote event receivers support the same type of server-side registration by using a different over-
load of the Add method. In this case, an additional parameter is passed that specifies the Url of the
remote event receiver endpoint. The general form of the registration is shown in the following code:

string serviceUrl= "http://webs.wingtiptoys.com/AnnouncementsReceiver.svc";
string siteUrl= "http://intranet.wingtiptoys.com";
using (SPSite site = new SPSite(siteUrl))

	 Chapter 9  SharePoint lists    387

{
 using (SPWeb web = site.RootWeb)
 {
 SPList list = web.Lists["Announcements"];
 list.EventReceivers.Add(SPEventReceiverType.ItemAdded, serviceUrl);
 }
}

Programming before events
When you write the event handler implementation for a before event, you have the ability to cancel
the user action that triggered the event. In server-side event handlers, you can accomplish this by
assigning a value of true to the Cancel property of the event handler parameter named properties, as
shown in Listing 9-16. In remote event receivers, you can assign the value of CancelWithError to the
SPRemoteEventResult object, as shown in Listing 9-17. When canceling the event action, you can also
use the ErrorMessage property to assign a custom error message that will be displayed to the user.

When you cancel a before event, SharePoint responds by short-circuiting the user’s request and
canceling the event action. The key point here is that before events provide you with a layer of de-
fense against unwanted modifications. Instead of deleting the list as the user requested, SharePoint
displays the custom error message in an message box to the user.

In some scenarios, you might decide that the standard error dialog box displayed by SharePoint
upon the cancellation of an event action is not sufficient. If you want to create a user experience that
is more customized, you can modify the Status and RedirectUrl properties to redirect the user to a
custom error page. These properties are available in both server-side and remote event receivers. The
following code shows a sample for each:

//Server-Side Event Receiver
public override void ListDeleting(SPListEventProperties properties) {
 if (!properties.Web.UserIsSiteAdmin) {
 properties.Cancel = true;
 properties.Status = SPEventReceiverStatus.CancelWithRedirectUrl;
 properties.RedirectUrl = properties.Web.Site.Url + "/error.aspx";
 }
}

//Remote Event Receiver
public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties)
{
 SPRemoteEventResult result = new SPRemoteEventResult();
 switch (properties.EventType)
 {
 case SPRemoteEventType.ItemDeleting:
 result.Status = SPRemoteEventServiceStatus.CancelWithError;
 result.RedirectUrl = "http://webs.wingtiptoys.com/error.aspx";
 break;
 }
 return result;
}

388   Inside Microsoft SharePoint 2013

Programming after events
After events cannot be used to cancel an event action. Instead, after events provide the opportunity
to execute code in response to an event action, such as a user successfully creating a new list. When
programming after events, you must reach back into SharePoint and explicitly retrieve the item to
work with. In Listing 9-16, for example, the server-side object model is used to retrieve the recently
added announcement.

In remote event handlers, you must take the same basic approach. However, calling back into
SharePoint requires passing an OAuth token from the event handler, as shown in Listing 9-17. This
process is the same for remote event receivers as it is for any SharePoint app containing a remote
web. Chapter 6, “SharePoint security,” covers the OAuth security infrastructure and the use of the
TokenHelper class in detail, so it will not be repeated here.

When programming after events, you must be aware of several situations that can result in un-
expected behavior. The first situation concerns the manner in which items are updated. The second
situation involves the accidental creation of cascading events. The third situation is the need to call
after events synchronously.

When updating list items in an after event, you should use the UpdateOverwriteVersion method
instead of the Update method. You should avoiding calling Update in an after event on a list where
versioning is enabled because it will generate two versions each time a user adds or updates an item.
The UpdateOverwriteVersion method is provided for this exact scenario because it updates the most
current version instead of generating a new version.

Modifying an item in an after event can trigger another cascading event. Consider the scenario
in which an after event updates an item, which triggers the after event, which updates the item that
triggers the after event, and so on. If you are not careful, you can create a recursive loop that will run
until an error occurs. Here is an example of a flawed implementation of ItemUpdated that will experi-
ence this problem:

public override void ItemUpdated(SPItemEventProperties properties) {
 properties.ListItem["Title"] = properties.ListItem["Title"].ToString();
 properties.ListItem.UpdateOverwriteVersion();
}

Whenever you are required to implement an after event in which you update the item that trig-
gered the event, you must disable event firing by modifying the EventFiringEnabled property of the
event receiver class:

public override void ItemUpdated(SPItemEventProperties properties) {
 this.EventFiringEnabled = false;
 properties.ListItem["Title"] = properties.ListItem["Title"].ToString();
 properties.ListItem.UpdateOverwriteVersion();
 this.EventFiringEnabled = true;
}

If you do not disable event firing in the ItemAdded event handler, it is not as critical because it will
not cause a recursive loop. However, it is still recommended because you then avoid triggering an
Update event and executing ItemUpdated unnecessarily when a user adds a new item:

	 Chapter 9  SharePoint lists    389

public override void ItemAdded(SPItemEventProperties properties) {
 this.EventFiringEnabled = false;
 properties.ListItem["Title"] = properties.ListItem["Title"].ToString();
 properties.ListItem.UpdateOverwriteVersion();
 this.EventFiringEnabled = true;
}

The final situation of concern centers on the fact that SharePoint Foundation executes the event
handlers for after events such as ItemAdded and ItemUpdated asynchronously by default. The prob-
lem with after events that execute asynchronously revolves around the user seeing inconsistent field
values. When a user updates a field value in the browser and saves the changes with a postback, any
updates made by an event handler running asynchronously are not guaranteed to be reflected in the
page that is sent back to the user. When you configure the event handler for an after event to run
synchronously, you guarantee that the event handler’s updates are reflected in the page returned
to the user. To configure the event handler for an after event to run synchronously, you can add a
Synchronization element with an inner value of Synchronous into the Receiver element, which is shown
in Listing 9-18.

Querying lists with CAML

Using Collaborative Application Markup Language (CAML) to query lists is one of the oldest data-
access techniques in SharePoint development and remains a core developer skill. Chapter 5, “Client-
side programming,” presented many examples using CAML with the client-side object model, so that
information will not be repeated here. Instead, this section will focus on a more detailed examination
of CAML using the server-side object model.

Understanding CAML fundamentals
Querying a list for specific items that meet a certain criteria can done by using the Microsoft.Share-
Point.SPQuery object. The SPQuery object exposes a Query property that accepts a CAML fragment,
which defines the query to perform. A ViewFields property defines the fields to return. The following
code shows a simple query run against a list:

SPQuery query = new SPQuery();
query.Viewfields = @"<FieldRef Name='Title'/><FieldRef Name='Expires'/>";
query.Query =
@"<Where>
 <Lt>
 <FieldRef Name='Expires'/>
 <Value Type='DateTime'><Today/></Value>
 </Lt>
</Where>";
SPList list = SPContext.Current.Web.Lists.TryGetList("Announcements");
SPListItemCollections items = list.GetItems(query);

The ViewFields property accepts a CAML fragment containing a series of FieldRef elements. Each
FieldRef element has a Name attribute that specifies the name of the list field to return from the

390   Inside Microsoft SharePoint 2013

query. Note that the Name attribute must contain the name of the field as it is defined in the schema.
xml file for the list definition and not simply the display name of the field.

In order to create a query, you must properly construct a CAML fragment defining the items to re-
turn from the list. At the highest level, the CAML fragment may contain Where, OrderBy, and GroupBy
elements. Inside of each of these elements, you can use additional CAML elements to specify condi-
tions. Table 9-5 contains a complete list of CAML elements that can be used to create a query, and
Listing 9-21 shows the basic form of the CAML query.

LISTING 9-21  CAML query form

<Where>
 <Lt>,<Gt>,<Eq>,<Leq>,<Geq>,<Neq>,<BeginsWith>,<Contains>,<IsNotNull>,<IsNull>
 <FieldRef/>
 <Value>[Test Value], Today</Value>
 </Lt>,</Gt>,</Eq>,</Leq>,</Geq>,</Neq>,</BeginsWith>,</Contains>,</IsNotNull>,</IsNull>
 <And>,<Or>
 <Lt>,<Gt>,<Eq>,<Leq>,<Geq>,<Neq>,<BeginsWith>,<Contains>,<IsNotNull>,<IsNull>
 <FieldRef/>
 <Value>[Test Value], Today</Value>
 </Lt>,</Gt>,</Eq>,</Leq>,</Geq>,</Neq>,</BeginsWith>,</Contains>,</IsNotNull>,</IsNull>
 </And>,</Or>
</Where>
<OrderBy>
 <FieldRef/>
</OrderBy>
<GroupBy>
 <FieldRef/>
<GroupBy>

TABLE 9-5  CAML elements for querying

Element Description

And Groups multiple conditions

BeginsWith Searches for a string at the beginning of the text field

Contains Searches for a string within the text field

Eq Equal to

FieldRef A reference to a field (useful for GroupBy elements)

Geq Greater than or equal to

GroupBy Groups results by these fields

Gt Greater than

IsNotNull Is not null (not empty)

IsNull Is null (empty)

Join Used to query across two lists that are joined through a
Lookup field

	 Chapter 9  SharePoint lists    391

Element Description

Leq Less than or equal to

Lt Less than

Neq Not equal to

Now The current date and time

Or Boolean OR operator

OrderBy Orders the results of the query

Today Today’s date

TodayIso Today’s date in ISO format

Where Used to specify the Where clause of the query

Querying joined lists
In addition to querying single lists, the SPQuery object can be used to query across two lists that
are joined by a Lookup field and surfacing projected fields. As an example, consider two lists named
Instructors and Modules. The Instructors list is a simple list that contains contact information for class-
room instructors. The Modules list is a custom list that contains information about training modules
that will be taught in the classroom. The Modules list is joined to the Instructors list via a lookup field
that shows the FullName of the instructor. Additionally, the instructor’s Email Address is available as a
projected field. In this way, an instructor can be assigned a Module to teach. Using a SPQuery object
and CAML, you can create a query that returns fields from both of these lists as shown in Listing 9-22.

LISTING 9-22  Querying joined lists

SPWeb site = SPContext.Current.Web;
SPList listInstructors = site.Lists["Instructors"];
SPList listModules = site.Lists["Modules"];

SPQuery query = new SPQuery();
query.Query = "<Where><Eq><FieldRef Name=\"Audience\"/>" +
 "<Value Type=\"Text\">Developer</Value></Eq></Where>";
query.Joins = "<Join Type=\"Inner\" ListAlias=\"classInstructors\">" +
 "<Eq><FieldRef Name=\"Instructor\" RefType=\"Id\" />" +
 "<FieldRef List=\"classInstructors\" Name=\"Id\" /></Eq></Join>";
query.ProjectedFields =
"<Field Name='Email' Type='Lookup' List='classInstructors' ShowField='Email'/>";
query.ViewFields = "<FieldRef Name=\"Title\" /><FieldRef Name=\"Instructor\" />"
+
 "<FieldRef Name=\"Email\" />";

SPListItemCollection items = listModules.GetItems(query);

In Listing 9-22, the Where clause is created to return training modules that are intended for a
developer audience; this is similar to the simple example shown earlier. The Join property is new and
defines the join between the two lists through the lookup field. Remember that the query is being run

392   Inside Microsoft SharePoint 2013

on the Modules list, so it must be joined to the Instructors list. The ListAlias attribute defines an alias
for the Instructors list that can be used in the join clause. The first FieldRef element refers to the name
of the lookup field in the Modules list and will always have a RefType equal to Id. The second FieldRef
in the join clause uses the alias name for the Instructors list and will always have a Name equal to Id.
The ProjectedFields property also uses the alias name for the Instructors list and refers to additional
fields in the instructors list that should be returned with the query.

Querying multiple lists
Although the SPQuery object is good for querying a single list or joined lists, if you want to query
multiple lists within a site collection simultaneously, then you can make use of the Microsoft.Share-
Point.SPSiteDataQuery object. Like the SPQuery object, the SPSiteDataQuery object has Query and
ViewFields properties. In addition to these fields, the SPSiteDataQuery object also has Lists and Webs
properties. The Lists property is used to specify the lists within the site collection that should be
included in the query. The Webs property is used to determine the scope of the query. Listing 9-23
shows a query that returns events from all calendars in the current site collection where the end date
is later than today.

LISTING 9-23  Querying multiple lists

//Creates the query
SPSiteDataQuery query = new SPSiteDataQuery();

//Builds the query
query.Query = "<Where><Gt><FieldRef Name='EndDate'/>" +
 "<Value Type='DateTime'><Today OffsetDays=\"-1\"/></Value></Gt></Where>";

//Sets the list types to search
query.Lists = "<Lists ServerTemplate='106' />";

//Sets the Fields to include in results
query.ViewFields = "<FieldRef Name='fAllDayEvent' />" +
 "<FieldRef Name='Title' />" +
 "<FieldRef Name='Location' />" +
 "<FieldRef Name='EventDate' />" +
 "<FieldRef Name='EndDate' />";

//Sets the scope of the query
query.Webs = @"<Webs Scope='SiteCollection' />";

//Execute the query
DataTable table = SPContext.Current.Site.RootWeb.GetSiteData(query);

The Lists property in Listing 9-23 is a CAML fragment that can take several forms to specify the lists
to include in the query. Setting the property to <Lists ServerTemplate=[value]/> limits the query to
lists of a certain server template. For example, type 106 is a calendar. Table 9-6 shows all of the pos-
sible values for the ServerTemplate attribute. Setting the property to <Lists BaseType=[value]/> limits

	 Chapter 9  SharePoint lists    393

the query to lists of a certain BaseType. Table 9-7 lists the possible vales for the BaseType attribute.
Setting the property to <Lists Hidden=’true’/> includes hidden lists in the query. Setting the property
to <Lists MaxListLimit=[value]/> limits the query to considering no more than the specified number
of lists.

The Webs property is a CAML fragment that must either be <Webs Scope=’SiteCollection’/> or
<Webs Scope=’Recursive’/>. SiteCollection includes all lists in the site collection, whereas Recursive
includes only those lists in the current site or subsites beneath the current site.

TABLE 9-6  Server templates

Server template ID Description

GenericList 100 Custom list

DocumentLibrary 101 Document library

Survey 102 Survey

Links 103 Links List

Announcements 104 Announcements List

Contacts 105 Contacts List

Events 106 Calendar

Tasks 107 Tasks List

DiscussionBoard 108 Discussion Lists

PictureLibrary 109 Picture library

DataSources 110 Data sources library

WebTemplateCatalog 111 Site template gallery

UserInformation 112 User list

WebPartCatalog 113 Web Part gallery

ListTemplateCatalog 114 List template gallery

XMLForm 115 InfoPath form library

MasterPageCatalog 116 Master Page gallery

WebPageLibrary 119 Wiki Page Library

DataConnectionLibrary 130 Data connection library

WorkflowHistory 140 Workflow History list

GanttTasks 150 Project Tasks list

Meetings 200 Meetings

Agenda 201 Meeting agenda

MeetingUser 202 Meeting attendees

Decision 204 Meeting decisions

MeetingObjective 207 Meeting objectives

Posts 301 Blog posts

Comments 302 Blog comments

Categories 303 Blog categories

394   Inside Microsoft SharePoint 2013

Server template ID Description

IssueTracking 1100 Issue tracking list

AdminTasks 1200 Central Administration tasks

TABLE 9-7  BaseType values

Value Description

0 Generic list

1 Document library

3 Discussion forum

4 Vote or Survey

5 Issues list

Throttling queries
SharePoint 2013 provides special support for large lists. In particular, SharePoint allows administrators
to throttle the number of items returned in a list view in order to prevent performance degradation
caused by returning an excessive number of items. Though these throttle settings apply to views cre-
ated by end users, they also apply to queries executed in custom code.

When you are executing queries, the number of results returned will be determined by the throttle
settings for the specified list and the rights of the current user. Throttle settings are set for the web
application in Central Administration. Rights for the current user that affect throttling include admin-
istration rights on the web front-end server, administration rights in the web application, and auditor
rights in the web application.

In the context of list throttling, users who have server administration rights on the web front end
where the query is run are known as server administrators. Users granted Full Read (auditors) or Full
Control (administrators) through the web application policy in Central Administration are considered
super users. Everyone else is simply termed a normal user.

The List View Threshold is set at the web application level and specifies the maximum number of
items that can be involved in a database operation at a single time. The default value for this setting is
5,000, which means that results returned from a SPQuery or SPSiteDataQuery object will be gener-
ally limited to 5,000 items for both super users and normal users. Additionally, the List View Lookup
Threshold specifies the maximum number of lookup, person/group, or workflow status fields that can
be involved in the query. This value defaults to 6. Server administrators are normally not affected by
the List View Threshold or List View Lookup Threshold settings.

Both the SPQuery and SPSiteDataQuery objects have a QueryThrottleMode property that can be
set to one of the values in the Microsoft.SharePoint.SPQueryThrottleOption enumeration. The pos-
sible values for the property are Default, Override, and Strict. Setting the QueryThrottleMode property
to Default causes query throttling to be implemented for both super users and normal users based

	 Chapter 9  SharePoint lists    395

on the List View Threshold and List View Lookup Threshold settings. Server administrators are not
affected.

Setting the QueryThrottleMode property to Override allows super users to return items up to the
limit specified in the List View Threshold for the Auditors and Administrators setting as long as the
Object Model Override setting is set to “Yes” for the current web application. Normal users are still
limited to returning the number of items specified in the List View Threshold and List View Lookup
Threshold settings. Server administrators remain unaffected.

Setting the QueryThrottleMode property to Strict causes the limits specified by the List View
Threshold and List View Lookup Threshold settings to apply to all users. In this case, it makes no dif-
ference what rights you have in the web application or server. Listing 9-24 shows the RenderContents
method from a Web Part with configurable throttling returning query results from a list and demon-
strating the concepts discussed.

LISTING 9-24  Throttling query results

protected override void RenderContents(HtmlTextWriter writer)
{
 SPWeb site = SPContext.Current.Web;
 SPList list = site.Lists[listName];
 SPUser user = SPContext.Current.Web.CurrentUser;
 SPQuery query = new SPQuery();

 //Throttle settings
 if (overrideThrottling)
 query.QueryThrottleMode = SPQueryThrottleOption.Override;
 else
 query.QueryThrottleMode = SPQueryThrottleOption.Strict;

 //Execute query
 query.Query = "</OrderBy>";
 query.ViewFields = "<FieldRef Name=\"Title\" />";
 SPListItemCollection items = list.GetItems(query);

 //Show user role
 if(user.IsSiteAdmin || user.IsSiteAuditor)
 writer.Write("<p>You are a 'Super User'</p>");
 else
 writer.Write("<p>You are a regular user</p>");

 //Is throttling enabled?
 if(list.EnableThrottling)
 writer.Write("<p>Throttling is enabled</p>");
 else
 writer.Write("<p>Throttling is not enabled</p>");

 //Show count of items returned
 writer.Write("<p>" + items.Count + " items returned.</p>");

}

396   Inside Microsoft SharePoint 2013

Regardless of the value set for the QueryThrottleMode property, no results will be throttled if the
query is run within the time specified in the Daily Time Window for Large Queries. During this time
period, all queries are allowed to run to completion. Additionally, the EnableThrottling property of the
list can be set to False to remove the list from any and all throttling restrictions. The EnableThrottling
property can only be set by someone with Farm Administrator rights using a Windows PowerShell
script similar to the following:

$site = Get-SPWeb -Identity "http://wingtip.com/products"
$list = $site.Lists["Toys"]
$list.EnableThrottling = $false

Working with LINQ to SharePoint

Though CAML queries have been the workhorse of list querying for some time, CAML does present
some challenges. First of all, CAML is not object oriented. As the samples have shown, CAML queries
are written as text, so they are vulnerable to simple typographical error. Second, CAML is difficult to
construct correctly because the rules are not always clear. Typically, a reference and a lot of trouble-
shooting is required to get the query right.

In response to these challenges, Microsoft introduced Language Integrated Query (LINQ) in
SharePoint 2010. The LINQ to SharePoint provider is part of the Microsoft.SharePoint.Linq namespace
and is used as an additional layer on top of CAML. LINQ queries created with the LINQ to SharePoint
provider are translated into CAML queries for execution. Though LINQ to SharePoint is not a complete
replacement for CAML, it does provide CRUD operations for lists in an object-oriented library.

Because of its full support for CRUD operations and the inherent advantages of LINQ development
over CAML, you will generally use LINQ as your primary interface for working with lists through the
server-side object model. You will fall back to CAML when using the client-side object model, overrid-
ing throttles, or aggregating multiple lists with the SPSiteDataQuery object.

Generating entities with SPMetal
SharePoint list data is maintained in the content database. This means that the structure of the list
and item data is based on relational tables. As a SharePoint developer, however, you do not need to
understand the structure of these tables because the object model abstracts the structure into SPList
and SPListItem objects. When you write a LINQ to SharePoint query, you should expect the same ex-
perience as when using the object model. List and item data should be abstracted so that you do not
have to understand the content database schema.

LINQ to SharePoint provides an object layer abstraction on top of the content database through
the use of entity classes. Entity classes are lightweight, object-relational interfaces to the list and item
data in the content database. Additionally, entity classes are used to track changes and provide opti-
mistic concurrency during updates.

	 Chapter 9  SharePoint lists    397

Entity classes are created by using a command-line utility called SPMetal. SPMetal is located in
theSharePoint system directory at C:\Program Files\Common Files\Microsoft Shared\web server
extensions\15\bin. As a best practice, you should update the PATH variable in your environment to
include the path the SPMetal. This way, you can simply run the utility immediately after opening a
command window.

Generating entity classes with SPMetal can be very simple. At a minimum, you must specify the site
for which you want to generate entities and the name of the code file to create. After the code file is
created, you can immediately add it to a project in Visual Studio and start writing LINQ queries. The
following code shows an example that will generate entity classes for all of the lists and content types
in a site:

SPMetal /web:http://wingtiptoys.com /code:Entities.cs

Though generating entity classes can be quite easy, you will likely want more control over which
entities are created and how they are structured. SPMetal provides a number of additional arguments
that you can use to alter code generation. Table 9-8 lists all of the possible arguments for SPMetal
and describes them.

TABLE 9-8  SPMetal Arguments

Argument Description

/code:<filename> Specifies the name of the generated file.

/language:<language> Specifies the language for the generated code. Can be
either csharp or vb.

/namespace:<namespace> Specifies the namespace for the generated code.

/parameters:<file> Specifies an XML file with detailed code-generation pa-
rameters.

/password:<password> Specifies credentials to use for data access during the
code-generation process.

/serialization:<type> Specifies the serialization type. Can be either none or
unidirectional.

/user:<username> Specifies credentials to use for data access during the
code-generation process.

/useremoteapi Specifies that the generation of entity classes is to be
done for a remote SharePoint site such as SharePoint
Online.

/web:<url> The URL of the SharePoint site for which entities will be
generated.

If you examine the code file generated by SPMetal, you will see that there are two kinds of classes
created. First, a single class is created that inherits from Microsoft.SharePoint.Linq.DataContext. The
DataContext class provides a connection to lists and change tracking for operations. You can think
of the DataContext class as serving a purpose similar to the SqlConnection class in data access code.
Second, multiple classes are generated that represent the various content types used by the lists in
the site. Using the DataContext class together with the entity classes allows you to write LINQ queries.

398   Inside Microsoft SharePoint 2013

Listing 9-25 shows a simple LINQ query written to return all training modules contained in the list
named Modules by using a DataContext class named Entities.

LISTING 9-25  A simple LINQ to SharePoint query

using (Entities dc = new Entities(SPContext.Current.Web.Url))
{
 var q = from m in dc.Modules
 orderby m.Title
 select m;

 foreach (var module in q)
 {
 moduleList.Items.Add(module.Title);
 }
}

Understanding the DataContext class
Before performing any LINQ operations, you must connect to a site by using the DataContext object.
The DataContext accepts a URL in the constructor so that you can specify the site where it should
connect, which is useful as you move your code from development to production. Of course, the site
you specify must actually have the lists and content types for which entities have been generated.
Otherwise, your operations will fail. The DataContext class also implements IDisposable so that it can
be coded with a using block.

The DataContext class provides a GetList<T>() method that provides access to each list for which
an entity has been generated. You can use this method in LINQ query syntax to easily specify the list
against which the query should be run. Along with the method, the DataContext also has a property
of EntityList<T> for each list.

The Log property can be used for viewing the underlying CAML created from the LINQ query. Not
only is this useful for monitoring and debugging, but it can be used to help create CAML queries for
other purposes. The Log property accepts a System.IO.TextWriter object so you can easily write the
log to a file or display it in a Web Part.

The DataContext will track changes made to the entity objects so that they can be written back
to the content database. The ObjectTrackingEnabled property determines whether the DataContext
will track changes. The property defaults to True, but setting it to False will improve performance
for read-only operations. If the DataContext is tracking changes, then the content database can be
updated by calling the SubmitChanges() method, as discussed in the section “Adding, deleting, and
updating with LINQ to SharePoint” later in this chapter.

	 Chapter 9  SharePoint lists    399

Using parameters.xml to control code generation
The arguments accepted by SPMetal provide a fair amount of control over the entity-generation
process, but in practice you will likely want even more control. The highest level of control over entity
generation is given by passing a parameters.xml file to SPMetal with detailed information about the
entities to generate.

The parameters.xml file contains elements that give SPMetal specific details about code genera-
tion. In particular, it specifies what lists, content types, and fields should be generated in code. The
parameters.xml file is passed to SPMetal through the /parameters argument. The following code
shows a sample parameters.xml file:

<?xml version="1.0" encoding="utf-8"?>
<Web Class="Entities" AccessModifier="Public"
 xmlns="http://schemas.microsoft.com/SharePoint/2009/spmetal" >
 <List Name="Instructors" Member="Instructors">
 <ContentType Name="Contact" Class="Instructor">
 <Column Name="FullName" Member="FullName"/>
 <ExcludeOtherColumns/>
 </ContentType>
 </List>
 <List Name="Modules" Member="Modules" />
 <ExcludeOtherLists/>
</Web>

The Web element is the root of the schema. The Class attribute specifies the name of the Data-
Context class to generate, and the AccessModifier attribute specifies the access level to the class. The
List element is a child of the Web element and specifies the name of a list for which entities should
be generated. The Member attribute specifies the name of the property in the DataContext that will
represent this list. The ContentType element is a child of the List element and specifies a content type
for which an entity should be generated. The Column element is a child of the ContentType element
and specifies a column that should be included in the generated entity. The ExcludeOtherColumns,
ExcludeOtherContentTypes, and ExcludeOtherLists elements are used to stop looking for items to
include in entity generation. In this way, you can specify the exact set of lists, content types, and
columns to include in the generated entities. This is very useful for excluding list, content types, and
columns that are present in the development environment, but will not be present in the production
environment. Table 9-9 shows the complete schema for the parameters.xml file.

400   Inside Microsoft SharePoint 2013

TABLE 9-9  Parameters.xml schema

Element Child Elements Attribute Description

Web List
ExcudeList
ExcludeOtherLists
IncludeHiddenLists
ContentType
ExcludeContentType
ExcludeOtherContentTypes
IncludeHiddenContentTypes

Class
(optional)

Name of DataContext class.

AccessModifier
(optional)

Specifies accessibility of
DataContext and entity
classes. May be Internal or
Public.

List ContentType
ExcludeContentType

Name Name of the list in
SharePoint.

Member
(optional)

Name of the DataContext
property representing the
list.

Type
(optional)

Type of the DataContext
property representing
the list.

ContentType Column
ExcludeColumn
ExcludeOtherColumns
IncludeHiddenColumns

Name Name of the content type.

Class
(optional)

Name of the generated
class.

AccessModifier
(optional)

Accessibility of the gener-
ated class.

Column Name Name of the column.

Member
(optional)

Name of the generated
property for the column.

Type
(optional)

Type of the generated
property for the column.

ExcludeColumn Name Name of the column to
exclude from entity gen-
eration.

ExcludeOtherColumns Excludes all columns not
explicitly included.

IncludeHiddenColumns Includes hidden columns in
entity generation.

ExcludeList Name Name of the list to exclude
from entity generation.

ExcludeOtherLists Excludes all lists not explic-
itly included.

IncludeHiddenLists Includes hidden lists in
entity generation.

ExcludeContentType Name Name of content type to
exclude from entity gen-
eration.

ExcludeOtherContentTypes Excludes all content types
not explicitly included.

IncludeHiddenContentTypes Includes hidden content
types in entity generation.

	 Chapter 9  SharePoint lists    401

Querying with LINQ to SharePoint
After you have entities generated, then you can begin to write LINQ to SharePoint queries. Writing
LINQ to SharePoint queries is very similar to writing LINQ queries for other data sources. You for-
mulate a query by using query syntax, receive the results into an anonymous type, and then use the
IEnumerable interface to iterate over the results.

LINQ to SharePoint also supports querying across lists that are joined by a lookup field. LINQ to
SharePoint makes the syntax much simpler than with CAML. The following code shows the equivalent
LINQ query for the CAML shown in Listing 9-22. Note how the join is simply done by using the dot
operator to move easily from the Modules list to the joined Instructors list:

var q = from m in dc.Modules
 orderby m.ModuleID
 select new { m.Title, Presenter = m.Instructor.FullName, Email = m.Instructor.Email};

Not only does the code join two lists together, but you can see that it is also using a projection.
The new keyword is creating a new set of anonymous objects whose field names have been set to
Title, Presenter, and Email.

LINQ to SharePoint also allows you to perform query composition. Query composition is the ability
to run a LINQ query on the results of a LINQ query. For example, the following code shows how to
run a new query specifically looking for a training module named Visual Studio 2012:

var q1 = from m1 in dc.Modules
 orderby m1.ModuleID
 select new { m1.Title, Presenter = m1.Instructor.FullName, Email = m1.Instructor.Email};
var q2 = from m2 in q1
 where m2.Title.Equals("Visual Studio 2012")
 select m2;

Finally, LINQ to SharePoint supports a number of extension methods that you can use for aggrega-
tion, grouping, and returning specific entities. The methods are often used on the results of the query.
The following code, for example, shows how to return the total number of training modules in the
query results. The most commonly used extension methods are listed in Table 9-10:

var t = (from m in dc.Modules
 select m).Count();

TABLE 9-10  Commonly used extension methods

Name Description

Any() Returns true if there are any items in the query results.

Average() Returns the aggregated average value.

Count() Returns the count of items in the query result.

First() Returns the first item in the results. Useful if you are ex-
pecting a single result.

FirstOrDefault() Returns the first item in the results. If there is no first item,
returns the default for the object type.

402   Inside Microsoft SharePoint 2013

Name Description

Max(), Min() Return the item with the maximum or minimum value.

Skip() Skips a certain number of items in the results. Useful
when used with Take() for paging.

Sum() Returns the aggregated sum.

Take() Allows you to return only a specified number of results.
Useful when used with Skip() for paging.

ToList() Returns the query results into a generic List<T>.

Adding, deleting, and updating with LINQ to SharePoint
Along with querying, you can also add, delete, and update lists with LINQ to SharePoint. Adding and
deleting items are accomplished by using methods associated with the EntityList<T> property of the
DataContext. The InsertOnSubmit() method adds a single new item to a list. The InsertAllOnSubmit()
method adds a collection of new items to a list. The DeleteOnSubmit() method deletes a single item
from a list, and the DeleteAllOnSubmit() method deletes a collection of items from a list. The Recycle-
OnSubmit() method puts a single item into the recycle bin, and the RecycleAllOnSubmit() method
puts a collection of items in the recycle bin. The following code shows an example of adding a new
item to the Modules list:

using (Entities dc = new Entities(SPContext.Current.Web.Url))
{
 ModulesItem mi = new ModulesItem();
 mi.Title = "LINQ to SharePoint";
 mi.Id = 301;
 dc.Modules.InsertonSubmit(mi);
 dc.SubmitChanges();
}

Updating items in lists is done by simply changing the property values in the item and then calling
the SubmitChanges() method of the DataContext. The following code shows a simple example of an
update operation:

using (Entities dc = new Entities(SPContext.Current.Web.Url))
{
 var q = (from m in dc.Modules
 where m.Id==1
 select m).First();

 q.Title = "Revised Title for Module 1";
 dc.SubmitChanges();
}

When updating items, LINQ to SharePoint uses optimistic concurrency. The provider will check
to see whether the items in the list have been changed since your LINQ query was run before it will
attempt to update them. If a discrepancy is found for any of the submitted entities, then no changes
are committed. All discrepancies must be resolved before any change in the current batch can be
committed.

	 Chapter 9  SharePoint lists    403

When discrepancies are found during the update process, LINQ to SharePoint throws a Microsoft.
SharePoint.Linq.ChangeConflictException. Additionally, the ChangeConflicts collection of the Data-
Context is populated with ObjectChangeConflict objects that contain data about fields in the item
causing conflicts. The SubmitChanges() method supports overloads that allow you to specify whether
update attempts should continue after the first conflict or whether update attempts should stop. The
ChangeConflicts collection will only be populated with information about failed attempts, so electing
to stop after the first failure will not provide complete data on all conflicts. Regardless of whether or
not you continue update attempts, remember that no changes will be saved if any conflict occurs. The
purpose of continuing update attempts is to completely populate the ChangeConflicts collection.

The ChangeConflicts collection contains a MemberConflicts collection that has the detailed infor-
mation about the actual values causing the conflict. In particular, the MemberConflicts collection is
populated with MemberChangeConflict objects. These objects each have OriginalValue, CurrentValue,
and DatabaseValue properties. The OriginalValue is the value of the column when the LINQ query was
run. The CurrentValue is the value that SubmitChanges() is attempting to write to the content data-
base. The DatabaseValue is the current value of the column in the database. Trapping the ChangeCon-
flictException and using the MemberChangeConflict objects allows you to display the conflicts to the
end user. The code in Listing 9-26 shows how to iterate the collection, build a list, and bind the list to
a grid for display.

LISTING 9-26  A simple LINQ to SharePoint query

Try
{
 //Update code
}
catch (Microsoft.SharePoint.Linq.ChangeConflictException x)
{
 conflicts = new List<Conflict>();
 foreach (ObjectChangeConflict cc in dc.ChangeConflicts)
 {
 foreach (MemberChangeConflict mc in cc.MemberConflicts)
 {
 Conflict conflict = new Conflict();
 conflict.OriginalValue = mc.OriginalValue.ToString();
 conflict.CurrentValue = mc.CurrentValue.ToString();
 conflict.DatabaseValue = mc.DatabaseValue.ToString();
 conflicts.Add(conflict);
 }

 }
conflictGrid.DataSource = conflicts;
conflictGrid.DataBind();
}

Along with displaying the results, you can also resolve conflicts in code. After displaying the results
to the end user in a grid, you can allow the user to select whether the pending changes should be

404   Inside Microsoft SharePoint 2013

forced or lost. The Resolve() method of the MemberChangeConflict class accepts a Microsoft.Share-
Point.Linq.RefreshMode enumeration that can have a value of KeepChanges, KeepCurrentValues, or
OverwriteCurrentValues. KeepChanges accepts every pending change, but gives the highest priority
to the current user. KeepCurrentValues keeps only the changes made by the current user and loses
all other changes. OverwriteCurrentValues loses the current changes and sets the values to what is in
the database. After calling the Resolve() method, you must SubmitChanges() again to complete the
operation. The following code shows an example of keeping the current changes and losing all other
changes:

foreach (ObjectChangeConflict cc in dc.ChangeConflicts)
{
 foreach (MemberChangeConflict mc in cc.MemberConflicts)
 {
 mc.Resolve(RefreshMode.KeepCurrentValues);
 }
}
dc.SubmitChanges();

Summary

In this chapter, we covered the fundamental architecture of lists and document libraries. You learned
about fields, field types, site columns, and content types, as well as how to create them by using the
various APIs. This chapter also explored working with documents and document libraries, as well as
the event infrastructure provided by SharePoint. You learned about the fundamentals of creating
event receiver classes and remote event receivers, and registering event handlers. Finally, the chapter
provided detailed information about querying lists with CAML and LINQ. Because lists and libraries
are essential data stores in SharePoint, all of these areas are core skills for the SharePoint developer.

		 405

C H A P T E R 1 0

SharePoint type definitions and
templates

Microsoft SharePoint is a platform and can be customized in a lot of different ways. In this chapter
we’ll look at how you can use type definitions and templates to customize SharePoint. The first

section focuses on using custom field types. This development strategy offers the greatest level of
control when you are initializing field values and performing data validation. By using custom field
types, developers can customize the editing experience by extending it with a custom field control.
We will also have a look at how to customize fields by using the new JSLink property.

The second section of the chapter focuses on developing custom site columns and content types.
We will look at how to create site columns and content types by using Collaborative Application
Markup Language (CAML) and by using the server-side object model. Although developing CAML-
based definitions has a steep learning curve and poses more challenges with testing, debugging,
and maintenance, it provides an alternative approach with certain advantages over using the server-
side object model. Therefore, we will also discuss the advantages and disadvantages of using both
approaches.

The last section of the chapter talks about how to create lists and list instances by using the
SharePoint Developer Tools designers and CAML.

Custom field types

In Chapter 9, “SharePoint lists,” the basics about fields, site columns, and field types were introduced.
You learned that every field and every site column is created in terms of an underlying field type. You
also learned about the built-in field types in SharePoint, which include Text, Note, Boolean, Integer,
Number, Decimal, Currency, DateTime, Choice, and Lookup. Now it’s time to discuss extending the set
of built-in field types by developing custom field types. What’s important to understand is that when
you develop a custom field type, you are really developing a field type definition.

A primary motivation for creating custom field types is that it provides the greatest level of flex-
ibility when it comes to initializing and formatting field values. Custom field types are also commonly
created to allow complex data validation on user input to prevent inconsistent field values from being
saved into SharePoint.

406   Inside Microsoft SharePoint 2013

A second motivation for developing a custom field type is that it can be extended with an associ-
ated user interface component known as a field control. A custom field control complements a custom
field type because it allows you to create a rich user interface with an HTML layout, ASP.NET server
controls, and code-behind that can be as simple or as complicated as the scenario calls for.

Before we begin, we must point out a few challenges that you might face when developing custom
field types. First, custom field types can only be deployed by using a farm solution; they cannot be
deployed in a sandbox solution or a SharePoint app. Second, custom field types work great when you
are using the browser to look at the standard list view, but usually can’t be displayed by using the
DataSheet view, and they often cause integration problems with Microsoft Office products such as
Microsoft Word or Microsoft Excel. Programming against them can also prove to be challenging.

The area in which custom field types are most commonly used is when a custom solution is created
for publishing sites. The publishing sites functionality is part of SharePoint Server 2013 Standard edi-
tion. The high-level design of a publishing site is based on a scheme in which content authors submit
page content through browser-based input forms. The power of developing a custom field type
along with a custom field control makes it possible to provide content authors with a very rich editing
experience in the browser.

SharePoint 2013 also introduces a new JavaScript approach that allows you to customize the way
fields are displayed on the page. You can do this by using the JSLink property of a field. Fields aren’t
the only things that can use JSLink in SharePoint 2013; the property is also available for SPForm,
SPView, Web Parts and SPContentType. You can use the JSLink property to specify a JavaScript file that
contains client-side script to modify the behavior of the object (the field, Web Part, or form) and the
way in which it is displayed.

Creating custom field types
When creating a custom field type in Microsoft Visual Studio 2012, you should start by creating a new
SharePoint project based on the empty SharePoint Project template. Inside this project, you will have
to add a new public class for each custom field type. You will also have to add a special XML definition
file that is required to deploy the project’s custom field types.

The downloadable .zip archive of companion code for this book contains a sample SharePoint
project named WingtipToysFieldTypes. This project contains working samples of the custom field
types and field controls that we are going to examine over the next few pages. You can tell that the
project structure of WingtipToysFieldTypes in Figure 10-1 contains the source files for three custom
field types named CustomerFullName, CustomerPhoneNumber and CustomerLanguage.

	 Chapter 10  SharePoint type definitions and templates    407

FIGURE 10-1  The WingtipToysFieldTypes project demonstrates creating custom field types and custom field
controls.

Creating classes for custom field types
For each custom field type, you must create a field type class that inherits from one of the built-in
field type classes, such as SPFieldText, SPFieldNumber, or SPFieldMultiColumn. The following code
snippet shows how each of the custom field type classes in the WingtipToysFieldTypes project in
herits from one of these required base classes:

public class CustomerFullName : SPFieldMultiColumn {
 // custom field type implementation
}
public class CustomerPhoneNumber : SPFieldText {
 // custom field type implementation
}
public class CustomLanguage : SPFieldText {
 // custom field type implementation
}

The first step in implementing a custom field type class is to add two public constructors that are
required by SharePoint. The reason why SharePoint requires these two specially parameterized con-
structors is that it uses them in various scenarios to create instances of the custom field type. When
you add these constructors to your field type class, you don’t need to supply any actual code inside
the curly braces. You just need to define the required parameter list and pass these parameters on to
the base class constructor with a matching parameter list:

public class CustomerPhoneNumber : SPFieldText {

 public CustomerPhoneNumber(SPFieldCollection fields, string fieldName)
 : base(fields, fieldName) { }

 public CustomerPhoneNumber(SPFieldCollection fields,
 string typeName, string displayName)
 : base(fields, typeName, displayName) { }

}

408   Inside Microsoft SharePoint 2013

After you have added these two public constructors, the next step is to override whatever
base class methods and properties make sense for your particular scenario. For instance, for the
CustomerLanguage field type class, you might want to make sure that the default value is English
and that the CustomerPhoneNumber should start with +[CountryCode]-(0). Let’s first look at the
implementation of DefaultValue. Because most of Wingtip Toys customers live in the United States,
the sales department has decided that the default value for customers’ language should be English:

public class CustomerLanguage : SPFieldText {
 // constructors omitted for brevity
 // add logic to make sure that English is the default language
 public override string DefaultValue {
 get {
 return "English";
 }
 }
}

Now let’s have a look at how we can make sure that a phone number is formatted correctly by
validating the contents of a field. Field value validation is implemented by overriding a method
named GetValidatedString, which is always executed prior to SharePoint saving an item that contains
a field based on the field type. The GetValidatedString method passes a parameter named value that
you can use to inspect the field value that the user is attempting to save to the content database. If
the custom validation logic inside GetValidatedString determines that the user input for the field value
is not valid, it should be written to throw an exception of type SPFieldValidationException. Here is
the implementation of the GetValidatedString method in the CustomerPhoneNumber field type class,
which validates that each field value starts with +[CountryCode]-(0):

public class CustomerPhoneNumber : SPFieldText {
 // constructors omitted for brevity
 // add validation to ensure proper formatting
 public override string GetValidatedString(object value)
 {
 string input = value.ToString();
 string PN_Regex = @"^\+\d{1,2}\-\(0\)";
 if ((this.Required || !string.IsNullOrEmpty(UserInput)) &
 (!Regex.IsMatch(input, PN_Regex)))
 {
 throw new SPFieldValidationException
 ("Phone Number must be formatted like +[0-99]-(0)..");
 }
 return base.GetValidatedString(value);
 }
}

Now let’s discuss what happens when this validation code is executed. Imagine a scenario with
a list named WingtipToys Customers, which contains a field created from the CustomerPhoneNumber
field type. What happens when a user attempts to save a customer with a phone number that is
formatted in a different way? The GetValidatedString method executes and determines that the user
input is invalid. At this point, the method throws an exception that cancels the user’s request to save
the current item and displays an error message to the user, as shown in Figure 10-2.

	 Chapter 10  SharePoint type definitions and templates    409

FIGURE 10-2  Throwing an SPFieldValidationException cancels the action to update an item and displays an error
message.

Deploying custom field types
Now that you have created a custom field type class, the next step is to create an XML file containing
a CAML-based definition for each custom field type that is required for deployment. When you create
the XML file to deploy your custom field types, you must create it by using a naming pattern so that
the file name starts with fldtypes and ends with an .xml extension. For example, the WingtipToysField-
Types project contains the file fldtypes_WingtipToysFieldTypes.xml. In addition to giving this XML file
a special name, you must deploy it to a specific directory inside the SharePoint root directory at the
TEMPLATE/XML path.

Let’s look at how SharePoint initializes the available set of field types. When SharePoint initial-
izes the worker process for an application pool, it queries the TEMPLATE/XML directory for files that
match the of fldtypes*.xml pattern and scans through them to discover the field type definitions de-
ployed within the local farm. From this, you can make two interesting observations about custom field
type deployment. First, custom field types are not deployed by using features. Second, custom field
types are deployed as an all-or-nothing proposition at farm-level scope. It is not possible to create a
custom field type that is only available in a particular site collection or even web application. This also
means that custom field types should not be used in a shared environment.

If you look at the TEMPLATE/XML directory on a server in a SharePoint 2013 farm, you will find
a system file named fldtypes.xml that defines all the core field types supplied by SharePoint Foun-
dation. The installation of SharePoint Server 2013 deploys several more of these XML files, includ-
ing fldtypes_hold.xml, fldtypes_publishing.xml, fldtypes_SPRatings.xml, fldtypes_TargetTo.xml, and
fldtypes_taxonomy.xml, to supply additional field type definitions. When you are learning how
to develop custom field types, it can be very helpful to inspect these XML files to view how the
SharePoint team has structured the CAML definitions for the built-in field types.

Each field type definition is created by using a FieldType element, which must reside inside a top-
level FieldTypes element. The WingtipToysFieldType project deploys the definitions for all four custom
field types in an XML file named fldtypes_WingtipToysFieldTypes.xml:

<FieldTypes>
 <FieldType> <!- CustomerFullName field type definition --> </FieldType>
 <FieldType> <!- CustomerPhoneNumber field type definition --> </FieldType>
 <FieldType> <!- CustomerLanguage field type definition --> </FieldType>
<FieldTypes>

When you create the FieldType element for a field type definition, you must add several Field ele-
ments with a Name attribute that defines the type of value inside. These Field elements are required
to provide information about the custom field type, such as its name, its parent type, its display name,

410   Inside Microsoft SharePoint 2013

the field type class name, and the name of its assembly. The FieldType element for the custom field
type named CustomerPhoneNumber is defined in the following code:

<FieldType>
 <Field Name="TypeName">CustomerPhoneNumber</Field>
 <Field Name="ParentType">Text</Field>
 <Field Name="TypeDisplayName">Customer Phone Number</Field>
 <Field Name="TypeShortDescription">Customer Phone Number</Field>
 <Field Name="UserCreatable">TRUE</Field>
 <Field Name="FieldTypeClass">
 WingtipToysFieldTypes.CustomerPhoneNumber,$SharePoint.Project.AssemblyFullName$
 </Field>
</FieldType>

Note that there are several more optional attributes that you can use when creating custom field
type definitions. For example, you can add optional named attributes, such as ShowInListCreate,
ShowInDocumentLibraryCreate, ShowInSurveyCreate, and ShowInColumnTemplateCreate, which allow
you to define whether a custom field type should be displayed or hidden on the Create Column page
for scenarios where users are adding new fields to a list or content type:

<FieldType>
 <Field Name="TypeName">CustomerLanguage</Field>
 <Field Name="ParentType">Text</Field>
 <Field Name="TypeDisplayName">Customer Language</Field>
 <Field Name="TypeShortDescription">Customer Preferred Language</Field>
 <Field Name="UserCreatable">TRUE</Field>
 <Field Name="ShowInListCreate">TRUE</Field>
 <Field Name="ShowInDocumentLibraryCreate">TRUE</Field>
 <Field Name="ShowInSurveyCreate">TRUE</Field>
 <Field Name="ShowInColumnTemplateCreate">TRUE</Field>
 <Field Name="FieldTypeClass">
 WingtipToysFieldTypes.CustomerLanguage,$SharePoint.Project.AssemblyFullName$
 </Field>
</FieldType>

Creating custom field controls
You have now learned the required steps to create and deploy a custom field type. The next step is to
extend a custom field type with a custom field control to provide the user with a customized editing
experience. You can also create a custom field type without a custom field control. Creating a custom
field control is optional. If the editing experience of one of the out-of-the-box field types is suffi
cient for your custom field type, you will not have to create your own custom field control. For the
CustomerPhoneNumber field type, the out-of-the-box editing experience that the field inherits from
its parent Text is used. The custom editing experience of a custom field control is created by using
a rendering template. To create a rendering template, you must create a new user control and add a
control tag based on a special control type named RenderingTemplate:

	 Chapter 10  SharePoint type definitions and templates    411

<SharePoint:RenderingTemplate>
 <Template>
 <!-- your HTML layout and server controls go here -->
 </Template>
</SharePoint:RenderingTemplate>

The WingtipToysFieldTypes project contains a custom field control for all three custom field types
that were created earlier in this chapter. The simplest one is the custom field control that extends the
CustomerPhoneNumber custom field type. The rendering template for this custom field control is
defined inside the user control file named WingtipToysFieldTypes.CustomerPhoneNumber.ascx. The
rendering template definition has been created by using a RenderingTemplate control with an ID of
CustomerPhoneNumberRenderingTemplate:

<SharePoint:RenderingTemplate ID="CustomerPhoneNumberRenderingTemplate"
 runat="server">
 <Template>
 <asp:TextBox ID="CustomerPhoneNrInput" runat="server"
 MaxLength="25" CssClass="ms-long" />
 </Template>
</SharePoint:RenderingTemplate>

The RenderingTemplate control ID of CustomerPhoneNumberRenderingTemplate is used to deter-
mine what rendering template should be loaded and initialized. Inside the RenderingTemplate control,
there is a Template element. This is where you add the HTML layout and ASP.NET controls to produce
a custom editing experience. You have the flexibility to create the RenderingTemplate control by using
a composite of ASP.NET controls and a rich HTML layout involving div elements or an HTML table. The
CustomerPhoneNumberRenderingTemplate simply uses an ASP.NET TextBox control.

If you add an item to a Visual Studio project and you select User Control (Farm Solution Only) from
the Office/SharePoint category, the user control will be added to a folder with the project name in-
side a folder called ControlTemplates. This means that the user control will be deployed to TEMPLATE/
CONTROLTEMPLATES/[ProjectName]. Unfortunately, user control files that contain a RenderTemplate
control tag can only be deployed to the TEMPLATE/CONTROLTEMPLATES folder, because SharePoint
only inspects the root directory CONTROLTEMPLATES for user control files with rendering templates
and not any of its child directories. Because of this, you will manually have to move your user controls
from the ControlTemplates/WingTipToysFieldTypes folder to the TEMPLATE/CONTROLTEMPLATES
folder.

As a general best practice when developing farm solutions, you should avoid deploying custom
files from a SharePoint project directly inside one of the standard directories inside the SharePoint
root directory, such as IMAGES, LAYOUTS, or CONTROLTEMPLATES. This is to avoid file name conflicts
between the files that you deploy and the files that are already deployed by Microsoft and by other
custom solutions. However, when developing custom field types, you cannot follow this practice be-
cause you must deploy the user control file directly inside the CONTROLTEMPLATES directory.

To increase your level of protection against file name conflicts, it is recommended that you add the
project name to the beginning of the file name to make it more likely to be unique. For example, the
user control files with rendering templates in the WingtipToysFieldTypes project have names such as
WingtipToysFieldTypes.CustomerPhoneNumber.ascx instead of CustomerPhoneNumber.ascx.

412   Inside Microsoft SharePoint 2013

After you have created the rendering template, the next step is to create a field control class. You
can create the field control class in the CustomerPhoneNumber.cs file by inheriting from a base class
named BaseFieldControl and overriding properties and methods such as DefaultTemplateName,
CreateChildControls, and Value:

public class CustomerPhoneNumberFieldControl : BaseFieldControl {

 // used to pass the RenderTemplate ID to SharePoint Foundation
 protected override string DefaultTemplateName {}

 // used to obtain references to controls created by the rendering template
 protected override void CreateChildControls() {}

 // used to read and write values to and from the content database
 public override object Value {}
}

When you override the read-only property named DefaultTemplateName, your implementation
simply needs to return the string-based ID of the rendering template:

protected override string DefaultTemplateName {
 get { return "CustomerPhoneNumberRenderingTemplate"; }
}

When you have implemented the DefaultTemplateName property, the next thing to do is to set up
a way to access the controls defined in the rendering template programmatically. You can accomplish
this by adding a protected field for each control and overriding CreateChildControls to initialize these
fields properly. Here is an example of how this is done in the CustomerPhoneNumberFieldControl
field control class, which has an associated rendering template that contains a single TextBox control
named CustomerPhoneNrInput:

public class CustomerPhoneNumberFieldControl : BaseFieldControl {

 protected TextBox CustomerPhoneNrInput;

 protected override void CreateChildControls() {
 base.CreateChildControls();
 CustomerPhoneNrInput =
(TextBox)this.TemplateContainer.FindControl("CustomerPhoneNrInput");
 }
}

Note that you will not be instantiating control instances in the CreateChildControls method but
rather going through a protected property of the base class named TemplateContainer, which exposes
a FindControl method. This technique allows you to obtain references to existing control instances
that are created by the control tags inside the rendering template rather than creating new control
instances.

The next step is to add the logic to the field control class that is responsible for reading and writ-
ing the field’s value to and from the content database. You do this by overriding the Value property
of the BaseFieldControl class. The Value property is based on the type System.Object, which gives

	 Chapter 10  SharePoint type definitions and templates    413

you quite a bit of flexibility. You can work with any type of object you want, as long as it supports
Microsoft .NET Framework serialization. Fortunately, most of the standard types, arrays, and collec-
tions in the base class libraries of the .NET Framework provide automatic support for .NET serializa-
tion. The CustomerPhoneNumberFieldControl class illustrates a simple example of implementing the
Value property:

public class CustomerPhoneNumberFieldControl : BaseFieldControl {
 protected TextBox CustomerPhoneNrInput;

 public override object Value {
 get {
 this.EnsureChildControls();
 // return control Text property value, which is written to content DB
 return CustomerPhoneNrInput.Text;
 }
 set {
 this.EnsureChildControls();
 // initialize control with current field value retrieved from content DB
 CustomerPhoneNrInput.Text = (string)this.ItemFieldValue;
 }
 }
}

As you can tell, the get and set methods of the Value property both begin their implementation
with a call to EnsureChildControls. The call to EnsureChildControls guarantees that the CreateChild-
Controls method has already been executed. This is done to ensure that the CustomerPhoneNrInput
field contains a valid reference so that you can program against the control without getting a null
reference exception.

The get method of the Value property simply returns the string value from the TextBox control.
The SharePoint runtime will call the get method when a user updates an item that contains a column
based on this custom field type. SharePoint takes this return value and writes it directly to SharePoint.

SharePoint calls the set method when a user opens the item in edit view just before the controls
created by your RenderingTemplate control are shown to the user. The key point to understand about
implementing the set method is that the ItemFieldValue property provides you with access to the
current field value as it is stored in SharePoint. This is what makes it possible for you to initialize the
control (or controls) in your RenderingTemplate.

At this point, we have walked through the complete implementation of the rendering template
and the custom field control class. The only step that remains is to update the custom field type class
named CustomerPhoneNumber to use the custom field control. You do this by overriding a read-only
property named FieldRenderingControl. When you override the get method of FieldRenderingControl
in a custom field type class, you must create an instance of the field control class and initialize
the FieldName property by using the InternalName property of the custom field type class. After
you have created and initialized an instance of the field control class, you pass it back as the get
method’s return value. This is how a custom field type class informs SharePoint that it wants to
load its own custom field control. Listing 10-1 shows the complete CustomerPhoneNumber and
CustomerPhoneNumberFieldControl classes.

414   Inside Microsoft SharePoint 2013

LISTING 10-1  Custom field type and custom field control classes

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Text.RegularExpressions;
using System.Web.UI.WebControls;

namespace WingtipToysFieldTypes
{
 public class CustomerPhoneNumber : SPFieldText
 {
 public CustomerPhoneNumber(SPFieldCollection fields, string fieldName)
 : base(fields, fieldName) { }

 public CustomerPhoneNumber(SPFieldCollection fields,
 string typeName, string displayName)
 : base(fields, typeName, displayName) { }

 public override BaseFieldControl FieldRenderingControl
 {
 get
 {
 BaseFieldControl ctr = new CustomerPhoneNumberFieldControl();
 ctr.FieldName = this.InternalName;
 return ctr;
 }
 }

 // add validation to ensure proper formatting
 public override string GetValidatedString(object value)
 {
 string UserInput = value.ToString();
 string PN_RegularExpression = @"^\+\d{1,2}\-\(0\)";
 if ((this.Required || !string.IsNullOrEmpty(UserInput)) &
 (!Regex.IsMatch(UserInput, PN_RegularExpression)))
 {
 throw new SPFieldValidationException
 ("Phone Number must be formatted like +[CountryCode]-(0)...");
 }
 return base.GetValidatedString(value);
 }
 }

 public class CustomerPhoneNumberFieldControl : BaseFieldControl
 {
 protected TextBox CustomerPhoneNrInput;
 protected override string DefaultTemplateName
 {
 get
 {
 return "CustomerPhoneNumberRenderingTemplate";
 }
 }

	 Chapter 10  SharePoint type definitions and templates    415

 protected override void CreateChildControls()
 {
 base.CreateChildControls();
 CustomerPhoneNrInput =
 (TextBox)this.TemplateContainer.FindControl("CustomerPhoneNrInput");
 }

 public override object Value
 {
 get
 {
 this.EnsureChildControls();
 return CustomerPhoneNrInput.Text;
 }
 set
 {
 this.EnsureChildControls();
 CustomerPhoneNrInput.Text = (string)this.ItemFieldValue;
 }
 }
 }
}

Custom field types with multicolumn values
The custom field type CustomerFullName is a field type with multicolumn values. In this case, you will
be capturing a first name and a last name in two different text boxes, which are captured and vali-
dated as a single field. Multicolumn field types must inherit from SPFieldMultiColumn. In most cases,
you will also have to specify a custom field control because there aren’t any SharePoint out-of-the-
box field types that are built up out of several text boxes or other types of input controls. The field
control will have to contain a custom RenderingTemplate designed to display multiple input controls
to the user. Here is an example of the rendering template defined inside WingTipToysFieldTypes.
CustomerFullName.ascx:

<SharePoint:RenderingTemplate ID="CustomerFullNameRenderingTemplate" runat="server">
 <Template>
 <table class="ms-authoringcontrols" >
 <tr>
 <td>First name:</td>
 <td><asp:TextBox ID="FirstNameInput" runat="server" Width="328px" /></td>
 </tr>
 <tr>
 <td>Last name:</td>
 <td><asp:TextBox ID="LastNameInput" runat="server" Width="328px" /></td>
 </tr>
 </table>
 </Template>
</SharePoint:RenderingTemplate>

416   Inside Microsoft SharePoint 2013

Now that you have defined the rendering template, you will have to create the logic to move
values from these controls back and forth to and from the SharePoint content database as a single
multicolumn value. The server-side object model supplies the SPFieldMultiColumnValue class type,
which makes this possible by using programming syntax similar to dealing with a string array. The
CustomerFullNameFieldControl class in Listing 10-2 shows how to override the Value property with
an implementation that reads and writes multicolumn values to and from the content database.

LISTING 10-2  Implementation of a field control class for an SPFieldMultiColumnValue type

public class CustomerFullNameFieldControl : BaseFieldControl
{
 protected override string DefaultTemplateName
 {
 get
 {
 return "CustomerFullNameRenderingTemplate";
 }
 }
 protected TextBox FirstNameInput;
 protected TextBox LastNameInput;

 protected override void CreateChildControls()
 {
 base.CreateChildControls();
 FirstNameInput =
 (TextBox)this.TemplateContainer.FindControl("FirstNameInput");
 LastNameInput =
 (TextBox)this.TemplateContainer.FindControl("LastNameInput");
 }

 public override object Value
 {
 get
 {
 this.EnsureChildControls();
 SPFieldMultiColumnValue mcv = new SPFieldMultiColumnValue(2);
 mcv[0] = FirstNameInput.Text;
 mcv[1] = LastNameInput.Text;
 return mcv;
 }
 set
 {
 this.EnsureChildControls();
 SPFieldMultiColumnValue mcv =
 (SPFieldMultiColumnValue)this.ItemFieldValue;
 FirstNameInput.Text = mcv[0];
 LastNameInput.Text = mcv[1];
 }
 }
}

	 Chapter 10  SharePoint type definitions and templates    417

It would be possible to extend this simple example further to exploit the potential of multicolumn
field types. For example, if you were storing an address, you could call to a web service and pass a
postal code that would return the associated city. That would allow you to add extra functionality to
autopopulate the City text box and to perform validation to ensure that the address is correct.

Custom field types with custom properties
The custom field type named CustomerLanguage demonstrates how you can extend a custom field
type with one or more custom properties. The main idea is that each field instance created from the
custom field type gets its own independent property settings. You can create custom properties for
a custom field type by adding a PropertySchema element to the bottom of the FieldType element
for a custom field type. You create each custom property by adding Field elements inside the
PropertySchema element. For example, the custom field type CustomerLanguage has been defined
with five custom properties named English, Spanish, French, Dutch, and German of which Dutch and
German aren’t always available:

 <FieldType>
 <Field Name="TypeName">CustomerLanguage</Field>
 <Field Name="ParentType">Text</Field>
 <Field Name="TypeDisplayName">Customer Language</Field>
 <Field Name="TypeShortDescription">Customer Language</Field>
 <Field Name="UserCreatable">TRUE</Field>
 <Field Name="ShowInColumnTemplateCreate">TRUE</Field>
 <Field Name="FieldTypeClass">
 WingtipToysFieldTypes.CustomerLanguage,WingtipToysFieldTypes,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=0720027336e99bd9
 </Field>
 <PropertySchema>
 <Fields>
 <Field Name="AvailableInDutch"
 DisplayName="Available in Dutch"
 Type="Boolean">
 <Default>0</Default>
 </Field>
 <Field Name="AvailableInGerman"
 DisplayName="Available in German"
 Type="Boolean">
 <Default>0</Default>
 </Field>
 </Fields>
 </PropertySchema>
 </FieldType>

After you have added one or more custom properties to a custom field type, SharePoint will au-
tomatically add input controls to the page that allow a user to add or update columns based on your
custom field type. Figure 10-3 shows what the user sees when adding or updating a field based on
the CustomerLanguage custom field type. The user can decide whether content is available in Dutch
and German.

418   Inside Microsoft SharePoint 2013

FIGURE 10-3  Custom property fields make it possible to parameterize field instances.

After you have extended a custom field type with one or more custom properties, you then must
write code to inspect what values the user has assigned to them. In the case of the custom field type
named CustomerLanguage, there is code in the CreateChildControls method of the field control class
that initializes a RadioButtonList control by adding items for English, Spanish, and French, and by
using code to determine whether the options for Dutch and German should be added as well. If the
user has set the value for AvailableInDutch and AvailableInGerman to true, the options will be added
for the user to select them. Listing 10-3 shows the implementation of the CustomerLanguage and
CustomerLanguageFieldControl classes.

LISTING 10-3  Implementation of the field and field control classes for a field with custom properties

public class CustomerLanguage : SPFieldText
{
 public CustomerLanguage(SPFieldCollection fields, string fieldName)
 : base(fields, fieldName) { }

 public CustomerLanguage
 (SPFieldCollection fields, string typeName, string displayName)
 : base(fields, typeName, displayName) { }

 public override BaseFieldControl FieldRenderingControl
 {
 get
 {
 BaseFieldControl ctr = new CustomerLanguageFieldControl();
 ctr.FieldName = this.InternalName;
 return ctr;
 }

	 Chapter 10  SharePoint type definitions and templates    419

 public override string DefaultValue
 {
 get
 {
 return "English";
 }
 }

}

public class CustomerLanguageFieldControl : BaseFieldControl
{

 protected RadioButtonList CustomerLanguageInput;

 protected override string DefaultTemplateName
 {
 get
 {
 return "CustomerLanguageRenderingTemplate";
 }
 }

 protected override void CreateChildControls()
 {
 base.CreateChildControls();
 CustomerLanguageInput =
 (RadioButtonList)TemplateContainer.FindControl("CustomerLanguageInput");
 if (CustomerLanguageInput != null)
 {
 CustomerLanguageInput.Items.Clear();
 CustomerLanguageInput.Items.Add("English");
 CustomerLanguageInput.Items.Add("Spanish");
 CustomerLanguageInput.Items.Add("French");

 // check to see if Dutch is available
 if (this.Field.GetCustomProperty("AvailableInDutch") != null)
 {
 bool availableInDutch =
 (bool)this.Field.GetCustomProperty("availableInDutch");
 if (availableInDutch)
 {
 CustomerLanguageInput.Items.Add("Dutch");
 }
 }

 // check to see if German is available
 if (this.Field.GetCustomProperty("AvailableInGerman") != null)
 {
 bool availableInGerman =
 (bool)this.Field.GetCustomProperty("AvailableInGerman");

 if (availableInGerman)
 {

420   Inside Microsoft SharePoint 2013

 CustomerLanguageInput.Items.Add("German");
 }
 }
 }
 }

 public override object Value
 {
 get
 {
 this.EnsureChildControls();
 return CustomerLanguageInput.SelectedValue;
 }
 set
 {
 this.EnsureChildControls();
 CustomerLanguageInput.Items.FindByValue
 (ItemFieldValue.ToString()).Selected = true;
 }
 }
}

Figure 10-4 shows what the end result looks like if you deploy the WingTipToysFieldTypes solution
and configure a list to use the custom fields that you created, but you select the option to indicate
that the content isn’t available in German.

FIGURE 10-4  This edit form of a list shows the three custom field types that were created in this chapter.

JSLink
So far in this chapter we have looked at custom field types. Although custom field types provide an
incredibly powerful mechanism for creating fields with a custom behavior and look and feel, they also
have some significant downsides. The main drawback of custom field types is that they have to be
installed by using a farm solution. This means that they can only be used in on-premises SharePoint

	 Chapter 10  SharePoint type definitions and templates    421

environments. After they are installed, the custom field types are available throughout the entire
environment, whereas you might want to create a custom field for a particular site collection or
group of people.

In SharePoint 2013, Microsoft has introduced a new way to customize fields that can be used in
both on-premises environments and cloud-based environments such as SharePoint Online 2013.
The way fields can be customized by using a sandboxed solution or a SharePoint app is by using the
new JSLink property that is available on SPField objects. It’s not just fields that can be adjusted by
using JSLink. The following objects can use the JSLink property:

■■ Fields

•	 SPField

•	 SPFieldAttachments

•	 SPFieldBoolean

•	 SPFieldCalculated

•	 SPFieldChoice

•	 SPFieldCurrency

•	 SPFieldDateTime

•	 SPFieldDecimal

•	 SPFieldFile

•	 SPFieldGeolocation

•	 SPFieldLookup

•	 SPFieldMultiChoice

•	 SPFieldMultiLineText

•	 SPFieldNumber

•	 SPFieldText

•	 SPFieldUrl

•	 SPFieldUser

•	 TaxonomyField

•	 OutComeChoiceField

•	 RelatedItemsField

■■ Web Parts

•	 PromotedSitesViewWebPart

422   Inside Microsoft SharePoint 2013

•	 BaseXsltListWebPart

•	 ListFormWebPart

•	 TilesViewWebPart

■■ Other

•	 SPContentType

•	 SPForm

•	 SPView

As you can tell, the JSLink property can be used on a lot of objects. This means that it can help you
customize all of these objects. The JSLink property itself doesn’t actually do that much—it points to a
JavaScript file that contains part of the behavior and the look and feel of a particular object.

Because we are talking about modifying fields in this section, we will look at how you can recre-
ate the functionality of the CustomerPhoneNumber field type that was created earlier using a custom
field type, but now you will be using the JSLink property. The CustomerPhoneNumber field was a
standard text field, but with custom validation rules. These rules apply to the New and the Edit form
of the list, which means that you will have to adjust the JSLink properties for these two forms. Note
that you will have to adjust both views in order to offer a consistent experience for users, because the
JSLink property can only be applied to one form at a time.

The first thing you have to do is to create a custom site column whose behavior you will adjust.
Start by creating a new Visual Studio project of the type SharePoint 2013 - Empty Project. The project
will be called WingtipToysJSLink. Next, click Add and New Item, and then add a site column. In
this example, name the site column CustomerPhoneNumber2. You will adjust the display name to
Phone Number (JSLink), change the group the column is displayed in to WingtipToys Columns, and
add the JSLink property, which you will use to point to the JavaScript file that you will create. The con-
tents of the elements.xml file for the CustomerPhoneNumber2 column are shown in Listing 10-4.

LISTING 10-4  The contents of the elements.xml file for a custom site column including the JSLink property

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{d0a018ff-e6f8-4484-a8e3-c0dd6e11b65b}"
 Name="CustomerPhoneNumber2"
 DisplayName="Phone Number (JSLink)"
 Type="Text"
 Required="FALSE"
 JSLink="~sitecollection/_catalogs/masterpage/scripts/PhoneNumberValidator.js"
 Group="WingtipToys Columns">
 </Field>
</Elements>

	 Chapter 10  SharePoint type definitions and templates    423

You will deploy the JavaScript file to the MasterPage gallery, to a folder that you will create called
scripts. This is arbitrary; you can also choose to deploy the JavaScript file to a folder in the site, to a
different library, or even to a location in the SharePoint root folder. Note that you can only deploy the
JavaScript file to a location in the SharePoint root folder if you are creating a farm solution. You can’t
deploy to the SharePoint root folder from a sandboxed solution or from a SharePoint app.

Both the CustomerPhoneNumber2 column and the module are deployed to a site collection by
using a site collection–scoped feature called Site-WingtipToysCustomerColumns. Figure 10-5 shows
the structure of the WingtipToysJSLink project.

FIGURE 10-5  The WingtipToysJSLink project demonstrates creating a custom site column and modifying its
behavior by using the JSLink property and a JavaScript file.

Next you start by overriding the behavior of the EditForm and NewForm of the column. You do
this by specifying a custom function that will be executed when the form is loaded, which you can
use to apply your custom rendering and validation. You can also choose to override the behavior of
the DisplayForm and the View of the list, but you don’t need this for the Customer Phone Number
functionality, because the only customization is a custom validator. Note that the same method
(SPFieldPhoneNumber_Edit) is used to override the behavior of the new form and the edit form;
there is no need to create separate methods for both forms, because the intended behavior for both
forms is the same. Also note that we explicitly state that the custom behavior should be applied to the
CustomerPhoneNumber2 column. You can theoretically override the behavior of any column, as long
as you know the internal name of the column:

function _registerCustomPhoneNumberFieldTemplate() {

 var phoneNrFieldContext = {};
 phoneNrFieldContext.Templates = {};
 phoneNrFieldContext.Templates.Fields = {

424   Inside Microsoft SharePoint 2013

 'CustomerPhoneNumber2': {
 'EditForm': CustomPhoneNumberFieldTemplate.SPFieldPhoneNumber_Edit,
 'NewForm': CustomPhoneNumberFieldTemplate.SPFieldPhoneNumber_Edit
 }
 };
 SPClientTemplates.TemplateManager.RegisterTemplateOverrides(phoneNrFieldContext);
}

In the elements.xml file of the site column, you only specify a JavaScript file name and not the
name of the function that should be called. In order to make sure that your code is executed when the
column is loaded, you will use an Immediately Invoked Function Expression (IIFE). This is a function
that is executed immediately when the file is loaded. The _registerCustomPhoneNumberFieldTemplate
method will actually be part of the IIFE as well, as will the SPFieldPhoneNumber_Edit method that will
contain the actual adjusted behavior of the column on the new form and the edit form. Listing 10-5,
shown a bit later in this section, contains the entire contents of the PhoneNumberValidator.js file. The
file will be deployed by using a module that you add to the WingtipToysJSLink project. The module
will be called JSLink and will contain nothing but the elements.xml file stating that the JavaScript file
should be deployed to the scripts folder in the MasterPage gallery:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="JSLink" List="116" Url="_catalogs/masterpage/scripts">
 <File Path="JSLink\PhoneNumberValidator.js"
 Url="PhoneNumberValidator.js"
 Type="GhostableInLibrary"
 IgnoreIfAlreadyExists="FALSE" />
 </Module>
</Elements>

Listing 10-5 shows that the SPClientTemplates.Utility.GetFormContextForCurrentField method is
used in the SPFieldPhoneNumber_Edit method to get the context for the field for which you want
to override the behavior. When you have the context of the field, you can retrieve its value, add the
standard SharePoint validator in case the field is required, and add some callbacks. There are four
callbacks:

■■ registerInitCallback  Sets the initial value of the column. On the new form, there won’t be
an initial value, so the text box will be left empty.

■■ registerFocusCallback  Sets the focus back to the CustomerPhoneNumber2 column after a
postback of the page.

■■ registerValidationErrorCallback  Ensures that out-of-the-box SharePoint validation errors
are correctly displayed.

■■ registerGetValueCallback  Gets the value of the field when the form is submitted, to make
sure that the value can be saved.

	 Chapter 10  SharePoint type definitions and templates    425

LISTING 10-5  The contents of the JavaScript file overriding the behavior of the new and edit forms of a site column

var _validationLabel = null;
var _phoneNrBox = null;

(function () {
 if (typeof CustomPhoneNumberFieldTemplate == "object") {
 return;
 }
 window.CustomPhoneNumberFieldTemplate = (function () {
 return {
 SPFieldPhoneNumber_Edit: function (rCtx) {
 if (rCtx == null)
 return '';
 var _myData =
 SPClientTemplates.Utility.GetFormContextForCurrentField(rCtx);

 if (_myData == null || _myData.fieldSchema == null) {
 return '';
 }
 var _inputId_PhoneNr =
 myData.fieldName + '' + _myData.fieldSchema.Id + '_$phoneNrField_
 PhoneNr';
 var _inputId_Div =
 myData.fieldName + '' + _myData.fieldSchema.Id + '_$phoneNrField_Div';
 var _inputId_ValidationLabel = _myData.fieldName + '_' +
 myData.fieldSchema.Id + '$phoneNrField_ValidationError';

 var _value = _myData.fieldValue != null ? _myData.fieldValue : '';
 var listItem = rCtx['CurrentItem'];

 var validators = new SPClientForms.ClientValidation.ValidatorSet();
 if (_myData.fieldSchema.Required) {
 validators.RegisterValidator
 (new SPClientForms.ClientValidation.RequiredValidator());
 }
 _myData.registerClientValidator(_myData.fieldName, validators);

 // Post DOM initialization callback.
 _myData.registerInitCallback(_myData.fieldName, function () {

 // Initialize the input control references.
 _phoneNrBox = document.getElementById(_inputId_PhoneNr);
 _validationLabel =
 document.getElementById(_inputId_ValidationLabel);

 // Set the initial values.
 if (_phoneNrBox != null && _value != null) {
 _phoneNrBox.value = _value;
 }

426   Inside Microsoft SharePoint 2013

 });
 // On focus call back
 _myData.registerFocusCallback(_myData.fieldName, function () {
 if (_phoneNrBox != null)
 _phoneNrBox.focus();
 });

 // Validation failure handler
 _myData.registerValidationErrorCallback
 (_myData.fieldName, function (errorResult)
 {
 SPFormControl_AppendValidationErrorMessage(_inputId_Div, errorResult);
 });

 // Register a callback just before submit.
 _myData.registerGetValueCallback(_myData.fieldName, function () {
 if (_phoneNrBox == null)
 return '';
 else {
 return _phoneNrBox.value;
 }
 });

 _myData.updateControlValue(_myData.fieldName, _value);
 var result = '<div width="100%" id=' + STSHtmlEncode(_inputId_Div) + '>';
 result += '<div><input id=' + STSHtmlEncode(_inputId_PhoneNr) +
 'type="text" name="PhoneNr" class="ms-long"
 onchange="validatePhoneNumber()" /></div>';
 result += '<span class="ms-formvalidation ms-csrformvalidation" '
 'id=' + STSHtmlEncode(_inputId_ValidationLabel) + ' '
 'style="display: none;" >'
 result += '</div>';
 return result;

 },
 };
 })();

 function _registerCustomPhoneNumberFieldTemplate() {

 var phoneNrFieldContext = {};
 phoneNrFieldContext.Templates = {};
 phoneNrFieldContext.Templates.Fields = {

 'CustomerPhoneNumber2': {
 'EditForm': CustomPhoneNumberFieldTemplate.SPFieldPhoneNumber_Edit,
 'NewForm': CustomPhoneNumberFieldTemplate.SPFieldPhoneNumber_Edit
 }
 };

	 Chapter 10  SharePoint type definitions and templates    427

 SPClientTemplates.TemplateManager.RegisterTemplateOverrides(phoneNrFieldContext);
 }
 ExecuteOrDelayUntilScriptLoaded
 (_registerCustomPhoneNumberFieldTemplate, 'clienttemplates.js');
})();

function validatePhoneNumber() {
 var PN_RegularExpression = /^\+\d{1,2}\-\(0\)/i;
 var result = PN_RegularExpression.exec(_phoneNrBox.value);

 if (result == null) {
 _validationLabel.style.display = "";
 _validationLabel.innerText =
 "Phone Number must be formatted like +[CountryCode]-(0)...";
 }
 else {
 _validationLabel.style.display = "none";
 _validationLabel.innerText = "";
 }

}

The next step is to create the actual rendering of the text box. In this case, you use a simple HTML
input control of type text, displaying a text box. You add the SharePoint CSS class ms-long to the text
box so that it gets rendered just like the other text boxes on the form. You will also add an onchange
attribute that will provide you with client-side validation similar to the validation that you created
earlier in this chapter for the custom field type created for CustomerPhoneNumber. You will also
add an HTML span element that can be used to display a message if validation fails. You will make
sure that the message is rendered just like the out-of-the-box validation errors by adding more
out-of-the-box CSS classes.

The final part of the JavaScript file is the custom validation method that will fire when the contents
of the text box are changed. The method uses the same regular expression that was used for the
custom field type, making sure that the value starts with +[CountryCode]-(0). If it doesn’t, a message
is displayed warning the user. If a user clicks the Save button directly after changing the field, the save
action will be cancelled. This isn’t a completely foolproof method, though, because the user can click
the Save button again, which will submit the form and save the value for CustomerPhoneNumber2,
even if it is not formatted correctly. You can add more logic to the JavaScript file to prevent this if you
need to.

Figure 10-6 shows the end result of the Phone Number (JSLink) site column with the JavaScript
linked to it using the JSLink property.

428   Inside Microsoft SharePoint 2013

FIGURE 10-6  The JavaScript that has been linked to the new and edit forms using the JSLink property is throwing
a validation error.

Custom site columns and content types

In this section, we will look at different ways in which you can create custom site columns and content
types in your SharePoint solutions. Site columns and content types can be created either by using
Collaborative Application Markup Language (CAML) or by using the server-side object model.

If you had to write all the CAML yourself, it would be more tedious to write and test the function-
ality than if you were using the server-side object model. However, the SharePoint developer tools do
most of the work for you, and for some tasks they even provide designers. There are pros and cons
to using CAML compared to using server-side code. Reading CAML is generally easier than reading
code, which means that it is easier for other developers to view what you have created. A downside
of CAML is that it can be harder to maintain. Though modifying the XML and redeploying the solu-
tion is easy, it is not always supported. You have to know which changes are supported and which
aren’t. If you use code, you have more flexibility and can make changes to the actual object—the
column, content type, or list instance in the site—rather than to the template, as you would if you
were using CAML.

Creating site columns and content types by using CAML
As you begin working with CAML, it can be very educational to dissect the CAML-based definitions
for site columns, content types, and list types that ship with SharePoint 2013. For example, you can
examine the standard site columns defined in the fields feature and the standard content types de-
fined in the ctypes feature. When you examine the features and CAML definitions that ship with the
product, be sure to look—but don’t touch. Modifying any of the built-in features or CAML definitions
is not supported and can cause serious damage to the SharePoint farm.

In Chapter 3, “Server-side solution development,” in the “Developing sandboxed solutions” section,
you used CAML to create two custom site columns called AgeGroup and ToysPrice, and a content
type called Toys. The companion code for this book contains the WingtipToysSandbox project, which
contains the AgeGroup and ToysPrice site columns and the Toys content type. Although this project is
set to be deployed as a sandboxed solution, it can also be deployed as a full-trust solution by chang-
ing the value of the Sandboxed Solution project property from True to False.

In this section, we will go over the CAML used in the WingtipToysSandbox project, in the next sec-
tion you will rebuild the same functionality by using the server-side object model.

A site column definition is created by using a Field element. For example, the elements.xml file of
the ToysPrice site column includes the following CAML definition. The ToysPrice site column definition

	 Chapter 10  SharePoint type definitions and templates    429

also shows some attributes that you have to specify when creating a custom site column, such as ID,
Name, DisplayName, Group, Required, and Type. You will need a new GUID each time you create a
new site column definition. If you create the site column by using the SharePoint Developer Tools,
the GUID will be generated for you. Also note that because the ToysPrice field is a Currency field, it
also includes the attribute Decimals, which is set to 2. If you want to ensure that users can’t fill in a
negative price, it would also be possible to use the Min attribute and set it to 0:

<Field>
 ID="{f75c27ba-e321-4bbe-a30b-be0e085a5517}"
 Name="ToysPrice"
 DisplayName="Price"
 Type="Currency"
 LCID="1033"
 Decimals="2"
 Required="TRUE"
 Group="WingtipToys Columns">
</Field>

The AgeGroup column is an example of a Choice field. By default, choice fields are formatted as
drop-down menus. You can also specify that you want the field to be formatted as radio buttons or
check boxes by adding the Format attribute and specifying its value as RadioButtons or Checkboxes.
Check boxes should be used when the user should be able to select more than one value for the field:

<Field>
 ID="{742e3245-a013-4537-82d3-727ddbfb981a}"
 Name="AgeGroup"
 DisplayName="Age Group"
 Type="Choice"
 Required="TRUE"
 Group="WingtipToys Columns">
 <CHOICES>
 <CHOICE>0-1</CHOICE>
 <CHOICE>2-3</CHOICE>
 <CHOICE>4-6</CHOICE>
 <CHOICE>7-9</CHOICE>
 <CHOICE>10-12</CHOICE>
 <CHOICE>12+</CHOICE>
 </CHOICES>
 </Field>

The attributes used in the examples are only a small subset of the attributes that you can use when
creating site column definitions. For more information, you can look at the MSDN documentation at
http://msdn.microsoft.com/en-us/library/ms437580.aspx.

After you have created a couple of custom site columns, you can either add them to a list one at
a time, or you can use a content type to group them together and add the content type to a list. A
content type definition is created by using a ContentType element. The ContentType element must
contain a set of required attributes and a collection of links to fields that are created by using FieldRef
elements. Each FieldRef element references a specific site column definition, using both the identify-
ing GUID and its string-based name. Each content type definition also requires an ID that begins
with the content type ID of its parent. The content type in this example, Toys, inherits from the Item

http://msdn.microsoft.com/en-us/library/ms437580.aspx

430   Inside Microsoft SharePoint 2013

content type. The Item content type has an ID of 0x01. Note that the content type ID is not a GUID.
If you use the SharePoint Developer Tools to create a content type, the ID will be generated for you.
Depending on the exact definition of you content type, you don’t even have to worry about the XML,
because the new SharePoint Developer Tools for Visual Studio 2012 contain a designer that you can
use to create custom content types:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Item (0x01) -->
 <ContentType ID="0x01007E6057B85C8A465D9A695CC2E60AB705"
 Name="Toys"
 Group="WingTipToys Content Types"
 Description="Content type used to store information about toys"
 Inherits="TRUE">
 <FieldRefs>
 <FieldRef ID="{742e3245-a013-4537-82d3-727ddbfb981a}"
 DisplayName="Age Group" Required="TRUE" Name="AgeGroup" />
 <FieldRef ID="{f75c27ba-e321-4bbe-a30b-be0e085a5517}"
 DisplayName="Price" Required="TRUE" Name="ToysPrice" />
 </FieldRefs>
 </ContentType>
</Elements>

Before you can create a content type definition, you must decide which base content type to
inherit from. For example, you can inherit from a standard list content type such as Item, Contact, or
Task. You can also elect to create a content type that inherits from Document, making it possible to
add support for a document template and use it in a document library. In this example, we kept it
simple and inherited the Toys content type from Item. When you use the SharePoint Developer Tools
to create the content type, the wizard will prompt you to select a base content type. You can pick the
base content type from a drop-down list that includes previously created custom content types. Do
make sure, if you inherit your content type from another custom content type, that the other content
type is deployed to all environments in which you want to deploy your content type; otherwise your
content type will throw an error when it is deployed, and you won’t be able to use it.

For each field link that you want to add, you must create a FieldRef element that references a site
column definition. You can include both out-of-the-box SharePoint site columns and custom site
columns. If you are using the SharePoint Developer Tools and Visual Studio 2012, you can use the
designer to add site columns to your content type.

Creating site columns and content types by using the
server-side object model
We have looked at creating site columns and content types by using CAML, but you can achieve the
same thing by using the server-side object model. There is even one type of site column that you
should only create by using the server-side object model. Creating a managed metadata site column
using CAML is not supported. In order to create a managed metadata site column, you must use the
server-side object model.

	 Chapter 10  SharePoint type definitions and templates    431

To create the AgeGroup and ToysPrice site columns and the Toys content type by using the server-
side object model, you first have to determine when or how you want to create the columns. You can
add the code needed to create the site columns and content type to a Web Part, a custom applica-
tion page, a custom action, or a feature receiver. In the example in this section, you will add the code
to a feature receiver, so that the site columns and the content type are created when the feature is
activated.

First create a SharePoint 2013 - Empty Project and call it WingtipToysColumnsContentTypes.
You will deploy the project as a farm solution. Next, right-click the Features node in the Solution
Explorer and click Add Feature. This will generate a feature called Feature1 that is web scoped. Call
it Site-ColumnsContentTypes and change its scope to Site, because site columns and content
types should be created at the rootweb of a site collection and not at every subsite. Now right-click
the feature and select Add Event Receiver. Next, just uncomment the FeatureActivated event handler,
and you are ready to add the code to create the actual site columns and content type.

Call the custom site columns that you create using the server-side object model ToysPrice2 and
AgeGroup2, and the content type Toys2, to avoid conflicts if the columns and content type from
Chapter 3 are deployed to the same site collection. To create the ToysPrice2 column, you will use the
SPFieldCurrency object. You could also use the SPField object, but that won’t allow you to set values
for attributes that are specific to the currency field, such as Decimals. When setting the number of
decimals by using code, you use the SPNumberFormatTypes enumeration:

SPCurrencyField.DisplayFormat = SPNumberFormatTypes.TwoDecimals;

In order to make sure that you won’t cause any exceptions from trying to create duplicate
site columns, you will test whether the column already exists by using the SPFieldCollection.
ContainsField(SPField) method. To create the AgeGroup2 column, you use the SPFieldChoice
object, which allows you to add choices to the field.

Before creating the content type, you again test whether it already exists. There is no graceful way
to do this, so simply try to retrieve the content type and test whether it’s null. When you create the
new content type, use SPContentTypeCollection[SPBuiltInContentTypeId.Item] to specify the parent
content type. SharePoint will then generate the new content type ID for the content type that you are
creating. The last step is to add the links to the ToysPrice2 and the AgeGroup2 fields to the content
type. You do this by creating a SPFieldLink to both fields and adding those field links to the content
type. Listing 10-6 contains the complete FeatureActivated event handler that creates the site col-
umns and the content types. You could have chosen to use the FeatureDeactivating event handler to
remove the site columns and content type from the site, but removing site columns and content types
is not always possible and might cause data loss, so you won’t remove the columns and the content
types when the feature is deactivated.

432   Inside Microsoft SharePoint 2013

LISTING 10-6  Using server-side code to create site columns and a content type

public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 SPSite currentSite = properties.Feature.Parent as SPSite;

 SPWeb currentWeb = currentSite.OpenWeb();

 SPFieldCollection siteColumns = currentWeb.Fields;
 currentWeb.AllowUnsafeUpdates = true;

 if (!siteColumns.ContainsField("ToysPrice2"))
 {
 SPFieldCurrency toysPrice =
 siteColumns.CreateNewField("Currency", "ToysPrice2") as SPFieldCurrency;
 toysPrice.StaticName = "ToysPrice2";
 toysPrice.Title = "Price2";
 toysPrice.Group = "WingtipToys Columns";
 toysPrice.Required = true;
 toysPrice.DisplayFormat = SPNumberFormatTypes.TwoDecimals;
 currentWeb.Fields.Add(toysPrice);
 }

 if (!siteColumns.ContainsField("AgeGroup2"))
 {
 SPFieldChoice ageGroup =
 siteColumns.CreateNewField("Choice", "AgeGroup2") as SPFieldChoice;
 ageGroup.StaticName = "AgeGroup2";
 ageGroup.Title = "Age Group2";
 ageGroup.Group = "WingtipToys Columns";
 ageGroup.Required = true;
 ageGroup.Choices.Add("0-1");
 ageGroup.Choices.Add("2-3");
 ageGroup.Choices.Add("4-6");
 ageGroup.Choices.Add("7-9");
 ageGroup.Choices.Add("10-12");
 ageGroup.Choices.Add("12+");
 currentWeb.Fields.Add(ageGroup);
 }

 SPContentTypeCollection contentTypes = currentWeb.ContentTypes;
 if (contentTypes["Toys2"] == null)
 {
 SPContentType toys =
 new SPContentType(contentTypes[SPBuiltInContentTypeId.Item], contentTypes,
 "Toys2");
 toys.Group = "WingtipToys Content Types";
 toys.Description = "Content type used to store information about toys";

	 Chapter 10  SharePoint type definitions and templates    433

 SPField toysPrice = currentWeb.Fields.GetFieldByInternalName("ToysPrice2");
 SPField ageGroup = currentWeb.Fields.GetFieldByInternalName("AgeGroup2");
 SPFieldLink toysPriceLink = new SPFieldLink(toysPrice);
 SPFieldLink ageGroupLink = new SPFieldLink(ageGroup);
 toys.FieldLinks.Add(toysPriceLink);
 toys.FieldLinks.Add(ageGroupLink);

 contentTypes.Add(toys);
 }
 currentWeb.AllowUnsafeUpdates = false;
}

Custom list definitions

The SharePoint Developer Tools contain a project item template for creating custom lists. When the
List template is selected, you get to choose whether to create a customizable or a non-customizable
list. When you choose a customizable list, a list definition is created; choosing a non-customizable
list creates a list instance. If you create a new project item by using the List project item template,
the SharePoint Customization Wizard prompts you to choose the type of list that you want to create
by selecting one of the built-in list definitions. When you are creating a customizable list, only the
base types can be selected. When a list instance is created, any of the out-of-the-box list definitions
can be chosen as a starting point. Creating non-customizable lists and list instances was discussed in
more detail in Chapter 3, in the discussion about declarative elements. In this section, we will focus on
creating customizable lists or list definitions.

For the purposes of this section, the.zip archive of companion code for this book contains a
SharePoint project named WingtipToysLists. This project contains working samples of the custom
list that we are going to examine over the next few pages. After the project is created as a farm
solution, you can add the new list to it by clicking Add | New Item and choosing List. You will
create a customizable list called WingtipToysProductsList and base it on Default (Custom List). The
SharePoint Developer Tools will do a lot of the work for you by creating the list definition. To modify
the definition, you can use the designer. The designer offers three different views: List, Views, and
Columns views.

It is important to note that when you create a new list by using the SharePoint Developer Tools in
Visual Studio 2012, the designer tools don’t just create a new list definition, they also create a new list
instance. This means that when you activate the feature, a new list template will be made available
in the site and a new list instance will be created based on that template. This can be a bit confusing,
because some of the changes that you make in the designer are applied to both the list definition
and the list instance, and others are only applied to the list instance. The list instance is generated as
a subelement of the list template. The list template consists of an element.xml file and a schema.xml
file. The list instance has its own elements.xml.

434   Inside Microsoft SharePoint 2013

The List tab of the designer, shown in Figure 10-7, enables you to modify the metadata of the
list instance, such as Title (Display Name), URL, and Description. You can also select whether the list
instance should appear on the Quick Launch area on the left of the screen or whether it should be
hidden from the browser completely.

FIGURE 10-7  The List tab of the list designer is part of the SharePoint Developer Tools for Visual Studio 2012.

By using the Columns view, shown in Figure 10-8, you can add existing site columns to the list defi-
nition or create new columns specifically for use in this particular list. You can also add a content type,
which will then automatically add all the columns from the content type to the list definition.

FIGURE 10-8  The Columns tab of the list designer is part of the SharePoint Developer Tools for
Visual Studio 2012.

	 Chapter 10  SharePoint type definitions and templates    435

The Views tab of the designer is shown in Figure 10-9. This tab allows you to adjust an existing
view or create a new one. By default, an All Items view is added that shows all items in the list and
that pages the items to show only 30 at a time. You can add columns to, or remove columns from,
the view. The views you create will be part of the list definition, which means that they will be avail-
able in all list instances that are created based on the new list template.

FIGURE 10-9  The Views tab of the list designer is part of the SharePoint Developer Tools for
Visual Studio 2012.

In a lot of cases, when you create a custom list definition, you will want to offer users the opportu-
nity to create lists of the custom type in their sites. When you add a list instance, a list will be created
automatically with the title and description that you specified. If this is not the behavior that you want
when the feature containing your list is activated, you can simply delete the list instance from the list
definition. Users will then be able create their own list instances based on the custom list template.

The behavior of the SharePoint Developer Tools when a list instance is deployed using Visual Studio
is also worth noting. If a list instance already exists when the solution is redeployed, the Developer
Tools will detect a conflict. The Tools will offer to resolve the conflict, or you can stop the deployment.
If you let the Developer Tools resolve the conflict, the list instance in the site will be deleted and a
new one will be created. Sometimes that is how you want the conflict to be resolved, but if you had
added data (such as test data) to the list instance in the site, having it deleted with every deployment
might not be the behavior you are looking for.

436   Inside Microsoft SharePoint 2013

You don’t have to use the designer to work with lists in Visual Studio 2012. You can also open the
generated XML files directly. When you create a new project item for a list definition, it contains two
CAML-based files named elements.xml and schema.xml. Both of these files are required to create a list
definition. We will begin by examining the elements.xml file that contains a ListTemplate element:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Do not change the value of the Name attribute below.
 If it does not match the folder name of the List project item,
 an error will occur when the project is run. -->
 <ListTemplate
 Name="WingtipToysProductsList"
 Type="10000"
 BaseType="0"
 OnQuickLaunch="TRUE"
 SecurityBits="11"
 Sequence="410"
 DisplayName=" Products List"
 Description=" Wingtip Toys Products List"
 Image="/_layouts/15/images/itgen.png"/>
</Elements>

As you can tell, this ListTemplate element has a Name of WingtipToysProductsList. The value of the
Name attribute is important within a ListTemplate element because SharePoint Foundation requires
a child directory inside the root feature directory with the same name that will contain a file with the
well-known name schema.xml. If you use the SharePoint Developer Tools to deploy or package your
project, the required directory, named WingtipToysProductsList, will be created inside the root feature
directory, and the schema.xml file will be placed inside.

The ListTemplate element defines a Type attribute with an integer value used to identify the creat-
able list type associated with the list definition. Microsoft uses lower-numbered identifiers for the
built-in list types, such as 104 for Announcements and 105 for Contacts. When you use the SharePoint
Developer Tools to create a list definition, a list type identifier of 10,000 or greater will be used. The
tools will make sure that they don’t generate a duplicate type identifier if multiple custom list defini-
tions exist in the environment.

Now that you have learned what’s required in the elements.xml file, let’s move on to discuss what’s
inside the schema.xml file. The schema.xml file contains a top-level List element that contains several
attributes and inner elements for content type, fields, views, and forms:

<List xmlns:ows="Microsoft SharePoint"
 Title="WingtipToysProductsList"
 FolderCreation="FALSE"
 Direction="$Resources:Direction;"
 Url="Lists/WingtipToysProductsList"
 BaseType="0"
 xmlns="http://schemas.microsoft.com/sharepoint/"
 EnableContentTypes="TRUE">

	 Chapter 10  SharePoint type definitions and templates    437

 <MetaData>
 <ContentTypes><!-- add content types here --></ContentTypes>
 <Fields><!-- add fields here --></Fields>
 <Views><!-- define views here --></Views>
 <Forms><!-- add support for forms here --></Forms>
 </MetaData>
</List>

Now we will take a little time to walk through the individual sections of the schema.xml file in
more detail. We will begin with the ContentTypes element. The ContentTypes element can contain
content type instances or content type references. The ContentTypes element in this example contains
a ContentType element with an instance of the ListFieldsContentType. This content type was generated
by the SharePoint Developer Tools. If you add your own content types to the list, you can choose to
remove this one. The ContentTypes element also contains three content type references. The first one,
with ID=”0x01”, references the out-of-the-box Item content type; the second, with ID=”0x0120”, refer-
ences the out-of-the-box Folder content type; and the last one, with the long ID that is based on the
Item ID, is a reference to the Toys2 content type that was created in the previous section:

<ContentTypes>
 <ContentType ID="0x0100b5555c921f27445b8b00e0033f43e08c"
 Name="ListFieldsContentType">
 <FieldRefs>
 <FieldRef ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}" Name="Title" />
 <FieldRef ID="{26863001-b37d-487e-8438-cec08fb6b205}" Name="ToysPrice2" />
 <FieldRef ID="{5d7e9e45-0798-4788-9b47-9934c7973e52}" Name="AgeGroup2" />
 </FieldRefs>
 </ContentType>
 <ContentTypeRef ID="0x01">
 <Folder TargetName="Item" />
 </ContentTypeRef>
 <ContentTypeRef ID="0x0120" />
 <ContentTypeRef ID="0x01009CC2D513D1E6E848B3A68900C289057D" />
</ContentTypes>

Now we will now examine the Fields section. Dealing with the fields of a content type in the
schema.xml file is more complicated than the example shown in the previous chapter, when we
added a content type to a list through the server-side object model. When you add a content type
to a list by using the server-side object model, SharePoint automatically adds the fields of the content
type to the Fields collection of the list. However, when you add a content type to the ContentTypes
section of the schema.xml file, the fields aren’t added automatically. If you modify the CAML of the
schema.xml file directly, you have to add each field to the list’s field collection explicitly. If you use the
list designer, the Developer Tools will add the fields to the schema.xml for you, so you don’t have
to worry about adding them in properly. The requirement to add redundant field definitions into the
schema.xml file doesn’t seem very intuitive. After all, you’ve already defined the fields once in the
Toys2 content type, so why should you define them a second time in the schema.xml file? SharePoint,
however, doesn’t supply any mechanism to copy the fields from content types that are added or ref-
erenced in the schema.xml file to the list. The following shows the CAML for adding the fields to the
list as it is generated by the list designer:

438   Inside Microsoft SharePoint 2013

<Fields>
 <Field ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}"
 Type="Text"
 Name="Title"
 DisplayName="$Resources:core,Title;"
 Required="TRUE"
 SourceID="http://schemas.microsoft.com/sharepoint/v3"
 StaticName="Title" MaxLength="255" />
 <Field Type="Currency"
 DisplayName="Price2"
 StaticName="ToysPrice2"
 Group="WingtipToys Columns"
 Decimals="2"
 ID="{26863001-b37d-487e-8438-cec08fb6b205}"
 SourceID="{6ecd59dd-c430-4a2c-a7c5-4c633d0b086e}"
 Name="ToysPrice2" />
 <Field Type="Choice"
 DisplayName="Age Group2"
 StaticName="AgeGroup2"
 Group="WingtipToys Columns"
 ID="{5d7e9e45-0798-4788-9b47-9934c7973e52}"
 SourceID="{6ecd59dd-c430-4a2c-a7c5-4c633d0b086e}"
 Name="AgeGroup2">
 <CHOICES />
 </Field>
</Fields>

After adding fields to the list, you also will want to specify which fields are to be added to the vari-
ous views supported by the list, such as the standard All Items view, or the custom My View that was
added in the example. In order to do this, the Views element of the schema.xml file has to be modi-
fied. The following View element demonstrates adding FieldRef elements to the ViewFields node of
the My View view so that it displays the fields that were added in the Fields section earlier:

<Views>
 <View BaseViewID="2" Name="b4ac1dc2-9066-451c-87bd-517b1dfd3302"
 DisplayName="My View" Type="HTML" WebPartZoneID="Main"
 SetupPath="pages\viewpage.aspx" Url="My View.aspx">
 <ViewFields>
 <FieldRef Name="AgeGroup2" />
 <FieldRef Name="ToysPrice2" />
 <FieldRef Name="Modified" />
 <FieldRef Name="Editor" />
 </ViewFields>
 <Query />
 <Toolbar Type="Standard" />
 <XslLink Default="TRUE">main.xsl</XslLink>
 <JSLink>clienttemplates.js</JSLink>
 <RowLimit>50</RowLimit>
 </View>
</Views>

	 Chapter 10  SharePoint type definitions and templates    439

The Forms element at the bottom of the schema.xml file is used to define the default forms for dis-
playing, editing, and adding items. A schema.xml file can be written to use custom forms for viewing
and editing content. However, you can also rely on a generic form named form.aspx, which is installed
along with SharePoint Foundation and deployed inside the SharePoint root directory at TEMPLATE\
Pages. When you create a new list definition by using the SharePoint Developer Tools, the schema.xml
file is created to use the generic file form.aspx for each of its default forms:

<Forms>
 <Form Type="DisplayForm" Url="DispForm.aspx"
 SetupPath="pages\form.aspx" WebPartZoneID="Main" />
 <Form Type="EditForm" Url="EditForm.aspx"
 SetupPath="pages\form.aspx" WebPartZoneID="Main />
 <Form Type="NewForm" Url="NewForm.aspx"
 SetupPath="pages\form.aspx" WebPartZoneID="Main" />
</Forms>

Summary

This chapter started by examining custom field types. We looked at several different types of fields
that you can create, which showed how powerful and flexible custom field types can be. We also
established that deploying custom field types has an impact on your entire SharePoint environment
and can only be done by using farm solutions. The new JSLink property can be used to customize the
behavior of fields with JavaScript. The JavaScript files can be deployed without using a farm solution
and have a much smaller impact on the environment.

We also looked at creating custom site columns and content types. We compared creating
columns and content types using CAML and using the server-side object model. Both are valid
approaches, and in most cases it is possible to create the same result by using either approach.
Using CAML means that it is easier to “read” what site columns and content types have been cre-
ated. Using the server-side object model means that the site columns and content types will be easier
to maintain.

In the final section of this chapter, we used CAML and the SharePoint Developer Tools designers
to create list definitions and list instances. We studied the differences between list definitions and list
instances and looked into when you might need one or the other.

		 441

C H A P T E R 1 1

SharePoint site provisioning

This chapter focuses on creating templates for sites. We will compare the different types of tem-
plates that can be created and discuss their strengths and weaknesses. You will learn about the

underlying Microsoft SharePoint site provisioning architecture, in which every new site is created by
using a specific site definition. We will examine the role of the GLOBAL site definition and discuss site
definitions, web templates and site templates. We will also look at using server-side code to create
sites by using site provisioning providers and web provisioning events. Finally, we’ll look at templates
for sites hosting SharePoint apps.

You can create a site in SharePoint through the user interface, by using Windows PowerShell, by
using a farm or sandboxed solution, or by using the client-side object model from, for instance, a
SharePoint app or an externally hosted application. Site collections can only be created through the
user interface, by using Windows PowerShell, or by using a farm solution. From a sandboxed solution
or the client-side object model it is not possible to create site collections.

Regardless of the approach you choose to create a site, and regardless of whether you create a
site or a site collection, SharePoint will always use a template to fully provision your site. In the first
section, we will discuss the different types of templates that you can use to provision sites. We will
look into site definitions, site templates, and web templates, and the advantages and disadvantages
of each of them when they are used to create your own templates.

Whenever a new site is created, the exact steps are that executed to provision the site differ
depending on how the site is being created. The provisioning process always starts with the same
steps, though. The first step of the site provisioning process is to reserve the URL. Before SharePoint
2010, you could tell that this was the case, because if site creation failed at some point after the
URL had been reserved, you couldn’t create a new site by using that same URL and you also couldn’t
browse to the site on that URL, because it wasn’t completely provisioned. The URL was stored in the
database, though, meaning that it couldn’t be used again. Starting with SharePoint 2010, the site
provisioning process was redesigned to be processed as a single transaction. If provisioning fails at
some point during site creation, the whole site is removed again, and the URL can be reused to
create another site.

442   Inside Microsoft SharePoint 2013

The GLOBAL site definition

After the URL has been reserved, SharePoint begins the actual site provisioning process by executing
the provisioning instructions defined in a special site definition called the GLOBAL site definition. The
GLOBAL site definition contains a set of common provisioning instructions. It has an ONET.xml file
that contains site provisioning instructions that are executed each time a new site is created. If you
examine the ONET.xml file of the GLOBAL site definition, you will find a Project element that contains
child elements named NavBars, ListTemplates, BaseTypes, Configurations, and Modules:

<Project> <!-- can define navigation elements -->
 <NavBars/> <!-- defines list definitions for system lists and galleries -->
 <ListTemplates/> <!-- defines base types used by list and document libraries -->
 <BaseTypes/> <!-- defines configuration with shared provisioning instructions -->
 <Configurations/> <!-- provisions files for standard master pages and themes -->
 <Modules/>
</Project>

The NavBars element of the GLOBAL site definition is empty; no top-level or Quick Launch naviga-
tion elements are defined in it. The ListTemplates element contains ListTemplate elements that define
list definitions for creating special system lists and galleries such as the Master Page Gallery, the
Solution Gallery, and the Web Part Gallery. The BaseTypes section provides a definition for each of
the supported base types. The base types are Generic List, Document Library, Discussion Form, Vote
or Survey, and Issues List. All base type elements contain configurations that define which fields are
added to every list and document library.

The Configurations element of the GLOBAL site definition is important because it is used to activate
the built-in fields and ctypes features automatically whenever a new site collection is created. No other
features are listed in the GLOBAL site definition; the only ones that are activated on all sites automati-
cally are the fields and ctypes features. The Configuration element also contains a Lists element to
create special system lists and galleries. There are six other List elements, which contain a RootWebOnly
attribute with a value of TRUE. This attribute setting configures these List elements so that they create
system lists and galleries in top-level sites only when a new site collection is being created. Exam-
ples of system lists that only exist in the root web of a site collection are the Master Page Gallery,
the Solutions Gallery, the User Information List, and the Web Part Gallery.

The ONET.xml file in the GLOBAL site definition includes two Module elements, which are named
DefaultMasterPage and OOBThemesV15. The Module element named DefaultMasterPage is used
to add the standard SharePoint master pages to every new site. The Module element named OOB-
ThemesV15 has been written to add the .thmx files for the standard SharePoint themes into the
Themes Gallery of each top-level site.

	 Chapter 11  SharePoint site provisioning    443

The next steps of the provisioning process depend on the way the site is being provisioned. There
are three types of templates that can be used to provision a site in SharePoint:

■■ Site definitions

■■ Web templates

■■ Site templates

Site definitions

A site definition is a template that is used by SharePoint to create and provision new sites. Site defini-
tions can provide information about the navigation, the lists and libraries that are available, features
that are activated, and pages that are created when the site is provisioned. After a site has been created,
the site definition that the site is based on will stay with the site forever. The SPWeb.WebTemplate prop-
erty stores the name of the site definition that was used to create the site, and SPWeb.WebTemplateId
stores the ID of the site definition that the site is based on. The SPWeb.Configuration property stores
the ID of the configuration that was used. Even if other mechanisms, such as web templates or site
templates, are used to create the site, the WebTemplate, WebTemplateId, and Configuration properties
will still refer to a site definition and its configuration and not to the web template or site template.
All the out-of-the-box templates that you can choose from when you create a site are site definitions.
A site definition consists of a minimum of two different files, the webtemp*.xml file and the ONET.xml
file. The metadata of the site definition, such as the name and ID and information about the configu-
ration, is stored in the webtemp*.xml file.

Webtemp*.xml
The webtemp files are stored the SharePoint root directory at TEMPLATE/1033/XML. Note that the
1033 in this path refers to the English version of SharePoint, or the English language packs. If you
are running a different version of SharePoint, such as a Spanish or a Chinese version, 1033 will
be replaced by a different locale identifier. If you have multiple language packs installed on your
SharePoint server and you want a site definition to be available for all of those languages, you will
have to deploy your webtemp file to the XML folders for all those languages.

On a SharePoint server there are several webtemp files, all of which start with webtemp and end
with .xml. The file name of the webtemp file can be made unique by adding something in between
webtemp and .xml. The webtemp file that contains information about the eDiscovery site definitions,
for instance, is called webtempedisc.xml. The webtemp of the basic SharePoint Foundation sites is
simply called webtemp.xml. Figure 11-1 shows the contents of the TEMPLATE/1033/XML folder on a
server that is running SharePoint Server 2013 Enterprise Edition.

444   Inside Microsoft SharePoint 2013

FIGURE 11-1  The TEMPLATE\1033\XML folder containing the webtemp*.xml files

A single webtemp file can contain information about more than one site definition. The web
temp.xml file, for instance, contains information about 16 different site definitions. Some of them are
hidden and should not be used by end users or by developers to create sites; others are visible and
can be selected as templates when sites are created through the user interface. Site definitions can
be made hidden for several reasons. In some cases, they are only for SharePoint internal usage, such
as the GLOBAL site definition and the Central Administration site definitions. Other times, Microsoft
might want to deprecate a site definition because it is no longer in line with how SharePoint can best
be used, or because a better alternative exists. Because existing sites might break if a site definition is
removed completely, Microsoft won’t remove the site definition from SharePoint, but they will make
it hidden so that existing sites in your environment will continue to work. The fact that the definitions
can still be found in the file system of a SharePoint server does not mean that it is a good idea to use
them to create sites. Changing the Hidden property of an out-of-the-box site definition so that end
users can use the site definition to create sites is not supported and should not be attempted.

The webtemp file contains Template and Configuration elements. The template element is linked to
an ONET.xml file. Multiple configurations can be defined in a single ONET.xml file, with a Configura-
tion element for each one. In the Configuration element, the title as users will view it, whether a site
definition is hidden, a description, and a display category are defined. The display category is the tab
on which the site definition will appear in the site creation user interface in SharePoint. The image
used to be visible when subsites were created from an existing site collection, but in SharePoint 2013
the image won’t show up anywhere in the user interface:

<Template Name="STS" ID="1">
 <Configuration ID="0"
 Title="Team Site"
 Hidden="FALSE"
 ImageUrl="/_layouts/15/images/stts.png?rev=23"
 Description="A place to work together with a group of people."
 DisplayCategory="Collaboration" >
 </Configuration>

	 Chapter 11  SharePoint site provisioning    445

 <Configuration ID="1"
 Title="Blank Site"
 Hidden="TRUE"
 ImageUrl="/_layouts/15/images/stbs.png?rev=23"
 Description="A blank site for you to customize
 based on your requirements."
 DisplayCategory="Collaboration"
 AllowGlobalFeatureAssociations="False" >
 </Configuration>
 <Configuration ID="2"
 Title="Document Workspace"
 Hidden="TRUE"
 ImageUrl="/_layouts/15/images/stdw.png?rev=23"
 Description="A site for colleagues to work together on a document.
 It provides a document library for storing the primary document
 and supporting files, a tasks list for assigning to-do items,
 and a links list for resources related to the document."
 DisplayCategory="Collaboration" >
 </Configuration>
 </Template>

Figure 11-2 shows the template selection box that is displayed when a new subsite is created.

FIGURE 11-2  The template selection box as displayed when a new subsite is created

ONET.xml for site definitions
Now that we have discussed the webtemp file, we can move on to the ONET.xml file. The ONET.xml
file serves as the top-level manifest for a site definition. This manifest file is used to define provision-
ing instructions that activate features and create site elements. ONET.xml files are deployed to a sub-
folder of the TEMPLATE\SiteTemplates folder. Each site definition has its own dedicated subfolder. The
name of this subfolder matches the name of the site definition in the webtemp*.xml file. The ONET.xml
file for the Team site and Blank site, for instance, is deployed to the TEMPLATE\SiteTemplates\STS folder.

Let’s examine the contents of the ONET.xml file that serves as the manifest for the STS or Team Site
site definition. The basic structure of the ONET.xml file includes a top-level Project element, which
contains several child elements such as NavBars, ListTemplates, DocumentTemplates, Configurations,
Modules, and ServerEmailFooter:

446   Inside Microsoft SharePoint 2013

<Project
 Title="$Resources:onet_TeamWebSite;"
 Revision="2"
 ListDir="$Resources:core,lists_Folder;"
 xmlns:ows="Microsoft SharePoint"
 UIVersion="4">

 <NavBars />
 <ListTemplates />
 <DocumentTemplates />
 <Configurations/>
 <Modules />
 <ServerEmailFooter/>

</Project>

The NavBars node defines the set of navigation bars that are created when a new site is provi-
sioned. The NavBars element inside the STS site definition has been written to create several naviga-
tion bars that are used by the top link bar and the Quick Launch bar:

<NavBars>
 <NavBar Name="$Resources:core,category_Top;" ID="1002" />
 <NavBar Name="$Resources:core,category_Documents;" ID="1004" />
 <NavBar Name="$Resources:core,category_Lists;" ID="1003" />
 <NavBar Name="$Resources:core,category_Discussions;" ID="1006" />
</NavBars>

Note that these NavBar elements are based on well-known ID values. The NavBar element with an
ID of 1002 is used to create the navigation bar used by the top link bar. The NavBar elements with IDs
of 1004, 1003, and 1006 are used to create dynamic collections of navigation nodes that are displayed
in the Quick Launch bar. For example, the NavBar element with an ID of 1004 creates a dynamic col-
lection of navigation nodes that link to document libraries that have been created, with the option to
display them on the Quick Launch bar. If the NavBar elements are omitted, some navigation will still
be displayed in the site, but it won’t be possible to adjust the navigation by using the user interface.

The Configurations section of the ONET.xml file contains a child Configuration element for each sup-
ported configuration. This is what makes it possible for a single ONET.xml file to be used to provision
several types of sites. The ONET.xml file in the STS site definition defines three separate Configuration
elements for creating team sites, blank sites, and document workspace sites:

<Project>
 <Configurations> <!-used to create team sites -->
 <Configuration ID="0" Name="Default" /> <!-used to create blank sites -->
 <Configuration ID="1" Name="Blank" /> <!-used to create document workspace sites -->
 <Configuration ID="2" Name="DWS" />
 </Configurations>
</Project>

A Configuration element contains attributes such as ID, Name, and MasterUrl. A Configuration
element also contains child elements such as Lists, Modules, SiteFeatures, and WebFeatures, which
are used to create site elements and activate features:

	 Chapter 11  SharePoint site provisioning    447

<Configuration ID="0" Name="Default"
 MasterUrl="_catalogs/masterpage/seattle.master">
 <Lists />
 <Modules />
 <SiteFeatures />
 <WebFeatures />
</Configuration>

The Configuration element for a team site contains a Lists element that creates the Documents
document library:

<Lists>
 <List FeatureId="00BFEA71-E717-4E80-AA17-D0C71B360101"
 Type="101"
 Title="$Resources:core,shareddocuments_Title_15;"
 Url="$Resources:core,shareddocuments_Folder;"
 OnQuickLaunch="TRUE"
 QuickLaunchHeading="TRUE" />
</Lists>

The Configurations section contains a Modules element that is used to reference Module elements.
For example, the Configuration element for a team site includes a Modules element that references a
Module named Default:

<Modules>
 <Module Name="Default" />
</Modules>

Although Module elements are referenced inside the Configurations element, they are actually
defined in a Modules element that is nested directly inside the top-level Project element. A Module
element can contain a File element that creates a Web Part page and can optionally populate it with
Web Part instances. The STS site definition contains a Module element named Default, which is refer-
enced by the Configuration element for a team site. This Module element provisions a home page for
a new team site named default.aspx and adds a link to the top link bar:

<Module Name="Default" Url="" Path="">
 <File Url="default.aspx" NavBarHome="True">
 <NavBarPage Name="~siteTitle" Url="~site" ID="1002" Position="Start" />
 <NavBarPage Name="~siteTitle" Url="" ID="0" Position="Start" />
 </File>
</Module>

The last two items in an ONET.xml file that are important to discuss are the two elements inside
the Configuration element named SiteFeatures and WebFeatures. These two elements contain Feature
elements whose purpose is to activate specific features during the site provisioning process. For exam
ple, the SiteFeatures element for the team site configuration activates two site collection–scoped
features that add support for the standard SharePoint Foundation Web Parts and the Three-State
Workflow template:

<SiteFeatures>
 <!-- BasicWebParts Feature -->
 <Feature ID="00BFEA71-1C5E-4A24-B310-BA51C3EB7A57" />

448   Inside Microsoft SharePoint 2013

 <!-- Three-State Workflow Feature -->
 <Feature ID="FDE5D850-671E-4143-950A-87B473922DC7" />
</SiteFeatures>

The WebFeatures element for the team site configuration activates five site-scoped features that
add support for the basic functionality of a team site, such as collaboration list types and a standard
wiki library named SitePages:

<WebFeatures>
 <!-- TeamCollab Feature -->
 <Feature ID="00BFEA71-4EA5-48D4-A4AD-7EA5C011ABE5" />
 <!-- MobilityRedirect -->
 <Feature ID="F41CC668-37E5-4743-B4A8-74D1DB3FD8A4" />
 <!-- WikiPageHomePage Feature -->
 <Feature ID="00BFEA71-D8FE-4FEC-8DAD-01C19A6E4053" />
 <!-- SiteNotebook Feature -->
 <Feature ID="F151BB39-7C3B-414F-BB36-6BF18872052F" />
 <!-- Getting Started List instance -->
 <Feature ID="4AEC7207-0D02-4f4f-AA07-B370199CD0C7" />
 <!-- MDS -->
 <Feature ID="87294C72-F260-42f3-A41B-981A2FFCE37A" />
</WebFeatures>

Because of the link that will always exist between the site and the site definition, changing a site
definition after it has been used to create sites is not supported. It is never supported to adjust out-
of-the-box SharePoint files, so adjusting the out-of-the-box site definitions is not supported even if
they haven’t been used to create sites. If you need a new version of an existing site definition, you
can either create a new site definition and hide the old one, or you can use feature stapling to add
features and thus functionality to a site that is created based on the site definitions.

Feature stapling
A feature can be used to attach one or more features to a configuration of a site definition through a
technique known as feature stapling. For example, instead of creating a custom site definition, you can
elect to create a custom feature to extend configurations from a standard site definition. For example,
you can create a feature to staple the MainSite feature to the Team Site configuration.

To staple a feature to a configuration such as Team Site, you must create a second feature to as-
sociate the feature to be stapled with one or more configurations. Feature stapling is achieved by
adding a FeatureSiteTemplateAssociation element that contains an Id attribute specifying the feature
that is being stapled and a TemplateName attribute specifying the target configuration. The follow-
ing example demonstrates stapling the MainSite feature to the Team Site configuration by using the
feature’s ID and the name and configuration ID for Team Site:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <FeatureSiteTemplateAssociation
 Id="edcdcd75-dff2-479d-ac32-b37f8fa9d459"
 TemplateName="STS#0" />
 </Elements>

	 Chapter 11  SharePoint site provisioning    449

The purpose of feature stapling is to activate features automatically when a new site is created.
After a feature that staples other features has been activated, SharePoint automatically activates the
stapled features when new sites are created. However, it is important that you know how the scope of
a feature that staples other features affects the provisioning behavior of SharePoint.

The activation scope of the feature performing the stapling must be higher than the features
being stapled. For example, a feature that is activated at the site collection scope can only staple fea-
tures that activate at site-level scope. A feature that activates at the web application scope can staple
features that activate at site-level scope or at the site collection scope. A feature that activates at the
farm scope can staple features that activate at any of the other three scopes. If you define a feature
that activates at the web application scope, it provides a quick and easy way to automate the activa-
tion of its stapled features within every new team site that is created in the target web application.
Going one step further, you can associate stapling a feature to the main configuration of the GLOBAL
site definition. This technique makes it possible to staple a feature to all new sites, as opposed to only
sites created from a specific configuration:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <FeatureSiteTemplateAssociation
 Id="edcdcd75-dff2-479d-ac32-b37f8fa9d459"
 TemplateName=" GLOBAL" />
</Elements>

This technique is powerful because it allows you to activate specific features on any type of
site created within a farm. The one caveat here is that the configuration for blank sites is con
figured to ignore any features stapled to the GLOBAL site definition. This is done by setting the
AllowGlobalFeatureAssociations attribute, that is added to the Configuration for the blank site
in the webtemp.xml file, to False. Also, a feature stapled to a certain site definition will be stapled
to that site definition in the entire farm. This might not always be appropriate.

Another downside of using stapled features is that it is not possible to define the order in which
they are activated. When a site is provisioned, the features that are stapled to the site will be activated
in a random order. This means that if one stapled feature requires another stapled feature to be acti-
vated first, you will have to use feature dependencies, or design your features in a different way.

Order of provisioning when using site definitions
When a site is provisioned by using a site definition, several steps are executed. We already discussed
the first two. The full list is:

1.	 The URL of the site is reserved.

2.	 The configuration as stored in the GLOBAL site definition is provisioned.

3.	 If a site collection is being created, all site collection–scoped features that are listed in the
SiteFeatures section of the relevant configuration in the ONET.xml file are activated in the
order in which they are listed.

450   Inside Microsoft SharePoint 2013

If a subsite is being created, SharePoint will check to make sure that all site collection–scoped
features that are listed in the SiteFeatures section of the relevant configuration in the ONET.xml
file are already activated on the site-collection level. If they are not, site provisioning will be
aborted and steps that have already been executed will be rolled back.

4.	 If a site collection is being created, all site collection–scoped features that are stapled to the
site definition are activated in a random order.

If a subsite is being created, SharePoint will check to make sure that all site collection–scoped
features that are stapled to the site definition are already activated on the site-collection level.
If they are not, site provisioning will be aborted and steps that have already been executed
will be rolled back.

5.	 All site-scoped features that are listed in the WebFeatures section of the relevant configuration
in the ONET.xml file are activated in the order in which they are listed.

6.	 All site-scoped features that are stapled to the site definition are activated in a random order.

7.	 All list instances that are defined in the ONET.xml file will be created.

8.	 The contents of the modules that are defined in the ONET.xml file are created. These are
usually pages.

From this list, you can note a couple of things that might cause problems. The fact that site col-
lection–scoped features are always activated before site-scoped features and that features that are
listed in the ONET.xml file are always activated before stapled features means that you have to take
this into account when designing your features. The good news is that this behavior is predictable. So
all it takes it some proper planning up front to avoid problems. Another common challenge is that all
features are activated before the pages that are defined in the Modules element of the ONET.xml are
created. This means that if you create a feature to modify one of these pages (for instance, if you add
a Web Part to the home page), the feature will be activated before the page exists and you will be trying
to add Web Parts to a nonexistent page. To avoid this, it is a best practice to create your pages by using
a separate feature. That way you can make sure that the page gets created before it is modified.

Custom site definitions
Technically it is possible for you to create your own custom site definitions. However, you are advised
not to create custom site definitions, because site definitions cannot be removed after they have been
used—they will need to exist as long as those sites exist, even when the environment is updated to a
new version of SharePoint, which adds significant extra complexity to upgrades. Custom site defini-
tions will always have to be deployed by using farm solutions, because that is the only way to deploy
files to the file system and thus the only way to deploy the webtemp*.xml and the ONET.xml file to
the right file locations. This means that if you ever want to move to a cloud-hosted service such as
Microsoft Office 365, you will not be able to deploy your own custom site definitions, and you won’t
be able to move your sites to that service. You will have to migrate the data from that site to new sites
in the cloud-hosted environment.

	 Chapter 11  SharePoint site provisioning    451

So although the SharePoint Developer Tools have a predefined element called Site Definition,
which you can use to create a custom site definition, you shouldn’t use it. There is really only one
scenario that might require you to create custom site definitions. In all other scenarios, it is better
to create a custom web template or use custom code to adjust your sites after provisioning them
based on an out-of-the-box site definition. Neither of these approaches will work if you are creating
a Variations Hierarchy. A Variations Hierarchy is mainly used for creating multilingual web content
management sites. If the same pages with the same content have to be published in multiple lan-
guages, you might want to use Variations for this. If you want to create custom templates for the sites
used in the Variations Hierarchy, you will have to create custom site definitions. In all other cases,
you should not create custom site definitions.

Web templates

Web templates were introduced in SharePoint 2010. They provide a more flexible way to create cus-
tom templates that can be used to create sites. Web templates use an ONET.xml just like site defini-
tions, but they do not use a webtemp*.xml file. Instead, they use the WebTemplate element in an
elements.xml file to define the metadata of the template. The ONET.xml file of a web template is not
deployed to a subfolder of the SiteTemplates directory; instead, web templates are deployed by using
features, and both the elements.xml file and the ONET.xml file are stored with the features.

Web templates are not deployed with a standard SharePoint installation. They are specifically
designed so that developers can create custom templates for their sites without the templates
themselves being persisted within the system like site definitions. From a customizations perspective,
the ability to create web templates is one of most important changes of the SharePoint 2010 release.
To start creating a new web template, first create a new Microsoft Visual Studio solution called
WingtipToysWebTemplates by using the SharePoint 2013 - Empty Project template. This solution
is included in the downloadable .zip archive of companion code for this book. Next add a new
Empty Element item to it. Call the element ProjectSite. Rename the feature that was generated by
the SharePoint Developer Tools when you added the empty element to WingtipToysWebTemplates.

elements.xml
Next open up the elements.xml file and add a WebTemplate element to it and fill in some of the
attributes. When you add a WebTemplate element to an elements.xml file, you will notice that you
can choose from a long list of properties. For this example, you will only use some of the basic and
mandatory ones. The first one to fill in is the Name attribute. The name of the WebTemplate element
has to be an exact match to the name of the EmptyElement. In this case, that is ProjectSite. The next
properties are Title and Description. These are what users will see in the user interface when they are
creating a site, so they should be something that a user can understand. The DisplayCategory is the
tab of the template selection box that the template will show up in. You will choose WingtipToys and
create your own tab, but you could have also used Collaboration to add it to the existing Collabora-
tion tab.

452   Inside Microsoft SharePoint 2013

The next three attributes are linked together: BaseTemplateID, BaseTemplateName, and Base
ConfigurationID. These properties are used to link the web template to a site definition. You saw
earlier that the SPWeb has three properties—the WebTemplateName and the WebTemplateId that
store the site definition that was used to create the site, and Configuration, which stores the ID of the
configuration that was used. Even when a web template is used to create a site, SharePoint still requires
a value for each of these properties. You will specify these values through the values that you assign
to the BaseTemplateID, BaseTemplateName, and BaseConfigurationID attributes. The values are just
for reference; the site definition and configuration that you select aren’t actually used when a site is
created. Only the information from your web template is used. You should still select a site definition
and a configuration that are relatively similar to the template you are creating. After the site has been
created for SharePoint, it will seem like the site was created by using the specified site definition, and
the changes between the site definition and what the site actually looks like are made afterward.
Though there is no requirement for the site definition and the configuration to be similar to what
you’re creating, it is less likely to cause problems in the future if the selected site definition doesn’t
deviate too much from what’s specified in the web template. In this example, you will use the Team
Site template as the base. The elements.xml contents are show in Listing 11-1. After the site has been
created, it has no reference to the web template that was used to create it. The only reference the
site has is to the site definition and configuration that you specified. This means that you can safely
change or even remove a web template after it has been used to create sites, making it a lot easier
to maintain and a lot more flexible than site definitions.

LISTING 11-1  The elements.xml contents, including the WebTemplate element.

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <WebTemplate BaseTemplateID="1"
 BaseTemplateName="STS"
 BaseConfigurationID="0"
 Name="ProjectSite"
 Title="WingtipToys Project Site"
 Description="Use this template to create
 a Wingtip Toys project site"
 DisplayCategory="WingtipToys">
 </WebTemplate>
</Elements>

ONET.xml for web templates
The next file to create is an ONET.xml file. The ONET.xml file of a web template is very similar to that
of a site definition, and because of that, the easiest way to start is by copying the ONET.xml file of a
site definition into your empty element. Copy the ONET.xml of the standard Team Site definition from
the TEMPLATE\SiteTemplates\sts\xml folder in the SharePoint root directory. If you copy files into
your project this way, you always have to check the deployment type of the file by selecting the file in
Solution Explorer and scrolling to the bottom of the properties pane. If the deployment type is set to
No Deployment, you have to adjust it so that it is set to ElementFile, as shown in Figure 11-3.

	 Chapter 11  SharePoint site provisioning    453

FIGURE 11-3  Solution Explorer and the properties pane showing the web templates solution and ONET.xml
properties

Though the ONET.xml file of a web template is similar to that of a site definition, they are not
the same. Some elements that are used in a site definition’s ONET.xml file are not supported in the
ONET.xml of a web template. Elements that are not supported are:

■■ Modules  A collection of Module elements that specify files and “all user” Web Parts with
which to provision a website.

■■ FileDialogPostProcessor  A class used to modify the File Open and Save dialog boxes’ inter-
faces in a document library.

■■ ExternalSecurityProvider  An interface that returns custom information about the security
used in SharePoint Foundation for indexing by a search crawler on a portal.

■■ ServerEmailFooter  The footer section for server email, which includes both HTML and the
text that is displayed.

Modules are used to add pages to your site. We already discussed earlier that it is a best practice
not to use the Modules element, but to use a feature instead, so this limitation won’t have much of an
impact.

454   Inside Microsoft SharePoint 2013

The FileDialogPostProcessor and ExternalSecurityProvider elements are hardly ever used, so there
will be very few people affected by the fact that they can’t use these elements in a web template. Al-
though the ServerEmailFooter is used in, for instance, the out-of-the-box team site, its use isn’t critical
to the workings of the site definition, so this element won’t be missed too much either.

The ONET.xml file can also only contain one configuration when you are using web templates. You
saw that for site definitions it is possible to specify several configurations in a single ONET.xml file, but
you can’t use this technique when using web templates. Each type of site will need to have its own web
template. This is not a problem, but something to keep in mind. The ID of the configuration in the
ONET.xml file must match that specified in the BaseConfigurationID attribute in the elements.xml file.

Another “limitation” of web templates is that you can’t use feature stapling with them. However,
the reason that feature stapling is so attractive when you are using site definitions is because you can
use it to adjust the behavior of the site definition without modifying the definition itself, which is not
supported after the site definition has been used to create sites. Web templates can be modified after
they have been used to create sites, so instead of using feature stapling you can simply add all fea-
tures you want activated on the site to the SiteFeatures and WebFeatures elements of the ONET.xml
file. This way you can not only modify the features you want activated on the sites you are creating,
you can also specify the order in which they are activated.

The order in which sites are provisioned by using a web template is:

1.	 The URL of the site is reserved.

2.	 The configuration as stored in the GLOBAL site definition is provisioned.

3.	 If a site collection is being created, all site collection–scoped features that are listed in the
SiteFeatures section of the relevant configuration in the ONET.xml file are activated in the
order in which they are listed.

If a subsite is being created, SharePoint will check to make sure that all site collection–scoped
features that are listed in the SiteFeatures section of the relevant configuration in the ONET.xml
file are already activated on the site-collection level. If they are not, site provisioning will be
aborted and steps that have already been executed will be rolled back.

4.	 All site-scoped features that are listed in the WebFeatures section of the relevant configuration
in the ONET.xml file are activated in the order in which they are listed.

5.	 All list instances that are defined in the ONET.xml are created.

If you add a lot of features to the SiteFeatures element of the ONET.xml file, it is worth paying
attention to step 3 of the site provisioning process. If users are trying to create a subsite and the

	 Chapter 11  SharePoint site provisioning    455

features specified in the SiteFeatures element aren’t activated on the site collection site, creation will
fail with an error. In some cases, this can be expected behavior and no problem at all. But if you are
creating a new version of an existing web template, and after you have deployed the new template
users can’t create subsites anymore by using the same template they used to create the site collection,
they might get annoyed. And they’d have a point. You can avoid this, especially when updating exist-
ing web templates, by not adding features to the SiteFeatures element. If you still have to add new
site collection–scoped features to the web template, you can use a trick. You can create a web-scoped
feature, and in the FeatureActivated event receiver of that feature run a little bit of code to activate
the site collection–scoped feature. Before you write code like this, make sure that activating the site
collection–scoped feature won’t cause a problem on any existing sites, because you will no longer
have control over exactly where the feature is activated.

After you have added the WebTemplate element and its attributes to the elements.xml file and
have stripped the ONET.xml file of the elements that you cannot use in web templates, you have
the absolute necessities for your web template. The only thing left to do before you can deploy is to
determine the scope of the feature. You can choose whether to set the scope of the feature to farm
or site. You cannot use web application–scoped or web–scoped features to deploy web templates.

Deploying web templates
If you use a farm-scoped feature to deploy a web template, the web template can be used to create
sites throughout the SharePoint farm. If you deploy a web template this way, it will behave exactly like
a site definition would. From the user interface it will be impossible to tell the difference between the
web template and a site definition. You can use the template to create a site collection from Central
Administration, and you can use the template to create subsites from every site in the environment.

If you use a site collection–scoped feature, the template will only be available on sites where you
activate the feature. If you want to create subsites based on the web template, you have to browse to
the site settings page and click the Site Collection Features link in the Site Collection Administration
area of the page. You should find your feature on this page. If you activate it, you will make the tem-
plate available for users to create subsites based on it. If you want to use the web template to create a
site collection, but you deploy the template by using a site collection–scoped feature, you can still do
this—it will just take a couple more steps. To do this, first go to Central Administration and browse to
the Application Management page. From there, click Create Site Collections. As shown in Figure 11-4,
you can fill in a title and URL and optionally a description. In the template selection box, select the
Custom tab and < Select Template Later >. Next, select a site collection administrator, and click OK to
create the site.

456   Inside Microsoft SharePoint 2013

FIGURE 11-4  Creating a site collection without selecting a template

Creating a site collection without selecting a template is relatively quick because the site won’t be
fully provisioned yet. When the site is ready, you can click the link to browse to it. This will take you
directly to the template selection page of the site. However, because the feature isn’t enabled yet, you
can’t select your template. From the template selection page, you can browse to the site settings and
site collection features pages and activate your feature. If you now try to browse to the home page
of the site, SharePoint will take you back to the template selection page on which you can now select
your web template. You can click OK to complete the provisioning of the site. SharePoint will come
back to ask you whether to use existing SharePoint groups for the Visitors, Members, and Owners
groups, or whether to create new ones. Because the existing ones were just created when you provi-
sioned the first part of the site, it makes sense to stick to these and create a new site of groups.

If you use a farm-scoped feature to make the web template available in your SharePoint farm, you
will have to use a farm solution to deploy the web template and the feature. However if you use a site
collection–scoped feature, you can use a sandboxed solution to deploy the web template. Using a
sandboxed solution to deploy a web template is particularly appealing if you are using a cloud-hosted
environment such as Office 365, or if you only want to make the template available to certain people
or even just to yourself. You could simply upload the sandboxed solution to the site collection Solution
Gallery and activate the feature to make the template available on a particular site. If you want to
create a site collection by using the template, you can follow the steps described previously and click

	 Chapter 11  SharePoint site provisioning    457

the Solution Gallery link, as shown in Figure 11-5, to upload your solution before activating the site
collection–scoped feature.

FIGURE 11-5  Selecting a web template on the template selection page in the site collection

Because there is no link between a site after it has been created and the web template that was
used to create the site, it is a best practice to store this information about the web template when the
site is created. This can easily be done by creating a web-scoped feature that will be activated as the
last feature in the WebFeatures element in the ONET.xml file. The feature can contain an empty ele-
ment that adds a couple of properties to the property bag of the site. You can add the properties by
adding the PropertyBag and Property elements in the elements.xml file of the empty element. Storing
information about the web template that was used to create the site makes it possible to identify sites
and versions of sites later on, perhaps for grouping sites together, upgrading specific sites to new a
new version of SharePoint, or maybe writing custom code to make the same changes to all sites of the
same type or version:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <PropertyBag ParentType="Web">
 <Property Name="WingtipToys.WebTemplate" Type="string" Value="ProjectSite" />
 <Property Name="WingtipToys.WebTemplateVersion" Type="string" Value="1.0.0.0"/>
 <Property Name="WingtipToys.WebTemplateFeature" Type="string" Value="c1dd0ae6-e166-4dec-
91eb-3eeacfc38257"/>
 </PropertyBag>
</Elements>

458   Inside Microsoft SharePoint 2013

Using custom code to create sites

In some scenarios, you might not want to let your users create sites from the SharePoint user inter-
face, but from a piece of custom code. In order to completely provision a site by using code, you
will still have to specify either a site definition or a web template. You create a site by using SPWeb-
Collection.Add; to create a site collection, you would use SPSiteCollection.Add. Both methods have
several overloads. If you choose to use an overload that doesn’t specify the template that should be
used to provision the site, you can specify this later by using SPWeb.ApplyWebTemplate.

If you want to specify a site definition, you can do so by using the name of the site definition fol-
lowed by a # and the configuration ID. For instance, to specify a team site, you would use STS#0, and
to specify a blog site, you would use BLOG#0.

If you want to specify a web template, you will use the same format, but instead of the site definition
name you will specify the feature ID of the feature that is used to deploy the template, and instead
of the configuration ID you specify the web template name. So the format for specifying a web tem-
plate is [Feature Id]#[Web Template Name]. To specify the Project Site web template from the example
solution, you would use c1dd0ae6-e166-4dec-91eb-3eeacfc38257#ProjectSite.

Site templates

If you don’t want to use Visual Studio to create a web template, but you still want to create custom
templates for creating sites, you can create site templates. A site template can be created by browsing
to the site settings page of a site and clicking Save Site As Template in the Site Actions area. Saving a
site as a template will generate a .wsp file, just as deploying a Visual Studio project will, and will store
it in the site collection’s Solution Gallery. As soon as the template is saved to the Solutions Gallery, it
can be used to create subsites within that same site collection. If you want to use the site template
to create sites in a different site collection, you can browse to the Solution Gallery and download the
solution. You can then upload the solution in a different site to make the site template available there.

The Save Site As Template functionality uses the web template technique behind the scenes. It
generates an ONET.xml file and an elements.xml file containing a WebTemplate element. When a site
is saved as a template, SharePoint has to make sure that everything that was available in the original
site is also available in a new site that is created by using the site template. To ensure this, SharePoint
packages all the features, site columns, content types, property bag values, and much more from the
original site into the site template. This means that the site template doesn’t just contain the few lists
and some navigation settings that you might have created; it also contains a lot of things that some-
one might one day want to use, but that you never used in the original site. All these things in the site
template won’t cause a problem, and in fact, you won’t even notice them except when you use the
option to import the site template into Visual Studio.

When you create a new project in Visual Studio, one of the options that the SharePoint Developer
Tools adds is SharePoint 2013 - Import Solution Package. This option allows you to select a site tem-
plate and import it into Visual Studio. In theory this sounds really powerful, because you can have

	 Chapter 11  SharePoint site provisioning    459

business users create the site they want or need, save the site as a template, and then import it into
Visual Studio. In Visual Studio you can then make some slight adjustments and repackage it. However,
because of all the properties, features, site columns, and content types that are added to the package,
it quickly becomes very messy and unstable. Even if you don’t import the solution into Visual Studio,
all the information that is saved in the template can cause problems, because it’s just too much to
oversee and keep track of.

Site templates can be fairly powerful, but they aren’t quite ready to be used as an enterprise solu-
tion to create templates for sites. It is better to just use a site template as is, to create sites on a small
scale based on templates that were configured through the user interface, and to use web templates
if sites have to be created on a large scale, or if modifications have to be made to the template that
can’t be created through the user interface.

There is one tangible limitation to using site templates. They can only be used on sites that don’t
have the publishing features enabled. Activating the publishing features on a site will make the Save
Site As Template link disappear from the site settings page. Some clever users might figure out that if
they know the URL they can still browse to the page and save a site as a template even if the publish-
ing features are enabled on it. This is, however, not supported and will cause major issues. The advice
is easy: don’t save sites as templates that have the publishing features enabled on them, not even if
you think you know how to trick SharePoint. The same is true for deactivating the feature just so you
can save the site and then activating it again after the new site has been created. If you want to work
with publishing features, you will have to use web templates to create custom templates for your sites.

Site provisioning providers

Yet another way to create sites is by using site provisioning providers. Using site provisioning provid-
ers is particularly useful if you want to create several sites at the same time according to a predefined
structure. It is not recommended to create custom site provisioning providers, because you need a
farm solution to deploy them. We will still demonstrate how they work, though, in case you run across
one or feel that they are still the best way for you to create the behavior you need.

The purpose of a site provisioning provider is to create and initialize new sites. A site provisioning
provider can be used with standard SharePoint site definitions or web templates. You create a site
provisioning provider with a class that inherits from the SPWebProvisioningProvider base class and
that overrides a single method named Provision:

using System;
using Microsoft.SharePoint;

namespace WingtipToysProvisioning {
 public class WingtipToysProvisioningProvider : SPWebProvisioningProvider {
 public override void Provision(SPWebProvisioningProperties properties) {
 // add code to provision new site
 }
 }
}

460   Inside Microsoft SharePoint 2013

When you implement the Provision method, you get to specify the configuration that is used to
provision the new site by calling the ApplyWebTemplate method. This makes it possible to create cus-
tomized provisioning instructions while using standard configurations such as Team Site:

public override void Provision(SPWebProvisioningProperties properties) {

 // provision new site using Blank site configuration
 properties.Web.ApplyWebTemplate("STS#0");

 // TODO: add extra code here to initialize new site.
}

When the ApplyWebTemplate method completes, SharePoint has finished provisioning the new
site by using the Team Site configuration. Now you can add whatever logic you would like to activate
features, initialize site properties, and create any required site elements, such as lists and child sites.
Note that due to security issues, you must call a method named RunWithElevatedPrivileges on the
SPSecurity class to run your code with the privileges required to initialize a new site:

public override void Provision(SPWebProvisioningProperties properties) {
 // apply template using a configuration
 properties.Web.ApplyWebTemplate("STS#0");

 // elevate privileges before programming against site
 SPSecurity.RunWithElevatedPrivileges(delegate() {
 using (SPSite siteCollection = new SPSite(properties.Web.Site.ID)) {
 using (SPWeb site = siteCollection.OpenWeb(properties.Web.ID)) {
 // activate features and initialize site properties
 site.Features.Add(new Guid("00BFEA71-D8FE-4FEC-8DAD-01C19A6E4053"));
 site.Title = "My Custom Site Title";
 site.Update();
 }
 }
 });
}

The final step to deploying a site provisioning provider involves creating a webtemp file that
references the site provisioning provider class. In this case, we have created a webtemp file named
webtemp_WingtipSiteTemplates.xml, which is deployed to the TEMPLATE/1033/XML directory:

<Template Name=" WingtipToysProvisioning" ID="11001">

 <Configuration ID="0"
 Title="Wingtip Toys Standard Team Site"
 Hidden="FALSE"
 Description="Use this site template to create a Wingtip Toys team site."
 DisplayCategory="WingtipToys"
 ProvisionAssembly="$SharePoint.Project.AssemblyFullName$"
 ProvisionClass="WingtipToysProvisioning.WingtipProvisioningProvider"
 ProvisionData="StandardTeamSite" />

 <Configuration ID="1"
 Title="Wingtip Toys Sales Site"
 Hidden="FALSE"
 Description="Use this site template to create a Wingtip Toys team site."

	 Chapter 11  SharePoint site provisioning    461

 DisplayCategory="WingtipToys"
 ProvisionAssembly="$SharePoint.Project.AssemblyFullName$"
 ProvisionClass="WingtipToysProvisioning.WingtipProvisioningProvider"
 ProvisionData="SalesSite" />

 </Template>

</Templates>

As you can tell, this web template file defines two configurations called Wingtip Toys Standard
Team Site and Wingtip Toys Sales Site. Both of these configurations are set to be displayed in the
standard SharePoint template selection box on the WingtipToys custom tab. Both Configuration
elements are configured to use the same provisioning provider class, but they have different values
for the ProvisionData attribute. This makes it possible for the WingtipProvisioningProvider class to
provide the Provision method that inspects the ProvisionData attribute to determine what type of
new site to create and initialize:

public override void Provision(SPWebProvisioningProperties properties) {
 if (properties.Data.Equals("StandardTeamSite")) {
 // add code to provision standard team site
 }
 if (properties.Data.Equals("SalesSite")) {
 // add code to provision sales site
 }
}

Web provisioning events

Regardless of whether your site is provisioned by using a site definition, a web template, or cus-
tom code, you can hook into the events related to managing your site. These events are called web
provisioning events and are part of the SPWebEventReceiver class. There are eight events that you can
catch:

■■ SiteDeleted  An asynchronous event that occurs after a site collection has been deleted

■■ SiteDeleting  A synchronous event that occurs while a site collection is being deleted

■■ WebAdding  A synchronous event that occurs while a new subsite is being created, but that
doesn’t fire when the rootweb of a site collection is being created

■■ WebDeleted  An asynchronous event that occurs after a site has been deleted

■■ WebDeleting  A synchronous event that occurs when a site is being deleted

■■ WebMoved  An asynchronous event that occurs after an existing site has been moved

■■ WebMoving  A synchronous event that occurs while an existing site is being moved

■■ WebProvisioned  An asynchronous event that occurs after a subsite has been fully provi-
sioned, but that doesn’t fire when the rootweb of a site collection has been created

462   Inside Microsoft SharePoint 2013

As you can tell, there are two event receivers that you can use to execute code after a subsite has
been created: WebAdding to execute code during the provisioning process, and WebProvisioned to
execute code after the subsite has been completely provisioned. It is important to note that neither of
these will fire when the rootweb of a new site collection is created. These event receivers can only be
used when subsites are created.

To view what this looks like in Visual Studio, you will add an EventReceiver to the WingtipToysWeb
Templates solution. Start by right-clicking the project and selecting Add New Item. Next choose the
EventReceiver project item and name it SetSubSiteNavigation. The SharePoint Developer Tools will
start the wizard in Figure 11-6, in which you can select the type of event receiver to create. Select
Web Events as the type of event receiver and A Site Was Provisioned as the event to handle.

FIGURE 11-6  Choosing the type of event receiver to create and what event to handle

The SharePoint Developer Tools will create an event receiver that consists of an elements.xml file
and a class file. The elements.xml file is used to link the class file to the WebProvisioned event:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Receivers >
 <Receiver>
 <Name>SetSubSiteNavigationWebProvisioned</Name>
 <Type>WebProvisioned</Type>
 <Assembly>$SharePoint.Project.AssemblyFullName$</Assembly>
 <Class>WingtipToysWebTemplates.SetSubSiteNavigation.SetSubSiteNavigation</Class>
 <SequenceNumber>10000</SequenceNumber>
 </Receiver>
 </Receivers>
</Elements>

	 Chapter 11  SharePoint site provisioning    463

The class inherits from SPWebEventReceiver and contains a method to which you can add the code
that you want to execute when a subsite is created. In this example you will adjust the navigation of
the subsite to let it inherit the navigation from the parent site. You will create a new web-scoped fea-
ture that will be used to deploy the event receiver, and you will add the feature to the WebFeatures
section of the Project Site web template, as shown in Listing 11-2.

LISTING 11-2  A WebProvisioned event receiver that adjusts the navigation of a subsite

using System;
using Microsoft.SharePoint;

namespace WingtipToysWebTemplates.SetSubSiteNavigation
{
 /// <summary>
 /// Web Events
 /// </summary>
 public class SetSubSiteNavigation : SPWebEventReceiver
 {
 /// <summary>
 /// A site was provisioned.
 /// </summary>
 public override void WebProvisioned(SPWebEventProperties properties)
 {
 base.WebProvisioned(properties);

 SPWeb web = properties.Web;

 // Let sub-site navigation inherit from the parent site
 web.Navigation.UseShared = true;

 web.Update();
 }
 }
}

Web templates and SharePoint apps

In Chapter 4, “SharePoint apps,” SharePoint apps and the app web were discussed in depth. We talked
about how adding a SharePoint-hosted app to a host site will create an app web as a subsite of the
host site. When an app web is created, normally the standard App Template site definition is used to
provision it. This template is defined in the webtemp.xml file. The name of the template is APP, and
it has one configuration, which is titled App Template and has an ID of 0. The ONET.xml for the app
template can be found in the TEMPLATE\SiteTemplates\App folder in the SharePoint Root folder:

464   Inside Microsoft SharePoint 2013

<Template Name="APP" SetupPath="SiteTemplates\app" ID="17">
 <Configuration ID="0"
 Title="App Template"
 Hidden="TRUE"
 ImageUrl=""
 Description="A base template for app development.
 It provides the minimal set of features
 needed for an app." >
 </Configuration>
</Template>

If you want to use your own template to create an app web, you can do this by using web tem-
plates. You can create a custom web template and use the appmanifest.xml file to make sure that your
template is used when the app web is created. A web template that will be used to create an app web
is deployed in the app itself by using a web-scoped feature. This is different from when you are creat-
ing a normal web template, because for those the scope of the feature can only be farm or site.

Unfortunately, it is not possible to deploy normal web templates by using a SharePoint app. Normal
web templates can only be deployed by using farm or sandboxed solutions. This is one of the limita-
tions of SharePoint apps; at least for now, it is not possible to use apps to create a template that can
be used to provision sites. Apps can be added manually to any site after it has been created, but they
cannot provision the site itself, and they can’t automatically be added during site provisioning, either.

The app manifest file of an app has a WebTemplate element that can be used to define your own
web template. In the Id attribute, you use the same format you would when using code to call you
web template, [Feature Id]#[Web Template Name]. Microsoft IntelliSense in Visual Studio will tell you
that the WebTemplate element also has a FeatureId attribute, but you don’t need this; it is obsolete:

<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
 Name="WingTipApp"
 ProductID="{5399d258-e7af-4b70-8b53-74ff3c9979f8}"
 Version="1.0.0.0"
 SharePointMinVersion="15.0.0.0">

 <Properties>
 <Title>WingTipApp</Title>
 <StartPage>~appWebUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 <WebTemplate Id="{1A74A5BD-BD62-4470-A0DB-C9421BC53F73}#WingtipToysAppWeb"/>
 </Properties>

 <AppPrincipal>
 <Internal />
 </AppPrincipal>
</App>

	 Chapter 11  SharePoint site provisioning    465

Be aware that if you do use your own web template to create the app web, you have to make sure
that all the necessary app-related plumbing that is part of the standard app template is in your web
template as well. Also be aware that most users will be browsing to the host site and not to the app
web. If you are creating your own template, it will mostly be because of some extra plumbing that
you need in the app web in order for your app to work properly, not because you want the user to
view your spiffy template. In most cases, the standard app template will do just fine, and you won’t
need a custom web template to create your app web.

Summary

This chapter explained that site definitions play a key role in the provisioning process of SharePoint
site collections and sites. You shouldn’t create custom site definitions anymore though, because they
cannot be updated or removed from your farm after they have been used. This makes them hard to
maintain and means that you will have to upgrade them whenever you want to update your farm to a
new version of SharePoint.

If you want to create a custom template to provision sites, you should use web templates. Web
templates are just as powerful as site definitions but are a lot more flexible. They can be updated or
even removed after they have been used, because there is no link between the web template and the
site that has been created with it. To make sure that you can still identify what template and what ver-
sion of the template has been used to create a site, you should create a custom hidden web-scoped
feature that stores this information in the site—for instance, in the property bag.

If you need more flexibility, or if you want to create sites by using an automated process, you can
use custom code to create sites. When using custom code, you will still have to select a template for
the site. This can be either a site definition or a web template. You can also use the web provisioning
events to run custom code during or after the site provisioning process. This approach only works for
subsites, though; it doesn’t work for the rootweb of a site collection.

		 467

C H A P T E R 1 2

SharePoint workflows

Starting with Microsoft SharePoint 2007 and continuing with SharePoint 2010, the core SharePoint
engine hosted the Windows Workflow Foundation runtime and stored all workflow-related data

within the SharePoint content databases. This approach was convenient because customers did not
have anything to configure: workflow functioned right out of the box in even the most basic instal-
lations. However, there were downsides to this approach: it was hard to get telemetry data on the
deployed and running workflows because developers and administrators were limited to the exposure
provided by the SharePoint application programming interfaces (APIs).

Microsoft has taken a very different approach to workflow in SharePoint Server 2013 from previ-
ous versions of SharePoint. The workflow team worked with the Windows Azure team to create a new
product called Workflow Manager. Workflow Manager serves the role of hosting the latest version
of the Workflow Foundation runtime and all the necessary services in a highly available and scalable
way. It takes advantage of Service Bus for performance and scalability and, when deployed, runs in
exactly the same way in an on-premises deployment and in Office 365. SharePoint is then connected
and configured to hand off all workflow execution and related tasks to the Workflow Manager farm.

This chapter explains the architecture of how workflow and SharePoint work together from a high
level. With this solid foundation established, the chapter then goes into the details of how to create
custom workflows by using both Microsoft SharePoint Designer 2013 and Microsoft Visual Studio 2012
to take advantage of this new more scalable, powerful, and feature-rich platform.

Workflow architecture in SharePoint 2013

At first, the way in which SharePoint Server 2013 and Workflow Manager work together might sound
complicated, but Microsoft has made installing, configuring, setting up, and maintaining both prod-
ucts very easy. All the complexity is handled within the products. After installing and configuring
SharePoint Server 2013, customers are left with the same workflow execution engine that was included
with prior versions of SharePoint. This means that customers can build workflows based on the former
model of Workflow Foundation included in the Microsoft .NET Framework 3.5 Service Pack 1, but they
cannot take advantage of any of the new features outlined in the remainder of this chapter. To take
advantage of the new features, you need to perform two tasks:

■■ Install and configure a Workflow Manager 1.0 farm.

■■ Connect the SharePoint Server 2013 and Workflow Manager 1.0 farms together.

468   Inside Microsoft SharePoint 2013

Installing and configuring a Workflow Manager 1.0 farm
The installation and configuration of a Workflow Manager farm is very similar to the installation and
configuration of a SharePoint farm. Just like with SharePoint, the entire product and dependencies
are installed on the server; the installer does not enable the user to pick what is and is not installed.
Workflow Manager is best installed by using the Web Platform Installer tool (available at http://www.
microsoft.com/web/downloads/platform.aspx) from Microsoft, because the tool will also download
and install all dependencies such as Service Bus 1.0, which Workflow Manager uses. After Workflow
Manager is installed, the next step is to configure the farm, which includes creating the required data-
bases and provisioning the core services. This is all handled by the Workflow Manager Configuration
Wizard, which should sound familiar to you if you have installed and configured SharePoint in the past.

With a SharePoint 2013 farm and Workflow Manager farm, the next step is to configure both en-
vironments to communicate with each other. This is done by going to a server in the SharePoint 2013
farm and running a specific Windows PowerShell cmdlet: Register-SPWorkflowServices. This cmdlet
does two important things. First, it configures the SharePoint farm to send all workflow requests and
tasks to the Workflow Manager’s front-end component endpoint. The cmdlet also configures the
Workflow Manager farm with the endpoint of the SharePoint farm so that Workflow Manager knows
where to send Representational State Transfer (REST) requests, which is how Workflow Manager com-
municates with SharePoint, in order to retrieve and submit data.

Internally, the Workflow Manager farm logs to a Service Bus topic the requests that SharePoint
submits to it. Service Bus utilizes the Pub/Sub model to maintain a list of all things that want to be
notified when specific messages that meet specific criteria are received by Workflow Manager. If the
criteria are met, Service Bus sends the message (which is stored in a topic) to the registered subscriber
of that topic. Frequently this is the workflow back-end service, which is a Windows service that is re-
sponsible for processing the workflow episodes. An episode is the short burst of workflow processing;
that is, events that happen when the workflow is not waiting for an external action. When the work-
flow needs to communicate with SharePoint—for example, about details regarding the user who initi-
ated the workflow, or to create and assign a task to a user—the workflow calls back to SharePoint by
using the SharePoint REST services. When installing and configuring the Workflow Manager farm with
SharePoint, SharePoint configures the Workflow Manager farm as an app by using the new SharePoint
app model. This is also facilitated by a new service application proxy that connects SharePoint to the
Workflow Manager farm. Then, Workflow Manager, in turn when connecting to SharePoint, takes
advantage of the server-to-server high-trust authentication. This way, SharePoint can identify that
these calls are coming from Workflow Manager, which has been granted specific permissions within
SharePoint and can act on the behalf of some users.

One requirement of Workflow Manager is that the SharePoint 2013 farm must have a User Profile
Service Application provisioned and running. This is because Workflow Manager uses OAuth to estab-
lish its identity with SharePoint. This is also why SharePoint Server 2013 is required to use Workflow
Manager; SharePoint Foundation 2013 does not have a User Profile Service Application.

http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx

	 Chapter 12  SharePoint workflows    469

Understanding workflow in SharePoint 2013
Before diving into creating custom workflows, it helps to have a good understanding of the different
components that make up the entire workflow story in SharePoint 2013. The workflow artifact that is
developed by using Visual Studio deployed to SharePoint is called the workflow definition. This is simply
the business logic and series of activities within the workflow that define the business process. Users
cannot start a workflow from a definition. The workflow definition must first be linked with a site, list,
or library that contains core parameters about this link, such as the friendly name of the workflow for
users, the task and history list where all tasks and logging messages generated by the workflow
definition will be stored, how the workflow can be started (manually or automatically when something
is created or updated), and any additional parameters specified in the workflow definition. This link is
called the workflow association. When workflows are created by using SharePoint Designer 2013, a
template is not created but rather the workflow is created directly as an association, which is why
SharePoint Designer 2013 workflows are not nearly as portable as workflows developed by using
Visual Studio 2012. Finally, when a workflow is started and based on an existing association, it is
referred to as an instance. One site or item in a list could have multiple instances of the same associa-
tion running at any particular time. When an instance is running, a workflow can either be actively
running (in which case it is also referred to as an episode) or paused and persisted while it waits for
something to occur that triggers another episode.

For each instance of the workflow, SharePoint maintains a status page where users can view the
status of the workflow, what item and user started the instance, and all tasks and history log entries
created by the workflow.

Developers creating workflows with Visual Studio 2012 have access to a large number of activi-
ties. Workflow Manager 1.0 a nd SharePoint 2013 support activities included in the Microsoft .NET
Framework 4.5 Workflow Foundation (anything in the System.Activities namespace), activities specific
to Workflow Manager (found in the Microsoft.Activities namespace), SharePoint 2013 activities (found
in the Microsoft.SharePoint.WorkflowServices.Activities namespace), and those specific to Microsoft
Project server (found in the Microsoft.Office.Project.Server.WorkflowActivites namespace). SharePoint
Designer 2013 workflows are limited to the activities exposed by *.action4 files. Action files are cov-
ered later in this chapter, in the ”Creating custom activities” section.

Creating custom workflows for SharePoint 2013
SharePoint 2013 does include a workflow or two out of the box, but the real value in a workflow
engine is in providing customers with the ability to create custom workflows that satisfy their busi-
ness processes. This new architectural model for workflow in the SharePoint 2013 ecosystem does
bring some changes to the process of creating custom workflows. One of the biggest changes is the
fact that all custom workflows in SharePoint 2013 and Workflow Manager are completely declarative,
including those built by using Visual Studio 2012. This differs from previous versions of SharePoint in
that workflows developed with Visual Studio 2012 are not exclusively declarative; rather, they are a
mix of declarative XAML and an assembly that contains the business logic.

470   Inside Microsoft SharePoint 2013

This might come as a shock to seasoned SharePoint developers, who are now asking, “So how
do I implement my custom business logic?” Microsoft’s recommendation is to create a custom web
service, ideally a Windows Communication Service (WCF) service that returns data in the JavaScript
Object Notation (JSON) format, and use some new activities and objects in this new version. The new
HTTPSend activity enables calls to the simplest web services or allows you to create more complex
calls with specific HTTP verbs and to provide specific HTTP headers. The web service responses that
are returned as JSON are assigned to a variable that uses a new data type that understands the hierar-
chical structure of JSON data: DynamicValue. Microsoft has also provided a series of other activities
that enable developers to extract specific values from the JSON response. The DynamicValue activity
is available only to Visual Studio 2012, so the Dictionary data type is used to wrap objects of type
DynamicValue so that those objects will have the same support within workflows authored in
SharePoint Designer 2013.

Building custom workflows

Just like previous versions of SharePoint, SharePoint 2013 offers customers a few different options
for creating custom workflows that are typically targeted at different audiences. In SharePoint 2010,
Microsoft introduced the use of Microsoft Visio 2010 to model workflows. This made it easy for con-
sultants and users to model workflows without having to have a live SharePoint site. The Visio 2010
workflow model would then be imported into SharePoint Designer 2010 so that business logic and
additional functionality could be added to the workflow. By combining Visio 2010 and SharePoint
Designer 2010, customers could easily create and share workflows with their clients without involv-
ing a developer. However, when more advanced customizations were required, developers could get
involved by creating custom workflows with Visual Studio 2010. The significant downside to workflows
developed in Visual Studio is that they have a programmatic component to them. This means they
can be deployed only by using fully trusted solutions, and thus they can be used only in on-premises
deployments, not to hosted deployments, which are limited to sandboxed solutions.

SharePoint 2013 has made great strides in the development and deployment of custom work-
flows. The following two sections outline the major changes between the two main options: Visio with
SharePoint Designer, and Visual Studio.

Custom workflows with Visio 2013 and SharePoint Designer 2013
Those who have created workflows with Visio 2010 and SharePoint Designer 2010 in SharePoint 2010
will be very comfortable with the latest releases, because both tools have been improved to support
the new workflow capabilities. One of the biggest customer feedback points in SharePoint Designer
2010 was the lack of support for any type of looping. Two new activities have been added to SharePoint

	 Chapter 12  SharePoint workflows    471

Designer 2013 to support looping: Loop [n] Times and Loop with Condition. These two activities should
satisfy many looping scenarios; however, a more significant improvement that supports more complex
loops is the addition of stages. Stages are founded on the concept of Workflow Foundation flowchart
activities. Workflow authors can put any number of activities within a stage and then specify one or
more conditions at the end of the stage that dictate how the workflow should proceed. In this Transition
To Stage section, as shown in Figure 12-1, authors can choose to transition directly to another stage
(including the default End of Workflow, which terminates the workflow) or add a conditional
statement by using an If activity to route to a desired stage. Revising the previous point about
looping, a stage could be configured to transition back to itself, effectively creating a conditional
loop.

FIGURE 12-1  In this text-based designer of a stage in SharePoint Designer 2013, a conditional loop is created.

Another improvement to SharePoint Designer 2013 is the addition of common semantics found
in other Microsoft Office products such as Microsoft Word, Excel and PowerPoint; these include cut,
copy, paste, move up, and move down. These additions make it easier to customize an existing work-
flow; in previous versions of SharePoint Designer, the workflow author had to delete and recreate the
steps where they were intended to be.

Although SharePoint Designer’s workflow authoring experience has traditionally been text based,
Visio 2010 introduced a new visual designer, which made it easier for customers to view the workflow
in a more familiar flowchart diagram. This visual designer has been improved in Visio 2013 in that it
supports all the new activities for looping and stages that were added in SharePoint 2013 but also
adds two more significant additions. First, unlike the visual designer in Visio 2010, which was limited
to simply adding and linking activities, in Visio 2013 you can now modify the properties of an activity.
Therefore, workflow authors can express business rules, such as the parameters of an If statement
activity. The other major improvement associated with the visual designer is that now SharePoint
Designer 2013 users who have Visio 2013 installed will also get the visual designer. This means that
within SharePoint Designer, users can author workflows either by using the traditional text-based
designer or by using the Visio visual designer, as shown in Figure 12-2.

472   Inside Microsoft SharePoint 2013

FIGURE 12-2  The Visio 2013 visual workflow designer is a new alternative to text-based design.

Creating a workflow with Visio 2013 and SharePoint Designer 2013
This walkthrough will demonstrate how to create a simple workflow that uses stages with Visio 2013
and SharePoint Designer 2013. Open Visio 2013 and create a new drawing based on the Microsoft
SharePoint 2013 Workflow template, found in the Flowchart category. By using the Shapes task pane,
look in the Components - SharePoint 2013 Workflow section and drag three more stages onto the
design surface, as shown earlier in Figure 12-2. To make things easier to follow, rename each of the
stages to the following names:

■■ Leftmost stage: Initial Stage

■■ Top stage: Item Needs Updating

■■ Bottom stage: Item Does Not Need Updating

■■ Rightmost stage: Workflow Finishing

Now do the following to model the workflow stages:

1.	 Look in the Actions - SharePoint 2013 Workflow section of the Shapes task pane, add two Log
To History List actions to the Initial Stage, and rename them Log entry into stage and Log
value from form, respectively.

	 Chapter 12  SharePoint workflows    473

2.	 With the first stage model complete, look in the Conditions - SharePoint 2013 Workflow
section of the Stage task pane, add If Any Value Equals Value immediately to the right of
the Initial Stage, and rename it If user entered something.

3.	 Use the Connector tool on the Home tab of the Visio 2013 ribbon to connect the red stage
finished box to the decision action.

4.	 Use the Connector tool to connect the decision to the start of the Item Needs Updating and
Item Does Not Need Updating stages. Right-click each connector and set the one going to
Item Needs Updating to Yes and the other connector to No.

5.	 Add two Log To History List actions to the three remaining stages (Item Needs Updating, Item
Does Not Need Updating, and Workflow Finishing).

6.	 Add the Set Field In Current Item action, found in the Actions - SharePoint 2013 Workflow
category of the Shapes task pane, as the second action in the Item Needs Updating stage,
and rename it Update Announcement Body with Value.

7.	 Connect the Item Needs Updating and Item Does Not Need Updating stages to the Workflow
Finishing stage.

8.	 Save the Visio 2013 drawing, which should look like Figure 12-3, and then close Visio 2013.

FIGURE 12-3  This is a screen shot of the Visio 2013 Workflow Designer.

474   Inside Microsoft SharePoint 2013

The next task is importing the workflow into SharePoint Designer, so open SharePoint Designer 2013
and do the following:

1.	 Within SharePoint Designer 2013, click the Open button and enter the URL of a SharePoint site
to connect to, logging on if necessary.

2.	 In the Navigation pane on the left, click Lists And Libraries to check if there is an existing An-
nouncements list. If not, create one:

a.	 Click the SharePoint List button on the ribbon and select Announcements.

b.	 When prompted for a name, enter Announcements and click OK.

3.	 Import the Visio drawing to create the workflow:

a.	 Click Workflows in the Navigation pane on the left.

b.	 Click the Import From Visio button on the ribbon and select Import Visio 2013 Diagram.

c.	 Find the drawing saved from Visio and click Open.

d.	 In the Create Workflow dialog box, set the name to Update Announcement Item,
Workflow Type to List Workflow, and SharePoint List to Announcements, and click OK.

4.	 SharePoint Designer will create the workflow and present the visual designer view of the
model. Although it is possible to edit the workflow in the visual designer, switch to the text
designer by clicking Views on the ribbon and then selecting Text-Based Designer.

5.	 In the text-based designer, SharePoint Designer will display the stages in a top-down list. The
order does not really matter; however, it may make sense to ensure that they are in the correct
order. This can be done by selecting a stage and then right-clicking to use either the Move Up
or Move Down option. Also notice how the Transition To Stage section of each stage has been
wired up to route the workflow to the next stage.

6.	 Within the Initial Stage stage, click the Message link on the first action and set the message to
Entering Stage - Initial Stage.

a.	 Repeat this process for the action in each stage to write a message to the log that the
workflow entered the name of the current stage.

	 Chapter 12  SharePoint workflows    475

7.	 When the workflow has been initiated, this workflow will prompt the user to enter a value to
write to the body of the announcement. To add this field to the initiation form, follow these
steps:

a.	 On the ribbon, click Initiation Form Parameters.

b.	 Click the Add button to create a new form parameter.

c.	 Set the Name of the parameter to Body Value and click Next, then click Finish and OK.

8.	 Use the second Log action in the Initial Stage to write the value the user entered to the log:

a.	 Click the Message link and then click the ellipsis (…) button to the right to bring up the
builder.

b.	 In the text area, enter Value entered by user:.

c.	 Click the Add Or Change Lookup button.

d.	 In the Lookup For String dialog box, set the Data Source to Workflow Variables And Pa-
rameters and the Field From Source to Parameter: Body Value, and click OK twice to close
the two dialog boxes.

9.	 Update the condition to route to the correct stage from the Initial Stage:

a.	 In the Transition To Stage section of the Initial Stage, click the first Value link and then
click the Fx button.

b.	 In the Define Workflow Lookup dialog box, set the Data Source to Workflow Variables
And Parameters and the Field From Source to Parameter: Body Value, and then click OK.

c.	 Click the Equals link in the If statement and select the Is Not Empty condition, and then
click OK.

10.	 Update the list item within the Item Needs Updating stage:

a.	 In the Item Needs Updating stage, select the Field link on the Set Field To Value action
and select Body.

b.	 Click the Value link and click the Fx button.

c.	 In the Define Workflow Lookup dialog box, set the Data Source to Workflow Variables
And Parameters and the Field From Source to Parameter: Body Value, and then click OK.

11.	 The workflow is now finished and can be tested. Click the Save button on the ribbon to save
the workflow. Then click Publish to publish the workflow to Workflow Manager.

476   Inside Microsoft SharePoint 2013

Open a browser and go to the Announcements list. Create a new item with no value in the body
field and click Save. Now select the item and, by using the Items tab on the ribbon, select Workflows.
On the Workflows page, select Update Announcement Item to start the workflow. When the work-
flow starts, you will be taken to the initiation form. Enter a value in the Body Value text box and click
Start. The browser will redirect back to the list. Click the Workflows button again. This time, further
down the page, notice that there is a workflow under Running Workflows or Completed Workflows
(depending on whether it has already finished). Click the value of the Internal Status field to view the
status page that shows all history log information. Go back to the actual list item and notice that the
body value has also been updated.

Custom workflows with Visual Studio 2012
The previous section discussed some of the changes in custom workflow development found in both
Visio 2013 and SharePoint Designer 2013. Many of these changes, though important, are iterative and
are improvements upon the previous versions of the tools. The story with Visual Studio 2012 workflow
development for SharePoint, in contrast, is quite different. The biggest change developers will quickly
notice, as mentioned previously in this chapter, is the fact that there is no code view for the workflow
because it is entirely declarative. All custom business logic, if it cannot be expressed by using the pro-
vided activities, should be refactored to external web services that the workflow can call.

Developers can create workflows in either a traditional SharePoint full trust farm solution or within
a new SharePoint app and use either of the new project item templates added by the Microsoft Office
Developer Tools for Visual Studio 2012 for SharePoint projects: Workflow and Workflow Custom
Activity. Both of these project item templates are available in full trust solutions as well as in apps,
but the real-world usefulness of custom activities will be dependent on the type of project selected.
Custom activities are covered in the “Creating custom activities” section later in this chapter.

Though SharePoint Designer 2013 is limited to creating workflows made up of stages, which are
effectively flowcharts, Visual Studio supports another powerful type of workflow: state machine. This
means that workflows developed in Visual Studio 2012 effectively support three different types of
workflow authoring:

■■ Sequential  A sequential workflow follows a specific path, as shown in Figure 12-4. There
might be decision branches and loops, and the workflow might not have a termination point,
but it is easy to follow the predictable path in the designed process.

	 Chapter 12  SharePoint workflows    477

FIGURE 12-4  This screen shot shows the creation of a simple sequential workflow in Visual Studio 2012.

■■ Flowchart  A flowchart workflow is one in which the workflow can transition into differ-
ent sections depending on specific conditions, as shown in Figure 12-5. The flowchart activ-
ity, along with the associated FlowDescision and FlowSwitch activities, are typically placed
within a sequence activity and act like either traditional if or switch statements in common
programming languages such as C#, Microsoft Visual Basic .NET, or JavaScript. The stage
construct within a workflow based on SharePoint Designer 2013 is based on the principles of
a flowchart. This type of workflow, unlike a sequential workflow, does not have a prescribed
path that it follows. Instead, the things that happen during the workflow dictate the path the
workflow follows.

478   Inside Microsoft SharePoint 2013

FIGURE 12-5  This screen shot shows the creation of a flowchart workflow in Visual Studio 2012.

■■ State machine  A state machine workflow, like a flowchart workflow, does not typically
follow a specific path of execution. These types of workflows consist of two or more states,
as shown in Figure 12-6. Think of each state as a smaller workflow that contains multiple
activities. Developers can set specific activities to happen when the workflow enters or exits
the state. What really makes state machines interesting is the transitions developers define.
Each state can have one or more transitions that tell the workflow engine how to move from
one state to another state. The workflow is always going to be in one of the states in a state
machine workflow. A transition dictates the trigger for the workflow to move from one state
to another. Many people favor state machine workflows over the other types of workflows
because they can be made to more closely mirror real-world business processes. However,
these types of workflows can quickly get very complicated.

	 Chapter 12  SharePoint workflows    479

FIGURE 12-6  This screen shot shows the creation of a state machine workflow in Visual Studio 2012.

When adding a new workflow to a SharePoint project, the template adds a single Sequence activ-
ity, which serves as the main container. If you want to create a flowchart or state machine workflow,
simply delete this default activity and drag either a StateMachine or Flowchart activity onto the design
surface.

Before building a custom workflow, developers should have a good understanding of the tool
windows and design surface that Visual Studio 2012 provides. Many of the elements, as shown in
Figure 12-7, are quite common:

1.	 The Solution Explorer tool window, which contains your project

2.	 The toolbox, which contains all the activities used in assembling the workflow

3.	 The design surface, where the activities will be placed and linked together

480   Inside Microsoft SharePoint 2013

4.	 The Properties pane, where most aspects of the selected activity or selected item in the Solu-
tion Explorer are managed

FIGURE 12-7  This is the default Visual Studio 2012 workflow authoring interface.

There are two additional components within the design surface that might not be familiar to you
and might need additional explanation:

5.	 At the bottom of the designer, notice three tabs: Variables, Arguments, and Import. Click Vari-
ables to view a list of all the variables used within the workflow that are available at the cur-
rent scope. Scoping works the same way as it does in standard object-oriented programming
design: a variable scoped at the root is accessible to all lower scopes (such as methods within a
class), but a variable within a lower scope (such as a method in a class) is accessible only within
that scope and its children, not in parallel or parent scopes. Click Arguments to view a list of
the arguments that are used to pass values into the workflow, such as those passed in from
an initiation form, as covered later in this chapter in the “Adding custom forms to workflows”
section, or as properties within a custom activity.

	 Chapter 12  SharePoint workflows    481

6.	 Near the top of the designer is a breadcrumb navigation area. As workflows acquire more and
more nested activities, it sometimes is easier to manipulate them by zooming into a specific
area. This breadcrumb navigation area can make it easier to back out to a higher level within
the workflow. It is for this reason that one approach is to rename composite activities, or
those activities that contain child activities, such as Sequence, to something more appropriate.
For example, the topmost Sequence activity could be renamed “Root” instead of the default
“Sequence” name.

Creating a workflow with Visual Studio 2012
The following walkthrough demonstrates how to create a custom workflow that calls the OData web
service of the well-known Northwind database publically hosted at the http://www.odata.org site.
The user enters a customer ID and then starts the workflow, which will retrieve additional customer
information and update the list item with this data. First, start Visual Studio 2012 and create a new
SharePoint-hosted app project, a task that has been shown repeatedly throughout this book. Next,
create a new custom list named Customers in the project. Include the following fields, leaving their
default data type of String:

■■ CustomerId (renamed from the default Title field)

■■ Customer Name

■■ Job Title

■■ Address

■■ Country/Region

■■ Business Phone

■■ Fax Number

After creating the list, add a workflow to the project by following these steps:

1.	 Repeat the process of adding a new item to the app, but select the Workflow template.

2.	 In the SharePoint Customization Wizard, give the workflow a friendly name and specify it as a
List Workflow.

3.	 The next step in the wizard asks whether Visual Studio should automatically create an associa-
tion. Select the check box to create the association, and select the only option for all drop-
down list boxes.

4.	 Set the different ways in which the workflow can be started. For development, select only the
A User Manually Starts The Workflow check box and leave the other automatic start options
cleared. Then click the Finish button.

482   Inside Microsoft SharePoint 2013

Visual Studio will then display the basic workflow design surface with a single Sequence activity. To
keep things organized and easier to manage, rename this activity Root and add four more Sequence
activities within the Root sequence, using the following names:

■■ Init

■■ Get Customer Data from Service

■■ Process Service Response

■■ Update List Item

The first step in this workflow is to retrieve the customer ID entered by the user. For this, two vari-
ables are needed, so click the Variables tab at the bottom of the designer and create the following
two variables:

■■ CustomerItemProperties (Variable Type = DynamicValue; Scope= Init)  This will be used
to store the results from the activity that will get all properties from the list item. The Dynamic
Value data type is not shown by default. To find it, select the Browse For Types option in the
Variable Type column. In the search box at the top of the dialog box, enter DynamicValue
and select the Microsoft.Activities.DynamicValue.

■■ CustomerId (Variable Type = String; Scope = Root)  This will be used to store the actual
customer ID entered by the user in the list item.

Next, drop the LookupSpListItem activity in the Init sequence, found in the SP - List section of the
toolbox, and use the values shown in Figure 12-8 to set the values in the Properties pane when this
activity is selected. This activity tells Workflow Manager to use the SharePoint REST API to retrieve the
properties of the current list item and store the JSON response in the DynamicValue variable previ-
ously created.

FIGURE 12-8  Use the Properties pane for the LookupSPListItem activity to modify settings.

	 Chapter 12  SharePoint workflows    483

To retrieve the customer ID from the item, click the Get Properties link within the LookupSpListItem
activity, which will add a GetDynamicValueProperties activity to the design surface. In the Properties
pane, click the ellipsis (…) button to bring up the Property selector wizard. In the wizard, set the Entity
Type to List Item Of Customers and add a single property with Path = CustomerId and Assign To =
CustomerId (the variable previously created).

The workflow now has a reference to the customer ID, so the next step is to call the web service.
Select the sequence Get Customer Data from Service to set the current context, and create two new
variables:

■■ NorthwindServiceUri (Variable Type = String; Scope= Get Customer Data from
Service)  This will contain the URI that will be used to query the web service.

■■ NorthwindServiceResponse (Variable Type = DynamicValue; Scope = Root)  This will be
used to store the web service response.

Create the URL that will be used to query the web service by dropping an Assign activity in the Get
Customer Data from Service sequence. Set the left part of the Assign activity to NorthwindServiceUri
and the right part to “http://services.odata.org/Northwind/Northwind.svc/Customers(‘” +
CustomerId + “’)?$format=json”. Now add an HttpSend activity to the Get Customer Data from
Service sequence immediately after the Assign activity, and use the values shown in Figure 12-9 to
set the properties on this activity.

FIGURE 12-9  Use the Properties pane to edit the settings on the HttpSend activity.

484   Inside Microsoft SharePoint 2013

After the web service request has been made and the results are stored in the local variable, the
next step is to process the response. Each value in the response will need to be added to a differ-
ent variable, so create string variables, scoped to the Root sequence, for each of the fields except
customer ID in the list created at the start of this walkthrough. Next, add a GetDynamicValueProper-
ties activity to the Process Service Request sequence. In the Properties pane, set the Source value to
NorthwindServiceResponse. Now click the ellipsis button for the Properties property to map paths
in the response to the local variables by using the settings shown in Figure 12-10. (Note that the As-
sign To column contains the variables created for each field in the Customers list.)

FIGURE 12-10  Use the Properties pane and dialog box to edit the settings of the GetDynamicValueProperties
activity.

The last step is to update the list item. To do this, add an UpdateListItem activity to the Update List
Item sequence, and use the Properties pane to set the following values:

■■ ListId  (current list)

■■ ItemId  (current item)

Click the ellipsis button for the ListItemPropertiesDynamicValues property. In the dialog box, set
the Entity Type to List Item Of Customers and, for each of the values extracted from the web service,
set the value of the list item to the variable within the workflow, as shown in Figure 12-11.

	 Chapter 12  SharePoint workflows    485

FIGURE 12-11  Use the Properties dialog box to edit the settings on the ListItemPropertiesDynamicValue activity.

At this point, the workflow is complete, so press F5 to start debugging. Visual Studio will build and
deploy the SharePoint-hosted app.

Note  Notice that a console box also appears in the deployment process. This is a debug-
ging tool for testing workflows in an on-premises deployment. It will display the contents
of WriteLine activities.

When the browser opens, find the Customers list, create a single customer with an ID of ALFKI,
and save the item. Next, manually start the workflow by using the same process outlined in the previ-
ously created SharePoint Designer 2013 workflow, and then go back to the list item and keep refresh-
ing the page to observe the workflow update the list item.

SharePoint Designer 2013 and web services
As previously mentioned in this chapter, Microsoft has added support for workflows deployed to
Workflow Manager 1.0 to call external web services. With this capability, workflow authors can add
custom business logic to their workflows and take advantage of existing services. Unlike workflows
based on Visual Studio 2012, which use the DynamicValue type, SharePoint Designer 2013 uses the
Dictionary data type with variables to send data to the workflow and to process the results from a
web service call.

Working with web services in workflows authored in SharePoint Designer 2013 is very similar to
working with them in workflows authored in Visual Studio 2012. To call a web service, use the Call
HTTP Web Service action in SharePoint Designer 2013. The first step is to set the address of the web
service to call. Do this by clicking the this hyperlink in the action, as shown in Figure 12-12.

486   Inside Microsoft SharePoint 2013

FIGURE 12-12  Developers can now use the Call HTTP Web Service action in SharePoint Designer 2013.

When the String Builder dialog box opens, construct the URL to the service by using values in the
current list item and the Add Or Change Lookup button in the footer of the dialog box, as shown in
Figure 12-13. This figure shows a call to the same Northwind service that was used in the previous
workflow authored in Visual Studio 2012, but it uses the CustomerId field from the current list item
and selects only the ContactName and CompanyName fields.

FIGURE 12-13  Use the String Builder to construct the web service URL in SharePoint Designer 2013.

The next step is to extract the value from the web service response. First, the web service response
must be stored in a new variable. Click the response link in the Call HTTP Web Service action and either
select an existing variable or create a new variable of type Dictionary. To extract the values from the
service response, add a Get Item from Dictionary action to the workflow. This activity has three things
to set:

■■ Item by name or path  This is the path to the item within the dictionary variable or the web
service response. For instance, to get the results from the service used in Figure 12-14, the
path would be d/ContactName.

	 Chapter 12  SharePoint workflows    487

■■ Dictionary  This is the name of the variable that contains the web service response.

■■ Item  This is the name of the variable where the result should be stored for later use in the
workflow.

FIGURE 12-14  This demonstrates a workflow in SharePoint Designer 2013 that calls and processes a web
service response.

That is all there is to working with services in SharePoint Designer 2013. From this point, the vari-
able can be used to update a list item or inclusion within an email message or any other task that can
be performed with a workflow.

Creating custom activities
Another workflow customization supported by both SharePoint 2013 and Workflow Manager is creating
custom activities. With a custom activity, a developer can create a subprocess that achieves a spe-
cific task. A custom activity can be thought of as a small workflow, which is ideal for a process that
could be reused multiple times in various workflows. Before creating a custom activity, the developer
needs to consider where and how it will be used. If the goal is to simply refactor a complex workflow
into smaller or reusable components that are stored in files separately from the main workflow, the
development approach is quite simple. Only Visual Studio 2012 supports creating custom activities;
SharePoint Designer 2013 contains no support for creating custom activities. To create a custom ac-
tivity in Visual Studio, add a new project item to a SharePoint project (either a traditional SharePoint
solution or SharePoint app) by using the Workflow Custom Activity template; add the business logic;
and finally, add the activity to the workflow as demonstrated in the next section.

Creating a custom workflow activity in a SharePoint app
The following walkthrough demonstrates how to create a custom activity for use within a workflow
hosted in a SharePoint app. It will use the workflow project previously created in this chapter that calls
the Northwind OData service as a starting point to retrieve additional customer data. The custom
activity will refactor the process of querying the web service and processing the response so that
the workflow can call this activity by passing in a customer ID and get back the additional customer
details without having to deal with the web service.

488   Inside Microsoft SharePoint 2013

First, add a new item to the project by using the Workflow Custom Activity template and name it
GetCustomerDetailsActivity. Next, cut and paste the sequences Get Customer Data from Service
and Process Service Response from the previously created workflow into the sequence in the custom
activity. Rename the default Sequence activity to Root. Now create two variables by clicking the Vari-
ables tab at the bottom of the designer. These variables will be used in the workflow to store the URL
of the service and the response:

■■ NorthwindServiceUri (Variable Type = String; Scope= Get Customer Data from
Service)  This will contain the URI that will be used to query the web service.

■■ NorthwindServiceResponse (Variable Type = DynamicValue; Scope = Root)  This will be
used to store the web service response.

The next step involves modifying the arguments used to pass data to and from the activity. Within
the activity, click the Arguments tab at the bottom of the designer, as shown in Figure 12-15. Create
one input argument for the customer ID that the calling workflow will supply, and output parameters
for all the values extracted from the web service response, as shown in Figure 12-15. As long as the
argument names are the same as the variable names in the previous workflow, the activities will not
need to be updated.

FIGURE 12-15  Add arguments to the activity to pass values in and out.

The custom activity is now finished, and the next step is to update the workflow. With the work-
flow open in the designer, remove the two variables NorthwindServiceUri and NorthwindService-
Reponse; they are no longer needed, because the activity handles them. To add the activity to the
workflow, you must compile the project so that the toolbox will show the activity as one to use in the
workflow. Build the project, and then drag the custom activity into the designer between the Init and
Update List Item sequences, as shown in Figure 12-16.

	 Chapter 12  SharePoint workflows    489

FIGURE 12-16  Add the custom activity, GetCustomerDetailsActivity, to the workflow.

The last step is to select the custom activity in the designer and associate all the input and output
parameters with the variables in the workflow.

This example showed how to use a custom activity within a workflow deployed as a SharePoint
app. This is great for many solutions, but many business requirements demand that the activity be
used in multiple workflows. Sharing a single activity XAML file between projects and limiting it to
workflows built with Visual Studio 2012 is cumbersome. Another option is to deploy the activity to
Workflow Manager and advertise the existence of it to SharePoint so that workflows authored by
using SharePoint Designer 2013 can use it. There are two extra requirements to creating a custom
activity for use in SharePoint Designer 2013 workflows.

First, the activity must be deployed by using a solution, not in an app. Deploying it in an app
would make the activity available only within the AppWeb, which is quite limiting. The solution used
for deployment can be a sandboxed or fully trusted farm solution, but it probably makes the most
sense to do it as a sandboxed solution. Because the custom activity will be fully declarative like work-
flows authored in Visual Studio 2012, there is no custom code, and thus it can be deployed by using a
sandboxed solution. Further, because fully trusted farm solutions are supported only in on-premises
deployments, the sandbox makes more sense because it can be used in either on-premises or hosted
deployments such as Office 365.

The other requirement in creating a custom activity that will be used in SharePoint Designer 2013
workflows is that the activity must be advertised to SharePoint Designer. This is achieved by using an
actions file. When you are creating a new workflow with SharePoint Designer 2013, the site collection
interrogates the target site collection for all available actions supported by the site collection. These
actions map to activities and tell SharePoint Designer how the user-friendly designer should work, what

490   Inside Microsoft SharePoint 2013

the inputs and outputs are, and where it should appear in the SharePoint Designer user interface—for
example, which category it should be present in. Actions files are deployed as part of the SharePoint
solution package that includes the custom activity.

Creating a custom workflow activity for SharePoint Designer 2013
The following walkthrough demonstrates how to create a custom activity that can be used within
SharePoint Designer 2013. It is a variant of the one included in the previous walkthrough that addressed
creating a custom action for Visual Studio 2012, so the differences between the two will be easily
noticeable. First, create a SharePoint 2013 empty project, making sure that it is a SharePoint solution
and not a SharePoint app project. When prompted, specify that the project is a sandboxed solution.

Next, add a Workflow Custom Activity item to the project and recreate the activity from the
previous example, including the variables and arguments. Essentially, what you should be left with is a
sandboxed solution with no workflow, but the same activity from the previous project. There is one very
important difference in that there is now a *.actions4 file in the project item, as shown in Figure 12-17.

FIGURE 12-17  This project’s Solution Explorer pane shows the activity and associated *.actions4 file.

After the activity has been created, it must be exposed as an action for it to be accessible in
SharePoint Designer 2013 workflows. This is done by using the *.actions4 file. Open this file and add
the contents shown in the following code. This file dictates how the activity will appear in SharePoint
Designer 2013 and how the values entered by the workflow author will be passed to and from the
activity:

<Action Name="GetCustomerDetailsActivity"
 ClassName="GetCustomerDetailsActivity.GetCustomerDetailsActivity"
 Category="Custom Activities"
 AppliesTo="all">
 <RuleDesigner Sentence="Fetch customer details for
 customer %1 from Northwind as %2, %3, %4, %5, %6 and %7">
 <FieldBind Field="CustomerId" Id="1"
 DesignerType="TextBox" Text="id" DisplayName="Customer Id" />

	 Chapter 12  SharePoint workflows    491

 <FieldBind Field="CustomerName" Id="2"
 DesignerType="TextBox" Text="fullName" DisplayName="Customer Name" />
 <FieldBind Field="CustomerTitle" Id="3"
 DesignerType="TextBox" Text="jobTitle" DisplayName="Customer Job Title" />
 <FieldBind Field="CustomerAddress" Id="4"
 DesignerType="TextBox" Text="address" DisplayName="Customer Address" />
 <FieldBind Field="CustomerCountry" Id="5"
 DesignerType="TextBox" Text="country" DisplayName="Customer Country" />
 <FieldBind Field="CustomerPhone" Id="6"
 DesignerType="TextBox" Text="phone" DisplayName="Customer Phone" />
 <FieldBind Field="CustomerFax" Id="7"
 DesignerType="TextBox" Text="fax" DisplayName="Customer Fax" />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="CustomerId" Type="System.String, mscorlib"
 Direction="In" DesignerType="Hide" />
 <Parameter Name="CustomerName" Type="System.String, mscorlib"
 Direction="Out" DesignerType="Hide" />
 <Parameter Name="CustomerTitle" Type="System.String, mscorlib"
 Direction="Out" DesignerType="Hide" />
 <Parameter Name="CustomerAddress" Type="System.String, mscorlib"
 Direction="Out" DesignerType="Hide" />
 <Parameter Name="CustomerCountry" Type="System.String, mscorlib"
 Direction="Out" DesignerType="Hide" />
 <Parameter Name="CustomerPhone" Type="System.String, mscorlib"
 Direction="Out" DesignerType="Hide" />
 <Parameter Name="CustomerFax" Type="System.String, mscorlib"
 Direction="Out" DesignerType="Hide" />
 </Parameters>
</Action>

In this markup, notice the <RuleDesigner> element, specifically the Sentence attribute. It contains
a string that is shown in the SharePoint Designer experience. Each of the pieces of the sentence that
start with the % character are treated as linked placeholders. They map to the <FieldBind> elements
in the markup. For instance, %2 maps to the fullName field. What is shown in the design experience
is a hyperlinked string fullName, which the workflow author can click. The <Parameters> section tells
the designer how each field should be treated; for instance, whether it is an email address, string,
number, or datetime field. Based on the type specified, the designer shows different designers and
applies different validation rules.

When you are finished, deploy the sandboxed solution to a SharePoint 2013 site and create a new
workflow. The activity will appear in the category that the *.actions4 file specified and will appear in
the designer, as shown in Figure 12-18.

FIGURE 12-18  This shows using the custom activity, as shown in the text-based designer in SharePoint
Designer 2013.

492   Inside Microsoft SharePoint 2013

Using tasks in workflows

One of the biggest value propositions that SharePoint brings to Workflow Foundation is the incor-
poration of tasks and task management. When you are associating a workflow with a site or list, one
of the requirements is to specify the list that will contain any of the tasks that are created within the
workflow. Both SharePoint Designer 2013 and Visual Studio 2012 support creating tasks and assign-
ing them to users. Handing the outcome of the tasks is much simpler than it was in prior versions of
SharePoint.

Developers using Visual Studio 2012 can create tasks by using one of two activities: SingleTask or
CompositeTask. The first one creates and assigns a task to a specified user or group. With the latter,
a developer can create multiple tasks and assign them to multiple people, such as everyone within a
group. A task can be configured to stop the workflow until everyone or a percentage of people have
addressed the assigned task. Both activities have properties that allow the workflow author to specify
the subject and body of the different email messages that are sent out when the task is assigned to
someone, when it is overdue, or when it has been canceled. Unlike in previous versions of SharePoint,
developers do not have to keep track of correlation tokens if they don’t want to, because the tasks
can be flagged to wait until the task has been completed by the person it was assigned to.

Microsoft has created a new task list definition in SharePoint 2013 (list template ID = 171) that pro-
vides a timeline view and uses the new Workflow Task (SharePoint 2013) content type. This content
type is derived from the base Task content type (ID = 0x0108), but it adds two columns. The first col-
umn, WorkflowInstanceId, is used to track which instance the task is associated with. The other column
is TaskOutcome, which is used to provide the two default outcomes available for a task: Approved and
Rejected.

Adding tasks to a workflow
The following walkthrough demonstrates how to use the SingleTask activity to add a task to a work-
flow by using the out-of-the-box workflow task and task outcomes. Create a new SharePoint-hosted
app by using Visual Studio 2012, add an Announcements list to the app project, and then add a
workflow that is associated with the Announcements list and starts only manually, not automatically.
Because the task needs to be assigned to someone, for the sake of simplicity, use the creator of the
list item that will trigger the workflow. Therefore, use the same techniques that were demonstrated
in the previous workflows to get the list item’s properties, but this time put the Created By field value
from the list item in a local string variable called AnnouncementItemAuthorId.

	 Chapter 12  SharePoint workflows    493

Next, by using the toolbox, add a SingleTask activity to the end of the workflow and click the Prop-
erties link within the activities to open the Task Options dialog box. Set the Assigned To property to
the AnnouncementItemAuthorId variable, and update the other fields such as the Task Title and Body
to something descriptive. Notice that there are additional sections for Due Date, Task Options, Email
Options, and Outcome Options that can be set, as shown in Figure 12-19.

FIGURE 12-19  Use the Task Options dialog box to customize the SingleTask activity Task Options.

Although the Task Options dialog box has quite a few options that the workflow author can set,
selecting the SingleTask activity in the designer will expose a significant number of additional proper-
ties in the Properties pane, as shown in Figure 12-20. These include custom email subjects and bodies
for the three types of email messages that can be sent, and configuration of the variable where the
task outcome should be saved for evaluation later in the workflow.

494   Inside Microsoft SharePoint 2013

FIGURE 12-20  Use the Properties pane for the SingleTask activity to modify the settings.

Custom task outcomes
Workflow task outcomes are presented on the task edit form as buttons at the bottom of the form,
alongside the Save and Cancel buttons. Workflows in SharePoint 2013 are not limited to just the two
options Approved and Rejected. Many times the out-of-the-box options do not meet a company’s
business requirements. For instance, consider a task that is assigned to a reviewer of a draft document

	 Chapter 12  SharePoint workflows    495

for a manuscript. When the reviewer surveys the submitted draft document, the two options should
be to either send the draft document back to the author for more edits or pass it along to the editor.
In this case, Approved and Rejected do not really fit; more appropriate options could be “Return to
Author” and “Proceed to Editor.”

Workflow authors using either SharePoint Designer 2013 or Visual Studio 2012 can create custom
workflow tasks that include custom task outcomes. This is achieved by creating a custom task as a
special content type and adding a custom site column that defines all the possible outcomes. The cus-
tom column should be derived from the field type called OutcomeChoice, which is a choice field. This
can pose a challenge in that the content type the custom task is derived from is the Workflow Task
(SharePoint 2013) content type, which includes the default TaskOutcome site column, which contains
the Approved and Rejected options. Therefore, what Microsoft recommends is to remove the Task-
Outcome column from the custom task content type and ensure that it is not present in the workflow
task list; otherwise, the result would show multiple options. For instance, consider a custom outcome
that has two options, Red Pill and Blue Pill. If the default outcome is not removed, the users complet-
ing the task will be presented, in the browser, with the options shown in Figure 12-21. Not only is this
confusing, it simply makes no sense in this context.

FIGURE 12-21  Notice all the buttons for the custom task content type rendering with the default and custom
outcome columns.

Microsoft recommends creating different workflow task lists for each type of task being created in
a workflow. Depending on the tool used to create the workflow, the steps could be a bit different.

Creating custom task outcomes for a SharePoint Designer 2013 workflow
When creating custom tasks and custom task outcomes in workflows authored by using SharePoint
Designer 2013, workflow authors needs to keep in mind that they are going to be responsible for
creating the workflow task list. The basic steps for creating the custom outcome are as follows:

1.	 Create a custom site column by using the field type Task Outcome with custom choices.

2.	 Create a custom content type that is derived from Workflow Task (SharePoint 2013), found in
the List Content Types group.

a.	 To this content type, add a reference to the custom site column previously created.

b.	 Remove the default TaskOutcome site column that comes from the Workflow Task
(SharePoint 2013) content type.

3.	 Create a new list and add the custom content type to it.

4.	 Verify that the TaskOutcome site column is not in the task list. If it is, remove it.

Following these steps will render a single set of outcome buttons, as shown in Figure 12-22.

496   Inside Microsoft SharePoint 2013

FIGURE 12-22  Notice the corrected buttons for the custom task content type rendering only the custom out-
come columns.

When you are adding the task action in the workflow by using SharePoint Designer 2013, simply
select the correct task content type and outcome column to ensure that the workflow uses the cor-
rect settings. Notice that the dialog box warns the author to ensure that the content type has been
added to the associated workflow task list. This is not checked in the publication process of the work-
flow, nor at runtime. Instead, the workflow will produce an error during the process of creating a task,
with a message about an ArgumentException on the ContentTypeId, as shown in Figure 12-23. This is
something that might not be intuitive to the experienced user or end user, so make sure that this is
set ahead of time.

FIGURE 12-23  Use the SharePoint Designer 2013 Assign A Task dialog box to modify the task settings.

Creating custom task outcomes for a Visual Studio 2012 workflow
The process of creating custom task outcomes for custom tasks with workflows built by using Visual
Studio 2012 is similar to that of SharePoint Designer 2013. The most important difference is to keep
in mind that the workflow author is responsible for binding the custom content type to the workflow
task list. This can be done by opening the Elements.xml file for the WorkflowTaskList project item
and adding a second <ContentTypeBinding /> element referencing the content type ID of the custom
content type, as shown in the following code snippet:

	 Chapter 12  SharePoint workflows    497

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListInstance FeatureId="{f9ce21f8-f437-4f7e-8bc6-946378c850f0}"
 TemplateType="171"
 Title="WorkflowTaskList"
 Description="This list instance is used for workflow Task items."
 Url="Lists/WorkflowTaskList"
 RootWebOnly="FALSE" />
 <ContentTypeBinding ListUrl="Lists/WorkflowTaskList"
 RootWebOnly="FALSE"
 ContentTypeId="0x0108003365C4474CAE8C42BCE396314E88E51F"/>
 <ContentTypeBinding ListUrl="Lists/WorkflowTaskList"
 RootWebOnly="FALSE"
 ContentTypeId="0x010800C5462A9EBAE14BFC8DA48A659BFC2C80"/>
</Elements>

Workflow services CSOM and JSOM

In SharePoint 2013, Microsoft also invested in bolstering the client-side object model (CSOM), both
the managed implementations and the JavaScript object model (JSOM), for the workflow services.
The way it works is that everything is routed through the Workflow Service Manager. This is the client
component that is hosted in SharePoint and knows how to communicate through a client proxy with
the SharePoint farm’s configured Workflow Manager farm. The Workflow Service Manager provides
interfaces to a few specialized workflow services:

■■ Deployment service  This service provides a vehicle for interrogating and exploring all
deployed workflow definitions. In addition, developers can validate and submit workflow
definitions to SharePoint and Workflow Manager through this service.

■■ Subscription service  This service provides a vehicle for interrogating, exploring, modifying,
and creating new or existing workflow associations of a workflow definition with a specified
site, list, or library.

■■ Instance service  This service, like the two other services previously mention, provides a
vehicle for interrogating, exploring, creating, and interacting with new and existing workflow
instances on a specific SharePoint site, list item, or document.

By using these new services, developers can create some really interesting solutions. However,
from a practical standpoint, the Workflow Services JSOM will be most used within workflow forms, as
covered in the next section of this chapter. To use the workflow CSOM or JSOM, add the necessary
references to your project (Microsoft.SharePoint.Client.WorkflowServices.dll in the case of the CSOM;
sp.workflowservices.js in the case of JSOM). Next, pass a SharePoint client context and the target site
to connect to. The following sample demonstrates how to do this by using JSOM:

var context = SP.ClientContext.get_current();
var wfManager = SP.WorkflowServices.WorkflowServicesManager.newObject(context,
 context.get_web());

498   Inside Microsoft SharePoint 2013

For a practical implementation and demonstration of how to use the Workflow Services JSOM,
refer to the next section on working with forms in SharePoint 2013 workflows.

Adding custom forms to workflows

Workflows in prior versions of SharePoint supported three different types of custom forms. The first
type, custom task forms, has already been covered in this chapter and is handled by custom content
types and outcome columns. The other two types of forms are association and initiation forms. In pre-
vious versions of SharePoint, creating these custom forms was challenging because they had special
undocumented and confusing logic that was not exposed to customers and was used to implement
them by using either InfoPath or ASP.NET pages. SharePoint 2013 has made this task much easier.
First, all forms should be created as ASP.NET pages, and there are templates for the available forms
within the Office Developer Tools for Visual Studio 2012. Just like traditional SharePoint apps, the
ASP.NET forms should not have any server-side code and instead only utilize client-side code such
as JavaScript. The form templates in Visual Studio 2012 already contain the base Workflow Services
JSOM code needed by the forms. For the most part, all the developer needs to do is modify a little
section that collects values from the form controls specific to the workflow, and then pass them along
in the Workflow Services JSOM call to SharePoint.

Association forms in SharePoint 2013
An association form is presented after the user creates a new association for a workflow definition
and SharePoint site, list, or library. The first part of the association is selecting the workflow definition
and giving it a friendly name, followed by selecting the workflow task and history list the workflow
will be associated with, and finally, selecting how it can start. If there is a linked association form with
the workflow, it is presented when the user clicks Next on the default association form. These types of
forms are very useful when the workflow needs some configuration information, such as an API key
that needs to be submitted to a workflow that the workflow is calling, or when the workflow needs
some default data.

Creating association forms
This walkthrough demonstrates creating a custom association form and using it to collect some in-
formation that is then passed along to the workflow. Following the same setup process you used with
the other workflows you built in Visual Studio 2012 in this chapter, create a new SharePoint-hosted
app project with an Announcement list, and add a workflow, but this time do not associate the work-
flow with the list. Instead, the workflow will be manually associated after it is deployed.

To demonstrate how association forms work, the workflow will simply show the value of one field
submitted from the custom association form. Right-click the workflow and add a new project item by
using the Workflow Association Form template. Visual Studio will add the form to the Pages module
in the project and update the workflow’s properties to point to the URL of the item. The ASPX page
that is created for the association form is nearly complete because it will use the Workflow Services

	 Chapter 12  SharePoint workflows    499

JSOM to create the workflow history list and task list (if necessary), as well as the association. First,
notice that within the PlaceHolderMain section there is a server control that’s worth mentioning:

<WorkflowServices:WorkflowAssociationFormContextControl />

This control collects the input form controls from the HTTP POST submitted on the previous page,
the one in which the user selects the workflow definition, task list, history list, and workflow start
configuration. Without this, the association could not be created. The control simply adds a handful
of hidden form controls on the page that are accessed by the JavaScript generated in this template.
Scroll a little further down to find the core form within a table. By default, it includes a handful of
form controls, but to simplify things, delete the two form controls and just leave the single textarea
field control.

The form also includes a button that will call a JavaScript function on the page to trigger the as-
sociation creation process. Scroll through the JavaScript to a section that creates a new variable called
metadata. When you find it, change the key of the array item to AssociationFormValue:

var metadata = new Object();
// Get form input values and set workflow in-argument values
var strInputValue = document.getElementById("strInput").value;
if (strInputValue) {
 metadata['AssociationFormValue'] = strInputValue;
}

This block is collecting three form values and placing them in the metadata array. Remove the
code block that creates intInputValue and dateTimeInputValue variables, because those were previ-
ously removed in an earlier step. Now scroll down to the comment “Add new workflow association”,
past the code that creates a history list and task list if mandated on the previous form:

// Add new workflow association
var newSubscription = SP.WorkflowServices.WorkflowSubscription.newObject(context);
newSubscription.set_definitionId(definitionId);
newSubscription.set_eventSourceId(eventSourceId);
newSubscription.set_eventTypes(eventTypes);
newSubscription.set_name(workflowName);
for (var key in metadata) {
 newSubscription.setProperty(key, metadata[key]);
}
// Publish
wfManager.getWorkflowSubscriptionService().publishSubscriptionForList(newSubscription, listId);

This section uses the Workflow Service JSOM to do the following things:

1.	 Create a new workflow association, referred to in the API as a subscription.

2.	 Set the workflow definition ID of the association, which is the ID of the workflow developed in
Visual Studio 2012.

3.	 Set the ID of the list or library the workflow is being associated with.

4.	 Set the start type or types for the workflow, such as manual or automatic when something is
created or updated.

500   Inside Microsoft SharePoint 2013

5.	 Set the name of the workflow to that specified by the user creating the association.

6.	 Walk through the contents of the metadata collection and set each property on the workflow.

7.	 Create the workflow subscription.

Notice that the only things that need to be modified are the form and form controls, and the sec-
tion in which those values are collected and saved into the metadata array. The next step is to add an
activity to the workflow itself to collect these properties being passed in.

Within the workflow, create a new variable named AssociationFormValue of type string. Next, add a
GetConfigurationValue to the workflow and set the Name property equal to the name of the property
being passed in from the form via the Workflow Services JSOM, and set the Result property to the
local variable: AssociationFormValue. Now the workflow has access to the values passed in from the
association form!

To test it, deploy the SharePoint-hosted app and, when the browser opens, navigate to the An-
nouncement list. On the List tab on the ribbon, click the Workflow button. Click the Add A Workflow
link. Select the custom workflow, give it a friendly name, and select the history and task lists. When
the Next button is clicked, the custom form is displayed.

Initiation forms in SharePoint 2013
Initiation forms are used to collect some information from the user when a workflow is manually started.
All the characteristics of an association form apply to initiation forms, including the fact that develop-
ers should use JavaScript only to implement business logic. The project item template in Visual Studio
2012 contains most of this script by default. One thing is important to keep in mind with respect to
initiation forms: these forms are displayed only when a workflow is started manually. Workflows that
start automatically when items are created or updated in a list, or that start programmatically, do not
show the initiation form to the user. Your workflow should account for this, and if some information
is required from the user, it is a good idea to also create an association form that enables the person
creating the association to supply default values for the workflow.

Creating initiation forms
This walkthrough demonstrates creating a custom initiation form and using it to collect some infor-
mation from the user when the workflow is started manually. Following the same setup process you
used for the other workflows you built in Visual Studio 2012 in this chapter, create a new SharePoint-
hosted app project with an Announcement list, and add a workflow that is associated with the An-
nouncement list and starts manually.

Right-click the workflow and add a new project item by using the Workflow Initiation Form tem-
plate. Visual Studio will add the form to the Pages module in the project and update the workflow’s
properties to point to the URL of the item. The .aspx page that is created for the initiation form, just
like with the association form, is nearly complete because it will use the Workflow Services JSOM to
start the workflow and pass in specific values.

	 Chapter 12  SharePoint workflows    501

Following the same process as the association form, find the form controls and remove the second
textarea and datetime controls. Next, change the strInput textarea control to an input control. To
make things a little interesting, add another control, the SharePoint server-side people picker:

<SharePoint:PeopleEditor runat="server" AllowEmpty="False"
 ValidatorEnabled="False" MultiSelect="False" ID="peoplePicker" />

To make development a bit easier, add a reference to the included jQuery library to the head por-
tion of the page, within the PlaceHolderAdditionalPageHead section, just after the sp.workflowservices.
js reference.

Now, scroll down into the JavaScript code to the comment “Set workflow in-arguments/initiation
parameters” section, which is where another array is created with all the things to send to the work-
flow. First, remove the two sections that are collecting the second textarea and datetime controls
previously removed. Rename the parameter that is being passed in to SomeRandomString, and add
some additional JavaScript that will get a reference to the people picker client-side control and extract
the logon name of the selected user, as shown in the following code:

// get people picker value
var html = $("#ctl00_PlaceHolderMain_peoplePicker_upLevelDiv");
wfParams['UserLoginName'] = $("#divEntityData", html).attr("key");
// get string input
var strInputValue = document.getElementById("strInput").value;
if (strInputValue) {
 wfParams['SomeRandomString'] = strInputValue;
}

With the parameters selected, find the comment “Get workflow subscription and then start the
workflow” further along in the JavaScript. This section obtains a reference to the Workflow Ser-
vices Manager, the core component of the Workflow Services JSOM, in addition to references to
the deployment and subscription services, which were covered earlier in this chapter, in the section
“Workflow services CSOM and JSOM.” This code then obtains a subscription (association) by using the
subscriptionID that was passed, by SharePoint 2013, into the page via a value on the query string.

The code then, by using an instance of the workflow instance service, starts a workflow on a
specific list item by passing in the workflow subscription, the ID of the item the workflow should be
associated with, and a collection of the parameters from the form:

// Get workflow subscription and then start the workflow
var context = SP.ClientContext.get_current();
var wfManager = SP.WorkflowServices.WorkflowServicesManager.newObject(context,
 context.get_web());
var wfDeployService = wfManager.getWorkflowDeploymentService();
var subscriptionService = wfManager.getWorkflowSubscriptionService();

context.load(subscriptionService);
context.executeQueryAsync(function (sender, args) {
// Success
 var subscription = null;
 // Load the workflow subscription
 subscription = subscriptionService.getSubscription(subscriptionId);

502   Inside Microsoft SharePoint 2013

 if (itemId != null && itemId != "") {
 // Start list workflow
 wfManager.getWorkflowInstanceService().startWorkflowOnListItem(subscription, itemId,
wfParams);
 } else {
 // Start site workflow
 wfManager.getWorkflowInstanceService().startWorkflow(subscription, wfParams);
 }
 context.executeQueryAsync(
 function (sender, args) { window.location = redirectUrl; },
 function (sender, args) { ... }
)
});

The last step is to configure the workflow to collect these values being passed in. Within the
workflow, add two input arguments for SomeRandomString and UserLoginName, both strings. The
workflow engine and SharePoint will handle sending the form values into the workflow and linking
them up with these arguments, which can then be used within the workflow for various use cases.

Summary

This chapter covered the new workflow platform in SharePoint 2013. It first explained how the archi-
tecture is very different in SharePoint with the addition of Workflow Manager and how this change
benefits customers greatly. The chapter then explained the process for creating custom workflows
both with SharePoint Designer 2013 and Visual Studio 2012. Next, the topics of custom tasks, custom
outcomes, and how to add custom forms to custom workflows was covered. At this point, developers
and experienced users alike should have a solid understanding of how things work and how to model
simple or complex business processes by using the new workflow engine in SharePoint 2013.

		 503

C H A P T E R 1 3

SharePoint search

Of all the components available in Microsoft SharePoint Server 2013, Enterprise Search has the
highest profile and the greatest impact on users. Searching has become a normal part of every

day life. Users utilize web-based search engines such as Bing and Google for both personal and
professional needs. Concepts such as keyword searching, advanced searching, and search links are
familiar to everyone. In fact, Enterprise Search has become a primary entry point into SharePoint—
the first place someone goes when trying to find information. If the search engine returns strong
results, then users will be satisfied with SharePoint. On the other hand, poor search results can lead
to negative opinions of SharePoint overall. Because Enterprise Search plays such a significant role in
the success of SharePoint Server 2013, it is important to deploy, configure, and customize it correctly.

Fortunately, the search story in SharePoint 2013 is cleaner and more powerful than it was in previ-
ous versions. The story is cleaner because both FAST and Search Server have been eliminated from
the products, leaving only SharePoint 2013 Foundation, SharePoint Server 2013 Standard, SharePoint
Server 2013 Enterprise, and SharePoint Online as the available products. The search story is more
powerful because FAST and SharePoint Search have been unified into a single platform with many
new capabilities. Table 13-1 summarizes the functionality available in each version. Although this
chapter will cover many of the capabilities listed in Table 13-1, keep in mind that the focus will be on
extensibility points for developers. Furthermore, all of the material presented in this chapter assumes
that you are working with SharePoint 2013 Enterprise.

TABLE 13-1  Search capabilities by version

Capability Foundation Standard Enterprise Online

Advanced content
processing

Yes Yes Yes No

Content Processing
Enrichment

No No Yes No

Content Search Web Part No No Yes No

Continuous crawl Yes Yes Yes No

Custom entity extraction No No Yes No

Deep links No Yes Yes Yes

Event-based relevancy No Yes Yes Yes

Expertise Search Yes Yes Yes Yes

Graphical refiners No Yes Yes Yes

Hybrid search Yes Yes Yes Yes

504   Inside Microsoft SharePoint 2013

Capability Foundation Standard Enterprise Online

Managed navigation No Yes Yes Yes

Phonetic name matching Yes Yes Yes Yes

Query rules—add
promoted results

No Yes Yes Yes

Query rules—advanced
actions

No No Yes Yes

Query spelling correction Yes Yes Yes Yes

Query suggestions No Yes Yes Yes

Query throttling No Yes Yes Yes

Quick preview Yes Yes Yes Yes

Recommendations No Yes Yes Yes

Refiners Yes Yes Yes No

RESTful query API Yes Yes Yes Yes

Result sources Yes Yes Yes Yes

Search connector
framework

No No Yes No

Search results sorting Yes Yes Yes Yes

Search vertical:
“Conversations”

No Yes Yes Yes

Search vertical: “People” No Yes Yes Yes

Search vertical: “Video” No No Yes Yes

Tunable relevancy No No Yes No

Introducing search-based applications

Traditionally, search engines have been used to return results for a specific user request as a list
ranked by relevance. The results might provide some basic information, such as the title of a docu-
ment or the date of a webpage, along with a description, but users typically have had to follow
links to determine whether the item was of interest. More recently, however, this paradigm is being
replaced with the concept of a search-based application. A search-based application is a custom ap-
plication that is written around a search engine.

The value of a search-based application is that it presents search results in an appropriate form
and allows the user to operate on the results directly. A good example of a search-based applica-
tion is the Bing video search. Figure 13-1 shows the results of searching for the term SharePoint 2013
Development. You can tell that the search results are returned as videos that can be played directly
from the page, thus making it significantly easier to locate items of interest.

	 Chapter 13  SharePoint search    505

FIGURE 13-1  Video results from Bing

Although the default search results page in SharePoint still displays items in a simple list, you will
find that the customization opportunities tend to support the creation of search-based applications.
These customizations include the ability to modify the sorting and ranking, changing the way search
results appear on the page, and creating completely custom solutions against the search object
model. The concept of search-based applications is important to keep in mind as you work through
this chapter. Instead of simply returning items from a search, give consideration to how the results
appear and what operations can be performed. Then think about how the customizations presented
in this chapter come into play.

As a quick example of a search-based application in SharePoint, consider the management of tasks
for users. Task lists can be created in any site within SharePoint, so it is often the case that an indi-
vidual is assigned tasks in multiple sites. In many cases, a users might not even know that he has been
assigned a particular task. Setting alerts on all the lists is unmanageable because the notifications be-
come a form of internal spam. Thus, users are sometimes left unable to effectively manage their tasks.

In the past, developers have often created “rollups” to solve this problem. Rollup solutions go out
to all sites looking for tasks and then display them in a single master list to the user. The problem with
this, however, is that it can be very CPU-intensive if done incorrectly. A search-based solution is a bet-
ter idea.

Instead of a single master list of tasks, imagine that a user goes to a specialized Search Center that
runs a query to return all the task items for the current user sorted by due date. In addition, the user
can view the key information for each task. The user could also operate on the task directly in the
search results by changing its status or editing the description. This is a search-based solution that is
truly useful to a user. Figure 13-2 shows such a solution created in SharePoint 2013. This solution is
discussed in more detail in the section “Extending the Search Center” later in this chapter.

506   Inside Microsoft SharePoint 2013

FIGURE 13-2  A search-based application for managing tasks

Understanding search architecture

The search architecture for SharePoint Server 2013 is complex. It includes components for crawling,
indexing content, administration, and executing search queries. Figure 13-3 shows a block diagram of
the search architecture. Components in the diagram represented in darker shades are not extensible
by developers. Components represented in lighter shades represent extensibility points covered in
this chapter.

In the center of the search architecture is the Search Service Application (SSA). The SSA is the pri-
mary administrative interface for search and is one of the many shared services available in SharePoint
Server 2013. You can create and share multiple instances of the SSA across farms just like any other
service application. From the Central Administration website, you can access the SSA by selecting
Manage Service Applications. From the list of service applications, you can select the SSA, set its
properties, designate administrators, and perform search administration.

	 Chapter 13  SharePoint search    507

FIGURE 13-3  SharePoint Server 2013 search architecture

Understanding the indexing process
The indexing process is responsible for building the index file. The index file contains crawled proper-
ties from content sources, along with access control lists (ACL) that ensure that search results display
only content for which the user has rights. The process of building the index file involves crawling
designated content sources. A content source is a repository that can be searched. Content sources
can be SharePoint sites, websites, external file systems, Microsoft Exchange Server public folders, Busi-
ness Connectivity Services (BCS) External Systems, or other custom repositories. New content sources
are defined within the SSA.

SharePoint 2013 supports three different kinds of crawls: full, incremental, and continuous. A full
crawl indexes the entire content source whether or not specific items have changed since the last
crawl. An incremental crawl indexes only those items that have changed based on either a time stamp
or a change log. A continuous crawl is an option that can be used instead of an incremental crawl for
any specified content source.

A continuous crawl, as the name implies, indexes a content source continuously. The purpose of
the continuous crawl is to achieve maximum freshness. Incremental crawls cannot run in parallel, but
continuous crawls can. Parallel indexing allows continuous crawling to achieve a level of freshness not
possible with incremental crawls.

Connecting and parsing
The crawler gains access to content sources through connectors. SharePoint 2013 ships with several
out-of-the-box connectors, which allow search to index many common repositories, as shown earlier
in Figure 13-3. If you have a custom repository, however, you will need to build a Microsoft .NET

508   Inside Microsoft SharePoint 2013

Assembly Connector to index that repository. Chapter 12, “SharePoint workflows,” presented the
fundamentals of .NET Assembly Connectors, which are used by BCS to connect with External Systems.
The indexing process uses these same components to connect with content sources. The section “Cre-
ating .NET Assembly Connectors for search” later in this chapter covers the additional development
necessary for connectors to support indexing an External System.

In previous versions of SharePoint, IFilters were used to allow the indexing process to access the
contents of an item and extract associated metadata. In SharePoint 2013, IFilters are partially replaced
by parsers and format handlers. Parsers are responsible for detecting the type of an item, and format
handlers extract the metadata. Parsers and format handlers perform the same basic function as an
IFilter but are more sophisticated. Parsers, for example, do not rely on the file extension associated
with a document to determine its type, as was the case with IFilters. Instead, a parser can identify the
type of a document by examining its content. Format handlers support several powerful features such
as deep link extraction and visual metadata extraction. Deep link extraction provides links directly to
major subsections of a document in the search results. Visual metadata extraction extracts key meta-
data such as titles, authors, and dates directly from the document content in case those values are
incorrectly set in the document metadata.

Enhancing metadata
The processing of crawled items is represented in Figure 13-3 by the content pipeline component. In
SharePoint 2013, developers are able to extend the content pipeline with a custom Content Process-
ing Enrichment Service (CPES). The CPES is a custom web service that accepts a collection of docu-
ment metadata properties. Within the CPES, this collection can be modified in order to enhance the
metadata associated with an item. Such enhancement supports data cleansing, entity extraction,
classification, and tagging.

Data cleansing allows for the normalization of data across crawled items. As an example, consider
a company property, which is set manually by users. If the company in question were Microsoft, it
would not be uncommon for various users to set the metadata value to be Microsoft, Microsoft Cor-
poration, or even the ticker symbol MSFT. In this case, the CPES could normalize all of these values to
be Microsoft Corporation.

Entity extraction allows new properties to be added to an item. In the case in the previous para-
graph, a new property, ticker, could be added to the item through the CPES. That property could then
be set to MSFT, allowing people to search for documents by ticker symbol as well as company name.

Classification and tagging also relies on the ability to add new properties, but for the purpose of
classifying a document based on a set of rules. Additional tags could also be added based on a tax-
onomy. All of this makes the documents easier to find in search.

Analyzing searches
The analyzer component is used to improve the quality of search results. The analyzer performs click
analysis on search results to determine the most relevant results from a specific query. The click analy-
sis is fed back into the content pipeline to enhance the information associated with a crawled item.

	 Chapter 13  SharePoint search    509

Understanding the query process
After the index file is created, it can be used to support query execution. Query execution typically
begins when a user navigates to the Search Center and enters a query, but a query can also be issued
from an app or other customization. Regardless of whether the query comes from an out-of-the-box
component or a custom component, it interfaces with the query pipeline through one of the available
application programming interfaces (APIs): the server-side object model (SSOM), the client-side object
model (CSOM), or the Representational State Transfer (REST) interface.

Creating managed properties
The issued search query can be a simple text keyword or a search against managed properties. Man-
aged properties simplify the search schema and provide more control over how metadata is used
in search. Managed properties are defined at the tenant, SSA, or site. To use managed properties in
SharePoint Online, start in the SharePoint Admin Center and click Search | Manage Search Schema.
For SSA, in Central Administration, you would start in the Search Service Application and click Search
Schema. In a site, you would start on the Site Settings page and click Schema.

Managed properties are mapped to one or more crawled properties. Mapping a managed property
to multiple crawled properties is important because different repositories use different field names
to represent the same data. For example, imagine that you have three different document reposito-
ries. The first repository uses the field name Title for the document title. The second repository uses
a Name field, but that field actually contains a document title. The third repository uses a field called
DOCTTL for the title. When performing a search, end users cannot be expected to know about these
fields. So a single managed property named Title is created and mapped to all three of the crawled
properties. Now users can simply ask for any document containing the word Training in its title, and
search will query all three underlying crawled properties.

Managed properties also have attributes that control the way they are used in search. These at-
tributes allow for the managed property to be used for such things as querying, refining, sorting, or
other purposes. Table 13-2 lists the various attributes of managed properties and their purpose.

TABLE 13-2  Managed property attributes

Attribute Purpose

Searchable Allows the managed property to be searched by using a simple keyword
(for example, Training)

Queryable Allows the managed property to be used in a Keyword Query Language
(KQL) query (for example, Title:Training)

Retrievable Allows the managed property to be returned as a field to the search
results page

Refinable Allows the managed property to be used as a refiner in search results

Sortable Allows the managed property to be used for sorting search results

510   Inside Microsoft SharePoint 2013

Introduction to ranking models
When the user issues a search, the query is sent to the query engine through the query pipeline.
Within the query pipeline, ranking models are applied to order the returned results. Although
SharePoint has several out-of-the-box ranking models, developers can affect the query results by
creating a custom ranking model. Custom ranking models are used to give additional weight to
certain managed properties. This can be useful when the standard ranking models are not pushing
important items far enough to the top. However, custom ranking models should be used sparingly,
because they tend to be created in such a way as to force certain items to the top of the results while
burying other potentially important items much deeper.

Executing queries
The search query is executed by the query engine against the managed properties and index. However,
SharePoint does not run the query against the entire index. Instead, it uses a result source to specify
the scope of the query. Result sources are new to SharePoint 2013 and are a new way to define a
scope by using query language. Result sources are covered in more detail in the section “Creating
result sources” later in this chapter.

Understanding Keyword Query Language

SharePoint 2013 supports two different languages for issuing queries: FAST Query Language (FQL)
and Keyword Query Language (KQL). Previous versions of SharePoint also supported a third query
language known as SQL query. FQL is the language used with the FAST search product. Though FQL
has been carried over to SharePoint 2013, Microsoft does not recommend teaching it to end users
or using it in development. The SQL query language has been completely removed from SharePoint
2013, and any solutions that relied on this query language must be rewritten. This leaves KQL as the
query language of choice for both end users and developers.

KQL queries can be entered directly in the Search Center by an end user, appended to a Search
Center URL, used in the definition of result sources, or issued programmatically to any of the search
APIs. In all cases, the query is formed in exactly the same way: a KQL query consists of one or more
free-text terms and managed property restrictions.

Issuing free-text queries in KQL causes the search engine to look in the index for matching terms.
These terms include text from the body of documents as well as the value 	 for any managed prop-
erty whose Searchable attribute is true. Free-text queries are case-insensitive and limited to 2,048
characters. Free-text queries support wildcarding the end of a term by using the asterisk (*) as well as
complete phrases by surrounding terms with double quotes (“). Table 13-3 shows some examples of
free-text queries.

	 Chapter 13  SharePoint search    511

TABLE 13-3  Free-text queries

Query Description

Microsoft Searches for items containing the term Microsoft in the index and managed
properties marked as Searchable

Microsoft Training Searches for items containing both the words Microsoft AND Training, but
not in any particular order

“Microsoft Training” Searches for items containing the exact phrase Microsoft Training

Micro* Searches for items containing terms that begin with Micro

Managed properties can be used in conjunction with free-text or alone to form a query. When
managed properties are used, the query is formed by specifying the name of a managed property,
followed by an operator, followed by a value (for example, Title=SharePoint). A managed property
must have its Queryable attribute set to true before it can be used in a KQL query. Table 13-4 lists the
operators that can be used with managed properties.

TABLE 13-4  Managed property operators

Operator Description Example

property:value Searches for items whose property con-
tains the specified value

Title:SharePoint

property=value Searches for items whose property equals
the specified value

FileExtension=docx

property<>value Searches for items whose property does
not equal the specified value

FileExtension<>pdf

property>value Searches for items whose property is
greater than the specified value

Created>1/1/2013

property>=value Searches for items whose property is
greater than or equal to the specified value

LastModifiedTime>=1/1/2013

property<value Searches for items whose property is less
than the specified value

Created<1/1/2013

property<=value Searches for items whose property is less
than or equal to the specified value

LastModifiedTime<=1/1/2013

property=value1..value2 Searches for items whose property falls in
the specified range

LastModifiedTime=1/1/2012..1/1/2013

Multiple sets of free text and managed property elements can be combined when forming a
query. KQL supports several operators, including Boolean operators, proximity operators, synonym
operators, and ranking operators. Additionally, parentheses can be used in the query to group the
operations. Table 13-5 lists the various operators for use with multiple sets of query elements.

512   Inside Microsoft SharePoint 2013

TABLE 13-5  Multiple managed property operators

Operator Description Example

element AND element
element + element

Searches for items where both elements
are true.

Title:Training AND Created>1/1/2012
Title:Training + Created>1/1/2012

element OR element Searches for items where either element
is true.

Title:Training OR Title:SharePoint

NOT element
-element

Searches for items where the element is false. NOT FileExtension=docx
-FileExtension=docx

element NEAR(x) element Searches for items where the elements are in
close proximity without regard for the order.
The x parameter specifies the maximum dis-
tance between the elements.

App NEAR(5) JavaScript

element ONEAR(x) element Searches for items where the elements are in
close proximity while preserving the order.
The x parameter specifies the maximum dis-
tance between the elements.

App ONEAR(5) JavaScript

WORDS(element, element)) Searches in the same way as the OR operator,
but ranks the results as if the elements speci-
fied were exactly the same term. This raises
the relevancy of items containing both terms.

WORDS(Microsoft, MSFT)

element1 XRANK element2 Searches for items matching element1, then
boosts the items matching element2 to the
top of the results. There are several complex
factors involved in the rank boost, which can
be explored further at the following URL:
http://msdn.microsoft.com/en-us/library/
ee558911.aspx.

“Training” XRANK(cb=100, rb=0.4,
 pb=0.4, avgb=0.4, stdb=0.4,
 nb=0.4, n=200)
 FileExtension=docx

Although any managed property whose Searchable or Queryable attribute is true can be used in
KQL, there are a few critical managed properties that stand out as particularly useful. Both end users
and developers will benefit from knowing these managed properties. Table 13-6 lists the key man-
aged properties, describes them, and shows some examples.

TABLE 13-6  Key managed properties

Property Description Example

Title Searches for items with a specified title Title:SharePoint

Author Searches for the author of an item Author:Cox

Created Searches for the date an item was created Created=1/1/2012..1/1/2013

LastModifiedTime Searches for the date an item was modified LastModifiedTime>1/1/2012

IsDocument Specifies whether search results should
include only documents

“SharePoint” IsDocument:1

FileExtension Specifies the file extension to search for FileExtension=docx

LastName Searches for a person by last name LastName:C*

ContentClass Searches for items based on their type ContentClass:STS_Site
Content_Class:STS_Web
ContentClass:STS_ListItem_Tasks
ContentClass:STS_ListItem_Events

Path Searches for items based on a URL location Path:”http://dev.wingtiptoys.com/
lists/contacts”

	 Chapter 13  SharePoint search    513

Creating no-code customizations

Although SharePoint 2013 provides complete support for developing apps and solutions, many com-
mon customizations simply don’t require writing code anymore. Furthermore, most search customiza-
tions do not even require the use of the SharePoint Designer. Microsoft has done a particularly good
job in this release of supporting search customizations directly in the browser. Therefore, developers
should thoroughly understand the possibilities for no-code customizations before proceeding with
code-based development.

Creating simple link queries
Developers often overlook the fact that the out-of-the-box Search Center is URL accessible. This
means that you can issue queries to the Search Center by constructing a URL containing KQL. When
this idea is coupled with an out-of-the-box links list, powerfully simple search customizations can be
created. As an example, consider the A though Z employee directory shown in Figure 13-4.

FIGURE 13-4  An employee directory made from a simple list of links

The directory solution was created by first filling a links list with links to the people search in the
Search Center. Each link in the list carries a KQL query for the last name (such as LastName:C*). For
example, the link for people whose last name starts with C looks like the following, where the KQL is
encoded into the k parameter:

http://intranet.wingtiptoys.com/SearchCenter/Pages/PeopleResults.aspx?k=LastName%3AC%2A

After creating the list of links for each letter in the alphabet, the list view was altered to hide every
field except the URL. The URL field was then renamed to Last Name. Finally, the list was added as a
Web Part to the people search page. This is an incredibly simple solution that satisfies a very common
request quite elegantly. Many other similar solutions can be created by using this approach.

514   Inside Microsoft SharePoint 2013

Extending the Search Center
The Search Center in SharePoint 2013 is the hub for search-based applications. Thus you will find that
extending the Search Center to include your custom search-based applications makes good sense.
You will also find that these solutions can be created almost entirely within the browser. Though this
section explains the components and techniques necessary to extend the Search Center, it is impor-
tant to point out that the concepts presented are used in more advanced solutions as well. To support
the explanation of these concepts, this section will explain how to create the task-management solu-
tion shown earlier in Figure 13-2.

Adding pages to search navigation
The out-of-the-box Search Center consists of several pages that allow searching against different
results sources: Everything, People, Conversations, and Video. Each source in the Search Center has
a dedicated page for displaying search results. In order to extend the Search Center, you will need to
add a new page to the Search Center navigation.

New pages are created and added directly in the Search Center site. To create a new page, on the
Site Contents page, locate the Pages document library. From this library, you can create new search
results pages to extend the Search Center. Figure 13-5 shows the Create Page form.

After the new search results page is created, it can be added to the Search Center navigation. To
do so, starting on the Site Settings page, click Search Settings in the Search area. From here, you can
add new nodes to the Search Center, as shown in Figure 13-6.

FIGURE 13-5  Creating new search results pages

	 Chapter 13  SharePoint search    515

FIGURE 13-6  Adding pages to the Search Center navigation

Creating result sources
After you have added a page to the Search Center navigation, you will find that the new search
page works, but that it yields the same results as the Everything page. In order to display custom
results, you must create a new result source. Result sources can be defined in the tenant, SSA, site
collection, or site. In SharePoint Online, you would start in the SharePoint Admin Center and click
Search | Manage Result Sources. In Central Administration, you would start in the Search Service
Application and click Result Sources. In a site collection or site, you would start on the Site Settings
page and click Result Sources. The result source should be created at the level appropriate for the
scope of its intended use.

When a new result source is created, you must first select one of four indexes as a starting point:
Local SharePoint, Remote SharePoint, OpenSearch, or Exchange. Local SharePoint refers to the index
associated with the current SharePoint farm. Remote SharePoint refers to the index associated with
a different SharePoint farm. OpenSearch refers to the index associated with a non-SharePoint search
engine that supports OpenSearch. Exchange refers to a Microsoft Exchange server.

When the index is selected, you can define a query transform to define the new result source. A
query transform uses KQL to define a subset of the index to include in the result source. Clicking the
Launch Query Builder button opens a dialog box for defining the query transform. This dialog has
three tabs: Basics, Sorting, and Test. The Basics tab allows you to define KQL by using a combination
of placeholder tokens and managed properties. The Sorting tab allows you to specify the sort order
of the results by using managed properties. The Test tab allows you to test the result source defini-
tion. Figure 13-7 shows the Basics tab defining the result source to return tasks for the current user.

516   Inside Microsoft SharePoint 2013

FIGURE 13-7  Defining a result source

The Keyword Filter list contains all of the possible tokens for use in the result source definition.
Table 13-7 lists the available tokens and provides a description of each. The Property Filter list con-
tains the names of all the managed properties marked as Searchable or Queryable. Note that you
may have to create several managed properties before you can properly define a result source. In
the example, the PercentComplete and DueDate managed properties had to be created to define the
result source membership and sort order, respectively.

TABLE 13-7  Query tokens

Token Description

{CurrentDisplayLanguage} The current display language based on MUI in ll-cc format

{CurrentDisplayLCID} The numeric value of the current display language based on
MUI in ll-cc format

{List} The URL of the current list

{List.<property>} Any property of the current list

{ListItem} The URL of the current list item

{ListItem.<property>} Any property of the current list item

{Page.<FieldName>} The value of a field on the page from which the query was
issued

{Page.URL} The URL of the page from which the query was issued

{Page.UsageAnalyticsId} The item ID for Usage Analytics

{QueryString.<ParameterName>} A query string parameter from the URL of a page specified
by name

{Request.<PropertyName} A value from the current HTTP request—for example,
{Request.RawUrl}

{SearchBoxQuery} The query value entered into a search box on a page

	 Chapter 13  SharePoint search    517

Token Description

{SearchTerms} The query value entered into the search box on a page with all
query transformations applied

{Site.ID} The GUID of the site from which the query was issued

{Site.LCID} The numeric value of the locale in the site from which the query
was issued

{Site.Locale} The language of the site from which the query was issued in
ll-cc format—for example, en-us

{Site.<property>} Any property from the property bag of the SPWeb from which
the query was issued

{Site.URL} The URL of the site from which the query was issued

{SiteCollection.ID} The GUID of the root web from the site collection from which
the query was issued

{SiteCollection.LCID} The numeric value of the locale in the site collection from which
the query was issued

{SiteCollection.Locale} The language of the site collection from which the query was
issued

{SiteCollection.<property>} Any property from the property bag of the root SPWeb

{SiteCollection.URL} The URL of site collection from which the query was issued

{Term.ID} The GUID of the current site navigation node with a prefix of #0

{Term.IDWithChildren} The GUID of the current site navigation node with a prefix of #

{Term.Name} The label of the site navigation node

{Term.<property>} Any property from the property bag of the term

{TermSet.ID} The GUID of the term set used for current site navigation

{TermSet.Name} The label of the term set used for current site navigation

{Today+/- <integer>} A date calculated from the date when the query is issued

{URLToken.<integer>} A portion of the URL of a page specified in sequential order

{User.Email} The email address of the user who issued the query

{User.LCID} The numeric value of the locale as defined in the profile of the
user who issued the query

{User.Name} The display name of the user who issued the query

{User.PreferredContentLanguage} The Preferred Content Language specified in the profile of the
user who issued the query

{User.PreferredDisplayLanguage} The Display Content Language as specified in the profile of the
user who issued the query

{User.<property>} Any property from the user profile of the user who issued the
query

{User.SID} The SID of the user who issued the query

When the new result source is created, it can be used with the new page that was added to the
Search Center. Each search results page in the Search Center hosts four Web Parts: Refinement, Search
Box, Search Navigation, and Search Results. In order to use the new result source, you must edit
the properties for the Search Results Web Part. Clicking the Change Query button in the Web Part

518   Inside Microsoft SharePoint 2013

properties opens a dialog box that is similar to the one used in creating the result source, but with
more functionality.

The Basics tab allows you to select the result source to be used by the Web Part. On this tab, you
would select the new result source you just created. Note that you can narrow the results further in
this tab by using additional tokens and managed properties. This allows you to create result sources
that are more generalized and rely on each consuming Web Part to further define them for a specific
purpose. After the new result source is set, the associated search result page will only return items
from that source.

Displaying search results
When extending the Search Center, you will undoubtedly want to change the way search results are
displayed based on the type of data. In the example of a user’s tasks shown earlier in Figure 13-2, the
task tile, responsible person, and due date are shown, with a nice icon next to each item. Furthermore,
clicking any item opens a dialog box that allows the user to edit the task item. This type of functional-
ity is accomplished by using result types and display templates.

Result types can be defined in a site collection or site by clicking Result Types on the Site Settings
page. When creating a new result type, you must associate it with a particular result source. You can
also choose to associate it with a specific type of content so that a single result source can be associ-
ated with several different result types. Finally, you select the display template to be used with the
result type. In this way, you can change the way an item appears in search results based on the rules
defined for the result types.

SharePoint 2013 has several out-of-the-box display templates defined, but you will likely want to
create your own. Display templates are created as HTML files that use special markup syntax to define
placeholders for managed properties. These HTML files are saved into the Master Page Gallery for
use by the Search Results Web Part. The Master Page Gallery has different folders for organizing the
display templates, but you can locate all of the display templates for search by starting at the Site Set-
tings page and clicking Master Pages and Page Layouts | Display Templates | Search.

When creating a custom display template, you should always start with an existing template. The
Item_Default.html file represents the default display template for search results. To create a custom
display template, download this file from the Master Page Gallery and rename it to something ap-
propriate. In the case of the example, it was renamed to Task_Default.html. After renaming it, you
can open it in Microsoft Visual Studio for editing.

The first task in creating a custom display template is to add the managed properties that
the template will need to successfully render. Defining the managed properties is done in the
mso:ManagedPropertyMapping element by using a format that maps a markup name to the prop-
erty name. The simplest way to approach this is to use the same name for both parts, as shown in
the following code:

<mso:ManagedPropertyMapping msdt:dt="string">
'Title':'Title','Path':'Path','Description':'Description',
'AssignedTo':'AssignedTo','DueDate':'DueDate'
</mso:ManagedPropertyMapping>

	 Chapter 13  SharePoint search    519

After the managed properties are defined, you can use them in the markup associated with the
display template. The basic approach is to include them in the generated HTML by surrounding them
with the delimiting strings _# and =#_. This allows you to build up an HTML template that will sub-
stitute in the values of the managed property for each item in the results. The following code shows
how this is done for the example solution:

<h3>

 #=ctx.CurrentItem.Title=#

 Assigned To: _#=ctx.CurrentItem.AssignedTo=#_

</h3>
<div id="_#= $htmlEncode(hoverId) =#_" class="ms-srch-hover-outerContainer"></div>

In addition to using the managed properties in the HTML, you can also call to custom JavaScript
functions defined in the markup. These custom functions must be defined between the delimiting
strings <!--#_ and _#-->. The following code shows a date formatting and style function used in the
example:

<!--#_
 getFormattedDate = function() {
 var d = new Date(ctx.CurrentItem.DueDate);
 return (d.getMonth() + 1) + "/" + d.getDate() + "/" + d.getFullYear();
 };

 getDueDateStyle = function() {
 var d1 = new Date(ctx.CurrentItem.DueDate);
 var d2 = new Date();
 if(d2>d1)
 return 'color:red';
 else
 return 'color:black';
 };
_#-->

Notice how the getFormattedDate and getDueDateStyle functions refer to the ctx.CurrentItem ob-
ject. This object represents the current item in the search results. The function is called once for each
item in the search results, and the call must be included in the markup surrounded by the delimiting
strings _#= and =#_ as shown in the following code:

Due Date: _#=getFormattedDate()=#_

The JavaScript functions included in the display template markup should not be confused with
JavaScript you want to inject into the search results page. You can include references to JavaScript in
the template you create by using the $includeScript function to register an external library. The follow-
ing code shows an example:

$includeScript(this.url, "~sitecollection/SiteAssets/custom.js");

Note that it is also possible to inject JavaScript by writing it directly in the action element attri-
butes, such as onclick. Though this approach can quickly become unwieldy, it does offer the powerful
ability to substitute managed property values into the JavaScript code. In the example, the following
JavaScript is used to open a task item for editing when it is clicked in the search results page:

520   Inside Microsoft SharePoint 2013

<a title="Open task" style="cursor:pointer" href="#" onclick="
var title='_#=ctx.CurrentItem.Title=#_';
var path='_#=ctx.CurrentItem.Path=#_';
SP.SOD.executeFunc('sp.ui.dialog.js', null, function () {
 SP.UI.ModalDialog.showModalDialog({
 width: 600, height: 338, allowMaximize: true, title: title, url: path,
 dialogReturnValueCallback: function (dialogResult, returnValue) {
 SP.UI.ModalDialog.RefreshPage(SP.UI.DialogResult.OK); }
 });
});
">_#=ctx.CurrentItem.Title=#_

Finally, if you would like to run some JavaScript after all of the display template processing is
complete, you can use the OnPostRender method. This method can invoke a function contained
in the custom JavaScript library you registered earlier. Just ensure that the following code appears
first in the display template before any other code:

<!--#_
 ctx.OnPostRender = [];
 ctx.OnPostRender.push(function(){ CustomMethodCall() });
_#-->

When the display template is complete, it must be uploaded to the Master Page Gallery before it
can be used. Simply upload the HTML file to the same folder where the other search display tem-
plates are located. Upon uploading, SharePoint will automatically generate a JavaScript file with the
same name as the template. This JavaScript file is the one that is actually used by SharePoint, but the
developer simply focuses on the HTML file, which provides a reasonable experience for customizing
templates. After the display template is uploaded, it can be associated with a result type. Finally, you
can edit the Search Results Web Part to use the defined result type, which will in turn use the associ-
ated display template for rendering.

Defining query rules
Query rules allow you to add promoted results, add a result block, or change the user’s issued query
based on a condition such as the terms contained in a search query. A promoted result allows you to
add a new link that will show up at the top of the search results just like a best bet in previous ver-
sions of SharePoint. Result blocks execute a secondary search query but display the results in a block
along with the original query results. This allows you to call out related or special items for attention.
Changing the user’s query allows you to modify or completely change the issued query.

Query rules can be defined in the tenant, SSA, site collection, or site. To define a query rule, in
SharePoint Online, start in the SharePoint Admin Center and click Search | Manage Query Rules. In
Central Administration, start in the Search Service Application and click Result Rules. In a site collec-
tion or site, start on the Site Settings page and click Query Rules. When you create a query rule, you
specify the triggering condition and the responding action. You can also specify the dates during
which the rule is active. Setting dates for a rule to be active makes sense when you want to promote
results for a period of time, such as when items go on sale.

	 Chapter 13  SharePoint search    521

For the example task management solution, three query rules were created named past, pres-
ent, and future. The idea behind these query rules was to allow the end user to enter one of the
terms and easily search for overdue tasks, tasks due in the next 30 days, or tasks due more than 30
days from now, respectively. Each query rule uses the condition Query Matches Keyword Exactly.
The associated action is Change ranked results by changing the query. If the term past is entered,
the query is changed to DueDate<{Today}. If the term present is entered, the query is changed to
DueDate>{Today} AND DueDate<{Today+30}. If the term future is entered, the query is changed to
DueDate>{Today+30}.

Adding refiners
Managed properties whose Refinable attribute is set to true can be used as the basis for a refiner in
the Search Center. The Refinement Web Part provides a configuration dialog box that lets you choose
the refiners to be used with the search results. Like result types, refiners also use display templates
to control how the refinement information is presented. SharePoint 2013 provides several display
templates for refiners, which are located in the Master Page Gallery | Display Templates | Filters folder.
These display templates can be selected when you are configuring the Refinement Web Part, as
shown in Figure 13-8.

FIGURE 13-8  Configuring refiners in the Refinement Web Part

522   Inside Microsoft SharePoint 2013

Along with managed properties, refiners can also be defined by using Managed Metadata. Man-
aged Metadata refiners are primarily used in the Web Content Management system when you are
using a list as a catalog to drive site content. Web Content Management is covered in Chapter 14,
“SharePoint Enterprise Content Management.”

Exporting search customizations
Although creating search-based applications directly in the browser is powerful and convenient, the
production environment is not the place to develop these applications. As with all development, these
applications should be created in a development environment and verified in a staging environment
before being moved to production. To support migrating the applications, SharePoint 2013 provides
the ability to export and import search settings.

Exporting and importing can be done through the Site Settings page by clicking Configuration
Import or Configuration Export under the Search heading. Exporting search configurations produces
an XML file with information about result sources, result types, query rules, and managed properties.
Unfortunately, the export file does not contain information about master pages, display templates,
and Web Parts, which must be migrated separately.

In addition to using the export capability to migrate between environments, you can also use the
exported search settings within a search-based app. In Visual Studio 2012, you can add a new Search
Configuration item, which will allow you to import the search settings XML file into an app project.
The purpose of importing the search settings XML file is to allow your app to use those settings when
it is installed in a different farm. Suppose your app, for example, needs a certain result source defined
in order to function. Including a search settings XML file will allow that to happen.

Apps that include search settings XML files can choose to import the settings only into the app
web or the hosting site collection. Importing into the app web is a simple matter of including the
search settings XML file in the app. Importing into the site collection, however, requires two modifica-
tions. First, the app must request full control over the site collection in the app manifest. Second, the
search settings XML file must be edited so that the <DeployToParent> element has a value of true.
Now, when the app is installed, the search settings will be imported into the hosting site collection.

One thing to note about this capability—it does not support importing any managed properties.
Even though the managed properties will be included in the search settings XML file, they will not be
imported; the tools simply don’t support managed properties in this release.

Using the Content Search Web Part
The Content Search Web Part (CSWP) is new to SharePoint 2013 and allows search results to be
displayed on any page in a site. The CSWP works a lot like the Search Results Web Part in that it uses
result sources, result types, and display templates to generate search results. The CSWP keeps its
templates in the Master Page Gallery in the Content Web Parts folder. Here you’ll find two types of
templates: control and item. Control templates are run once and generate the beginning and end
of the display. Item templates are run once for each item in the search results and are similar to the
display templates used by the Search Results Web Part.

	 Chapter 13  SharePoint search    523

The difference between the CSWP and the standard Search Results Web Part is that the CSWP pro-
vides a few more out-of-the-box configurations so that it is easier for an end user to set up without
having to create custom display templates. Both control and item templates are selectable within the
properties pane for the CSWP. Additionally, managed properties can be mapped to placeholders in
the template directly in the property pane.

Finally, the CSWP plays a big role in creating search-driven sites in the Web Content Management
workload. This capability is covered in detail in Chapter 14.

Using the client-side API

When creating search-based apps, you can use either the REST or CSOM API to execute searches.
These interfaces can be used from either JavaScript or C# just like any of the other client-side end-
points. As discussed in Chapter 5, “Client-side programming,” the choice is really based on the archi-
tecture of your app.

Using the REST API
SharePoint 2013 provides three RESTful endpoints to execute queries and return suggestions. By us-
ing these endpoints, you can create sophisticated search-based apps. Table 13-8 describes the avail-
able search endpoints.

TABLE 13-8  Search REST endpoints

Endpoint Description

http://[host]/[site]/_api/search/query Used to run search queries by using HTTP GET

http://[host]/[site]/_api/search/postquery Used to run search queries by using HTTP POST to
overcome URL length limitations

http://[host]/[site]/_api/search/suggest Used to retrieve query suggestions by using HTTP GET

To use the search REST API, an app must make a permission request, and that request must be
granted during app installation. The required permission request is formatted similar to any other
permission request, and you can access it in Visual Studio by using the designer associated with the
app manifest. The following code shows the underlying XML that forms the requested permission:

<AppPermissionRequests>
 <AppPermissionRequest Scope="http://sharepoint/search" Right="QueryAsUserIgnoreAppPrincipal" />
</AppPermissionRequests>

The simplest way to run a query against the REST API is to pass a keyword query. You do this by
setting the value of the querytext parameter in the RESTful Uniform Resource Identifier (URI). You
can use this approach for either the query or suggest endpoints. The querytext value can be any legal
Keyword Query Language (KQL) construction, including managed properties and operators. The fol-
lowing code shows two examples of returning search results with keyword queries:

http://wingtiptoys.com/_api/search/query?querytext='SharePoint'
http://wingtiptoys.com/_api/search/query?querytext='Title:SharePoint'

524   Inside Microsoft SharePoint 2013

The real power of the REST API lies in all of the available query parameters that can be used. These
parameters reflect many of the properties historically available through the KeywordQuery class. By
using these parameters, you can control the columns returned, sorting, paging, and relevance model,
to name just a few. Table 13-9 lists some of the key query parameters.

TABLE 13-9  Query parameters

Parameter Description Example

selectproperties Specifies the managed properties to return http://wingtiptoys.com/_api/search/
query?
querytext='SharePoint'
&selectproperties='Title,Path'

sortlist Specifies the managed properties by which
to sort the results

http://wingtiptoys.com/_api/search/
query?
querytext='SharePoint'
&sortlist='Title:ascending'

startrow The zero-based index of the first result to
return

http://wingtip.com/_api/search/query?
querytext='SharePoint'
&startrow=10

rowsperpage Specifies the number of results per page http://wingtiptoys.com/_api/search/
query?
querytext='SharePoint'
&startrow=10&rowsperpage=10

rowlimit Specifies the maximum number of records
to return

http://wingtiptoys.com/_api/search/
query?
querytext='SharePoint'
&rowlimit=100

sourceid Specifies the ID of the result source against
which the query should run

http://wingtiptoys.com/_api/search/
query?
querytext= 'LastName:B*'
&sourceid='B09A7990-05EA-4AF9-81EF-
EDFAB16C4E31'

Because access to the search engine is available through the REST API, building search-based apps
is just a matter of creating a library that forms the appropriate URI and parses out the results. Listing
13-1 shows how to execute a keyword query by using REST, JavaScript, and jQuery.

	 Chapter 13  SharePoint search    525

LISTING 13-1  Executing a query from JavaScript by using REST

$(document).ready(function () {
 (function () {
 $.ajax(
 {
 url: _spPageContextInfo.webAbsoluteUrl +
 "/_api/search/query?querytext='Title:SharePoint'” +
 "&selectproperties='Title,Path'”,
 method: "GET”,
 headers: { accept: "application/json;odata=verbose” },
 success: function (data) {
 var results =
 data.d.query.PrimaryQueryResult.RelevantResults.Table.Rows.results
 var count = results.length;
 alert("Found " + count + " results. Showing first 5.”);
 for (var r = 0; r < 5; r++) {
 alert(results[r].Cells.results[2].Value);
 }
 },
 error: function (err) {
 alert(JSON.stringify(err));
 }
 }
);
 })();
});

Although executing JavaScript calls against the RESTful endpoints is certainly useful in app devel-
opment, nothing prevents the use of RESTful calls from C#. This approach can be useful when you are
trying to create more traditional solutions, such as console applications. Listing 13-2 shows how to
make a RESTful search query by using C#.

526   Inside Microsoft SharePoint 2013

LISTING 13-2  Executing a query from C# by using REST

static void Main(string[] args)
{
 string url = "http://intranet.wingtiptoys.com/” +
 "_api/search/query?querytext='Title:SharePoint'” +
 "&selectproperties='Title,Path'”;
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = "GET”;
 request.Credentials = System.Net.CredentialCache.DefaultNetworkCredentials;

 WebResponse response = request.GetResponse();
 using (XmlReader reader = XmlReader.Create(
 new StreamReader(response.GetResponseStream())))
 {
 bool titleFlag = false;
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Text && titleFlag == true)
 {
 Console.WriteLine(reader.Value);
 titleFlag = false;
 }
 if (reader.NodeType == XmlNodeType.Text && reader.Value == "Title”)
 {
 titleFlag = true;
 }
 }
 }
}

Using the CSOM API
The CSOM API for search is centered on two key objects: KeywordQuery and SearchExecutor. The
KeywordQuery object supports the construction of the query, and the SearchExecutor object executes
the query against SharePoint. Both JavaScript and C# have versions of these objects.

In JavaScript, the objects are found in the Microsoft.SharePoint.Client.Search.Query namespace.
This namespace is part of the sp.search.js library, so you must add a reference to this library in your
app. After the reference is added, the usage is fairly straightforward, as shown in Listing 13-3.

	 Chapter 13  SharePoint search    527

LISTING 13-3  Executing a query from JavaScript by using CSOM

"use strict”;

var WingtipToys = window.WingtipToys || {};
WingtipToys.Results = {};

WingtipToys.Search = function () {

 var execute = function (kql) {
 var context = SP.ClientContext.get_current();
 var keywordQuery = new Microsoft.SharePoint.Client.Search.Query.
 KeywordQuery(context);
 keywordQuery.set_queryText(kql);
 var searchExecutor =
 new Microsoft.SharePoint.Client.Search.Query.SearchExecutor(context);
 WingtipToys.Results = searchExecutor.executeQuery(keywordQuery);
 context.executeQueryAsync(onGetEventsSuccess, onGetEventsFail);
 },

 onGetEventsSuccess = function() {
 var relevantResults = WingtipToys.Results.m_value.ResultTables[0];
 $('#message').text(relevantResults.RowCount +
 " events were found in farm calendars.”);
 },

 onGetEventsFail = function (sender, args) {
 alert('Failed. Error:' + args.get_message());
 }

 return {
 execute: execute
 }
}();

$(document).ready(function () {
 WingtipToys.Search.execute("ContentClass=STS_ListItem_Events”);
});

In order to query with CSOM from C#, you must add a reference to the Microsoft.SharePoint.Client,
Microsoft.SharePoint.ClientRuntime, and Microsoft.SharePoint.Client.Search assemblies. Using the
KeywordQuery and SearchExecutor classes in code then follows the same basic pattern as the
JavaScript approach. The biggest difference is that the C# code can execute synchronously, as
shown in Listing 13-4.

528   Inside Microsoft SharePoint 2013

LISTING 13-4  Executing a query from C# by using CSOM

using (ClientContext ctx = new ClientContext("http://intranet.wingtip.com/”))
{
 KeywordQuery query = new KeywordQuery(ctx);
 query.QueryText = "Title:SharePoint”;
 query.SelectProperties.Add("Title”);
 query.SelectProperties.Add("Path”);

 SearchExecutor executor = new SearchExecutor(ctx);
 ClientResult<ResultTableCollection> results = executor.ExecuteQuery(query);
 ctx.ExecuteQuery();

 foreach (var row in results.Value[0].ResultRows)
 {
 Console.WriteLine(row["Title”]);
 }
}

Using the script Web Parts

When building search-based apps, you can certainly create your own user interface to display search
results. However, you can also use a simple set of script-based Web Parts found in the Microsoft.
Office.Server.Search.WebControls namespace located in the Microsoft.Office.Server.Search.dll assembly.
The Web Parts ResultScriptWebPart, SearchBoxScriptWebPart, and RefinementScriptWebPart allow you
to easily surface search results, a query box, and a refinement panel, respectively. You can include
these script Web Parts in an ASP.NET page by adding the following reference:

<%@ Register Tagprefix="SearchWC" Namespace="Microsoft.Office.Server.Search.WebControls"
 Assembly="Microsoft.Office.Server.Search, Version=15.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c" %>

The ResultScriptWebPart is the only one of the three Web Parts that requires any serious configura-
tion. Typically, you will configure the data source to search by setting the UseSharedDataProvider and
the DataProviderJSON properties. UseSharedDataProvider indicates whether the Web Part receives
data from another part on the page and should be set to false. The DataProviderJSON property is a
JSON object that defines the name of the result source to use and the level where it can be found
(Tenant, SSA, SPSite, or SPWeb). The following code shows an example JSON object:

{ "SourceName":"MyResultSource","SourceLevel":"SPSite" }

Along with specifying the result source, you can also specify the result template to use. This is
done by setting the ItemTemplateId property to the URL of the desired template. The following code
shows a typical ResultScriptWebPart configured to use a result source and template in the host site
collection:

	 Chapter 13  SharePoint search    529

<SearchWC:ResultScriptWebPart ID="ResultScriptWebPart1"
 runat="server" ChromeType="None" UseSharedDataProvider="false"
 DataProviderJSON="{ "SourceName":"Documents",
 "SourceLevel":"SPSite" }"
 ShowAdvancedLink="false"
 ScrollToTopOnRedraw="true"
 ShowUpScopeMessage="true"
 UseSimplifiedQueryBuilder="false"
 ItemTemplateId=
"~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_Default.js" />

The SearchBoxScriptWebPart must be configured with the address of the results page where it will
redirect when searching. The RefinementScriptWebPart requires no real configuration—just place it
on the same page as the ResultScriptWebPart. The following code shows an example configuration for
the SearchBoxScriptWebPart and the RefinementScriptWebPart:

<SearchWC:SearchBoxScriptWebPart
 ID="SearchBoxScriptWebPart1"
 ChromeType="None" runat="server"
 ResultsPageAddress="../pages/Default.aspx"/>
<SearchWC:RefinementScriptWebPart
 ID="RefinementScriptWebPart1"
 runat="server" ChromeType="None"/>

Improving relevancy

When end users execute a query, they have a strong expectation that the content they have in mind
will be near the top of the search results. When this doesn’t happen, end users may abandon the
search and complain that it just doesn’t work. The challenge, of course, is that there are many factors
that determine the quality of search results, not the least of which is the query entered by the user.
Still, improving the relevancy of search results is critical to the success of any search-based solution. In
SharePoint 2013, you can affect relevancy through the use of authoritative pages, dynamic reordering
rules, and ranking models.

When looking to improve relevancy, the first place to start is with authoritative pages. Authoritative
pages are pages that link to critical information within the SharePoint farm. When authoritative pages
are defined, it affects the ranking of every page that is connected by links to that page by click distance.
Click distance is the number of clicks required to get from the authoritative page to the content in
question. Authoritative pages are defined in the SSA. For on-premises deployments, no authorita-
tive pages are defined by default. For SharePoint Online, the home page of the main site collection is
defined as authoritative. In the SSA, you can define three levels of authoritative pages as well as pages
that are not authoritative, which helps eliminate irrelevant information from the relevancy calculation.

Dynamic reordering rules let you reorder the results of a query based on a set of conditions. Dy-
namic reordering rules are like query rules except that they are applied after the query is run instead
of before. Although SharePoint 2013 provides a graphic interface for setting up dynamic reordering
rules, they are implemented by using the XRANK keyword behind the scenes.

530   Inside Microsoft SharePoint 2013

Dynamic reordering rules are defined within the Query Builder on the Sorting tab. On the Sorting
tab, the primary sort key must be set to Rank in order to define dynamic reordering rules. You can
then add one or more rules, which allows for the definition of the condition and the resulting rank
change to promote or demote an item. Figure 13-9 shows the settings in the Query Builder.

FIGURE 13-9  Adding a dynamic reordering rule

The query engine is responsible for assigning a ranking score to each returned item based upon
a number of factors defined in a ranking model. The ranking model contains the rules that will be
applied to the search results to determine ranking. SharePoint Server 2013 ships with several ranking
models that are applied when you search different contexts such as documents or people. You can
list all of the ranking models available in your environment with the following Windows PowerShell
commands:

$ssa = Get-SPEnterpriseSearchServiceApplication -Identity "Search Service Application"
$owner = Get-SPEnterpriseSearchOwner -Level Ssa
Get-SPEnterpriseSearchRankingModel -SearchApplication $ssa -Owner $owner

When you list the ranking models, you will notice that each one uses a GUID as an identifier. These
GUIDS can be used in your custom search solutions to set the ranking model that should be used with
a particular query. The REST, CSOM, and SSOM objects all support properties for setting this value.

	 Chapter 13  SharePoint search    531

Additionally, you can select the ranking model to use directly in the Query Builder, as shown in
Figure 13-10.

FIGURE 13-10  Selecting a ranking model

Ranking models are created as XML files and registered with the search engine for use. These are
complex files for which there is very little documentation. You can, however, view the XML associated
with any ranking model by using the following Windows PowerShell commands:

$ssa = Get-SPEnterpriseSearchServiceApplication -Identity "Search Service Application"
$owner = Get-SPEnterpriseSearchOwner -Level Ssa
$model = Get-SPEnterpriseSearchRankingModel -SearchApplication $ssa
 -Owner $owner -Identity {RankingModelID}
$model.RankingModelXml

In SharePoint 2013, it is possible to modify or create new ranking models. However, Microsoft
strongly recommends against this. The recommendation from the search team at Microsoft is to make
use of dynamic reordering rules rather than creating a custom ranking model. This is likely the reason
why there is little documentation available concerning the structure of these models.

Enhancing content processing

During the crawl process, SharePoint 2013 allows you to inspect and modify the values of managed
properties for selected items through the creation of a custom Content Processing Enrichment Service
(CPES). As mentioned in the section “Understanding the indexing process” earlier in this chapter, con-
tent enhancement supports data cleansing, entity extraction, classification, and tagging, all of which
can significantly enhance the quality of search results.

532   Inside Microsoft SharePoint 2013

A custom CPES is a SOAP web service that implements the IContentProcessingEnrichmentService
interface. This interface implements a ProcessItem method that passes in a collection of managed
properties associated with a particular item being crawled. The custom CPES can then modify the val-
ues of the managed properties in the set, add new managed properties, or delete managed proper-
ties from the set.

As an example, consider a custom CPES that will look for items that have a company name associ-
ated with them and will add a new managed property containing the ticker symbol for the company.
This will allow users to search for a company by either its proper name or ticker symbol. Before the
custom CPES can be created, however, all of the managed properties that will be used for both input
and output must be created.

In this example, the managed property FictitiousCompany is used as the input and FictitiousTicker-
Symbol is the new managed property that gets added during the crawl process. The input managed
property should be set up in the SSA and associated with any crawled properties that represent a
company name. The output managed property, however, does not need to be associated with any
crawled properties because its value will be set by the custom CPES. Figure 13-11 shows the managed
properties defined in the SSA.

FIGURE 13-11  Defining managed properties for use with a custom CPES

After the managed properties are defined, you can create a web service in Visual Studio 2012. You
must then add a reference to the Microsoft.Office.Server.Search.ContentProcessingEnrichment.dll as-
sembly located at C:\Program Files\Microsoft Office Servers\15.0\Search\Applications\External. After
the reference is set, the following statements will allow you to use the assembly in your service:

using Microsoft.Office.Server.Search.ContentProcessingEnrichment;
using Microsoft.Office.Server.Search.ContentProcessingEnrichment.PropertyTypes;

Creating the custom CPES is a simple matter of implementing the ProcessItem method. This method
receives an Item and returns a ProcessedItem. The typical process is to examine the ItemProperties
collection associated with the input Item for managed properties of interest. You can then add,
modify, or delete properties as required. Listing 13-5 shows the code to identify the presence of
the FictitiousCompany property and then add a new FictitiousTickerSymbol property.

	 Chapter 13  SharePoint search    533

LISTING 13-5  Implementing a custom CPES

//The new managed property to add
private Property<string> tickerSymbol =
 new Property<string> { Name = "FictitiousTickerSymbol” };

//A temporary holder for the item being processed
private readonly ProcessedItem processedItemHolder =
 new ProcessedItem { ItemProperties = new List<AbstractProperty>() };

//The dictionary of ticker symbols
private readonly Dictionary<string, string> tickerSymbolsDictionary =
 new Dictionary<string, string> {...}

public ProcessedItem ProcessItem(Item item)
{
 foreach (AbstractProperty property in item.ItemProperties)
 {
 //Determine if this managed property is the company property
 if (property.Name.Equals("FictitiousCompany”,
 StringComparison.InvariantCultureIgnoreCase))
 {
 //Get the managed property
 Property<string> companyProperty = property as Property<string>;

 if (tickerSymbolsDictionary.ContainsKey(property.ObjectValue.ToString()))
 {
 //Add the ticker symbol managed property
 tickerSymbol.Value = tickerSymbolsDictionary[property.ObjectValue.ToString()];
 processedItemHolder.ItemProperties.Add(tickerSymbol);
 }

 return processedItemHolder;
}

After the web service is created, it must be deployed and then registered with the search service.
When the service is registered, the input and output managed properties are defined as well as the
service endpoint. This registration process ensures that only items meeting the specified criteria get
sent to the custom CPES for processing, ensuring that the additional processing does not unnecessar-
ily slow down the overall crawl process. The following code shows how to register the service by using
Windows PowerShell:

$ssa = Get-SPEnterpriseSearchServiceApplication
$config = New-SPEnterpriseSearchContentEnrichmentConfiguration
$config.Endpoint = "http://webs.wingtiptoys.com/ContentProcessingEnrichment/CPE.svc"
$config.InputProperties = "FictitiousCompany"
$config.OutputProperties = "FictitiousTickerSymbol"
Set-SPEnterpriseSearchContentEnrichmentConfiguration
 -SearchApplication $ssa -ContentEnrichmentConfiguration $config

534   Inside Microsoft SharePoint 2013

If you no longer want to use the custom CPES for processing, then it can be removed from the
pipeline. The following Windows PowerShell command will remove the service:

Remove-SPEnterpriseSearchContentEnrichmentConfiguration -SearchApplication $ssa

Creating .NET Assembly Connectors for search

Chapter 12 showed in detail how to create a .NET Assembly Connector to allow Business Connectiv-
ity Services access to any external system. You can also use a .NET Assembly Connector to index any
external system by search-enabling the connector. Because .NET Assembly Connector fundamentals
were covered in Chapter 12, this chapter will focus only on the requirements for enabling search.

Search-enabling a model
Whenever any External Content Type (ECT) is created in BCS, there is an XML model that gets created
behind the scenes. This model defines the external system, entities, relationships, methods, and user
access rights for the ECT. The same is true when a .NET Assembly Connector is created. The primary
difference is that the external system is defined as an association between a .NET assembly and the ECT.

When you use SharePoint Developer to create ECTs, the model is generated for you so that you
never have to deal with XML directly. When you use Visual Studio 2012 to create a .NET Assembly
Connector, you also have design tools that hide the XML, but you often have to edit the XML model
manually to get the exact capabilities you need. In Visual Studio, the XML model is contained in a file
with a .bdcm extension. When this file is opened, it appears in three windows. First, a design surface
is available for creating entities. Second, a detail section is available for method definitions. Third, the
Business Data Connectivity (BDC) Explorer is available for browsing the model. Figure 13-12 shows
the three windows of information for the model described in Chapter 12. This model used a .NET As-
sembly Connector to connect with product information.

You can view the XML for the model directly by right-clicking the .bdcm file in the Solution Ex-
plorer and selecting Open With from the shortcut menu. When the Open With dialog box appears,
select the option to open the file with the XML Editor. If you study the XML model alongside the BDC
Explorer, you will begin to notice that the BDC Explorer contains a node for each key element in the
model. This concept is important because you typically will be adding information to model elements
when you prepare a .NET Assembly Connector to support search.

To search-enable an existing model, you must make two changes. The first change is to designate
which method to call during the indexing process. The second change allows the model to appear as
a content source in search. Both changes are simple edits to the XML.

	 Chapter 13  SharePoint search    535

FIGURE 13-12  Viewing a .NET Assembly Connector

Chapter 12 discussed BCS operations in detail. In particular, Finder methods were defined as meth-
ods that return many records from an external system. Essentially, a Finder method defines a view of
an external system. When search crawls an external system, it needs to know which of the available
Finder methods represents the entire population of records to index. This finder method is known as
the RootFinder method.

In your .NET Assembly Connector, you designate the RootFinder by first selecting the method
instance in the Method Details pane. When you select it, the Properties window in Visual Studio 2012
will show details for the method. From this window, you can open the Custom Properties collection.
In the Property Editor window, you can enter the RootFinder designation with a Type of System.String.
Optionally, you can include the UseClientCachingForSearch property, which instructs the crawler to
manage data directly in memory for more efficiency. This setting is appropriate for situations in which
the width of the record is less than 32K. If records are larger, they might be dropped during the crawl
process. Figure 13-13 shows the modifications being made to an existing .NET Assembly Connector.

536   Inside Microsoft SharePoint 2013

FIGURE 13-13  Setting the RootFinder method

After setting RootFinder, you can open the model XML in Visual Studio and view how the new in-
formation was added to the model. In fact, it’s often easier to simply add the properties directly in the
XML rather than using the Visual Studio dialog boxes. The following code shows the resulting XML:

<MethodInstances>
 <MethodInstance Type="Finder"
 ReturnParameterName="returnParameter"
 Default="true" Name="ReadList"
 DefaultDisplayName="Entity1 List">
 <Properties>
 <Property Name="RootFinder" Type="System.String">x</Property>
 </Properties>
 </MethodInstance>
</MethodInstances>

After RootFinder is defined, you must make an additional change to allow the .NET Assembly Con-
nector to appear as a content source in search. This is accomplished by applying the ShowInSearchUI
property to the model. This property is applied by selecting the LobSystemInstance for your project
under the LobSystemInstances folder in the model explorer. You can then create the property by using
the same technique as for RootFinder. Optionally, you can make the change directly in the XML. The
following code shows the modified model:

<LobSystemInstances>
 <LobSystemInstance Name="BdcModel1" >
 <Properties>
 <Property Name="ShowInSearchUI" Type="System.String"></Property>
 </Properties>
 </LobSystemInstance>
</LobSystemInstances>

	 Chapter 13  SharePoint search    537

After you have completed the two modifications, the model is search-enabled. You can deploy
the feature and immediately select it as a search content source. It is worth noting that when you
create models using SharePoint Designer, the RootFinder and ShowInSearchUI properties are added
automatically.

Implementing security in search results
Though search-enabling a BCS model is fairly simple, this process provides no security checking
against search queries. This means that when a search is run against the external system, all matching
results will be returned regardless of whether the current user is supposed to see them. In most pro-
duction applications, you will want to implement an access control list (ACL) that specifies rights for
the records returned when you are searching with a .NET Assembly Connector. This is accomplished
by adding a special method to the model called a BinarySecurityDescriptorAccessor method.

The process to implement security begins by adding a new method to the model. In Visual Studio,
you can right-click the entity in the design surface and select Add New Method from the context
menu. You can then give it a name such as ReadSecurityDescriptor. After it is created, the method will
appear in the Method Details pane. Next, in the Method Details pane, you must create a new method
instance beneath the new method. After the new method instance is created, you can change its type
in the Properties window to BinarySecurityDescriptorAccessor.

The new method instance will require input and output parameters. Typically, the input parameters
are the identifier for an item and the user name of the current user. The output parameter must be a
byte array that holds the security descriptor. The following code shows the XML for the new method:

<Method Name="ReadSecurityDescriptor">
 <Parameters>
 <Parameter Name="id" Direction="In">
 <TypeDescriptor Name="ID" TypeName="System.String" IdentifierName="ID" />
 </Parameter>
 <Parameter Name="acl" Direction="Return">
 <TypeDescriptor Name="SecurityDescriptor"
 TypeName="System.Byte[]" IsCollection="true" >
 <TypeDescriptors>
 <TypeDescriptor Name="SecurityDescriptorByte" TypeName="System.Byte"/>
 </TypeDescriptors>
 </TypeDescriptor>
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Name="ReadSecurityDescriptorInstance"
 Type="BinarySecurityDescriptorAccessor" ReturnParameterName="acl"/>
 </MethodInstances>
</Method>

When you create the new method definition, Visual Studio will automatically generate a method
stub in code that accepts the input parameters and returns a byte array. Your job is to write code for
this method that creates an ACL for the item. When the BinarySecurityDescriptorAccessor method is
called during the indexing process, the crawl account will be the account accessing the system. This

538   Inside Microsoft SharePoint 2013

account should be designated as the owner account for the ACL. In the implementation, you can add
other permissions for users based on whatever criteria you need. For example, the code in Listing 13-6
grants access to all users.

LISTING 13-6  Creating a security ACL

public static byte[] ReadSecurityDescriptor(string id, string username) {
 try {
 //Grant everyone access
 NTAccount workerAcc = new NTAccount(
 username.Split('\\')[0], username.Split('\\')[1]);
 SecurityIdentifier workerSid =
 (SecurityIdentifier)workerAcc.Translate(typeof(SecurityIdentifier));
 SecurityIdentifier everyone =
 new SecurityIdentifier(WellKnownSidType.WorldSid, null);
 CommonSecurityDescriptor csd = new CommonSecurityDescriptor(
 false, false, ControlFlags.None, workerSid, null, null, null);
 csd.SetDiscretionaryAclProtection(true, false);
 csd.DiscretionaryAcl.AddAccess(
 AccessControlType.Allow, everyone, unchecked((int)0xffffffffL),
 InheritanceFlags.None, PropagationFlags.None);
 byte[] secDes = new byte[csd.BinaryLength];
 csd.GetBinaryForm(secDes, 0);
 return secDes;
 }
 catch (Exception x) {
 PortalLog.LogString("Product Model (ReadSecurityDescriptor): {0}”, x.Message);
 return null;
 }
}

After you have created the BinarySecurityDescriptorAccessor method, you must add a property to
the ECT entity to hold the ACL. This property is named SecurityDescriptor. The model must then be
updated to relate the BinarySecurityDescriptorAccessor method to the SecurityDescriptor property.
The following code shows how to relate the entity and the method instance:

<MethodInstances>

 <MethodInstance Name="ReadSecurityDescriptorInstance"
 Type="BinarySecurityDescriptorAccessor"
 ReturnParameterName="acl">
 <Properties>
 <Property Name="WindowsSecurityDescriptorField" Type="System.String">
 SecurityDescriptor
 </Property>
 </Properties>
 </MethodInstance>

<MethodInstances>

	 Chapter 13  SharePoint search    539

Crawling the .NET Assembly Connector
When your .NET Assembly Connector is complete, you should be able to select it as a content source
and initiate a full crawl. When you crawl the solution for the first time, it’s a good idea to attach Visual
Studio to the crawl process (mssdmn.exe) and watch how the crawl progresses. Set breakpoints in
the Finder, SpecificFinder, and BinarySecurityDescriptorAccessor methods. Also, be sure that you have
granted access in the BCS service to the account that will perform the crawling.

When the crawl is initiated, you should notice the Finder method called first. You’ll then notice the
SpecificFinder called for each individual item returned from the Finder method. Along the way, the
security descriptor should be built for each item. After the crawl completes, check the crawl log for er-
rors. Now you can run a search against the crawled data. SharePoint should use the security descrip-
tors that you constructed to limit access to items as appropriate.

Summary

This chapter focused on all the components necessary to create search-based solutions in SharePoint
2013. When designing your solutions, you should give consideration to creating solutions that use
search, either through apps, keyword queries, or .NET Assembly Connectors, and present results to
users so that they can be understood and acted upon. In this way, you can create search-based solu-
tions that provide value to end users.

		 541

C H A P T E R 1 4

SharePoint Enterprise Content
Management

In Microsoft SharePoint 2013, Microsoft has again improved and extended SharePoint’s Enterprise
Content Management (ECM) capabilities. This chapter explains the different components that can

be used with document management and records management in SharePoint and how they can be
extended. There are many different features and components that can be used to create document
management and records management solutions in SharePoint. If you are designing one of these
solutions, you will have to decide which features and components are useful in your scenario. Just
having a lot of document and records management–related capabilities available to you in SharePoint
doesn’t mean you should use them in every document or records management solution. For every
solution that you are creating, you should carefully evaluate the options that SharePoint offers
out of the box and use the ones that will offer the most value. Don’t only use the options that look
shiny and new.

Understanding the Managed Metadata Service Application

The first thing we examine in this chapter is the Managed Metadata Service Application. This is a
service application that was introduced in SharePoint 2010 and that has enabled users to create more
serious document and records management solutions in SharePoint. The Managed Metadata Service
Application introduces several capabilities that allow you to scale your ECM solutions across site
collections, web applications, or even farms in a consistent way. The two most important features of
the Managed Metadata Service Application are the term store that contains the managed metadata
terms, and the content type syndication capabilities that allow users to distribute content types across
the site collection boundary.

Managed metadata in SharePoint allows you to do exactly what the name suggests: to manage the
metadata in your environment. The managed metadata is stored in the term store, which is part of
the Managed Metadata Service Application. Every site collection in every web application that is con-
nected to the Managed Metadata Service Application can use the metadata stored in the term store.
If the service application is published and used in multiple farms, site collections in the farms that
consume the services from the published service application can also use the same metadata.

542   Inside Microsoft SharePoint 2013

Understanding managed metadata
There is only one term store per Managed Metadata Service Application. The term store can be
accessed from Central Administration by clicking the Managed Metadata Service Application or
Service Application Proxy link on the Manage Service Applications page, and also by clicking the Term
Store Management link on the Site Settings page in a site collection. Whether a user accessing the
term store can manage the contents of the term store depends on whether the user is a term store
administrator.

A term store contains term groups, which contain term sets, which contain terms. A term store will
generally contain a limited number of term groups. Usually there are between 4 and about 20 term
groups. By default, there are three term groups in the term store that are all used by SharePoint itself:

■■ The People term group, which contains term sets and terms used in user profile properties.

■■ The Search Directories term group, which contains information and settings related to the
Search Service Application.

■■ The System term group, which contains the Hashtags, Keywords, and Orphaned Terms term
sets. The Keywords term set is also called a folksonomy; it is open and users can add terms to
it at all times. This will happen automatically when a user fills in a value that is not in the term
set yet in the Keywords column in a library or list.

In most environments, you will add at least one term group yourself. At the term group level, a de-
scription, administrators, and contributors can be selected. This means that a term group can be used
as a security boundary in the term store. You can add more than just one enterprise-wide term group
if different people or departments will have to manage different parts of the managed metadata. You
could, for instance, create a separate term group for Human Resources, one for Legal, and one for
Finance.

When term groups are created by term store or term group administrators or contributors, the
terms in the term group are available in site collections that are connected to the managed meta-
data service application that the term store is part of. Term sets that are created in this way are called
global term sets.

A site collection administrator, without specific access to the term store, can also add term sets to
the term store, either directly or by creating a term set to bind to a site column in the site. These term
sets will be added to a new term group, the name of which is the URL of the site collection. Term sets
that are created by site collection administrators are available only within the site collection and are
called local term sets. Local term sets cannot be seen or managed from the term store when it’s ac-
cessed from outside the site collection, not even by term store administrators.

	 Chapter 14  SharePoint Enterprise Content Management    543

Within a term group you can create many different term sets. Term sets are logical collections of
terms. Examples of term sets are Country, Language, Department, Document Status and Document
Type. You can have up to 1,000 term sets in a term store. At the term set level it is possible to set:

■■ Description

■■ Owner

■■ Contact  This is an email address to which suggestions and feedback about the term set can
be sent. If no contact is filled in, the suggestion feature is disabled for that term set.

■■ Stakeholders  This is a list of users and groups that should be notified when changes to the
term set are made.

■■ Submission Policy  This policy setting determines whether users can add terms to this term
set, or whether only users with specific permissions on the term store or term group can add
terms. If the term set is Open, it will behave like a folksonomy; if it is Closed, it is called a tax-
onomy.

■■ Available for Tagging  If this is set to True, users can use terms from this term set in their
sites and libraries.

■■ Use This Term Set for Site Navigation  This setting enables this term set for usage in the
new Managed Navigation features such as friendly URLs, target page settings, and catalog
item page settings. This is not related to the Managed Metadata Navigation that is available
in lists and libraries.

■■ Custom Sort Order  A term set can either be ordered alphabetically or manually. If Use cus-
tom sort order is selected, an administrator will have to go in to manually select the position of
each term in the term set. Depending on the number of terms in a term set and on how often
the terms in the term set change, this can be a very labor-intensive task. This option is new in
SharePoint 2013.

■■ Custom Properties  Another new feature in SharePoint 2013 is the ability to add custom
properties to a term set. This can be very useful if additional information has to be stored
with a term or, for instance, if the terms are used in a custom application. Instead of having
to use (or possibly misuse) the description to store this information, it is now possible to
create your own custom properties.

A term set can contain up to 30,000 individual terms. Each term can have several properties added
to it, which don’t count toward the number of terms:

■■ Available for Tagging

■■ Language  This setting is relevant only if more than one language pack is installed in the
environment.

■■ Description

■■ Default Label  This is the actual label of the term.

544   Inside Microsoft SharePoint 2013

■■ Other Labels  These are synonyms.

■■ Member Of  This specifies the term sets that the term is part of. There can be more than one
term set in this collection if the term is reused.

■■ Shared Properties  These are custom properties that are available on each instance of this
term in the term store, and thus they are available in the original term and also in the reused
terms.

■■ Local Properties  These are custom properties available only on this instance of the term.

A term store can contain a total of 1 million term sets and terms. If your environment needs more
than a million term sets and terms, you will have to create a second Managed Metadata Service
Application.

One thing that you might have noticed when reading this chapter, or when looking at the term
store in your SharePoint environment, is that there is no recycle bin and that there are no version-
ing options. This means that there is no history of changes made to the term store, there is no audit
trail, and it is also not possible to reverse or undo a change made to the term store. This can be a real
problem, especially in a large environment, because changes made to term sets and terms in the term
store can affect users when they are editing documents or items in their sites.

If a managed metadata site column is a mandatory column in a list or library, users have to select a
valid term from the term set that the column is linked to before they can check in a document or list
item. Suppose a user has done this; imagine the following scenario:

1.	 After the user selected a term from the term store and checked in the document, a term
group administrator removes the term that the user selected from the term store, because it is
no longer seen as a valid value.

2.	 The user comes back to the document and makes a small change—let’s say the table of con-
tents was updated.

3.	 The user now wants to save the document and check it back in.

4.	 Because the previously selected term is no longer a valid term and the managed metadata
site column is a mandatory column in the library, the user won’t be able to check the docu-
ment back in until a different term (one that is still valid) has been selected from the term set.

This kind of behavior can be very frustrating for an end user and very hard to explain. The same
behavior will occur when a term is deprecated or moved to a different term set, but it is easier to
undo these changes because the term is still in the term store. If the term set were deleted completely
it would have been worse, because that would have meant that the user wouldn’t be able to select a
valid term and thus would not be able to check the document back in.

Besides the lack of history and auditing options, there is another challenge with the user interface
of the term store: it doesn’t scale very well. If you have many terms in a term set, administrators will
have to scroll through a lot of them to get to the terms that they want to adjust. To overcome the
challenges of the term store user interface, you will have to create both a process and a technical

	 Chapter 14  SharePoint Enterprise Content Management    545

solution for managing terms in the term store. Because this is a development book, we will not go
into detail about the process around managing metadata, but we will look at some examples around
a possible technical solution for managing the contents of the term store.

Using managed metadata in a custom solution
SharePoint offers the option of importing term sets and terms by using a .csv file. This allows adminis-
trators to import large numbers of term sets and terms without having to use the user interface of the
term store. This doesn’t provide a solution for most of the problems described in the previous section,
though, because you can use only the .csv file for importing terms and not for managing and deleting
terms. You also can’t use all properties that are available for term sets and terms when you import them
by using a .csv file. The properties in the .csv file are:

■■ Term Set Name

■■ Term Set Description

■■ LCID

■■ Available for Tagging

■■ Term Description

■■ Level 1 Term

■■ Level 2 Term

■■ Level 3 Term

■■ Level 4 Term

■■ Level 5 Term

■■ Level 6 Term

■■ Level 7 Term

As the preceding list shows, the .csv file also reflects the maximum depth of the term store. The
term store has a supported depth limit of seven levels of terms. Technically you could create more by
using the term store user interface, but Microsoft doesn’t support this, so you should stick to a maxi-
mum of seven, which is more than you will want to make users traverse anyway.

The only way to allow an organization to properly manage the contents of the term store is by
creating a custom solution. For a real solution, you would have to include business users and set up
a change process that allows users to request changes to the metadata. You would also need a user
interface that allows a term store manager to make changes, preferably both for large sets of changes
and for individual changes. You would need a proper sign-off before changes could be processed,
and a good auditing system to be able to track who changed what. You would also have to be able
to at least make changes to all or most properties of term sets and terms. In the following example, a

546   Inside Microsoft SharePoint 2013

SharePoint list will be used to add, update, delete, deprecate, and restore terms. This is not a com-
plete and production-ready solution, but it should give you enough inspiration to get started.

Managing the contents of the term store
The downloadable .zip archive of companion code for this book contains a sample SharePoint project
named WingtipToysTermStoreManager. This project contains working samples of the solution that you
are going to examine over the next few pages. The solution uses a SharePoint list that can be used
to add, update, delete, deprecate, and restore terms in the term store. The list has an event handler
attached to it that will fire when items are added or updated. Figure 14-1 shows the list designer that
is part of the SharePoint Developer Tools, showing the columns that were added to the TermStore-
ManagerList.

FIGURE 14-1  This screen shot shows the Columns view of the list designer that is part of the SharePoint Developer
Tools.

Because not all properties are available in the designer, you will also have to open up the list’s
Schema.xml file to add the missing properties. The DisplayName and Type of a column and whether
it’s required can be set in the list designer. However, to specify a Description, a MaxLength, and
whether the column should show up in the Edit and New forms through ShowInEditForm or ShowIn-
NewForm, you will need to edit Schema.xml. The fields are defined in the Fields element. Listing 14-1
shows the fields as they are defined in the Elements.xml file, including the Description of the Term
element and the ShowInNewForm and ShowInEditForm attributes for the Processed field. It also shows
the choices for the Action column added through the Choice element.

	 Chapter 14  SharePoint Enterprise Content Management    547

LISTING 14-1  Snippet from the Elements.xml file of the TermStoreManager list showing the fields added to the list
and their attributes

<Fields>
 <Field ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}" Type="Text"
 Name="Title" DisplayName="Term" Required="TRUE"
 SourceID="http://schemas.microsoft.com/sharepoint/v3"
 StaticName="Title" MaxLength="255" />
 <Field Name="TermID" ID="{6be4f6cb-fa19-464a-ad07-0cbeebb8b6ed}"
 DisplayName="TermID" Type="Text"
 Description="You can leave this empty if you are creating a new term.
 To update, delete, deprecate, restore, or recreate an existing term,
 please use the existing TermID" />
 <Field Name="TermSet" ID="{0a05f0ce-1159-4a6f-ae23-88778afdb6f5}"
 DisplayName="TermSet" Type="Text" Required="TRUE" />
 <Field Name="TermGroup" ID="{9bc3fa00-60e0-40de-a05d-fec8fa5755fc}"
 DisplayName="TermGroup" Type="Text" Required="TRUE" />
 <Field Name="Action" ID="{0c0d3817-1415-44eb-b5ae-4718855b72d6}"
 DisplayName="Action" Type="Choice" Required="TRUE">
 <CHOICES>
 <CHOICE>Create</CHOICE>
 <CHOICE>Update</CHOICE>
 <CHOICE>Deprecate</CHOICE>
 <CHOICE>Restore</CHOICE>
 <CHOICE>Delete</CHOICE>
 </CHOICES>
 </Field>
 <Field Name="Processed" ID="{45a7e18b-b5dc-400a-a7f0-f1177776d50a}"
 DisplayName="Processed" Type="Boolean" ShowInEditForm="FALSE"
 ShowInNewForm="FALSE" />
</Fields>

Figure 14-2 shows the edit form of the list.

FIGURE 14-2  This screen shot shows the edit form of the list used to manage terms in the term store.

548   Inside Microsoft SharePoint 2013

Next you can add the event handler to the list. The event handler will be configured to fire on the
ItemAdded and the ItemUpdated events. The code makes sure that an item isn’t processed yet (the
Processed field should be False). Then it makes sure that the term store is available. If there is more
than one term store—because you might be using more than one managed metadata service appli-
cation—you should also make sure you are making the changes to the correct term store. Make sure
to add a reference to the Microsoft.SharePoint.Taxonomy assembly, because the classes that allow you
to work with the term store and its terms are in it. Next, it’s time to determine what action is required
by checking the value selected in the Action column. For all actions, the code tests whether a TermID
is already specified. If the action is Create and the TermID is not specified, a new TermID will be gen-
erated. For all other actions, no changes will be processed when the TermID isn’t specified. When a
new TermID is generated for a new term, the ID will be written back to the TermID column in the list.
The methods that can be used to update the terms in the term store, including sample values for the
parameters, are listed here:

■■ To create a new term, you have to add it to the term set: TermSet.CreateTerm(termValue, 1033,
termGuid).

■■ To update a term, you have to first retrieve the label of a term: Label updatedLabel = TermSet.
GetTerm(termGuid).Labels[0]. Then you must update the label of that term: updatedLabel.Value =
termValue.

■■ To deprecate a term, you can simply set the Deprecate property of a term to true: TermSet.
GetTerm(termGuid).Deprecate(true).

■■ To restore a term, you can simply set the Deprecate property of a term to false TermSet.
GetTerm(termGuid).Deprecate(false).

■■ To delete a term, you call the Delete method of that term: TermSet.GetTerm(termGuid).Delete().

Listing 14-2 shows the code used in the event handler. Make sure to commit any changes that you
have made to the term store. If you are making a lot of changes in a batch, make sure you commit
changes in batches of reasonable size.

LISTING 14-2  The event handler that processes list items to update the term store

/// <summary>
/// An item was added.
/// </summary>
public override void ItemAdded(SPItemEventProperties properties)
{
 if (properties.List.Title.Contains("Term Store Updates"))
 {
 SPListItem itemToProcess = properties.ListItem;
 Guid siteId = properties.SiteId;

 ProcessChanges(itemToProcess, siteId);

 base.ItemAdded(properties);

	 Chapter 14  SharePoint Enterprise Content Management    549

 }
}

/// <summary>
/// An item was updated.
/// </summary>
public override void ItemUpdated(SPItemEventProperties properties)
{
 if (properties.List.Title.Contains("Term Store Updates"))
 {
 SPListItem itemToProcess = properties.ListItem;
 Guid siteId = properties.SiteId;

 ProcessChanges(itemToProcess, siteId);

 base.ItemUpdated(properties);
 }
}

/// <summary>
/// Process list item changes in the term store
/// </summary>
/// <param name="itemToProcess"></param>
/// <param name="siteId"></param>
public void ProcessChanges(SPListItem itemToProcess, Guid siteId)
{
 if (!Convert.ToBoolean(itemToProcess["Processed"]))
 {
 using (SPSite site = new SPSite(siteId))
 {
 TaxonomySession taxonomySession = new TaxonomySession(site);
 if (taxonomySession.TermStores.Count > 0)
 {
 TermStore termStore = taxonomySession.TermStores[0];

 // Check to make sure that the termstore is online
 if (termStore.IsOnline)
 {
 Group termGroup;
 TermSet termSet;
 string action = itemToProcess["Action"].ToString().ToLower();
 bool itemUpdated = false;

 // TermGroup
 try
 {
 // Get the term group
 termGroup =
 termStore.Groups[itemToProcess["TermGroup"].ToString()];
 }
 catch (ArgumentOutOfRangeException ex)
 {
 termGroup =
 termStore.CreateGroup(itemToProcess["TermGroup"].ToString());

550   Inside Microsoft SharePoint 2013

 }

 // TermSet
 try
 {
 termSet = termGroup.TermSets[itemToProcess["TermSet"].ToString()];
 }
 catch (ArgumentOutOfRangeException ex)
 {
 termSet =
 termGroup.CreateTermSet(itemToProcess["TermSet"].ToString());
 }

 string termValue = itemToProcess["Term"].ToString();
 Guid termGuid;

 switch (action)
 {
 case "create":
 if (itemToProcess["TermID"] != null)
 {
 termGuid = new Guid(itemToProcess["TermID"].ToString());
 }
 else
 {
 termGuid = Guid.NewGuid();
 }

 Term newTerm = termSet.CreateTerm(termValue, 1033, termGuid);
 itemToProcess["TermID"] = termGuid;
 itemUpdated = true;

 break;
 case "update":
 if (itemToProcess["TermID"] != null)
 {
 termGuid = new Guid(itemToProcess["TermID"].ToString());
 Term updatedTerm = termSet.GetTerm(termGuid);
 Label updatedLabel = updatedTerm.Labels[0];
 updatedLabel.Value = termValue;
 itemUpdated = true;
 }
 break;
 case "deprecate":
 if (itemToProcess["TermID"] != null)
 {
 termGuid = new Guid(itemToProcess["TermID"].ToString());
 Term deprecatedTerm = termSet.GetTerm(termGuid);
 deprecatedTerm.Deprecate(true);

	 Chapter 14  SharePoint Enterprise Content Management    551

 itemUpdated = true;
 }
 break;
 case "restore":
 if (itemToProcess["TermID"] != null)
 {
 termGuid = new Guid(itemToProcess["TermID"].ToString());
 Term deprecatedTerm = termSet.GetTerm(termGuid);
 deprecatedTerm.Deprecate(false);
 itemUpdated = true;
 }
 break;
 case "delete":
 if (itemToProcess["TermID"] != null)
 {
 termGuid = new Guid(itemToProcess["TermID"].ToString());
 Term deletedTerm = termSet.GetTerm(termGuid);
 deletedTerm.Delete();
 itemUpdated = true;
 }
 break;
 default:
 break;
 }

 termStore.CommitAll();
 if (itemUpdated)
 {
 itemToProcess["Processed"] = true;

 itemToProcess.Update();
 }

 }
 }
 }
 }
}

Now that you can manage the term store in a custom solution, it is time to look at how you can
use the term store’s contents in a site or list.

Creating managed metadata site columns
The most common way to use managed metadata in sites and lists is to add managed metadata site
columns to them. Adding a managed metadata column though the SharePoint user interface is
exactly the same as adding any other column. When you are using custom code, there a few things
that are worth noting, though. Creating a managed metadata site column by using a declarative
approach with Collaborative Application Markup Language (CAML) is not supported. To create a
managed metadata site column from a custom solution, you will have to use code-behind. To do this,
you can use the TaxonomyField class. This class inherits from SPFieldLookup, which inherits from the

552   Inside Microsoft SharePoint 2013

generic SPField class. The fact that the TaxonomyField class inherits from the SPFieldLookup class also
means that it counts toward the List view lookup threshold. The List view lookup threshold is part of
the List Throttling functionality. The threshold has been established to prevent users from creating list
views that create database queries behind the scenes with more than eight joins. By creating views
that add many joins to a single query, users could severely hamper the performance of the SharePoint
environment, without being aware of doing so. The default value of the List view lookup threshold is 8,
which means that eight columns that cause joins can be returned in a single query. Apart from lookup
and managed metadata columns, field types that count toward the List view lookup threshold are
person/group fields and workflow status fields.

A TaxonomyField has several properties that are specific to a managed metadata field:

■■ SspId  The ID of the term store that this managed metadata column is linked to.

■■ TermSetId  The ID of the term set from which a value should be selected.

■■ AnchorId  The ID of the only term from which descendants can be selected. This is relevant
if the selected term set has multiple levels and if only subterms of a specific term should be
selectable.

■■ CreateValuesInEditForm  If this property is set to True, values that are filled in that aren’t in
the term set will be added to the term set, providing the term set itself is open.

■■ Open  If this property is set to True, the user will be given the option to add new terms to the
term set, providing that the term set itself is open.

Listing 14-3 shows the code that can be used to create a managed metadata site column.

LISTING 14-3  Creating a managed metadata column

using (SPSite site = new SPSite("http://teamsite.wingtiptoys.com/"))
{
 TaxonomySession taxonomySession = new TaxonomySession(site);
 TermStore termStore = taxonomySession.TermStores[0];
 Group termGroup = termStore.Groups["Enterprise"];
 TermSet termSet = termGroup.TermSets["ToyTypes"];

 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 TaxonomyField taxonomyField = null;

 taxonomyField =
 web.Fields.CreateNewField("TaxonomyFieldType", "Type of Toys")
 as TaxonomyField;
 taxonomyField.StaticName = "ToyType";
 // Sets whether the field accepts multiple values or not
 taxonomyField.AllowMultipleValues = false;

	 Chapter 14  SharePoint Enterprise Content Management    553

 // The GUID of the term of which only descendants of the term can be picked
 taxonomyField.AnchorId = termSet.Id;
 // If this is set to true terms that are not validated will be created
 taxonomyField.CreateValuesInEditForm = false;
 // If this is set to true the user will be given the option
 // to add new terms
 taxonomyField.Open = false;
 // Id of the term store
 taxonomyField.SspId = termStore.Id;
 // Id of the term set from which a value can be selected
 taxonomyField.TermSetId = termSet.Id;
 taxonomyField.Required = false;
 taxonomyField.ShowInDisplayForm = true;
 taxonomyField.ShowInEditForm = true;
 taxonomyField.ShowInNewForm = true;
 taxonomyField.Group = "Wingtip Toys Columns";

 // After creating the taxonomy field you have to add it to the list
 web.Fields.Add(taxonomyField);

 taxonomyField.Update();

 web.AllowUnsafeUpdates = false;
 }
}

Using a TaxonomyWebTaggingControl
If you want to use managed metadata fields on a custom Web Part or a custom page, you will need
to use a specific control. This control is the TaxonomyWebTaggingControl. When a TaxonomyWeb
TaggingControl is added to a page, the control will look like a managed metadata column on the
page. The properties that have to be set on a TaxonomyWebTaggingControl are very similar to those
that are set on the TaxonomyField:

■■ SSPList  A string of term store GUIDs, delimited by semicolons (;), that the control should
validate against.

■■ GroupId  A GUID that represents the ID of the group that the control will validate against.
The documentation states that this is IDs, plural, but because the data type of the property is
GUID, it will have to be a single ID. This property is optional, though, because you could get
by with using SSPList and TermSetList.

■■ TermSetList  A string of term set GUIDs, delimited by semicolons (;), that the control should
validate against.

■■ AnchorId  A GUID that represents the ID of the only term from which descendants can be
selected. This is relevant if the selected term set has multiple levels and if only subterms of a
specific term should be selectable.

554   Inside Microsoft SharePoint 2013

■■ AllowFillIn  A Boolean that, if set to True, gives the user the option to add new terms to the
term set, providing that the term set itself is open.

■■ IsAddTerms  A Boolean that, if set to True, allows unvalidated values to be added to the term
set, providing the term set itself is open and only one term set is listed in the TermSetList.

Listing 14-4 shows the code that can be used to set the properties of a TaxonomyWebTagging
Control. The code also sets the value of the control to the default value of the ToyType field that
was created in Listing 14-3. If you want to use the code in Listing 14-4, you will have to add the
TaxonomyWebTaggingControl to a page by using <Taxonomy:TaxonomyWebTaggingControl runat=
”server” ID=”WebTaggingControl” />. An in-depth description of all TaxonomyWebTaggingControl
properties can be found on MSDN at http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.
taxonomy.taxonomywebtaggingcontrol.aspx.

LISTING 14-4  Adding a TaxonomyWebTaggingControl to a page or Web Part to display a managed metadata field

using (SPSite site = new SPSite("http://teamsite.wingtiptoys.com/"))
{
 TaxonomySession taxonomySession = new TaxonomySession(site);
 TermStore termStore = taxonomySession.TermStores[0];
 Group termGroup = termStore.Groups["Enterprise"];
 TermSet termSet = termGroup.TermSets["ToyTypes"];

 WebTaggingControl.SSPList = termStore.Id.ToString();
 WebTaggingControl.TermSetList = termSet.Id.ToString();
 // This controls whether you can add new terms to the term set
 WebTaggingControl.AllowFillIn = false;
 // This controls whether we use an anchor term
 WebTaggingControl.AnchorId = termSet.Id;
 // This controls whether unresolved terms will be added to the term set
 WebTaggingControl.IsAddTerms = false;
 // This setting allows you to use the picker to browse the term set
 WebTaggingControl.IsDisplayPickerButton = true;
 // This setting enables/disables validation highlighting
 WebTaggingControl.IsIgnoreFormatting = false;
 WebTaggingControl.IsIncludeDeprecated = false;
 WebTaggingControl.IsIncludeUnavailable = false;
 // This setting modifies what is shown in/returned by the control,
 // if you want the GUIDS of parent terms then set this to true
 WebTaggingControl.IsIncludePathData = true;
 // This setting will include term set name resolution as well
 WebTaggingControl.IsIncludeTermSetName = false;
 WebTaggingControl.ID = termSet.Id.ToString();

 TaxonomyField taxonomyField =
 (TaxonomyField)site.RootWeb.Fields.GetFieldByInternalName("ToyType");
 WebTaggingControl.Text = taxonomyField.DefaultValue;
}

http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.taxonomy.taxonomywebtaggingcontrol.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.taxonomy.taxonomywebtaggingcontrol.aspx

	 Chapter 14  SharePoint Enterprise Content Management    555

Putting a control that allows users to select values from the term store on a page is not much good
if you can’t process the value that is selected. To work with the values selected in a TaxonomyWeb
TaggingControl or a TaxonomyField, you should use the TaxonomyFieldValue class. This class has four
properties and one method that you should use when saving a taxonomy value:

■■ Label  A string representing the actual label of the selected term.

■■ TermGuid  A string representing the GUID of the selected term. This GUID must be lower-
cased. If the GUID is uppercased, it will work fine within SharePoint, but it might cause the
Document Information Panel in programs in the Microsoft Office suite, such as Microsoft
Word or Excel, to not recognize your term as a valid term in the term store. The term will be
marked as if it doesn’t exist in the term store and will be displayed in red. This will mean that
the document can’t be saved or checked in until the term is selected again from the term
store.

■■ ValidatedString  A read-only, validated, serialized string representation of the Taxonomy-
FieldValue object.

■■ WssId  An integer that uniquely identifies the list item containing the taxonomy field in a list.

■■ PopulateFromLabelGuidPair(text)  A method to update the value of the TaxonomyField-
Value object with the value specified as the text parameter. The text parameter is a formatted
string that contains the label, path GUIDs, and term GUID.

Listing 14-5 shows an example in which the value selected in the TaxonomyWebTaggingControl
from Listing 14-4 is stored as the default value of the TaxonomyField from Listing 14-3. You first get
the value that was selected in the TaxonomyWebTaggingControl and use that as input for the Popu-
lateFromLabelGuidPair method. Then you select a WssId, which is the ID of the list item that the value
has to be saved to. In this example, no list item is involved, because you are storing the value as the
default value of a site column. In this case, you select −1 as the WssId. Even if you are saving a value to
a list item, you can use −1 instead of the real list item ID, as long as you make sure that you store the
value with the correct SPListItem. The next thing to do is define the GUID of the selected term and use
this as input for the TermGuid property of the TaxonomyFieldValue object. Note that you convert the
GUID to lowercase to make sure the value is recognized by the Office Document Information Panels.
After you have properly set the value of the TaxonomyFieldValue object, you can use the Validated-
String property to save the value to the default value of the TaxonomyField.

556   Inside Microsoft SharePoint 2013

LISTING 14-5  Setting the default value of a managed metadata site column by using a TaxonomyWebTagging-
Control

using (SPSite site = new SPSite("http://teamsite.wingtiptoys.com/"))
{
 TaxonomySession taxonomySession = new TaxonomySession(site);

 using (SPWeb web = site.OpenWeb())
 {
 TaxonomyField taxonomyField =
 site.RootWeb.Fields.GetFieldByInternalName("ToyType")
 as TaxonomyField;
 TaxonomyFieldValue defaultValue =
 new TaxonomyFieldValue(taxonomyField);

 try
 {
 defaultValue.PopulateFromLabelGuidPair(WebTaggingControl.Text);
 defaultValue.WssId = -1;
 // GUID should be stored lowercase, otherwise it will
 // not work in Office DIPs
 defaultValue.TermGuid = defaultValue.TermGuid.ToLower();
 // Set the selected default value for the site column
 taxonomyField.DefaultValue = defaultValue.ValidatedString;
 }
 catch (ArgumentNullException ex)
 {
 ErrorMessage.Text = "Creating a new value is not allowed "
 ErrorMessage.Text += "in this term set, please select from "
 ErrorMessage.Text += "the existing terms.";
 taxonomyField.DefaultValue = String.Empty;
 }

 taxonomyField.Update(true);
 }
}

Understanding content type syndication
In the previous sections you have looked at the Managed Metadata Service Application term store
and how its contents can be used in custom solutions. The Managed Metadata Service Application is
more than just the term store, though. One of its other important features is the content type syndica-
tion feature. Content type syndication can be used to synchronize content types across site collections.

	 Chapter 14  SharePoint Enterprise Content Management    557

The content type syndication feature uses one site collection as the central storage point for content
types. This site is called the Content Type Hub. A site collection can be promoted to a Content Type
Hub by activating the site collection–scoped Content Type Syndication Hub feature. The hub will then
have to be registered as the hub in the properties of the Managed Metadata Service Application. This
will enable the service application to publish the content types to all site collections that are set as
consumers (see Figure 14-3).

FIGURE 14-3  The Content Type Hub is defined in the properties of the Managed Metadata Service Application.

In the properties of the Managed Metadata Service Application Proxy, the hub can be selected so
that site collections in web applications that are using the service application will consume the pub-
lished content types (see Figure 14-4).

558   Inside Microsoft SharePoint 2013

FIGURE 14-4  The properties of the Managed Metadata Service Application Proxy show that site collections that
use this service application will also consume content types from the Content Type Hub.

After syndication has been set up, content types can be created in the site collection that has been
defined as the Content Type Hub. Content types can be created either manually or by using CAML or
code-behind. Because content types have to be created only once and are distributed to other site
collections by using the syndication functionality, they will usually be created manually in the Con-
tent Type Hub. If you wanted to use the same content types in multiple site collections without using
content type syndication, you would have to create a custom solution and activate the feature that
creates the content types on all sites where the content types should be used.

When a content type has been created in the Content Type Hub, the content type can be pub-
lished. Figure 14-5 shows the content type publishing user interface. When a published content type
is changed, it can be republished, and if a published content type should no longer be used, it can
be unpublished. A published content type doesn’t become available in the site collections that are
consuming content types from the Content Type Hub immediately. Before content types are available
to the site collections, there are two timer jobs that have to run. The first one is the Content Type Hub
timer job. This job only has to run once after a Content Type Hub has been registered with the Man-
aged Metadata Service Application. By default, it runs once per day at 1:00 A.M. If you have access
to the SharePoint server and to Central Administration, it will be worth it to start this job manually so
that you can use the Content Type Hub on the day that you create it, instead of having to wait until
the next day. The second timer job is the Content Type Subscriber job. This job is responsible for pick-
ing up the published content types from the Content Type Hub and pushing them to the consuming
site collections. The Content Type Subscriber job runs once per hour by default.

	 Chapter 14  SharePoint Enterprise Content Management    559

FIGURE 14-5  This screen shot shows the content type publishing page that is available for content types in the
Content Type Hub.

In summary, to use published content types in a site collection, you have to register the Content
Type Hub with the Managed Metadata Service Application and the Managed Metadata Service Ap-
plication Proxy. If this didn’t happen automatically (in which case SharePoint will warn you), you have
to activate the Content Type Syndication Hub. Then you will have to create and publish the content
type you want to use and, as a last step, both the Content Type Hub timer job and the Content Type
Subscriber timer job have to run.

Using document services

SharePoint has a long list of simple and complex features that are related to document and records
management. In this section, a couple of them will be discussed, either because they have changed in
SharePoint 2013 or because they are the more complex features.

Understanding versioning
When versioning is enabled on a library or list, it enables users to keep track of changes that were
made to a document or list item, and it allows users to look at previous versions of the document or
item. You can choose whether you want to keep major or minor versions and how many major and
minor versions you want to keep. Generally speaking, a major version is a published version (1.0, 2.0,
3.0), and a minor version is a work in progress (1.3, 2.1, 3.4). If you do enable versioning, it is a best
practice to set a maximum number of major and minor versions that should be kept. If you don’t

560   Inside Microsoft SharePoint 2013

explicitly set this, all versions of all documents or items in the list will be stored, which, especially for
documents, could add up to quite a lot of storage. Former versions do count toward the storage
quota of a site.

You can use the versioning–specific security settings to determine who can view draft items
or documents. You can choose between Readers and Contributors. You can also select to require
content approval. If content approval is required, items have to be approved before they can be
published and made visible to all users. If content approval is required, an extra versioning security
option is enabled that allows you to make draft items visible to only Approvers and the author. Figure
14-6 shows the versioning settings page of a document library. The page for a list looks almost the
same, except for the fact that it doesn’t have the Require Check Out option on it. Setting Require
Check Out to Yes is a good idea in many cases. Though it might be a little annoying for users to have
to check documents in and out, it is nowhere near as annoying as running into saving conflicts when
two people are working on the same document without realizing they are working on the same docu-
ment. When check out is not required, users can check out a document manually, but most users will
not remember to do so.

FIGURE 14-6  This screen shot shows the versioning settings page of a document library.

	 Chapter 14  SharePoint Enterprise Content Management    561

When using CAML to create a list, as shown in the following code, you can enable versioning by
setting the VersioningEnabled attribute to true. With CAML it is not possible to add the nuances such
as the number of major and minor versions and who can view draft items, though:

<ListInstance Title="Products List"
 OnQuickLaunch="TRUE"
 TemplateType="10000"
 Url="Lists/WingtipToysProductsList"
 Description="Wingtip products list"
 VersioningEnabled="TRUE"
 Hidden="FALSE">
</ListInstance>

With code-behind you have a lot more flexibility than when you are using CAML. The following
properties would cause the same behavior as the settings from Figure 14-6:

SPList.EnableModeration = false;
SPList.EnableVersioning = true;
SPList.EnableMinorVersions = true;
SPList.MajorVersionLimit = 5;
SPList.MajorWithMinorVersionsLimit = 5;
SPList.DraftVersionVisibility = DraftVisibilityType.Author;
SPList.ForceCheckout = true;

The settings are further described in the following list:

■■ EnableModeration   Enables or disables content approval

■■ EnableVersioning  Enables versioning using only major versions

■■ EnableMinorVersions  Also enables the use of minor versions

■■ MajorVersionLimit  Limits the number of major versions that are stored to the number that
is assigned to it, for lists and libraries on which minor versioning is not enabled

■■ MajorWithMinorVersionsLimit  Limits the number of major versions that are stored to the
number that is assigned to it, for lists and libraries on which minor versioning is enabled

■■ DraftVersionVisibility  Allows you to use the DraftVisibilityType enumeration to select who
can view draft versions of documents and items

■■ ForceCheckOut  Can be used to force users to check out a document before they can edit
the document

In Figure 14-6, the obvious property that is missing is the one to limit the number of minor ver-
sions. You can’t set a maximum number of minor versions that should be stored by using the object
model. This is one of the few places where the SharePoint user interface can do more than what you
can achieve by using the object model.

If versioning is enabled on a library or list, updating items by using the object model can have an
impact on versions that are created. If a maximum number of major and minor versions is set, creat-
ing a new version might cause a user’s version to be deleted. The following list describes how the

562   Inside Microsoft SharePoint 2013

different methods in the object model that allow you to update items influence the creation of new
versions and version numbers.

■■ SPListItem.Update()  Updates the item, creates a new version, and increases the version
number.

■■ SPListItem.UpdateOverwriteVersion()  Does the same as Update(), but without creating a
new version and version number.

■■ SPListItem.SystemUpdate(true)  Updates the item, but doesn’t change the Modified or
Modified By field. It does create a new version and will increment the version number.

■■ SPListItem.SystemUpdate(false)  Updates the item, but doesn’t change the Modified or
Modified By field. It also doesn’t create a new version and will not increment the version number.

■■ SPListItem.SystemUpdate()  Calling SystemUpdate() is the same as calling SystemUpdate(false).

When working with SharePoint sites, users can use the shortcut menu and the Version History but-
ton to get to previous versions of the item or document. The equivalent is also available through the
object model by using the SPListItemVersion class, as shown in Listing 14-6.

LISTING 14-6  Using the SPListItemVersion class

using (SPSite site = new SPSite("http://teamsite.wingtiptoys.com/"))
{
 SPWeb web = site.OpenWeb();
 SPListItemCollection listitems =
 web.GetList("http://teamsite.wingtiptoys.com/Shared Documents").Items;
 string versionNr;
 bool isCurrentVersion;
 SPListItem versionItem;
 string createdBy;

 foreach (SPListItem listitem in listitems)
 {
 foreach (SPListItemVersion itemVersion in listitem.Versions)
 {
 versionNr = itemVersion.VersionLabel;
 isCurrentVersion = itemVersion.IsCurrentVersion;
 versionItem = itemVersion.ListItem;
 createdBy = itemVersion.CreatedBy.User.Name;
 }
 }
}

	 Chapter 14  SharePoint Enterprise Content Management    563

Understanding Document IDs
When users create a document in a document library, or add a document to a document library, they
can share it with their colleagues by sending them a URL that points to the document. This is a great
way to find the document at a later date. If the document is moved or renamed, though, its URL will
change. The URL that users were using to access the document will no longer work and will become
useless.

In SharePoint 2010, Document IDs were introduced to address this challenge. When the Document
ID Service feature is activated on a site collection, the Document and Document Set content types in
that site collection get three new columns added to them:

■■ DocID  Contains the Document ID

■■ Static URL  Contains a URL that includes the Document ID that can be used to access the
document

■■ PersistID  Used to determine whether a Document ID should be kept, or whether it should
be reassigned

After the columns have been added to the content types, all documents and Document Sets that
are added to the site collection are automatically assigned a unique Document ID that is stored in the
DocID column. A Static URL is generated and stored as well. The Static URL stays with the document,
even if it is renamed or moved, provided that the Move or Send To functionality from SharePoint is
used. When a document is saved to a local hard disk and then uploaded again to a different site, it
will effectively have been moved, but SharePoint will not be aware that this was a move and not a De-
lete and Add, so SharePoint will assign the document a new Document ID and Static URL. Propagating
the DocID, Static URL, and PersistID columns to all content types in all subsites of the site collection is
done by the Document ID Enable/Disable timer job. This job runs once per day at 9:00 P.M. by default.

Any existing documents already in the site collection when the Document ID Service feature is
activated will be assigned Document IDs and Static URLs in a deferred batch process implemented by
the Document ID Assignment Job timer job. By default, this job runs once per day at 10:00 P.M. If you
do activate the Document ID Service feature and you have access to Central Administration, you can
start the timer job manually. Don’t increase the frequency of the timer job, though, because you need
it to run only after you have activated the Document ID Service feature on a site; if you increase the
frequency, you will waste valuable resources on your server.

To enable users to use the Document ID to access documents, SharePoint contains a special ap-
plication page, DocIdRedir.aspx, which accepts the Document ID as a query string value and redirects
the requester to the document. The URL will look similar to this: http://teamsite.wingtiptoys.com/
sites/hr/_layouts/15/DocIdRedir.aspx?ID=ZTWDNX7TXESH-3-1. Translated, this URL tells you that the
document was originally stored in the /sites/hr site collection, of which the Document ID prefix is
ZTWDNX7TXESH. The document is stored in a library with an ID of 3, and this document is the first
document in this library. When this URL is requested, the DocIdRedir.aspx page first tries to use the
SharePoint out-of-the-box search functionality to find the document by searching for the Static URL.

564   Inside Microsoft SharePoint 2013

The search functionality won’t be able to find the document unless it is indexed, though, meaning
that depending on your crawl schedule, it might take a while before the document can be found by
using search. If the document can’t be found by using search, SharePoint will use the Document ID
provider lookup logic to try to find the document. This will work only if the document is still stored in
the site collection that is part of the Static URL.

A Document ID consists of three parts:

■■ A Document ID prefix  A site collection–scoped unique string value. When the Document
ID Services feature is activated, this prefix is automatically generated by SharePoint, but it
can be changed by the site collection administrator to something more meaningful. When
changing the Document ID prefix manually, the site collection administrator will have to make
sure that the prefix is still unique across all site collections that use the same Search Service
Application (usually this means all site collections in the farm), otherwise the Document ID
functionality will not function properly.

■■ A list ID  An ID that is automatically assigned to every list. Within each site collection, lists
are numbered 1 to x, with x being the number of lists in the site collection.

■■ A Document ID  An ID that is automatically assigned to every document and Document Set
in the site collection. Within each list, documents are numbered 1 to x, x being the number of
documents in the list.

A Document ID is formatted as [Document ID prefix]-[List ID]-[Document ID]. Because the list ID is
unique only within a site collection and the document ID is unique only within a list, it is very impor-
tant that the Document ID prefix is unique across all site collections, because otherwise you’ll end up
with duplicate Document IDs.

Creating custom Document ID providers
Developers can create custom Document ID providers when they want to override either the default
Document ID string pattern or how documents are found. This is done by first creating a provider and
then registering it with a site collection.

To create a new Document ID provider, create a new class that inherits from the Microsoft.Office.
DocumentManagement.DocumentIdProvider class. This class has four members that should be
overridden:

■■ GenerateDocumentId()  This method is responsible for creating the unique Document ID
string. Overriding this allows the developer to change how new Document IDs are generated.
It is the responsibility of the developer to ensure that the generated ID is unique across the
site collection. Also note that, if desired, this method could be used to generate an ID that is
unique at a scope higher than site collection, such as web applications or even the whole farm.

■■ GetDocumentUrlsById()  This method accepts a Document ID string and returns a list of
URLs for the corresponding document. It can return multiple values, because developers can
copy documents programmatically from one location to another and specify that the Docu-
ment ID be retained on the copied instance.

	 Chapter 14  SharePoint Enterprise Content Management    565

■■ GetSampleDocumentIdText()  This method generates a sample Document ID string that
is displayed in the Find By Document ID Web Part, giving users a hint as to what the ID looks
like.

■■ DoCustomSearchBeforeDefaultSearch  This Boolean property tells SharePoint whether it
should default to using the SharePoint search feature or the Document ID provider to find the
URL of the Document ID string.

The code shown in Listing 14-7 demonstrates a custom Document ID provider that uses the first
part of the hosting web application, site collection, site, list, and list item’s ID as the Document ID
string.

LISTING 14-7  A custom Document ID provider

public class MoreUniqueDocumentIDProvider : DocumentIdProvider
{
 private const string DOCID_FORMAT = "{0}-{1}-{2}-{3}-{4}";

 public override bool DoCustomSearchBeforeDefaultSearch
 {
 get { return false; }
 }

 public override string GenerateDocumentId(SPListItem listItem)
 {
 string listItemID = listItem.ID.ToString();
 string listID = listItem.ParentList.ID.ToString().Substring(0, 4);
 string webID = listItem.Web.ID.ToString().Substring(0, 4);
 string siteID = listItem.Web.Site.ID.ToString().Substring(0, 4);
 string webAppID =
 listItem.Web.Site.WebApplication.Id.ToString().Substring(0, 4);
 return string.Format(DOCID_FORMAT, webAppID, siteID,
 webID, listID, listItemID);
 }

 public override string[] GetDocumentUrlsById(SPSite hostingSiteCollection,
 string documentId)
 {
 List<string> possibleURLs = new List<string>();
 string[] brokenDownDocID = documentId.Split("-".ToCharArray()[0]);

 // find the Web application
 SPWebService webService = hostingSiteCollection.WebApplication.WebService;

 foreach (SPWebApplication webAppplication in webService.WebApplications)
 {
 if (webAppplication.Id.ToString().StartsWith(brokenDownDocID[0]))
 {
 // find the SPSite (if multiple, won't matter as it will go to next one...)
 foreach (SPSite site in webAppplication.Sites)

566   Inside Microsoft SharePoint 2013

 {
 if (site.ID.ToString().StartsWith(brokenDownDocID[1]))
 {
 // find the SPWeb
 // (if multiple, won't matter as it will go to next one...)
 foreach (SPWeb web in site.AllWebs)
 {
 if (web.ID.ToString().StartsWith(brokenDownDocID[2]))
 {
 foreach (SPList list in web.Lists)
 {
 if (list.ID.ToString().StartsWith(brokenDownDocID[3]))
 {
 // find the item in the list
 SPListItem targetItem = list.GetItemById(
 Int32.Parse(brokenDownDocID[4]));

 if (targetItem != null)
 {
 possibleURLs.Add(String.Format("{0}//{1}", web.Url, targetItem.Url));
 }
 }
 }
 }
 web.Dispose();
 }
 }
 site.Dispose();
 }
 }
 }
 return possibleURLs.ToArray();
 }

 public override string GetSampleDocumentIdText(Microsoft.SharePoint.SPSite site)
 {
 return string.Format(DOCID_FORMAT, "55DA526F",
 "FD9D4836", "FD0910DC", "15B4AD8A", "ABDC1A45");
 }
}

After the Document ID provider has been created, it needs to be registered with a site collection.
This can be done by using the Feature receiver of a site collection–scoped feature. Use the Microsoft.
Office.DocumentManagement.DocumentId class to set the provider for a specified site collection, as
shown in Listing 14-8.

	 Chapter 14  SharePoint Enterprise Content Management    567

LISTING 14-8  Registering a custom Document ID provider

public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 MoreUniqueDocumentIDProvider docIDProvider = new MoreUniqueDocumentIDProvider();
 DocumentId.SetProvider(site, docIDProvider);
}

public override void FeatureDeactivating(SPFeatureReceiverProperties properties)
{
 SPSite site = properties.Feature.Parent as SPSite;
 DocumentId.SetDefaultProvider(site);
}

Understanding Document Sets
SharePoint document libraries allow users to create and interact with individual files. These individual
files can be the targets of workflows and event receivers, support versioning, or have unique per-
missions applied to them. A single document, however, does not always represent a complete work
product. A work product might consist of multiple documents, such as a proposal with an invoice with
supporting timesheets, travel receipts, a statement of work, and other resources. SharePoint includes
a capability that supports creating and managing sets of documents as a single work product: the
Document Set.

A Document Set is a specific content type that inherits from the Folder content type. It allows users
to group documents in the same way that folders do; however, it also adds the following characteristics:

■■ Allowed content types  The types of content that are permitted within the Document Set.
Documents within the Document Set can use these content types.

■■ Shared fields  Common columns that exist on the Document Set and child content types.
Values for these columns can be set on the Document Set level and are propagated to all
documents within the Document Set.

■■ Welcome page  SharePoint implements a Document Set as a Web Part page when users
view it with a browser. The Welcome page displays specified fields from the Document Set
content type, in addition to the individual documents that are part of the Document Set.

■■ Default content  When users create a new instance of the Document Set, the default con-
tent can provision new content that is associated with one of the allowed content types au-
tomatically.

To make the Document Set content type available in a site collection, you have to activate the
Document Sets site collection–scoped feature. After the feature has been activated, you can add
the Document Set content type to libraries in the site collection, or you can create your own content
type that inherits from the Document Set content type. When interacting with a Document Set, the

568   Inside Microsoft SharePoint 2013

SharePoint interface adds a new tool tab group called Manage that provides additional buttons that
allow you to manage the Document Set as a whole. The buttons are mostly the same as the some of
the ones that are available for items and files, such as Edit Properties, Delete, Version History, and
Workflows, except for the fact that they all apply to the Document Set as a whole and not to a single
document. Figure 14-7 shows a Document Set Welcome page and the Manage tab and its buttons.

FIGURE 14-7  A screen shot showing a Document Set Welcome page and Manage tab.

Creating a new Document Set by using the browser is straightforward. After making sure that the
Document Sets feature is activated, you can create a new content type that derives from the Docu-
ment Set content type and configure its settings. As with any content type, you can add site columns
to it; however, for a Document Set, you can also determine what columns should be displayed on the
Welcome page and what columns should be shared columns. Shared columns and their values are
automatically synchronized to all files in the Document Set.

The new content type can be added to a document library in the same way that regular content
types are added. Creating a new Document Set based on the new content type can be done by click-
ing the arrow below the New Document button on the Files tab and selecting the new Document Set
content type. After a Document Set has been created, documents can be added to it, in addition to
metadata.

Creating Document Sets declaratively
Creating Document Set content types by using the browser is simple, but it is not a very reusable
approach. If you want to use a Document Set content type in multiple sites and you don’t want to
use content type syndication, the best approach is to create them declaratively in Microsoft Visual
Studio and package them in a .wsp file. The first step in creating a Document Set content type in
Visual Studio is the same as the first step in creating any other content type. You create a new project,

	 Chapter 14  SharePoint Enterprise Content Management    569

based on the SharePoint 2013 - Empty Project template. Then you add a new content type to it. In
the SharePoint Customization Wizard, you can select the content type that your content type should
inherit from. Here you can select the Document Set content type. The Document Set content type will
be created in exactly the same way that other content types are created in Visual Studio. The only
thing that might reveal that you just created a content type that inherits from the Document Set con-
tent type is the ContentType ID. The Document Set ContentType ID is 0x0120D520, which means that
the ContentType ID of all content types inheriting from Document Set will start with 0x0120D520.

Because Visual Studio creates all content types as equal, you will have to add the extra plumbing
and features that are specific to a Document Set yourself. If you want to add allowed content types
and custom site columns to the Document Set, you will have to create those first. You can do this in
the same solution, or in a different one. It is easier to create all the parts of the Document Set content
type in the same solution, so that you don’t create two solutions that are dependent on one another.
The allowed content types can only be the Document content type, or any content types that inherit
from the Document or Folder content type.

Either you can set the Name, Description, and Group on the Content Type tab in Visual Studio, or
you can adjust the CAML in the Elements.xml file. The same is true for the site columns, but for site
columns it is a lot quicker to use the Columns tab, so that you can simply select the columns instead
of having to write a lot of CAML and look up the IDs and internal names of the columns that have to
be added to the new Document Set content type. Adding columns by using the form will automati-
cally update the Elements.xml file. Listing 14-9 shows the CAML in the Elements.xml file after the
Keywords and Categories columns have been added to the content type.

LISTING 14-9  Document Set content type fields and configuration information

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Document Set (0x0120D520) -->
 <ContentType ID="0x0120D52000A0DD237060674E6D803E68B19DB425A2"
 Name="Toy Specification Doc Set"
 Group="Wingtip Toys Content Types"
 Description="Document Set used to store all information that specifies a toy."
 Inherits="FALSE">
 <FieldRefs>
 <FieldRef ID="{b66e9b50-a28e-469b-b1a0-af0e45486874}"
 Name="Keywords"
 DisplayName="Keywords" />
 <FieldRef ID="{9ebcd900-9d05-46c8-8f4d-e46e87328844}"
 Name="Categories"
 DisplayName="Categories" />
 </ContentType>
</Elements>

The rest of the content type definition is specific to creating a Document Set. SharePoint sets the
Document Set–specific characteristics via the <XmlDocuments /> section of the content type. First, add
all the content types that are allowed in the Document Set, referencing them by their ContentTypeId, as
shown in Listing 14-10.

570   Inside Microsoft SharePoint 2013

LISTING 14-10  Specifying the allowed content types in the toy specification Document Set content type

<XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/office/documentsets/allowedcontenttypes">
 <act:AllowedContentTypes xmlns:act=
 "http://schemas.microsoft.com/office/documentsets/allowedcontenttypes"
 LastModified="1/1/1 0:00:01 AM">
 <!-- Document -->
 <AllowedContentType id="0x0101" />
 <!-- Picture -->
 <AllowedContentType id="0x010102" />
 <!-- Summary Tasks-->
 <AllowedContentType id="0x012004" />
 </act:AllowedContentTypes>
</XmlDocument>

There are three columns in the toy specification Document Set that should be kept in sync with all
other content types in the collection:

■■ Description

■■ Keywords

■■ Categories

These fields are defined as shared fields, referencing the ID of the Site Column definition, as shown
in Listing 14-11.

LISTING 14-11  Specifying the shared fields in the toy specification Document Set content type

<XmlDocument
 NamespaceURI="http://schemas.microsoft.com/office/documentsets/sharedfields">
 <sf:SharedFields
 xmlns:sf="http://schemas.microsoft.com/office/documentsets/sharedfields"
 LastModified="1/1/1 0:00:01 AM">
 <!-- Categories -->
 <SharedField id="9ebcd900-9d05-46c8-8f4d-e46e87328844" />
 <!-- Description -->
 <SharedField id="cbb92da4-fd46-4c7d-af6c-3128c2a5576e" />
 <!-- Keywords -->
 <SharedField id="b66e9b50-a28e-469b-b1a0-af0e45486874" />
 </sf:SharedFields>
</XmlDocument>

Next, specify the fields in the Document Set content type that should be displayed on the Wel-
come page when users view an instance of the toy specification Document Set, again referencing the
ID of the Site Column definition, as shown in Listing 14-12.

	 Chapter 14  SharePoint Enterprise Content Management    571

LISTING 14-12  Specifying the Welcome page fields in the toy specification Document Set content type

<XmlDocument
 NamespaceURI=
 "http://schemas.microsoft.com/office/documentsets/welcomepagefields">
 <wpf:WelcomePageFields xmlns:wpf=
 "http://schemas.microsoft.com/office/documentsets/welcomepagefields"
 LastModified="1/1/1 0:00:01 AM">
 <!-- Categories -->
 <WelcomePageField id="9ebcd900-9d05-46c8-8f4d-e46e87328844" />
 </wpf:WelcomePageFields>
</XmlDocument>

When users create new instances of the Document Set, those instances should contain a toy
specification sheet and a toy specification guidelines PDF file. Both files are attached to the Document
content type. Before you can add these files, you should define where they can be found. You can
do this by defining the toy specification Document Set content type’s folder directly underneath the
<ContentType> element, as shown here:

<Folder TargetName="_cts/Toy Specification Doc Set" />

Listing 14-13 shows how to provision the default content for the Document Set.

LISTING 14-13  Specifying default content for the toy specification Document Set content type

<XmlDocument
 NamespaceURI=
 "http://schemas.microsoft.com/office/documentsets/defaultdocuments">
 <dd:DefaultDocuments xmlns:dd=
 "http://schemas.microsoft.com/office/documentsets/defaultdocuments"
 LastModified="1/1/1 0:00:01 AM"
 AddSetName="True">
 <DefaultDocument name"Toy Specification Guidelines.pdf"
 idContentType="0x0101" />
 <DefaultDocument name="Toy Specification Sheet.xlsx"
 idContentType="0x0101" />
 </dd:DefaultDocuments>
</XmlDocument>

Because SharePoint won’t be able to make up the default content out of nothing, you have to
make sure that the specification sheet and guideline documents are provisioned in the SharePoint
site. The best way to do this is by using a Module. Add a new Module project item in the Visual
Studio 2012 project that contains an Excel file and a PDF file, and provision them to the folder
referenced in Listing 14-13. Listing 14-14 shows how to add the default content.

572   Inside Microsoft SharePoint 2013

LISTING 14-14  Provisioning the default content of the Document Set

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="ToySpecificationDefaultContent">
 <File Path="ToySpecificationDefaultContent\Toy Specification Sheet.xlsx"
 Url="_cts/Toy Specification Doc Set/Toy Specification Sheet.xlsx" />
 <File Path=
 "ToySpecificationDefaultContent\Toy Specification Guidelines.pdf"
 Url="_cts/Toy Specification Doc Set/Toy Specification Guidelines.pdf" />
 </Module>
</Elements>

At this point, the Document Set is complete. An optional step is to create a custom Welcome
page that users will be taken to when they view the Document Set. When showing the Document Set,
SharePoint looks for a file named DocSetHomePage.aspx in the Document Set’s folder. If it exists, it
will be used as the Welcome page for that Document Set. If it doesn’t exist, a generic Welcome page
will be shown instead.

In the case of the toy specification Document Set, the Welcome page could display Wingtip Toy’s
tagline: More fun with Wingtip Toys! To create a custom Welcome page, create a copy of the default
Welcome page that is provisioned by the Document Set Feature found in {SharePoint Root}\TEMPLATE\
FEATURES\DocumentSet and provision it by using a Module SharePoint project item, as shown in
Listing 14-15.

LISTING 14-15  Provisioning the Document Set Welcome page

<Module Name="ToySpecificationWelcomePage" RootWebOnly="TRUE">
 <File Path="ToySpecificationWelcomePage\DocSetHomePage.aspx"
 Url="_cts/Toy Specification Doc Set/DocSetHomePage.aspx">

 <AllUsersWebPart WebPartOrder="0" WebPartZoneID="WebPartZone_TopLeft">
 <!-- WebPart element omitted for clarity -->
 </AllUsersWebPart>

 <AllUsersWebPart WebPartOrder="0" WebPartZoneID="WebPartZone_CenterMain">
 <!-- WebPart element omitted for clarity -->
 </AllUsersWebPart>

 <AllUsersWebPart WebPartOrder="0" WebPartZoneID="WebPartZone_Top">
 <!-- WebPart element omitted for clarity -->
 </AllUsersWebPart>

 </File>
</Module>

	 Chapter 14  SharePoint Enterprise Content Management    573

The three <AllUsersWebPart /> elements provision an Image Web Part with the default Document
Set image, a Document Set Contents Web Part that shows the contents of the Web Part, and the
Document Set Properties Web Part that shows all the Welcome page properties. The easiest way to
get these values is to copy them from the element manifest in the out-of-the-box Document Set
Feature.

The final step is to make sure that there is one feature in the project that is set to site scope and
that is named appropriately. The content type and modules should all be added to this one feature.
At this point, the Visual Studio 2012 project should look similar to the one shown in Figure 14-8.

FIGURE 14-8  This screen shot shows the Toy Specification Document Set project in Visual Studio 2012.

Now that the solution is ready, you can package and deploy it. This will activate the feature that
provisions the Toy Specification Document Set on your target site. To start using it, you just have to
add the Toy Specification Document Set content type to a library, and you will be able to create a
new instance of the Document Set to view the result. Figure 14-9 shows the result, a Toy Specification
Document Set for a doll called Aglaia.

574   Inside Microsoft SharePoint 2013

FIGURE 14-9  This screen shot shows the Toy Specification Document Set.

Using the Content Organizer
Designing a large document repository in SharePoint requires proper planning to make sure that the
repository is set up in a way that is scalable. Content in large repositories is often organized based on
its metadata. In a repository with millions of documents, users will need help to store their documents
in the right place. Help could be provided by document librarians or content stewards, but it would
be easier if the support for users were automated. To help manage the contents of large document
repositories in SharePoint, the Content Organizer can be used. The Content Organizer assists by
checking the metadata of a new document against some predefined and prioritized rules and, if a
matching rule is found, routing or moving the content to the document library and folder specified in
the rule. The Content Organizer can even manage large libraries by automatically creating new folders
if the content in the target folder grows beyond a specified threshold.

The Content Organizer functionality can be enabled on a site by activating the site-scoped Content
Organizer feature. This adds a library to the site called the Drop Off library, and it adds two new links
to the Site Administration section in the Site Settings page: the Content Organizer Settings and
Content Organizer Rules links. The Content Organizer Settings page allows the site owner to deter-
mine how the Content Organizer feature should be used, for instance, whether users should be
redirected to the Drop Off library when they try to upload a document to libraries that have Content
Organizer rules pointed at them, whether a Content Organizer rule can route documents to a different
site collection, and whether a folder’s size should be managed automatically. The Content Organizer
Rules page shows a special type of list that stores all the Content Organizer rules that are created for
the site. The list is called the RoutingRules list, and items that are added to it are based on the Rule
content type.

	 Chapter 14  SharePoint Enterprise Content Management    575

The site used for this example is based on the Document Center template (the template is BDR#0,
in case you want to create the site by using code or Windows PowerShell). A document library called
Spreadsheets has been added to the site, in addition to a picture library called Pictures. A new Choice
site column called Document Type has been created with two possible values: Document and Spread-
sheet. The column has been added to the Document content type. For most Content Organizer settings,
the defaults are used, except for the Rule Managers, for which the Owner group of the site is used, as
shown in Figure 14-10.

FIGURE 14-10  The Content Organizer Settings page shows mostly default values and adjusted Rule Managers.

576   Inside Microsoft SharePoint 2013

The next step is to create the Content Organizer rules. The first rule (shown in Figure 14-11) will
pick up all documents that are linked to the Document content type and that have the Document
Type property set to Document, to move the documents to the Document library.

FIGURE 14-11  The Content Organizer Rules page shows the settings for a specific rule.

	 Chapter 14  SharePoint Enterprise Content Management    577

Not only can Content Organizer rules be created through the user interface, they can also be
created programmatically by using the classes from the Microsoft.Office.RecordsManagement.
RecordsRepository namespace. Listing 14-16 shows the code that creates a rule to route documents,
where Document Type is set to Spreadsheet.

LISTING 14-16  Creating a Content Organizer rule

SPSite currentSite = new SPSite("http://teamsite.wingtiptoys.com/");
SPWeb currentWeb = currentSite.OpenWeb();
currentWeb.AllowUnsafeUpdates = true;

EcmDocumentRoutingWeb contentOrganizerWeb = new EcmDocumentRoutingWeb(currentWeb);

EcmDocumentRouterRule newRule = new EcmDocumentRouterRule(currentWeb);
newRule.Name = "Spreadsheets";
newRule.Priority = "5";

SPContentType documentContentType = currentWeb.ContentTypes["Document"];
newRule.ContentTypeString = documentContentType.Name;

SPField documentTypeField = currentWeb.Fields.GetField("Document Type");
string ruleOperator = "IsEqual";
string ruleValue = "Spreadsheet";
string conditionString = String.Format(@"<Condition Column=""{0}|{1}|{2}""
 Operator=""{3}""
 Value=""{4}"" />",
 documentTypeField.Id,
 documentTypeField.InternalName,
 documentTypeField.Title,
 ruleOperator,
 ruleValue);

string conditionsXml = String.Format("<Conditions>{0}</Conditions>", conditionString);

newRule.ConditionsString = conditionsXml;

SPList spreadSheetLibrary = currentWeb.Lists["Spreadsheets"];
newRule.TargetPath = spreadSheetLibrary.RootFolder.ServerRelativeUrl;

newRule.Enabled = true;

contentOrganizerWeb.RoutingRuleCollection.Add(newRule);
currentWeb.AllowUnsafeUpdates = false;

currentWeb.Dispose();
currentSite.Dispose();

If you look at the code in Listing 14-16, you might notice that all properties are strings that you
have to compose yourself. There are no enumerators to help you by letting you choose a rule opera-
tor, for instance, or by letting the type of the ContentTypeString be an SPContentType instead of a

578   Inside Microsoft SharePoint 2013

string. This means that you will have to pay close attention to make sure that you format all properties
correctly yourself.

When a user now uploads a new document to the Drop Off library, or to one of the libraries that
has rules pointed at it, the Submit Document dialog box displays a message stating that the content
will be moved according to the defined rules, as shown in Figure 14-12.

FIGURE 14-12  This screen shot shows the uploading of documents when the Content Organizer is activated.

When the uploaded document is linked to the Document content type and a Document Type is
selected, the document will be redirected to the appropriate library based on the Content Organizer
rules. When a document is uploaded for which a different content type is selected, or for which no
document type is selected, the document will be stored in the Drop Off library. The owners of the
site will get an email message warning them that there is content in the Drop Off library that cannot
be routed to a location based on the currently existing rules. At 11:30 P.M. each night, the Content
Organizer Processing timer job will run to reevaluate the documents in the Drop Off library. If during
the day a new rule has been added that matches the document in the Drop Off library, the document
will be sent to the appropriate location by the timer job. Documents that still don’t match a rule will
stay in the Drop Off library. If the metadata of a document in the Drop Off library is adjusted, the
document will be reevaluated against all existing rules right away.

A typical usage of the Content Organizer is to create large, distributed records centers. The con-
tent organizer can help to keep the size of individual records centers manageable by allowing you to
spread the documents over multiple records centers in different site collections or even different web
applications.

Understanding Word Automation Services
Word Automation Services, introduced in SharePoint 2010, is primarily intended to provide format
conversion services. Indeed, in numerous places you will notice that the service application is referred
to as Word Conversion—for example, in its API and Windows PowerShell cmdlets. Although conver-
sion is the primary use case of Word Automation Services, it can also be combined with Open XML
APIs to build powerful document assembly solutions.

	 Chapter 14  SharePoint Enterprise Content Management    579

Word Automation Services is a service application that can be created by using the Manage
Service Applications page in Central Administration, or by using Windows PowerShell. There is also
a Word Automation Services service that can be started through the Services On Server page and
Windows PowerShell. Creating the service application and starting the service doesn’t add any func-
tionality to a SharePoint farm, though; it allows a developer only to create a custom farm solution that
can initiate a conversion.

Word Automation Services supports conversions from and to the most common file formats. The
service can read the following types of files:

■■ Office Open XML (.docx, .docm, .dotx, .dotm)

■■ Word 97-2003 document (.doc) and Word 97-2003 template (.dot)

■■ Older versions of Word (as far back as Word 2.0 for Windows)

■■ Rich Text Format (.rtf)

■■ Single File Web Page (.mhtml)

■■ HTML

■■ Word 2003 XML

■■ Word 2007/2010 XML

The services can convert files of the file formats just listed into files of the following file formats:

■■ PDF

■■ XPS

■■ Office Open XML (.docx, .docm)

■■ Word 97-2003 document (.doc)

■■ Rich Text Format (.rtf)

■■ Single File Web Page (.mhtml)

■■ Word 2007/2010 XML

File formats that expose extended options (for example, Accessible PDF) can also be saved by
Word Automation Services.

When Word Automation Services was introduced in SharePoint 2010, it was built to asynchronously
convert documents in bulk, by using a timer job. Only documents that were stored in SharePoint could
be converted. This functionality still exists in SharePoint 2013, but because of feedback from users
and developers, the SharePoint 2013 version of Word Automation Services now also allows you to
convert document streams, which don’t have to be stored in SharePoint. These streams can be
converted synchronously, or on demand, and thus without having to wait for a timer job to run. Only
one document can be converted at a time with this approach. Asynchronous bulk conversions can still
only be done on documents that are stored in SharePoint.

580   Inside Microsoft SharePoint 2013

Synchronous and asynchronous conversion can be used at the same time. To manage this, Word
Automation Services creates and manages two separate queues, one for the synchronous or on-
demand conversions and one for asynchronous conversions. When a document enters the on-demand
queue, conversions in the asynchronous queue will be paused. In principle, Word Automation Services
will keep processing on-demand conversions until that queue is empty. Then it will continue to process
asynchronous conversions. If there is an endless stream of on-demand conversions coming in, even-
tually SharePoint will allow some documents from the asynchronous queue to be processed. Exact
numbers in terms of when this override behavior will kick in and how many documents it will allow
to get processed are not documented.

The queues are “first in, first out” queues that are managed by the document queue manager, which
resides on the servers running the Word Automation Launcher service instances. The manager moves
incoming requests into the document queue and sends requests to the Word Automation Services
engine for processing. On a database server, in the Word Automation database, the Word Automation
Services engine stores a persistent queue of requested, current, and completed conversions. Storing
the history of the queue in a database gives the queue improved scalability, reliability, and availability
for tracking large sets of conversions for long periods of time.

Word Automation Services doesn’t just allow developers to convert documents from one type to
another, it can also make some other changes to documents, such as:

■■ Updating the table of contents and index fields.

■■ Recalculating all field types.

■■ Importing “alternate format chunks.”

■■ Changing the compatibility mode version.

To allow you to use Word Automation Services and to build on top of it, the services expose two
APIs. There is an API for synchronous conversions and an API for asynchronous conversions. The Word
Automation Services functionality for synchronous services can be found in the Microsoft.Office.
ConversionServices.Conversions namespace (see Table 14-1). The functionality for the asynchronous
services can be found in the Microsoft.Office.Word.Server.Conversions namespace (see Table 14-2).

TABLE 14-1  An overview of the classes that are available in the Microsoft.Office.ConversionServices.Conver-
sions namespace

Class Description

ConversionItemInfo Contains information about a conversion

ConversionJob Is a conversion job

ConversionJobInfo Contains information about a conversion job

ConversionJobStatus Provides information about the status of the conversion job

SyncConverter Is a synchronous conversion

	 Chapter 14  SharePoint Enterprise Content Management    581

TABLE 14-2  An overview of the classes that are available in the Microsoft.Office.Word.Server.Conversions
namespace

Class Description

ConversionInfo Contains information about a single conversion within a conversion job

ConversionJob Is a collection of file conversions that are tracked together as one

ConversionJobInfo Contains information about a single conversion job

ConversionJobSettings Defines the settings for all conversions in a single conversion job

ConversionJobStatus Provides information about the status of all conversion items in a single
conversion job

FixedFormatSettings Defines the settings for all fixed-format output in a single job

For doing on-demand conversions, the SyncConverter class is the most important class, because
you can do a complete conversion just by using SyncConverter. The most important class when creat-
ing asynchronous conversions is the ConversionJob class, because that is responsible for doing the
actual conversions.

The following example shows how to add a Convert To PDF link to the shortcut menu of Word
documents with a .docx extension and how to convert the Word document to a PDF file. The link to
the shortcut menu is added by a custom action. Listing 14-17 shows the XML that creates the custom
action.

LISTING 14-17  Creating a custom action

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Id="WingtipToys.ConversionMenuItem"
 RegistrationType="FileType"
 RegistrationId="docx"
 Location="EditControlBlock"
 ImageUrl="/_layouts/IMAGES/DOCLINK.GIF"
 Sequence="20000"
 Title="Convert to PDF"
 Description="Converts this document to a PDF." >
 <UrlAction
 Url="~site/_layouts/wingtiptoyswordconversion/convertmetopdf.aspx?ItemUrl={ItemUrl}"
/>
 </CustomAction>
</Elements>

Figure 14-13 shows the Convert To PDF link on the shortcut menu of a .docx file.

582   Inside Microsoft SharePoint 2013

FIGURE 14-13  This document’s shortcut menu shows the Convert To PDF link.

The custom action from Listing 14-17 links to a custom .aspx page. The code-behind of the .aspx
page converts the .docx file into a PDF file by using the SyncConverter class. Listing 14-18 shows the
code-behind that converts the document.

LISTING 14-18  Converting a document to a PDF file by using the SyncConverter class

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.Office.Word.Server.Conversions;
using Microsoft.Office.Word.Server.Service;

namespace WingtipToysWordConversion.Layouts.WingtipToysWordConversion
{
 public partial class ConvertMeToPDF : LayoutsPageBase
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 // Only run the conversion when the page is first loaded
 if (!IsPostBack)
 {
 SPSite currentSite = SPContext.Current.Site;

	 Chapter 14  SharePoint Enterprise Content Management    583

 SPServiceContext serviceContext = SPServiceContext.Current;

 string itemUrl = Request.QueryString["ItemUrl"];
 string siteUrl =
 currentSite.Url.Replace(currentSite.ServerRelativeUrl, "");
 string sourceFile = siteUrl + itemUrl;
 string targetFile = sourceFile.ToLower().Replace("docx", "pdf");
 string libraryUrl = sourceFile.Remove(sourceFile.LastIndexOf('/'));

 //Get default Word Automation Service Application Proxy
 //for the site collection
 WordServiceApplicationProxy wordProxy =
 serviceContext.GetDefaultProxy(typeof(WordServiceApplicationProxy))
 as WordServiceApplicationProxy;

 ConversionJobSettings jobSettings = new ConversionJobSettings();
 //SaveFormat.Automatic will try to select the format
 //based on the extension of outPuthPath
 jobSettings.OutputFormat = SaveFormat.Automatic;

 SyncConverter converter = new SyncConverter(wordProxy, jobSettings);
 converter.UserToken = currentSite.RootWeb.CurrentUser.UserToken;

 ConversionItemInfo result = converter.Convert(sourceFile, targetFile);

 Response.Redirect(libraryUrl);
 }
 }
 }
}

Figure 14-14 shows the converted document and the original document.

FIGURE 14-14  This document library shows both the original and the converted document.

584   Inside Microsoft SharePoint 2013

Records management

Records management is all about maintaining and eventually disposing of formal information (re-
cords) within an organization. It might include identifying, classifying, archiving, and disposing of
records. In most cases, when information is identified as a record, the information can’t change any-
more. One of the roles of a records management system is to ensure and to be able to prove that the
record hasn’t been tampered with. Records also can’t be deleted, unless they are disposed of as part
of a retention policy.

The most important part of records management is about policies and organization. The role
of systems such as SharePoint is just to support the organization’s policies. Many of the features
described earlier in this chapter can be used to support records management in SharePoint. Two
SharePoint features that are specifically created for records management are in-place records and
records centers. Records can either be stored in their original location—for instance, in a project or
department site—or they can be stored in a central archive called a records center. When a document
is declared as a record, it is then either moved or copied to the records center.

In-place records management
With in-place records management, records are stored in their original location. When a document
is identified and declared as a record, it will be protected. Users can no longer modify or delete the
document. To indicate to users that the document is now a record, the icon of the document changes
when the document is declared.

The advantage of in-place records management is that it is easier for users to find the records. It
will be more difficult for the person who is in charge of managing all records, though, because he
or she will have to keep track of records that are scattered throughout the SharePoint environment.
Another downside is that if the original project site has records stored in it, the site cannot be disposed
of after the project has finished.

The SharePoint In-Place Records Management Feature enables users to declare records in a docu-
ment library alongside other collaborative content. Though this Feature can be configured to allow
users to declare (and undeclare) records manually, it is better to automatically declare records as part
of the business process. This way, the important act of protecting the information as a record doesn’t
depend on a user remembering to declare it. A workflow could, for instance, declare a document as a
record when a document is approved as part of an approval workflow. Documents can also be declared
as records by using an event receiver that runs when a document is updated and that declares the
document to be a record when certain metadata properties are found—for instance, when the status
of the document changes to Final. To programmatically work with SharePoint’s records management
features, you can use the Microsoft.Office.RecordsManagement.RecordsRepository namespace. Declar-
ing a record programmatically involves only a single line of code. Listing 14-19 shows the code of a
highly simplified event receiver that declares a document as a record when the status is set to Final.

	 Chapter 14  SharePoint Enterprise Content Management    585

LISTING 14-19  Declaring files as records programmatically

using System;
using Microsoft.SharePoint;
using Microsoft.Office.RecordsManagement.RecordsRepository;

namespace WingtipToysRecordsManagement.CheckDeclareItemAsRecord
{
 /// <summary>
 /// List Item Events
 /// </summary>
 public class CheckDeclareItemAsRecord : SPItemEventReceiver
 {
 /// <summary>
 /// An item was updated.
 /// </summary>
 public override void ItemUpdated(SPItemEventProperties properties)
 {
 base.ItemUpdated(properties);

 SPListItem updatedItem = properties.ListItem;
 if (updatedItem["Status"] == "Final")
 {
 Records.DeclareItemAsRecord(updatedItem);
 }
 }
 }
}

Figure 14-15 displays a document library that contains a document that has been declared as a
record in place. The ribbon shows that the buttons that are related to modifying a document are all
unavailable. The document is now protected from users making changes to it, even if those users
have contributor permissions on the document.

FIGURE 14-15  This document library shows a record that is declared in place.

586   Inside Microsoft SharePoint 2013

Records archives
If an organization decides that it wants to store all records in a central location dedicated to records,
a site collection can be created in SharePoint based on the Records Center site definition. Records
can be added to the records center manually or automatically, for instance, by using the Content
Organizer. If a very large number of records need to be stored in the records center and you feel that
it would be better to spread out the records across multiple site collections, multiple records centers
can be created. The Content Organizer can be used to submit records to a central records center site
and to then distribute records across records centers based on metadata values. Document libraries in
records centers can be configured to declare files as records automatically when they are added.

eDiscovery
eDiscovery is the process that allows records managers and people performing an audit to discover
and preserve electronic information, usually related to a legal case. eDiscovery can encompass every
type of electronic information, such as email messages stored on laptops and servers,; and documents
stored in SharePoint, on laptops, and on file shares. But also blogs and audio and instant messaging
chats can be relevant. There is an eDiscovery standard that is called the Electronic Discovery Reference
Model (EDRM) (http://www.edrm.net/). This standard includes models and guides in addition to XML
schemas. The SharePoint 2013 eDiscovery features are implemented according to the EDRM model
and XML schemas.

In large organizations that have a lot of data that is stored in a lot of different systems, it is often
very difficult and labor-intensive to discover and preserve all relevant information across possibly
thousands of laptops and personal computers and hundreds of other systems. An additional chal-
lenge is that when the information has to be put on hold, it often has to be put on hold quickly.

The eDiscovery features in SharePoint 2013 can be used to discover and preserve all content in
SharePoint and content in Microsoft Exchange mailboxes. New additions to SharePoint 2013 are the
eDiscovery Center and eDiscovery Case site definitions. The eDiscovery Center is a central site collec-
tion that can be used to manage eDiscovery holds. You will need one eDiscovery Center per Search
Service Application. Under an eDiscovery Center, several eDiscovery Cases can be created as subsites.
Figure 14-16 shows the home page of a specific eDiscovery Case called Case 1.

http://www.edrm.net/

	 Chapter 14  SharePoint Enterprise Content Management    587

FIGURE 14-16  This screen shot shows an empty eDiscovery Case subsite.

On an eDiscovery Case subsite, eDiscovery sets can be created. A set can be named and sources
can be selected for it. Sources can be Exchange mailboxes, SharePoint site collections, subsites, or
folder and file shares. SharePoint content will have to be selected per site collection, which can be a
bit inconvenient in large organizations, because it might mean that a lot of site collections will have
to be added to the set. It is also possible to select a subsite, library, or folder as a source location in
SharePoint. The container that is selected in SharePoint will have to be indexed by the Search Ser-
vice Application. When you try to save the eDiscovery set, SharePoint checks to make sure that the
SharePoint sources are present in the search index. Figure 14-17 shows the eDiscovery set after it has
been created. To view what information is put on hold as part of the eDiscovery set, you can click the
Preview Results button. The content that is put on hold can be limited by using a query filter. If no
filter is applied, all content in the source will be put on hold.

588   Inside Microsoft SharePoint 2013

FIGURE 14-17  This screen shot shows the creation of an eDiscovery set.

When creating an eDiscovery set, you also have to decide whether the hold should be in place.
If the hold is created in place, the content will be preserved in its original location, for instance, in a
SharePoint site or an Exchange mailbox. Content that is placed on hold in a SharePoint site can still
be modified or deleted by users. When content that is placed on hold is modified, a new library is cre-
ated, called the Preservation Hold library, on the SharePoint site where the content was modified. The
original content (as it was put on hold) is copied to this library automatically before the original copy
is modified. Content that is not modified or deleted stays in its original location and is not copied to
the Preservation Hold library. This approach reduces the amount of storage that is needed to put a
source on hold.

Instead of being put on hold, the results of an eDiscovery set can also be exported. The results
can then be imported into a review tool. You can export all of the content that is associated with an
eDiscovery case. This includes:

■■ Documents  Both documents and their versions can be exported from SharePoint 2013.

■■ Lists  When a list item is included in an eDiscovery set, the entire list is exported as a .csv file.

	 Chapter 14  SharePoint Enterprise Content Management    589

■■ Pages  SharePoint 2013 pages are exported as .mht (MIME HTML) files.

■■ Exchange objects  Exchange objects are exported as .pst files.

An XML manifest that complies with the EDRM specification provides an overview of the exported
information.

In most cases, eDiscovery settings will be configured by using the SharePoint user interface, but
there is also an API that can be used to build custom solutions using the SharePoint eDiscovery
functionality. The namespace where the eDiscovery classes can be found is Microsoft.Office.Server.
Discovery, which in turn can be found in the Microsoft.Office.Policy.dll file.

Summary

In this chapter, a mix of several different features related to document and records management were
explored. The first one was the Managed Metadata Service Application and managed metadata itself.
The features that come with SharePoint out of the box were discussed, in addition to how to use man-
aged metadata in custom solutions. Both the features and the extensibility options are very powerful,
but both have a few quirks in them as well, and understanding what those quirks are can save you a
lot of time and frustration.

Several document services that aren’t new in SharePoint 2013, but that can still provide great value
in your solutions, were discussed, such as versioning, Document IDs, Document Sets, and the Con-
tent Organizer. The Content Organizer can help you to distribute documents across folders, libraries,
sites, site collections, web applications, or even farms. It is a feature that enables creating large-scale
records repositories using out-of-the-box SharePoint features.

A feature that improved significantly in SharePoint 2013 is Word Automation Services. In particu-
lar, the ability to synchronously convert documents and the ability to convert documents that aren’t
stored in SharePoint means that Word Automation Services can be used in more scenarios.

The records management features didn’t change significantly between SharePoint 2010 and
SharePoint 2013. Documents can still be declared as records in place in their original location, and
also be sent to a central records center. Both approaches have pros and cons, and the best one
depends on aspects such as the amount of data, what will happen to the sites in which documents
are created, who manages the records, and who needs to be able to access the records.

The eDiscovery features, though, got a good redesign in SharePoint 2013. The new eDiscovery
Center and eDiscovery Case site definitions can be used to manage cases and holds. eDiscovery sets
can be created to select locations in SharePoint or Exchange, or on file shares. You can choose to put
all information in the selected location on hold, or use a query to determine what information should
be put on hold. Holds can be created in place in the original location, or information that is part of a
hold can be exported so that it can be reviewed outside of SharePoint.

		 591

C H A P T E R 1 5

Web content management

The Web Content Management (WCM) features within Microsoft SharePoint are basically a vast
network of capabilities that are centered on content rather than collaboration, in the benefits that

they provide both to users and to content creators of sites or systems that take advantage of these
features.

A SharePoint site is considered to be a publishing site if the SharePoint Server Publishing feature
that is scoped at the site level is active. When you activate this feature manually or by choosing a site
template that automatically activates the feature, many changes take place from a site infrastructure
perspective. For example, additional libraries and layout templates that are focused heavily on the
presentation of content instead of a more collaborative interaction are made available.

Other capabilities that are presentation-focused are device channels that allow a site to be pre-
sented differently depending on the type of device that is accessing it, and managed navigation, in
which terms are used both to tag content and also to provide users with a way to navigate through
menus and URLs by providing friendly URLs that contain these terms. Another very important feature
is content aggregation. On collaboration sites, content might not have to be accessed beyond the site
itself, but on a publishing site, many sites might need to have their content aggregated into a single
view or list so that users can have a menu of items from which to select.

Many of the features and capabilities within the WCM space will be discussed throughout this
chapter.

Understanding the WCM features

The WCM features found in SharePoint are designed to provide organizations and individual users
with a mechanism to publish content for a group of consumers or readers that is much larger than
the group of content creators.

The types of portals or sites that would take advantage of these WCM features are messaging
portals such as those used in a corporate intranet, or public-facing sites that serve as a company’s
primary Internet presence. Another way to refer to these sites is to call them authoritative or publish-
ing sites, and anything authoritative should include company branding and approval along with the
content to ensure that the corporate identity is well represented and accurate. This is much different
from other sites found in a SharePoint implementation, which might be more collaborative in nature.

592   Inside Microsoft SharePoint 2013

Therefore, the features, templates, and processes that a publishing site should have are not appropri-
ate on a collaboration site, and vice versa.

Publishing site templates
As stated earlier in this chapter, a publishing site in SharePoint is simply a site that has the SharePoint
Publishing Server feature active. This feature introduces a Pages library that can be viewed as a special
document library that stores publishing pages within it. You can use these pages to embed text, im-
ages, and other content and then make them accessible to end users. The Pages library is similar to
the Wiki Pages library, but with a lot more functionality. Publishing pages use page layouts to present
their content in a rich and consistent manner. Other added features include additional Web Parts,
found within the Web Part Gallery, that can be used to perform activities such as content rollups.

Additional changes beyond those that the SharePoint Publishing Server feature implements when
it is active can be automatically configured. When you use a publishing site template, the template
implements additional features and configuration. For example, if you choose the Publishing Site With
Workflow site template, approval workflows are configured on libraries within the site during the site
provisioning process. This template also restricts all subsites to using the same site template.

The publishing site templates available within the web user interface of SharePoint 2013 on an
existing site are:

■■ Publishing Site

■■ Publishing Site With Workflow

You can view this list when you go to Site Content and then choose to create a new subsite.
Figure 15-1 shows the Publishing tab displaying the two publishing sites, in addition to the enter-
prise wiki.

FIGURE 15-1  The Publishing tab of the New SharePoint Site page shows the publishing sites and the enterprise wiki.

If you wanted to view these same templates by using Windows PowerShell, one way you could
do so is to filter the results returned by the Get-SPWebTemplate cmdlet to only return those templates

	 Chapter 15  Web content management    593

with the word “Publishing” within their titles. This could be accomplished by executing the follow-
ing code:

Get-SPWebTemplate | Where-Object {$_.Title -like "*Publishing*"} '
| select Name, Title, Description, CompatibilityLevel | Format-List

This code actually returns more than the two publishing sites shown in Figure 15-1; in fact, eight
templates are returned. The complete list is shown Table 15-1.

TABLE 15-1  Publishing Site templates returned by the Get-SPWebTemplate cmdlet

Name Title Description
Compatibility
level

CMSPUBLISHING#0 Publishing Site A blank site for expanding your web-
site and quickly publishing webpages.
Contributors can work on draft versions
of pages and publish them to make them
visible to readers. The site includes docu-
ment and image libraries for storing web
publishing assets.

15

BLANKINTERNET#0 Publishing Site A template that creates a site for publish-
ing webpages on a schedule, with work-
flow features enabled. By default, only
publishing subsites can be created under
this site. A document and picture library
are included for storing web publishing
assets.

15

BLANKINTERNET#2 Publishing Site with
Workflow

A site for publishing webpages on a
schedule by using approval workflows.
It includes document and image librar-
ies for storing web publishing assets. By
default, only sites with this template can
be created under this site.

15

BLANKINTERNETCONTAINER#0 Publishing Portal A starter site hierarchy for an Internet-
facing site or a large intranet portal. This
site can be customized easily with distinc-
tive branding. It includes a home page,
a sample press releases subsite, a Search
Center, and a logon page. Typically, this
site has many more readers than contrib-
utors, and it is used to publish webpages
with approval workflows.

15

CMSPUBLISHING#0 Publishing Site A blank site for expanding your web-
site and quickly publishing webpages.
Contributors can work on draft versions
of pages and publish them to make them
visible to readers. The site includes docu-
ment and image libraries for storing web
publishing assets.

14

BLANKINTERNET#0 Publishing Site A template that creates a site for publish-
ing webpages on a schedule, with work-
flow features enabled. By default, only
publishing subsites can be created under
this site. A document and picture library
are included for storing web publishing
assets.

14

594   Inside Microsoft SharePoint 2013

Name Title Description
Compatibility
level

BLANKINTERNET#2 Publishing Site with
Workflow

A site for publishing webpages on a
schedule by using approval workflows.
It includes document and image librar-
ies for storing web publishing assets. By
default, only sites with this template can
be created under this site.

14

BLANKINTERNETCONTAINER#0 Publishing Portal A starter site hierarchy for an Internet-
facing site or a large intranet portal. This
site can be customized easily with distinc-
tive branding. It includes a home page,
a sample press releases subsite, a Search
Center, and a logon page. Typically, this
site has many more readers than contribu-
tors, and it is used to publish webpages
with approval workflows.

14

The first thing you should notice about the site templates is that they can be grouped into two sets
of four templates based on Compatibility Level. If you are not already familiar with levels 14 and 15,
they equate to the 2010 and 2013 versions of SharePoint, respectively. The description of each site
template can give you a good idea of the degree of extra functionality introduced by selecting one
template over another. One additional note about Compatibility Level, as it pertains to sites, is that
when you choose to create a new site through the web UI or by using New-SPSite, the default Com-
patibility Level is 15, which is the 2013 version. By default, you only have the option to create 2010
versions of a site if you elect to use the New-SPSite cmdlet and specify 14 for the Compatibility Level
parameter.

Accessing SharePoint publishing files

Because most publishing sites have some level of branding at the site, page, and Web Part level, a lot
of files (such as CSS, images, and scripts) can start to accumulate. As a result, it’s important to be able
to access these files in a timely fashion. In addition to the already identified branding files that can be
found in previous versions of SharePoint, additional files have been introduced in SharePoint 2013. To
reduce the amount of time it takes to access the files stored within the Master Page Gallery, you can
now access the gallery via a network path.

Mapping to the SharePoint Master Page Gallery
The method you use to map the Master Page Gallery as a network drive on your local machine
depends on whether your machine has Windows XP, Windows 8, another Windows-based operating
system, or another operating system altogether. If you are using a Windows operating system that is
later than Windows XP and up to Windows 8.1, as of this writing, you can use the article at the fol-
lowing URL to learn how you map the Master Page Gallery as a network drive: http://msdn.microsoft.
com/en-us/library/jj733519.aspx. If you are on another operating system or are comfortable with how
you map paths, then the only important thing to remember is the URL structure to follow. The URL
structure is http://<siteURL>/_catalogs/masterpage/. There is really just one prerequisite to being able

http://msdn.microsoft.com/en-us/library/jj733519.aspx
http://msdn.microsoft.com/en-us/library/jj733519.aspx

	 Chapter 15  Web content management    595

to successfully create the mapping, and it is security based. You must have at least Designer permis-
sion, which is the same permission you need to be able to access the Master Page Gallery through the
web UI.

Page layouts

Page layouts in SharePoint are essentially presentation templates that control how the metadata
or content stored in a Pages library for a page is presented to a user. In addition to displaying the
content stored within the Pages library, a page layout can also include Web Part zones, which allow
supplemental content to be exposed through Web Parts.

Understanding the page model
To really grasp the role that master pages, page layouts, and pages play within a publishing site, as
well as how they interact with each other, you need to understand what the page model is.

At its lowest level, the page model starts with a master page. A master page contains the common
elements that should be displayed on every page for a site. Some of the typical common elements
are:

■■ Site logo

■■ Search box

■■ Global navigation

■■ Footer

■■ Content placeholders for page layouts

The next level up is the page layout, which we have already discussed in some detail; however,
more detail is needed to help clarify its role in the page model. Page layouts are able to identify what
to correctly render where, along with how to render it, through the use of page field controls and
their mapping to site columns. A sample code extraction of a page field control found in a page lay-
out is shown in Listing 15-1. The mapping is accomplished by using the FieldName parameter of the
field control, which needs to have its value set to the internal name of the site column whose content
the page field control should display.

LISTING 15-1  Sample page field control

<PublishingWebControls:RichHtmlField FieldName="PublishingPageContent"
HasInitialFocus="True" MinimumEditHeight="400px" runat="server"/>

The field control shown in the listing is of type RichHtmlField, which is available under the
namespace Microsoft.SharePoint.Publishing.WebControls. There are many other control types found

596   Inside Microsoft SharePoint 2013

within this namespace, in addition to other control types found in other namespaces. For example,
the TaxonomyFieldControl, which is used to expose the value of a managed metadata field or site
column, is found in the Microsoft.SharePoint.Taxonomy namespace.

The final layer is the page, which is the content. As mentioned earlier, page field controls on a page
layout map to site columns. These site columns are grouped into a content type and made available
in a Pages library that it is associated with the page. It is important to note that not all site columns
for a page need to be mapped to field controls within a page layout. Because of this, it is best to
categorize the site columns for a particular page into one of two groups: those that are used for
presentation and metadata and those that are used strictly for metadata. An example of one that is
used for presentation would be a site column that is used for storing a news article image or the body
for a news article. An example of one that is used strictly for metadata could be one that is used for
metadata keywords or audience targeting.

When you add the layers together you get the final rendered page that a user would get. Figure 15-2
shows a rendered SharePoint publishing page broken down by using the page model.

FIGURE 15-2  This SharePoint publishing page is broken down by page model.

To learn more about SharePoint master pages, pages, and the deployment of each of these, see
the section “Using pages in SharePoint” in Chapter 7, “SharePoint pages.”

	 Chapter 15  Web content management    597

Creating a new page layout
We have already discussed why a page layout is important for publishing in SharePoint and how it is
involved in the page model. This section discusses the options for creating a page layout and then
goes into detail on how to control the presentation and editing of a page by using a page layout.

There are more ways to create page layouts in SharePoint 2013 than there were in SharePoint
2010, thanks to the new Design Manager. When you choose to use the Design Manager approach,
you will interact with an HTML page when you want to make changes to a page layout, and that
HTML page in turn is associated with an .aspx file that SharePoint uses in the page model. When you
make a change to the HTML page, this change is then propagated to the associated .aspx file. It is
important to remember that this propagation is in one direction only, going from the HTML page to
the .aspx file. Because of this, any changes made to the .aspx file that did not first occur in the HTML
page will get overwritten when the next change to the HTML page occurs. To learn more about how
to create a page layout, see the article “How to: Create a page layout in SharePoint 2013” at http://
msdn.microsoft.com/en-us/library/jj822368.aspx.

The approach taken in previous versions of SharePoint, in which only an .aspx file is created and
then deployed to a SharePoint site, is still supported. Some developers might be more familiar with
this and might prefer it in place of using the Design Manager.

Managing the presentation of page fields
Page fields, as described in the “Understanding the page model” section earlier in this chapter, are
visible through a page layout when you are creating a new publishing page. These fields are associ-
ated with a content type, and each page field on a page layout should reference a field within the
associated content type. Page fields are able to read and write to a content type field because they
too have an assortment of available types. For example, if you needed to expose the Title field for a
content type that had a column type of Single Line of Text, you would use a page field with a field type
of TextField to support read and write operations on the Title field, as shown in the following code:

<SharePointWebControls:TextField ID="tfTitle" runat="server" FieldName="Title"/>

The TextField uses a SharePointWebControls prefix, which requires a reference as shown in the fol-
lowing code:

<%@ Register Tagprefix="SharePointWebControls" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e94
29c" %>

A TextField field type is considered a simple field type and can be styled by simply wrapping the
page field with a div that has an ID that you can reference by using cascading style sheets (CSS). This
allows developers and designers to control the presentation of the content rendered through the
controls.

http://msdn.microsoft.com/en-us/library/jj822368.aspx
http://msdn.microsoft.com/en-us/library/jj822368.aspx

598   Inside Microsoft SharePoint 2013

Most field types are considered simple; however, the RichHtmlField is an exception. As its name
implies, this field type allows the author to have an experience similar to using a word processor
when authoring content within it. A ribbon with a multitude of options is available for managing
fonts, paragraphs, and other text-centric functions, as shown in Figure 15-3.

FIGURE 15-3  The SharePoint ribbon is used for editing a RichHtmlField.

Because of the many options available to the author during the editing experience, the brand
or presentation consistency of the content might be at risk if too many liberties are taken with the
available options. Because of this, the RichHtmlField field type has properties that can be used to
control which of the editing or formatting options should be available to the author. Table 15-2 shows
a breakdown of the primary Allow properties that can be used to control the editing and formatting
experience.

TABLE 15-2  RichHtmlField field type properties

Name Type Description

AllowDragDrop Boolean Retrieve or set whether or not the dragging and drop-
ping of elements is allowed

AllowEmbedding Boolean Retrieve or set whether or not iFrames are allowed

AllowFontColorsMenu Boolean Retrieve or set whether or not a font colors menu is
shown

AllowFontCustomColors Boolean Retrieve or set whether or not font custom colors are
allowed

AllowFonts Boolean Retrieve or set whether or not inline fonts are allowed

AllowFontSizesMenu Boolean Retrieve or set whether or not the font size menu is
available on the ribbon

AllowFontsMenu Boolean Retrieve or set whether or not the font menu is avail-
able on the ribbon

AllowHeadings Boolean Retrieve or set whether or not header tags are allowed

AllowHtmlSourceEditing Boolean Retrieve or set whether or not you can switch the
Source Editor mode of the field

AllowHyperlinks Boolean Retrieve or set whether or not hyperlinks are allowed

AllowImageFormatting Boolean Retrieve or set whether or not image formatting is
available

AllowImagePositioning Boolean Retrieve or set whether or not image positioning is
available on the ribbon

AllowImages Boolean Retrieve or set whether or not images are allowed

AllowLists Boolean Retrieve or set whether or not list tags such as are
allowed

AllowParagraphFormatting Boolean Retrieve or set whether or not paragraph formatting is
allowed

	 Chapter 15  Web content management    599

Name Type Description

AllowStyles Boolean Retrieve or set whether or not the style menu is en-
abled

AllowTables Boolean Retrieve or set whether or not tables are allowed

AllowTextMarkup Boolean Retrieve or set whether or not explicit text tags such as
bold and italic <i> are allowed

There are many more properties than those listed in this table, but these are the most common
properties needed for content authoring and the editing experience. To view the complete set of
properties, see http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.publishing.webcontrols.
richhtmlfield_properties.aspx. The following code snippet shows an example of some of these proper-
ties being configured for use within a page layout:

<PublishingWebControls:RichHtmlField ID="rhfPageContent" FieldName="PageContent"
HasInitialFocus="True" AllowFonts="True" AllowTextMarkup="False" runat="server"/>

If you compare this code snippet to the previous example for a TextField, you will notice that both
controls come from the same namespace. The two Allow properties in this example affect the way the
ribbon renders for an author, as shown in Figure 15-4.

FIGURE 15-4  This Format Text ribbon tab has some of the Font group options unavailable.

In Figure 15-4 you can tell that the ability to choose fonts and pretty much everything else is still
there, but the ability to use bold or other text styles is not available.

Working with edit mode panels
An edit mode panel primarily allows a designer or a developer to wrap fields and content within it to
control what is visible while an author is editing a page, hence the naming of the control. There are in
fact two different modes that a page can be in: display mode and edit mode. Display mode is the only
mode that visitors to a site will ever experience, whereas an author will also view the edit mode when
creating or modifying a page. The interesting thing about an edit mode panel is that it can be used
to control the visibility of content and controls in either display mode or edit mode, even though its
name would suggest that its scope is limited to the edit mode. To help explain this, the following code
snippet is used to render the text Contoso on the page, but only while the page is in display mode:

<PublishingWebControls:EditModePanel ID="MyEditModePanel" runat="server" PageDisplayMode="Displa
y">Contoso</PublishingWebControls:EditModePanel>

Notice that this is controlled by means of the PageDisplayMode property of the EditModelPanel
control. Furthermore, the two available choices are in fact Display and Edit.

http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.publishing.webcontrols.richhtmlfield_properties.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.publishing.webcontrols.richhtmlfield_properties.aspx

600   Inside Microsoft SharePoint 2013

Working with Web Part zones
Page fields, as this chapter has just covered, are crucial to authoring content-driven pages. There are,
however, many times that the content being authored directly on the page is not the only content
that the author would like to use. You might discover a list or a library of documents that you would
like to reuse or surface as links on a page. The obvious solution is to use a Web Part to surface the
content; other than the RichHtmlField that was discussed earlier, there are no other page fields that
support embedding a Web Part. And even then, the author is burdened with how to use HTML mark-
up within a RichHtmlField to control the presentation of multiple Web Parts. Because of this need,
requirements should be gathered and Web Parts zones should be identified as part of the solution.

Simply put, a Web Part zone is an area on a page that is dedicated to Web Parts and the ability to
add, modify, or remove them. Further, Web Parts have the ability to control such things as the default
chrome setting for added Web Parts and also the orientation of added Web Parts, whether they
should be stacked vertically or horizontally. The following code snippet shows a simple Web Part
zone that sets the orientation of the Web Parts placed inside of it in a horizontal format and sets the
default chrome to be BorderOnly:

<WebPartPages:WebPartZone runat="server" Title="First Row" ID="FirstRow"
PartChromeType="BorderOnly" Orientation="Horizontal"><ZoneTemplate></ZoneTemplate></
WebPartPages:WebPartZone>

The namespace used to add a Web Part zone is Microsoft.SharePoint.WebPartPages. The horizontal
format is set by using the Orientation property, and the default chrome is set to only show the border
for Web Parts that are within the zone by using the PartChromeType property. Figure 15-5 shows how
this would look when a page is in edit mode.

FIGURE 15-5  Web Part zones are visible when the page is in edit mode.

Understanding device channels

The number and types of devices that access digital information are forever increasing. This also holds
true for accessing information stored inside of SharePoint, whether on a corporate intranet or an
Internet site. The device that has been most commonly used for digital information access has been
the desktop or laptop computer, but now mobile devices such as phones and tablets are starting to
assume almost an equal share. As a result, the way in which information is presented to a user is ex-
pected to accommodate whichever device the user chooses. This can be a costly requirement, which

	 Chapter 15  Web content management    601

might translate to building and maintaining multiple websites; however, this can be greatly alleviated
if you have chosen to include SharePoint 2013 in your solution. Device channels, which are a part of
the publishing infrastructure, allow you to have a single publishing page that is accessed from the
same URL, but that renders differently depending on the type of device that is accessing it. The differ-
ences might include optimizations for mobile devices, such as exclusion of larger content or images,
simpler navigation, and a touch-centric style. The differences for a high-resolution desktop computer
might include multiple navigation menus, rich image rotators, and attractive animations. This is a
huge benefit, not only in the initial cost savings, but also for future maintenance and enhancements.

The way this solution is accomplished is by taking advantage of the user agent string that is passed
by every browser, regardless of the device, to a page that is being requested and then redirecting the
user to the appropriate master page for the device. The information that is passed in this string can
be used to determine the browser and its version along with the operating system of the device mak-
ing the request. If a Windows Phone 8 were to access a page and you viewed the user agent string,
you could find the following:

Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0; Trident/6.0; IEMobile/10.0; ARM; Touch;
NOKIA; Lumia 920)

If you were to view the user agent string for a server running Windows Server 2012, it would look
like the following:

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0; .NET4.0E; .NET4.0C; .NET
CLR 3.5.30729; .NET CLR 2.0.50727; .NET CLR 3.0.30729; InfoPath.3)

The important thing to note from all of this is that the user agent string is used by device channels
to determine what to render for what device. It is not reasonable or cost-friendly to expect website
developers to account for all the variances that occur simply due to the device maker, browsers, or
even the operating system version. Because of this, device channels can work off of a substring of the
user agent string. An important limitation to remember is that a maximum of 10 device channels can
exist for a site, so you should plan ahead how to choose to group devices by device channels.

Device channels are accessible through the Device Manager, on the Manage Device Channels
page. A device channel is very simple to provision, even though it accomplishes great things. There
are only five properties for a device channel; these are shown in Table 15-3.

TABLE 15-3  Device channel properties

Field Required Description

Name True A friendly or display name of the device channel.

Alias True An internal name of the device channel used when referencing a
device channel in code or a device channel panel.

Description False A description or summary of the device channel’s purpose.

Device Inclusion Rules True A value that contains the user agent substring(s); for example,
Windows Phone, Chrome, Windows NT, or iPhone. At least one of
these values must exist for the device channel to be used.

Active False If this is set to True, the site will begin to use the device channel.

602   Inside Microsoft SharePoint 2013

There is a possibility that a match to more than one device channel could occur. If this happens,
the device channel that has the highest order number will be the one used.

After you have at least two device channels, as shown in the example in Figure 15-6, you can con-
figure the redirections to the correct master page.

FIGURE 15-6  This page shows the listing of the device channels for a site.

To configure the master page that each device channel should redirect to, go to the Site Master
Page Settings page, found at Site Settings | Master Page, as shown in Figure 15-7, and then simply
choose an available master page from the drop-down menu for each of the device channels.

FIGURE 15-7  The Site Master Page Settings page is used to choose the master page for each device.

To test whether or not a device channel is redirecting correctly, or to just preview its behavior, you
can simply include a query string parameter called DeviceChannel and pass the alias for the device
channel you would like to test as its value. Figure 15-8 shows a page being tested with the Safari
device channel that was configured in the previous figure. Notice that in place of the seattle master
page the oslo master page is being used.

	 Chapter 15  Web content management    603

FIGURE 15-8  This SharePoint page is being tested with a device channel.

Working with device channel panels
By using device channels, you can redirect users to the correct master page that is targeted for their
type of device. This concept alone is powerful, but being able to take it to the next level is where de-
vice channel panels come in. A device channel panel is used within a master page or a page layout to
wrap content or functionality and target specific device channels. The following code shows a sample
device channel panel:

<Publishing:DeviceChannelPanel runat="server" IncludedChannels="Safari">
 <div>Only visible to those devices included in the Safari device channel.</div>
</Publishing:DeviceChannelPanel>

The code is self-explanatory, but it is important to note that the DeviceChannelPanel object is
found in the Microsoft.SharePoint.Publishing.WebControls namespace. Also, the IncludedChannels is
where you identify which device channels, by their alias, will be able to see what is contained within
the DeviceChannelPanel. If you would like to include more than one device channel, the aliases should
be comma delimited and passed to the same property.

There are a few different strategies or approaches that you can use device channel panels in.
The first is to help lower the number of one-to-one relationships between master pages and device
channels. You can use device channel panels to limit the number of master pages by pairing up more
device channels to a single master page and then use device channel panels to fine-tune the experi-
ence by hiding or showing sections of the master page that each device channel should see. A limita-
tion that needs to be accounted for during the planning phase of device channel panels is that they
cannot be used to wrap Web Part zones; however, if a Web Part is embedded within a page layout or
master page, it could be wrapped by a device channel panel.

Another strategy is to reduce the size of pages being sent to a mobile device. This is accomp
lished by directing the server to not render the content found within a device channel panel whose
IncludedChannels property does not contain a match to the device channel being used by the current

604   Inside Microsoft SharePoint 2013

device. This exclusion results in a smaller page than one created by using a CSS approach to hide non-
relevant content, which still results in the page being too large and slow for a mobile device.

Understanding managed navigation

Publishing sites built on SharePoint have typically been easy to identify by certain always-present URL
indicators. For example /pages is usually found in the URL, indicating that the page being viewed is
stored in the Pages library of the site. Some developers might go through the effort of performing
URL rewrites to remove the unwanted characters in the URL, but this can be an added effort that most
do not want to exert, or that they expect to already be available in a WCM platform. Another point is
that the presence of the library’s name in the URL indicates that the physical structure of the site is di-
rectly tied to the navigational structure of the site. Forcing the navigational structure and physical site
structure to be aligned with one another can cause a lot more work than what was initially planned,
because the two do not always line up with one another. Additionally, this will likely cause the same
amount of effort when maintenance or structural changes to the site need to be performed.

The good news is that with the advent of SharePoint 2013 we now have the ability to separate
the physical and navigational structures of a SharePoint site by using a new type of navigation called
managed navigation. The ability to use managed navigation is dependent upon taxonomy, which is
found in a Managed Metadata Service (MMS) Application. From this dependency comes two advan-
tages. The first is that we can now have a term set be the global and/or current navigational structure
for a site, and the second is that we can now have friendly URLs (FURLs) in place of URLs that have the
SharePoint structure injected into them.

Because of the overwhelming advantages of managed navigation over structured navigation for
publishing sites, there arises the need to ensure that this capability can be extended and also deploy-
able in a consistent method across environments. To meet these needs there are APIs that Microsoft
has made available for managed navigation.

Working with managed navigation APIs
To begin working with the managed navigation APIs, you first need to choose which API you want to
use. There are APIs for the following:

■■ Microsoft .NET client-side object model (CSOM)

■■ Microsoft .NET server-side object model (SSOM)

■■ Microsoft Silverlight

■■ JavaScript

Not only can you take advantage of any of these four APIs , but each has been extended and
enhanced from the SharePoint 2010 APIs. Some of the common uses for the APIs are to manage the
creation and customizations of terms, term sets, and other properties found in an MMS Application
that are related to managed navigation.

	 Chapter 15  Web content management    605

Later in this chapter we will work through an example of creating a new term set that can be used
as a site’s managed navigation. The example will use CSOM using C#. Before we get started, though,
we will identify the reference and namespace that are required. The following are the required refer-
ence for using the CSOM approach:

■■ Microsoft.SharePoint.Client

■■ Microsoft.SharePoint.Client.Runtime

■■ Microsoft.SharePoint.Client.Publishing

■■ Microsoft.SharePoint.Client.Taxononmy

The first two are standard requirements for any CSOM interactions to even occur. The remaining
two, however, are needed to create the new term set through a site. The namespaces needed after
the references are included are:

■■ Microsoft.SharePoint.Client

■■ Microsoft.SharePoint.Client.Taxonomy

■■ Microsoft.SharePoint.Client.Publishing.Navigation

Creating a navigational term set
To begin creating a navigational term set by using CSOM, you must begin by gaining context of the
site collection that you want to create the term set under and instantiating a TaxonomySession object,
as shown in the following code:

//Gain context
ClientContext clientContext = new ClientContext("http://portal.contoso.com");
//Instantiate TaxonomySession
TaxonomySession taxonomySession = TaxonomySession.GetTaxonomySession(clientContext);
taxonomySession.UpdateCache();
//Request TaxonomySession TermStores property
clientContext.Load(taxonomySession, ts => ts.TermStores);
clientContext.ExecuteQuery();

After you have gained access to the TermStores property for the TaxonomySession object, you can
select the term store that you will create the term set in. The following code simulates this by using
the first term store within the TermStores property:

//Throw error if no Term Stores are found
if (taxonomySession.TermStores.Count == 0)
throw new InvalidOperationException("MMS not found");
//Request first Term Store Name and Working Language Properties
TermStore termStore = taxonomySession.TermStores[0];
clientContext.Load(termStore, ts => ts.Name, ts => ts.WorkingLanguage);

After you have access to the term store, you need to create a new term group for the site collec-
tion, and then you can create a term set underneath it, as shown here:

606   Inside Microsoft SharePoint 2013

// Create a new Term Group for the Site Collection
TermGroup scTermGroup = termStore.GetSiteCollectionGroup(clientContext.Site, createIfMissing:
true);
//Create a new Term Set within the Term Group called "Contoso Site Navigation"
TermSet termSet = scTermGroup.CreateTermSet("Contoso Site Navigation", Guid.NewGuid(),
termStore.WorkingLanguage);
//Commit all changes
termStore.CommitAll();
clientContext.ExecuteQuery();

At this point, you have a term group that has been created within the scope of the site collection at
http://portal.contoso.com. You have populated this term group with a new term set called Contoso Site
Navigation. The next step is to identify the newly created term set as a navigational term set and fill it
with a few sample terms:

//Access and edit the term set as if it were associated with the web at "http://portal.contoso.
com"
NavigationTermSet navTermSet = NavigationTermSet.GetAsResolvedByWeb(clientContext, termSet,
clientContext.Web, "GlobalNavigationTaxonomyProvider");
//Set the term set as a navigational term set
navTermSet.IsNavigationTermSet = true;

//Commit changes so far
termStore.CommitAll();
clientContext.ExecuteQuery();

//Create a term for the homepage
NavigationTerm term1 = navTermSet.CreateTerm("Home", NavigationLinkType.SimpleLink, Guid.
NewGuid());
term1.SimpleLinkUrl = "http://portal.contoso.com/";

//Create a term for the default page of the news subsite
NavigationTerm term2 = navTermSet.CreateTerm("News", NavigationLinkType.FriendlyUrl, Guid.
NewGuid());
term2.FriendlyUrlSegment.Value = "news";
term2.TargetUrl.Value = "~site/news/pages/default.aspx";

//Commit all changes
termStore.CommitAll();

//Request the term set's ID property
clientContext.Load(navTermSet, nts => nts.Id);
clientContext.ExecuteQuery();

The final step is to configure the web object for http://portal.contoso.com to start using the navi-
gational term set that has just been created. This is done by the use of the WebNavigationSettings
object. This object contains the means to specify the navigation model for a web object, including the
ability to switch between structured navigation, which uses the PortalSiteMapProvider, and managed
navigation, which uses the TaxonomySiteMapProvider. If managed navigation is used, then you also
can dictate the term store and term set that should be used to drive the managed navigation. The fol-
lowing code shows how this can be accomplished:

	 Chapter 15  Web content management    607

//Reset the web object to the default settings
WebNavigationSettings webNavSettings = new WebNavigationSettings(clientContext, clientContext.
Web);
webNavSettings.ResetToDefaults();
//Configure the web object to use managed navigation
webNavSettings.GlobalNavigation.Source = StandardNavigationSource.TaxonomyProvider;
//Set the term store and term set to use for managed navigation
webNavSettings.GlobalNavigation.TermStoreId = termStore.Id;
webNavSettings.GlobalNavigation.TermSetId = navTermSet.Id;
webNavSettings.Update(taxonomySession);
//flush the cache
TaxonomyNavigation.FlushSiteFromCache(clientContext, clientContext.Site);

clientContext.ExecuteQuery();

After executing all the code blocks shown within the section, you should have a site that has two
navigation nodes visible within the global navigation of the site, as shown in Figure 15-9.

FIGURE 15-9  The site’s global navigation displays the navigational term set’s terms.

The example shown within this section demonstrates just one of the many possibilities available
with the managed navigation APIs. Following this approach to code the creation of a site’s navigation
settings along with the initial values allows for a consistent and efficient way to provision sites.

Content aggregation

Content aggregation is a very powerful capability found within the Web Content Management
(WCM) features of SharePoint 2013. Its ability to roll up content from across different sites and lists,
and now to roll up content from across site collections, web applications, and even other SharePoint

608   Inside Microsoft SharePoint 2013

farms cannot be underestimated. Of the features available in SharePoint 2010, the most popular Web
Part used for aggregation is quite possibly the Content Query Web Part (CQWP). Its popularity stems
from its ease of use, the ability that it gives to a power user to surface content queried by its prop-
erties, and last but not least, its ability to be branded at the presentation layer. It is not without its
shortcomings, mainly its inability to query beyond a single site collection. However, you could say that
it is because of this inability that SharePoint 2013 is now equipped with a search-driven Web Part that
provides similar ease of use, user empowerment, and the ability to be branded at the presentation
layer. This new Web Part is called the Content Search Web Part (CSWP). Both Web Parts can be found
in the Web Part Gallery under the Content Rollup category when the correct features have been acti-
vated at the site collection and web levels, as shown in Figure 15-10.

FIGURE 15-10  The Web Part Gallery is shown with the Content Rollup category selected.

For a visual depiction of the boundaries and rollup capabilities of each of these Web Parts, see
Figure 15-11.

	 Chapter 15  Web content management    609

FIGURE 15-11  The scope of the Content Search Web Part can go beyond that of the Content Query.

Deciding between the Content Query and
Content Search Web Parts
Simply because the Content Search Web Part (CSWP) can do more does not always mean that it
should be used over the Content Query Web Part (CQWP). Careful consideration should be given to
requirements and the available infrastructure that supports the SharePoint implementation before
making a solution decision.

When considering the requirements, if content must be available only moments after it is au-
thored or approved, the site would not lend itself to the CSWP. In this situation, the CQWP would be
the best fit because it can access the content instantly without needing to be crawled and indexed
by the Search service. Another situation that would support the CQWP over the CSWP is when the
SharePoint implementation is on a small two-server farm topology that needs to support several user
requests and other services. This type of topology would not be able to support the constant demand
of a search application’s crawl and index component on a highly demanding schedule. However, a
situation in which the CSWP is the prime candidate and best choice is when you need to roll up con-
tent across site collection, web application, or farm boundaries, as shown in Figure 15-12.

610   Inside Microsoft SharePoint 2013

FIGURE 15-12  The rollup abilities of the Content Search Web Part are extensive.

More than what this chapter has covered so far should be considered when choosing the correct
rollup Web Part. Figure 15-13 shows a rollup comparison of both the Content Query and Content
Search Web Parts broken down by key areas.

	 Chapter 15  Web content management    611

FIGURE 15-13  A rollup comparison between the Content Query and Content Search Web Parts highlights their
differences.

As the comparisons play out you can tell that both the Content Query and Content Search Web
Parts have an important role in SharePoint 2013 and each has a vital role to play in the success of
Web Content Management solutions that involve content rollup.

Working with display templates
If you have spent time branding the results of a Content Query Web Part or a Core Search Result
Web Part in SharePoint 2010, you have had the opportunity to experience the benefits and pains
of working with Extensible Stylesheet Language for Transformations (XSLT) within SharePoint. The
understanding needed to complete even simple branding techniques by using XSLT with these Web
Parts requires more than just typical XSL knowledge. XSL is still used within SharePoint 2013 for the
Content Query Web Part, but display templates have become the de facto solution for the all search-
driven Web Parts. A display template is one of two types:

■■ Control template  Called once per Web Part, this type of display template is responsible for
the framing of the results being returned (for example, List or Content Rotator).

■■ Item template  Called once per item, this type of display template is responsible for render-
ing item properties (for example, title, description, image, or other properties).

Figure 15-14 shows how a control template and item template would be used to present results as
a content rotator.

612   Inside Microsoft SharePoint 2013

FIGURE 15-14  This display template is broken down by control and item template.

Display templates have the following primary categories:

■■ Content Web Parts (Content Search Web Part)

■■ Search (Search Core Result Web Part, search box, and so on)

■■ Filters (search refiners)

Display templates are stored at the site collection level within a root folder aptly named Display
Templates, which is inside the Master Page Gallery. Each of the categories just listed is a folder within
the Display Templates folder, as shown in Figure 15-15.

FIGURE 15-15  Display template categories are stored in this folder structure.

Display templates are made up of two associated files, much like the new HTML page layouts are
in the Designer Manager. The files are an HTML file with which developers and designers interact,
and an associated JavaScript file that SharePoint uses when the display template is being called. It is
important to remember that, as with all other associated files in SharePoint 2013, you should modify
the HTML file only. This is because SharePoint updates the JavaScript file whenever there is a change
that has been made to the HTML file. So if you make a change directly to the JavaScript file it would
work as intended, but you run the risk of having that change be overwritten the next time someone
decides to update the HTML file instead.

	 Chapter 15  Web content management    613

The code markup within a control template and an item template have some similarities, but there
are also some key differences. We will start by looking at a simple control template and then will
progress to looking at an item template.

A control template named Control_List.html, which is available out of the box, is shown here:

<html xmlns:mso="urn:schemas-microsoft-com:office:office" xmlns:msdt="uuid:C2F41010-65B3-11d1-
A29F-00AA00C14882">
<head>
<title>List</title>
<!--[if gte mso 9]><xml>
<mso:CustomDocumentProperties>
<mso:TemplateHidden msdt:dt="string">0</mso:TemplateHidden>
<mso:MasterPageDescription msdt:dt="string">This is the default Control Display
Template that will list the items. It does not allow the user to page through items.</
mso:MasterPageDescription>
<mso:ContentTypeId msdt:dt="string">0x0101002039C03B61C64EC4A04F5361F385106601</
mso:ContentTypeId>
<mso:TargetControlType msdt:dt="string">;#Content Web Parts;#</mso:TargetControlType>
<mso:HtmlDesignAssociated msdt:dt="string">1</mso:HtmlDesignAssociated>
</mso:CustomDocumentProperties>
</xml><![endif]-->
</head>

<body>

 <!--
 Warning: Do not try to add HTML to this section. Only the contents of the first
		 <div> inside the <body> tag will be used while executing Display Template code. Any
		 HTML that you add to this section will NOT become part of your Display Template.
 -->
 <script>
 $includeLanguageScript(this.url, "~sitecollection/_catalogs/masterpage/Display 	
		 Templates/Language Files/{Locale}/CustomStrings.js");
 </script>

 <!--
 Use the div below to author your Display Template. Here are some things to keep in mind:
 * Surround any JavaScript logic as shown below using a "pound underscore" (#_ ... _#)
	 token inside a comment.

 * Use the values assigned to your variables using an "underscore pound equals"
 (_#= ... =#_) token.
 -->

 <div id="Control_List">

<!--#_
if (!$isNull(ctx.ClientControl) &&
 !$isNull(ctx.ClientControl.shouldRenderControl) &&
 !ctx.ClientControl.shouldRenderControl())
{
 return "";

614   Inside Microsoft SharePoint 2013

}
ctx.ListDataJSONGroupsKey = "ResultTables";
var $noResults = Srch.ContentBySearch.getControlTemplateEncodedNoResultsMessage(ctx.
ClientControl);

var noResultsClassName = "ms-srch-result-noResults";

var ListRenderRenderWrapper = function(itemRenderResult, inCtx, tpl)
{
 var iStr = [];
 iStr.push('');
 iStr.push(itemRenderResult);
 iStr.push('');
 return iStr.join('');
}
ctx['ItemRenderWrapper'] = ListRenderRenderWrapper;
_#-->
 <ul class="cbs-List">

 #= ctx.RenderGroups(ctx) =#

<!--#_
if (ctx.ClientControl.get_shouldShowNoResultMessage())
{
_#-->
 <div class="_#= noResultsClassName =#_">_#= $noResults =#_</div>
<!--#_
}

_#-->

 </div>
</body>
</html>

When you work through this code, you can tell that it follows the typical HTML markup using
HTML, HEAD, BODY, and DIV tags. Let’s start with the code found in the HEAD section. The TITLE
element value is important because it is the text that shows up in the control template drop-down
box when you are using a search-driven Web Part. The next section is the CustomDocumentProperties
section. It has five properties that need to be filled out. Table 15-4 lists each of these properties with
descriptions.

TABLE 15-4  Control Template CustomDocumentProperties

Name Description

TemplateHidden Supported value is 0 or 1. Used to classify the template as hidden.

MasterPageDescription Used to expose a description when the control template is viewed in the Master Page
Gallery or when the ToolTip is exposed when the user is pointing to the control template
within the drop-down box of a search-driven Web Part when choosing a control tem-
plate.

ContentTypeId This ID is the same for all control templates: 0x0101002039C03B61C64E-
C4A04F5361F385106601

	 Chapter 15  Web content management    615

Name Description

TargetControlType Used to identify the target control type, which matches one of the available categories
(for example, TaxonomyRefinement or Content Web Parts)

HtmlDesignAssociated Supported value is 0 or 1. This bit is set by SharePoint and will be set to 1 after an HTML
file has been added to the Master Page Gallery and SharePoint has created an associated
JavaScript file.

The BODY is where you place your design markup. The first section you find should be a script ele-
ment. This is where you can include external JavaScript by using the $includeScript method or external
CSS references by using the $includeCSS method.

After the script element you can finally start to use HTML markup to interact with the results be-
ing returned. It is important to note that up until this point in the display template, HTML markup is
not supported. A client context object is available by using the ctx object inside the display template.
If you would like to use JavaScript within the display template, you must wrap these sections with a
“pound underscore” token as shown in the following code:

<!--#_
var jsVariable = "Contoso"
_#-->

When you need to reference a variable declared within a “pound underscore” token, you do so by
using an “underscore pound equals” token, as shown in the following code:

<div>_#= jsVariable =#_ </div>

By working through this example you can begin to tell that there are some particulars that you
must account for when using display templates, but even accounting for these, the ease of use and
the learning curve is far shorter than that of the XSL approach in SharePoint 2010.

The primary difference between an item template and a control template is an additional property
called ManagedPropertyMapping found in the CustomDocumentProperties element. This property
is only relevant inside an item template, because it is the only template that needs to interact with
properties being returned. Furthermore, as the name implies, only managed properties can be used
in this property and within a display template. The ManagedPropertyMapping property allows a
developer or designer to create properties that are exposed through the tool pane for a search-driven
Web Part and also to map default managed properties to them. The following code sample is from
the SharePoint native item template named Item_TwoLines.html and shows the ManagedProperty-
Mapping element:

<mso:ManagedPropertyMapping msdt:dt="string">'Link URL'{Link URL}:'Path','Line
1'{Line 1}:'Title','Line 2'{Line 2}:'','FileExtension','SecondaryFileExtension'</
mso:ManagedPropertyMapping>

We will focus on the section that is specific to Line 1. You first will find ‘Line 1’, which is used to set
the display name of the field exposed within the Web Part tool pane, as shown in Figure 15-16.

616   Inside Microsoft SharePoint 2013

FIGURE 15-16  The Content Search Web Part tool pane shows the Property Mappings exposed.

The next piece that follows is {Line 1}, which is a way to use a variable within the display template
that is constant. This is because of the succeeding section after the variable ’Title’. This sets the default
value for the Line 1 property, but as you can see in Figure 15-16, a user can select the box to change
the mappings. If this were to happen, you would not be able to support this type of dynamic function
unless there was at least one constant, hence the {Line 1}.

You can also map multiple values as the default for a property to help alleviate the need to change
the mappings. The following code snippet accounts for three of the managed properties that are
image-based and applies them to the mapping:

'Picture URL'{Picture URL}:'PublishingImage;PictureURL;PictureThumbnailURL'

By using the variable Picture URL, you now have a constant reference that you can use for the
remainder of the display template.

There is much more that can be discussed about display templates and how to take advantage
of them; however, it is beyond the scope of this book to extend this discussion any further. If you
would like to continue reading on this topic, you can visit the MSDN and TechNet sites for additional
information.

	 Chapter 15  Web content management    617

Understanding cross-site publishing

Cross-site publishing has for the longest time been a want in the SharePoint community. Solutions
have been affected because of the requirement to have the majority of the content found within
them available for rollups using Web Parts. This resulted in oversized site collections that proved to be
difficult when considering upgrades or recovery needs.

Cross-site publishing is really the act of making the content found in one SharePoint site collection
reusable across any number of other site collections. This capability has been exposed in SharePoint
2013 through a feature scoped at the site collection level, as shown in Figure 15-17.

FIGURE 15-17  The Cross-Site Collection Publishing feature is new in SharePoint 2013.

From the surface, enabling this feature simply adds an additional link under the list or library set-
tings page for configure catalog settings, as shown in Figure 15-18, though there is a lot more going
on than this.

FIGURE 15-18  This library settings page shows a library in which the site collection has cross-site publishing
enabled.

618   Inside Microsoft SharePoint 2013

Working with catalogs
When you click the Catalog Settings link for a library or list from the settings page you are intending
to make this list or library available as a catalog. There are a few important properties to configure
to ensure that the content is exposed in the correct fashion. Figure 15-19 shows the Catalog Settings
page.

FIGURE 15-19  The catalog settings page for a library allows you to set catalog properties.

The first and most important setting is the Catalog Sharing property, which is used to enable the
library as a catalog. The next property determines whether or not you enable anonymous access to
the catalog. This setting is enabled more often for Internet sites than intranet sites, because that is
typically where anonymous access is enabled for a web application and site. The Catalog Item URL
Fields property allows you to choose which properties can be used as tokens within the page URL.
This has a visual impact on what the user could view as part of the URL to access the content from
a consuming site collection. The last property is the Navigation Hierarchy property, which is used
to categorize the content via a term set. The important thing to remember is that this term set is
exposed through a site column, which is what you actually pick from for the Navigation Hierarchy
property, and it must only support single values.

After a catalog has been enabled, a full crawl must take place to surface the library as an option
for consumption in other site collections. After this has taken place, you should be able to navigate
to the site collection that you would like to consume your catalog from and select the Manage
Catalog Connections link under the Site Administration section on the Site Settings page, as shown
in Figure 15-20.

	 Chapter 15  Web content management    619

FIGURE 15-20  This site settings page has the Manage Catalog Connections link under the Site Administration
section.

From this page you should be able to click Connect To A Catalog and view a list of catalogs that
are available, as shown in Figure 15-21.

FIGURE 15-21  This Connect To Catalog page for a site shows two available catalogs.

620   Inside Microsoft SharePoint 2013

SharePoint 2013 also has cross-site publishing APIs that can be used to automate the manual
process of discovering and connecting to catalogs. By using the server-side approach you can expose
a list or library or consume one that has already been enabled as a catalog. If you would like to learn
more about this ability, you cam read the cross-site publishing APIs section found at http://msdn.
microsoft.com/en-us/library/jj163225.aspx.

Summary

We have covered many topics and capabilities found within the Web Content Management (WCM)
feature of SharePoint 2013; however, just as many if not more have escaped the scope of this chapter.
The breadth of what SharePoint has to offer in WCM space should be a testament to its ongoing im-
portance to the success of SharePoint and to organizations that take full advantage of its capabilities
for their public and internal sites.

You have learned how SharePoint tales advantage of the page model for applying branding and
presentation styles through master pages and page layouts to the content that authors create within
a special library called the Pages library. You walked through the how developers and designers can
lock down the authoring experience through the use of edit panels, managing the presentation of
page fields, and using Web Part zones.

We covered the new device channel ability and how you can use it to limit the number of sites
needed to handle different devices and the experience and optimizations that you would like each to
have.

We discussed content aggregation within SharePoint and the new Content Search Web Part, along
with how to style its results by using display templates.

Finally, we wrapped up by discussing the new cross-site publishing capabilities available through
the Cross-Site Publishing feature.

http://msdn.microsoft.com/en-us/library/jj163225.aspx
http://msdn.microsoft.com/en-us/library/jj163225.aspx

		 621

C H A P T E R 1 6

Business Connectivity Services

Although Microsoft SharePoint Server 2013 provides a platform with significant capabilities, there
will always be other systems in an organization that maintain critical business data. Systems such

as customer relationship management (CRM) and enterprise resource planning (ERP) services have
special roles that are not replaced easily by SharePoint. As a result, strategies must be adopted to
provide interoperability between SharePoint and these systems.

In the absence of a strategy for integrating systems with SharePoint, many organizations duplicate
information in SharePoint lists. Customer contact information, for example, may exist in a CRM system
and also be entered into a contact list in SharePoint. Worse still, the data may be duplicated many
times in different team sites by different groups. This kind of duplication leads to significant data
maintenance issues because updates must be performed in many lists.

Along with these existing systems, custom applications, databases, and web services are common
within organizations. When a separate database is required, developers have historically created
Microsoft ASP.NET applications or custom Web Parts that act as front ends for the database to have
the data appear in the SharePoint environment. However, these types of solutions generally offer
little integration with SharePoint capabilities; they are largely limited to presenting data within a
SharePoint page.

Business Connectivity Services (BCS) greatly enhances the ability to integrate systems, databases,
and web services with SharePoint. Beyond simply bringing data into SharePoint for display, BCS allows
for capabilities that simply can’t exist in an ASP.NET application or custom Web Part without a signifi-
cant investment. These capabilities include enterprise search, External Data Columns, user profile inte-
gration, app development, client synchronization, offline support, and Microsoft Word integration.

We should point out at the beginning of this chapter that BCS is a large subsystem within the
SharePoint 2013 product; it is simply impossible to cover the entire depth of it in a single chapter. If
you have been working with BCS in SharePoint 2010, then you will find that all of its functionality has
been carried forward into SharePoint 2013, and several new capabilities have been added; these are
summarized in Table 16-1. If you have never worked with BCS before, then this chapter will provide
you with a good overview from which to get started.

622   Inside Microsoft SharePoint 2013

TABLE 16-1  New capabilities and improvements in BCS

Capability/improvement Description

App-level ECTs External Content Types that are scoped to a single SharePoint app can be
created.

Notification and event receivers External Lists and External Content Types support “Alert Me” functionality and
attaching custom event receivers.

OData sources Microsoft Visual Studio 2012 provides tooling for creating ECTs that are based
on OData sources.

REST and CSOM Both Representational State Transfer (REST) and client-side object model
(CSOM) programming APIs are available.

SharePoint Online New and improved support for using External Content Types in SharePoint
Online is provided.

Sorting and filtering Sorting and filtering infrastructure is improved, making External Lists much
more efficient when querying external systems.

Introduction to Business Connectivity Services

Business Connectivity Services is a term for a set of technologies that integrates external system data
with SharePoint 2013 and Microsoft Office 2013. Figure 16-1 shows a block diagram of the major
components in BCS. In our discussions of BCS, several new terms are introduced that will be used
throughout the chapter. These terms all start with the word External to signify their association with
BCS. The terms are listed here for reference:

■■ External System  Any data source with which BCS can connect

■■ External Content Type (ECT)  The definition of the fields and operations for connecting
with an External System

■■ External Data  The data exchanged with an External System

■■ External List  A list in SharePoint based on External Data

■■ External Data Column  A column in a standard list or library whose source is External Data

■■ External Data Web Part  Any of several out-of-the-box Web Parts that can display Exter-
nal Data

BCS uses the term External System to refer to any application that is outside SharePoint. These
External Systems can include third-party software, custom applications, databases, web services, and
even cloud computing solutions. The Business Data Connectivity (BDC) layer contains the plumbing,
BDC Runtime application programming interface (API), and connectivity functionality necessary to
communicate with External Systems. Out of the box, the BDC layer provides connectors for databases,
web services, and OData sources, but you can create your own connectors for any system.

	 Chapter 16  Business Connectivity Services    623

FIGURE 16-1  The major BCS components

The operations performed on the External Data and the schema for the returned data set are
defined by an External Content Type (ECT). ECTs define fields, operations, and filters to be used with
the External Data and are the heart of the BCS infrastructure. As an example, consider a manufactur-
ing database that contains product information. An ECT named Product can be created that defines
ProductID, ProductName, and ProductDescription fields. Furthermore, it might define operations for re-
trieving data based on a keyword query or exact product identifier. Defining ECTs is one of the primary
activities involved in creating a BCS solution and can be performed in either Microsoft SharePoint
Designer 2013 or Microsoft Visual Studio 2012. ECTs are stored in a metadata catalog, which is either
part of the BDC Service application or created locally inside a SharePoint app.

Although you can create many custom solutions by using code, the easiest way to create a solution
in BCS is through an External List. An External List is a list that is based on an ECT definition and dis-
plays External Data. Conceptually, External Lists use ECTs the same way that standard SharePoint lists
use standard content types. You can create External Lists in a browser or through SharePoint Designer
without writing any code; External Lists are accessible through the SPList object in the server object
model or through the _api RESTful endpoint just like a standard SharePoint list.

Along with External Lists, ECTs can also be used in other ways through SharePoint. SharePoint ships
with a set of Web Parts called External Data Web Parts that can display data from External Systems
based on an ECT. ECTs can also be used to create lookup fields in standard SharePoint lists. ECTs can
be used to enhance the information in a user’s profile by drawing on human resource systems such as
PeopleSoft. Finally, ECTs can be used to facilitate searching External Systems and displaying results in
SharePoint.

In Office 2013, the BCS Client layer provides the ability to display External Data in Office clients.
Microsoft Outlook can display data using standard forms, such as contact lists or calendar items.
Microsoft Word can use External Data to support document creation. Microsoft InfoPath is also avail-
able to customize the display and edit forms for External Data. In addition, clients running Office 2013

624   Inside Microsoft SharePoint 2013

support access to External Data in an offline mode using a cache system that updates the External
System when the client reconnects.

Creating simple BCS solutions

The BCS infrastructure is complex and covers a variety of authentication, authorization, and operation
scenarios. The beauty of BCS, however, is that you can also create simple solutions with no code.
SharePoint Designer provides a set of tools you can use to create ECTs against External Systems
and surface them as External Lists. In fact, the easiest way to understand the fundamentals of BCS
is to create a simple solution. The classic solution is to create an ECT based on data found in the
AdventureWorks sample database. Figure 16-2 shows some product data that can be used as a
source for a no-code solution.

FIGURE 16-2  Product data in AdventureWorks

Creating External Content Types
BCS solutions always begin by defining External Content Types for the schema and operations. These
definitions are nearly always created by using SharePoint Designer. SharePoint Designer provides all
the basic tooling necessary to create ECTs and External Lists. In addition, ECTs can be exported from
SharePoint Designer so that they can be migrated from a development environment to a quality as-
surance (QA) environment and then to a production environment. To begin creating an ECT, you open
a SharePoint site in SharePoint Designer and click the External Content Types object in the list of Site
Objects, as shown in Figure 16-3. This produces a list of all the existing ECTs in the farm.

After you have a view of the available ECTs, you can define a new one by clicking the New External
Content Type button on the ribbon. The basic ECT information consists of a name, display name,
namespace, and version. You can also select from a list of various Office types, which determine what
form will be used to render the information when it is displayed in Outlook. Figure 16-4 shows the
basic ECT information for the walkthrough with the Post type selected.

	 Chapter 16  Business Connectivity Services    625

FIGURE 16-3  Displaying the available ECTs

FIGURE 16-4  Basic ECT information

After the basic ECT information is defined, you will define connection information for the Exter-
nal System. Clicking the Operations Design View button on the ribbon presents a form for defin-
ing the connection information. From this form, clicking Add Connection allows you to select from
three types of connections: WCF, SQL, and .NET Type. Selecting WCF allows you to connect to a web
service, SQL allows you to connect to a database, and .NET Type allows you to use a custom Microsoft
.NET Assembly Connector (which is covered in the section “Creating .NET Assembly Connectors” later
in this chapter).

BCS supports a number of authentication mechanisms for connecting to the External System. You
can connect as the current user or the BDC service account, you can transform credentials to another
account, or you can even use claims-based access. In this walkthrough, the connection is made by
using the BDC service account. The details concerning authentication options are discussed in the
section “Understanding authentication scenarios” later in this chapter. Figure 16-5 shows the connec-
tion information for the walkthrough.

626   Inside Microsoft SharePoint 2013

FIGURE 16-5  Connection information

After the data source connection is made, SharePoint Designer can create operations for the ECT.
When a SQL connection is used, SharePoint Designer can infer a significant amount of information
about the data source and the operations, so it is easy to create the entire set of create, read, update,
and delete (CRUD) operations. In fact, all you have to do is right-click the table in the connection and
select Create All Operations from the shortcut menu, which will start the Operation Wizard to collect
the small amount of information required to complete the operation definitions. Figure 16-6 shows
the shortcut menu in SharePoint Designer.

FIGURE 16-6  Creating ECT operations

The Operation Wizard starts whenever SharePoint Designer needs additional information to com-
plete the operation definition. The information required typically includes a mapping of fields be-
tween the ECT and Outlook, identification of the primary key for the ECT, and the definition of filters
to throttle the size of returned result sets. SharePoint Designer displays errors and warnings through-
out the wizard to guide you in correctly defining the operations.

	 Chapter 16  Business Connectivity Services    627

After the operations are defined, the ECT should be saved. Saving the ECT writes the definition
to the metadata catalog, where it becomes available to the entire farm. After the ECT is saved, it will
appear in the list of External Content Types in SharePoint Designer. From the list of External Content
Types, you can also export the ECT definition as an XML file. This XML file can subsequently be im-
ported through the Business Data Connectivity service interface in Central Administration.

Creating External Lists
After the ECT is created, it can be used as the basis for an External List. External Lists can be created
directly in SharePoint Designer or in the browser by using the Add An App button in SharePoint.
For this walkthrough, a new External List was created directly from the summary page in SharePoint
Designer. Figure 16-7 shows the dialog box for defining the list name and associating operations.

FIGURE 16-7  Creating an External List from SharePoint Designer

After the new External List is created, it can be viewed in the browser. Because all the CRUD opera-
tions were created, the resulting list supports editing, adding, and deleting items. Figure 16-8 shows
the new list in SharePoint Server 2013. Note how the appearance of the External List closely resembles
a standard SharePoint list. The ribbon is functional, as well as the edit-control block (ECB) associated
with individual items. Any changes to items in the list will be reflected immediately in the External
System.

Just like regular lists, External Lists can be taken offline through Outlook. For this walkthrough, the
ECT was defined as a generic list in Outlook. If the Offline Synchronization For External Lists site feature
is activated, Outlook will display the data when the Connect To Outlook button on the List tab of the
ribbon is clicked. When an External List is synchronized with Outlook, BCS delivers a Visual Studio Tools
for Office (VSTO) package to the client for accessing the External System. Figure 16-9 shows the VSTO
solution installation dialog box.

628   Inside Microsoft SharePoint 2013

FIGURE 16-8  The External List

FIGURE 16-9  Installing External Data in Outlook

Understanding External List limitations

Though an External List appear similar visually to a standard SharePoint list and is supported by a
SPList object, External Lists do have significant limitations that must be considered in any design.
These limitations include lack of workflow support and several standard list features. The following
lists some of the major limitations of External Lists:

	 Chapter 16  Business Connectivity Services    629

■■ Approval  Approval of items is not supported.

■■ Attachments   Attachments are not supported directly but must be implemented by using a
StreamAccessor operation in a custom solution.

■■ Checking in/checking out  Checking in and checking-out of items are not supported.

■■ Content types  Using standard site content types in External Lists is not supported.

■■ Drafts  Drafts of items are not supported.

■■ ECB  Send-To operations are not supported.

■■ Ribbon  Datasheet View is not supported.

■■ SPLINQ  Querying through LINQ to SharePoint is not supported.

■■ Templates  Document templates are not supported.

■■ Versioning  Versioning of items is not supported.

■■ Workflow  Starting workflows from items is not supported, but workflows can read or write
to External Lists through the SPList object.

■■ Validation  Validation formulas are not supported.

Despite these limitations, BCS solutions provide a powerful authentication and resource infrastruc-
ture that allows you to integrate External Data with SharePoint in a way that provides good perfor-
mance and security. External Lists are not intended to be a substitute for an External System or a
SharePoint list. Instead, you should think of External Lists as miniature versions of the External Systems
that they represent. Through this perspective, you can tell that they are intended to bring commonly
used data directly to information workers without requiring a separate logon to an External System.
Also, don’t forget the additional capabilities that External Lists provide, such as offline access and
search support.

The standard SPList object can be used in code running against the Microsoft.SharePoint namespace
to access the items in External Lists, but there are a few special requirements. When code accesses
the items in an External List, the unique identifier for an item is found in the BdcIdentity field, not the
standard ID of the item. In addition, to access the list items, you must enumerate the SPListItem col-
lection. Other than those restrictions, accessing the items in the list is straightforward. The following
code shows how to access the items in the Products list created in the walkthrough:

SPWeb site = SPContext.Current.Web;
SPList externalList = site.Lists["Products"];

foreach (SPListItem item in externalList.Items) {
 foreach (SPField field in item.Fields) {
 if (field.Title != null) {
 string title = item[field.Title].ToString();
 }
 }
}

630   Inside Microsoft SharePoint 2013

External Lists can also be accessed from the client side by using both the RESTful endpoint and
CSOM. The REST pattern is similar to the approach taken with standard lists, by making an asynchro-
nous call to the RESTful endpoint using the jQuery ajax function. The following code shows how to
make such a call against the Products list created in the walkthrough:

$.ajax({
 url: _spPageContextInfo.webServerRelativeUrl +
 "/_api/lists/getByTitle('Products')/items?$select=ProductID,CategoryName",
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 },
 success: onSuccess,
 error: onError
});

Accessing an External List by using CSOM is also similar to the approach used for standard lists. A
Collaborative Application Markup Language (CAML)query must be created and then executed asyn-
chronously. The following code shows how to execute a CAML query against the External List from
the walkthrough using CSOM:

var products;
var ctx = SP.ClientContext.get_current();
var query = "<View><ViewFields><FieldRef Name='ProductID'/>" +
 "<FieldRef Name='CategoryName'/></ViewFields></View>";
var camlQuery = new SP.CamlQuery();
camlQuery.set_viewXml(query);
var list = ctx.get_web().get_lists().getByTitle("Products");
ctx.load(list);
products = list.getItems(camlQuery);
ctx.load(products, 'Include(ProductID,CategoryName)');
ctx.executeQueryAsync(onSuccess, onError);

Understanding BCS architecture

BCS architecture consists of components on both the server and client. These components support
connectivity, ECT definition, operations, and data management. The design of BCS provides for a
symmetry between client and server so that clients can have equivalent functionality when offline.
Figure 16-10 shows a block diagram of the BCS architecture.

	 Chapter 16  Business Connectivity Services    631

FIGURE 16-10  The BCS architecture

Understanding connectors
BCS communicates with External Systems by using connectors. Connectors contain the functional-
ity necessary to communicate with databases, web services, and other systems. The walkthrough
presented earlier used the SQL connector to access a Microsoft SQL Server database, but BCS also
supports a WCF connector for accessing web services, and an OData connector for RESTful services.
The SQL, WCF, and OData connectors provide a lot of the functionality you will need for basic BCS
solutions, but in more advanced cases, you may need to create a connector. When you create your
own connector, you can create a .NET Assembly Connector.

A .NET Assembly Connector is a project that you create in Visual Studio 2012 that contains the ECT
definition and associated business logic for accessing a specific External System. The .NET Assembly
Connector differs from the out-of-the-box connectors because it targets a specific system, as op-
posed to all instances of a specific system type.

Understanding Business Data Connectivity
The Business Data Connectivity (BDC) layer provides the plumbing and runtime components of BCS.
In SharePoint 2013, both the server and the client have BDC components to support the symmetry
of operations on the client and the server. You can use a similar approach to creating BCS solutions

632   Inside Microsoft SharePoint 2013

whether you are focused on the server, client, or both. On the server, the BDC components consist
of the ECT catalog and the BDC Server Runtime. On the client, the BDC components consist of a
metadata cache and the BDC Client Runtime. The metadata cache can be thought of as the client-
side metadata catalog, whereas the run-time components have symmetrical functionality to support
operations against the External Systems.

Managing the BDC service
When you create ECTs in SharePoint Designer and save them, they are stored in the metadata catalog,
which is a database accessed through the BDC service application. The BDC service application wraps
the BDC and makes it available as a farm service so that ECTs can be used throughout the farm. Figure
16-11 shows the basic architecture of the BDC service application.

FIGURE 16-11  The BDC service application architecture

The BDC service application wraps the BDC plumbing and makes BDC functionality available as
a service. When External Systems are accessed through connectors, the returned data is made avail-
able by the BDC service application to support External Lists, searching, Web Parts, and so on. The
metadata cache is maintained in the BDC service so that ECT data is accessed easily without having
to be read from the database. This metadata cache is updated every minute by a timer job so that the
latest changes are available. Note that External Data itself is never cached by the server—only the ECT
metadata.

Along with caching metadata to improve performance, BCS implements limits on the number of
connections that can be made to an External System. In addition, the BDC service application also
implements five different throttle settings to limit the connections made and data returned from
External Systems. Table 16-2 lists the throttle settings for the BDC service application.

	 Chapter 16  Business Connectivity Services    633

TABLE 16-2  BDC service application throttles

Type Description Scope Default Maximum

Connections Total number of con-
nections allowed to
External Systems

Global 100 500

Items Number of rows
returned from a da-
tabase query

Database 2000 25,000

Timeout Database connection
timeout

Database 60 seconds 600 seconds

Size Size of returned data WCF 3 MB 150 MB

Timeout Web service connec-
tion timeout

WCF 60 seconds 600 seconds

You can view and change throttle values by using Windows PowerShell commands. Before you
can change them, however, you must get a reference to the BDC service application. The following
Windows PowerShell code shows how to return a reference to the BDC service application named
Business Data Connectivity:

$bdc = Get-SPServiceApplicationProxy | Where {$_ -match "Business Data Connectivity"}

After you have a reference to the BDC service application, you can use the Get-SPBusinessData-
CatalogThrottleConfig cmdlet and the Set-SPBusinessDataCatalogThrottleConfig cmdlet to view and
change throttle settings. Each of these cmdlets requires you to specify the throttle that you are
viewing or changing. The following code shows how to view the current throttle settings by using
Windows PowerShell:

Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Connections -Scope Global '
 -ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Items -Scope Database '
 -ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Timeout -Scope Database '
 -ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Size -Scope Wcf '
 -ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Timeout -Scope Wcf '
 -ServiceApplicationProxy $bdc

When changing throttle settings, you must specify the new value in the Set-SPBusinessDataCatalog
ThrottleConfig cmdlet. New throttle settings take effect immediately. As an example, the following code
shows how to change the number of items that can be returned from a database:

$bdc = Get-SPServiceApplicationProxy | Where {$_ -match "Business Data Connectivity"}
$throttle = Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Items -Scope Database
 -ServiceApplicationProxy $bdc
Set-SPBusinessDataCatalogThrottleConfig -Maximum 3000 -Default 1000 -Identity $throttle

Along with viewing or editing throttle values, you can disable them. However, disabling or chang-
ing throttles is not something that should be done lightly. Disabling throttles can result in poor BCS

634   Inside Microsoft SharePoint 2013

performance and can affect the performance of the SharePoint farm as a whole. The following code
shows how to disable the connection limit throttle:

$bdc = Get-SPServiceApplicationProxy | Where {$_ -match "Business Data Connectivity"}
$throttle = Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Connections
 -Scope Global -ServiceApplicationProxy $bdc
Set-SPBusinessDataCatalogThrottleConfig -Enforced:$false -Identity $throttle

The BDC service application is part of the service application framework in SharePoint. As such,
it functions like any of the other shared services in SharePoint. You can access the management
interface for the BDC service application through the Central Administration home page by selecting
Application Management, Manage Service Applications. Figure 16-12 shows the BDC service applica-
tion in Central Administration.

FIGURE 16-12  The BDC service application in Central Administration

From the Service Applications page, you can click the Properties button on the ribbon and view
the basic service properties for the BDC service application. In the Properties dialog box, you will find
the name of the database used for the ECT repository. As with all services, you can also set admin-
istrative and connection permissions for the service so that it can be used by other servers in the
SharePoint farm.

Clicking the Manage button on the Service Applications page allows you to manage the ECTs in
the repository. Here you will find the ECTs that you have defined along with information about the as-
sociated models and External Systems. Models can be imported and exported from this page, so you
can export models from SharePoint Designer in a development environment and import them into
the BDC service application in QA or production environments.

Managing the BDC service application also allows you to set permissions for the various objects
in your model. Users must have permissions to access the ECT and its operations before they will
see data in SharePoint. This permission is separate from the actual permissions required to access an
External System. There are four different rights available for an ECT: Edit, Execute, Selectable in Clients,
and Set Permissions. The Edit right grants the ability to edit models, data sources, and External

	 Chapter 16  Business Connectivity Services    635

Content Types. The Execute right grants the ability to perform CRUD operations by using the ECT. The
Selectable in In Clients right grants the ability to create new External Lists, use the External Data Web
Parts, and pick External Content Types from the various pickers that appear in SharePoint. The Set
Permissions right grants the ability to set permissions in the BDC service.

Understanding the BDC Server Runtime
The BDC Server Runtime consists of the run-time object model, the administration object model, and
the security infrastructure. The run-time object model provides access to ECTs and their associated
operations, whereas the administration object model provides objects for managing the ECTs and
their associated models. The security infrastructure facilitates authentication and authorization for
ECT operations and External System access.

Understanding the client cache
BCS uses a client cache to store information from the ECT repository and data from the External System
so that Office client applications can access External Systems directly or take data offline. The client
cache is a SQL Server Compact Edition database that is installed as part of the Office 2013 installation.
A synchronization process called BCSSync.exe runs on the client to synchronize the cache with model
information in the BDC layer. When operations are performed on data within the Office clients, the
operations are queued inside the client cache and synchronized with the External System when it is
available. The synchronization process also attempts to update data in the cache at various intervals
from the External System depending on the user settings and availability of the External System.
Conflicts between the cache and the External System are flagged for the user so that they can be
resolved. When clients access External Systems, they always use the information in the cache to ac-
cess the External System. There is never any case in which the client application accesses the External
System through the server-side components.

Understanding the BDC Client Runtime
The BDC Client Runtime, which is also called the Office Integration Runtime (OIR), is the client-side
component that complements the BDC Server Runtime. Like the server-side component, the BDC
Client Runtime is responsible for the plumbing and functionality necessary to execute operations
against an External System and bind the data to clients such as Outlook. The BDC Client Runtime is
installed on the client as part of the Office 2013 installation process just like the cache. This means
that all Office 2013 client installations will support BCS functionality.

Introduction to the Secure Store Service
The Secure Store Service (SSS) is a service application that provides for the storage, mapping, and
retrieval of credential information. It is used in authentication scenarios in which the user account is
either not available or not supported by the External System. To store credential sets for an External
System, a new Target Application must be created in SSS. The Target Application acts as a container

636   Inside Microsoft SharePoint 2013

for credential sets mapped to an External System. The Target Application settings page contains a
name for the application and a setting to specify whether each individual user will have a separate
set of mapped credentials or whether every user will map to a single common set of credentials.
Figure 16-13 shows application settings mapping a single set of credentials to an Active Directory
Domain Services (AD DS) group.

FIGURE 16-13  Creating a new Target Application in SSS

After the Target Application is defined, credential fields are defined to specify what credentials are
required to access the External System. In most cases, the Target Application will save a Windows user
name and password, but you could also map credentials for non-Windows authentication schemes
such as SQL accounts. SSS also supports additional attributes such as personal identification numbers
(PINs) for credentials. Figure 16-14 shows the field definition form for a Target Application.

FIGURE 16-14  Defining credential fields

	 Chapter 16  Business Connectivity Services    637

After the application and credential fields are defined, you must enter the actual credential
information for a specific user. For each user or group that will access the External System, a set of
credentials is stored in SSS. If a user attempts to access the system without proper credentials in SSS,
then that person will be directed to a logon page so that the credentials can be entered and stored
just-in-time. After the credentials are mapped, you can specify the name of the Target Application in
SharePoint Designer during ECT creation. When the Target Application is specified in this way, BCS will
use the SSS credentials to access the External System. Figure 16-15 shows a dialog box for setting the
credentials used in a group mapping. In this case, all users are utilizing a single account.

FIGURE 16-15  Mapping group credentials to a single account

The credentials stored in SSS are accessible through a set of objects designed to support your
custom solutions. By using these objects, you can create solutions, such as Web Parts, that use SSS
credentials to gain access to External Systems. The Microsoft.Office.SecureStoreService assembly con-
tains the main classes necessary to work with SSS. In addition, the Microsoft.BusinessData assembly
contains supporting classes for working with BCS.

The general approach to retrieving SSS credentials in code involves getting a reference to the
SSS service application through the ISecureStoreProvider class. The GetCredentials method can then
be called with the name of the Target Application to return the credentials. Listing 16-1 shows how
a Web Part can use this approach to build a connection string for an External System.

638   Inside Microsoft SharePoint 2013

LISTING 16-1  Accessing the SSS programmatically

protected override void OnPreRender(EventArgs e) {
 string username = string.Empty;
 string password = string.Empty;

 try {
 ISecureStoreProvider p = SecureStoreProviderFactory.Create();
 using (SecureStoreCredentialCollection creds =
 p.GetCredentials(ApplicationId)) {

 // enumerate through all credentials
 foreach (SecureStoreCredential c in creds) {
 switch (c.CredentialType) {
 case SecureStoreCredentialType.UserName:
 username = ConvertToString(c.Credential);
 break;

 case SecureStoreCredentialType.Password:
 password = ConvertToString(c.Credential);
 break;

 case SecureStoreCredentialType.WindowsUserName:
 username = ConvertToString(c.Credential);
 break;

 case SecureStoreCredentialType.WindowsPassword:
 password = ConvertToString(c.Credential);
 break;
 }
 }
 }

 SqlConnectionStringBuilder cBuilder = new SqlConnectionStringBuilder();
 cBuilder.DataSource = ServerName;
 cBuilder.InitialCatalog = DatabaseName;
 cBuilder.UserID = username;
 cBuilder.Password = password;

 messages.Text = cBuilder.ConnectionString;

 }
 catch (Exception x) {
 messages.Text = x.Message;
 }
}

private String ConvertToString(SecureString s) {
 IntPtr b = Marshal.SecureStringToBSTR(s);
 try { return Marshal.PtrToStringBSTR(b); }
 finally { Marshal.FreeBSTR(b); }
}

	 Chapter 16  Business Connectivity Services    639

Understanding package deployment
When a user elects to synchronize an External List with Outlook, BCS creates a VSTO Click-Once
deployment package that contains all the elements necessary to work with the list on the client. The
package is created by BCS just-in-time and stored under the list in a folder named ClientSolution.
After the package is created, the deployment is started automatically.

The package contains the BCS model defining the External System, ECTs, operations, and security
information that is necessary to access and modify data. The package also contains subscription infor-
mation, which tells the client cache what data to manage and how it should be refreshed. Finally, the
package contains pre-deployment and post-deployment steps that should be taken, such as creating
custom forms in the client application to display the data.

After it is deployed, the add-in can use Office Business Parts on the client to help render data.
Office Business Parts are Windows form controls that display a single item or list of items in a task
pane to simplify the rendering process so that custom task panes do not have to be created for the
client.

Understanding authentication scenarios

When connecting to back-end systems, BCS must deal with several different authentication scenarios.
In the simplest case, BCS might be passing Windows credentials from the user through to the External
System. However, most real-world applications have more complex requirements, such as proprietary
authentication mechanisms, tokens, or claims. For BCS solutions to be secure, they must deal with
these situations adequately.

Configuring authentication models
BCS supports two authentication models: Trusted Subsystem and Impersonation and Delegation. In the
Trusted Subsystem model, BCS uses a single account to access the External System regardless of the
user identity. Under Impersonation and Delegation, BCS attempts to impersonate the user and access
the External System. The AuthenticationMode element in the BDC Metadata Model determines how
authentication is performed and has several different options.

Understanding Passthrough authentication
Passthrough authentication is used in the Impersonation and Delegation authentication model. Setting
the value of the AuthenticationMode element to Passthrough causes BCS to use the credentials of the
current user to access the External System. You can set up Passthrough authentication by selecting the
Connect With User’s Identity option when creating a connection to an External System in SharePoint
Designer. The following code shows a portion of a BDC Metadata Model connecting to the Adventure-
Works database by using Passthrough authentication:

640   Inside Microsoft SharePoint 2013

<LobSystemInstances>
 <LobSystemInstance Name="Adventureworks Data Warehouse">
 <Properties>
 <Property Name="AuthenticationMode" Type="System.String">
 PassThrough
 </Property>
 <Property Name="DatabaseAccessProvider" Type="System.String">
 SqlServer
 </Property>
 <Property Name="RdbConnection Data Source" Type="System.String">
 AWSQL
 </Property>
 <Property Name="RdbConnection Initial Catalog"
 Type="System.String">AdventureworksDW</Property>
 <Property Name="RdbConnection Integrated Security" Type="System.String">
 SSPI
 </Property>
 <Property Name="RdbConnection Pooling" Type="System.String">true</Property>
 </Properties>
 </LobSystemInstance>
</LobSystemInstances>

Though Passthrough authentication is easy to implement, it is unlikely to be useful in many situations
because of a particular limitation in Windows authentication known as the double-hop issue. Windows
authentication takes two forms: NTLM and the Kerberos protocol. NTLM is the classic challenge-
response protocol used to authenticate users. The Kerberos protocol is an advanced ticket-based
protocol that is much more secure. NTLM authentication is often compared to a carnival where you
must pay for each ride separately. The Kerberos protocol, on the other hand, is often compared to
a theme park where you pay for one ticket and then have access to all the rides. Though Kerberos
authentication is considered to be a best practice for BCS, many organizations still run under NTLM
authentication.

The double-hop issue describes a scenario under NTLM authentication where the web server
attempts to impersonate a user through a series of “hops” involving multiple servers. When a user
makes a request to view an External List, SharePoint will attempt to impersonate the user. This
impersonation is done at the ASP.NET level, independent of BCS. However, when BCS subsequently
attempts to access the data source, it will be prevented from continuing to impersonate the user, and
the account identity will change to that of the system account. At this point, the original user identity
islost and access to the data source will be denied.

The double-hop issue is not a bug; it was a built-in feature of NTLM. The limitation is designed
to prevent viruses from accessing network resources if credentials are compromised. The Kerberos

	 Chapter 16  Business Connectivity Services    641

protocol does not suffer from this limitation because its ticketing-based protocol is more secure than
challenge-response. So changing the network authentication mechanism from NTLM to the Kerberos
protocol will solve this problem. Otherwise, you must use a different BCS authentication mechanism
to access External Systems.

Understanding RevertToSelf
RevertToSelf is used in the Trusted Subsystem model of authentication. Setting the value of the
AuthenticationMode element to RevertToSelf causes BCS to use the credentials of the application pool
to access the External System. The following code shows a BDC Metadata Model using RevertToSelf
authentication:

<LobSystemInstances>
 <LobSystemInstance Name="Adventureworks Data Warehouse">
 <Properties>
 <Property Name="AuthenticationMode" Type="System.String">
 RevertToSelf
 </Property>
 <Property Name="DatabaseAccessProvider" Type="System.String">
 SqlServer
 </Property>
 <Property Name="RdbConnection Data Source" Type="System.String">
 AWSQL
 </Property>
 <Property Name="RdbConnection Initial Catalog"
 Type="System.String">AdventureworksDW</Property>
 <Property Name="RdbConnection Integrated Security" Type="System.String">
 SSPI
 </Property>
 <Property Name="RdbConnection Pooling" Type="System.String">true</Property>
 <Property Name="ShowInSearchUI" Type="System.String"></Property>
 </Properties>
 </LobSystemInstance>
</LobSystemInstances>

Configuring RevertToSelf is accomplished by editing the connection information for the External
System after it is defined. In SharePoint Designer, in the Summary View for the ECT, the connection
information can be edited by clicking the hyperlink for the External System. Figure 16-16 shows the
Connection Properties dialog box. RevertToSelf is specified by selecting the BDC Identity option for
Authentication Mode.

642   Inside Microsoft SharePoint 2013

FIGURE 16-16  Using the BDC identity to access an External System

Using RevertToSelf authentication eliminates the double-hop issue because BCS is no longer attempt-
ing to impersonate the user all the way to the External System. The drawback to this approach, how-
ever, is that all access is accomplished using the same account. As a result, no auditing of individual
activities against the External System is possible.

In addition to the limitations imposed by RevertToSelf authentication, it is important to understand
that the application pool identity is a powerful one whose credentials must be protected. Along with
being the account under which the web application runs, the application pool identity is used to
access the SharePoint content databases. Furthermore, the application pool identity is the account
under which code runs when the SPSecurity.RunWithElevatedPrivileges method is called in SharePoint,
which essentially allows code to perform any action in a SharePoint farm. For this reason, RevertToSelf is
disabled by default and must be enabled explicitly by using the following Windows PowerShell script:

$bdc = Get-SPServiceApplication
 | where {$_ -match "Business Data Connectivity Service"}
$bdc.RevertToSelfAllowed = $true
$bdc.Update;

Understanding secure store options
SSS is a flexible credential management service that supports both the Trusted Subsystem and Im-
personation and Delegation authentication models. If you map all user credentials to a single group
account in SSS, then you can support the Trusted Subsystem authentication model. If you map user

	 Chapter 16  Business Connectivity Services    643

credentials to a unique set of credentials per user, then SSS is supporting the Impersonation and Dele-
gation authentication model. SSS is a far superior choice to either Passthrough or RevertToSelf because
you can configure access to External Systems such that auditing is still possible while still overcoming
double-hop issues. SSS is capable of managing three different types of credentials: Windows, SQL,
and user name/password. These three credential types, WindowsCredentials, RdbCredentials, and
Credentials, correspond to three different settings for the AuthenticationMode element.

Setting the AuthenticationMode element to WindowsCredentials is used with External Systems
that support Windows authentication. Setting the AuthenticationMode to RdbCredentials is used with
External Systems that support SQL authentication, such as SQL Server. Setting the AuthenticationMode
to Credentials is used with External Systems that support simple user name/password authentication.
The WindowsCredentials and RdbCredentials are used by selecting the Impersonate Windows Identity
or Impersonate Custom Identity option, respectively, in the Connection Properties dialog box. The
Credentials setting is used exclusively with web services that do not support Windows authentication.

In addition to the primary SSS application, BCS also supports a secondary SSS application that can
be used for application-level authentication. This functionality exists to support special situations in
which the External System requires credentials to be passed to the system as part of each operation. The
credentials held in the secondary application can be configured as a filter to restrict the results returned
from the External Systems. Filters are discussed in the section “Defining filters” later in this chapter.

Accessing claims-based systems
Because SharePoint 2013 supports claims authentication, BCS can also use claims to authenticate
against External Systems. To implement claims authentication, the External System must support
claims and trust the claims provider used with SharePoint. Currently, there are few systems that
support claims authentication.

To implement claims authentication, the AuthenticationMode should be set to Passthrough. None
of the other configurations really makes sense because claims authentication is based on delegating
the user’s identity. For the most part, claims-based authentication happens automatically, provided
that the External System accepts the token offered by BCS.

Accessing token-based systems
Today, many web-based applications use a token-based authentication system such as OAuth to secure
Open Data Protocol (OData) services. BCS can support authentication against these token-based
systems by using the OData Extension Provider. The OData Extension Provider allows you to attach
tokens to outgoing BCS calls. In order to use the OData Extension Provider, you must create a class
that implements the ODataExtensionProvider abstract class. This class provides a BeforeSendRequest
method and an AfterReceiveResponse method. You can write custom code in these methods to query
the token provider and attach the token before passing the data request to the External System.

644   Inside Microsoft SharePoint 2013

After the assembly is created, it must be stored in the global assembly cache and registered as a
new connection setting in BCS associated with the service endpoint. The assembly is registered with
the New-SPODataConnectionSetting Windows PowerShell command. The following code shows an
example:

New-SPODataConnectionSetting
 -Name "WingtipServiceApp"
 -ServiceContext "http://intranet.wingtip.com"
 -ServiceAddressURL "https://data.cloudapp.net/data.svc"
 -AuthenticationMode "Anonymous"
 –ExtensionProvider "WingtipExtensionProvider.Extension, WingtipExtensionProvider,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=41bc4812ca364d35"

The final step is to modify the BDC Metadata Model to reference the new connection setting. This
is done by adding the ODataConnectionSettingsId property under the LobSystemInstance node, as
shown in the following code:

<Property Name="ODataConnectionSettingsId" Type="System.String">WingtipServiceApp</Property>

Managing client authentication

BCS clients are designed to have symmetry with the server-side functionality so that they can oper-
ate offline. The Application Model created in SharePoint Designer is synchronized with clients when
External Lists are accessed through Office clients and later using subscription information. Some au-
thentication settings, however, will not work correctly from the client because they don’t make sense.
For example, when you set the client AuthenticationMode to RevertToSelf, BCS is supposed to use the
application pool account when accessing the External System. However, clients have no mechanism
to use this account because they always access the External Systems directly. Additional problems can
occur when a Trusted Subsystem authentication model maps to group credentials in SSS. In this case,
BCS will prompt the user to enter credentials for the group, but the user is unlikely to know these
credentials.

The Passthrough mode makes the most sense for clients. When you set the client AuthenticationMode
to Passthrough, the client will always try to connect to the External System using the Windows cre-
dentials of the current user. This means that the External System must support Windows authentication
and the current user must have rights to perform the requested operations.

Client credentials are stored not in SSS, but in the Credential Manager. The Credential Manager is
a password store system that supports single sign-on (SSO) to a variety of systems, including websites
and remote computers. Credential Manager is part of the client operating system, so you can open
it within Windows and view and manage your credentials. If authentication fails from the client, BCS
automatically deletes the credentials from the Credential Manager store and prompts you to enter
them again.

	 Chapter 16  Business Connectivity Services    645

Creating External Content Types

Defining External Content Types is the primary activity necessary to implement BCS solutions. The
definition of an ECT includes all the information schema, data operations, relationships, filters, actions,
and security descriptors necessary to bring External System data into SharePoint. All this information
is defined inside a BDC Metadata Model, which is an XML file stored in the ECT repository. Although
SharePoint Designer does a good job of giving you visual tools to create the model, there are times
when you will want to modify the XML directly. Therefore, you should understand the basic structure
of the XML model. Listing 16-2 shows part of the basic XML structure with an emphasis on the ECT
definition represented by the Entity element.

LISTING 16-2  Partial XML model

<?xml version="1.0" encoding="utf-16" standalone="yes"?>
<Model>
 <LobSystems>
 <LobSystem Type="Database" Name="Wingtip Products">
 <LobSystemInstances>
 <LobSystemInstance Name="Wingtipdb">
 </LobSystemInstance>
 </LobSystemInstances>
 <Entities>
 <Entity Namespace="http://www.wingtip.com"
 Version="1.1.0.0"
 EstimatedInstanceCount="10000"
 Name="Product"
 DefaultDisplayName="Product">
 </Entity>
 </Entities>
 </LobSystem>
 </LobSystems>
</Model>

Creating operations
BCS supports a wide variety of operations designed to facilitate accessing systems and performing
CRUD functions. Generally, you will be concerned with basic reading and writing to External Systems
using the Finder (Read List), SpecificFinder (Read Item), Creator (Create), Updater (Update), and Deleter
(Delete) methods. These methods are also supported in SharePoint Designer through menus in the
Operations Design view. Methods that are not supported by SharePoint Designer offer additional
functionality and control, but they must be created by manually editing the BDC Metadata Model or
creating a .NET Assembly Connector. Manually editing the XML model requires that you export the
model, edit it, and import the new model. Table 16-3 lists all the supported BCS operations.

646   Inside Microsoft SharePoint 2013

TABLE 16-3  Supported BCS operations

Name Description

Finder Returns multiple records from an External System based
on a wildcard

SpecificFinder Returns a single record from an External System based on
a primary key

IdEnumerator Returns all primary keys from an External System to sup-
port search indexing

Scalar Returns a scalar value from an External System

AccessChecker Checks to determine what rights are allowed for a user

Creator Creates a new record in an External System

Updater Updates an existing record in an External System

Deleter Deletes a record in an External System

ChangedIdEnumerator Returns primary keys for records that have changed, to
support incremental search indexing

DeletedIdEnumerator Returns primary keys for records that have been deleted,
to support incremental search indexing

AssociationNavigator Navigates from one entity to a related entity

Associator Associates an entity with another entity

Disassociator Disassociates one entity from another

GenericInvoker Used to perform operations not supported by any of the
defined operations

StreamAccessor Supports accessing binary large object (BLOB) data from
an External System

BinarySecurityDescriptorAccessor Returns a security descriptor

BulkSpecificFinder Returns a set of records from the External System in a
batch based on a set of primary keys

BulkAssociatedIdEnumerator Returns a set of primary keys representing records associ-
ated with an entity

BulkAssociationNavigator Supports navigation from one entity to many related
entities

BulkIdEnumerator Returns all primary keys in a batch from an External
System to support search indexing

Subscribe Allows a user or event receiver to request notification
when external data changes

Unsubscribe Allows a user or event receiver to delete a request for
notification

Finder methods are used to return a result set from the External System and are one of two re-
quired operations for External Lists. You can create a Finder method in SharePoint Designer by select-
ing the option to create a New Read List operation from the shortcut menu. Listing 16-3 shows the
definition of a Finder method.

	 Chapter 16  Business Connectivity Services    647

LISTING 16-3  A Finder method

<Method Name="Read List" DefaultDisplayName="Product Read List">
 <Properties>
 <Property Type="System.Data.CommandType, [assembly name for System.Data]"
 Name="RdbCommandType">Text</Property>
 <Property Name="RdbCommandText" Type="System.String">
 SELECT TOP(@ProductID) [ProductID] , [ProductName]
 FROM [dbo].[Products] ORDER BY [ProductID]
 </Property>
 <Property Name="BackEndObjectType"
 Type="System.String">SqlServerTable</Property>
 <Property Name="BackEndObject" Type="System.String">Products</Property>
 <Property Name="Schema" Type="System.String">dbo</Property>
 </Properties>
 <Parameters>
 <Parameter Direction="In" Name="@ProductID">
 <TypeDescriptor TypeName="System.Int64" AssociatedFilter="Filter"
 Name="ProductID">
 <DefaultValues>
 <DefaultValue MethodInstanceName="Read List"
 Type="System.Int64">100</DefaultValue>
 </DefaultValues>
 </TypeDescriptor>
 </Parameter>
 <Parameter Direction="Return" Name="Read List">
 <TypeDescriptor
 TypeName="System.Data.IDataReader, [assembly name for System.Data]"
 IsCollection="true" Name="Read List">
 <TypeDescriptors>
 <TypeDescriptor
 TypeName="System.Data.IDataRecord, [assembly name for System.Data]"
 Name="Read ListElement">
 <TypeDescriptors>
 <TypeDescriptor TypeName="System.Int32" ReadOnly="true"
 IdentifierName="ProductID" Name="ProductID" />
 <TypeDescriptor TypeName="System.String" Name="ProductName">
 <Properties>
 <Property Name="Size" Type="System.Int32">50</Property>
 <Property Name="RequiredInForms"
 Type="System.Boolean">true</Property>
 <Property Name="ShowInPicker"
 Type="System.Boolean">true</Property>
 </Properties>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>

648   Inside Microsoft SharePoint 2013

 <MethodInstance Type="Finder" ReturnParameterName="Read List" Default="true"
 Name="Read List" DefaultDisplayName="Product Read List">
 <Properties>
 <Property Name="UseClientCachingForSearch" Type="System.String"></Property>
 <Property Name="RootFinder" Type="System.String"></Property>
 <Property Name="LastModifiedTimeStampField"
 Type="System.String">LastUpdate</Property>
 </Properties>
 </MethodInstance>
 </MethodInstances>
</Method>

In the definition for the Finder method, SharePoint Designer automatically generates a SQL query
to retrieve items for display in the list if the External System is a database. This is done when the meth-
ods are created in the wizard. If you want, you can use stored procedures or views instead of dynamic
SQL. Also, note how the return parameters are defined so that BCS understands the data returned from
the External System. In particular, note the use of the TypeDescriptor element. TypeDescriptor is used
to map data types in the External System to .NET data types in BCS.

You can create multiple Finder methods, but one will always be designated as the default. The default
Finder method forms the basis of the default view of an External List and provides support for index-
ing the External System so it can be searched. SharePoint Designer automatically adds a RootFinder
property to the default Finder method. This property is used when the External System is being indexed,
to specify the records in the External System that should be indexed. In addition, the method can des-
ignate a timestamp field to support incremental crawls. Designating a field as a timestamp is done in
the Return Parameters section of the Operation Wizard; the field appears in the BDC Metadata Model
as the value for the LastModifiedTimeStamp property.

SpecificFinder methods are used to return a single item from the External System and are also
required to support External Lists. Creator, Updater, and Deleter methods are optional for External
Lists. All the methods have similar XML structures in the BDC Metadata Model. You can examine
these structures easily by creating models and exporting them from SharePoint Designer.

Creating relationships
BCS supports the definition of relationships between entities, which allows you to display relation-
ships and navigate between entities within SharePoint. Within the SharePoint Designer, one-to-many,
self-referential, and reverse associations are supported by the tooling. The most common type of as-
sociation in BCS solutions is the one-to-many association, whereby a parent entity instance is related
to many child entity instances. Self-referential associations are just like one-to-many relationships,
except that a self-referential relationship uses the same ECT as both the parent and the child. Reverse
associations return a single parent entity instance for a child entity instance. Reverse associations are
not supported for tables and views, but they are supported for stored procedures and web services
because the reverse association is not inherent in the database schema. It must be programmed ex-
plicitly through a stored procedure or web service.

	 Chapter 16  Business Connectivity Services    649

To create a relationship, you select New Association from the shortcut menu in the Operations
Design view. This will start a wizard to help you define the new association. The wizard will ask you to
select another ECT with which to make the association. If the ECTs are based on related tables in a
database, then SharePoint Designer will infer the relationship using the foreign key. If not, then you
will have to specify the relationship manually by associating fields from the parent to the child ECT.
Listing 16-4 shows a relationship between a Product entity and a Category.

LISTING 16-4  An entity relationship

<Method IsStatic="false" Name="CategoryAssociation">
 <Properties>
 ...
 </Properties>
 <Parameters>
 <Parameter Direction="In" Name="@CategoryId">
 <TypeDescriptor ... />
 </Parameter>
 <Parameter Direction="Return" Name="CategoryAssociation">
 <TypeDescriptor ...>
 <TypeDescriptors>
 ...
 </TypeDescriptors>
 </TypeDescriptor>
 </Parameter>
 </Parameters>
 <MethodInstances>
 <Association Name="CategoryAssociation" Type="AssociationNavigator"
 ReturnParameterName="CategoryAssociation"
 DefaultDisplayName="Category Association">
 <Properties>
 <Property Name="ForeignFieldMappings" Type="System.String">
 ... ForeignFieldMapping ForeignIdentifierName="CategoryId" ...
 </Property>
 </Properties>
 <SourceEntity Namespace="http://www.wingtip.com" Name="Category" />
 <DestinationEntity Namespace="http://www.wingtip.com" Name="Product" />
 </Association>
 </MethodInstances>
</Method>

Defining filters
When creating Finder and SpecificFinder methods, you often might want to limit the information that
is returned from the External System. You might want to limit the returned data simply to prevent a
large amount of data from being requested, or to support conditional queries, paging, or wildcards.
The Application Model supports all these types of filters. Filters can also be thought of as input pa-
rameters to an ECT operation. Generally, their values are set by the calling client before the operation
is invoked. The wizards in SharePoint Designer will help you define the most common filters when you
are creating ECTs. Table 16-4 lists all the filters supported in BCS.

650   Inside Microsoft SharePoint 2013

TABLE 16-4  Supported BCS filters

Filter Description

ActivityId A GUID representing the correlation ID of the current
operation.

Batching Information about the current batch operation for
filtering.

BatchingTermination Information about the current terminating batch
operation for filtering.

Comparison Filters the records returned based on a value compared
to a specific field.

Input Can be used by the operation as an input value when the
operation is called.

InputOutput Can be used by the operation as both an input and
output value when the operation is called.

LastId Identifies the ID of the last item in an operation.

Limit Limits the total number of records returned to a fixed
amount. Not compatible with the PageNumber filter.

Output Can be used by the operation as an output value when
the operation is called.

PageNumber Limits the records returned using paging. Not compatible
with the Limit filter.

Password The password for the current operation.

SsoTicket The ticket for use when authenticating.

Timestamp Filters the records returned based on a specified
DateTime field.

UserContext Context information about the current user.

UserCulture The current user culture.

Username The current user name.

UserProfile Profile information about the current user for filtering
returned results.

Wildcard Filters the records returned based on Starts With or
Contains values.

Whenever you are creating Finder and SpecificFinder methods, you should define a Limit filter for
the operation. This filter ensures that large result sets are not returned to an External List, which is
critical for maintaining BCS performance. Though BCS does implement throttling at the system level,
the ECT should implement its own tighter limits to ensure that query performance is maintained.

	 Chapter 16  Business Connectivity Services    651

Defining filters in SharePoint Designer is done in the Operation Wizard on the Filter Parameters
Configuration page. On this page, you can click Add Filter Parameter to add a new filter. After add-
ing a new filter, you must then click the Filter hyperlink to open the Filter Configuration dialog box.
Figure 16-17 shows the Filter Configuration dialog within the Operation Wizard.

FIGURE 16-17  Defining filters

Using ECTs in SharePoint 2013

After you have created ECTs, they can be used in a variety of ways. External lists are the simplest way
to use them. Beyond creating a list, you can also enhance the list with custom forms, actions, and
profiles. SharePoint can also use ECTs to display data in Web Parts, to support enhancements to other
lists, and as a source for custom solutions.

652   Inside Microsoft SharePoint 2013

Creating custom forms
Although External Lists have several limitations, they also have many of the same capabilities as a stan-
dard list. When they are created from SharePoint Designer, for example, you can also select to create
a Microsoft InfoPath form for editing items by clicking the Create Lists And Form button. Creating an
InfoPath form allows you to customize the appearance of the form, as well as add validation logic.

After you have created the InfoPath form, you can edit it by clicking the Design Forms In InfoPath
button, which is available on the List Settings tab. Clicking this button will open the form in InfoPath,
where you have complete control over the appearance and functionality of the form. Figure 16-18
shows a simple item edit form that has been modified in InfoPath.

FIGURE 16-18  An External List form in InfoPath

In addition to creating InfoPath forms, you can also create new ASPX forms for External Lists. The
default forms created for the External Lists use the List Form Web Part (LFWP). The LFWP executes
CAML queries against the External List to display items. Unfortunately, the LFWP does not support
modifying its presentation; therefore, a new form must be created instead.

Clicking the New button above the form list in SharePoint Designer opens the Create New List Form
dialog box. This dialog box is used to create, edit, and display forms that are based on the Data Form
Web Part (DFWP). The DFWP uses Extensible Stylesheet Language for Transformations (XSLT) to trans-
form list data into a display. By modifying this XSLT you can easily change the presentation of list data.

Using External Data Columns
Along with using an ECT as the basis for a list, you can use an ECT as the source for a column in an-
other list. This capability is known as an External Data Column. When you create an External Data
Column for a list, you select the ECT to use as the basis for the column. You can then select one or
more of the fields available in the ECT to display alongside the column you are creating. These addi-
tional fields are known as projected fields because they project data from the ECT into the parent list.
Figure 16-19 shows an external column definition.

	 Chapter 16  Business Connectivity Services    653

FIGURE 16-19  Defining an external column

Using External Data Web Parts
Another way you can use ECTs is through a set of Web Parts that ship with SharePoint Server 2013
known as External Data Web Parts (also called Business Data Web Parts). External Data Web Parts are
designed specifically to display ECT data and relationships. The available parts include the Business
Data List, Business Data Related List, and Business Data Item. These Web Parts display a list based on
an ECT, a list based on an ECT association, or a single item, respectively.

The Business Data List part allows you to select an ECT, and then it displays a list of data based
on a Finder method that you specify. In many ways, this Web Part is like an External List. You can, for
example, modify the view by selecting which columns to display. If you have filters defined for the
Finder method, the Web Part will display simple filtering controls that support operations such as key-
word filtering. Finally, you can change the appearance of the list by altering the XSLT contained within
the Web Part. This XSLT is used to transform the data returned for display in the Web Part.

The Business Data Related List is meant to be used in conjunction with the Business Data List to
show data based on an association between two ECTs. After selecting an ECT for both the Business

654   Inside Microsoft SharePoint 2013

Data and Business Data Related lists, you can use the Web Part menu to connect the two lists. When
they are connected, the Business Data List Web Part acts as a filter against the Business Data Related
List Web Part. This gives users a simple way to filter the list view by clicking items in the related list.

The Business Data Item Web Part is used to display a single record based on an ECT. This Web Part
is configured by first selecting the ECT and then selecting the particular record to display. This Web
Part is especially useful when combined with the Business Data Item Builder Web Part, which builds a
business item from query string parameters in the page URL. This combination of the Business Data
Item Builder Web Part and Business Data Item Web Part is used by BCS to create a profile page for an
ECT. Profile pages are discussed in the next section.

Creating a profile page
When SharePoint surfaces ECT data in lists and Web Parts, it does not necessarily show all the avail-
able fields and associations. For example, when an ECT is used as the source for an external column,
only a single field is required for display. When users see partial ECT data, however, they are quite
often interested in being able to view the data behind it. This is where profile pages enter the picture.
A profile page is a dedicated page that shows all the ECT data for a specific record. This way, users can
jump from partial ECT data to a complete view of the record.

The Business Data Item Builder and Business Data Item Web Parts are deployed onto a dedicated
profile page. The profile page is typically accessed through an action. An action is defined as a hyper-
link containing query string parameters that can be used by the Business Data Item Builder Web Part
to construct the profile page. Actions are typically surfaced in a drop-down menu associated with the
displayed ECT data. Figure 16-20 shows a profile page.

FIGURE 16-20  A BCS profile page

	 Chapter 16  Business Connectivity Services    655

Before you can create profile pages, they must be enabled through the BDC service application.
On the Edit tab for the BDC service application, you can click the Configure button in the Profile Pages
group. In the Properties dialog box that opens, you must specify a SharePoint site where the profile
pages can be created. After that, you can simply select ECTs and click the Create/Upgrade button to
make profile pages for the ECTs that you select. You can also make profile pages in SharePoint Designer
when you are designing your ECT.

Searching External Systems
ECTs created with SharePoint Designer already support indexing by SharePoint Search with no ad-
ditional work. However, External Systems will be indexed only if you explicitly set up a content source
that includes the ECT. Content sources can be created within the Search service application, where
you will have the option to create a content source associated with an External System.

When you select the option to create a new content source in the Search service application, you
will be presented with a drop-down list of the available BDC service applications. When you choose a
BDC service application, you will then have the option to index all External Systems associated with the
selected service or to pick particular systems. Figure 16-21 shows the content source creation options.

FIGURE 16-21  Defining a content source

656   Inside Microsoft SharePoint 2013

After a content source is created and crawled, it can be used in the standard ways. This means that
you can simply go to the Search Center, type a keyword, and return records from the External System.
These results include a hyperlink to the profile page so that users can view the full details of the
returned records. You can also set up search scopes and use them to search only the External
System data.

Supplementing user profiles
The User Profile service application is used to synchronize data from AD DS with the profile database
maintained by SharePoint. The profile database contains rich information about users that can be
displayed in sites. The User Profile service application maps AD DS fields to fields in the user’s profile.
On a scheduled basis, this information is imported from AD DS.

In much the same way that you can add search connections to External Systems through ECTs, you
can add profile synchronization connections. Adding a new synchronization connection allows you
to use data from External Systems to supplement the data in the profile system. This is often useful
in organizations that maintain a Human Resources (HR) system but that do not have rich data in their
AD DS system. In such cases, ECTs are designed against the HR system and mapped to fields in the
profile database.

Using ECTs in Office 2013

Not only can ECTs be used on the SharePoint server, they can also be used in Office 2013 clients.
With little effort, ECTs can be surfaced as items in Outlook or metadata columns in Word. Further-
more, Office clients can sync with SharePoint to allow External Lists to be managed offline.

Understanding Outlook integration
You can synchronize lists with Outlook by clicking the Connect To Outlook button on the List tab.
Outlook allows users to work with data offline and then synchronize it with SharePoint later. When
you are synchronizing External Lists, ECTs can use Outlook forms by explicitly declaring that they
should be displayed as an appointment, contact, task, or post when they are designed in SharePoint
Designer. Choosing to display an ECT as a particular type of Office item requires that External System
fields be mapped to Outlook fields in the SharePoint Designer wizard. Generally, the SharePoint
Designer wizard will prompt for the correct mapping through messages. This mapping ensures that
the data is displayed correctly inside Outlook.

	 Chapter 16  Business Connectivity Services    657

When you synchronize lists to Outlook, a VSTO solution is installed for working with the items.
Although the synchronization behavior works out of the box, you could choose to enhance the over-
all solution with your own VSTO solution, which could be a full-blown custom VSTO solution created
in Outlook or a special declarative solution unique to BCS. The subject of creating these advanced
custom VSTO solutions is beyond the scope of this chapter.

Using Word Quick Parts
When you choose to create an External Data Column for a document library, this column appears in
Word in the Document Information Panel (DIP) at the top of the document. The DIP is designed to
present metadata information so that it can be filled in during the document creation process, as
opposed to prompting for metadata values when the document is saved.

In conjunction with displaying the metadata values in the DIP, document templates can also use
Quick Parts. Quick Parts in Word allow you to insert fields into the document template that are bound
to the metadata fields of the document. When a user fills in the field as part of the document creation
process, the metadata values are set automatically. Adding Quick Parts to a document is done by select-
ing the appropriate metadata field from the Quick Parts list, which appears on the Insert tab in Word.

Although Quick Parts work well with all manner of document metadata, they work especially well
with ECTs. This is because the Quick Parts will surface a picker dialog box for metadata that is based
on an ECT. This makes it easy for users to select valid values for the metadata, improving the docu-
ment creation experience.

Creating custom BCS solutions

Though BCS offers significant functionality without requiring you to write any code at all, there are
advanced scenarios in which you will want to write custom code. To support custom solutions, BCS
has a complete set of object models for manipulating External Data and managing ECT metadata.
These models can be used on both the client and the server and have a high degree of symmetry be-
tween the two programming models. Along with coding against the client and server model, you can
create your own External System connectors called .NET Assembly Connectors. These connectors are
one of the most common BCS customizations because they give you a significant amount of control
over the business logic applied to External Data. Finally, you can include ECTs directly in a SharePoint
app, deploy them with the app, and manipulate them through the REST or CSOM APIs.

658   Inside Microsoft SharePoint 2013

Using the BDC Runtime object models
The BDC Server Runtime and BDC Client Runtime are the server-side object models used for manipu-
lating External Data. By using the object models, you can perform full CRUD operations on External
Data through custom code. This is the programming interface used by External Lists and Outlook,
which means you can create custom Web Parts, pages, and add-ins for SharePoint and Office clients.

Using the object models requires you to set references in Visual Studio 2012 to the appropriate as-
semblies where the programming interface is defined. Selecting the correct assemblies is first a mat-
ter of deciding whether you are creating a server-side customization or a client-side customization.
For server-side customizations, you will need to set references to the assemblies Microsoft.Business-
Data.dll and Microsoft.SharePoint.dll. For client-side customizations, you will need to set references to
Microsoft.BusinessData.dll and Microsoft.Office.BusinessApplications.Runtime.dll.

After you set references to the appropriate assemblies, the first challenge is to connect to the ap-
propriate catalog. If you are on the server, then you will connect to the metadata catalog associated
with the BDC service application. If you are on the client, then you will connect to the client cache.

Connecting to the metadata catalog on the server can be done with or without a SharePoint con
text, but the code will be different. In any case, you must get a reference to BdcServiceApplication-
Proxy, which can then be used to connect with the metadata catalog, which is represented by the
DatabaseBackedMetadataCatalog object. If your code is running with a SharePoint context, then the
following code will connect to the metadata catalog:

BdcServiceApplicationProxy sap =
 (BdcServiceApplicationProxy)SPServiceContext.Current.GetDefaultProxy(
 typeof(BdcServiceApplicationProxy));
DatabaseBackedMetadataCatalog catalog = sap.GetDatabaseBackedMetadataCatalog;

If your code is running outside a SharePoint context, then you will need additional code to connect
with BdcServiceApplicationProxy. The following code shows how to create a LINQ query to return the
application proxy:

SPFarm farm = SPFarm.Local;
SPServiceProxyCollection spc = farm.ServiceProxies;
BdcServiceApplicationProxy sap =
(BdcServiceApplicationProxy)((from sp in spc
 where sp.TypeName.Equals("Business Data Connectivity")
 select sp).First.ApplicationProxies.First);
DatabaseBackedMetadataCatalog catalog = sap.GetDatabaseBackedMetadataCatalog;

In addition to using the BdcServiceApplicationProxy object to establish context, you can use the
Microsoft.SharePoint.BusinessData.SharedService.BdcService class. The BdcService class is an abstraction
of the BDC Service Application, and it is useful for determining whether or not a BDC Service Applica-
tion is available in the farm. The following code shows how to connect to the metadata catalog:

	 Chapter 16  Business Connectivity Services    659

BdcService service = SPFarm.Local.Services.GetValue<BdcService>;
 if (service == null)
 throw new Exception("No BDC Service Application found.");
DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.GetContext(site));

If your code is running on the client, then you will connect to the client cache instead of the meta-
data catalog. The client cache is represented by the RemoteSharedFileBackedMetadataCatalog object.
The following code shows how to make the connection:

RemoteSharedFileBackedMetadataCatalog catalog = new RemoteSharedFileBackedMetadataCatalog();

After you make a connection to the appropriate catalog, you can read or write to the entities that
it contains. These changes will be reflected in the External System, as well as any External Lists based
on the ECT. Listing 16-5 shows how to retrieve an entity and print the values of its fields by using a
Finder method.

LISTING 16-5  Retrieving an entity

IEntity ect = catalog.GetEntity("http://www.wingtip.com/products", "Product");
ILobSystem lob = ect.GetLobSystem;
ILobSystemInstance lobi = lob.GetLobSystemInstances["Wingtipdb"];
IFilterCollection filter = ect.GetDefaultFinderFilters;
IEntityInstanceEnumerator ects = ect.FindFiltered(filter, lobi);
while (ects.MoveNext) {
 Console.WriteLine(ects.Current["ProductName"].ToString();
}

If the Finder method defines filters (such as a limit, wildcard, or page filter), then these values must
be provided in the call to the FindFiltered method. An IFilterCollection instance can be returned by
calling the GetFilters method of the IMethodInstance. The values for the filters can then be set. The
following code shows how to get the filter collection and set values:

IMethodInstance mi =
 ect.GetMethodInstance(FinderMethodInstanceName, MethodInstanceType.Finder);

IFilterCollection filters = mi.GetFilters;
(filters[0] as LimitFilter).Value = 10;
(filters[1] as PageNumberFilter).Value = 2;
(filters[3] as WildcardFilter).Value = "Bike";
(filters[4] as ComparisonFilter).Value = "CN123720";

660   Inside Microsoft SharePoint 2013

Calling SpecificFinder is done through the FindSpecific method. When calling the FindSpecific
method, you will always provide an Identity object, which represents the identifier for the de-
sired entity instance. Simply create a new Identity object by using the appropriate value and pass
the object as an argument. Identity objects can be created with any data type, but be aware that
String values are case-sensitive when used as Identifiers. The following code shows how to call the
FindSpecific method:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue<BdcService>;

if (service != null) {
//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem;
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances[LobSystemInstanceName];
}

//Execute SpecificFinder
int id = 5;
IMethodInstance mi = ect.GetMethodInstance(SpecificFinderMethodInstanceName,
 MethodInstanceType.SpecificFinder);
IEntityInstance item =
 ect.FindSpecific(new Identity(id), SpecificFinderMethodInstanceName, lobi, true);

To invoke an Updater method, you first use the FindSpecific method to return the entity to update.
The field values of the return entity can then be modified, and those modifications are committed
through the Update method of the IEntityInstance interface. To invoke a Deleter method, you first
use the FindSpecific method to return the entity instance to delete. The entity instance can then be
deleted by using the Delete method of the IEntityInstance interface.

Along with reading or updating entities, you can create new ones. As with other operations, these
changes will flow all the way back to the External System. Of course, if you are writing to the client
cache, the changes will be made only when the client is online. Listing 16-6 shows how to add a new
record to an External System through the ECT.

	 Chapter 16  Business Connectivity Services    661

LISTING 16-6  Creating an entity

IView v = ect.GetCreatorView("Create");
IFieldValueDictionary dict = v.GetDefaultValues;
dict["ProductName"] = "New Toy";
dict["LastUpdate"] = DateTime.Today;
Identity id = ect.Create(dict, lobi);

Using the Administration Object Model
Along with the Runtime Object Models, BCS has an Administration Object Model. The Administra-
tion Object Model allows you to manipulate the metadata for an Application Model. To work with
the Administration Object Model, you must set references to Microsoft.BusinessData.dll and Microsoft.
SharePoint.

As with the Runtime Object Models, you must first connect to the appropriate catalog before you
can manipulate the data. In the case of the Administration Object Model, you must connect to the
AdministrationMetadataCatalog object. Connecting to this catalog requires a reference to BdcService-
ApplicationProxy, just as it did with the Runtime Object Model. Listing 16-7 shows how to connect to
the catalog if your code is running outside a SharePoint context. Inside the context, you can use the
SPServiceContext object as discussed previously.

LISTING 16-7  Connecting to the catalog outside SharePoint

SPFarm farm = SPFarm.Local;
SPServiceProxyCollection spc = farm.ServiceProxies;
BdcServiceApplicationProxy sap =
 (BdcServiceApplicationProxy)
 ((from sp in spc
 where sp.TypeName.Equals("Business Data Connectivity")
 select sp).First.ApplicationProxies.First);

AdministrationMetadataCatalog catalog = sap.GetAdministrationMetadataCatalog;

662   Inside Microsoft SharePoint 2013

The Administration Object Model provides a set of objects that allow you to manipulate the Ap-
plication Model XML. The names of the objects correspond closely with the names of the elements
in the Application Model. Listing 16-8 shows a complete example of creating a simple Application
Model from code and saving it into the metadata catalog.

LISTING 16-8  Creating an Application Model

Model model = Model.Create("MiniCRM", true, catalog);
LobSystem lob =
 model.OwnedReferencedLobSystems.Create("Customer", true, SystemType.Database);
LobSystemInstance lobi = lob.LobSystemInstances.Create("MiniCRM", true);

lobi.Properties.Add("AuthenticationMode", "PassThrough");
lobi.Properties.Add("DatabaseAccessProvider", "SqlServer");
lobi.Properties.Add("RdbConnection Data Source", "CONTOSOSERVER");
lobi.Properties.Add("RdbConnection Initial Catalog", "MiniCRM.Names");
lobi.Properties.Add("RdbConnection Integrated Security", "SSPI");
lobi.Properties.Add("RdbConnection Pooling", "true");

Entity ect = Entity.Create("Customer", "MiniCRM", true,
 new Version("1.0.0.0"), 10000,
 CacheUsage.Default, lob, model, catalog);

ect.Identifiers.Create("CustomerId", true, "System.Int32");

Method specificFinder =
 ect.Methods.Create("GetCustomer", true, false, "GetCustomer");

specificFinder.Properties.Add("RdbCommandText",
 "SELECT [CustomerId] ,[FullName] " +
 "FROM MiniCRM.Names " +
 "WHERE [CustomerId] = @CustomerId");

specificFinder.Properties.Add("RdbCommandType", "Text");

Parameter idParam =
 specificFinder.Parameters.Create("@CustomerId", true, DirectionType.In);

idParam.CreateRootTypeDescriptor(
 "CustomerId", true, "System.Int32", "CustomerId",
 new IdentifierReference("CustomerId",
 new EntityReference("MiniCRM", "Customer", catalog), catalog),
 null, TypeDescriptorFlags.None, null, catalog);

Parameter custParam =
 specificFinder.Parameters.Create("Customer", true, DirectionType.Return);
TypeDescriptor returnRootCollectionTypeDescriptor =
 custParam.CreateRootTypeDescriptor(
 "Customers", true,
 "System.Data.IDataReader, [full assembly name for System.Data]",
 "Customers", null, null, TypeDescriptorFlags.IsCollection, null, catalog);
TypeDescriptor returnRootElementTypeDescriptor =

	 Chapter 16  Business Connectivity Services    663

 returnRootCollectionTypeDescriptor.ChildTypeDescriptors.Create(
 "Customer", true,
 "System.Data.IDataRecord, [full assembly name for System.Data]",
 "Customer", null, null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor.ChildTypeDescriptors.Create(
 "CustomerId", true, "System.Int32", "CustomerId",
 new IdentifierReference("CustomerId",
 new EntityReference("MiniCRM", "Customer", catalog), catalog),
 null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor.ChildTypeDescriptors.Create(
 "FirstName", true, "System.String", "FullName",
 null, null, TypeDescriptorFlags.None, null);

specificFinder.MethodInstances.Create("GetCustomer", true,
 returnRootElementTypeDescriptor,
 MethodInstanceType.SpecificFinder, true);

Method finder = ect.Methods.Create("GetCustomers", true, false, "GetCustomers");

finder.Properties.Add("RdbCommandText",
 "SELECT [CustomerId] , [FullName]FROM MiniCRM.Names");
finder.Properties.Add("RdbCommandType", "Text");

Parameter custsParam = finder.Parameters.Create("Customer", true,
 DirectionType.Return);

TypeDescriptor returnRootCollectionTypeDescriptor2 =
 custsParam.CreateRootTypeDescriptor(
 "Customers", true,
 "System.Data.IDataReader, [full assembly name for System.Data]",
 "Customers", null, null, TypeDescriptorFlags.IsCollection, null, catalog);

TypeDescriptor returnRootElementTypeDescriptor2 =
 returnRootCollectionTypeDescriptor2.ChildTypeDescriptors.Create(
 "Customer", true,
 "System.Data.IDataRecord, [full assembly name for System.Data]",
 "Customer", null, null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor2.ChildTypeDescriptors.Create(
 "CustomerId", true, "System.Int32", "CustomerId",
 new IdentifierReference("CustomerId",
 new EntityReference("MiniCRM", "Customer", catalog), catalog),
 null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor2.ChildTypeDescriptors.Create(
 "FirstName", true, "System.String", "FullName",
 null, null, TypeDescriptorFlags.None, null);

finder.MethodInstances.Create("GetCustomers", true,
 returnRootCollectionTypeDescriptor2,
 MethodInstanceType.Finder, true);

ect.Activate();

664   Inside Microsoft SharePoint 2013

Creating custom event receivers
In SharePoint 2013, Business Connectivity Services introduces the ability to attach event receivers to
External Lists and External Content Types. This capability is based on implementing the new Subscribe
and Unsubscribe stereotypes in an ECT. Figure 16-22 shows a high-level view of the major compo-
nents involved in the notification process.

FIGURE 16-22  Understanding notifications

Custom event receivers are created in exactly the same way as standard list event receivers. This
means that you simply create a class that inherits from SPItemEventReceiver. Custom event receivers,
however, are limited to receiving only the ItemAdded, ItemUpdated, and ItemDeleted events. After it is
created, the custom event receiver can be attached to an External List in the same way as a standard
event receiver. The following code shows how to attach a custom event receiver to an external list:

string assembly = "4-part assembly name";
string className = "namespace.classname";
using (SPSite siteCollection = new SPSite("http://server"))
{
 using (SPWeb site = siteCollection.OpenWeb())
 {
 SPList externalList = site.Lists["ExternalList"];
 externalList.EventReceivers.Add(SPEventReceiverType.ItemAdded,
 assembly, className);
 }
}

When a custom event receiver is attached to an External List, SharePoint automatically creates a
RESTful endpoint to receive incoming notifications. An separate endpoint is created for each sub-
scribed event. SharePoint then calls the Subscribe stereotype on the ECT associated with the External
List. The Subscribe stereotype receives the address of the RESTful notification endpoint and is expect-
ed to save the address somewhere for use later when data changes. It is important to understand that
although SharePoint creates a RESTful endpoint to receive notifications, it is the sole responsibility of
the External System to call this endpoint when data changes. This means that you must create a cus-
tom solution to save the endpoints and invoke them. A typical solution is to implement the Subscribe

	 Chapter 16  Business Connectivity Services    665

method so that it saves endpoints to a database table and returns the primary key of the row. The
primary key is saved by SharePoint and used when the Unsubscribe method is called. The Unsubscribe
implementation uses the primary key to remove the subscription entry.

When data in the External System changes, a custom solution must call each of the saved endpoints.
SharePoint receives the calls and fires any attached event handlers. The endpoint call is performed as
an HTTP POST that can send a message back to SharePoint. This message can be read by the event
receiver through the SPItemEventProperties.ExternalNotificationMessage property. The following code
shows how to call the notification endpoint:

HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create({the notification endpoint});
request.Credentials = CredentialCache.DefaultCredentials;
request.Method = "POST";
request.Headers["X-RequestDigest"] = digest; //A form digest is required to call in
request.Accept = "*";
byte[] bodyBytes = Encoding.UTF8.GetBytes({a message to send});
request.ContentLength = bodyBytes.Length;
request.ContentType = "application/atom+xml";

Stream requestStream = request.GetRequestStream();
requestStream.Write(bodyBytes, 0, bodyBytes.Length);
requestStream.Flush();

using (var response = (HttpWebResponse)request.GetResponse())
{
 if (response.StatusCode != HttpStatusCode.OK)
 MessageBox.Show(response.StatusDescription);
}

Creating .NET Assembly Connectors
A .NET Assembly Connector associates a custom assembly with an ECT so that you can control pre-
cisely how information is accessed, processed, and returned from External Systems. The first step in
developing the connector is to create a new empty SharePoint 2013 solution project and add a new
Business Data Connectivity Model item. Visual Studio provides a completely coded solution when you
add the new model. In fact, you can simply press F5 to start the project and then create new External
Lists right away in SharePoint.

The default project provides an entity named Entity1 along with two classes: Entity1.cs and Entity-
1Service.cs. The Entity1 class provides the properties necessary to hold data from the External System.
The following code is from the Entity1 class in the default connector project. For your own connector,
you would simply create a class containing properties for the data to be returned from the External
System:

public partial class Entity1
{
 public string Identifier1 { get; set; }
 public string Message { get; set; }
}

666   Inside Microsoft SharePoint 2013

The Entity1Service class provides the implementation of stereotypes to perform CRUD operations
against the External System. In order for a connector to support External Lists, it must implement at
least a Finder and SpecificFinder. The following code shows the implementation for the default proj-
ect. Notice how the Finder implementation returns a collection of entity class instances whereas the
SpecificFinder returns a single entity class instance:

public class Entity1Service
{
 public static Entity1 ReadItem(string id)
 {
 Entity1 entity1 = new Entity1();
 entity1.Identifier1 = id;
 entity1.Message = "Hello World";
 return entity1;
 }
 public static IEnumerable<Entity1> ReadList()
 {
 Entity1[] entityList = new Entity1[1];
 Entity1 entity1 = new Entity1();
 entity1.Identifier1 = "0";
 entity1.Message = "Hello World";
 entityList[0] = entity1;
 return entityList;
 }
}

When you’re working with the Business Data Connectivity Model item, there are three explorers/
designers available: the BDC Model Explorer, the Entity Design Surface, and the Method Details pane.
The BDC Model Explorer is used to navigate the nodes of the BDC Metadata Model. The Entity Design
Surface is used to design the ECT that will be associated with the .NET Assembly Connector. The
Method Details pane is used to create the function signatures for ECT operations. Along with these
three new elements, the Business Data Connectivity Model project template also gives you the stan-
dard windows such as the Solution Explorer and the Properties pane. Figure 16-23 shows the tooling
in Visual Studio 2012.

To be successful with the tooling you must understand how the various explorers and designers
relate to the underlying model XML. Furthermore, you must understand which elements of the proj-
ect are affected as you make changes. In particular the BDC Model Explorer and the Method Details
pane can be confusing if their relationships to the underlying XML are not well understood.

Not all of the underlying BDC Metadata Model can be represented in the BDC Model Explorer. In
particular, the BDC Model Explorer shows methods, but not method instances. Methods are used in
the BDC Metadata Model as prototypes, which are subsequently implemented by method instances.
The Method Details pane provides the interface necessary to define the method instances.

The Entity Design Surface is also used to edit the underlying BDC Metadata Model. However, it is
focused on the creation of entities. By using this tool you can create new entities, assign the Identifier,
and create new methods.

	 Chapter 16  Business Connectivity Services    667

FIGURE 16-23  BCS tooling in Visual Studio 2012

Regardless of which tool you are using, the Properties pane can be used to edit the selected node.
The Properties pane lists the type of node and its attributes. Although the nodes have many attri-
butes, most of them are not required. It is not always clear, however, which attributes are required
to implement any particular node. The better you understand the model, the more likely you are to
create the one you need.

The tooling is all designed to edit the underlying BDC Metadata Model, with one exception. The
service class is used to implement the method instances that you define in the model. This class mod-
ule is created automatically and is always given the name of the entity followed by the word Service.
If you change the name of the entity in your model, the service class name is updated automatically.
If you delete the service class from the project, it is recreated the next time you make any changes to
the method definitions.

The methods implemented in the service class have types defined by the input and return param-
eters in the BDC Metadata Model. These types can be simple types or classes. Typically, however,
the Finder and SpecificFinder methods return classes that represent the ECT associated with the .NET
Assembly Connector. In the Business Connectivity Model item, a class named Entity1.cs is created by
default and is returned from the Finder and SpecificFinder methods. These methods are also created
by default when you create a project with the Business Connectivity Model item.

Even though the item template includes a class that has the same name as the entity, there is actually
no connection between the entity definition and the entity class as far as the tooling is concerned.
Changing the name of the entity in the model does not change the name of the class, and the class is
never automatically generated. The class is really just a payload returned from the .NET Assembly
Connector. Its name is meaningless, but it is a best practice to keep the name of the class synchronized

668   Inside Microsoft SharePoint 2013

with the name of the entity it represents. The methods in the service class return instances of the entity
class that are passed on to external lists for display. In more advanced scenarios, you might choose
to implement the entity classes in a separate project so that they can be easily referenced by
custom Web Parts that will display the data.

The tooling is largely focused on defining and implementing methods as opposed to defining the
data returned by the entity class. In the default project template, the entity has a data field named
Message, which is defined as a TypeDescriptor with a TypeName of System.String. The entity class has a
corresponding property whose value is set during the execution of the Finder or SpecificFinder meth-
ods. To add or modify data fields for the ECT, you must make changes to the model in the BDC Model
Explorer and add new properties to the entity class manually.

Although the Visual Studio tooling is helpful, there are times when you must access the underly-
ing BDC Metadata Model as XML either for direct editing or simply to verify the work you have done
using the tools. The BDC Metadata Model can be found in the Solution Explorer as the file with the
.bdcm extension. You can open this file as XML by right-clicking it and selecting Open With from
the shortcut menu. From the Open With dialog box, open the file with the XML Editor. If you make
changes to the underlying model by hand, those changes will be reflected in the various Visual Studio
tools. This is an excellent way to learn the relationships between the BDC Metadata Model and the
Visual Studio tools.

Adding a new entity to the project can be done using the toolbox in Visual Studio. Dragging the
entity object onto the Entity Design surface creates the new entity. When the new entity is created,
Visual Studio automatically creates a new empty entity service class. Visual Studio does not, however,
create a new entity class, which you must define manually. This class should include properties for all
of the data to return from the External System, including the primary key.

After the new entity class is created, an Identifier must be defined against the primary key. In the
default project, the Identifier is named Identitier1. You can create a new Identifier by right-clicking the
entity and selecting Add, Identifier. By using the Properties pane you can subsequently set the name
and data type for the Identifier.

After the entity is defined, you can create new methods for it, which is easily the most confusing
process in the entire project. In the Method Details pane you can choose to create a new method.
Remember that a method is just a stereotype and that you must also create a method instance to
implement the method. You can create a new method instance by clicking the Add Method Instance
link in the Method Details pane. After you have created the method instance, you can specify the
type of the method instance in the Properties pane. Typically, your first method will be a Finder
method.

After the method instance is defined, you must define its parameters. In the case of the default
Finder method, you will typically define a return parameter only. Other method instances might re-
quire input parameters as well as filters. You can create a new parameter by clicking Add a Parameter
in the Method Details pane. By using the Properties pane you can then change the parameter name
and direction.

	 Chapter 16  Business Connectivity Services    669

When a parameter is defined, Visual Studio automatically creates a TypeDescriptor for the param-
eter. The TypeDescriptor acts as a mapping between the data types found in the External System and
the data types returned by the .NET Assembly Connector. Clicking the TypeDescriptor in the Method
Details pane enables you to define the TypeName for the TypeDescriptor. In the case of a Finder meth-
od, the TypeDescriptor is typically a collection of entity instances. Therefore, the IsCollection property
should be set to True before you select the TypeName. After the TypeDescriptor is designated as a col-
lection, you can open the TypeName picker, click the Current Project tab, and select the Product class.
Figure 16-24 shows the Type Name picker in Visual Studio.

FIGURE 16-24  Picking a type name

At this point, you can open the code for the service class and see that Visual Studio has created a
method whose signature is based on the method, parameter, and TypeDescriptor settings. However,
your work is not yet done because the return TypeDescriptor was designated as a collection. Therefore
a new TypeDescriptor must be added to represent the member of the collection. Additionally, each
field in the collection member must be defined.

To create the additional TypeDescriptors, you work in the BDC Model Explorer. In the Model Explorer,
you can view the TypeDescriptor defining the collection. You can define a collection member by right-
clicking the collection TypeDescriptor and selecting Add Type Descriptor from the shortcut menu.
Finally, you must add a TypeDescriptor for every property of the entity you want to return. Take care
to set the Identifier property for the TypeDescriptor that represents the Identifier of the entity, in order

670   Inside Microsoft SharePoint 2013

to designate this property as the one containing the Identifier value. Finally, return to the Method
Details pane and select the method instance. In the Properties pane, set Return Parameter Name and
Return TypeDescriptor to reference the items already created. This completes the definition of the
method, which can now be coded in the service class.

When the .NET Assembly Connector is complete, you can deploy and test it. As with all features
created in Visual Studio 2012, you can easily debug the .NET Assembly Connector by setting break-
points in the code and pressing F5.

Developing SharePoint apps
Along with most of the SharePoint 2013 workloads, Business Connectivity Services has been updated
to work with the app model. App model enhancements include support for OData sources, app-level
External Content Types, and a new client-side object model. Together, these enhancements allow you
to create apps for either on-premises installation or SharePoint online.

Understanding app-level ECTs
With SharePoint 2013, BCS now supports the use of OData sources as the basis for defining an ECT.
Because OData is emerging as an accepted standard for exposing data sources in the cloud, these
services are an ideal source for developing BCS-based apps. When creating a SharePoint app, you
can easily add an ECT based on an OData source by selecting Add, Content Types For An External
Data Source from the project context menu. This action starts a wizard that will prompt you for the
endpoint of the OData source. Figure 16-25 shows the wizard referring to the publically available
Northwind data source.

FIGURE 16-25  Selecting an OData source

	 Chapter 16  Business Connectivity Services    671

After connecting to the source, the wizard prompts you to select from the available entities ex-
posed by the service. All you have to do is select one or more entities and click Finish. Visual Studio
will then generate a BDC Metadata Model and an associated external list within you app project. The
BDC Metadata Model and the external list definition are packaged and deployed with the app, which
uses the model at run time to connect to the source and fill the external list. Figure 16-26 shows the
basic app architecture for accessing the OData source and displaying the data in an External List.

FIGURE 16-26  App-level ECT architecture

Under normal circumstances, BDC Metadata Models are stored in the BDC Service Application
associated with the farm. Such an architecture would be unacceptable for apps, however, because
apps are supposed to be isolated from the other farm elements. In the case of an app, the model is
loaded in an in-memory BDC catalog known as the FileBackedMetadataCatalog. The BDC Metadata
Model deployed with the app is stored in a special document library and subsequently loaded into
the FileBackedMetadataCatalog. After it is loaded, the model is used to determine the connection to
the OData source and what data to retrieve. The external list is then filled with the data in much the
same way as any external list in a SharePoint farm. The only drawback is that the external list will not
be immediately visible. This is because the app pages do not include a Web Part or code for display-
ing the list. This is where some client-side coding comes into play.

Understanding the BCS client object model
When it comes to displaying the data in the External List, you have two options. The first is to make
a RESTful call to the External List. External Lists support the same RESTful access to data that stan-
dard SharePoint lists support. Therefore, there is nothing new to learn, and you can use standard
techniques covered elsewhere in this book. The second option is to use the client-side object model
(CSOM) through JavaScript.

CSOM access to BCS data follows the same general approach used in the server-side model dis-
cussed earlier in this chapter. Because the approaches are similar, it should be easier for developers
to learn the CSOM version. The only big difference is that the CSOM version relies on asynchronous
operations, so the developer must handle several callbacks to be successful.

All of the objects necessary to work with BCS in an app are contained in the sp.js library found
in the LAYOUTS directory. Development begins by retrieving the standard ClientContext object in
JavaScript. After the ClientContext is retrieved, it can be used to access the web associated with the
app and then the in-memory SP.BusinessData.AppBdcCatalog object. When the catalog is accessed, the

672   Inside Microsoft SharePoint 2013

target SP.BusinessData.Entity object can be retrieved by using the entity name and entity namespace
as shown in the following code:

var ctx = SP.ClientContext.get_current();
var ect = ctx.get_web().getAppBdcCatalog().getEntity(entityNamespace, entityName);
ctx.load(ect);

After the entity is retrieved, it can be used to execute the basic stereotypes associated with it. The
JavaScript methods all have names that are similar to the ones found in the server-side object model,
and you can view the complete definition for the methods by examining the sp.debug.js library found
in the LAYOUTS directory. As an example, we’ll walk though executing the Finder method using the
findFiltered method.

The findFiltered method requires that you provide the name of the method instance, values for any
filters associated with the method instance, and the associated SP.BusinessData.LobSystemInstance
object. Retrieving the associated SP.BusinessData.LobSystemInstance object requires a round trip, so
that should be done first by using the following code, which returns a SP.BusinessData.Collections.
LobSystemInstanceCollection object:

var ctx = SP.ClientContext.get_current();

var ect = ctx.get_web().getAppBdcCatalog().getEntity(entityNamespace, entityName);
ctx.load(ect);

var lob = ect.getLobSystem();
ctx.load(lob);

var collection = lob.getLobSystemInstances();
ctx.load(collection);
ctx.executeQueryAsync(onLobSystemInstancesSuccess, onLobSystemInstancesError);

When the collection is returned, you can look through it for the associated SP.BusinessData.
LobSystemInstance object by name. Then you can retrieve and set any required filters. Finally, you
can call the findFiltered method, as shown in the following code:

var ctx = SP.ClientContext.get_current();

for (var i = 0; i < collection.get_count(); i++) {
 if (collection.get_item(i).get_name() === lobSystemInstanceName) {
 lobi = collection.get_item(i);
 break;
 }
}

var filters = ect.getFilters(methodInstanceName);
ctx.load(filters);

var results = ect.findFiltered(filters, methodInstanceName, lobi);
ctx.load(results);

ctx.executeQueryAsync(onExecuteFinderSuccess, onExecuteFinderError);

	 Chapter 16  Business Connectivity Services    673

When the results of the operation are returned, then you can loop through them and read the
property values. Typically, you will take these values and save them into an object array for use when
displaying them in a webpage. The following code shows how the resulting records can be read:

for (var i = 0; i < results.get_count() ; i++) {
 var entityInstance = results.get_item(i);
 var fields = entityInstance.get_fieldValues();
 var v1 = fields.ProductID;
 var v2 = fields.ProductName;
 var v3 = fields.CategoryName;
 var v4 = fields.UnitsInStock;
 var v5 = fields.ReorderLevel;
}

Summary

Business Connectivity Services (BCS) is a powerful mechanism for connecting SharePoint to External
Data. BCS solutions can be imagined to span a spectrum from simple no-code solutions to full-code
solutions using run-time object models and .NET Assembly Connectors. SharePoint developers should
think of these BCS components as a primary mechanism for creating solutions that require data from
an external source.

		 675

C H A P T E R 1 7

SharePoint social enterprise
features

Social enterprise features in Microsoft SharePoint have forever changed for the better with the
release of SharePoint 2013. Many of SharePoint’s new social features allow organizations and their

people almost instant access to social capabilities ranging from newsfeeds, to following people and
content, to taking advantage of Yammer, one of Microsoft’s recent acquisitions.

The investment that Microsoft has put into these new features, along with the global trends in
social components within organizations, attest to the fact that social components can be a game
changer for how people collaborate and communicate with one another throughout the workplace.
Efficiency and productivity can dramatically increase as a result of including social features within
your organization’s roadmap for your intranet, extranet, and public-facing sites. This increased atten-
tion can also be attributed to the fact that many more organizations have gone global or have a dis-
persed workforce than ever before, which means that social features are often viewed as the hopeful
keystone for ensuring a connected workplace and team even though the individuals might be miles
or countries apart.

What’s new in SharePoint 2013

There have been many changes within the social space of SharePoint. Most people say that it has
been rebuilt from the ground up, and in many cases this is an accurate statement. One of the primary
reasons for this rebuild might have been to make the social experience with SharePoint 2013 truly
people-centric. This will become more evident as you read this chapter and learn about many of these
social components.

Community portals and sites are a much-needed upgrade to the discussion forums that were
available in SharePoint 2010. Taking advantage of the badge and reward system found within these
sites offers up new incentives and opportunities for portal users within an organization to not only
help other coworkers, but to obtain merit and recognition in the form of a badge that the rest of the
organization can view.

676   Inside Microsoft SharePoint 2013

The My Sites functionality has been simplified and enhanced all at the same time. The UI and
navigational elements found within personal sites have been simplified and modernized to comply
with the new modern UI user experience. This has promoted the intuitive nature and experience that
should exist within a personal site.

Microblogging is available within SharePoint 2013 in the form of social newsfeeds. These social
newsfeeds make use of popular social features such as @ mentions, hashtags, replies, likes, and em-
bedding links and videos within a post or reply. This is a vast improvement over the activity feed that
could be used within SharePoint 2010. Yammer also makes use of the same popular social abilities of
SharePoint’s social feeds, but it also has the added benefit of being capable of being either a stand-
alone solution or one that integrates with SharePoint. Yammer will be discussed in more detail in the
section titled “Understanding Yammer” later in this chapter.

In addition to all these new and ready-to-use feature sets, there have been numerous enhance-
ments to the SharePoint Object Models (OMs) and APIs, which we will discuss in detail later in this
chapter, within the section titled “Working with the social APIs” and throughout this chapter.

Understanding social components

With something as new and vast as the social additions in SharePoint 2013, it is best to organize the
subject into manageable pieces so that a good understanding can eventually be obtained. One of
the best ways to organize these new additions is to place them into one of three major pillars or com-
ponents. Figure 17-1 illustrates the breakdown of these components, which are user profiles, social
feeds, and following.

FIGURE 17-1  The SharePoint 2013 social components fall into three major categories.

	 Chapter 17  SharePoint social enterprise features    677

The first pillar or component is user profiles. Simply put, profiles exist to allow people to be rep-
resented within SharePoint. The next logical step is to have properties within these profiles so that
they can become more meaningful and useful. Properties can range in purpose and might not be
visible even to the person to whom the profile belongs. Organizations have been known to use profile
properties that are not visible to a typical user for operational needs, such as storing asset tag IDs for
equipment that has been assigned to the person.

The second component is social feeds. Social feeds have taken the place of the activity feed found
within SharePoint 2010. Social feeds at a high level can be broken down into two types: public and
private. A public feed is what you would find if you went to someone’s profile page and looked at the
newsfeed on that page, whereas a private feed could be a feed that exists on a team site, where only
those who have permissions to the team site can view the newsfeed.

The third and final social component is following. Following can be looked at as taking the place
of Colleagues in SharePoint 2010, with some much-needed benefits. Some of the benefits are obvious
when you look back at Figure 17-1; not only can you follow people, but you can also follow docu-
ments, sites, and tags.

These social pillars or components, in addition to Yammer, have produced the potential for a rich
social ecosystem. As you continue to read through this chapter, we will examine each of these compo-
nents in further detail. We will also look at how to access and extend these social components within
SharePoint itself or within other line of business (LOB) applications.

Working with the social APIs
When the social components of SharePoint were rewritten, a rich set of APIs were made available
to provide access to each of the primary social components previously mentioned. The server-side
object model (SSOM), client-side object model (CSOM), and REST API are all available tools for access-
ing or extending a social component. Chapter 2, “SharePoint development practices and techniques,”
introduced you to these APIs, so we will not go into any further detail on what each of them are;
however, we will look into the social-centric namespaces and endpoints that they offer and how they
allow you to write code against the social components.

The server-side object model has been around the longest and, as such, has the most complete set
of APIs and classes available. The main social namespaces for the server-side object model are:

■■ Microsoft.Office.Server.Social (social feeds and following)

■■ Microsoft.Office.Server.UserProfiles (user profiles and user profile properties)

■■ Microsoft.Office.Server.SocialData (ratings, feedback, and comments)

If you did custom development work in SharePoint 2010, you might have also used the API in the
Microsoft.Office.Server.ActivityFeed namespace. It is important to note that this namespace and its API
are deprecated, because that functionality has been replaced by newsfeeds and the APIs just listed.

678   Inside Microsoft SharePoint 2013

The client-side object model is vastly improved over previous versions, though there are still a few
core namespaces or classes that are found in the server-side object model that are absent from the
client-side object model. As an example, there is no client-side accessibility to the Microsoft.Office.
Server.SocialData namespace. The main social namespaces for the client-side object model are:

■■ Microsoft.SharePoint.Client.Social (social feeds and following)

■■ Microsoft.SharePoint.Client.UserProfiles (user profiles and user profile properties)

When comparing the server-side and client-side lists of namespaces, you can tell that there truly is
more commonality then disparity between the two object models. The increased client-side func-
tionality has also brought with it a new recommended approach for writing code against SharePoint
2013, which is that whenever possible you should use the client APIs in place of the server-side object
model.

Understanding user profiles

User profiles are vital to the social experience within SharePoint, because this is where people are rep-
resented within the SharePoint environment. It is imperative that you remember that for a person to
participate in the social experience he or she must have a profile and a My Site. This is a major change
from what might have been typical in SharePoint 2010. In SharePoint 2010, many organizations by
way of their governance committee might have elected to turn on all the profile features except the
storage component, which would provision a site collection for a person. This approach still allowed
profiles, the profile page, the organizational chart, and the activity feed to function, without requiring
the storage for additional content databases. In SharePoint 2013, this same approach offers the ability
to have profiles and the organizational chart, but social feeds and following, which take the place of
the activity feed, would not be available. The primary reason for this is because the microblogging
that surfaces in social feeds is now stored within the My Site Host content database, whereas in Share-
Point 2010 the activity feed was stored in one of the social databases that supported the User Profile
Service Application. There are many good reasons why the re-architecture is justified, but as a result
you need to be more mindful in your planning of user profiles within your SharePoint implementa-
tions now and how they and My Sites can determine what social features can be used.

User profiles are also significant because of the properties that are stored within them. Everything
from a user’s first and last name to the user’s office phone number is often available in the profile,
which is easily viewable by way of the user profile page, as shown in Figure 17-2. Organizations might
even elect to have user profiles with SharePoint be the single source of a user’s data, because of the
User Profile Service Application’s ability to aggregate properties from many disparate systems (such
as Personnel and Financial) and also because of the APIs that can be used to access these properties
from the profile store.

	 Chapter 17  SharePoint social enterprise features    679

FIGURE 17-2  A user profile page contains information about the user.

Retrieving user profile properties
One of the most common requirements is often to simply access a set of user profile properties for a
particular purpose. This purpose could be for use within a SharePoint Web Part, to showcase the up-
coming birthdays for the current month or to show office phone numbers within an LOB application
that is available outside of SharePoint. It is wise to examine all of the business and functional require-
ments before coming up with the solution design, but after that has been done, it is time to evaluate
which API is the most appropriate for the job. For example, in the case of simply needing to query for
a few user profile properties, the client-side APIs would be the recommended approach; however, if
you needed to write back to any of these properties, you would need to use the server-side object
model. This is due to a limitation of the client-side object model that gives the API only Read access to
user profile properties, with the one exception being the user profile photo property. This single-write
limitation can bring a solution to a sudden halt if it is not identified and vetted against the functional
requirements of the solution before code begins to be written.

Assume for this section’s example that only the retrieval of user profiles properties is needed.
Examples for both the CSOM and REST APIs will be shown. If you have not used CSOM or REST to per-
form coding tasks against SharePoint, it is recommended that you read Chapter 2 before continuing.
The goal for this section’s example will be to retrieve the office phone number for a user and likewise
for all of that user’s peers.

We will start off with the CSOM approach. You will need to have your SharePoint development
environment properly configured before you begin; if you have not done so, please read the informa-
tion in Chapter 3, “Server-side solution development,” on how to set up a development environment.

Begin by creating a new Microsoft Visual Studio solution and project. Remember, the nice thing
about using the client-side approach is that you do not have to choose one of the SharePoint project
templates; you could even choose a console project template if you want. The examples throughout
this chapter use a project based on the ASP.NET Empty Web Application project template, because
this is more realistic than the need for a console application, as shown in Figure 17-3.

680   Inside Microsoft SharePoint 2013

FIGURE 17-3  The new project is selected in the Visual Studio 2012 New Project window.

When the new project loads in Visual Studio, you will want to add references to the required client-
side assemblies for interacting with user profiles by using C# and CSOM. They are:

■■ Microsoft.SharePoint.Client

■■ Microsoft.SharePoint.ClientRuntime

■■ Microsoft.SharePoint.Client.UserProfiles

When you have included these references, you will need to create a new page within the project,
as shown in Figure 17-4.

After you have added the Web Form, you will need to add the following namespaces to the code-
behind file so you can easily access the required objects for this example:

■■ Microsoft.SharePoint.Client

■■ Microsoft.SharePoint.Client.UserProfiles

	 Chapter 17  SharePoint social enterprise features    681

FIGURE 17-4  A new webpage is added to the project.

When that is complete, you will need to add a few variables to the code-behind of the Web Form
to store the URL of a SharePoint site, so that you can get context and get the name of the user whose
peers’ office phone numbers we want to retrieve. The code in Listing 17-1 shows these variables set
for a SharePoint site at http://portal.contoso.com and a user named Aaron Painter, who has a domain
username of aaronp.

LISTING 17-1  Creating variables

//Variables
string siteURL = "http://portal.contoso.com";
string curUser = @"contoso\aaronp";

Now that you have these variables set, you can initialize the SharePoint client context by using the
siteURL you set up to gain context within SharePoint. This is shown in Listing 17-2.

682   Inside Microsoft SharePoint 2013

LISTING 17-2  Creating context

//Variables
ClientContext clientContext = new ClientContext(siteURL);

Having context within SharePoint allows you to now instantiate a PeopleManager object. The
PeopleManager object is used to access user profile properties and other operations that are
related to people. After you initialize a PeopleManager object, you will also need to initialize a
PersonProperties object to gain access to the profile properties. Listing 17-3 shows both objects
being initialized.

LISTING 17-3  Initializing the PeopleManager and PersonProperties objects

//Initialize objects for profile properties access
PeopleManager peopleManager = new PeopleManager(clientContext);
PersonProperties personProperties = peopleManager.GetPropertiesFor(curUser);

If you are not already familiar with CSOM and you happened to have added the personProperties
object to a watch, you would have noticed quite a few exceptions being thrown, as shown in Figure
17-5. This is because with the client-side approach, code is sent to the SharePoint server in batches,
where it is converted into server-side code, executed, and then sent back. The act of sending the code
is available in both synchronous and asynchronous mode and requires an action on the client side,
such as the execution of the requests registered within the ClientContext object by calling its Load()
and ExecuteQuery() methods.

FIGURE 17-5  The personProperties object is shown here within a watch panel.

As you can imagine, if all of the solutions you build from this point on use the CSOM approach,
that would be a lot of calls being sent to SharePoint. To be as efficient as possible, you should only re-
quest those properties that you need access to at the moment. In this case, you need to get the peers
for Aaron Painter, and for good measure you will also request Aaron’s display name and office phone
number to display along with his peers within a list you will generate. Listing 17-4 shows the updated
code to request the properties, and Figure 17-6 shows watch panel after you apply the code.

	 Chapter 17  SharePoint social enterprise features    683

LISTING 17-4  Updated code block including Load() and ExecuteQuery() methods

//Get Aaron Painter's Office Phone and Peers
PeopleManager peopleManager = new PeopleManager(clientContext);
PersonProperties personProperties = peopleManager.GetPropertiesFor(curUser);
clientContext.Load(personProperties, p => p.DisplayName, p => p.UserProfileProperties
 ,p => p.Peers);
clientContext.ExecuteQuery();

FIGURE 17-6  The updated personProperties object is shown within the watch panel.

After the updated code is executed, you can tell that Aaron Painter’s Display Name, Peers, and
UserProfileProperties properties are not throwing exceptions any longer and have actual values that
you can use. You might be wondering where the Office Phone property is; it’s actually stored within
the UserProfileProperties array under the key WorkPhone. The Peers object is also an array that stores
the account name for each of Aaron’s peers. This proves useful because you simply need to execute
the same block of code, minus the request for the Peers property, as you initially did for Aaron. Listing
17-5 shows the completed code needed to access both Aaron’s information and the information of his
peers. Listing 17-6 shows the markup necessary to complete the example.

LISTING 17-5  Updated code block for accessing the user’s information and peers’ information

//Variables
string siteURL = "http://portal.contoso.com";
string curUser = @"contoso\aaronp";
ClientContext clientContext = new ClientContext(siteURL);

//Get Aaron Painter's Office Phone and Peers
PeopleManager peopleManager = new PeopleManager(clientContext);
PersonProperties personProperties = peopleManager.GetPropertiesFor(curUser);
clientContext.Load(personProperties, p => p.DisplayName, p => p.UserProfileProperties
 ,p => p.Peers);
clientContext.ExecuteQuery();
//Get Aaron Painter's Information
Dictionary<string, string> myOfficePhone = new Dictionary<string, string>();
myOfficePhone.Add(personProperties.DisplayName,
personProperties.UserProfileProperties["WorkPhone"]);
List<string> curUserPeers = personProperties.Peers.ToList<string>();

684   Inside Microsoft SharePoint 2013

//Get Office Phone for each of Aaron Painter's Peers
Dictionary<string,string> peersWithOfficePhones = new Dictionary<string,string>();
foreach (string peer in curUserPeers)
{
personProperties = peopleManager.GetPropertiesFor(peer);
clientContext.Load(personProperties, p => p.DisplayName, p => p.UserProfileProperties);
clientContext.ExecuteQuery();
peersWithOfficePhones.Add(personProperties.DisplayName,
 personProperties.UserProfileProperties["WorkPhone"]);
}

//Bind Aaron's Information to Repeater for Rendering

rptMyInfo.DataSource = myOfficePhone;
rptMyInfo.DataBind();

//Bind Peers Information to Repeater for Rendering
rptPeerInfo.DataSource = peersWithOfficePhones;
rptPeerInfo.DataBind();

LISTING 17-6  ASPX markup code

<div>
 <asp:Repeater ID="rptMyInfo" runat="server">
 <HeaderTemplate><div><h3>My Information</h3></div></HeaderTemplate>
 <ItemTemplate>
 <div><%# Eval("Key") %></div>
 <div><%# Eval("Value") %></div>
 </ItemTemplate>
 <FooterTemplate><hr /></FooterTemplate>
 </asp:Repeater>
 <asp:Repeater ID="rptPeerInfo" runat="server">
 <HeaderTemplate><div><h3>My Peers</h3></div></HeaderTemplate>
 <ItemTemplate>
 <div><%# Eval("Key") %></div>
 <div><%# Eval("Value") %></div>
 </ItemTemplate>
 <FooterTemplate></FooterTemplate>
 </asp:Repeater>
 </div>

If you have success executing the code, you should find something similar to what is displayed
within Figure 17-7, but probably with different names and numbers.

	 Chapter 17  SharePoint social enterprise features    685

FIGURE 17-7  The user’s information and his peers’ information are displayed.

To ensure that the solution is indeed a success, you can compare the list of peers returned with
those found on the user’s manager’s profile page. As Figure 17-8 suggests, you have successfully
returned Aaron’s peers within the example.

FIGURE 17-8  The manager’s profile page shows a listing of the user’s peers.

Next you will perform the same example, but you will use the REST API in place of CSOM. As
described earlier, the REST API in SharePoint 2013 is extremely robust in comparison to its implemen-
tation in previous versions of SharePoint. To begin the REST example, you can use the same Visual
Studio project that was used for the CSOM example and simply add a new HTML page to the project,
as shown in Figure 17-9.

686   Inside Microsoft SharePoint 2013

FIGURE 17-9  Add a new HTML page to the project.

The fact that you are selecting an HTML page should give you an indication that you will not be
using references in the way you typically would for CSOM or SSOM. With REST, you typically make
requests by sending a POST or GET request to an available endpoint. Just as with CSOM, the code will
interact with a PeopleManager object, with the one difference being how you access the PeopleManager
object. With REST, you access it by calling an endpoint at the following address: http://<siteUri>/_api
/SP.UserProfiles.PeopleManager. By using this address, you can call the GetPropertiesFor method and
pass in variables to return the desired results. Listing 17-7 shows how you can build the GET request to
the PeopleManager endpoint to return back the user’s properties and the account names of his peers.

	 Chapter 17  SharePoint social enterprise features    687

LISTING 17-7  HTML markup and REST GET request to PeopleManager

 <html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script src ="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.0.2.min.js"></script>
 <script type="text/javascript">
 $().ready(function () {

 //variables
 var curUser = "contoso\\aaronp";
 var profileEndPoint = "http://portal.contoso.com/_api/SP.UserProfiles.
PeopleManager/GetPropertiesFor(accountName=@v)?@v='" + curUser + "'";

 $.ajax({
 type: "GET",
 contentType: "application/json; charset=utf-8",
 datatype: "json",
 url: profileEndPoint,
 headers: { "ACCEPT": "application/json;odata=verbose" },
 success: onSuccess,
 error: onFail
 });
 function onSuccess(data) {
 var myDisplayName = data.d.DisplayName;
 var myPeers = data.d.Peers;
 $("#myDisplayName").html("" + myDisplayName + "");

 $.each(myPeers.results, function (value,key) {
 $("#myPeers").after("<div>" + key + "</div>");
 });

 }

 function onFail(errorObject, errorMessage) {
 $("#errMessage").text("Error: " + errorMessage);
 }
 });
 </script>
</head>
<body>
 <div><h3>My Information</h3></div>
 <div id="myDisplayName"></div>
 <div id="myWorkPhone"></div>
 <hr />
 <div><h3>My Peers</h3></div>
 <div id="myPeers"></div>
 <div id="errMessage"></div>
</body>
</html>

688   Inside Microsoft SharePoint 2013

Walking through the code from top to bottom, the first need is to reference the jQuery library.
In Listing 17-7, this was done by using the ASP.NET Content Delivery Network (CDN). After the script
reference, a script block is declared with a jQuery document.ready() function. For reasons of simplic-
ity, all variables and declarations are made within this code block to avoid naming conflicts within the
namespace. If you would like to learn more about namespaces, you can do so in Chapter 5, “Client-
side programming.” Continuing on through the code, variables are declared for Aaron Painter and
for the PeopleManager endpoint. An Asynchronous JavaScript and XML (AJAX) method is used to
execute the GET request, which passes the endpoint as the URL to which the request is to be submit-
ted, and requests that the results be returned as a JavaScript Object Notation (JSON) object. Both a
success and a failure method are used to capture either the returned JSON object or the error object.
The success method accepts a data object whose top-level properties contain the DisplayName and
Peers properties for the requested user profile properties. jQuery is used to render these results to the
markup found with the body element of the HTML markup in Listing 17-7.

At this point, if you viewed the HTML page within the browser, you should find something similar
to Figure 17-10.

FIGURE 17-10  The rendered results are returned from the REST call.

As you can tell, this is very close to the results that you received when using the CSOM approach.
The only things missing are the display names and phone numbers for each peer in place of the ac-
count name. Listing 17-8 has a few additional utility methods that help you complete this task. The
matching results to the CSOM example are shown in Figure 17-11.

	 Chapter 17  SharePoint social enterprise features    689

LISTING 17-8  Completed HTML markup and REST GET request to PeopleManager

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script src ="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.0.2.min.js"></script>
 <script type="text/javascript">
 $().ready(function () {

 //variables
 var curUser = "contoso\\aaronp";
 $.ajax({
 type: "GET",
 contentType: "application/json; charset=utf-8",
 datatype: "json",
 url: buildProfileEndPoint(curUser),
 headers: { "ACCEPT": "application/json;odata=verbose" },
 success: onSuccess,
 error: onFail
 });

 function GetUserProfile(user) {
 //send GET request to SharePoint
 $.ajax({
 type: "GET",
 contentType: "application/json; charset=utf-8",
 datatype: "json",
 url: buildProfileEndPoint(user),
 headers: { "ACCEPT": "application/json;odata=verbose" },
 success: function (data) {
 $("#myPeers").after("<div>" + data.d.DisplayName +
 "</div><div>" + getValueByKey

("WorkPhone", data.d.UserProfileProperties.results) + "</div>");
 },

 error: function (errorObject, errorMessage) {
 $("#errMessage").text("Error: " + errorMessage);
 }
 });
 }

 function onSuccess(data) {
 var myDisplayName = data.d.DisplayName;
 var myWorkPhone = getValueByKey("WorkPhone",
 data.d.UserProfileProperties.results);
 var myPeers = data.d.Peers;
 $("#myDisplayName").html("" + myDisplayName + "");
 $("#myWorkPhone").text(myWorkPhone);

690   Inside Microsoft SharePoint 2013

 $.each(myPeers.results, function (value,key) {
 GetUserProfile(key);
 });

 }
function onFail(errorObject, errorMessage) {
 $("#errMessage").text("Error: " + errorMessage);
 }

 //Utility Functions
 function getValueByKey(key, results) {
 var item = jQuery.grep(results, function (e) {
 if (e.Key === key)
 return e;
 })[0].Value;

 return item;
 }

 function buildProfileEndPoint(user) {
 return "http://portal.contoso.com/_api/SP.UserProfiles.PeopleManager/
 GetPropertiesFor(accountName=@v)?@v='" + user + "'"
 }

 });
 </script>
</head>
<body>
 <div><h3>My Information</h3></div>
 <div id="myDisplayName"></div>
 <div id="myWorkPhone"></div>
 <hr />
 <div><h3>My Peers</h3></div>
 <div id="myPeers"></div>
 <div id="errMessage"></div>
</body>
</html>

FIGURE 17-11  The rendering of the REST GET request is completed.

	 Chapter 17  SharePoint social enterprise features    691

Now that you have completed an example of retrieving profile properties not only for a user but
also for his peers by using both CSOM and the REST API, you have the necessary foundation to work
with profiles and access properties when needed.

Understanding social feeds

As stated earlier in this chapter, social feeds for all intents and purposes have taken the place of the
activity feed found in SharePoint 2010. The activity feed was a step forward from versions previous to
2010; however, with the ever-increasing demand for social features within the collaboration space, this
feed would not sufficiently meet today’s standards. This is why there is more than one type of social
feed and why what you can do within each feed has vastly improved over the activity feed.

The important thing to remember with these feeds is that they are people-centric; even if you
choose to interact with a document, the interaction itself is taken by a person or an Actor, which is
one of the primary objects you’ll be working with whenever you are coding against the user profile
and social namespaces.

Another object that you’ll want to become familiar with is the SocialFeedManager, which is similar
to the PeopleManager in terms of how you go about accessing social feeds as with a profile.

By the end of this chapter, you will have completed examples that will be able to request the social
feed for the current user, post to your feed, request the social feed for a team site, and post to a social
feed for a team site.

Just as in the examples in the previous section, we will work through both a CSOM and a REST
approach.

Retrieving posts from your newsfeed
The term microblogging is new to SharePoint and might be a mystery to some as to what it actually
entails. A short description is that it is the act of posting short blocks of text or updates. These up-
dates can be created through the SharePoint UI by a person using his personal feed, which is shown
in the newsfeed found on his personal site, or from a private feed, which is a newsfeed found typically
on a team site. As you can tell, these actions are very similar to those found on a full-fledged blog
site, just minified in terms of the amount of content that is typically posted.

As a developer you can start to imagine all the possibilities that are available. To help you get a
good idea of how microblogging works, the first example you will complete is retrieving posts from
your own personal feed.

From within your Visual Studio project, create a new Web Form page similar to the one shown in
Figure 17-12.

692   Inside Microsoft SharePoint 2013

FIGURE 17-12  A new form is selected in the New Web Form dialog box.

The following namespaces need to be added to the code-behind for the newly created Web Form
so that you can easily access the necessary objects:

■■ Microsoft.SharePoint.Client

■■ Microsoft.SharePoint.Client.Social

Next you will need to declare variables for a site URL to gain context within SharePoint by passing
it to a ClientContext object. Similar to the technique you used to get the profile for a user, there is a
manager class for accessing social feeds that is called the SocialFeedManager. By using the SocialFeed-
Manager, you can retrieve, create, and delete posts. The methods listing here for the SocialFeedMa-
nager class give a good indication of what its purpose is:

■■ CreateImageAttachment

■■ CreatePost

■■ DeletePost

■■ GetAllLikers

■■ GetFeed

■■ GetFeedFor

■■ GetFullThread

	 Chapter 17  SharePoint social enterprise features    693

■■ GetMentions

■■ GetPreview

■■ GetPreviewImage

■■ GetUnreadMentionCount

■■ InitOnePropertyFromJson

■■ LikePost

■■ LockThread

■■ SuppressThreadNotifications

■■ UnlikePost

■■ UnlockThread

As you can tell, a lot of heavy lifting is done for you via this class. For now, the method that you
will want to take advantage of is the one aptly named GetFeed, because you want to get the current
user’s feed.

To use the GetFeed method, you first need to create an instance of ClientContext and then pass it
to an instance of the SocialFeedManager, as shown in Listing 17-9.

LISTING 17-9  CSOM and C# code passing the ClientContext object to the SocialFeedManager object

//variables
string siteURL = "http://portal.contoso.com";
//Create instances for ClientContext and SocialFeedManager
ClientContext clientContext = new ClientContext(siteUrl);
SocialFeedManager feedManager = new SocialFeedManager(clientContext);

Now that you have a feedManager object, you can execute the GetFeed method. It is important to
note that this method can only be used for the current user. When you use the GetFeed method, one
of the parameters you need to specify is a feed type, which is of the SocialFeedType enumeration. The
available types in the enumeration are:

■■ Everyone

■■ Likes

■■ News

■■ Personal

■■ Timeline

694   Inside Microsoft SharePoint 2013

Basically what each feed type shows is a filtered version of the Everyone feed type, which accounts
for all activity for the current user’s organization. Table 17-1 shows each of the available feed types
and the data that is returned by each.

TABLE 17-1  Social feed types for a user

Feed type Description

Everyone All recent activities by the current user’s organization.

Likes All microblog posts liked by the current user.

News All activities by the current user; people and content that the user is following, sorted by modified
date. Emphasis is on date as to what is returned.

Personal All activities by the current user only.

Timeline All activities by the current user, people and content that the user is following, sorted by created
date. Emphasis is on the user’s social graph as to what is returned.

In this example you will use the News type, because it will show content that you know the user
would be interested in. In addition to the type of feed, you also must specify options for the feed be-
ing returned before you can request the feed. The options are based on the SocialFeedOptions class.
There are four properties that you can use when instantiating an instance of the SocialFeedOptions
class:

■■ MaxThreadCount  Allows you to specify the maximum number of threads to return. The
default is 20 threads.

■■ NewerThan  Allows you to specify a date after which the thread must have been created.

■■ OlderThan  Allows you to specify a date before which the thread must have been created.

■■ SortOrder  Allows you to specify the order in which the threads are returned. There are only
two options, passed as integers. Use 0 to sort by the modified date and 1 to sort by created
date of the root post.

Now is a good time to go over how posts are constructed from an object hierarchy before we
progress any further with this code example. Figure 17-13 shows a newsfeed in which Aaron Painter
has started a conversation about CSAT. There are three replies by others in the organization.

FIGURE 17-13  This newsfeed shows replies.

	 Chapter 17  SharePoint social enterprise features    695

The breakdown of this conversation from an object perspective is shown in Figure 17-14.

FIGURE 17-14  The newsfeed is represented as SharePoint objects.

The newsfeed is a SocialFeed object that contains threads that are SocialThread objects. From the
SharePoint UI, as shown in Figure 17-13, threads are represented as conversations. Each thread has a
root post, the original post or the post that started the conversation, and all the replies to the thread.
Notice that all posts, regardless of whether they are the root post or one of the replies, are stored as
SocialPost objects. The only difference is that the replies are stored in an array within the thread.

Recall that the GetFeed method allows you to pass into the SocialFeedOptions object the maximum
number of threads to return, but it didn’t have anything for you to specify the maximum number of
replies to return. This is because the GetFeed method will only return the two most recent replies for
the thread or conversation. Even though only two will be returned, you can read the TotalReplyCount
property for the thread to determine if there are, in fact, more replies. If so, the GetFullThread method
will return the thread with all of the replies, if you pass it the thread ID. You might wonder why the two-
reply limit is placed on the GetFeed method. If you spend enough time within the SharePoint UI, you
will notice that all conversations use this structure. Figure 17-15 shows the conversation Aaron Painter
started before the Show All Replies link was clicked. This mechanism was put into place to be more
resource-friendly and ensure that the newsfeed could render as quickly as possible. You would also be
correct if you assumed that the Show All 3 Replies link within Figure 17-15 would call the GetFullThread
method if you clicked on it, which would give you the view that is shown back in Figure 17-13.

FIGURE 17-15  This newsfeed thread shows only the two most recent replies.

696   Inside Microsoft SharePoint 2013

Now that you have a better understanding of how posts are treated in SharePoint, you can con-
tinue with the code example by executing the GetFeed method and displaying the results within a
Repeater control, as shown in Listing 17-10.

LISTING 17-10  CSOM and C# code for requesting the newsfeed for the current user

//Code-behind
//variables
string siteURL = "http://portal.contoso.com";
//Create instances for ClientContext and SocialFeedManager
ClientContext clientContext = new ClientContext(siteURL);
SocialFeedManager feedManager = new SocialFeedManager(clientContext);
ClientResult<SocialFeed> personalFeedResults = feedManager.GetFeed(SocialFeedType.News,
new SocialFeedOptions()
{
MaxThreadCount = 5
});
clientContext.ExecuteQuery();
rptPosts.DataSource = personalFeedResults.Value.Threads;
rptPosts.DataBind();
//ASPX Markup
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="MySocialHome.aspx.cs"
Inherits="MySocialHub.MySocialHome" %>
<%@ Import Namespace="Microsoft.SharePoint.Client.Social" %>
<%@ Import Namespace="Microsoft.SharePoint.Client" %>
<%@ Assembly Name="Microsoft.SharePoint.Client.UserProfiles, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Assembly Name="Microsoft.SharePoint.Client.Runtime, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <div><h3>My Newsfeed</h3></div>
 <asp:Repeater ID="rptPosts" runat="server">
 <HeaderTemplate></HeaderTemplate>
 <ItemTemplate>
 <!-- Post Properties -->
 <div><%# ((SocialThread)Container.DataItem).RootPost.Text %></div>
 <!-- Post Replies -->
 <asp:Repeater id="rptPostReplies" runat="server"
 DataSource="<%# ((SocialThread)Container.DataItem).Replies %>">
 <HeaderTemplate></HeaderTemplate>
 <ItemTemplate>
 <%# Eval("Text") %>
 </ItemTemplate>
 <FooterTemplate></FooterTemplate>
 </asp:Repeater>

	 Chapter 17  SharePoint social enterprise features    697

 </ItemTemplate>
 <FooterTemplate></FooterTemplate>
 </asp:Repeater>
 </div>
 </form>
</body>
</html>

After running this code, you can compare what is shown in Figure 17-16 with what the SharePoint
UI on the newsfeed was showing and note that they match.

FIGURE 17-16  The current user’s newsfeed is rendered to an ASPX page by using CSOM and C#.

Now that you have successfully retrieved posts from a newsfeed by using CSOM, you will walk
through the same example by using the REST API.

Start the REST API example by first creating a new HTML page within your Visual Studio project, as
shown in Figure 17-17.

FIGURE 17-17  Create a new HTML page named MySocialREST.html.

698   Inside Microsoft SharePoint 2013

Within the markup for the HTML page, you will want to include a script reference to the jQuery
library so that you can use the AJAX method for communication with the REST API. The next step is to
determine which endpoint to use when making a request for a social feed. With the CSOM example
you used the GetFeed method to get the feed for the current user, and then specified the type that
you would like returned. However, before you could use the GetFeed method you had to have a
SocialFeedManager object to work with first. This is represented within the REST API by an endpoint
located at http://<site>/_api/social.feed. When you use this endpoint, the type is determined by the
endpoint you choose to append to the social feed endpoint. In Table 17-2, some of the key endpoints
for use with the current user are listed, along with a description.

TABLE 17-2  Social feed endpoints for a user

Endpoint Description

My/Feed Activities by the current users only

My/Likes All microblog posts liked by the current user

My/News All activities by the current user, people and content that the user is following from the
newsfeed, sorted by modified date

My/MentionFeed All activities that mention the current user

My/Timelinefeed All activities by the current user, people and content that the user is following, sorted by
created date

You will use the My/News endpoint for requesting the posts for the current user for this example.

The next step is to pass feed options to the newsfeed endpoint. This is accomplished by pass-
ing parameters to the endpoint. You will use the max count of five again for the number of threads
to return. Parameters can be passed to the REST endpoint in a few different ways. The appropriate
approach will typically depend on what you are trying to pass as the parameters. If, for instance, you
are passing a simple number such as 5, as in this case when you want to specify the max thread count,
you can pass it like this: http://<site>/_api/social.feed/my/news(MaxThreadCount=10). However, if you
have a case in which a special character is involved, such as the backslash (\) used when passing an
account name structured in domain\username style, then you might want to use something called an
@ alias. An @ alias is used like this: http://<site>/_api/social.feed/actor(item=@v)/feed?@v=’domain\\
username’. A URL is not limited as to the number of @ aliases you can use. Just make sure to use a
different @ alias for each of the parameters you want to pass. For example, if you wanted to also
pass a date for declaring the NewerThan property in addition to the username, you could still use @v
for the username and @x for the date, which would have a URL structure like this: http://<site>/_api/
social.feed/actor(item=@v)/feed(NewerThan=@x)?@v=’domain\\username’&@x=datetime’2013-07-
19T08:00’.

Listing 17-11 shows the completed code for making the GET request to the My/News endpoint
to return the newsfeed for the current user. Also, in addition to what was returned in the previous
example, this example has been extended to show who the root post creator is, along with who each
of the repliers is in addition to the posts.

	 Chapter 17  SharePoint social enterprise features    699

LISTING 17-11  REST code for requesting the newsfeed for the current user

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.0.2.min.js""></script>
 <script type="text/javascript">
 $().ready(function () {
 //variables
 var endpointURL = "http://portal.contoso.com/_api/social.feed/my/
news(MaxThreadCount=5)"

 $.ajax({
 type: "GET",
 url: endpointURL,
 headers: {
 "accept": "application/json;odata=verbose"
 },
 success: onSuccess,
 error: onFail
 });

 function onSuccess(data) {
 var threads = data.d.SocialFeed.Threads.results;
 $.each(threads, function (value) {
 var orgPost = threads[value].RootPost.Text;
 var orgPoster = threads[value].Actors.results[threads[value].
OwnerIndex].Name;
 var post = "<div>" + orgPost + "</div>";
 post += "<div><i>" + orgPoster + "</i></div>
";
 var replies = threads[value].Replies.results;
 $.each(replies, function (key) {
 var rplPost = replies[key].Text;
 var rplPoster = threads[value].Actors.results[replies[key].
AuthorIndex].Name;
 post += "<div class='reply'>" + rplPost + "
 </div>";
 post += "<div class='reply'><i>" + rplPoster + "</i></div>";

 });

 $("#myNewsfeed").after(post);
 });
 }
 function onFail(errorObject, errorMessage) {
 $("#errMessage").text("Error: " + errorMessage);
 }
 });
 </script>
 <style>
 .reply {
 padding-left:15px;
 }

700   Inside Microsoft SharePoint 2013

 </style>
</head>
<body>
 <div id="myNewsfeed"><h2>My Newsfeed</h2></div>
 <div id="errMessage"></div>
</body>
</html>

When you load the HTML page, as shown in Figure 17-18, you can tell that the feed is successfully
returned along with who each post was created by.

FIGURE 17-18  The current user’s newsfeed is rendered to the HTML page by using REST.

You might have noticed, if you walked through both the CSOM with C# and the REST example,
that the REST example was completed with less code. This could partially be because you are using
the jQuery library, so many of the functions could be abstracted, but another reason is because of
how easy JSON is to work with. Because it has XML type characteristics, it can be iterated through
much more easily at times than C# objects can, which can equate to less code. As developers, we
should always want to write less code, because it means less to debug and sift through when it comes
to maintenance.

Retrieving posts from a site feed
Retrieving posts from a site feed is very similar to retrieving posts from personal feeds. In the previ-
ous section you walked through how to retrieve the current user’s feed, but if you had instead walked
through how to retrieve another user’s feed it would be even more similar to the example you are
about to go through.

Of course, a site feed must exist on a site before you can code against it, so discussing how a
site feed comes into existence is a good topic to start with. It is actually a fairly short conversation,
because all the functionality required for a site feed is contained within a single web-scoped feature
called Site Feed, as shown in Figure 17-19.

	 Chapter 17  SharePoint social enterprise features    701

FIGURE 17-19  The Site Feed feature is a web-scoped feature.

When this feature is activated, a few items are provisioned on the site, but the more important
thing for this discussion is that a microfeed feed now exists for you to code against. Figure 17-20
shows the site newsfeed for a team site that you will be coding against.

FIGURE 17-20  A site feed for a team site is shown within SharePoint.

Now that you have that out of the way, you can begin coding the example. You might think at first
that there will be quite a few differences between site feeds and personal feeds, and in some ways
there might be, but for this example, when you are trying to access each of these newsfeeds from
CSOM by using C#, there are actually only two changes: you need to use the GetFeedFor method
within the SocialFeedManager object, and the actor parameter that you pass is not a domain user
account, but a site URL that has a social feed provisioned on it. Other than that, the objects that you
interact with both from a request and a rendering perspective are identical. To start this example, you
can create a Web Form page called SiteSocialCSOM.aspx, similar to the one shown in Figure 17-21.
Listing 17-12 details the code-behind and the markup required to complete this example.

702   Inside Microsoft SharePoint 2013

FIGURE 17-21  Create a new Web Form called SiteSocialCSOM.aspx.

LISTING 17-12  CSOM using C# code and markup for requesting a site newsfeed

//variables
string siteURL = "http://portal.contoso.com";

//Create instances for ClientContext and SocialFeedManager
ClientContext clientContext = new ClientContext(siteURL);
SocialFeedManager feedManager = new SocialFeedManager(clientContext);
ClientResult<SocialFeed> siteFeedResults = feedManager.GetFeedFor(
 "http://projects.contoso.com/gearsproject", new SocialFeedOptions()
{
	 MaxThreadCount = 5
});

clientContext.ExecuteQuery();

rptPosts.DataSource = siteFeedResults.Value.Threads;
rptPosts.DataBind();
//ASPX markup
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="SiteSocialCSOM.aspx.cs"
Inherits="MySocialHub.SiteSocialCSOM" %>
<%@ Import Namespace="Microsoft.SharePoint.Client.Social" %>
<%@ Import Namespace="Microsoft.SharePoint.Client" %>
<%@ Assembly Name="Microsoft.SharePoint.Client.UserProfiles, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Assembly Name="Microsoft.SharePoint.Client.Runtime, Version=15.0.0.0, Culture=neutral,

	 Chapter 17  SharePoint social enterprise features    703

PublicKeyToken=71e9bce111e9429c" %>
<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <div><h3>Site Newsfeed</h3></div>
 <asp:Repeater ID="rptPosts" runat="server">
 <HeaderTemplate></HeaderTemplate>
 <ItemTemplate>
 <!-- Post Properties -->
 <div><%# ((SocialThread)Container.DataItem).RootPost.Text %></div>
 <!-- Post Replies -->
 <asp:Repeater id="rptPostReplies" runat="server"
 DataSource="<%# ((SocialThread)Container.DataItem).Replies %>">
 <HeaderTemplate></HeaderTemplate>
 <ItemTemplate>
 <%# Eval("Text") %>
 </ItemTemplate>
 <FooterTemplate></FooterTemplate>
 </asp:Repeater>
 </ItemTemplate>
 <FooterTemplate></FooterTemplate>
 </asp:Repeater>
 </div>
 </f
</body>
</html>

And finally, Figure 17-22 shows the site newsfeed rendered out in the SiteSocialSCOM.aspx page.

FIGURE 17-22  The site newsfeed is rendered to the ASPX page by using CSOM.

When you want to retrieve a site newsfeed by using the REST API approach, the same holds true
when it comes to the small amount of change that is necessary when compared to the previous
examples. With the CSOM approach, you simply needed to use a different method and pass in the
site URL; with REST this translates to a different endpoint that you pass the GET request to. In addition
to the different endpoint, you also need to pass the site URL. The endpoint that you need to target

704   Inside Microsoft SharePoint 2013

is http://<site>/_api/social.feed/actor(item=@v)/feed. You’ll notice that this endpoint uses an @ alias
that you can pass at the end of the URL, like this: http://<site>/_api/social.feed/actor(item=@v)/feed?@
v=’http://<teamSite>/newsfeed.aspx’, where the <teamSite> variable is the URL to the site containing a
newsfeed.

To start this example, add a new HTML page called SiteSocialREST.html to the MySocialHub proj-
ect, as shown in Figure 17-23.

FIGURE 17-23  Create a new HTML page called SiteSocialREST.html.

At this point, you can use the code from the REST example for retrieving a personal feed, except
that you need to update the endpoint that you send the GET request to. Also, because the last REST
example rendered out the author of each post and used the owner index attribute to look up the
author, you have another amendment to make to the code. This is because when you are working
with a SocialThread object that is returned from a personal feed, the owner of the thread is always
the author of the root post; however, when you are dealing with a site feed, the owner of the thread
is always the site and, as such, has the site’s title stored in it. So the way to get the true author is to
always use the AuthorIndex property for the root post, in place of the thread’s OwnerIndex, so that
your rendering code is reusable regardless of whether it is accessing a personal feed or a site feed.
Listing 17-13 contains the updated REST code for accessing the site newsfeed by using the Author
Index, and Figure 17-24 shows the results rendered on the HTML page.

	 Chapter 17  SharePoint social enterprise features    705

LISTING 17-13  REST code for requesting a site newsfeed

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.0.2.min.js""></script>
 <script type="text/javascript">
 $().ready(function () {
 //variables
 var siteURL = "http://projects.contoso.com"
 var endpointURL = siteURL + "/_api/social.feed/actor(item=@v)/
 feed?@v='http://projects.contoso.com/gearsproject'"

 $.ajax({
 type: "GET",
 url: endpointURL,
 headers: {
 "accept": "application/json;odata=verbose"
 },
 success: onSuccess,
 error: onFail
 });

 function onSuccess(data) {
 var threads = data.d.SocialFeed.Threads.results;
 $.each(threads, function (value) {
 var orgPost = threads[value].RootPost.Text;
 //var orgPoster = threads[value].Actors.results[threads[value].
OwnerIndex].Name;
 var orgPoster = threads[value].Actors.results[threads[value].RootPost.
AuthorIndex].Name;
 var post = "<div>" + orgPost + "</div>";
 post += "<div><i>" + orgPoster + "</i></div>
";
 var replies = threads[value].Replies.results;
 $.each(replies, function (key) {
 var rplPost = replies[key].Text;
 var rplPoster = threads[value].Actors.results[replies[key].
AuthorIndex].Name;
 post += "<div class='reply'>" + rplPost + "
 </div>";
 post += "<div class='reply'><i>" + rplPoster + "</i></div>";

 });
 $("#siteNewsfeed").after(post + "
");
 });
 }
 function onFail(errorObject, errorMessage) {
 $("#errMessage").text("Error: " + errorMessage);
 }
 });
 </script>
 <style>
 .reply {

706   Inside Microsoft SharePoint 2013

 padding-left:15px;
 }
 </style>
</head>
<body>
 <div id="siteNewsfeed"><h2>Site Newsfeed</h2></div>
 <div id="errMessage"></div>
</body>
</html>

FIGURE 17-24  The site feed is rendered to the HTML page by using REST.

This concludes the examples for retrieving posts from a site feed. You should now be comfortable
retrieving posts from any site by using either CSOM with C# or the REST API.

Posting to your personal feed
Now that you are comfortable retrieving posts that already exist, the next logical step is to post to a
social feed. You will start by posting to the current user’s feed. It is important to remember that you
can only post to the current user’s feed, because at this time there is no administration-type func-
tionality to post to another’s feed. Even with this restriction, there are numerous possibilities that are
opened up when you gain the initial knowledge required to perform a post. As with all other exam-
ples in this chapter, you will first start with the CSOM and C# approach and then finish with the REST
API approach.

If you have not worked through the examples in the section “Retrieving posts from your newsfeed,”
it is recommended that you do so to gain an understanding of the social objects required to initially
access the current user’s newsfeed. The SocialFeedManager object is used to create posts as well as
retrieve them, so this will simplify the first part of creating a post, because you are already familiar
with this object. The method that is used to create a post is the aptly named CreatePost, which can
be used to either create a root post, also known as a new thread, or reply to an existing thread. There
two parameters, both of which are required, regardless of whether you want to reply to or create a
new thread. The parameters are listed in Table 17-3.

	 Chapter 17  SharePoint social enterprise features    707

TABLE 17-3  CreatePost method parameters

Parameter Type Description

targetId String Can be one of the following:
■■ Null  Pass Null to start a new thread by publishing a root post to the

current user’s feed.
■■ Site Feed URL  Pass the URL to a site feed for a site to post to it.
■■ Thread ID  Pass an ID to an existing post to reply to it.

creationData SocialPostCreationData The contents of the new post, which can be anything from an attach-
ment (such as a video or image) to the actual text that you would like to
post

Creating a post via code can be a very simple task when you are only passing text, as a new post is
required to do. Listing 17-14 shows the code necessary to create a simple post with some text.

LISTING 17-14  CSOM using C# code for creating a new post

// Define properties for the post.
SocialPostCreationData postCreationData = new SocialPostCreationData();
postCreationData.ContentText = "Post via Code";

//Call CreatePost method
feedManager.CreatePost(null, postCreationData);

//Call ExecuteQuery
clientContext.ExecuteQuery();

As you can tell, there isn’t much to creating a simple post. As with all the other examples in this
chapter, you’ll need to have ClientContext and SocialFeedManager objects, but other than that, just
four lines of code will create a new post. If you dissect the code sample just shown, you’ll notice that
the ContentText property of the SocialPostCreationData object called postCreationData is what you
pass the text to be included in the post to. One limitation to keep in mind is that this text is limited
to 512 characters and is not permitted to have HTML tags. This restriction might seem alarming at
first, because if you have spent any reasonable amount of time within the SharePoint Web UI inter-
acting with a social feed, you’ll know that links are possible in a post. So how is it that from a coded
approach we have this restriction? This is merely a restriction on how links can be passed into a
new post. As you have already learned, the text of the post is set by using the ContentText property,
whereas links, tags, sites, documents, and even users are set within a post by using the ContentItems
array. Listing 17-15 shows the previous example updated with two new items being included in the
post.

708   Inside Microsoft SharePoint 2013

LISTING 17-15  CSOM using C# code for creating a new post with rich content

// Create a link to include in the post.
SocialDataItem linkItem = new SocialDataItem();
linkItem.ItemType = SocialDataItemType.Link;
linkItem.Text = "SharePoint Website";
linkItem.Uri = "http://office.microsoft.com/en-us/sharepoint/";

//Create a person mention to include in the post
SocialDataItem userItem = new SocialDataItem();
userItem.ItemType = SocialDataItemType.User;
userItem.AccountName = "contoso\\terrya";

// Define properties for the post.
SocialPostCreationData postCreationData = new SocialPostCreationData();
postCreationData.ContentText = "Visit the {0}. Look for a post by {1} while you are
there.";
postCreationData.ContentItems = new SocialDataItem[] { linkItem, userItem };
feedManager.CreatePost(null, postCreationData);
clientContext.ExecuteQuery();

The first new block of code declares a new SocialDataItem object called linkItem. The second line in
that block sets the ItemType to a link, by using the SocialDataItemType enumerator. There are, in fact,
five different types available within this enumeration:

■■ User

■■ Document

■■ Site

■■ Tag

■■ Link

Also, including ItemType, there are a total of five usable properties for the SocialDataItem object:

■■ AccountName

■■ ItemType

■■ TagGuid

■■ Text

■■ Uri

Not all are necessary; their use depends on what you intend to use the object for. Going back to
the last example, you can tell that the linkItem has a value set for ItemType, Text, and Uri. The next
section in the code declares another object of the same type called userType, which has its type set
to User and only sets a value for the AccountName property. Figure 17-25 shows how each post looks
within the SharePoint UI on the current user’s newsfeed. Note that a hyperlink was created by using

	 Chapter 17  SharePoint social enterprise features    709

the text for the linkItem and that the Uri is the href. Also, notice that even though you only used the
AccountName property for the userItem, it was able to display the display name for the user and that
it is also a hyperlink that links to the About page for that user.

FIGURE 17-25  These posts were created by using CSOM and C#.

Posting to your personal feed by using REST is still done through the social.feed endpoint. Addi-
tionally, you need to add another endpoint to the end of the social.feed endpoint: /my/Feed/Post. This
final endpoint can be looked at as equivalent to the CreatePost method in the CSOM example. Also,
as in the CSOM example, you need to create a SocialPostCreationData object. The REST API actually
goes a step further and wraps this object within another object called SocialRestPostCreationData
(note the inclusion of REST in the object name). Up to this point in the chapter, we have not discussed
in any detail how to formulate a POST to a REST endpoint. You have, however, passed parameters to
an endpoint to specify what you would like returned by the endpoint. In essence, the act of passing a
parameter to an endpoint holds true for what you do in a POST request, but the parameter metadata
is usually a lot more complex and is typically moved from the URI to the request body of the POST re-
quest. Listing 17-16 shows the part of the code used to send the same post you did in the final CSOM
example, this time by using the REST API. The data property contains the parameter metadata.

LISTING 17-16  REST code extract for creating a new post with rich content

$.ajax({
	 url: "http://portal.contoso.com/_api/social.feed/my/Feed/Post",
	 type: "POST",
	 data: JSON.stringify({
		 'restCreationData': {
			 '__metadata': {
				 'type': 'SP.Social.SocialRestPostCreationData'
			 },
			 'ID': null,
			 'creationData': {
				 '__metadata': {
					 'type': 'SP.Social.SocialPostCreationData'
				 },
				 'ContentItems': {

710   Inside Microsoft SharePoint 2013

					 'results': [
					 {
						 '__metadata': {
							 'type': 'SP.Social.
SocialDataItem'
						 },
						 'ItemType': 4,
						 'Text': 'SharePoint Website',
						 'Uri': 'http://office.microsoft.com/
en-us/sharepoint/'
					 },
					 {
						 '__metadata': {
							 'type': 'SP.Social.
SocialDataItem'
						 },
						 'ItemType': 0,
						 'AccountName': 'contoso\\terrya',
					 }
]
				 },
				 'ContentText': 'Visit the {0}. Look for the post by {1}
				 while you are there.',
				 'UpdateStatusText': false
			 }
		 }
	 }),
	 headers: {
		 "accept": "application/json;odata=verbose",
		 "content-type": "application/json;odata=verbose",
		 "X-RequestDigest": formDigestValue
	 },
	 success: function (data) {
		 GetPersonalFeed();
	 },
	 error: function (xhr) {
		 alert("Error:" + xhr.status);
	 }
});

After reviewing this code, you can tell how easy it would be to have a missing quote, colon, or
comma that would result in the POST request failing. Besides advising you to be overmeticulous
in checking your scripts, we will review a few noteworthy sections of the code so that you can feel
comfortable moving forward with creating posts by using this approach. We will be focusing on the
data property, starting with the object called restCreationData. This object contains an ID property
that is used the same way as the targetId is used in the CreatePost method using CSOM and C#. The
next object is the creationData object. This object contains the ContentText property and can option-
ally contain a ContentItems property and a few other properties. The structure of the ContentItems
property should at first appear out of place to you, because it doesn’t follow the metadata structure
like the other complex properties do. In its place, you should notice that there is a results array. This

	 Chapter 17  SharePoint social enterprise features    711

is required to conform to the use of the JSON.stringify method requires the use of the results for-
mat when you are dealing with arrays. Inside of the results property you can begin to recognize the
familiar metadata attributes again and you have the same two SocialDataItem objects from the previ-
ous example, with one slight difference being that you are using the numeric value for the ItemType
enumeration. The remaining code in the listing is typical for a POST to the REST API.

Posting to a site feed
With a good understanding of how posting to your own feed is accomplished, you can extend this
capability to posting to a site feed. There really isn’t much of a difference between creating a post
on the two types of feeds besides the fact that you can only create a root post to your own personal
feed, in contrast to the fact that you can create a root post on any site’s feed to which you have the
correct permissions.

Another difference from the CSOM approach in posting to your personal feed is that you need to
now pass the URL to a site newsfeed as the targetId when calling the CreatePost method of the Social-
FeedManager object in place of a null. Listing 17-17 shows a code block that will create the same post
from the previous section. Note the one modification to the CreatePost method that has the path to a
site with a feed.

LISTING 17-17  The CreatePost method configured for a site feed

//Create a link to include in the post.
SocialDataItem linkItem = new SocialDataItem();
linkItem.ItemType = SocialDataItemType.Link;
linkItem.Text = "SharePoint Website";
linkItem.Uri = "http://office.microsoft.com/en-us/sharepoint/";

//Create a person mention to include in the post
SocialDataItem userItem = new SocialDataItem();
userItem.ItemType = SocialDataItemType.User;
userItem.AccountName = "contoso\\terrya";

//Define properties for the post.
SocialPostCreationData postCreationData = new SocialPostCreationData();
postCreationData.ContentText = "Visit the {0}. Look for a post by {1} while you are
there.";
postCreationData.ContentItems = new SocialDataItem[] { linkItem, userItem };
feedManager.CreatePost(feedURL, postCreationData);

clientContext.ExecuteQuery();

If you executed this block of code, as shown in Figure 17-26, the same post would be created with
the same functionality as the post written to the personal feed.

712   Inside Microsoft SharePoint 2013

FIGURE 17-26  This post was created on a site’s feed by using CSOM and C#.

The number of differences between using the REST API for posting between each of the feed types
is identical to those found in the CSOM approach. First, you of course have to use a different end-
point with the inclusion of the social.feed endpoint. The endpoint used for a site feed is Actor/Feed/
Post. Inline it would look like this: http://<site>/_api/social.feed/actor/feed/post.

Using this endpoint, you need to pass the site URL by using an @ alias with the actor parameter,
like this: http://<site>/_api/social.feed/actor(item=@v)/feed/post?@v=’http://<site>/ newsfeed.aspx’.

Other than this simple update, you can execute the same code from the previous REST example.
Figure 17-27 illustrates a site’s newsfeed with two visible posts, one created with the REST example
and the other with the CSOM using C# example.

FIGURE 17-27  This post is created on a site’s feed by using the REST API.

Understanding following within SharePoint 2013

The ability to follow someone or something in the social space is an expected behavior for any col-
laboration tool that expects to play in this space. The intent of following is to enable users to only act
once when they find someone or something that they would like to be notified about when it under-
goes changes. This supports the push notification model, in which users don’t have to hunt around,
losing precious time looking for what interests them or pertains to their daily workload. In SharePoint
2013, you can follow just about anything. To be more precise, the entities that you can follow are:

	 Chapter 17  SharePoint social enterprise features    713

■■ People

■■ Sites

■■ Documents

■■ Tags

In the context of SharePoint, when a user choses to follow a person, for example, that person’s ac-
tivities, which include posts, post replies, and other social activities, will start to show up in that user’s
newsfeed. Also, by visiting a user’s newsfeed you can view an aggregate count of each entity type
that user is following, as shown in Figure 17-28.

FIGURE 17-28  A user’s following summary is displayed on their newsfeed page.

In the following section you will work through an example of following people by using CSOM and
REST. The functionality for following content uses primarily the same objects as following people, so
we will not be covering following content in any detail.

Programming for following either people or content starts with the SocialFollowingManager
object for CSOM or the Social.Following endpoint for REST. By using this object, you can do any of the
following:

■■ Have the current user start or stop following someone or an item

■■ Get whether the current user is following someone or an item

■■ Get all documents, sites, tags, and people the current user is following

■■ Get the count for all documents, sites, tags, and people the current user is following

■■ Get the people who are following the current user

■■ Get the people whom the current user might want to follow

■■ Get the URL for the site that lists the current user’s followed documents or sites

714   Inside Microsoft SharePoint 2013

Though this usage is not as common, it is important to note that the PeopleManager object that
you used in the “Retrieving user profile properties” section can be used to access additional function-
ality around following people that is not available via the SocialFollowingManager object.

Following people
The act of following people is probably the task that users are most acquainted with due to its preva-
lence in most social media systems. As such, we will focus this example on following people to help
acclimate you to coding tasks around following within SharePoint 2013. The exercise you will work
through is that of discovering people who are following you that you are not yet following, and then
adding yourself as one of their new followers.

Figure 17-29 shows a list of the current user’s followers, with a star next to each that is not being
followed by the current user. By the end of this example, there should be no stars, and the count for
I’m Following and My Followers should both equal 4.

FIGURE 17-29  Four people are following the current user.

To start, create a new Web Form for your Visual Studio project named FollowingPeopleCSOM.aspx,
as shown in Figure 17-30.

	 Chapter 17  SharePoint social enterprise features    715

FIGURE 17-30  Add a new Web Form called FollowingPeopleCSOM.aspx.

The same namespaces that you have used throughout this chapter are still those needed to code
following functionality; they are:

■■ Microsoft.SharePoint.Client

■■ Microsoft.SharePoint.Client.Social

At this point, you can start using the SocialFollowingManager object along with the methods
to access your current followers and those users that you are also following. Listing 17-18 shows the
code used to get back both your followers and those that you are followed by into two separate lists.

716   Inside Microsoft SharePoint 2013

LISTING 17-18  Retrieving following and followed users

//Variables
string siteURL = "http://portal.contoso.com";

ClientContext clientContext = new ClientContext(siteURL);

// Get the SocialFeedManager instance.
SocialFollowingManager followingManager = new SocialFollowingManager(clientContext);

// Get users being followed
ClientResult<SocialActor[]> followedUsers = followingManager.GetFollowed(SocialActorTypes.
Users);

// Get followers
ClientResult<SocialActor[]> followerUsers = followingManager.GetFollowers();

clientContext.ExecuteQuery();

After you have created an instance of the SocialFollowingManager, the GetFollowed method is
invoked and expects a SocialActorType enumerator for members passed within it, which you use to
filter the results to just users. This method is actually used to retrieve all other types of SocialActors
objects that the current user is also following. A full list of each of the members for the SocialActor-
Types enumeration is found in Table 17-4.

TABLE 17-4  SocialActorTypes enumeration

Name Value Description

All 15 All actor types are included.

None 0 None of the actor types are included.

Users 1 Results are filtered to only users.

Documents 2 Results are filtered to only documents.

Sites 3 Results are filtered to only sites.

Tags 8 Results are filtered to only tags.

ExcludedContentWithoutFeeds 268435456 Results are filtered to only sites that have a site feed.

Both the GetFollowed and GetFollowers methods return a clientResult<SocialActor[]> object, which
contains a list of each of the actors that current user is following. If in either case a following is not
present, then there will be zero items in the clientResult<SocialActor[]> object’s value. For this example,
you should have a count of 1 for the followedUsers object and a count of 4 for the followerUsers object,
which is illustrated in the watch panel shown in Figure 17-31.

FIGURE 17-31  The watch panel shows counts for following users and followers.

	 Chapter 17  SharePoint social enterprise features    717

With this data, you can simply iterate through each one of your followers and determine if they
are in the list of users that you are following, if not, you will start following them by using the Follow
method. This can be done with the code found in Listing 17-19.

LISTING 17-19  Following users by using the Follow method

//iterate through each follower and determine if already following user
foreach (SocialActor user in followerUsers.Value)
{
	 var userFound = followedUsers.Value.SingleOrDefault(u => u.AccountName ==
	 user.AccountName);
	 if (userFound == null)
	 {
		 //if not already following user, start following user
		 followingManager.Follow(new SocialActorInfo()
		 {
			 AccountName = user.AccountName,
			 ActorType = user.ActorType
		 });
	 }
}
clientContext.ExecuteQuery();

The Follow method expects a SocialActorInfo object as shown in the previous listing, so you need
to map the attributes of the current SocialActor object to a new SocialActorInfo object that you can
pass to the Follow method. After executing the code in this example, you can tell that you are now
following each of the users that is following you, as shown in Figure 17-32.

FIGURE 17-32  The number of people in the I’m Following count now matches the number of those who are
followers.

You can use REST to accomplish the same task of adding followers by using the Social.Following
endpoint in addition to other endpoints to access who is being followed and your followers, and

718   Inside Microsoft SharePoint 2013

then another to start following others. To start, create a new HTML page similar to the one shown in
Figure 17-33.

FIGURE 17-33  Create a FollowingPeopleREST.html page.

Next you can retrieve your current followers with a GET request to http://<siteURL>/_api/
social.following/my/Followers. To retrieve those that you are following, you need to issue a GET
request to http://<siteURL>/_api/social.following/my/Followed(1). Notice that you are passing a
value of 1 to the Followed endpoint. Looking back at Table 17-4, you can tell that this is the value
for the enumeration member named User in the SocialActorTypes enumeration. The only remaining
endpoint needed to complete the example is http://<siteURL>/_api/social.following/my/follow. The
follow endpoint, like the Follow method in the CSOM example, expects a SocialActorInfo object to
be passed to it. This can be accomplished either within the URL itself or within the request body. By
using the code in Listing 17-20 you can accomplish the same functionality you did in the CSOM
example.

	 Chapter 17  SharePoint social enterprise features    719

LISTING 17-20  REST code for following users who are following the user

window.ContosoREST = window.ContosoREST || {};

ContosoREST.FollowingPeople = {
	 //variables
	 EndpointURL: "http://portal.contoso.com/_api/social.following",
	 FormsDigest: "",
	
	 GetFormsDigest: function(){
		 // Get form digest value
		 $.ajax({
			 async: false,
			 url: "http://portal.contoso.com/_api/contextinfo",
			 type: "POST",
			 headers: {
				 "Accept": "application/json;odata=verbose"
			 },
			 success: function (contextInfo) {
				 ContosoREST.FollowingPeople.FormsDigest = contextInfo.d
.GetContextWebInformation.FormDigestValue;
			 },
			 error: function (xhr, ajaxOptions, thrownError) {
				 alert("Error:" + thrownError);
			 }
		 });

	 },
	 GetFollowers: function () {
		 var followers;
		 $.ajax({
			 async: false,
			 type: "GET",
			 url: this.EndpointURL + "/my/followers",
			 headers: {
				 "accept": "application/json;odata=verbose"
			 },
			 success: function(data){
				 followers = data.d.Followers.results;
			 },
			 error: function (xhr, ajaxOptions, thrownError) {
				 alert("Error:" + thrownError);
			 }
		 });
		 return followers;
	 },

	 GetFollowed: function () {
		 var followed;
		 $.ajax({
			 async: false,
			 type: "GET",
			 url: this.EndpointURL + "/my/followed(1)",
			 headers: {

720   Inside Microsoft SharePoint 2013

				 "accept": "application/json;odata=verbose"
			 },
			 success: function(data){
				 followed = data.d.Followed.results;
			 },
			 error: function (xhr, ajaxOptions, thrownError) {
				 alert("Error:" + thrownError);
			 }
		 });
		 return followed;
	 },

	 Follow: function (accountName) {
		 $.ajax({
			 type: "POST",
			 url: this.EndpointURL + "/my/follow(ActorType=0,AccountName=@v,
			 Id=null)?@v='" + accountName + "'",
			 headers: {
				 "accept": "application/json;odata=verbose",
				 "X-RequestDigest": this.FormsDigest
			 },
			 error: function (xhr, ajaxOptions, thrownError) {
				 alert("Error:" + thrownError);
			 }
		 });
	 },

	 GetUserByAccountName: function(key, results) {
		 var item;
		 $.grep(results, function (e) {
			 if (e.AccountName === key)
				 item = e;
		 });

	 return item;
	 },

};

$().ready(function () {

	 //Get followers and those user is following
	 var followers = ContosoREST.FollowingPeople.GetFollowers();
	 var following = ContosoREST.FollowingPeople.GetFollowed();

	 //Get FormsDigest, so Follows can be performed
	 ContosoREST.FollowingPeople.GetFormsDigest();

	 //Iterate through followers
	 $.each(followers, function (value,key) {
		 var userFound = ContosoREST.FollowingPeople.GetUserByAccountName(key.
AccountName, following);
		 if (userFound == null) {
			 //Add new user to those user is following

	 Chapter 17  SharePoint social enterprise features    721

			 ContosoREST.FollowingPeople.Follow(key.AccountName);
		 }
	 });
});

The pattern used in the previous listing for following a new person is the singleton pattern; to
learn more about this pattern and others, see Chapter 5. The final section of code iterates through
each of the followers and determines if they exist within the following list; if not, the AccountName is
sent to the custom Follow method, which sends a POST to the follow endpoint and passes inline the
user’s account name, using an @ alias for any users who need to start being followed.

Understanding Yammer

Yammer is a social tool that allows organizations to have private social networks where their employ-
ees can connect, communicate, collaborate, and share information with one another at the organi-
zational or group level. It can be used as a standalone application or can be integrated with any of
the many applications that already exist for other purposes. The simplified hierarchy found within
Yammer starts with a top-level object called a Network. This usually represents an organization. The
next level down can either be users or groups. Groups allow conversations to be organized so that
users who are not a part of the group aren’t flooded with its communications. A Yammer network can
be accessed by logging into Yammer by using the Yammer website or any of the mobile or desktop-
based applications.

Understanding how Yammer can work with SharePoint
SharePoint is a great example of an application that can benefit from integration with Yammer for an
enhanced social experience. Yammer integration was very prevalent with SharePoint 2010 because of
the social shortcomings of SharePoint 2010. An advantage of being able to integrate with Yammer even
with SharePoint 2013, which has a rich social experience, is Yammer’s ability to be a standalone tool
and at the same time have the ability to integrate with so many other applications, both mobile and
web based. Because of this, Yammer is sometimes chosen as the primary social tool for an organization.
As a result, the organization can choose to integrate SharePoint 2013 and Yammer so that Yammer’s
feed ability replaces that of the SharePoint 2013 out-of-the-box functionality and SharePoint can
continue to be the primary content hub. Because of this, and because future deeper integration
between these two technologies is likely, it is wise to begin to understand and use Yammer and also
become acquainted with its APIs.

Retrieving followers and followings from Yammer
In the same way you learned how to access followers and those that you are following within SharePoint
2013, you can likewise access the same type of entities within Yammer.

722   Inside Microsoft SharePoint 2013

In order to code against the Yammer APIs, you must have an account and a registered applica-
tion, to name a couple of prerequisites. You can visit the Yammer developer site at https://developer.
yammer.com/connect to learn about the different ways to authenticate to and make API requests to
the Yammer platform. The quickest way to start making API requests is to create a test access token
that can be passed inline or within the request body when accessing any REST endpoints. Instructions
on how to do so can be found at https://developer.yammer.com/authentication/#a-testtoken. For the
example that retrieves your followers and those you are following, it will be assumed that you have a
test access token available.

The Yammer API that you will work with is the REST API. A sampling of the REST endpoints avail-
able can be found at https://developer.yammer.com/restapi/. It is also important to note that the list
found at this URL is not exhaustive in identifying all available endpoints. For example, the two end-
points that you will use to access your followers and those you are following are not referenced on
the REST API page.

To retrieve the list of users that you are following, make a GET request to https://www.yammer.
com/api/v1/users/following/<YourYammerUserID>.json. You will need to know your Yammer ID in
order to perform the GET request. If you are uncertain of what your ID is, you can access https://www.
yammer.com/api/v1/users/current.json from any browser, passing inline the test access token as the
value of a query string parameter called access_token. A sampling of what is returned is shown here:

{"show_ask_for_photo":false,"id":0000000000,"expertise":null,"mugshot_url":"https://mug0.
assets-yammer.com/mugshot/images/48x48/M2v-Z-000000000","summary":null,"contact":{"im":{"prov
ider":"","username":""},"has_fake_email":false,"email_addresses":[{"address":"aaron.painter@
contoso.com","type":"primary"}],"phone_numbers":[]},"last_name":"Painter","name":"aaronp","kids_
names":null,"network_name":"contoso.com","job_title":"Managing Consultant","url":"https://www.
yammer.com/api/v1/users/000000","settings":{"xdr_proxy":"https://xdrproxy.yammer.com"},"mugshot_
url_template":"

Notice that the top line contains an “id” property; this is your Yammer ID. With this ID, you can
successfully perform a GET request to retrieve your followers. A sampling of what is returned is shown
here:

{"more_available":false,"users":[{"url":"https://www.yammer.com/api/v1/users/000000","job_
title":" Strategy Consulting Manager","full_name":"BradSutton","stats":{"following":16
5,"updates":161,"followers":39},"state":"active","name":"bradsutton","type":"user","ac
tivated_at":"2012/07/12 18:09:56 +0000","mugshot_url":"https://mug0.assets-yammer.com/
mugshot/images/48x48/000000000","web_url":"https://www.yammer.com/contoso.com/users/
xxxxx","id":000000,"mugshot_url_template":"https://mug0.assets-yammer.com/mugshot/images/{width}
x{height}/0000000000"}

The first property returned tells you whether or not there are more followers than those returned
by the request. Following this property is the Users property, which contains all the followers. There
is quite a bit of useful information that will allow an application to have a rich UI, enabling it to easily
access the photo for a follower, determine how many followers the user herself has, and even how
long the user has had a Yammer account.

https://developer.yammer.com/connect
https://developer.yammer.com/connect
https://developer.yammer.com/authentication/%23a-testtoken
https://developer.yammer.com/restapi/

	 Chapter 17  SharePoint social enterprise features    723

The same results are returned when you make a GET request for who you are following, though
the endpoint is different. The endpoint for retrieving who you follow is https://www.yammer.com/api/
v1/users/followed_by/<YourYammerUserID>.json.

To display both listings on an HTML page, along with each user’s own count of followers and those
they are following, you can use the code found in Listing 17-21. If you are successful, the output
should look similar to that shown in Figure 17-34.

LISTING 17-21  REST code for listing a user’s followers and those the user is following on Yammer

<!DOCTYPE HTML>
<html>
<head>
 <title></title>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.0.0.min.js"></script>
 <script>
 window.MyYammerREST = window.MyYammerREST || {};

 MyYammerREST.Social = {

 AccessToken: "YourTestAccessToken",

 GetFollowers: function (userID) {
 var followers = "";
 $.ajax({
 async: false,
 url: "https://www.yammer.com/api/v1/users/following/" + userID +
".json",
 type: "GET",
 headers: {
 "Accept": "application/json;odata=verbose",
 "Authorization": "Bearer " + this.AccessToken
 },
 success: function (data) {
 var users = data.users;

 $.each(users, function (value, key) {
 followers += "<div>" + key.full_name + "</div>" +
 "<div>Followers: " + key.stats.followers +
 "</div>" +
 "<div>Following: " + key.stats.following +
 "</div>

"
 });
 },
 fail: function (xhr, thrownError) {
 alert("Error: " + thrownError);
 }

 });
 return followers;
 },

724   Inside Microsoft SharePoint 2013

 GetFollowing: function (userID) {
 var followedBy = "";
 $.ajax({
 async: false,
 url: "https://www.yammer.com/api/v1/users/followed_by/" + userID +
		 ".json",
 type: "GET",
 headers: {
 "Accept": "application/json;odata=verbose",
 "Authorization": "Bearer " + this.AccessToken
 },
 success: function (data) {
 var users = data.users;

 $.each(users, function (value, key) {
 followedBy += "<div>" + key.full_name + "</div>" +
 "<div>Followers: " + key.stats.followers +
 "</div>" +
 "<div>Following: " + key.stats.following +
 "</div>

"
 });
 },
 fail: function (xhr, thrownError) {
 alert("Error: " + thrownError);
 }

 });
 return followedBy;
 }

 }
 $().ready(function () {
 $('#followers').append(MyYammerREST.Social.GetFollowers(YourYammerID));
 $('#following').append(MyYammerREST.Social.GetFollowing(YourYammerID));
 });
 </script>

</head>
<body>
 <div style="float:left;padding:20px;">
 <div><h2>Followers</h2></div>

 <div id="followers"></div>
 </div>
 <div style="float:left;padding:20px;">
 <div><h2>Following</h2></div>

 <div id="following"></div>
 </div>
</body>
</html>

	 Chapter 17  SharePoint social enterprise features    725

FIGURE 17-34  The output shows Yammer followers and followings for a user.

Working through this simple example should shed light on the potential integrations between
Yammer and SharePoint, whether they are through an app for SharePoint or something as simple as
a Content Editor Web Part. You can create extensive integrations, in which Yammer takes the place
of the SharePoint newsfeed, or less extensive solutions, in which you merely surface parts of Yammer
within parts of SharePoint.

Summary

This chapter began by examining the new social components found inside SharePoint 2013. We looked
at how you can use the numerous APIs to extend or access social data stored within SharePoint. You
also worked through many examples that used CSOM with C# and the REST API for getting and creat-
ing social content. You learned about the abilities and purpose of social feeds for individuals and sites.
Finally, the chapter concluded by examining the art of following inside SharePoint and Yammer and
how you can retrieve a list of those users you are following in addition to your own followers.

	 727

access tokens, S2S,  256
ACL (access control list),  216–217, 537–538
.action4 files,  469
action files,  469, 489–491
Active Directory, user authentication using,  10, 214–215
activities

CompositeTask activity,  492
custom, creating,  487–491
DynamicValue activity,  470
HTTPSend activity,  470
Loop [n] Times activity,  470
Loop with Condition activity,  470
Sequence activity,  479, 482
SingleTask activity,  492–494
for workflows,  469

activity feeds,  674, 676.  See also social feeds
ActivityId filter, BCS,  649
addClass method, jQuery,  176
<AddContentTypeField> element,  114
AdditionalPageHead delegate control,  285
Add-PSSnapin cmdlet,  32, 43, 44
administration, automating with PowerShell,  42–45
AdministrationMetadataCatalog object,  659
Administration Object Model for,  659–661
after events,  379–380
AJAX (Asynchronous JavaScript and XML),  201, 686
AjaxDelta control,  287–288
AllRolesForCurrentUser property, SPSecurableObject

class,  223
AND operator, managed properties,  512
anonymous functions, JavaScript,  167–168
APIs (application programming interfaces),  61–68

for apps,  163–165
CSOM.  See CSOM API
REST.  See REST APIs
SSOM.  See SSOM API

app catalog, publishing SharePoint apps to,  153–155

Index

Symbols
: (colon), contains operator for managed

properties,  511
:: (colons, double), preceding class members,  31
$ (dollar sign)

jQuery global function alias,  174
preceding PowerShell variables,  30

.. (dots, double), range operator for managed
properties,  511

= (equal sign), equal to operator for managed
properties,  511

(hash sign), preceding DOM elements,  174
<> (left and right angle bracket), not equal to operator

for managed properties,  511
< (left angle bracket), less than operator for managed

properties,  511
<= (left angle bracket, equal sign), less than or equal to

operator for managed properties,  511
- (minus sign), NOT operator for managed

properties,  512
+ (plus sign), AND operator for managed

properties,  512
> (right angle bracket), greater than operator for

managed properties,  511
>= (right angle bracket, equal sign), greater than

or equal to operator for managed
properties,  511

[] (square brackets), enclosing class names,  31

A
AccessChecker method, BCS,  645
access control list.  See ACL
Access Services,  14
access tokens, OAuth,  225–226, 232–234, 245–246,

250–254

<App> element

728   Index

<App> element,  131
.app files,  147
AppIcon.png.config.xml file,  147
AppIcon.png file,  147
app identifier,  235
app launcher,  126
application pages,  298–302

base classes for,  299
creating,  299–301
location of,  298
navigation support for,  302
securing,  301–302
template files for,  87

application pool identity,  219
application pools,  268
application programming interfaces.  See APIs

(application programming interfaces)
ApplyChanges method,  335
<ApplyElementManifests> element,  114
App Management Service,  14
AppManifest.xml file,  58, 130–132, 147

<AppPermissionRequest> element,  237, 240
<AppPermissionRequests> element,  132, 524
<AppPrincipal> element,  131, 227
<AutoDeployedWebApplication> element,  247
editing with visual designer,  132
elements in,  131
<RemoteEndpoint> element,  232
<RemoteWebApplication> element,  247
<StartPage> element,  229
start page URL,  132–134, 135

app-only access tokens,  253–254
app-only permissions,  239–240
app parts (client Web Parts),  137–140, 149, 311
<AppPermissionRequest> element,  237, 240
<AppPermissionRequests> element,  132, 524
<AppPrerequisites> element,  132
<AppPrincipal> element,  131, 227
app principals,  242–243
apps.  See Office Web Apps; Sharepoint apps
appSettings variables,  247
app web,  134–137
AppWebProxy.aspx page,  228
.ascx files,  87
.ashx files,  87
.asmx files,  87
asp:Content control,  271
asp:ContentPlaceHolder control,  271, 284
asp:Label control,  269

ASP.NET,  267–271
applications,  268
FBA (forms-based authentication),  10–12,

214–215
master pages,  270–271
user controls, template files for,  87
web applications using,  9
web.config file for,  268
Web Forms,  268–270, 282

code-behind component,  269
running,  269–270
UI component,  268–269

Web Parts, compared to SharePoint,  310–311
.aspx.cs files,  268
.aspx files,  87, 268
ASPX forms,  651
.aspx.vb files,  268
Assemblies folder,  106
association forms,  498–500
AssociationNavigator method, BCS,  645
Associator method, BCS,  645
asynchronous execution

with JSOM,  67, 180, 188
of Web parts,  347–350

Asynchronous JavaScript and XML.  See AJAX
authentication for apps,  224–234

access tokens for,  225, 226, 232
cross-domain library for,  227–230
external,  225, 232–233.  See also OAuth

authentication; S2S authentication
flow for,  233–234
internal,  225, 226–232
SAML tokens for,  225, 233
web proxy for,  231–232

authentication for BCS,  635–638, 639–644
claims authentication,  643
client authentication,  643–644
Impersonation and Delegation model,  639–640
Passthrough authentication,  644
RevertToSelf authentication,  644
SSS for,  642
token-based authentication,  643
Trusted Subsystem model,  639–642

authentication for users,  214–224
Active Directory for,  10, 214–215
ASP.NET FBA for,  10–12, 214–215
challenges with,  120–121
claims-based security for,  10–11, 214–215
classic mode for,  10
configuring in web applications,  215

	 CAL (client access license)

	 Index   729

external systems for,  10, 214–215
impersonating users,  121, 221–222
for SharePoint object access,  222–224
user credentials for,  221
User Information List for,  216
for web applications,  10–12

authoritative pages,  529
authoritative sites.  See publishing sites
authorization code, OAuth,  245, 254–256
authorization for apps,  234–239

app identifier for,  235
default policy for,  235
permissions,  235–239, 241

authorization for users
ACLs for,  216–217
for application pool identity,  219
escalating privileges,  219, 220–221
groups,  216, 217–219
for SharePoint object access,  222–224
for SHAREPOINT\SYSTEM account,  220–221
users,  216–217

Author managed property,  512
<AutoDeployedWebApplication> element,  247
autohosted apps,  129–130, 150–152, 163–164.  See

also cloud-hosted apps
Azure ACS.  See Windows Azure ACS

B
badge and reward system,  673
<BaseTypes> element,  442
Batching filter, BCS,  649
BatchingTermination filter, BCS,  649
BCS (Business Connectivity Services),  15, 621–624,

630–639
Administration Object Model for,  659–661
for apps,  668–671
authentication for,  639–644

claims authentication,  643
client authentication,  643–644
models of,  639–642
Passthrough authentication,  639–640, 644
RevertToSelf authentication,  640–642, 644
SSS for,  635–638, 642
token-based authentication,  643

BDC layer for,  631–635
BDC Runtime object models for,  656–659
client cache,  635
Client layer,  623

connectors for,  631
CSOM for,  669
event receivers for,  662–663
External Data Columns,  652
non-programmatic solutions using,  624–628
profile pages, creating,  653
VSTO deployment package for,  627, 639

BCS permission type,  239
BDC (Business Data Connectivity),  14, 622, 631–635

Client Runtime object model,  635, 656–659
managing,  632–634
metadata cache,  632
Metadata Model,  644–645, 664, 668
Model Explorer,  664
permissions for,  634
Server Runtime object model,  635, 656–659
Service Application,  634, 657
throttle settings,  632–634

BdcServiceApplicationProxy object,  657
before events,  379–380
BinarySecurityDescriptorAccessor method, BCS,  645
blogging.  See social feeds
BPOS (Business Productivity Online Standard

Suite),  3
branding for UI,  296–298
BreakRoleInheritance method, SPSecurableObject

class,  222
BulkAssociatedIdEnumerator method, BCS,  646
BulkAssociationNavigator method, BCS,  646
BulkIdEnumerator method, BCS,  646
BulkSpecificFinder method, BCS,  646
Business Connectivity Services.  See BCS
Business Data Connectivity.  See BDC
Business Data Item Builder Web Part,  653
Business Data Item Web Part,  653
Business Data List Web Part,  652
Business Data Related List Web Part,  653
Business Productivity Online Standard

Suite.  See BPOS

C
C#

cloud-hosted apps using,  125, 163–165
feature receivers using,  84
managed CSOM with,  180–187
REST API with,  206–212

CAL (client access license),  3

CAML (Collaborative Application Markup Language)

730   Index

CAML (Collaborative Application Markup
Language),  103–104

content types, creating,  428–430
creating content types,  370
creating document libraries,  372
querying External Lists,  630
querying lists,  185, 389–396
site columns, creating,  428–430

CAS (code access security) policies,  102
catalogs,  617–620
Category attribute,  332
Central Administration,  7–8

application pages in, template files for,  87
Configure Diagnostic Logging page,  53
Farm Configuration Wizard,  13
Manage Service Applications page,  46, 48
Services on Server page,  46

ChangedIdEnumerator method, BCS,  645
CheckPermissions method, SPSecurableObject

class,  223
chrome control,  144–147
claims authentication,  643
claims-based security,  10–11, 214–215
claims mode, for web applications,  215
classic mode, for web applications,  215
client access license.  See CAL
ClientContext object,  65, 179
ClientContextRuntime class,  179
ClientId variable,  247
ClientRequestException error,  181
ClientSecret variable,  247
client-side object model.  See CSOM (client-side

object model) API
Client.svc service,  177, 178, 196
<ClientWebPart> element,  138
client Web Parts (app parts),  137–140, 149, 311
closures, JavaScript,  168–169
cloud-hosted apps,  125–126

app designs using,  163–165
app principal for,  242
authentication for,  227–230, 232–233.  See

also OAuth authentication; S2S
authentication

autohosted apps,  129–130, 163, 164
hosting models for,  127–130
packaging,  150–152
provider-hosted apps,  127–129, 163, 164, 257,

263–264
requirements for,  164–165

cmdlets, PowerShell,  27.  See also specific cmdlets

code access security policies.  See CAS policies
code-behind component, Web Forms,  269
Collaborative Application Markup

Language.  See CAML
Colleagues,  675.  See also following, features for
colon (:), contains operator for managed

properties,  511
colons, double (::), preceding class members,  31
COM (Component Object Model) objects

PowerShell scripts accessing,  31
SharePoint objects using,  76

community portals,  673
Comparison filter, BCS,  649
comparison operators, PowerShell,  28
compatibility levels,  594
Component Object Model objects.  See COM objects
CompositeTask activity,  492
configuration database,  6, 9
<Configuration> element,  444, 446
<Configurations> element,  442, 446
Configure Diagnostic Logging page,  53
connectors,  507–508

BCS connectors,  631
.NET Assembly Connectors,  534–539, 663–668

content aggregation,  591, 607–616
CQWP (Content Query Web Part),  608–611
CSWP (Content Search Web Part),  608–611
display templates,  611–616

ContentClass managed property,  513
Content control,  271, 289
content databases,  8–10, 74, 274–275

adding content types to,  370
customized pages in,  278
lists in,  396
permissions in,  237
sandbox solutions in,  71
site customizations in,  24–25
social feeds in,  676
SPDataAccess role for,  219
updating,  398, 402–403, 412–413

Content Organizer,  574–578
content pages,  289–295

creating,  289
deploying,  290–292

ContentPlaceHolder control,  271, 284
ContentPlaceHolderID attribute,  289
Content Processing Enrichment Service.  See CPES
Content Search Web Part.  See CSWP
<ContentTypeBinding> element,  496
<ContentType> element,  107, 370, 430, 569

	 DataContext class

	 Index   731

Content Type Hub,  556, 558
content types,  366–371

adding site columns to,  369
creating,  367, 370–371
custom, creating,  428–433
for documents,  375–377
enumerating through,  368–369
standard, list of,  366–367

content types gallery,  366
content type syndication,  556–559
context objects, CSOM,  178–179
context tokens, OAuth,  244, 246, 250
Contribute site role,  224
<Control> element,  286
controls,  268–269.  See also specific controls

delegate controls,  285–286
registering as safe,  280–282

control templates,  611–615
ConversionInfo class,  581
ConversionItemInfo class,  580
ConversionJob class,  580, 581
ConversionJobInfo class,  580, 581
ConversionJobSettings class,  581
ConversionJobStatus class,  580, 581
correlation ID,  53–54
CPES (Content Processing Enrichment Service),  508,

531–534
CQWP (Content Query Web Part),  608–611
crawling.  See indexing process
CreateChildControls method,  325, 327–328,

334–336, 348–349
Created managed property,  512
CreatePost method, SocialFeedManager,  704–705,

709
Creator method, BCS,  645
Credential Manager,  644
Critical Path Training (SharePoint Server 2013 Virtual

Machine Setup Guide),  13, 124
cross-domain library,  227–230
cross-site publishing,  617–620
CSOM (client-side object model) API,  63–67,

177–187
accessing BCS data,  669–671
app authentication,  225, 227, 233, 246, 253, 256
context objects,  178–179
creating content types,  371
creating lists,  354
JSOM (JavaScript object model),  65, 67, 164, 177,

188–195
error handling,  190–191

manipulating items,  192–195
returning collections,  188–190

Managed object model,  64–65, 164–165, 177,
180–187

error handling,  181–184
manipulating document libraries,  186–187
manipulating items,  184–186
returning collections,  180–181

Mobile object model,  64
people, following,  711–715
personal feeds, posting to,  704–707
personal feeds, retrieving,  689–695
querying External Lists,  630
searches using,  526–528
Silverlight object model,  63–64
site feeds, posting to,  709
site feeds, retrieving,  699–702
user profile properties, retrieving,  677–683
workflow services with,  497–498

CSOM files, templates for,  87
CSS files, templates for,  87
css method, jQuery,  176
.csv files

importing term sets and terms from,  545
lists exported to,  588

CSWP (Content Search Web Part),  523, 608–611
{CurrentDisplayLanguage} token,  516
{CurrentDisplayLCID} token,  516
<CustomAction> element,  141, 302, 581
custom actions.  See UI custom actions
CustomDocumentProperties, in display

templates,  614–615
custom forms, in workflows,  498–502

association forms,  498–500
initiation forms,  500–502
task forms.  See tasks, in workflows

customized pages,  278–282
CustomizedPageStatus property,  279
custom libraries, JavaScript,  170–173
<CustomUpgradeAction> element,  98

D
.dacpac files,  152
DatabaseBackedMetadataCatalog object,  657
databases.  See configuration database; content

databases
database server,  36, 39–40
DataContext class,  398

<data> element

732   Index

<data> element,  316
Data Tier Application package,  151, 152
data types, JavaScript,  166
debugging,  52–55

deactivating Web Parts after,  318–319
Developer Dashboard,  54–61
PowerShell scripts,  30
tools for,  52
ULS logs,  53–54
web.config file settings for,  274
Windows event logs,  53–54

DefaultMasterPage module element,  442
delegate controls,  285–286
DeletedIdEnumerator method, BCS,  645
Deleter method, BCS,  645, 659
DeltaManager object,  287
Deploy command, for projects,  78
Deployment service, for workflows,  497
Design Manager

creating custom master pages,  296
creating page layouts,  597

Design site role,  224
Developer Dashboard,  54–61
Developer Tools.  See SharePoint Developer Tools
development environment,  35, 36–41

configuring,  40–41
hardware requirements,  38–39
installing with PowerShell scripts,  42
server types for,  36–38
similarity to production environment,  40–41
software requirements,  38–40

development farms,  7
device channel panels,  603–604
device channels,  591, 600–604

customizing content based on,  603–604
determining from user agent,  600–601
properties of,  601
redirecting to master pages,  602–603

DFWP (Data Form Web Part),  651
DIP (Document Information Panel),  656
Disassociator method, BCS,  645
discussion forums,  673
display templates,  611–616

control templates,  611–615
CustomDocumentProperties in,  614–615
item templates,  611–612, 615–616
JavaScript in,  615

DocumentIDProvider class,  564
Document ID providers,  564–567
Document IDs,  563–567

document libraries,  186, 371–379
content types for,  375–377
creating,  21–23, 275–276, 372
customizing,  22–23
Document IDs for documents in,  563–567
document templates for,  373–375
folders in,  378–379

document services,  559–583
Content Organizer,  574–578
Document IDs,  563–567
Document Sets,  567–574

activating,  567
characteristics of,  567
creating,  568–574

records management,  584–589
archives, site collection for,  586
eDiscovery,  586–589
in-place records management,  584–585

versioning,  559–562
Word Automation Services,  578–583

Document Sets,  567–574
activating,  567
characteristics of,  567
creating,  568–574

DoCustomSearchBeforeDefaultSearch() method,
DocumentIdProvider class,  565

DoesUserHavePermissions method,
SPSecurableObject class,  223

dollar sign ($)
jQuery global function alias,  174
preceding PowerShell variables,  30

domain controller,  36
DOM elements

binding to events,  176–177
manipulating,  175–176
selecting,  174–175

dots, double (..), range operator for managed
properties,  511

.dwp files,  313
DynamicMasterPageFile attribute, Page

directive,  299
dynamic reordering,  529
DynamicValue activity,  470

E
ECB (Edit Control Block) menu,  140, 358, 372
ECM (Enterprise Content Management),  541

document services,  559–583

	 farm-scoped features

	 Index   733

Content Organizer,  574–578
Document IDs,  563–567
Document Sets,  567–574
records management,  584–589
versioning,  559–562
Word Automation Services,  578–583

Managed Metadata Service Application,  541–559
content type syndication,  556–559
custom solution for term store,  545–556
term groups,  542–543
term sets,  543–544
term store,  541–545

ECT (External Content Type),  622, 623
in apps,  668
BDC Metadata Model for,  644–645
connection to External System,  625
creating,  624–626, 644–650
event receivers for,  662–663
exporting to XML,  626
filters for,  649–650
.NET Assembly Connector for,  663–668
Office 2013 using,  655–656
operations for,  626, 645–647
relationships between,  648–649
saving,  626
searches using,  534

eDiscovery,  586–589
Edit Control Block menu.  See ECB (Edit Control

Block) menu
edit mode panels,  599
Editor Parts,  333–336
EffectiveBasePermissions property,

SPSecurableObject class,  223
<ElementManifest> element,  96
<Elements> element,  107, 286, 293, 302
elements.xml file,  96

for application page navigation,  302
for client Web Parts,  138–139
for custom lists,  433–435
for custom site columns,  422, 424, 428
for site templates,  458
for Web Parts,  314, 316–317, 320–321
for web templates,  451–452, 455, 457

EnsureChildControls method,  336
Enterprise Content Management.  See ECM

(Enterprise Content Management)
Enterprise Search.  See search capabilities
entity classes,  396–400
Entity Design Surface,  664
-eq (equal to) operator, PowerShell,  28

equal sign (=), equal to operator for managed
properties,  511

equal to (-eq) operator, PowerShell,  28
error handling

JSOM,  190–191
Managed object model,  181–184

error messages,  53–54.  See also debugging
ETags,  205
event handling

after events,  379–380, 388–389
before events,  379–380, 387
event receivers for,  380–383, 662–663
feature receivers for,  84–86, 98–101, 344
jQuery,  176–177
life cycle events for apps,  158–162
naming events,  380
site provisioning events,  461–463
synchronization modes for,  380
for Web Part rendering,  325–327

event receivers,  380–383, 662–663.  See also feature
receivers

Excel Services Application,  14
ExceptionHandlingScope object,  183
exchange objects,  589
ExecuteQueryAsync method, ClientContextRuntime

class,  67, 180
ExecuteQuery method, ClientContextRuntime

class,  67, 180, 184
Execution Manager,  104
External Content Type.  See ECT
External Data

BDC Runtime object models for,  656–659
types of,  622–624

External Data Columns,  622, 652
External Data Web Parts,  622–623, 652–653
External Lists,  622–623

accessing programmatically,  629–630
creating,  627–628
event receivers for,  662–663
forms from, creating,  651
limitations of,  628–630
synchronizing to Outlook,  655

External System,  622
connecting to,  625
searching,  654

F
Farm Configuration Wizard,  13
farm-scoped features,  80

farm solutions

734   Index

farm solutions,  71, 76–102
debugging,  77, 92–94
deploying,  89–94, 121
deploying content pages in,  290–291
features for

adding,  79–84
feature receivers for,  84–86, 98–101
lists,  81–84
scope of,  80
version number of,  95–96

packaging,  89–90
project for, creating,  77–79
requirements for,  72
security for,  121
template files for,  86–89
upgrading,  60

features,  94–102
to new SharePoint version,  120, 121

Web Parts in,  313–317
Workflow Manager farm,  468

FAST Query Language.  See FQL
FBA (forms-based authentication),  10–12
<Feature> element,  96
feature receivers,  84–86, 98–101, 344.  See

also event receivers
<FeatureSiteTemplateAssociation> element,  448
Features node, for projects,  78–79
feature stapling,  448–450
feature.xml file,  96
field controls,  406, 410–420

class for,  412–414
for multicolumn values,  415–417
in page layouts,  595–596
rendering template for,  410–411

Field object,  65
<FieldType> element,  409, 417
field types, custom,  405–428

classes for,  407–409
creating,  405–408
custom properties for,  417–420
deploying,  406, 409–410
field controls for,  406, 410–420
JSLink property for,  420–428
limitations of,  406
for multicolumn values,  415–417
validation for,  408, 427

<File> element,  293, 317, 320, 321
FileExtension managed property,  512
file formats, conversions between.  See Word

Automation Services

FileReader object,  373
files and folders

accessing with SSOM,  275–277
in document libraries,  378–379
mapped folders,  87
in sites,  74

Files collection object,  373
$filter operator, OData,  199–200
filters, for ECTs,  649–650
Finder method, BCS,  645–647, 658
FirstUniqueAncestorSecurableObject property,

SPSecurableObject class,  223
FixedFormatSettings class,  581
flowchart workflow,  478
folders.  See files and folders
following, features for,  675, 710–720

entities that can be followed,  710–711
people, following,  711–720
Yammer,  720–724

foreach loops, PowerShell,  30
format handlers,  508
forms

custom forms for workflows,  498–502
InfoPath forms,  651

forms-based authentication.  See FBA
FQL (FAST Query Language),  510
Full Control site role,  224
full-trust configuration,  257

in prior SharePoint versions,  103
uncustomized pages supported for,  278

G
-ge (greater than or equal) operator, PowerShell,  28
GenerateDocumentId() method,

DocumentIdProvider class,  564
GenericInvoker method, BCS,  645
GetAccessToken method, TokenHelper class,  251
GetAppOnlyAccessToken method, TokenHelper

class,  253
GetAuthorizationUrl method, TokenHelper class,  254
GetClientContextWithContextToken method,

TokenHelper class,  249
GetContextTokenFromRequest method, TokenHelper

class,  249
GetDocumentUrlsById() method,

DocumentIdProvider class,  564
GetFeedFor method, SocialFeedManager,  699
GetFeed method, SocialFeedManager,  691–692, 693

	 IWebPartTable contract

	 Index   735

GetFollowed method, SocialFollowingManager,  714
GetFollowers method, SocialFollowingManager,  714
GetFullThread method, SocialFeedManager,  693
getJSON method, jQuery,  201
Get-Process cmdlet,  27
GetS2SAccessTokenWithWindowsIdentity method,

TokenHelper class,  263
GetSampleDocumentIdText() method,

DocumentIdProvider class,  565
Get-SPSite cmdlet,  33
Get-SPSolution cmdlet,  45
Get-SPWebApplication cmdlet,  32
Get-SPWebTemplate cmdlet,  592–594
GetUserEffectivePermissionInfo method,

SPSecurableObject class,  223
GetUserEffectivePermissions method,

SPSecurableObject class,  223
ghosted pages.  See uncustomized pages
global funciton, jQuery,  174
GLOBAL site definition,  442–443, 449, 454
greater than (-gt) operator, PowerShell,  28
greater than or equal (-ge) operator, PowerShell,  28
groups

for authorization,  216, 217–219
proxy groups,  47–48
term groups,  542–543

-gt (greater than) operator, PowerShell,  28

H
hardware requirements,  38–39
hash sign (#), preceding DOM elements,  174
HasUniqueRoleAssignment property,

SPSecurableObject class,  223
hide method, jQuery,  176
high-trust configuration,  257
history of SharePoint,  1, 2–4
HNSC (host-named site collection),  18–19
hosting realm.  See hosting tenancy
hosting tenancy,  122–123, 235
host-named site collection.  See HNSC
{HostTitle} token,  145
{HostUrl} token,  143
host web feature,  150
host web permission type,  239
"How to Create a Page Layout in SharePoint

2013",  597
html() method, jQuery,  176
HttpModule object,  9

HTTP requests
IIS handling,  5, 8
MDS for,  287
REST APIs using,  67–68

HTTPSend activity,  470

I
IdEnumerator method, BCS,  645
IFilters,  508
IIS (Internet Information Services),  5, 8

ASP.NET applications in,  268
SharePoint Web Applications in,  271–272
virtual directories in,  268, 274–275
web applications,  271

images, templates for,  87
impersonating users,  221–222, 639–640
Impersonation and Delegation model,  639–640
indexing process,  507–508
InfoPath forms,  651
initiation forms,  500–502
in-place records management,  584–585
Input filter, BCS,  649
InputOutput filter, BCS,  649
installation scopes, for SharePoint apps,  124–125
installing SharePoint apps,  155–157, 158
Install-SPSolution cmdlet,  44
Instance service, for workflows,  497
Integrated Scripting Environment,

PowerShell.  See ISE, PowerShell
Internet Information Services.  See IIS
InvalidQueryExpressionException error,  181
IsCompliant property,  288
IsDocument managed property,  512
ISE (Integrated Scripting Environment),

PowerShell,  30–31, 42
{ItemId} token,  143
items in sites,  74

CRUD operations on
in C#, with CSOM,  184–187
in C#, with REST API,  207–212
in JavaScript, with CSOM,  192–195
in JavaScript, with REST API,  201–206

returning collections of,  180–181
item templates,  611–612, 615–616
{ItemURL} token,  143
IWebPartField contract,  340
IWebPartParameters contract,  340
IWebPartRow contract,  340
IWebPartTable contract,  340

JavaScript

736   Index

J
JavaScript,  165–173

closures,  168–169
for cloud-hosted apps,  164–165
custom libraries,  170–173
data types,  166
in display templates,  615
functions,  167–168
jQuery library,  173–177
namespaces,  165
prototypes,  169–170
REST API with,  200–206
for SharePoint-hosted apps,  163–164
strict,  166–167
variables,  166–167

JavaScript object model.  See JSOM
jQuery,  173–177

DOM elements
binding to events,  176–177
manipulating,  175–176
selecting,  174–175

event handling,  176–177
global function,  174
methods,  175–176
referencing in apps,  174

jQuery.ajax method,  201
JSLink property, SPField class,  420–428
JSOM (JavaScript object model),  65–67, 188–195

error handling,  190–191
libraries for,  177
manipulating items,  192–195
returning collections,  188–190
for SharePoint-hosted apps,  164
workflow services with,  497–498

JWT (JSON Web Token) standard,  252
.jz files,  87

K
KeywordQuery object,  526
KQL (Keyword Query Language),  510–513

in link queries,  513–514
managed properties for,  511–513

L
Label control,  269
LastId filter, BCS,  649

LastModifiedTime managed property,  512
LastName managed property,  513
layout pages.  See application pages
_layouts directory,  298
LayoutsPageBase class,  299
left and right angle bracket (<>), not equal to

operator for managed properties,  511
left angle bracket, equal sign (<=), less than or equal

to operator for managed properties,  511
left angle bracket (<), less than operator for

managed properties,  511
-le (less than or equal) operator, PowerShell,  28
less than (-lt) operator, PowerShell,  28
less than or equal (-le) operator, PowerShell,  28
LFWP (List Form Web Part),  651
libraries,  74

custom, JavaScript,  170–173
document libraries,  186, 371–379

content types for,  375–377
creating,  275–276, 372
document templates for,  373–375
folders in,  378–379

versioning of,  559–562
licenses for SharePoint Server,  3
life cycle events for apps,  158–162
-like operator, PowerShell,  28
Limited Access site role,  224
Limit filter, BCS,  649, 650
link queries,  513–514
LinkTitle field, lists,  358
LinkTitleNoMenu field, lists,  358
LINQ to SharePoint,  396–404

adding items to lists,  402–404
deleting items from lists,  402–404
entity classes for,  396–400
querying lists,  401–402
updating items in lists,  402–404

listdata.svc web service,  196
{ListId} token,  143
<ListInstance> element,  354
ListItem object,  65
{ListItem} tokens,  517
List object,  65
list permission type,  239
lists,  74

adding items, with LINQ,  402–404
adding to solutions,  81–84
configuring

in JavaScript, with CSOM,  356
in JavaScript, with REST API,  356

	 MdsCompliantAttribute

	 Index   737

in JavaScript, with SSOM,  356
creating,  21–23, 353–356
CRUD operations on

in C#, with CSOM,  184–187
in C#, with REST API,  207–212
in JavaScript, with CSOM,  192–195, 354–355
in JavaScript, with REST API,  201–206,

354–355
in JavaScript, with SSOM,  354–355

custom, creating,  433–439
customizing,  22–23
deleting items, with LINQ,  402–404
document libraries,  371–379

content types for,  375–377
creating,  372
document templates for,  373–375
folders in,  378–379

in eDiscovery sets,  588
External Lists,  622, 623

accessing programmatically,  629–630
creating,  627–628
event receivers for,  662–663
forms for,  651
limitations of,  628–630
synchronizing to Outlook,  655

fields in,  357–362
adding,  359–361
content types for,  366–371
display name of,  358, 360
internal name of,  358, 360
LinkTitle field,  358
LinkTitleNoMenu field,  358
lookup fields,  361–362
modifying,  358–359
properties of,  360
site columns as alternatives to,  363–366
Title field,  358
types of,  357

querying with CAML,  389–396
joined lists,  391–392
multiple lists,  392–394
throttling queries,  394–396

querying with LINQ,  396–402
relationships in,  361–362
types of,  353–354
updating

with LINQ,  402–404
with versioning,  562

versioning of,  559–562
List Settings page,  22

<ListTemplate> element,  436
<ListTemplates> element,  442
{List} tokens,  517
{ListUrlDir} token,  143
Load method, ClientContextRuntime class,  179–180
load method, JavaScript,  188
LoadQuery method, ClientContextRuntime

class,  179–180
loadQuery method, JavaScript,  188
logs.  See debugging
lookup fields, in lists,  361–362
Loop [n] Times activity,  470
Loop with Condition activity,  470
-lt (less than) operator, PowerShell,  28

M
Machine Translation Service,  14
Managed Metadata Service Application.  See MMS

Application
managed navigation,  604–607

APIs for,  604–605
namespaces for,  605
navigational term sets for,  605–607
TaxonomySiteMapProvider for,  606

Managed object model,  64–65, 164–165, 177,
180–187

error handling,  181–184
manipulating document libraries,  186–187
manipulating items,  184–186
returning collections,  180–181

managed properties,  509, 511–513
Management Shell, SharePoint 2013,  31
Manage Service Applications page,  46, 48
manifest.xml file,  90
mapped folders,  87
<%@ Master%> directive,  270–271
.master files,  270
MasterPageFile attribute, Page directive,  271, 286
Master Page Gallery,  282

accessing files in,  594
deploying files to,  296, 423
display templates in,  518–520

master pages,  270–271, 282–287, 595–596
custom, for branding,  296–298
default master pages,  283–285
delegate controls in,  285–286
referencing,  286
in site collection,  282

MdsCompliantAttribute,  288

MDSFeature folder

738   Index

MDSFeature folder,  288
MDS (Minimal Download Strategy),  287–289
metadata

for ECTs,  632
enhancing with CPES,  508
managed by MMS.  See MMS (Managed

Metadata Service)
<metaData> element,  316
Method Details pane,  664
microblogging.  See social feeds
microfeed permission type,  239
Microsoft.BusinessData.dll assembly,  656
Microsoft.Office.BusinessApplications.Runtime.dll

assembly,  656
Microsoft.Office.Server.ActivityFeed namespace,  675
Microsoft.Office.Server.dll assembly,  62
Microsoft.Office.Server.Search.dll assembly,  528
Microsoft.Office.Server.SocialData namespace,  675
Microsoft.Office.Server.Social namespace,  675
Microsoft.Office.Server.UserProfiles namespace,  675
Microsoft.SharePoint.Client.dll assembly,  177
Microsoft.SharePoint.Client.Publishing

namespace,  605
Microsoft.SharePoint.Client.Publishing.Navigation

namespace,  605
Microsoft.SharePoint.ClientRuntime.dll

assembly,  177
Microsoft.SharePoint.Client.Social namespace,  676
Microsoft.SharePoint.Client.Taxonomy

namespace,  605
Microsoft.SharePoint.Client.UserProfiles

namespace,  676, 678–679
Microsoft.SharePoint.dll assembly,  62, 74, 106, 656
Microsoft.SharePoint.PowerShell snap-in,  31, 43–44
Microsoft.SharePoint.SubsetProxy.dll assembly,  106
Microsoft.SharePoint.UserCode.dll assembly,  106
Minimal Download Strategy.  See MDS
minimal.master file,  283
minus sign (-), NOT operator for managed

properties,  512
MMS (Managed Metadata Service) Application,  14,

541–559, 604
content type syndication,  556–559
term groups,  542–543
term sets,  543–544
term store,  541–545

managing, custom solution for,  545–556
Mobile object model,  64
<Module> element,  290, 293, 296, 316, 320, 373,

424, 447, 571

module pattern, JavaScript,  171–172
<Modules> element,  442, 447
multitenancy,  42, 128–129
MyAutoHostedApp project,  150
MyAutoHostedAppWeb project,  150
My Sites,  673, 676

N
namespaces

JavaScript,  165
for managed navigation,  605
for REST URIs,  198
for social enterprise features,  675–676

<NavBars> element,  442, 446
navigation

for application pages,  302
managed,  604–607
structured,  606

NEAR operator, managed properties,  512
-ne (not equal to) operator, PowerShell,  28
.NET Assembly Connectors,  534–539, 631, 663–668
.NET Framework,  5, 40, 62
.NET objects, accessing,  31
New-Item cmdlet,  43
New-Object cmdlet,  31
news feed permission type,  239
newsfeeds.  See social feeds
New-SPSite cmdlet,  33
New-SPWebApplication cmdlet,  32
not equal to (-ne) operator, PowerShell,  28
-notlike operator, PowerShell,  28
NOT operator, managed properties,  512

O
OAuth authentication,  232, 240–255

app principals for,  242–243
authentication server for,  242
client app for,  242
configuration for,  247
content owners for,  242
content server for,  242
flow for,  244–246
security tokens for,  164, 244–246, 250–254

access tokens,  225–226, 232–233, 245, 246,
250–254

authorization code,  245, 254–256
context tokens,  244, 246, 250

	 parameters.xml file

	 Index   739

JWT standard for,  252
refresh tokens,  245–246, 250

TokenHelper class for,  248–251
versions of,  240
Windows Azure ACS used by,  241–242

OData Extension Provider,  643
OData (Open Data Protocol) source,  196

authentication for,  643
connector for,  631
ECTs using,  668
querying,  199–200

Office 365
authosted apps in,  129
hosting tenancies with,  122–123
sandboxed solutions with,  60
SharePoint Online,  1

Office 2013
BCS architecture for,  630–631
BCS Client layer for,  623
ECTs used in,  655–656

Office Business Parts,  639
Office Developer Tools,  73
Office Store, publishing SharePoint apps to,  152–153
Office Web Apps,  36–37
ONEAR operator, managed properties,  512
ONET.xml file,  442, 444

for site definitions,  445–450
for site templates,  458
for web templates,  451–455, 457

on-premises model,  1–2
hosting tenancies with,  123
licenses for,  3
SharePoint farms using,  6–7

OOBThemesV15 module element,  442
Open Data Protocol.  See OData
operating systems,  4–6
OR operator, managed properties,  512
oslo.master file,  283
Outlook

External Lists synchronized with,  627–628
synchronizing lists to,  655

Output filter, BCS,  649

P
Package node, for project,  78, 90
Package.Template.xml file,  90
packaging

farm solutions,  89–90
SharePoint apps,  147–152

<%@ Page%> directive,  269
DynamicMasterPageFile attribute,  299
MasterPageFile attribute,  286
for Web Part pages,  292

page layouts,  595–600
creating,  596–597
page fields in

edit mode panels for,  599
field controls for,  595–596
properties of, configuring,  598–599
RichHtmlField type,  597–599
TextField type,  597
Web Parts in,  599–600

page libraries,  21
Page_Load method,  269, 300
page model,  595–596
PageNumber filter, BCS,  649
PageRenderMode control,  289
pages,  267

adding programmatically,  276–277
application pages,  298–302

base classes for,  299
creating,  299–301
navigation support for,  302
securing,  301–302

content pages,  289–295
creating,  289
deploying,  290–292

creating,  21
customized,  21, 278–282
in eDiscovery sets,  589
layouts for.  See page layouts
manipulating with SSOM,  275–277
master pages,  270–271, 282–287, 595–596

custom, for branding,  296–298
default master pages,  283–285
delegate controls in,  285–286
referencing,  286
in site collection,  282

page model for,  595–596
publishing pages,  295
requesting from virtual file system,  274–275
uncustomized (ghosted),  277–279
Web Part pages,  292–295, 319–323

PageTitle control,  284
{Page} tokens,  517
parallel execution

thread safety required for,  346
of Web Parts,  345–346

parameters.xml file,  399–400

parsers

740   Index

parsers,  508
Passthrough authentication,  639–640, 644
Password filter, BCS,  649
path-based site collection,  18
Path managed property,  513
people, following,  711–720
PeopleManager object,  680, 684
People term group,  542
PerformancePoint Service Application,  14
permissions.  See also authorization

for apps,  235–239
app-only permissions,  239–240
default policy for,  235
requesting,  236–239
types of,  239

for BDC service,  634
for site customizations,  19, 24
for testing,  41

personal feeds (public),  675
posting to,  704–709
retrieving posts from,  689–698
types of,  691–692

Personalizable attribute,  331–333
physical servers,  37
pipelining, in PowerShell,  28
plus sign (+), AND operator for managed

properties,  512
PortalSiteMapProvider,  606
PowerPoint Automation Services,  14
PowerShell scripts,  26–34

administering SharePoint,  26, 42–45
cmdlets,  27
COM objects, accessing,  31
comparison operators,  28
console for

SharePoint 2013 Management Shell,  31
Windows PowerShell console,  26, 42–43

debugging,  30
execution policy for,  29
foreach loops,  30
ISE for,  30–31, 42
.NET objects, accessing,  31
pipelining,  28
profile for,  43–44
service applications, creating,  51–52
snap-in for,  31–34, 43–44
solutions

deploying,  44–45
retracting,  44–45

variables,  30

writing,  29–30
private feeds.  See site feeds (private)
privileges.  See authorization for users
production environment,  40–41
production farms,  7
Products Configuration wizard,  101
$profile cmdlet,  43
profile page, BCS,  653
profile synchronization connections,  655
<Project> element,  445
projects.  See also SharePoint solutions

creating in Visual Studio,  77–79
Deploy command,  78
Features node,  78–79
Package node,  78
Retract command,  78
templates for,  77

<PropertyBag> element,  457
<Property> element,  317
PropertyOrFieldNotInitializedException error,  181
<PropertySchema> element,  417
prototype pattern, JavaScript,  172–173
prototypes, JavaScript,  169–170
provider-hosted apps,  127–129, 163, 164, 257,

263–264.  See also cloud-hosted apps
proxy groups,  47–48
.ps1 file extension,  29
PSConfig tool,  101
public feeds.  See personal feeds (public)
Publishing feature,  295, 591
publishing pages,  295
publishing SharePoint apps,  152–155
publishing sites,  591–594

accessing files in,  594
content aggregation for,  607–616
cross-site publishing,  617–620
device channels for,  600–604
managed navigation for,  604–607
page layouts for.  See page layouts
page model for,  595–596
templates for,  592–594

Q
query process, for searches,  509–513

KQL for,  510–513
managed properties,  509, 511–513
ranking models,  510
result sources,  510

	 sandboxed solutions

	 Index   741

query rules,  521
{QueryString} tokens,  517
query tokens,  516–518
Quick Parts, Word,  656

R
ranking models,  510, 530
ReadAndValidateContextToken method,

TokenHelper class,  249
Read site role,  224
realm.  See hosting tenancy
<Receivers> element,  384, 462
Records Center site,  586
records management,  584–589

archives, site collection for,  586
eDiscovery,  586–589
in-place records management,  584–585

RefinementScriptWebPart Web Part,  529
refiners,  521–522
refresh tokens, OAuth,  245, 246, 250
Register-SPWorkflowServices cmdlet,  468
<RemoteEndpoint> element,  232
<RemoteEndpoints> element,  132
remote event receivers,  381–383
Remote Procedure Call.  See RPC
RemoteSharedFileBackedMetadataCatalog

object,  657
<RemoteWebApplication> element,  247
removeClass() method, jQuery,  176
Remove-SPSite cmdlet,  33
Remove-SPSolution cmdlet,  44
RenderContents method,  324, 327–328
rendering template,  410–411
Representational State Transfer APIs.  See REST APIs
{Request} tokens,  517
ResetRoleInheritance method, SPSecurableObject

class,  223
resource files, templates for,  87
Resource Points,  76
REST (Representational State Transfer) APIs,  67–68,

195–212
_api entry point for,  198
app authentication,  225, 227, 233, 246, 251
in C#,  206–212
for cloud-hosted apps,  164–165
creating content types,  371
creating lists,  354
in JavaScript,  200–206

people, following,  716–720
personal feeds

posting to,  707–709
retrieving,  695–698

querying External Lists,  630
searches using,  524–526
for SharePoint-hosted apps,  164
site feeds

posting to,  710
retrieving,  702–704

URIs for,  196–200
user profile properties, retrieving,  683–689
for Web Parts,  323

ResultScriptWebPart Web Part,  528
result sources, for search queries,  510, 515–518
.resx files,  87
Retract command, for projects,  78
ReusableAcl property, SPSecurableObject class,  223
RevertToSelf authentication,  640–642, 644
ribbon menu, customizing,  303–307
RichHtmlField type,  597–600
right angle bracket, equal sign (>=), greater than

or equal to operator for managed
properties,  511

right angle bracket (>), greater than operator for
managed properties,  511

RoleAssignments property, SPSecurableObject
class,  223

root directory,  86–89
RPC (Remote Procedure Call),  196
<RuleDesigner> element,  491
RunWithElevatedPrivileges method, SPSecurity

object,  219, 220–221
Run With PowerShell command,  30

S
S2S (server-to-server) authentication,  232, 256–264

access tokens for,  256–258
configuring trust for,  259–263
as high-trust configuration,  257
for provider-hosted apps,  257, 263–264
test certificates for,  264
X.509 certificate for,  257–259

Safe Mode parsing,  280–282
SAML (Security Assertion Markup Language)

tokens,  214–215, 225, 233
sample data,  41
sandboxed solutions,  71, 102–117

scalability, testing

742   Index

activating,  110, 121
CAML in,  103–104
CAS policies for,  102
code-behind in,  103
creating,  106–109
debugging,  105, 113
deploying,  109–113, 121
deploying content pages in,  291
execution environment for,  104–106
objects accessible in,  76
requirements for,  72
security for,  120–121
uncustomized pages not supported for,  278
upgrading,  60

features,  113–117
to new SharePoint version,  121

validator for,  110–112
Web Parts in,  311

scalability, testing,  41
Scalar method, BCS,  645
schema.xml file,  433–439
scopes,  79–81

for app installations,  124–125
farm-scoped features,  80–81
site-scoped features,  80–81
web application-scoped features,  80–81
web-scoped features,  79–81

script tags,  174
script Web Parts,  528–529
{SearchBoxQuery} token,  517
SearchBoxScriptWebPart Web Part,  529
search capabilities,  503–504

architecture of,  506–510
connectors used for,  507–508, 534–539
CSOM API for,  526–528
CSWP (Content Search Web Part),  523
indexing process,  507–508, 531–534, 539
KQL (Keyword Query Language),  510, 510–513
link queries,  513–514
list of, by SharePoint version,  503–504
managed properties,  509, 511–513
query process,  509–513
query rules,  521
ranking models,  510
refiners,  521–522
REST API for,  524–526
result sources,  510, 515–518
script Web Parts,  528–529
search-based applications,  504–506
Search Center, extending,  514–523

search results
adding pages for,  514–515
displaying,  518–521
relevancy of, improving,  529–531
security for,  537–538

Search Results Web Part,  518, 521
SSA (Search Service Application),  14, 506–507

Search Directories term group,  542
SearchExecutor object,  526
search permission type,  239
Search Service Application.  See SSA
{SearchTerms} token,  517
seattle.master file,  283, 283–285
Secure Sockets Layer.  See SSL
Secure Store Service,  14
security.  See also authentication; authorization

for application pages,  301–302
for app web,  136
for search results,  537–538

Security Assertion Markup Language
tokens.  See SAML (Security Assertion
Markup Language) tokens

security principals,  213–214, 216.  See also user
authentication

app principals,  242–243
apps as,  224
assigning roles to,  224
SHAREPOINT\SYSTEM account as,  220–221

security tokens,  10, 213–215, 216
access tokens,  225
OAuth tokens,  244–246, 250–254
SAML tokens,  225

Security Token Service.  See STS
{SelectedItemId} token,  144
{SelectedListId} token,  143
$select operator, OData,  199
selectors, jQuery,  174–175
Sequence activity,  479, 482
sequential workflow,  476
ServerException error,  181, 183
servers,  73

database server,  36
domain controller,  36
Office Web Apps server,  36
physical,  37
services on, determining,  46
SharePoint server,  36
types of,  36
virtual,  37–38
Workflow Manager server,  37

	 SharePoint apps

	 Index   743

server-side controls.  See Web Forms controls
server-side object model.  See SSOM (server-side

object model) API
server-to-server authentication.  See S2S

authentication
service applications,  12–13, 46–52

configuring,  47–52
endpoint for,  46
instances of,  46
platform availability of,  14–15
proxy for,  13–14
proxy groups of,  47–48
for SharePoint apps,  123–124
web service for,  46

Services on Server page,  46
Set-ExecutionPolicy cmdlet,  29
SharePoint

compatibility levels,  594
history of,  1–4
on-premises model,  1–3, 6–7, 123
operating systems supported by,  6

SharePoint 2001,  2
SharePoint 2003,  3, 214
SharePoint 2007,  3

BPOS,  3
root directory,  86
user authentication,  214

SharePoint 2010,  3
CSOM,  63
Developer Dashboard,  54
Developer Tools,  55
Health Check for,  279
Office Web Apps,  36–37
root directory,  86
stapling feature,  61
upgrading solutions to SharePoint 2013,  60–61
visual designs,  61
Web Analytics,  60–61
workflow host,  37

SharePoint 2013,  3–4
component hierarchy,  73–76
development environment for,  35–41
hardware requirements,  38–39
operating systems supported,  4, 5
root directory,  86
social enterprise features,  673–674
software requirements,  38–40

SHAREPOINT\APP account,  254
SharePoint apps,  122–144

APIs for,  163–165

app launcher for,  126
App Management Service,  123–124
app manifest for,  130–132, 147
app web for,  134–137
app web solution package,  148–149
authentication for,  224–234

access tokens for,  225–226, 232
cross-domain library for,  227–230
external,  225, 232–233.  See also OAuth

authentication; S2S authentication
flow for,  233–234
internal,  225–232
SAML tokens for,  225, 233
web proxy for,  231–232

authorization for,  234–264
app identifier for,  235
default policy for,  235
permissions,  235–239, 241

BCS for,  668–671
C# for,  163–165, 206–212
cloud-hosted,  125–126

app designs using,  163–165
app principal for,  242
authentication for,  227–230, 232–233.  See

also OAuth authentication; S2S
authentication

autohosted,  129–130, 163–164
hosting models for,  127–130
packaging,  150–152
provider-hosted,  127–129, 163–164, 257,

263–264
requirements for,  164–165

code isolation for,  125–126
compared to solutions,  4
custom workflow activities for,  487–490
default content for,  58
deploying,  58
development environment for,  124
event handling in,  381–383
features, adding,  58
hosting tenancy for,  122–123, 235
icon for,  147
installation scopes,  124–125
installing,  155–158
JavaScript for,  163–173

closures,  168–169
custom libraries,  170–173
data types,  166
DOM elements, selecting,  174–175
functions,  167–168

SharePoint Customization Wizard

744   Index

jQuery library,  173–177
namespaces,  165
prototypes,  169–170
REST API with,  200–206
strict,  166–167
variables,  166–167

JSOM for,  188–195
life cycle events for,  158–162
Managed object model for,  180–187
multitenancy,  128
packaging,  147–152
publishing,  133, 152–155
REST API for,  195–212
retracting,  58
server requirements for,  36
SharePoint-hosted,  125–127

app designs with,  163–164
authentication for,  227
requirements for,  164

Site Subscription Settings Service,  123–124
solution package for, building,  58
start page URL,  132–135
types of,  56–57
uncustomized pages not supported for,  278
uninstalling,  135, 158
upgrading,  157–158
user interface for,  137–144

app parts,  137–140, 149
chrome control,  144–147
link back to host web,  137, 144
UI custom actions,  140–144, 149

web templates for,  463–465
SharePoint Customization Wizard,  77
SharePoint Designer 2013

custom workflows
activities for,  490–491
creating,  470–475, 485–487
custom task outcomes for,  495–496

features of,  23–24
SharePoint Developer Tools,  55–58, 71–72
SharePoint Enterprise,  503–504.  See also ECM

(Enterprise Content Management)
SharePoint farms,  4–7, 73

account for
not using for testing,  41

administration of,  7–8
configuration database for,  6, 9
development farms,  7
local,  13
on-premises farms,  6–7

production farms,  7
solutions requiring,  72
staging farms,  7
web applications in,  9
web.config files for,  272

SharePointForm control,  284
SharePoint Foundation,  4–21

history of,  2
search capabilities in,  503–504
service applications for,  14–15

SharePoint-hosted apps,  125–127
app designs with,  163–164
authentication for,  227
requirements for,  164

SharePoint objects
COM used for,  76
customizing with JSLink property,  420–428
disposing of,  76
hierarchy of,  74
iterating through,  74–76

SharePoint Online,  1–2, 3–4
search capabilities in,  503–504
service applications for,  14–15

SharePoint Portal Server,  2
SharePoint Server,  36

history of,  2–3
licenses for,  3
load on, minimizing,  59, 67
Publishing feature,  591
service applications for,  14–15

SharePoint Server 2013 Virtual Machine Setup Guide
(Critical Path Training),  13, 124

SharePoint Services,  2–3
SharePoint solutions.  See also projects

best practices for,  59–60
challenges with,  120–122
compared to apps,  4
deploying with PowerShell,  44–45
farm solutions.  See farm solutions
project types for,  59
retracting with PowerShell,  44–45
sandboxed solutions.  See sandboxed solutions
upgrading,  59–61
upgrading to new SharePoint version,  121

SHAREPOINT\SYSTEM account,  220–221
SharePoint Team Services,  2
show() method, jQuery,  176
Silverlight object model,  63–64
Silverlight Web Part item template,  314
Simple Object Access Protocol.  See SOAP

	 {Source} token

	 Index   745

single server development installation,  36, 38–39
SingleTask activity,  492–494
singleton pattern, JavaScript,  170
Site Actions menu,  19
sitecollection permission type,  239
site collections,  15–19, 74

authorization in,  216–219
creating,  33, 441, 456
host-named site collection,  18–19
master pages in,  282
path-based site collection,  18
Resource Points for,  76

{SiteCollection} tokens,  517
site columns,  362–366

adding choices to,  365–366
in content types,  369
creating,  364–365
custom

creating,  422
custom, creating,  428–433
enumerating through,  363–364
field controls mapped to,  595–596
for managed metadata,  551–553
standard, list of,  362–363

site columns gallery,  362, 363
site definitions,  441–450

custom code with,  458
custom, creating,  450
feature stapling,  448–449, 450
GLOBAL site definition,  442–443, 449, 454
ONET.xml file,  442–449
order of provisioning,  449–450
webtemp*.xml files,  443–445

SiteDeleted event,  461
SiteDeleting event,  461
<SiteFeatures> element,  447, 455
Site Feed feature,  698–699
site feeds (private),  675

posting to,  709–710
retrieving posts from,  698–704

Site object,  65
site pages.  See content pages
site roles,  218, 224
sites,  15–19, 74

customizations to,  19–25
development for,  24–25
fields in.  See site columns
provisioning,  441–466

custom code for,  458
events associated with,  461–463

providers for,  459–461
reserving URL for,  441
site definitions for,  441–450
site templates for,  458–459
web templates for,  451–457

site-scoped app installations,  124
site-scoped features,  80, 314
Site Settings page,  19–20
Site Subscription Settings Service,  14
site templates,  458–459
{Site} tokens,  517
{SiteUrl} token,  143
$skip operator, OData,  200
SOAP (Simple Object Access Protocol),  196
social core permission type,  239
SocialDataItem object,  706
social enterprise features,  674–676

APIs for,  675–676
following,  675, 710–720

entities that can be followed,  710–711
people, following,  711–720

new features,  673–674
social feeds,  689–710

personal feeds (public),  675, 689–698,
704–709

site feeds (private),  675, 698–704, 709–710
types of,  675

user profiles,  674, 676–689
properties of, retrieving with CSOM,  677–683
properties of, retrieving with REST,  683–689

Yammer,  720–724
SocialFeedManager object,  689–691, 699, 704–705
SocialFeed object,  693
SocialFeedOptions class,  692
social feeds,  674, 689–710

personal feeds (public),  675
posting to,  704–709
retrieving posts from,  689–698
types of,  691–692

site feeds (private),  675
posting to,  709–710
retrieving posts from,  698–704

types of,  675
SocialFollowingManager object,  711, 713–714
SocialPostCreationData object,  705
SocialThread object,  693
software requirements,  38–40
Solution Gallery site collection,  102, 109
$sort operator, OData,  200
{Source} token,  143

SPBasePermissions enumeration

746   Index

SPBasePermissions enumeration,  224
SP.ClientContext object,  179
SPContentDatabase object,  74
SPContext object,  65
SPDisposeCheck tool,  76
SpecificFinder method, BCS,  645, 647, 658
SPEmailEventReceiver class,  380
SPFarm object,  74
SPFeatureReceiver class,  85
SPField class,  65, 360, 420–428
SPFieldMultiColumn class,  407
SPFieldNumber class,  407
SPFieldText class,  407
SPFile class,  276, 377
SPFolder class,  276, 373
SPGroup class,  216
SPHtmlTag control,  284
SPItemEventReceiver class,  380, 662
SPItem object,  74
sp.js library,  177
SPLimitedWebPartManager class,  321–323
SPList class,  358
SPListEventReceiver class,  380
SPListItem object,  65, 377, 378, 629
SPList object,  65, 74, 377, 629
SPMetal utility,  396–400
SPPrincipal class,  216
SPQuery object,  389, 394
SP.RequestExecutor object,  228
SPRequestModule,  274–275
SPRoleDefinition class,  224
SPSecurableObject class,  222–224
SPSecurity object,  219, 220–221
SPServer object,  74
SPSiteCollection object,  458
SPSiteDataQuery object,  392, 394
SPSite object,  65, 74
SPSolutionValidator class,  111
sp.ui.controls.js library,  144
SP.UI.Controls.Navigation object,  144
SPUser class,  216
SPUserToken class,  216, 221–222
SPVirtualPathProvider class,  275
SPWebApplication object,  74
SPWeb class,  363
SPWebCollection object,  458
SPWebEventReceiver class,  380, 461
SPWeb object,  65, 74, 219, 458
SPWebPartManager class,  312
SP.WebRequestInfo object,  231

SPWorkflowEventReceiver class,  380
SQL connector,  631
SQL query language,  510
square brackets ([]), enclosing class names,  31
SSA (Search Service Application),  14, 506–507
SSL (Secure Sockets Layer),  243
SSOM (server-side object model) API,  62

content types, creating,  430–433
creating content types,  370
creating lists,  354
files and folders, accessing,  275–277
hierarchy of,  73–76
objects in, CSOM equivalents for,  65
site columns, creating,  430–433

SsoTicket filter, BCS,  649
SSS (Secure Store Service),  635–638, 642
stages, in workflows,  470, 472–475
staging farms,  7
{StandardTokens} token,  134, 137, 145
stapling.  See feature stapling
<StartPage> element,  132–135, 229
state machine workflow,  478
State Service,  15
StreamAccessor method, BCS,  645
strict JavaScript,  166–167
structured navigation,  606
stsadm.exe utility,  26
STS (Security Token Service),  215
Subscribe method, BCS,  646
Subscription service, for workflows,  497
.svc files,  87
SyncChanges method,  335
SyncConverter class,  580–583
System term group,  542
System.Web.UI.Page class,  268

T
tasks, in workflows,  492–497

creating,  492–494
custom task outcomes,  494–497

TaxonomyField class,  551–553
TaxonomyFieldValue class,  555
taxonomy permission type,  239
TaxonomySession object,  605
TaxonomySiteMapProvider,  606
TaxonomyWebTaggingControl,  553–556
<Template> element,  444
templates

	 user profiles permission type

	 Index   747

display templates,  611–616
document templates,  373–375
rendering templates for custom fields,  410–411
in root directory,  86–89
site templates,  458–465

tenancy.  See hosting tenancy
tenancy-scoped app installations,  125, 156–157
tenant permission type,  239
term groups,  542–543
term sets,  543–544
term store,  541–545

capacity of,  544
importing term sets and terms to,  545
limitations of,  544
managing, custom solution for,  545–556
term groups in,  542–543
term sets in,  543–544

TermStores property, TaxonomySession object,  605
{Term} tokens,  517
testing,  40–41.  See also debugging
Test-Path cmdlet,  43
TextField type,  597
text() method, jQuery,  176
.thmx files,  442
Timestamp filter, BCS,  649
Title field, lists,  358
Title managed property,  512
{Today} token,  517
toggle() method, jQuery,  176
token-based authentication,  643
TokenHelper class,  164, 248–251

GetAccessToken method,  251
GetAppOnlyAccessToken method,  253
GetAuthorizationUrl method,  254
GetClientContextWithContextToken method,  249
GetContextTokenFromRequest method,  249
GetS2SAccessTokenWithWindowsIdentity

method,  263
ReadAndValidateContextToken method,  249
TrustAllCertificates method,  264

$top operator, OData,  200
TrustAllCertificates method, TokenHelper class,  264
Trusted Subsystem model,  639, 640–642
TypeConverter attribute,  333

U
UI component, Web Forms,  268–269.  See

also controls
UI custom actions,  140–144, 149, 302

ULS logs,  53–54
ULS Viewer,  53
uncustomized (ghosted) pages,  277–279
Uninstall-SPSolution cmdlet,  44
UnsecuredLayoutsPageBase class,  299
Unsubscribe method, BCS,  646
Updater method, BCS,  645, 658
Update-SPSolution cmdlet,  101
<UpgradeActions> element,  98, 114
upgrading SharePoint apps,  157–158
URIs, REST,  196–200
<UrlAction> element,  142
URL, reserving for sites,  441, 449
{URLToken} token,  517
user agent string, device channels from,  600–601
User and Health Data Collection Service,  15
user authentication,  214–224

Active Directory for,  10, 214–215
ASP.NET FBA for,  10–12, 214–215
claims-based security for,  10–11, 214–215
classic mode for,  10
configuring in web applications,  215
external systems for,  10, 214–215
impersonating users,  221–222
for SharePoint object access,  222–224
user credentials for,  221
User Information List for,  216
for web applications,  10–12

user authorization
ACLs for,  216–217
for application pool identity,  219
escalating privileges,  219–221
groups,  216–219
for SharePoint object access,  222–224
for SHAREPOINT\SYSTEM account,  220–221
users,  216–217

User Code Service,  104
UserContext filter, BCS,  649
user credentials,  221
UserCulture filter, BCS,  649
User Information List,  216
user information profile,  216
Username filter, BCS,  649
UserProfile filter, BCS,  650
user profiles,  674, 676–689

properties of, retrieving with CSOM,  677–683
properties of, retrieving with REST,  683–689

User Profile Service Application,  15, 468, 655
user profiles permission type,  239

{User} tokens

748   Index

{User} tokens,  518

V
v4.master file,  283
validators, for sandboxed solutions,  110–112
variables

JavaScript,  166–167
PowerShell,  30

var keyword, JavaScript,  166
verbs, for Web Parts,  337–339
versioning,  559–562
<VersionRange> element,  114
virtual file system, IIS,  268, 274–277
Virtual Machine Setup Guide, SharePoint 2013

(Critical Path Training),  13
virtual path provider,  275
virtual servers,  37–38
Visio 2013, custom workflows with,  470–475
Visio Graphics Service,  15
Visual Studio

Document Sets, creating,  568–574
projects, creating,  77–79

Visual Studio 2010
custom workflows using,  470
SharePoint Developer Tools,  55

Visual Studio 2012
configuring,  72–73
custom workflows

creating,  476–485
custom task outcomes for,  496–497

installing,  71–73
Office Developer Tools,  73
SharePoint Developer Tools,  55–58, 71–72

Visual Web Part item template,  314
Visual Web Parts,  329–331
VSTO deployment package,  627, 639

W
w3wp.exe file,  5
w3wp.exe process,  105
WCF (Windows Communication Foundation),  177

connectors,  625, 631
for custom workflows,  470

WCM (Web Content Management),  591–594
content aggregation,  607–616
cross-site publishing,  617–620
device channels,  600–604

managed navigation,  604–607
page layouts,  595–600
publishing files, accessing,  594
publishing site templates,  592–594

WebAdding event,  461
web applications,  8–12, 73

as ASP.NET applications,  9
claims mode,  215
classic mode,  215
creating,  32–34
IIS, compared to SharePoint,  271–272
user authentication, configuring,  215
user authentication for,  10–12

web application-scoped features,  80
WebBrowsable attribute,  332
web.config file,  9, 272–274

for ASP.NET applications,  268, 271
backup files for,  274
for cloud-hosted apps,  247
configuring for debugging,  274
SafeMode element,  282

Web Content Management.  See WCM (Web Content
Management)

WebDeleted event,  461
WebDeleting event,  461
WebDescription attribute,  332
WebDisplayName attribute,  332
<WebFeatures> element,  447, 454, 457
Web Forms,  268–270, 282

code-behind component,  269
running,  269–270
UI component,  268–269

WebMoved event,  461
WebMoving event,  461
WebNavigationSettings object,  606
Web object,  65
WebPart class,  310, 315–316
.webpart files,  313–314, 316
Web Part Gallery,  313
Web Part Manager,  312
WebPartPage class,  292–293
Web Part pages

creating,  292–295
deploying with Web Parts,  319–323

Web Parts,  21, 309–313.  See also client Web Parts
(app parts)

ASP.NET compared to SharePoint,  310–311
asynchronous execution of,  347–350
client Web Parts (app parts),  137–140
connections for,  340–345

	 workflows

	 Index   749

consumers,  342–343
contracts,  340
providers,  341–342

control description files for,  313, 314, 316
CQWP (Content Query Web Part),  608–611
creating,  313–317
CSWP (Content Search Web Part),  523, 608–611
deactivating,  318–319
deploying,  317–323
element manifest for,  316–317, 320–321
files associated with,  314
item templates for,  314
managed metadata fields in,  553–556
parallel execution of,  345–346
properties of,  331–336

editing, with Editor Part,  333–336
persisting,  331–333
for Web Part verbs,  337

rendering of, controlling,  324–331
CreateChildControls method,  325, 327–328
event handling,  325–327
RenderContents method,  324, 327–328
Visual Web Parts,  329–331

in RichHtmlField type,  599–600
script Web Parts,  528–529
Search Results Web Part,  518, 521
site-scoped Feature for,  314
static,  312
verbs (menu options) for,  337–339
for wiki pages,  292–293, 322–323
zones for,  311–312

WebPartZone control,  311–312
Web Part zones,  599–600
web permission type,  239
Web Platform Installer tool,  468
WebProvisioned event,  461
web proxy,  231–232
web-scoped features,  79–80
web services

for service applications,  46
template files for,  87
for workflows,  470, 483–484, 485–487

website resources
"How to Create a Page Layout in SharePoint

2013",  597
MDS request and response,  288
RichHtmlField type properties,  598
SharePoint Features schema,  291
Web Platform Installer tool,  468

<WebTemplate> element,  451–452, 458

web templates,  451–457
custom code with,  458
deploying,  455–457
elements.xml file,  451–452
ONET.xml file,  451, 452–455
order of provisioning,  454
for SharePoint apps,  463–465

webtemp.xml file,  463
webtemp*.xml files,  443–445
Where-Object cmdlet,  28
WikiEditPage class,  292–293
wiki pages, Web Parts in,  292–293, 322–323
Wildcard filter, BCS,  650
Windows 8,  4, 6, 37
Windows Azure ACS,  241–242
Windows Communication Foundation.  See WCF
Windows event logs,  53–54
Windows PowerShell scripts.  See PowerShell scripts
Windows Server,  4, 6, 39
Windows Workflow Foundation,  37.  See

also Workflow Manager
Wingtip Toys examples,  8
Word

Document Information Panel,  656
Quick Parts,  656

Word Automation Services,  15, 578–583
WORDS operator, managed properties,  512
Worker Service,  104
Workflow Custom Activity item template,  476, 490
Workflow Foundation runtime,  467
Workflow item template,  476
Workflow Manager,  37, 467–468
Workflow Manager Configuration Wizard,  468
workflows,  467–470

activities for,  469, 487–491
custom,  470–491

arguments in,  480
flowchart workflow,  478
sequential workflow,  476
stages in,  470, 472–473, 474–475
state machine workflow,  478
templates for,  476
variables in,  480
Visio and SharePoint Designer for,  470–475,

485–487
Visual Studio for,  476–485
web services for,  470, 483–487

custom forms in,  498–502
association forms,  498–500
initiation forms,  500–502

Workflow Service Application

750   Index

Publishing Site With Workflow template,  592–593
services for,  497–498
status page for,  469
tasks in,  492–497

creating,  492–494
custom task outcomes,  494–497

workflow association for,  469
workflow definition for,  469

Workflow Service Application,  15
Workflow Service Manager,  497–498
Work Management Service Application,  15
.wsp files,  78, 92, 148.  See also packaging

X
X.509 certificate,  257–259
.xap files,  87
XRANK keyword,  512, 529

Y
Yammer,  720–724

Z
zones, for Web Parts,  311–312

About the authors

Scot Hillier is an independent consultant and Microsoft SharePoint Most Valuable
Professional (MVP) focused on creating solutions for information workers with Share-
Point, Microsoft Office, and related .NET technologies. He is the author/coauthor of 15
books and DVDs on Microsoft technologies, including Inside Microsoft SharePoint 2010
(Microsoft Press, 2011). Scot splits his time between consulting on SharePoint projects,
speaking at SharePoint events such as Tech Ed, and delivering training for SharePoint
developers. Scot is a former US Navy submarine officer and is a graduate of the Virginia
Military Institute. Scot can be reached at scot@shillier.com.

Mirjam van Olst works as a SharePoint Architect for Avanade in the Netherlands. Hav-
ing worked with different versions of SharePoint since 2004, she has helped companies
in different industries and of different sizes to implement successful SharePoint portal,
ECM, and search solutions. Mirjam is one of the very few Microsoft Certified Masters
for both SharePoint 2007 and SharePoint 2010. Being a strong community advocate,
Mirjam is a co-organizer of the Dutch Information Worker User Group (DIWUG). Mirjam
is a regular author and editor for the popular DIWUG eMagazine. Mirjam is a regular
speaker at both national and international conferences and events and can be found
blogging at http://sharepointchick.com. Mirjam has been awarded the Microsoft MVP
award since 2010. In her spare time Mirjam likes to play tennis and hang out with
friends and family.

Ted Pattison has been writing technical books for software developers, speaking at
industry conferences, and leading technical training classes for the last 20 years. In
March 2003, his professional focus turned to SharePoint technologies when he began
to work with the beta of SharePoint Server 2003. As a recognized author and trainer
within the industry, Ted was selected by Microsoft early in the beta lifecycle of Share-
Point 2007, SharePoint 2010, and SharePoint 2013 to author developer-focused training
material for early adopters, and he has been fortunate to gain many close contacts
within the SharePoint team at Microsoft over the years. Currently, Ted is the owner and
president of Critical Path Training (www.CriticalPathTraining.com), a company dedicated
to training and education focusing on SharePoint technologies. Ted manages the cur-
riculum at Critical Path Training and also serves as a senior instructor training hundreds
of professional developers and IT pros on SharePoint 2013 and Office 365 each year.
Ted has been a SharePoint MVP 19 years running since he was originally awarded it as a
SharePoint Server MVP in 1994.

mailto:scot%40shillier.com?subject=
http://sharepointchick.com
www.CriticalPathTraining.com

752   Inside Microsoft SharePoint 2013

Andrew Connell is an independent consultant who enjoys development, writing, and teaching.
He has a background in content management solutions and web development that spans back to
his time as a student at the University of Florida in the late 1990s, managing class websites. He has
consistently focused on the challenges facing businesses today to maintain a current and dynamic
online presence without having to rely constantly on web developers or have a proficiency in web
technologies. Andrew is an nine-time recipient of Microsoft’s MVP award (2005-2013) for Microsoft
Content Management Server (MCMS) and SharePoint Server. You can learn from Andrew by taking
one of his hands-on courses through Critical Path Training (www.CriticalPathTraining.com) or through
one of the many on-demand classes he has published though Pluralsight (www.Pluralsight.com). He
has authored and contributed to numerous MCMS and SharePoint books over the years, including
Professional SharePoint 2007 Web Content Management Development (Wrox, 2008), Inside Microsoft
SharePoint 2010 (Microsoft Press, 2011), and Real World SharePoint 2010 (Wrox, 2010) and is the
author of numerous articles on the Microsoft Developer Network (MSDN) and in various magazines.
Andrew has presented at numerous conferences and taught in the United States, Canada, Australia,
England, Spain, Norway, Sweden, and the Netherlands. You can find Andrew on his blog (http://www.
andrewconnell.com), follow him on Twitter @andrewconnell, or email him at me@andrewconnell.com.

Wictor Wilén is one of the few Microsoft Certified Architects in the world and Microsoft Certified
Solutions Master for SharePoint. He works as Director and Solution Architect at Connecta AB in Swe-
den. Wictor has worked in the portal and web content management industry since 1998 for consult-
ing companies, founded and sold his own software company and saw the dawn of SharePoint back
in 2001. Wictor is an active SharePoint community participant, author, tutor, and frequent speaker at
local and international conferences. Since 2010 Wictor has been awarded the SharePoint Server MVP
title by Microsoft for his community contributions. He can be found online at http://www.wictorwilen.
se/. Wictor is based in Stockholm, Sweden.

Kyle Davis is the Solution Architect for the Emerging Technology Group at Catapult Systems. Kyle is a
frequent speaker at various Microsoft events and enjoys traveling across the nation sharing best prac-
tices and different approaches to solve business needs. Kyle spends most of his time architecting solu-
tions built with emerging technologies and meeting with businesses on how they can do the same.
Kyle holds SharePoint MCITP and MCPD certifications and can be followed at @cldarchitect on Twitter.

www.CriticalPathTraining.com
www.Pluralsight.com
http://www.andrewconnell.com
http://www.andrewconnell.com
mailto:me%40andrewconnell.com?subject=
http://www.wictorwilen.se/
http://www.wictorwilen.se/

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

CriticalPathsAdFinal.9.13:Layout 1 9/6/13 2:40 PM Page 1

Critical Path Training is your fastest way

up the SharePoint 2013 learning curve.

Listen to what our customers have to say:

[The Great SharePoint Adventure] was the best course I‘ve ever
taken. Ted [Pattison] did an excellent job of presenting the “ information, and the demos were extremely useful.

John, British Columbia

Andrew [Connell] is a rock star. Easily the best instructor I‘ve had
for a technical training class. He knows SharePoint, keeps it
entertaining, and doesn‘t forget how it's done in the real world.
Top notch.

Tim, Michigan

Maurice Prather is the best Microsoft trainer I have ever had at
any conference, seminar, or paid training.

Tim, Dallas

Asif [Rehmani] is a wonderful instructor. He paced the class well
and used lots of real world examples to apply the materials. I
also appreciated him suggesting outside vendors for sharepoint
products; it‘s nice to hear from the people who really know these
vendors!

Heidi, Florida

Matt McDermott was as entertaining as he was educational.
Phenomenal instructor. Timing of the course was perfect and was
a good pace all week. Plenty of time for labs. I would recommend
this course to all SharePoint IT Professionals.

Daniel, Florida

”
Get training directly from the instructors who wrote this book. Critical Path Training

offers hands­on training, online training, private onsite classes and courseware licensing.

Ted Pattison Andrew Connell Scot Hillier Maurice Prather Asif Rehmani Matt McDermott David Mann John Holliday

www.CriticalPathTraining.com @criticalpath

http:www.CriticalPathTraining.com

	Contents
	Introduction
	Chapter 1: SharePoint 2013 developer roadmap
	A brief history of SharePoint
	Understanding the impact of SharePoint Online on the SharePoint platform

	Examining SharePoint Foundation architecture
	Understanding SharePoint farms
	Creating web applications
	Understanding service applications
	Creating service applications in SharePoint Server 2013
	Managing sites
	Customizing sites
	Using SharePoint Designer 2013
	Understanding site customization vs. SharePoint development

	Windows PowerShell boot camp for SharePoint professionals
	Learn Windows PowerShell in 21 minutes
	The Windows PowerShell Integrated Scripting Environment (ISE)
	The SharePoint PowerShell snap-in

	Summary

	Chapter 2: SharePoint development practices and techniques
	Setting up a developer environment
	Deciding between virtual and physical
	Understanding hardware and software requirements
	Delivering high-quality solutions

	Automating SharePoint administration by using Windows PowerShell scripts
	Using PowerShell to deploy a custom solution

	Configuring SharePoint service applications
	Using debugging tools
	Working with ULS and Windows event logs
	Using the Developer Dashboard

	Using the SharePoint Developer Tools in Visual Studio 2012
	Choosing a development approach
	Using the SharePoint APIs
	Understanding the server-side object model
	Using the client-side object model
	Using the REST APIs

	Summary

	Chapter 3: Server-side solution development
	Understanding the server-side object model
	Developing farm solutions
	Creating a SharePoint project in Visual Studio
	Designing your SharePoint solution: Features
	Adding declarative elements
	Adding a feature receiver
	Understanding the SharePoint root directory
	Deploying and debugging farm solutions
	Updating farm solutions
	Upgrading features

	Developing sandboxed solutions
	Understanding the sandbox execution environment
	Creating a SharePoint project for a sandboxed solution
	Deploying and debugging sandboxed solutions
	Updating and upgrading sandboxed solutions

	Summary

	Chapter 4: SharePoint apps
	Understanding the new SharePoint app model
	Understanding SharePoint solution challenges
	Understanding the SharePoint app model design goals

	Understanding SharePoint app model architecture
	Working with app service applications
	Understanding app installation scopes
	Understanding app code isolation
	Understanding app hosting models
	Reviewing the app manifest
	Setting the start page URL
	Understanding the app web
	Working with app user interface entry points

	Using the chrome control
	Packaging and distributing apps
	Packaging apps
	Publishing apps
	Installing apps
	Upgrading apps
	Trapping app life cycle events

	Summary

	Chapter 5: Client-side programming
	Understanding app designs
	Assessing SharePoint-hosted app designs
	Assessing cloud-hosted app designs

	Introduction to JavaScript for SharePoint developers
	Understanding JavaScript namespaces
	Understanding JavaScript variables
	Understanding JavaScript functions
	Understanding JavaScript closures
	Understanding JavaScript prototypes
	Creating custom libraries

	Introduction to jQuery for SharePoint developers
	Referencing jQuery
	Understanding the global function
	Understanding selector syntax
	Understanding jQuery methods
	Understanding jQuery event handling

	Working with the client-side object model
	Understanding client object model fundamentals
	Working with the managed client object model
	Working with the JavaScript client object model

	Working with the REST API
	Understanding REST fundamentals
	Working with the REST API in JavaScript
	Working with the REST API in C#

	Summary

	Chapter 6: SharePoint security
	Reviewing authentication and authorization
	Understanding user authentication
	Understanding the User Information List
	Working with users and groups
	Working with application pool identities
	Understanding the SHAREPOINT\SYSTEM account
	Delegating user credentials
	User impersonation with the user token
	Securing objects with SharePoint
	Rights and permission levels

	Understanding app authentication
	Understanding app authentication flow

	Understanding app authorization
	Managing app permissions
	Understanding app permission policies
	Requesting and granting app permissions
	Requesting app-only permissions
	Establishing app identity by using OAuth
	Understanding app principals
	Developing with OAuth
	Establishing app identity by using S2S trusts
	Architecture of an S2S trust
	Configuring an S2S trust
	Developing provider-hosted apps by using S2S trusts

	Summary

	Chapter 7: SharePoint pages
	SharePoint and ASP.NET
	Learning ASP.NET basics
	Understanding how SharePoint relates to IIS web applications
	Understanding the web.config file
	Understanding the SharePoint virtual file system
	Working with files and folders in SharePoint
	Understanding page customization

	Using pages in SharePoint
	Understanding master pages
	Understanding MDS
	Understanding content pages
	Creating a custom branding solution
	Working with application pages

	Customizing the ribbon
	Understanding the anatomy of the SharePoint ribbon
	Adding a custom ribbon control

	Summary

	Chapter 8: SharePoint Web Parts
	Understanding Web Part fundamentals
	Understanding Web Parts
	Comparing ASP.NET and SharePoint Web Parts
	Understanding App Parts
	Understanding Web Part zones
	Understanding the Web Part Manager
	Understanding static Web Parts
	Storing Web Part control description files in the Web Part Gallery

	Developing and deploying Web Parts
	Building your first Web Part
	Deploying and uninstalling a Web Part
	Deploying a Web Part page with Web Parts

	Controlling Web Part rendering
	Overriding the RenderContents method
	Using CreateChildControls
	Responding to events
	Combining CreateChildControls and RenderContents
	Using Visual Web Parts

	Working with Web Part properties
	Persisting Web Part properties
	Using custom Editor Parts

	Exploring advanced Web Part development
	Using Web Part verbs
	Using Web Part connections
	Using parallel and asynchronous execution in Web Parts

	Summary

	Chapter 9: SharePoint lists
	Creating lists
	Working with fields and field types
	Performing basic field operations
	Working with lookups and relationships

	Understanding site columns
	Working with content types
	Programming with content types
	Creating custom content types

	Working with document libraries
	Creating a document library
	Adding a custom document template
	Creating document-based content types
	Working with folders

	Creating and registering event handlers
	Understanding event receiver classes
	Understanding remote event receivers
	Registering event handlers
	Programming before events
	Programming after events

	Querying lists with CAML
	Understanding CAML fundamentals
	Querying joined lists
	Querying multiple lists
	Throttling queries

	Working with LINQ to SharePoint
	Generating entities with SPMetal
	Querying with LINQ to SharePoint
	Adding, deleting, and updating with LINQ to SharePoint

	Summary

	Chapter 10: SharePoint type definitions and templates
	Custom field types
	Creating custom field types
	Creating custom field controls
	JSLink

	Custom site columns and content types
	Creating site columns and content types by using CAML
	Creating site columns and content types by using the server-side object model

	Custom list definitions
	Summary

	Chapter 11: SharePoint site provisioning
	The GLOBAL site definition
	Site definitions
	Webtemp*.xml
	ONET.xml for site definitions
	Feature stapling
	Order of provisioning when using site definitions
	Custom site definitions

	Web templates
	elements.xml
	ONET.xml for web templates
	Deploying web templates

	Using custom code to create sites
	Site templates
	Site provisioning providers
	Web provisioning events
	Web templates and SharePoint apps
	Summary

	Chapter 12: SharePoint workflows
	Workflow architecture in SharePoint 2013
	Installing and configuring a Workflow Manager 1.0 farm
	Understanding workflow in SharePoint 2013
	Creating custom workflows for SharePoint 2013

	Building custom workflows
	Custom workflows with Visio 2013 and SharePoint Designer 2013
	Custom workflows with Visual Studio 2012
	SharePoint Designer 2013 and web services
	Creating custom activities

	Using tasks in workflows
	Adding tasks to a workflow
	Custom task outcomes

	Workflow services CSOM and JSOM
	Adding custom forms to workflows
	Association forms in SharePoint 2013
	Initiation forms in SharePoint 2013

	Summary

	Chapter 13: SharePoint search
	Introducing search-based applications
	Understanding search architecture
	Understanding the indexing process
	Understanding the query process

	Understanding Keyword Query Language
	Creating no-code customizations
	Creating simple link queries
	Extending the Search Center
	Using the Content Search Web Part

	Using the client-side API
	Using the REST API
	Using the CSOM API

	Using the script Web Parts
	Improving relevancy
	Enhancing content processing
	Creating .NET Assembly Connectors for search
	Search-enabling a model
	Implementing security in search results
	Crawling the .NET Assembly Connector

	Summary

	Chapter 14: SharePoint Enterprise Content Management
	Understanding the Managed Metadata Service Application
	Understanding managed metadata
	Using managed metadata in a custom solution
	Understanding content type syndication

	Document services
	Understanding versioning
	Understanding Document IDs
	Understanding Document Sets
	Using the Content Organizer
	Understanding Word Automation Services

	Records management
	In-place records management
	Records archives
	eDiscovery

	Summary

	Chapter 15: Web content management
	Understanding the WCM features
	Publishing site templates

	Accessing SharePoint publishing files
	Mapping to the SharePoint Master Page Gallery

	Page layouts
	Understanding the page model
	Creating a new page layout
	Managing the presentation of page fields
	Working with edit mode panels
	Working with Web Part zones

	Understanding device channels
	Working with device channel panels

	Understanding managed navigation
	Working with managed navigation APIs
	Creating a navigational term set

	Content aggregation
	Deciding between the Content Query and
Content Search Web Parts
	Working with display templates

	Understanding cross-site publishing
	Working with catalogs

	Summary

	Chapter 16: Business Connectivity Services
	Introduction to Business Connectivity Services
	Creating simple BCS solutions
	Creating External Content Types
	Creating External Lists

	Understanding External List limitations
	Understanding BCS architecture
	Understanding connectors
	Understanding Business Data Connectivity
	Managing the BDC service
	Understanding the BDC Server Runtime
	Understanding the client cache
	Understanding the BDC Client Runtime
	Introduction to the Secure Store Service
	Understanding package deployment

	Understanding authentication scenarios
	Configuring authentication models
	Accessing claims-based systems
	Accessing token-based systems

	Managing client authentication
	Creating External Content Types
	Creating operations
	Creating relationships
	Defining filters

	Using ECTs in SharePoint 2013
	Creating custom forms
	Using External Data Columns
	Using External Data Web Parts
	Creating a profile page
	Searching External Systems
	Supplementing user profiles

	Using ECTs in Office 2013
	Understanding Outlook integration
	Using Word Quick Parts

	Creating custom BCS solutions
	Using the BDC Runtime object models
	Using the Administration Object Model
	Creating custom event receivers
	Creating .NET Assembly Connectors
	Developing SharePoint apps

	Summary

	Chapter 17: SharePoint social enterprise features
	What’s new in SharePoint 2013
	Understanding social components
	Working with the social APIs

	Understanding user profiles
	Retrieving user profile properties

	Understanding social feeds
	Retrieving posts from your newsfeed
	Retrieving posts from a site feed
	Posting to your personal feed
	Posting to a site feed

	Understanding following within SharePoint 2013
	Following people

	Understanding Yammer
	Understanding how Yammer can work with SharePoint
	Retrieving followers and followings from Yammer

	Summary

	Index

