

OGRE 3D 1.7 Application
Development Cookbook

Over 50 recipes to provide world-class 3D graphics
solutions with OGRE 3D

Ilya Grinblat

Alex Peterson

 BIRMINGHAM - MUMBAI

OGRE 3D 1.7 Application Development
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Production Reference: 1270412

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-456-9

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

Credits

Authors
Ilya Grinblat

Alex Peterson

Reviewers
Matthew Casperson

Thomas Trocha

Senior Acquisition Editor
Usha Iyer

Lead Technical Editor
Hyacintha D'souza

Technical Editor
Lubna Shaikh

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Aaron Nash

Mario Cecere

Indexer
Monica Ajmera

Graphics
Manu Joseph

Production Coordinator
Alwin Roy

Shantanu Zagade

Cover Work
Alwin Roy

About the Authors

Ilya Grinblat started to work 35 years ago as developer of control systems, and some
years later, he moved to the development of Computer Aided Design software. He was
a development manager of the architectural software ARC+, and was working in the
development of the 3D city software—a software for 3D editing and management of a 3D
printer. Last year, he was working in the development of simulators and the 3D GIS software.
He was using Ogre to develop Civil Simulate—a software for 3D modeling of roads and
driving simulation.

I would like to thank many people from Packt publishing.

I would also like to thank my wife Irena for giving me the time and support to
write this book.

Alex Peterson is a graphics enthusiast with a background in game programming. His work
with the Ogre engine is primarily due to programming a universe size game engine, a space
skybox creator called Spacescape, and most recently, mobile games. Though his current life
is filled with his family and running a business, he makes it a point be active musically and
spiritually. He aims to promote his faith in God through his work to serve others, whether it is
by fueling their creativity, entertaining them, or educating them. You can find Alex online at
http://alexcpeterson.com.

I would like to thank my Father, my family, my wife Lydia, the Ogre
development team, Steve Streeting, the Ogre forum moderators, Sean
O'Neil, Chris, Ava Barneys, and all the kind people who have helped me be a
part of this work. Thank you.

About the Reviewers

Matthew Casperson has worked in the IT industry for nearly a decade in a variety of roles,
and is the author of Away3D 3.6 Essentials. In his spare time, he loves nothing more than to
experiment with the latest Web and multimedia technologies. Many of these experiments can
be found on Matthew's personal website at http://goo.gl/2Hgr.

Thomas Trocha found his passion for the world of computer programming in the mid
eighties, using one of the first home computers - TI99/4a. Since then, he has studied
computer science, and developed his knowledge in a wide spectrum of computer
technologies. Inspired by the great online 48h game coding competition "Ludum Dare", he
shifted to 3D game development, which finally ended up in him founding his own game
company ToMaGa.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Delving Deep into Application Design	 5

Introduction	 5
Creating a Win32 Ogre application	 7
Creating an MFC Ogre application	 19
Creating an MFC Ogre application with a ribbon	 27
Creating a Windows Forms Ogre application	 30
Creating an Ogre plugin	 34
Creating a custom resource manager	 40

Chapter 2: Let Us Be Multimodal	 47
Introduction	 47
Using the keyboard input to navigate an Ogre scene	 47
Using the mouse input to navigate an Ogre scene	 53
Using voice input with static grammar	 56
Using voice input with dynamic grammar	 66
Using text-to-speech to make the application speak	 68

Chapter 3: Managing Objects and Scenes	 71
Introduction	 71
Creating terrain from a LandXML file	 72
Creating Delaunay triangulation	 77
Creating manual objects	 81
Creating parametric superellipsoids	 83
Adding meshes on terrain	 89
Adding trees as billboards	 91
Creating and editing a scene	 95
Saving a scene to an XML file	 100
Loading a scene from an XML file	 104

ii

Table of Contents

Chapter 4: Let There Be Light	 107
Introduction	 107
Creating weather controls	 107
Creating lights	 113
Creating dynamic effects	 117
Managing particle system	 124
Managing shadows	 128

Chapter 5: Playing with Materials	 133
Introduction	 133
Using geoimages as terrain textures	 133
Creating transparent materials	 137
Creating dynamic textures	 141
Creating movable text	 145
2D image manipulation	 147

Chapter 6: Learning to Move	 153
Introduction	 153
Walking between points	 153
Walking along a path	 156
Collision detection	 159
Converting a 2D path into a 3D path	 164
Walking on terrain	 169
Linked movement	 172

Chapter 7: Implementing Animations	 175
Introduction	 175
Creating skeletal animations	 176
Creating morph animations	 181
Creating pose animations	 185
Creating SceneNode animations	 189
Creating numeric value animations	 191
Creating linked animation	 194
Animation using controllers	 196
Creating linked controllers	 200
Blending animations	 205
Creating animated light	 210

Chapter 8: Flashy Multimedia	 215
Introduction	 215
Render to texture	 215
Creating a mirror	 220
Creating a video	 225

iii

Table of Contents

Using sounds	 228
Using voice	 232
Video to texture	 236

Chapter 9: Queries and Views	 243
Introduction	 243
Predefined views	 243
Zoom management	 250
Zooming to a selected object	 258
Orbiting an object	 263
Selecting objects	 267
Object visibility	 273

Index	 281

Preface
Harnessing the power of an elaborate graphics engine, such as Ogre 3D is time-consuming,
but a highly rewarding pursuit. Developers, over the world, attest to Ogre's elegance,
versatility, and efficiency, not to mention that its code is open source and supported by a
thriving online community. This book explores many useful and fun ways to leverage Ogre 3D,
to make your graphics application fully-featured and entertaining.

What this book covers
Chapter 1, Delving Deep into Application Design, covers how to create various types of basic
Ogre 3D Windows applications and plugins.

Chapter 2, Let us be Multimodal, shows how to use the keyboard, the mouse, and the voice
input to control a 3D application.

Chapter 3, Managing Objects and Scenes, contains recipes to build a rudimentary Ogre 3D
scene editor in which you can create various types of meshes, terrain, and save the scene
information to an XML file.

Chapter 4, Let There Be Light, explores lighting, shadows, and particle effects.

Chapter 5, Playing with Materials, covers advanced techniques to manipulate materials and
textures, using Ogre 3D.

Chapter 6, Learning to Move, provides methods for moving meshes in a scene and basic
collision detection.

Chapter 7, Implementing Animations, covers skeletal, morph, and pose animations. It also
covers various methods of animating programmatically, using controllers.

Chapter 8, Flashy Multimedia, shows how to render to texture, and use audio and video
in Ogre 3D.

Chapter 9, Queries and Views, covers selecting objects in a scene with the mouse and
zooming with the camera.

Preface

2

What you need for this book
To follow the recipes in this book, and compile the various applications, you will need
Microsoft Visual C++ 2010 on a machine running MS Windows with a DirectX 9 or higher
graphics card.

Who this book is for
If you have ever wanted to develop 3D applications with OGRE 3D, then this example-driven
book will enable you to do so. An understanding of C++ is needed to follow the examples in
the book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Executables for every sample project will be output
in the bin/debug or bin/release folders depending on the project's build configuration".

A block of code is set as follows:

case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);
 m_Engine->m_Root->renderOneFrame();
 EndPaint(hWnd, &ps);
break;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

facet normal ni nj nk
 outer loop
 vertex v1x v1y v1z
 vertex v2x v2y v2z
 vertex v3x v3y v3z'
 endloop
endfacet

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "In the New Project dialog-box,
expand Visual C++, and click on Win32 Project.".

Preface

3

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

4

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Delving Deep into

Application Design

In this chapter, we will cover the following recipes:

ff Creating a Win32 Ogre application

ff Creating an MFC Ogre application

ff Creating an MFC Ogre application with a ribbon

ff Creating a Windows Forms Ogre application

ff Creating an Ogre plugin

ff Creating a custom resource manager

Introduction
In this chapter, we'll show you how to create an Ogre 3D Windows application in Visual
Studio 2010 using the Win32 API, the Microsoft Foundation Classes (MFC), and the .NET
framework. We'll show you how to configure your project settings to support Ogre, and how
to integrate Ogre into each type of application. We'll also create a custom Ogre plugin and a
custom resource manager.

Delving Deep into Application Design

6

Before we get started, please note the folder structure that we'll be using. This will help you
quickly find the files referred to in each recipe.

Executables for every sample project will be output in the bin/debug or bin/release
folders depending on the project's build configuration. These folders also contain the
following required DLLs and configuration files:

File name Description
OgreMain.dll Main Ogre DLL.
RenderSystem_Direct3D9.dll DirectX 9 Ogre render system DLL. This is necessary

only if you want Ogre to use the DirectX 9 graphics
library.

RenderSystem_GL.dll OpenGL Ogre render system DLL. This is necessary only
if you want Ogre to use the OpenGL graphics library.

Plugin_OctreeSceneManager.dll Octree scene manager Ogre plugin DLL.
Plugin_ParticleFX.dll Particle effects Ogre plugin DLL.
ogre.cfg Ogre main configuration file that includes render

system settings.
resources.cfg Ogre resource configuration file that contains paths to

all resource locations. Resources include graphics files,
shaders, material files, mesh files, and so on.

plugins.cfg Ogre plugin configuration file that contains a list of
all the plugins we want Ogre to use. Typical plugins
include the Plugin_OctreeSceneManager,
RenderSystem_Direct3D9, RenderSystem_
GL, and so on.

In the bin/debug folder, you'll notice that the debug versions of the Ogre plugin DLLs all
have a _d appended to the filename. For example, the debug version of OgreMain.dll is
OgreMain_d.dll. This is the standard method for naming debug versions of Ogre DLLs.

Chapter 1

7

The media folder contains all the Ogre resource files, and the OgreSDK_vc10_v1-7-1 folder
contains the Ogre header and library files.

Creating a Win32 Ogre application
The Win32 application is the leanest and meanest of windowed applications, which makes
it a good candidate for graphics. In this recipe, we will create a simple Win32 application
that displays a 3D robot model that comes with Ogre, in a window. Because these steps are
identical for all Win32 Ogre applications, you can use the completed project as a starting
point for new Win32 applications.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter01/
OgreInWin32 folder in the code bundle available on the Packt website.

How to do it...
We'll start off by creating a new Win32 application using the Visual C++ Win32
application wizard.

1.	 Create a new project by clicking on File | New | Project. In the New Project
dialog-box, expand Visual C++, and click on Win32 Project. Name the project
OgreInWin32. For Location, browse to the Recipes folder and append
\Chapter_01_Examples, then click on OK.

Delving Deep into Application Design

8

2.	 In the Win32 Application Wizard that appears, click on Next. For Application type,
select Windows application, and then click on Finish to create the project. At this
point, we have everything we need for a bare-bones Win32 application without Ogre.

3.	 Next, we need to adjust our project properties, so that the compiler and linker know
where to put our executable and find the Ogre header and library files.

4.	 Open the Property Pages dialog-box, by selecting the Project menu and clicking
on Properties.

5.	 Expand Configuration Properties and click on General. Set Character Set to
Not Set.

6.	 Next, click on Debugging. Select the Local Windows Debugger as the Debugger to
launch, then specify the Command for starting the application as ..\..\..\bin\
debug\$(TargetName)$(TargetExt).

Chapter 1

9

Each project property setting is automatically written to
a per-user file with the extension .vcxproj.user,
whenever you save the solution.

7.	 Next we'll specify our VC++ Directories, so they match our Cookbook folder structure.

Delving Deep into Application Design

10

8.	 Select VC++ Directories to bring up the property page where we'll specify general
Include Directories and Library Directories. Click on Include Directories, then click
on the down arrow button that appears on the right of the property value, and click
on <edit>.

9.	 In the Include Directories dialog-box that appears, click on the first line of the text
area, and enter the relative path to the Boost header files: ..\..\..\OgreSDK_
vc10_v1-7-1\boost_1_42.

10.	 Click on the second line, and enter the relative path to the Ogre header files
..\..\..\OgreSDK_vc10_v1-7-1\include\OGRE, and click OK.

Chapter 1

11

11.	Edit the Library Directories property in the same way. Add the library directory
..\..\..\OgreSDK_vc10_v1-7-1\boost_1_42\lib for Boost, and ..\..\..\
OgreSDK_vc10_v1-7-1\lib\debug for Ogre, then click OK.

12.	 Next, expand the Linker section, and select General. Change the Output File
property to ..\..\..\bin\debug\$(TargetName)$(TargetExt).

13.	 Then, change the Additional Library Directories property to ..\..\..\Ogre\
OgreSDK_vc10_v1-7-1\lib\debug.

Delving Deep into Application Design

12

14.	 Finally, provide the linker with the location of the main Ogre code library. Select
the Input properties section, and prepend OgreMain_d.lib; at the beginning
of the line.

Note that if we were setting properties for the release configuration, we would use
OgreMain.lib instead of OgreMain_d.lib.

15.	 Now that the project properties are set, let's add the code necessary to integrate Ogre
in our Win32 application.

Copy the Engine.cpp and Engine.h files from the Cookbook sample files to
your new project folder, and add them to the project. These files contain the
CEngine wrapper class that we'll be using to interface with Ogre.

16.	 Open the OgreInWin32.cpp file, and include Engine.h, then declare a global
instance of the CEngine class, and a forward declaration of our InitEngine()
function with the other globals at the top of the file.
CEngine *m_Engine = NULL;
void InitEngine(HWND hWnd);

17.	 Next, create a utility function to instantiate our CEngine class, called
InitEngine().
void InitEngine(HWND hWnd){
 m_Engine = new CEngine(hWnd);
}

18.	 Then, call InitEngine() from inside the InitInstance() function, just after the
window handle has been created successfully, as follows:
hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance,
 NULL);

if (!hWnd){
 return FALSE;
}

InitEngine(hWnd);

19.	 Our last task is to render the 3D scene and display it in the window when we receive
a WM_PAINT message. Add a call to renderOneFrame() to the WndProc()
function, as follows:

case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);
 m_Engine->m_Root->renderOneFrame();
 EndPaint(hWnd, &ps);
break;

And that's it!

Chapter 1

13

How it works...
Let's look at the CEngine class to see how we create and initialize an instance of the Ogre
engine, and add a camera and robot model to the scene.

Open Engine.cpp, and look at the constructor for CEngine. In the constructor, we create an
instance of the Ogre engine, and store it in the m_Root class member variable.

m_Root = new Ogre::Root("", "", Ogre::String(ApplicationPath +
 Ogre::String("OgreInWin32.log")));

An instance of Ogre::Root must exist before any other Ogre functions are called. The
first parameter to the constructor is the plugins configuration filename, which defaults to
plugins.cfg, but we pass it an empty string because we are going to load that file manually
later. The second parameter is the main configuration filename, which defaults to ogre.
cfg, but we pass it an empty string, also because we'll be loading that file manually as well.
The third parameter is the name of the log file where Ogre will write the debugging and the
hardware information.

Once the Ogre::Root instance has been created, it can be globally
accessed by Root::getSingleton(), which returns a reference
or Root::getSingletonPtr(), which returns a pointer.

Next, we manually load the configuration file ogre.cfg, which resides in the same directory
as our application executable.

OgreConfigFile.load(Ogre::String(ApplicationPath +
 Ogre::String("ogre.cfg")), "\t:=", false);

The ogre.cfg configuration file contains Ogre 3D engine graphics settings and typically looks
as follows:

Render System indicates which of the render systems
in this configuration file we'll be using.
Render System=Direct3D9 Rendering Subsystem

[Direct3D9 Rendering Subsystem]
Allow NVPerfHUD=No
Anti aliasing=None
Floating-point mode=Fastest
Full Screen=Yes
Rendering Device=NVIDIA GeForce 7600 GS (Microsoft Corporation - WDDM)
VSync=No
Video Mode=800 x 600 @ 32-bit colour

Delving Deep into Application Design

14

[OpenGL Rendering Subsystem]
Colour Depth=32
Display Frequency=60
FSAA=0
Full Screen=Yes
RTT Preferred Mode=FBO
VSync=No
Video Mode=1024 x 768

Once the main configuration file is loaded, we manually load the correct render system plugin
and tell Ogre which render system to use.

Ogre::String RenderSystemName;
RenderSystemName = OgreConfigFile.getSetting("Render System");

m_Root->loadPlugin("RenderSystem_Direct3D9_d);

Ogre::RenderSystemList RendersList = m_Root->getAvailableRenderers();
m_Root->setRenderSystem(RendersList[0]);

There's actually a little more code in Engine.cpp for selecting the correct render system
plugin to load, but for our render system settings the RenderSystem_Direct3D9_d plugin
is all we need.

Next, we load the resources.cfg configuration file.

Ogre::ConfigFile cf;
Ogre::String ResourcePath = ApplicationPath + Ogre::String("resources.
cfg");
cf.load(ResourcePath);

The resources.cfg file contains a list of all the paths where Ogre should search for graphic
resources.

Then, we go through all the sections and settings in the resource configuration file, and add
every location to the Ogre resource manager.

Ogre::ConfigFile::SectionIterator seci = cf.getSectionIterator();
Ogre::String secName, typeName, archName;

while (seci.hasMoreElements()){
 secName = seci.peekNextKey();
 Ogre::ConfigFile::SettingsMultiMap *settings = seci.getNext();
 Ogre::ConfigFile::SettingsMultiMap::iterator i;

 for(i = settings->begin(); i != settings->end(); ++i){
 typeName = i->first;

Chapter 1

15

 archName = i->second;
 archName = ApplicationPath + archName;
 Ogre::ResourceGroupManager::getSingleton().
 addResourceLocation(archName, typeName, secName);
 }
}

Now, we are ready to initialize the engine.

m_Root->initialise(false);

We pass in false to the initialize() function, to indicate that we don't want Ogre to
create a render window for us. We'll be manually creating a render window later, using the
hWnd window handle from our Win32 Application.

Every graphics object in the scene including all meshes, lights, and cameras are managed
by the Ogre scene manager. There are several scene managers to choose from, and each
specializes in managing certain types of scenes of varying sizes. Some scene managers
support rendering vast landscapes, while others are best for enclosed spaces. We'll use the
generic scene manager for this recipe, because we don't need any extra features.

m_SceneManager = m_Root->createSceneManager(Ogre::ST_GENERIC,
 "Win32Ogre");

Remember when we initialized Ogre::Root, and specifically told it not to auto-create
a render window? We did that because we create a render window manually using the
externalWindowHandle parameter.

Ogre::NameValuePairList params;
params["externalWindowHandle"] =
 Ogre::StringConverter::toString((long)hWnd);
params["vsync"] = "true";

RECT rect;
GetClientRect(hWnd, &rect);

Ogre::RenderTarget *RenderWindow = NULL;

try{
 m_RenderWindow = m_Root->createRenderWindow("Ogre in Win32", rect.
right
 - rect.left, rect.bottom - rect.top, false, ¶ms);
}
catch(...){
 MessageBox(hWnd, "Failed to create the Ogre::RenderWindow\nCheck that
 your graphics card driver is up-to-date", "Initialize Render
System",
 MB_OK | MB_ICONSTOP);
exit(EXIT_SUCCESS);
}

Delving Deep into Application Design

16

As you have probably guessed, the createRenderWindow() method creates a new
RenderWindow instance. The first parameter is the name of the window. The second and
third parameters are the width and height of the window, respectively. The fourth parameter
is set to false to indicate that we don't want to run in full-screen mode. The last parameter is
our NameValuePair list, in which we provide the external window handle for embedding the
Ogre renderer in our application window.

If we want to see anything, we need to create a camera, and add it to our scene. The next bit
of code does just that.

m_Camera = m_SceneManager->createCamera("Camera");
m_Camera->setNearClipDistance(0.5);
m_Camera->setFarClipDistance(5000);
m_Camera->setCastShadows(false);
m_Camera->setUseRenderingDistance(true);
m_Camera->setPosition(Ogre::Vector3(200.0, 50.0, 100.0));
Ogre::SceneNode *CameraNode = NULL;
CameraNode = m_SceneManager->getRootSceneNode()-
>createChildSceneNode("CameraNode");

First, we tell the scene manager to create a camera, and give it the highly controversial
name Camera. Next, we set some basic camera properties, such as the near and far clip
distances, whether to cast shadows or not, and where to put the camera in the scene. Now
that the camera is created and configured, we still have to attach it to a scene node for
Ogre to consider it a part of the scene graph, so we create a new child scene node named
CameraNode, and attach our camera to that node.

The last bit of the camera-related code involves us telling Ogre that we want the content for
our camera to end up in our render window. We do this by defining a viewport that gets its
content from the camera, and displays it in the render window.

Ogre::Viewport* Viewport = NULL;

if (0 == m_RenderWindow->getNumViewports()){
 Viewport = m_RenderWindow->addViewport(m_Camera);
 Viewport->setBackgroundColour(Ogre::ColourValue(0.8f, 1.0f, 0.8f));
}

m_Camera->setAspectRatio(Ogre::Real(rect.right - rect.left) /
 Ogre::Real(rect.bottom - rect.top));

The first line of code checks whether we have already created a viewport for our render
window or not; if not, it creates one with a greenish background color.

We also set the aspect ratio of the camera to match the aspect ratio of our viewport.
Without setting the aspect ratio, we could end up with some really squashed or
stretched-looking scenes.

Chapter 1

17

You may wonder why you might want to have multiple viewports for a single
render window. Consider a car racing game where you want to display the rear
view mirror in the top portion of your render window. One way to accomplish,
this would be to define a viewport that draws to the entire render window, and
gets its content from a camera facing out the front windshield of the car, and
another viewport that draws to a small subsection of the render window and
gets its content from a camera facing out the back windshield.

The last lines of code in the CEngine constructor are for loading and creating the 3D robot
model that comes with the Ogre SDK.

Ogre::Entity *RobotEntity = m_SceneManager->createEntity("Robot",
 "robot.mesh");
Ogre::SceneNode *RobotNode = m_SceneManager->getRootSceneNode()-
 >createChildSceneNode();
RobotNode->attachObject(RobotEntity);

Ogre::AxisAlignedBox RobotBox = RobotEntity->getBoundingBox();
Ogre::Vector3 RobotCenter = RobotBox.getCenter();
m_Camera->lookAt(RobotCenter);

We tell the scene manager to create a new entity named Robot, and to load the robot.mesh
resource file for this new entity. The robot.mesh file is a model file in the Ogre .mesh format
that describes the triangles, textures, and texture mappings for the robot model. We then
create a new scene node just like we did for the camera, and attach our robot entity to this
new scene node, making our killer robot visible in our scene graph. Finally, we tell the camera
to look at the center of our robot's bounding box.

Finally, we tell Ogre to render the scene.

m_Root->renderOneFrame();

We also tell Ogre to render the scene in OgreInWin32.cpp whenever our application
receives a WM_PAINT message. The WM_PAINT message is sent when the operating system,
or another application, makes a request that our application paints a portion of its window.
Let's take a look at the WM_PAINT specific code in the WndProc() function again.

case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);
 m_Engine->m_Root->renderOneFrame();
 EndPaint(hWnd, &ps);
break;

Delving Deep into Application Design

18

The BeginPaint() function prepares the window for painting, and the corresponding
EndPaint() function denotes the end of painting. In between those two calls is the Ogre
function call to renderOneFrame(), which will draw the contents of our viewport in our
application window.

During the renderOneFrame() function call, Ogre gathers all the objects, lights, and
materials that are to be drawn from the scene manager based on the camera's frustum or
visible bounds. It then passes that information to the render system, which executes the 3D
library function calls that run on your system's graphics hardware, to do the actual drawing on
a render surface. In our case, the 3D library is Direct X and the render surface is the hdc, or
Handle to the device context, of our application window.

The result of all our hard work can be seen in the following screenshot:

Flee in terror earthling!

There's more...
If you want to use the release configuration instead of debug, change the Configuration type
to Release in the project properties, substitute the word release where you see the word
debug in this recipe, and link the OgreMain.lib instead of OgreMain_d.lib in the
linker settings.

Chapter 1

19

It is likely that at some point you will want to use a newer version of the Ogre SDK. If you
download a newer version and extract it to the Recipes folder, you will need to change the
paths in the project settings so that they match the paths for the version of the SDK
you downloaded.

Creating an MFC Ogre application
In the previous recipe, we showed you how to create a simple Win32 application. By
incorporating the Microsoft Foundation Classes (MFC) library into our application, we gain
access to a lot of extra functionality and user interface tools. In this recipe, we will show you
how to create an Ogre MFC application that displays a 3D robot in a window.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter01/
OgreInMFC folder in the code bundle available on the Packt website.

How to do it...
We'll start by creating a new MFC application using the MFC Application Wizard.

1.	 Create a new project by clicking File | New | Project. In the New Project dialog-box,
expand Visual C++, and click on MFC Application. Name the project OgreInMFC.
For Location, browse to your Recipes folder, append \Chapter_01_Examples,
and click on OK.

Delving Deep into Application Design

20

2.	 In the MFC Application Wizard, click on Next.

For the Application type, select Single document. Unselect Use Unicode
libraries, and set Project style to MFC standard. Set the Visual style and colors
to Office 2007 (Black Theme), unselect Enable visual style switching, and click
on Next.

3.	 On the Compound document support page, click on Next.

4.	 On the Document Template Properties page, change the File extension property to
scene (not necessarily for this recipe, but will be useful later), and click on Next.

Chapter 1

21

5.	 On the Database Support page, click on Next.

Delving Deep into Application Design

22

6.	 On the User Interface Features page, select Maximized so the application will start
with its window maximized. Select Use a classic menu, and click on Next.

7.	 On the Advanced Features page, un-select Printing and print preview, and click
on Next.

Chapter 1

23

8.	 On the Generated Classes page, click on Finish to create the project.

9.	 The next step is to configure the project properties just like we did for our Win32
application, so that the compiler and linker know where to find the Ogre header and
library files. Examine the project properties for the sample MFC application, and you
will see that the properties are the same as in our Win32 application.

10.	 Next, copy the Engine.cpp and Engine.h files from the Cookbook sample MFC
application to our new project folder, and add them to the project.

11.	 Open OgreInMfc.h, and add a new member variable for our CEngine instance,
and a declaration of the InitEngine() function that we'll be adding.
public:
 CEngine* m_Engine;
 void InitEngine(void);

12.	 Now, in OgreInMfc.cpp, modify the COgreInMfcApp constructor to give our new
member variable a default value.
COgreInMfcApp::COgreInMfcApp()
 : m_Engine(NULL)

13.	 Then, add our familiar InitEngine() function.
void COgreInMfcApp::InitEngine(void){
 m_Engine = new CEngine();
}

14.	 Finally, call InitEngine() at the end of COgreInMfcApp::InitInstance().
InitEngine();

In our Win32 application, all of our Ogre setup code was done in the CEngine
constructor. This time, we do not have a window handle in InitInstance(), so
we can't set up the render window here. The CEngine constructor only creates
the Ogre engine instance and initializes it.

15.	 Now, add a function to the OgreInMfcView class in OgreInMfcView.h called
EngineSetup() that will contain the rest of our Ogre setup code.
void EngineSetup(void);

While we're here, let's add a few more member variables that we'll need.
bool m_First;

Ogre::Camera*m_Camera;
Ogre::RenderWindow*m_RenderWindow;

Delving Deep into Application Design

24

Now open OgreInMfcView.cpp, and create the EngineSetup() function.
void COgreInMfcView::EngineSetup(void)
{}

16.	 First, we need to get the Ogre::Root instance from CEngine, and use it to create a
scene manager named MFCOgre.
Ogre::Root *Root = ((COgreInMfcApp*)AfxGetApp())->m_Engine-
 >GetRoot();

Ogre::SceneManager *SceneManager = NULL;
SceneManager = Root->createSceneManager(Ogre::ST_GENERIC,
 "MFCOgre");

We also create a generic scene manager, and name it MFCOgre.

17.	 Next, we create a render window with our window handle, just as we did in the Ogre
Win32 application.
Ogre::NameValuePairList parms;
parms["externalWindowHandle"] =
 Ogre::StringConverter::toString((long)m_hWnd);
parms["vsync"] = "true";

CRect rect;
GetClientRect(&rect);

Ogre::RenderTarget *RenderWindow = Root->getRenderTarget("Ogre in
 MFC");

if (RenderWindow == NULL){
 try{
 m_RenderWindow = Root->createRenderWindow("Ogre in MFC",
 rect.Width(), rect.Height(), false, &parms);
 }
 catch(...){
 MessageBox("Cannot initialize\nCheck that graphic-card driver
 is up-to-date", "Initialize Render System", MB_OK |
 MB_ICONSTOP);
 exit(EXIT_SUCCESS);
 }
}

Chapter 1

25

18.	 Then, we instruct the Ogre::ResourceGroupManager to initialize all
resource groups.
// Load resources
Ogre::ResourceGroupManager::getSingleton().
initialiseAllResourceGroups();

19.	 Next, we create and initialize our camera. We also add it to a new scene node.
// Create the camera
m_Camera = SceneManager->createCamera("Camera");
m_Camera->setNearClipDistance(0.5);
m_Camera->setFarClipDistance(5000);
m_Camera->setCastShadows(false);
m_Camera->setUseRenderingDistance(true);
m_Camera->setPosition(Ogre::Vector3(200.0, 50.0, 100.0));
Ogre::SceneNode *CameraNode = NULL;
CameraNode = SceneManager->getRootSceneNode()-
 >createChildSceneNode("CameraNode");

20.	 After the camera is set up, we need to create a viewport that will take the contents
of the camera's view, and draw it in our render window. We also need to set the
camera's aspect ratio to match the aspect ratio of the render window.
Ogre::Viewport* Viewport = NULL;

if (0 == m_RenderWindow->getNumViewports()){
 Viewport = m_RenderWindow->addViewport(m_Camera);
 Viewport->setBackgroundColour(Ogre::ColourValue(0.8f, 1.0f,
 0.8f));
}

m_Camera->setAspectRatio(Ogre::Real(rect.Width()) /
 Ogre::Real(rect.Height()));

The last lines of code in EngineSetup() create a robot entity that uses the
robot.mesh resource, and attach it to a new scene node. They also point the
camera at the center of the robot's bounding box.
Ogre::Entity *RobotEntity = SceneManager->createEntity("Robot",
 "robot.mesh");
Ogre::SceneNode *RobotNode = SceneManager->getRootSceneNode()-
 >createChildSceneNode();
RobotNode->attachObject(RobotEntity);

Ogre::AxisAlignedBox Box = RobotEntity->getBoundingBox();
Ogre::Vector3 Center = Box.getCenter();
m_Camera->lookAt(Center);

Delving Deep into Application Design

26

21.	 Next, we need to add a message handler for the WM_PAINT message, and call
EngineSetup() the first time the Ogre engine instance is available.

22.	 To add the WM_PAINT message handler, open the Class View and expand
OgreInMfc. Then right-click on COgreInMfcView, and select Properties. In the
Properties window, click on the Messages icon, then scroll down till you find
WM_PAINT. Click in the box next to WM_PAINT, and click on <add>OnPaint.
Inside the resulting OnPaint() function, we add the following code:
CEngine *Engine = ((COgreInMfcApp*)AfxGetApp())->m_Engine;
if (Engine == NULL)
 return;

Ogre::Root *Root = Engine->GetRoot();

if (m_First && Root != NULL){
 m_First = false;
 EngineSetup();
}

23.	 Once the Ogre engine instance is available, we need to instruct Ogre to render
by calling renderOneFrame(), so add the following code to the end of the
OnPaint().
if (Root != NULL){
 Root->renderOneFrame();
}

24.	 Open OgreInMfcDoc.cpp, and add a call to UpdateAllViews() in
COgreInMfcDoc::OnNewDocument(), so that our view's OnPaint method is
called every time the user clicks on the New document button.

BOOL COgreInMfcDoc::OnNewDocument(){
 if (!CDocument::OnNewDocument())
 return FALSE;

 UpdateAllViews(NULL);
 return TRUE;
}

How it works...
In this recipe, we divide the process of setting up Ogre into two steps. First, we create an
instance of the Ogre engine and initialize it in the CEngine constructor, just as we do
in the Creating a Win32 Ogre application recipe. The rest of the setup happens in the
COgreInMfcView::EngineSetup() function.

Chapter 1

27

When the user runs the program and clicks on the New button, the resulting
COgreInMfcDoc::OnNewDocument() function call contains UpdateAllViews(NULL);,
which will call our COgreInMfcView::OnPaint() method, and display our 3D scene. The
following is a screenshot from our new MFC application:

Creating an MFC Ogre application with a
ribbon

Adding the ribbon to your MFC application is a great way to organize the user interface when
your application has a lot of menus and options. In this recipe, we show how to use the MFC
Application Wizard to create an application with a ribbon. We also show you how to add
ribbon categories, category panels, and add controls to category panels.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter01/
OgreInRibbon folder in the code bundle available on the Packt website.

Delving Deep into Application Design

28

How to do it...
Let's start by creating a new MFC application using the MFC Application Wizard. During the
wizard process, we'll customize our application to include a ribbon.

1.	 Create a new project by clicking File | New | Project. In the New Project dialog-
box, expand Visual C++ under Installed Templates, select MFC and click on MFC
Application, and name the project OgreInRibbon. For Location, browse to your
Recipes folder, append \Chapter_01_Examples, and click on OK.

2.	 Click on Next on the Welcome to the MFC Application Wizard page. On the
Application Type page, select Single Document under Application type. Unselect
Use Unicode libraries. Under Visual style and colors, select Office 2007 (Black
theme), and click on Next.

3.	 On the Compound Document Support page, make sure that None is selected, then
click on Next.

4.	 On the Document Template Properties page, in the File extension box, type scene
as the file name extension for documents that this application creates, and click
on Next.

5.	 On the Database Support page, make sure that None is selected, then click Next.

6.	 On the User Interface Features page, select Use a ribbon. Select Maximized, then
click on Next.

Chapter 1

29

7.	 Remove Printing and print preview, and uncheck all Advanced frame panes
checkboxes, then click on Next.

8.	 On the Generated Classes page, click on Finish to create the MFC application.

9.	 At this point, configure the project properties, just as we did for the Creating a Win32
Ogre application recipe.

10.	 Next, create a message handler for the WM_PAINT message and insert our
InitEngine() and EngineSetup() functions, exactly as we did in the Creating an
MFC Ogre application recipe.

How it works...
The MFC Application Wizard automatically adds a ribbon to the application window with one
ribbon category named Home.

We created the Ogre engine instance, and initialize it just as we did in the Creating a MFC
Ogre application recipe.

There's more...
To add categories and panels to the ribbon, open the ribbon resource in the Resource View,
by selecting the View menu, then click on Resource View. Expand OgreInRibbon, and then
expand Ribbon. Double-click on IDR_RIBBON to bring up the Ribbon Editor.

Next, add a new category by double-clicking Category in the Toolbox. Right-click the new
category, and click on Properties. In the Properties panel, change the Caption to Scene
Management. Then, add two panels to this category by double-clicking Panel in the Toolbox.
Change the Caption of one panel to Weather Management and the other to Terrain
Management.

Now, we can add controls to each panel to manage weather and terrain resources.

Delving Deep into Application Design

30

The following is a screenshot of our Ogre MFC Application with a customized ribbon:

Creating a Windows Forms Ogre application
Windows Forms are a lightweight alternative to MFC, and in this recipe, we'll show you how to
create a Windows Forms application that uses Ogre to render a 3D robot model.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter01/
OgreInWinForms folder in the code bundle available on the Packt website.

How to do it...
First, we'll create a new Windows Forms application using the New Project wizard.

1.	 Create a new project by clicking File | New | Project. In the Project Types pane,
expand Visual C++, select CLR, then select Windows Forms Application in the
Templates pane. Name the project OgreInWinForms. For Location, browse to your
Recipes folder, append \Chapter_01_Examples, and click on OK.

Chapter 1

31

The Windows Forms Designer will appear showing Form1 of the Windows Forms
application that we just created.

Delving Deep into Application Design

32

2.	 Next, in the Solution Explorer pane, right-click Form1.h, and click View Code.

In Form1.h, add a new CEngine member instance variable.
public:
 CEngine *m_Engine;

3.	 In the constructor, create an instance of our CEngine class, and pass it our
window handle.
OgreForm(void)
 : m_Engine(NULL){
 InitializeComponent();
 m_Engine = new CEngine((HWND)this->Handle.ToPointer());
}

4.	 Next, we add a PaintEventHandler function and Resize EventHandler
function to the InitializeComponent() method, and set the default window
state to maximized.
this->WindowState =
 System::Windows::Forms::FormWindowState::Maximized;
this->Paint += gcnew
 System::Windows::Forms::PaintEventHandler(this,
 &OgreForm::Ogre_Paint);
this->Resize += gcnew System::EventHandler(this,
 &OgreForm::OgreForm_Resize);

5.	 Create the functions for the event handlers we just added.

private: System::Void Ogre_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e) {
 m_Engine->m_Root->renderOneFrame();
}

private: System::Void OgreForm_Resize(System::Object^ sender,
 System::EventArgs^ e) {
 if (m_Engine != NULL) {
 m_Engine->m_Root->renderOneFrame();
 }
}

In the Ogre_Paint() and OgreForm_Resize() methods, we call renderOneFrame(),
instructing Ogre to render to our form surface.

Chapter 1

33

How it works...
Windows Forms is a smart client technology for the .NET framework, a set of managed
libraries that simplify common application tasks. In Windows Forms, a form is a visual surface
on which you display information to the user. You ordinarily build Windows Forms applications
by adding controls to forms and those controls respond to user actions, such as mouse clicks
or key presses. A control is a discrete User Interface (UI) element that displays data or
accepts data input. In this basic Windows Forms application, we have Ogre draw the contents
of our 3D scene on a form surface.

The following is a screenshot of our Ogre Windows Forms application in action:

There's more...
It's easy to add controls to our form. In the Toolbox, click on the control you want to add. Then,
on the form, click where you want the upper-left corner of the control to be located, and drag
to where you want the lower-right corner of the control to be. When you let go, the control will
be added to the form.

You can also add a control to the form, programmatically, at runtime.

Delving Deep into Application Design

34

Creating an Ogre plugin
Ogre supports a plugin system for loading and unloading DLLs that provide additional
functionality or override existing functionality. You may have already noticed that Ogre relies
on the render system and scene manager plugins to render scenes and manage scene
objects. In this recipe, we'll show how to create an Ogre plugin that loads a 3D robot and
adds it to the scene when the plugin's initialise() function is called.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter01/
OgrePlugin folder in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC application, and set the properties just like we did for the

Creating an MFC Ogre application recipe.

2.	 Next, let's add a new Win32 DLL project to our solution.

Create a new project by clicking File | New | Project. In the Project Types pane,
expand Visual C++ and click Win32 Project. Name the project Robot3, and then
click on OK.

Chapter 1

35

3.	 Click on OK on the Win32 Application Wizard welcome page.

4.	 On the Application Settings page, set the Application type to DLL, check Empty
project in Additional options, and click on Finish.

5.	 Next, modify the project properties, just like for the Win32 application project, and be
sure to set the Linker Output File property, so our DLL ends up in the same folder as
our MFC application executable.

6.	 Next, create an empty header file named Robot.h, and add it to the Robot project.
In the new header file, create a new class called Robot3Plugin that derives from
Ogre::Plugin.
#include "Ogre.h"
#include "OgrePlugin.h"

class Robot3Plugin : public Ogre::Plugin{
 public:
 Ogre::String m_Name;

 Robot3Plugin(){
 m_Name = "Robot";
 }
};

Delving Deep into Application Design

36

7.	 Every subclass of Ogre::Plugin must implement the getName(), install(),
initialise(), shutdown(), and uninstall() methods, so add the following
code to our new Robot3Plugin class:
const Ogre::String& getName() const {
 return m_Name;
}

void install(){}

void initialise(){
 Ogre::SceneManager *SceneManager =
 Ogre::Root::getSingleton().getSceneManager("OgrePlugin");
 Ogre::Entity *RobotEntity = SceneManager->createEntity("Robot",
 "robot.mesh");
 Ogre::SceneNode *RobotNode = SceneManager->getRootSceneNode()-
 >createChildSceneNode();
 RobotNode->attachObject(RobotEntity);

 Ogre::AxisAlignedBox Box = RobotEntity->getBoundingBox();
 Ogre::Vector3 Center = Box.getCenter();
 Ogre::Camera *Camera = SceneManager->getCamera("Camera");
 Camera->lookAt(Center);

 Ogre::Root::getSingleton().renderOneFrame();
}

void shutdown(){}

void uninstall(){}

The getName() function simply returns the unique name of our plugin. Every
other method, except for initialise(), we leave empty.

In the initialise() method, we load our robot mesh, create the robot entity,
and attach it to a scene node. We also point the camera at the center of the
robot's bounding box, and then call renderOneFrame(), which will result in Ogre
drawing the scene to our application window.

8.	 Create an empty file called Robot3.cpp, and add it to the project.

At the top of the Robot3.cpp file, import the necessary headers and declare a
global instance variable of our Robot3Plugin class.
#include "Robot3.h"
#include "Ogre.h"
#include "OgrePlugin.h"

Robot3Plugin *Robot;

Chapter 1

37

9.	 Next, define two functions, dllStartPlugin() and dllStopPlugin().
extern "C" __declspec(dllexport) void dllStartPlugin(){
 Robot = OGRE_NEW Robot3Plugin();
 Ogre::Root::getSingleton().installPlugin(Robot);
}

extern "C" __declspec(dllexport) void dllStopPlugin(){
 Ogre::Root::getSingleton().uninstallPlugin(Robot);
 OGRE_DELETE Robot;
}

The dllStartPlugin() will be called by Ogre when it loads our plugin, and
dllStopPlugin() will be called when the plugin is unloaded.

10.	 Now we need to add a menu item, so that we can test loading the Robot plugin.

In the Resource View, expand Plugin Manager, PluginManager.rc, and
then Menu. Double-click on the IDR_MAINFRAME resource item to open the
menu editor.

11.	 Add the submenu Load to the main menu, expand it, and add a new item named
Robot Mesh.

Delving Deep into Application Design

38

12.	 Next, we need to add an event handler for when the user selects the new menu item.
Right-click on the RobotMesh menu item, and choose Add Event Handler.

13.	 In the Event Handler Wizard that appears, set the Function handler name to
OnLoadRobot, select CPluginManagerView from the Class List, and then press
Add and Edit.

Our event handler function looks like this:
void CPluginManagerView::OnLoadRobot(){
 Ogre::Root::getSingleton().loadPlugin("Robot3");
}

When we call loadPlugin(), Ogre will load our Robot plugin and call dll-
StartPlugin(), after which, Ogre will call initialize(), and our robot will
appear in our application window.

Chapter 1

39

How it works...
The process of creating an instance of the Ogre engine and initializing it is the same as in
previous recipes. The main difference in this recipe is that we moved the loading of our robot
mesh and creation of the robot entity into a plugin. Our plugin gets loaded when the user
clicks our Load | Robot Mesh menu item.

The following is a screenshot from our sample project, featuring a killer robot after the user
clicks the Load | Robot Mesh menu item:

There's more…
In this recipe, we've chosen to load the robot 3d mesh in our plugin, but a more practical use
would be to register an object factory or a scene manager. The Ogre Octree scene manager
plugin and RenderSystem_GL plugin are good examples of full-featured Ogre plugins.

See also
In this chapter:

ff Creating an MFC Ogre application

Delving Deep into Application Design

40

If you're interested in how to create a specific type of plugin, such as a scene manager, go to
http://ogre3d.org, and download the Ogre source code. Within, you will find the source
code for the Octree scene manager.

Creating a custom resource manager
A common task for many graphics applications is loading and saving custom resources. In this
recipe, we show you how to create a custom resource manager that loads Ogre 3D models
from STL files.

The STL file format is used by the stereo lithography CAD software created by 3D Systems.
This file format is supported by many other software packages, and is widely used for rapid
prototyping and computer-aided manufacturing. STL files describe only the surface geometry
of a three-dimensional object, without any representation of color, texture, or other common
CAD model attributes. It contains the raw unstructured triangulated surface information as a
series of unit normals and vertices, ordered by the right-hand rule.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter01/
ResourceManagement folder in the code bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named ResourceManager, by following the

Creating an MFC Ogre application recipe.

2.	 Next, we need the following three new classes.

�� StlFile: It's derived from Ogre::Resource, and will represent our
custom resource.

�� StlFileManager: It's derived from Ogre::ResourceManager and
Ogre::Singleton<StlFileManger>. This is our custom resource
manager for STLFile resources.

�� StlFileSerializer: It's derived from Ogre::Serializer, and is
responsible for loading STL files, parsing them and creating meshes from the
data.

3.	 Copy the StlFile, StlFileManager, StlFileSerialzer headers, and .cpp
files into your projects folder, and add them to the project.

http://ogre3d.org
http://en.wikipedia.org/wiki/Stereolithography
http://en.wikipedia.org/wiki/Stereolithography
http://en.wikipedia.org/wiki/Computer-aided_design
http://en.wikipedia.org/wiki/3D_Systems
http://en.wikipedia.org/wiki/Rapid_prototyping
http://en.wikipedia.org/wiki/Computer-aided_manufacturing
http://en.wikipedia.org/wiki/Computer-aided_manufacturing
http://en.wikipedia.org/wiki/Triangulation_(advanced_geometry)
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Surface_normal
http://en.wikipedia.org/wiki/Right-hand_rule

Chapter 1

41

Any resource type we create that we want to add to an Ogre::ResourceManager
must derive from the Ogre::Resource class. It must implement the loadIm-
pl() and unloadImpl() functions, which will be called when a resource man-
ager attempts to load or unload the resource. The StlFileSerializer does all
the heavy lifting in terms of parsing the file data and creating Ogre 3D models.
Our StlFileManager simply keeps track of existing StlFile resources, and
provides an interface for creating entities from StlFile resources.

4.	 Let's create an instance of our new resource manager, and register it with Ogre.

Add a new StlFileManager member variable in Engine.h called m_StlFile-
Manager, and include StlFileManager.h, then open Engine.cpp and add the
following code just after we create m_Root:
m_StlFileManager = OGRE_NEW StlFileManager();

5.	 Next add the following code just before we call m_Root->initialize():
Ogre::ResourceGroupManager::getSingleton().
 createResourceGroup("StlFile", true);
Ogre::ResourceGroupManager::getSingleton().
 initialiseResourceGroup("StlFile");

Ogre::ResourceGroupManager::getSingleton().
 addResourceLocation(Ogre::String(ApplicationPath) +
 Ogre::String("..\\..\\media\\stl\\Tubes\\hoses\\curvature"),
 "FileSystem","StlFile");

Here, we add a new resource group for our StlFile resources, and add a
FileSystem resource location where Ogre can find StlFiles.

6.	 Next, we modify our MFC view's EngineSetup() function, and add code at the end,
to create a new entity using the StlFileManager.

Ogre::Entity *MobiusEntity = Engine->m_StlFileManager-
 >createEntity("Mobius", "1_4.stl");
Ogre::SceneNode *MobiusNode = SceneManager->getRootSceneNode()-
 >createChildSceneNode();
MobiusNode->attachObject(MobiusEntity);

Ogre::AxisAlignedBox MobiusBox = MobiusEntity->getBoundingBox();
Ogre::Vector3 MobiusCenter = MobiusBox.getCenter();

m_Camera->lookAt(MobiusCenter);
m_Camera->setPosition(300, 100, 200);

We create the entity and attach it to the scene, just as we did for the robot model in previous
recipes. In this recipe, we call m_Camera->setPosition(), to move the camera further
away, because the Mobius model is larger than the robot model.

Delving Deep into Application Design

42

How it works...
Let's look at the StlFile resource class first.

class StlFile : public Ogre::Resource{
protected:
 void loadImpl();
 void unloadImpl();
 size_t calculateSize() const;
 Ogre::MeshPtr mMesh;

public:
 StlFile(Ogre::ResourceManager *creator,
 const Ogre::String &name,
 Ogre::ResourceHandle handle,
 const Ogre::String &group,
 bool isManual = false,
 Ogre::ManualResourceLoader *loader = 0
);

 virtual ~StlFile();

 void setMesh(Ogre::MeshPtr mesh);
 Ogre::MeshPtr getMesh() const;
};

Any resource type we create that we want to add to an Ogre::ResourceManager must
derive from the Ogre::Resource class. We must also implement the loadImpl() and
unloadImpl() functions, which will be called when our resource manager attempts to load
or unload our custom resource. Our resource is bare-bones, it only has a shared pointer to
a mesh.

The loadImpl() for our StlFile resource looks like the following:

void StlFile::loadImpl() {
 if(Ogre::MeshManager::getSingleton().resourceExists(this->mName)) {
 setMesh(Ogre::MeshManager::getSingleton().getByName(this->mName));
 }
 else {
 StlFileSerializer serializer;
 Ogre::DataStreamPtr stream =
 Ogre::ResourceGroupManager::getSingleton().openResource(mName,
 mGroup, true, this);
 serializer.importStlFile(stream, this);
 }
}

Chapter 1

43

In our loadImpl() function, we check to see if our mesh has already been loaded, and if
not, we load one using our StlFileSerializer. The StlFileSerializer class has one
key function called importStlFile(), which is where we parse the STL file and create a
mesh object.

The STL file format is an ASCII file format that begins with the line:

solid name

The file then contains series of triangles, each represented as follows:

facet normal ni nj nk
 outer loop
 vertex v1x v1y v1z
 vertex v2x v2y v2z
 vertex v3x v3y v3z'
 endloop
endfacet

The file concludes with:

endsolid name

Here's how we parse the file:

void StlFileSerializer::importStlFile(Ogre::DataStreamPtr &stream,
 StlFile *pDest) {
 Ogre::SceneManager *sceneManager =
 Ogre::Root::getSingleton().getSceneManagerIterator().begin()-
>second;

 Ogre::ManualObject* ManualObject = sceneManager-
 >createManualObject(pDest->getName());
 ManualObject->setDynamic(false);
 ManualObject->begin("BaseWhiteNoLighting",
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

 float x,y,z,nx,ny,nz;

 // first line is solid name (skip)
 stream->getLine();

 int TriangleIndex = 0;
 while(!stream->eof()) {
 // facet normal nx ny nz
 int ret = sscanf(stream->getLine().c_str(), "%*s %*s %f %f %f\n",
 &nx, &ny, &nz);
 if (ret!=3) continue;
 // skip outer loop declaration
 stream->getLine();

Delving Deep into Application Design

44

 for(int i = 0; i < 3; ++i) {
 //vertex x y z
 ret = sscanf(stream->getLine().c_str(), "%*s %f %f %f\n",
 &x, &y, &z);
 if (ret != 3) return;

 ManualObject->position(x, y, z);
 ManualObject->normal(nx, ny, nz);
 ManualObject->colour(Ogre::ColourValue(0.0f, 0.0f, 0.0f, 1.0f));
 }

 ManualObject->triangle(TriangleIndex * 3 + 0, TriangleIndex *
 3 + 1, TriangleIndex * 3 + 2);
 TriangleIndex++;

 // skip outer loop end
 stream->getLine();

 // skip facet end
 stream->getLine();
 }

 ManualObject->end();

 pDest->setMesh(ManualObject->convertToMesh(pDest->getName()));
}

In this function, we parse the STL file line-by-line, and feed the data into a ManualObject
instance. ManualObject exists to make it easier to create meshes using thr code. Once we
are finished parsing the file, we convert the ManualObject to a mesh, and pass it back to
our StlFile instance.

Now let's look at the StlFileManager class.

StlFileManager::StlFileManager() {
 mResourceType = "StlFile";

 mLoadOrder = 30.0f;
 Ogre::ResourceGroupManager::getSingleton()._
 registerResourceManager(mResourceType, this);
}

We must register our resource manager with Ogre's resource group manager, so we do that in
the constructor. The first parameter we pass to _registerResourceManager(), is the type
of resource our manager supports, StlFile resources.

Chapter 1

45

Finally, we have the StlFileManager::createEntity() method.

Ogre::Entity* StlFileManager::createEntity(const Ogre::String
 &entityName, const Ogre::String &meshName){
 // load the resource first
 StlFilePtr stlFile = load(meshName, "StlFile");
 if(stlFile.isNull()) {
 return NULL;
 }

 // get the first available scene manager
 Ogre::SceneManager* sceneManager =
 Ogre::Root::getSingleton().getSceneManagerIterator().begin()-
>second;
 return sceneManager->createEntity(meshName);
}

All that we're doing here is loading the requested StlFile resource, and then creating an
entity using the mesh of the StlFile.

The following is a screenshot from the sample application, which has the camera mode set to
wireframe, to better display the unusual shape of the Mobius.

Delving Deep into Application Design

46

There's more…
Normally, we would not create a specific resource type to load a custom mesh format. The
preferred method is to run the STL file through a converter first that saves it as a native
Ogre .mesh format, and have our program import that.

2
Let Us Be Multimodal

In this chapter, we will cover the following recipes:

ff Using the keyboard input to navigate an Ogre scene

ff Using the mouse input to navigate an Ogre scene

ff Using voice input with static grammar

ff Using voice input with dynamic grammar

ff Using text-to-speech to make the application speak

Introduction
Multimodal interactions with a scene are a necessity for a majority of 3D applications. At the
very least, an Ogre 3D application should support the keyboard and the mouse input to move
and rotate the camera. This chapter focuses on how to use a keyboard, a mouse, and speech
to control various aspects of a 3D scene, such as movement and animation. We also show
you how to make a model talk, using the speech API.

Using the keyboard input to navigate an
Ogre scene

In this recipe, we will learn how to navigate an Ogre scene using the keyboard input in an MFC
environment. MFC uses message maps to map messages to distinct class member functions
instead of the traditional windows messaging approach, where all messages are handled in a
WndProc callback function.

http://msdn.microsoft.com/en-us/library/e129xdd7.aspx

Let Us Be Multimodal

48

Getting ready
To follow along with this recipe, open the solution located in the Recipes\Chapter02\
KeyboardInput folder in the code bundle available on the Packt website.

How to do it...
We'll create an MFC Ogre application named KeyboardInput, by following the Creating an
MFC Ogre application recipe from Chapter 1, Delving Deep into Application Design, and we'll
add the keyboard input to move the camera in the 3D scene.

1.	 First, let's add keyboard message handlers to the CKeyboardInputView class in our
project. To open the MFC Class Wizard, on the Project menu, click on Class Wizard.
Alternatively, to open the wizard with a keyboard shortcut, type Ctrl + Shift + X.

2.	 Select KeyboardInput in the Project drop-down listbox, and then select
CKeyboardInputView in the Class name listbox.

Chapter 2

49

3.	 Next, select each message that we will be mapping in the Messages list, and then
add a handler by clicking on Add Handler…, or by double-clicking on the selected
message in the Messages list. Create message map handlers for all the messages in
the following list:

�� 	 ON_WM_CONTEXTMENU()

�� 	 ON_WM_RBUTTONUP()

�� 	 ON_WM_PAINT()

�� 	 ON_WM_CHAR()

�� 	 ON_WM_HOTKEY()

�� 	 ON_WM_KEYDOWN()

�� 	 ON_WM_KEYUP()

�� 	 ON_WM_SYSKEYDOWN()

�� 	 ON_WM_SYSKEYUP()

�� 	 ON_WM_TIMER()

4.	 The first message handler we implement is the WM_KEYDOWN message handler, which
is called when a non-system key is pressed. For our application, the virtual key codes
that we will use are: VK_LEFT, VK_UP, VK_RIGHT, VK_DOWN, and WSAD to move the
camera.
switch (nChar){
 case VK_LEFT: //left
 case 65: //A
 case 97: //a

 m_WorkingTimer = 1;

 break;

 case VK_UP: //up
 case 87: //W
 case 119: //w

 m_WorkingTimer = 2;

 break;

 case VK_RIGHT: //right
 case 68: //D
 case 100: //d

 m_WorkingTimer = 3;

Let Us Be Multimodal

50

 break;

 case VK_DOWN: //down
 case 83: //S
 case 115://s

 m_WorkingTimer = 4;

 break;
}

Notice that we do not directly move the camera each time we receive a WM_KEY-
DOWN message. Instead, we start a timer, so that we move the camera regularly at
timed intervals, until we receive a WM_KEYUP message.
if (m_WorkingTimer != 0)
 SetTimer(m_WorkingTimer, 10, NULL);

5.	 The OnTimer function handles the WM_TIMER event, and contains the code for
actually moving the camera.
Ogre::Vector3 CameraMove;

switch (nIDEvent){
 case 1:
 CameraMove[0] = -10;
 CameraMove[1] = 0;
 CameraMove[2] = 0;
 break;

 case 2:
 CameraMove[0] = 0;
 CameraMove[1] = 10;
 CameraMove[2] = 0;
 break;

 case 3:
 CameraMove[0] = 10;
 CameraMove[1] = 0;
 CameraMove[2] = 0;
 break;

 case 4:
 CameraMove[0] = 0;
 CameraMove[1] = -10;
 CameraMove[2] = 0;

Chapter 2

51

 break;
}

Ogre::Root *Root = ((CKeyboardInputApp*)AfxGetApp())->
 m_Engine->GetRoot();
m_Camera->moveRelative(CameraMove);
Root->renderOneFrame();

6.	 The OnKeyUp function handles the WM_KEYUP message and stops the timer, which
stops camera movement.

7.	 The OnSysKeyDown function handles the WM_SYSKEYDOWN message, which is called
when the user holds down the ALT key and then presses another key. We use this
input to change the polygon mode used in rendering. The valid polygon modes are
PM_SOLID (the default), PM_WIREFRAME, and PM_POINTS.
switch (nChar){
 case 'W':
 m_Camera->setPolygonMode(Ogre::PM_WIREFRAME);
 break;

 case 'S':
 m_Camera->setPolygonMode(Ogre::PM_SOLID);
 break;

 case 'P':
 m_Camera->setPolygonMode(Ogre::PM_POINTS);
 break;
}

Ogre::Root *Root = ((CKeyboardInputApp*)AfxGetApp())->
 m_Engine->GetRoot();
Root->renderOneFrame();

8.	 The OnHotKey function handles the WM_HOTKEY message, and is called when
the user presses a system-wide hot key. We use the RegisterHotKey function to
register system-wide hot keys that trigger the WM_HOTKEY message when the user
presses CTRL + I and CTRL + 0.
RegisterHotKey(this->m_hWnd, 1, MOD_CONTROL, 'I');
RegisterHotKey(this->m_hWnd, 2, MOD_CONTROL, 'O');

http://msdn.microsoft.com/en-us/library/ms646309.aspx

Let Us Be Multimodal

52

9.	 In the OnHotKey function, we move the camera forward and backwards.

Ogre::Vector3 CameraMove;

switch (nHotKeyId){
 case 1:
 CameraMove[0] = 0;
 CameraMove[1] = 0;
 CameraMove[2] = -10;
 break;

 case 2:
 CameraMove[0] = 0;
 CameraMove[1] = 0;
 CameraMove[2] = 10;
 break;
}

Ogre::Root *Root = ((CKeyboardInputApp*)AfxGetApp())->
 m_Engine->GetRoot();
m_Camera->moveRelative(CameraMove);
Root->renderOneFrame();

How it works...
When the user presses a key, a WM_KEYDOWN or WM_SYSKEYDOWN message is placed in the
message queue. In the same way, releasing the key results in a WM_KEYUP or WM_SYSKEYUP
message being placed in the message queue. If the user holds down a key for an extended
period of time, multiple WM_KEYDOWN or WM_SYSKEYDOWN messages are generated. However,
generating multiple key down messages does not affect how the OnKeyDown function works,
because our application uses a timer to convert the keyboard input to camera movement at
specific intervals.

The hot key combinations that we register for the forward and backward movement take
precedence over normal messages, such as WM_KEYDOWN. We ensure that they take priority
by placing them at the top of the message queue, to be handled before any other pending
messages.

While running the application, you may notice that the camera rotates around the head, and
moving forward and backward zooms in and out on the head object. This is because when we
initialize the camera in CKeyboardInputView::EngineSetup(), we set the camera to
always look at the head model.

Ogre::AxisAlignedBox Box = m_HeadEntity->getBoundingBox();
Ogre::Vector3 HeadCenter = Box.getCenter();

Chapter 2

53

m_Camera->lookAt(HeadCenter);
m_Camera->setAutoTracking(true, HeadNode);
m_Camera->setFixedYawAxis(true);

Using the mouse input to navigate an
Ogre scene

In this recipe, we will learn how to navigate an Ogre scene using a mouse input in an
MFC environment.

How to do it...
We'll start by following the Creating an MFC Ogre application recipe from Chapter 1, Delving
Deep into Application Design, to create an Ogre MFC application named MouseInput, and
we'll add a mouse input to move the camera in the 3D scene.

1.	 The first thing to do is open the MFC Class Wizard, by clicking on Class Wizard
on the Project menu. Select MouseInput in the Project listbox, and then
CMouseInputView in the Class name list-box.

Let Us Be Multimodal

54

2.	 Next, we add message handlers for several mouse messages and end up with a
message map that looks similar to the following:
BEGIN_MESSAGE_MAP(CMouseInputView, CView)
 ON_WM_CONTEXTMENU()
 ON_WM_RBUTTONUP()
 ON_WM_PAINT()
 ON_WM_TIMER()
 ON_WM_LBUTTONDOWN()
 ON_WM_LBUTTONUP()
 ON_WM_MBUTTONDOWN()
 ON_WM_MBUTTONUP()
 ON_WM_MOUSEHOVER()
 ON_WM_MOUSEHWHEEL()
 ON_WM_MOUSEMOVE()
 ON_WM_MOUSEWHEEL()
 ON_WM_RBUTTONDOWN()
END_MESSAGE_MAP()

3.	 Before going over the code for the message handlers, let's turn on the Sonar
accessibility feature for the mouse to make tracking the mouse easier. In CMouseInp
utView::EngineSetup(), we add the following code to set up Sonar:
bool Sonar = TRUE;
SystemParametersInfo(SPI_SETMOUSESONAR, 0, &Sonar, 0);

4.	 Next, we implement the OnLButtonDown and OnLButtonUp functions to toggle the
m_MouseNavigation flag, when the user presses or releases the left mouse button.

5.	 The OnMouseMove function is called when the mouse moves, and when the
m_MouseNavigationFlag is enabled, it calculates difference between the
previous and the current mouse positions, so we can move the camera accordingly.
if (m_MouseNavigation){
 Ogre::Vector3 CameraMove(0.0, 0.0, 0.0);

 CameraMove[0] = -(m_MousePosition.x - point.x);
 CameraMove[1] = m_MousePosition.y - point.y;

 CEngine * Engine = ((CMouseInputApp*)AfxGetApp())->m_Engine;
 if (Engine == NULL)
 return;
 Ogre::Root *Root = Engine->GetRoot();
 if (m_Camera == NULL)
 return;
 m_Camera->moveRelative(CameraMove);

 m_MousePosition = point;

 Root->renderOneFrame();
}

Chapter 2

55

6.	 The OnMouseWheel function handles the WM_MOUSEWHEEL message, and is used
for moving the camera forwards and backwards.
Ogre::Vector3 CameraMove(0.0, 0.0, 0.0);

CameraMove[2] = 0.1 * zDelta;

CEngine * Engine = ((CMouseInputApp*)AfxGetApp())->m_Engine;
if (Engine == NULL)
 return false;
Ogre::Root *Root = Engine->GetRoot();
if (m_Camera == NULL)
 return false;
m_Camera->moveRelative(CameraMove);

Root->renderOneFrame();

Use the MFC global function AfxGetApp() to get a pointer to our application for
easy access to our engine object.

Getting ready
To follow along with this recipe, open the solution located in the Recipes\Chapter02\
MouseInput folder in the code bundle available on the Packt website.

How it works...
The framework calls the OnLButtonDown function when the user presses the left mouse
button and OnLButtonUp when the user releases the left mouse button. While the left
mouse button is down, we sample the mouse position in OnMouseMove, by examining the
point parameter, which specifies the x and y-coordinate of the cursor, relative to the upper-left
corner of our application window.

We use the OnMouseWheel function to zoom the camera, based on the zDelta parameter
that indicates the distance the mouse wheel was rotated. A negative zDelta indicates
rotation back toward the user, and a positive value indicates forward rotation away from
the user.

The optional Sonar accessibility feature is useful for highlighting the mouse position on a
cluttered screen or when the screen resolution is high. To activate the Sonar visual circles
around the mouse, the user simply presses and then releases the Ctrl key.

Let Us Be Multimodal

56

Using voice input with static grammar
In this recipe, we'll use the Microsoft Speech SDK to enable voice input in an Ogre 3D
application, and use voice commands to set the pose animation of our model. The facial
mesh that we'll be using in our application resides in the media/models folder, and contains
the following poses: neutral, happy, sad, and mad.

Getting ready
To follow along with this recipe, open the solution located in the Recipes\Chapter02\
StaticGrammar folder in the code bundle available on the Packt website.

How to do it...
We start by following the Creating an MFC Ogre application recipe from Chapter 1, Delving
Deep into Application Design, to create an Ogre MFC application named StaticGrammar,
then we add the speech SDK, create a grammar, and use it to set the poses for a 3D model.

1.	 When creating the MFC Ogre application, be sure to check the Automation checkbox
on the Advanced features page of the MFC Application Wizard.

Chapter 2

57

2.	 After clicking on Finish on the MFC Application Wizard dialog-box, open the Project
property pages, and add the path to the Speech SDK.

Let Us Be Multimodal

58

3.	 Next, select External Tools from the Tools menu, and add a Speech Help menu item
that points to sapi.chm.

4.	 Before we add any of the code to interact with the Speech API, we need to include the
Speech API main header in StaticGrammer.h and StaticGrammarView.cpp.
#include <sphelper.h>

We also include Expression.h in StaticGrammarView.cpp. Expression.h is
automatically generated by the grammar compiler gc.exe, and is used to handle
various speech events.
#include “Expression.h"

5.	 Next, we add the following variables to the CStaticGrammerApp class:
CComPtr<ISpRecognizer> m_cpEngine;
CComPtr<ISpRecoContext> m_cpRecoCtxt;
CComPtr<ISpRecoGrammar> m_cpCmdGrammar;

These are the engine, recognition context, and grammar Speech API
variables, respectively.

Chapter 2

59

6.	 When the Speech API processes the speech input, it will send a WM_RECOEVENT
message to our application. We define the WM_RECOEVENT message as WM_USER+1:
#define WM_RECOEVENT WM_USER+1

7.	 Next, we declare our event handler in StaticGrammarView.cpp.

ON_MESSAGE(WM_RECOEVENT, &CStaticGrammarView::OnRecoEvent)

Now, it's time to create the grammar rules to describe the speech input we want to support
in our application. The grammar rules used by the Speech API (SAPI) are defined using XML.
The entire grammar is surrounding by a GRAMMAR XML tag. The first section is the DEFINE
section, in which we declare various ID elements that can be associated with phrases.

<GRAMMAR LANGID="409">
 <DEFINE>
 <ID NAME="VID_Sad" VAL="1"/>
 <ID NAME="VID_Mad" VAL="2"/>
 <ID NAME="VID_Neutral" VAL="3"/>
 <ID NAME="VID_Happy" VAL="4"/>
 <ID NAME="VID_ShowExpression" VAL="21"/>
 <ID NAME="VID_ExpressionType" VAL="22"/>
 </DEFINE>
 <RULE ID="VID_ShowExpression" TOPLEVEL="ACTIVE">
 <O>Please</O>
 <O>show</O>
 <P>
 <RULEREF REFID="VID_ExpressionType"/>
 </P>
 <O>expression</O>
 </RULE>
 <RULE ID="VID_ExpressionType">
 <L PROPID="VID_ExpressionType">
 <P VAL="VID_Sad">sad</P>
 <P VAL="VID_Mad">mad</P>
 <P VAL="VID_Neutral">neutral</P>
 <P VAL="VID_Happy">happy</P>
 </L>
 </RULE>
</GRAMMAR>

The RULE section describes the different phrases and their associated ID. The first RULE
is the VID_ShowExpression, which has an ACTIVE tag, meaning this is something the
speech recognition engine should expect to hear. The VID_ShowExpression rule describes
a phrase in the format:

(Please)->(show)->sad | mad | neutral | happy->(expression)

Let Us Be Multimodal

60

Any words in parenthesis are optional, and any set of words separated by a '|' are words that
can be said in that position.

The <O> tag denotes an optional word, and the <P> denotes a phrase.

In order to make use of our grammar XML file, we must compile it into a .cfg file. To compile
the grammar, we add a custom build tool command.

1.	 First, add the XML file to the project. Then, select the file, right-click and
select Properties, and fill in the Command Line and Outputs properties
on the Custom Build Tool property page. Set Command Line to gc /h
Expression.h %(Filename), and Outputs to $(ProjectDir)Expression.
cfg;$(ProjectDir)Expression.h;%(Outputs).

2.	 Now we must add the compiled grammar file to the project. Go to Resource View and
select Add Resource, then Import. Open Expression.cfg, and when it prompts for
a custom type, enter “SRGRAMMAR".

Chapter 2

61

3.	 Next, rename the new resource to “IDR_EXPRESSION".

4.	 In StaticGrammar.cpp, we initialize the Speech API COM in a function called
InitializeSpeechRecognition().
if (FAILED(CoInitialize(NULL))){
 AfxMessageBox(“Error starting COM");
 return false;
}

5.	 First, we create the engine using a shared recognizer. This means that the other
applications will be able to use the recognizer simultaneously.
HRESULT hRes = m_cpEngine.
 CoCreateInstance(CLSID_SpSharedRecognizer);

6.	 Then we create a Speech Recognition context.
	 hRes = m_cpEngine->CreateRecoContext(&m_cpRecoCtxt);

7.	 We then specify which window will receive notifications from the Speech Recognition
Engine. In this case, it is our only window.
	 hRes = m_cpRecoCtxt->SetNotifyWindowMessage(m_pMainWnd->m_
hWnd, WM_RECOEVENT, 0, 0);

8.	 Next, we indicate that we are only interested in speech recognition events.
	 hRes = m_cpRecoCtxt->SetInterest(SPFEI(SPEI_RECOGNITION),
SPFEI(SPEI_RECOGNITION));

9.	 We then load our grammar resource with LoadCmdFromResource().
hRes = m_cpCmdGrammar->LoadCmdFromResource(
 NULL,
MAKEINTRESOURCEW(IDR_EXPRESSION),
 L"SRGRAMMAR",
 MAKELANGID(LANG_NEUTRAL, SUBLANG_NEUTRAL),
 SPLO_DYNAMIC);
hRes = m_cpCmdGrammar->SetRuleState(NULL, NULL, SPRS_ACTIVE);

The first parameter is a handle to the module, but we pass in NULL because we
want to use the default path, which is the path to the file containing the current
process. The second parameter is the name of the resource, and the third param-
eter is the type of the resource. The fourth parameter is the language ID, and the
last parameter is a flag, indicating that the resource file should be loaded
dynamically.

10.	 Finally, we add our grammar and set our grammar rule state to active.
hRes = m_cpRecoCtxt->CreateGrammar(0, &m_cpCmdGrammar);

Let Us Be Multimodal

62

11.	 To handle the speech recognition, we add code to the OnRecoEvent() function in
StaticGrammarView.cpp.
while (event.GetFrom(((CStaticGrammarApp*)AfxGetApp())-
 >m_cpRecoCtxt) == S_OK) {
 // Look at recognition event only
 switch (event.eEventId) {
 case SPEI_RECOGNITION:
 ExecuteCommand(event.RecoResult());
 break;
 }
}

12.	 When we get a SPEI_RECOGNITION event, we run a utility function called
ExecuteCommand() that changes the model pose, based on the input speech
phrase.
SPPHRASE *pElements;
Ogre::Root *Root = ((CStaticGrammarApp*)AfxGetApp())->
 m_Engine->GetRoot();

if (SUCCEEDED(Phrase->GetPhrase(&pElements))) {
 switch (pElements->Rule.ulId) {
 case VID_ExpressionType:
 {
 const SPPHRASEPROPERTY *pProp = pElements->pProperties;

 while (pProp) {
 switch(pProp->vValue.ulVal){
 case VID_Sad:
 m_ManualKeyFrame->updatePoseReference(0, 0.0);
 m_ManualKeyFrame->updatePoseReference(1, 0.0);
 m_ManualKeyFrame->updatePoseReference(2, 1.0);
 m_ManualKeyFrame->updatePoseReference(3, 0.0);
 m_ManualAnimState->getParent()->_notifyDirty();
 Root->renderOneFrame();
 break;

 case VID_Mad:
 m_ManualKeyFrame->updatePoseReference(0, 0.0);
 m_ManualKeyFrame->updatePoseReference(1, 0.0);
 m_ManualKeyFrame->updatePoseReference(2, 0.0);
 m_ManualKeyFrame->updatePoseReference(3, 1.0);
 m_ManualAnimState->getParent()->_notifyDirty();
 Root->renderOneFrame();
 break;

Chapter 2

63

 case VID_Neutral:
 m_ManualKeyFrame->updatePoseReference(0, 1.0);
 m_ManualKeyFrame->updatePoseReference(1, 0.0);
 m_ManualKeyFrame->updatePoseReference(2, 0.0);
 m_ManualKeyFrame->updatePoseReference(3, 0.0);
 m_ManualAnimState->getParent()->_notifyDirty();
 Root->renderOneFrame();
 break;

 case VID_Happy:
 m_ManualKeyFrame->updatePoseReference(0, 0.0);
 m_ManualKeyFrame->updatePoseReference(1, 1.0);
 m_ManualKeyFrame->updatePoseReference(2, 0.0);
 m_ManualKeyFrame->updatePoseReference(3, 0.0);
 m_ManualAnimState->getParent()->_notifyDirty();
 Root->renderOneFrame();
 break;
 }

 pProp = pProp->pNextSibling;
 }
 }
 break;
}

Ogre 3D supports blending of poses, and the updatePoseReference() func-
tion updates the influence of a pose. An influence value of 1 means that the pose
should be fully visible, and a value of 0 means the pose should have no effect.
The first parameter is the pose index, and the second parameter is the amount
of influence. We set the influence value to 1 for the pose we want to use, and the
influence value to 0 for poses we don't want.

How it works...
We inspect the elements from the input phrase to determine which rule was recognized. Then
we cycle through the words, update the pose influence appropriately, and render the frame.

Let Us Be Multimodal

64

The following screenshot shows the facial mesh in a neutral pose:

The following screenshot shows the facial mesh in a happy pose:

Chapter 2

65

The following screenshot shows the facial mesh in a sad pose:

The following screenshot shows the facial mesh in a mad pose:

Let Us Be Multimodal

66

There's more...
We can also change the grammar to combine multiple phrases, such as happy and mad and
then blend the happy and mad poses together, by setting the amount of influence to 0.5 for
the happy and mad poses.

Using voice input with dynamic grammar
This recipe is very similar to the previous recipe. However, in this recipe, we show you how to
dynamically set valid phrases, based on the names of the poses in a 3D mesh.

Getting ready
To follow along with this recipe, open the solution located in the Recipes\Chapter02\
DynamicGrammar folder in the code bundle available on the Packt website.

How to do it...
Instead of using a static expression list, as we did in the previous recipe, we can iterate over
the list of poses in the facial mesh, and dynamically create expressions based on the names
of the poses. First, we create our project following the previous recipe and name the project
DynamicGrammer, then we add the code to dynamically create our expressions.

1.	 We start by cleaning up the grammar, so that we can insert our expression rules. In
CDynamicGrammarView::EngineSetup(), we clear the VID_ExpressionType
rule, then we add new word transitions for every pose in our mesh. In each new word
transition, we store the index of the pose, adding the expressions we commit the
grammar modifications, and mark them as active.
SPSTATEHANDLE hDynamicRuleHandle;

((CDynamicGrammarApp*)AfxGetApp())->
 m_cpCmdGrammar->GetRule(L"VID_ExpressionType", NULL,
 SPRAF_Dynamic, FALSE, &hDynamicRuleHandle);

((CDynamicGrammarApp*)AfxGetApp())->
 m_cpCmdGrammar->ClearRule(hDynamicRuleHandle);

((CDynamicGrammarApp*)AfxGetApp())->m_cpCmdGrammar->Commit(0);

for (unsigned int i = 0;
 i < m_ManualKeyFrame->getPoseReferences().size(); i++){
 Ogre::String poseName = m_HeadMesh->getPose(i)->getName();
 CSpDynamicString ds(poseName.c_str());

Chapter 2

67

 SPPROPERTYINFO prop;
 prop.pszName = L"Id";
 prop.pszValue = L"Property";
 prop.vValue.vt = VT_I4;
 prop.vValue.ulVal = i;

 ((CDynamicGrammarApp*)AfxGetApp())->
 m_cpCmdGrammar->AddWordTransition(hDynamicRuleHandle, NULL,
 ds , L" -.",SPWT_LEXICAL, 1.0, &prop);
}

((CDynamicGrammarApp*)AfxGetApp())->m_cpCmdGrammar->Commit(0);
((CDynamicGrammarApp*)AfxGetApp())->
 m_cpCmdGrammar->SetRuleIdState(VID_ExpressionType, SPRS_ACTIVE);

2.	 Finally, we modify the CDynamicGrammarView::ExecuteCommand() function, so
that it reads the pose index from the input phrase, and set the influence value to 1 for
that pose.

SPPHRASE *pElements;
Ogre::Root *Root = ((CDynamicGrammarApp*)AfxGetApp())->
 m_Engine->GetRoot();

if (SUCCEEDED(Phrase->GetPhrase(&pElements))) {
 switch (pElements->Rule.ulId) {
 case VID_ExpressionType:
 {
 const SPPHRASEPROPERTY *pProp = pElements->pProperties;

 while (pProp) {
 m_ManualKeyFrame->updatePoseReference(pProp->
 vValue.ulVal, 1.0);
 m_ManualAnimState->getParent()->_notifyDirty();
 Root->renderOneFrame();

 pProp = pProp->pNextSibling;
 }
 }

 break;
 }

 // Free the pElements memory which was allocated for us
 ::CoTaskMemFree(pElements);
}

Let Us Be Multimodal

68

Using text-to-speech to make the
application speak

Text-to-speech is a useful tool for making models communicate and interact with the user.
Unlike voice acting, the speech API voices will rarely fool anyone, but for robotic and other
synthetic voices, it can be highly appropriate. In this recipe, we will use the speech features
of the Microsoft Speech SDK to make our application speak to the user. We also animate the
mouth of our mesh so it opens and closes.

Getting ready
To follow along with this recipe, open the solution located in the Recipes\Chapter02\
Speech folder in the code bundle available on the Packt website.

How to do it...
We start by following the previous recipe to create an Ogre MFC application named Speech,
and then we configure the speech API to select a voice, speak phrases, and animate
the model.

1.	 First we have to create the voice as a COM object. In Speech.h, we add an include
for the Speech API.
#include <sapi.h>

2.	 We also declare an instance of a com pointer for the Speech API.
CComPtr<ISpVoice> m_cpVoice;

3.	 Next, we initialize the object in CSpeechApp::InitInstance().
m_cpVoice.CoCreateInstance(CLSID_SpVoice);

4.	 In CSpeechView::EngineSetup(), we enumerate all the available voices and
select one.
CComPtr<ISpObjectToken> cpVoiceToken;
CComPtr<IEnumSpObjectTokens> cpEnum;
ULONG ulCount = 0;

SpEnumTokens(SPCAT_VOICES, NULL, NULL, &cpEnum);

cpEnum->GetCount(&ulCount);

while (ulCount --){
 cpVoiceToken.Release();

Chapter 2

69

 cpEnum->Next(1, &cpVoiceToken, NULL);
 Voice->SetVoice(cpVoiceToken);
 Voice->Speak(L"How are you?<silence msec='1000'/>",
 SPF_ASYNC | SPF_IS_XML, NULL);
}

5.	 Now we are ready to make our application speak. To do this, we simply call the
Speak() method along with the text to speak, as follows:
((CSpeechApp*)AfxGetApp())->m_cpVoice->Speak(L"This is the demo of
 the text to speech in the Ogre application", SPF_ASYNC, NULL);

6.	 The last step is to animate the face mesh. We set the animation state and then start
a timer to update the animation time every 10 milliseconds.

m_AnimationState = m_HeadEntity->getAnimationState(“Speak");
m_AnimationState->setLoop(false);
m_AnimationState->setEnabled(true);
SetTimer(1, 10, 0);

The timer we set, calls the CSpeechView::OnTimer() function in which we
increment the time position and render the scene. Each time we do this, the ani-
mation will progress by a certain amount, and then we render the updated model.
m_AnimationState->addTime(Ogre::Real(0.01));
Ogre::Root *Root = Engine->GetRoot();
Root->renderOneFrame();

There's more...
In addition to simple speech, we can control the volume, rate, pitch, and emphasis of the
voice that speaks. The simplest way to modify the voice is with XML tags within the text
passed to the Speak() method.

In SpeechView.cpp, we demonstrate how to manipulate the voice with several examples.

ff Voice State Control
Voice->Speak(L"This is the demo of the voice state control<silence
 msec='1000'/>", SPF_ASYNC | SPF_IS_XML, NULL);

ff Voice Volume Control
Voice->Speak(L"<volume level = '50'>This text should be spoken at
 volume level fifty</volume><silence msec='1000'/>", SPF_ASYNC |
 SPF_IS_XML, NULL);

ff Voice Emphasis Control

Voice->Speak(L"The following word should be
 emphasized<emph>boo</emph>!<silence msec='1000'/>", SPF_ASYNC |
SPF_IS_XML, NULL);

Let Us Be Multimodal

70

See also
Chapter 7, Implementing Animations: This chapter provides more detailed information about
various animation techniques in Ogre

3
Managing Objects

and Scenes

In this chapter, we will cover the following recipes:

ff Creating terrain from a LandXML file

ff Creating Delaunay triangulation

ff Creating manual objects

ff Creating parametric superellipsoids

ff Adding meshes on the terrain

ff Adding trees as billboards

ff Creating and editing a scene

ff Saving a scene to an XML file

ff Loading a scene from an XML file

Introduction
In this chapter, we'll show you how to create various meshes including terrain, billboards, and
superellipsoids. We will also show you how to create an interface to manage a scene and the
objects in it, and how to save and load a scene from a XML file. By the end of this chapter, you
will have a basic Ogre 3D scene editor.

Managing Objects and Scenes

72

Creating terrain from a LandXML file
In this recipe, we will load terrain data from a LandXML file, and then convert it into an Ogre
3D mesh using a ManualObject. The LandXML file format is a non-proprietary format used
in civil engineering and surveying communities, to exchange data regarding terrain, roads, and
other surfaces. LandXML is supported by many popular CAD programs, including those made
by Autodesk.

Getting ready
You'll need the LandXML SDK from http://www.landxml.org for this recipe. Download it
and place the SDK folder in the Recipes folder.

Put LandXMLSDK1.2.dll and xerces-c_2_7_LX.dll into bin\debug and bin\
release folders.

To follow along with this recipe, open the solution located in the Recipes/Chapter03/
LandXml folder in the code bundle available on the Packt website.

http://www.landxml.org

Chapter 3

73

How to do it...
We begin with a base MFC Ogre application, and add a utility function named
CLandXmlView::GetManualObject() that will load a LandXML file and
return a ManualObject.

1.	 First, we create a ManualObject named Topography.
Ogre::ManualObject *Topography =
 SceneManager->createManualObject("Topography");
Topography->setDynamic(false);
Topography->begin("BaseWhiteNoLighting",
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

We set the dynamic property of our ManualObject to false, because we will
not be changing the mesh dynamically after we create it. We also use the default
BaseWhiteNoLighting material, and indicate that the render operation should be
OT_TRIANGLE_LIST, because our mesh data will use a simple triangle list format
instead of something like a triangle strip format.

2.	 Next, we use the LandXML API to create a LandXML document object, and load our
LandXML file for us.
LX::Document* LxDocument = NULL;
LX::ILxNode* LxRootNode = NULL;
LX::LandXML* LandXml = NULL;
LX::Surfaces* Surfaces = NULL;
LX::Surface* Surface = NULL;
LX::Faces* Faces = NULL;
LX::String Name(T2W(SurfaceName));
LxDocument = LX::createDocumentObject();
LPWSTR Path = T2W(LandXmlPath);
LxDocument->loadXml(Path);
LxDocument->releaseDOMDocument();

You may also notice that we create an LX::String object called Name, which will
hold the surface name for the surface we want to read from the LandXML file. The
SurfaceName variable is one of the variables we pass to our GetManualObject()
utility function.

3.	 Next, we find the surface structure using the LxDocument object that represents the
LandXML file we just loaded, and we add all the vertex positions from that surface to
the ManualObject.
Surface = LxDocument->getGlobalObjects().getSurfaceCollection().
 findFirstMatch(Name);
LX::FacesCollection& FacesCollection =
 Surface->getDefinition()->Faces();
LX::Pnts* Points = Surface->getDefinition()->getPnts();

Managing Objects and Scenes

74

LX::PCollection& PointsCollection = Points->P();
LX::PCollectionIterator* PointsCollectionIterator =
 PointsCollection.iterator();

LX::P* P = NULL;

double x;
double y;
double z;

//////////////////////////Points///////////////////////////////
while (!PointsCollectionIterator->atEnd()){
 P = PointsCollectionIterator->current();
 unsignedint id = P->getId();

 LX::IndexedListValueCollection<double>& Coordinates =
 P->value();

x = Coordinates[0];
y = Coordinates[1];
z = Coordinates[2];

Topography->position(x, y, z);
PointsCollectionIterator->next();
}

PointsCollectionIterator->release();

4.	 Now that we have all the vertex positions defined, we need to define the triangles that
use those vertices.

LX::FacesCollectionIterator* FacesCollectionIterator =
 FacesCollection.iterator();

LX::FCollectionIterator* FCollectionIterator = NULL;
LX::F* F = NULL;

longint V[3];

Chapter 3

75

while (!FacesCollectionIterator->atEnd()){
 Faces = FacesCollectionIterator->current();
 LX::FCollection& FCollection = Faces->F();
 FCollectionIterator = FCollection.iterator();

 while(!FCollectionIterator->atEnd()){
 F = FCollectionIterator->current();

 LX::IndexedListValueCollection<int>& Verteces = F->value();

 V[0] = Vertices[0];
 V[1] = Vertices[1];
 V[2] = Vertices[2];

 Topography->triangle(V[0], V[1], V[2]);
 FCollectionIterator->next();
 }

 FCollectionIterator->release();
 FacesCollectionIterator->next();
}

Topography->end();

The ManualObject is now complete, and all that remains to do is attach it to the
scene graph:
Ogre::ManualObject *Topography = GetManualObject(
 "\\zigzag creek.xml", "Topography");

Ogre::SceneNode *Node =
 SceneManager->getRootSceneNode()->createChildSceneNode();

Node->attachObject(Topography);

Managing Objects and Scenes

76

How it works...
The following screenshot shows the structure and content of the LandXML file format:

The Surfaces XML node has been expanded in the following screenshot to show an example
Surface and the type of data within:

Chapter 3

77

All the points data for each surface is contained within the Points XML node for each surface.

Similarly, the faces data is contained in a Faces XML node for each surface. We use the faces
data to create triangles in our MeshObject.

There's more...
The LandXML file format is capable of holding other kinds of data, such as roads and bridges.
Visit the LandXML website at http://www.landxml.org for further details, examples, and
documentation.

Creating Delaunay triangulation
In this recipe, we show you how to create a Delaunay triangulation from a triangle vertex
data. The usefulness of a mesh that satisfies the Delaunay triangulation is that such an
arrangement tends to avoid skinny triangles. We will also be using Delaunay triangulation on
mesh vertices, later, to find the height of a point on the surface of the terrain.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
Delaunay folder in the code bundle available on the Packt website.

http://www.landxml.org

Managing Objects and Scenes

78

How to do it...
We start with a basic MFC Ogre application, then add the functionality to load the vertices,
and create a mesh with Delaunay triangulation.

1.	 First, we create a manual object named Topography with a generic white material.
m_Topography = SceneManager->createManualObject("Topography");
m_Topography->setDynamic(false);
m_Topography->begin("BaseWhiteNoLighting",
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

2.	 Next, we load a file test2.xyz that contains our vertex data, and run a utility
function called DelaunayIt(), which will convert the structure of the triangulation
data into a Delaunay triangulation.
m_Triangulation.VertexSerialize(CString("test2.xyz"),
 CArchive::load);
m_Triangulation.m_VertexNumber = 0;
m_Triangulation.m_VertexCollection.m_VertexNumber = 0;
m_Triangulation.DelaunayIt();

3.	 Finally, we iterate over the triangulation data, and add all the vertex position data and
triangle data to the ManualObject:.for (longintEdgeIndex = 0;
 EdgeIndex<m_Triangulation.m_EdgeCollection.
 m_Collection.GetCount(); EdgeIndex++) {

 Edge1 = (CEdge *) m_Triangulation.m_EdgeCollection.
 m_Collection[EdgeIndex];
 Vertex1 = Edge1->m_Origin;
 Edge2 = Edge1->m_Left;
 Vertex2 = Edge2->m_Origin;
 Edge3 = Edge2->m_Left;

 // Code omitted here that skips "virtual" edges and
 // edges that have already been printed

 Edge1->m_Printed = true;
 Edge2->m_Printed = true;
 Edge3->m_Printed = true;

 m_Topography->position(Vertex1->m_Coordinate[0] - this->
 m_Triangulation.m_VertexCollection.m_Min.m_Coordinate[0],
 Vertex1->m_Coordinate[1] - this->m_Triangulation.
 m_VertexCollection.m_Min.m_Coordinate[1],
 (Vertex1->m_Coordinate[2] - this->m_Triangulation.
 m_VertexCollection.m_Min.m_Coordinate[2])/100);

 m_Topography->position(Vertex2->m_Coordinate[0] - this->
 m_Triangulation.m_VertexCollection.m_Min.m_Coordinate[0],

Chapter 3

79

 Vertex2->m_Coordinate[1] - this->m_Triangulation.
 m_VertexCollection.m_Min.m_Coordinate[1],
 (Vertex2->m_Coordinate[2] - this->m_Triangulation.
 m_VertexCollection.m_Min.m_Coordinate[2])/100);

 m_Topography->position(Vertex3->m_Coordinate[0] - this->
 m_Triangulation.m_VertexCollection.m_Min.m_Coordinate[0],
 Vertex3->m_Coordinate[1] - this->m_Triangulation.
 m_VertexCollection.m_Min.m_Coordinate[1],
 (Vertex3->m_Coordinate[2] - this->m_Triangulation.
 m_VertexCollection.m_Min.m_Coordinate[2])/100);

 m_Topography->triangle(TriangleIndex * 3 + 0,
 TriangleIndex * 3 + 1, TriangleIndex * 3 + 2);
 TriangleIndex++;
}

m_Topography->end();

4.	 Once all the triangle data for ManualObject has been defined, we add the object to
the scene graph.

Ogre::SceneNode *Node = SceneManager->
 getRootSceneNode()->createChildSceneNode(
 Ogre::Vector3(626145.0,4539495.0,1459.992));
DelaunayIt();

Node->attachObject(m_Topography);

How it works...
For each edge of triangulation, there are two oriented edges. For each oriented edge, we
define its vertex of origin, its destination, its left neighbor in the triangle, and the same edge
with the opposite direction. In this case, we have a triangle of edge, edge.left, edge.
left.left, and a neighboring triangle with edge.sym.

Left

Sym

Edge

Managing Objects and Scenes

80

We use an incremental algorithm to create the Delaunay triangulation. Initially, we create
a bounding frame from our set of 3D points, and then insert points one at a time. When we
insert a point, we first determine what triangle edge the point belongs to, using the CTriangu
lation::LocateTriangle() method. This method looks in the edge collections for a valid
neighbor edge, and determines if the point is actually on the edge.

Once a valid neighbor is found, new CEdge objects are created, using the new vertex, and
then are added to the edge collection. Finally, a test is performed to determine if the new
arrangement satisfies the DelaunayInCircle condition. The condition states that every
edge must have a point-free circle passing through its endpoints.

A

B

C

D

For those interested in the math behind this, the InCircle condition is as follows:

1

1

1
0>

x

x

x

A

B

C

y

y

y

A

B

C

x
D

y
D

x

x

x

A

B

C

x
D

y

y

y

A

B

C

y
D 1

2

2

2

2

2

2

2

2

(A, B, C, D) =

If the edge passes the test, it is guaranteed to be a Delaunay edge, and need not be
considered further. If it fails the test, however, the edge is replaced by another edge
that is the other diagonal of the quadrilateral.

See also
For more information on Delaunay triangulation, see the Wikipedia page at
http://en.wikipedia.org/wiki/Delaunay_triangulation.

Chapter 3

81

Creating manual objects
In this recipe, we'll show you how to create a Mebius mesh with multiple sections, using a
ManualObject. We'll also add menu items to our application's user interface, so that the
user can change the material used by each section at runtime.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
ManualObject folder in the code bundle available on the Packt website.

How to do it...
1.	 First, we create an MFC Ogre application named ManualObject.

2.	 Next, we create a Mebius mesh with multiple sections using code similar to what we
used in the Creating a custom resource manager recipe, from Chapter 1, Delving
Deep into Application Design. The Materials array contains the names of all the
materials we will be using.
Ogre::String Materials[] =
{
 "Examples/SphereMappedRustySteel",
 "Examples/OgreLogo",
 "Examples/BeachStones",
 "Examples/TrippySkyBox",
 "Examples/SpaceSkyBox",
 "Examples/DynamicCubeMap",
 "Examples/RustySteel",
 "Examples/Chrome",
 "Examples/WaterStream",
 "Examples/Flare"
};

The code for creating the ManualObject is very similar to what we have used in
previous recipes, except that we set the dynamic property to true, because we
intend to change the mesh at runtime.
m_MaterialIndex = 0;
m_ManualObject = m_SceneManager->createManualObject("stl");
m_ManualObject->setDynamic(true);
m_ManualObject->begin(Materials[m_MaterialIndex++],
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

Managing Objects and Scenes

82

3.	 When parsing the Mebius file, we start a new section after every 1000 triangles, and
assign a different material.
while (!feof(fp)) {
 int ret = fscanf(fp, "%*s %*s %f %f %f\n", &nx,
 &ny, &nz); //facet normal nx ny nz

 ret = fscanf(fp, "%*s %*s"); //outer loop
 ret = fscanf(fp, "%*s %f %f %f\n", &x, &y, &z); //vertex x y z

 m_ManualObject->position(x, y, z);
 m_ManualObject->normal(nx, ny, nz);
 m_ManualObject->colour(Ogre::ColourValue(0.0f, 0.0f,
 0.0f, 1.0f));
 ret=fscanf(fp, "%*s %f %f %f\n", &x, &y, &z); //vertex x y z

 m_ManualObject->position(x, y, z);
 m_ManualObject->normal(nx, ny, nz);
 m_ManualObject->colour(Ogre::ColourValue(0.0f, 0.0f,
 0.0f, 1.0f));
ret=fscanf(fp, "%*s %f %f %f\n", &x, &y, &z); //vertex x y z

 m_ManualObject->position(x, y, z);
 m_ManualObject->normal(nx, ny, nz);
 m_ManualObject->colour(Ogre::ColourValue(0.0f, 0.0f,
 0.0f, 1.0f));

 m_ManualObject->triangle(TriangleIndex * 3 + 0, TriangleIndex *
 3 + 1, TriangleIndex * 3 + 2);
 TriangleIndex++;

 ret=fscanf(fp, "%*s"); //endloop
 ret=fscanf(fp, "%*s"); //endfacet

 if (feof(fp))
 break;

 if (TriangleIndex % 1000 == 0) {
 m_ManualObject->end();
 m_ManualObject->begin(Materials[m_MaterialIndex++],
 Ogre::RenderOperation::OT_TRIANGLE_LIST);
 TriangleIndex = 0;
 }
}

fclose(fp);

m_ManualObject->end();

Chapter 3

83

4.	 Finally, we add a submenu called Actions with two items: Change materials and
Reset. The CManualObjectView::OnActionsMaterials() method changes
the material name used by each section in the ManualObject, and the CManual
ObjectView::OnActionsReset() method resets the material names to their
original state.

for (int Index = 0; Index < m_ManualObject->getNumSections();
 Index++) {
 m_ManualObject->setMaterialName(Index,
 Materials[m_ManualObject->getNumSections() - Index]);
}

The ManualObject has a function named setMaterialName(), which is used to
change the material for a section.

How it works...
ManualObject is a utility class designed to simplify the process of creating custom
geometry. All of the functionality in ManualObject can be accomplished with lower-level
Ogre API calls, memory buffer manipulation, and more code, but ManualObject makes all
that unnecessary.

In this recipe, we used the basic ManualObject functionality to define vertex
positions, normals, and colors. We also used ManualObject::begin() and
ManualObject::end() to create multiple ManualObjectSections. Each
ManualObjectSection represents a separate renderable, and in our recipe, we gave each
of these a different Material, and then showed you how to change the Material for each
section during runtime, by calling ManualObject::setMaterialName().

See also
In this chapter:

ff Creating parametric superellipsoids

Creating parametric superellipsoids
Superellipsoids are graphical primitives that take a variety of ellipsoid shapes, depending on
the parameters in the equation used to generate the shape. In this recipe, we will show you
how to create a superellipsoid with a ManualObject, and modify the shape at runtime.

Managing Objects and Scenes

84

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
SuperEllipsoid folder in the code bundle available on the Packt website.

How to do it...
1.	 First, we create an MFC with Ribbon Ogre application named SuperEllipsoid.

2.	 Next, we add the controls that we'll be using to adjust the superellipsoid shape.

3.	 Use the Ribbon editor to create a new panel named Control. Then, create a linked
pair of edit boxes and sliders for both superellipsoid parameters.

4.	 Next, add event handlers by right-clicking on each control and selecting
Add event handler.

Chapter 3

85

5.	 In the Event Handler Wizard that opens, select the COMMAND as the Message type
and CSupperEllipsoidView from the Class list. Click on Add and Edit, and the wizard
will generate the event handler function.

In each event handler function, we read the input value, set the appropriate m_
SuperQuadric property, and then call m_SuperQuadric.UpdateMesh().

For example, the CSuperEllipsoidView::OnHorizontal() function reads the
slider position, and then sets the m_SuperQuadric.m_HorFactor.
CMainFrame *MainFrame = (CMainFrame *)(
 (CSuperEllipsoidApp*)AfxGetApp())->GetMainWnd();
CMFCRibbonBar* RibbonBar = MainFrame->GetRibbonBar();

CMFCRibbonSlider* Slider = DYNAMIC_DOWNCAST(CMFCRibbonSlider,
 RibbonBar->FindByID(ID_HORIZONTAL));
CMFCRibbonEdit* Edit = DYNAMIC_DOWNCAST(CMFCRibbonEdit,
 RibbonBar->FindByID(ID_HORIZONTAL_EDIT));

m_SuperQuadric.m_HorFactor = (double)Slider->GetPos() / 10.0;
CString Text;

Managing Objects and Scenes

86

Text.Format("%.2f", m_SuperQuadric.m_HorFactor);
Edit->SetEditText(Text);
m_SuperQuadric.UpdateMesh();

6.	 To create the superellipsoid ManualObject initially, we add a call to m_
SuperQuadric.DrawMesh() inside CSuperEllipsoidView::EngineSetup().

7.	 In the CSuperQuadric::DrawMesh() function, we set the dynamic property of the
ManualObject to true, because we intend to update the mesh at runtime.
m_ManualObject =
 SceneManager->createManualObject("Superellipsoid");
m_ManualObject->setDynamic(true);
m_ManualObject->begin("BaseWhiteNoLighting",
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

8.	 Next, we add all the vertex positions and triangle data to the ManualObject.
for (Theta = -Pi; Theta <= Pi; Theta += Delta) {
 for (Phi = -0.5 * Pi; Phi <= 0.5 * Pi; Phi += Delta) {
 x = CalculateX(Theta, Phi);
 y = CalculateY(Theta, Phi);
 z = CalculateZ(Phi);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta + Delta, Phi);
 y = CalculateY(Theta + Delta, Phi);
 z = CalculateZ(Phi);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta + Delta, Phi + Delta);
 y = CalculateY(Theta + Delta, Phi + Delta);
 z = CalculateZ(Phi + Delta);

 m_ManualObject->position(x, y, z);

 m_ManualObject->triangle(TriangleIndex * 3 + 0, TriangleIndex
 * 3 + 1, TriangleIndex * 3 + 2);
 TriangleIndex++;

 x = CalculateX(Theta, Phi);
 y = CalculateY(Theta, Phi);
 z = CalculateZ(Phi);

 m_ManualObject->position(x, y, z);

Chapter 3

87

 x = CalculateX(Theta + Delta, Phi + Delta);
 y = CalculateY(Theta + Delta, Phi + Delta);
 z = CalculateZ(Phi + Delta);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta, Phi + Delta);
 y = CalculateY(Theta, Phi + Delta);
 z = CalculateZ(Phi + Delta);

 m_ManualObject->position(x, y, z);

 m_ManualObject->triangle(TriangleIndex * 3 + 0, TriangleIndex
 * 3 + 1, TriangleIndex * 3 + 2);
 TriangleIndex++;
 }
}

9.	 When we're done, we call ManualObject::end() to indicate that we have finished
entering data.
m_ManualObject->end();

10.	 Now, when the user moves a slider or enters in new values for the superellipsoid, the
CSuperQuadric::UpdateMesh() function is called and the positions for the mesh
are updated, based on the new horizontal and vertical superellipsoid values.

m_ManualObject->beginUpdate(0);

for (Theta = -Pi; Theta <= Pi; Theta += Delta) {
 for (Phi = -0.5 * Pi; Phi <= 0.5 * Pi; Phi += Delta) {
 x = CalculateX(Theta, Phi);
 y = CalculateY(Theta, Phi);
 z = CalculateZ(Phi);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta + Delta, Phi);
 y = CalculateY(Theta + Delta, Phi);
 z = CalculateZ(Phi);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta + Delta, Phi + Delta);
 y = CalculateY(Theta + Delta, Phi + Delta);
 z = CalculateZ(Phi + Delta);

mk:@MSITStore:C:\Users\Ilya\Documents\Visual Studio 2010\OgreSDK_vc10_v1-7-1\index.chm::/class_ogre_1_1_manual_object.html#49d6bfe460ff1e0178c6d77b95d3dc5a

Managing Objects and Scenes

88

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta, Phi);
 y = CalculateY(Theta, Phi);
 z = CalculateZ(Phi);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta + Delta, Phi + Delta);
 y = CalculateY(Theta + Delta, Phi + Delta);
 z = CalculateZ(Phi + Delta);

 m_ManualObject->position(x, y, z);

 x = CalculateX(Theta, Phi + Delta);
 y = CalculateY(Theta, Phi + Delta);
 z = CalculateZ(Phi + Delta);

 m_ManualObject->position(x, y, z);
 }
}
m_ManualObject->end();

The final bits of code that we add to our application are for the mouse and the keyboard input.
See the first two recipes of Chapter 2, Let Us Be Multimodal for the details on how to add a
mouse and a keyboard input to an application.

How it works...
Superellipsoids come from the graphical primitive family of superquadrics. By manipulating a
small number of controlling parameters in the quadric equations used to generate the shape,
we get a wide variety of forms including spheres, cylinders, pinched stars, and rectangles with
rounded edges. A superellipsoid surface is defined by the following formula:

a cos cos1 2ε εη ω
1

2x ,)(=η ω a cos sin1 2ε εη ω

3
a sin 1ε η

π πη/2< < /2

π πω< <

Chapter 3

89

The vector x sweeps out a closed surface as the two independent parameters, angles h and
w change in the given intervals. Parameters a1, a2, and a3 define the superquadric scaling
in the x, y and z directions, respectively. e1 is the squareness parameter in the north-south
direction, while e2 is the squareness parameter in the east-west direction. The following
figure illustrates some of the shapes that can be generated by varying the value of each of the
squareness parameters.

e1/e2 0.2 1 2 3

0.2

1

2

3

See also
If you would like more information on superellipsoids and superquadrics, see the Wikipedia
article at http://en.wikipedia.org/wiki/Superquadrics.

Adding meshes on terrain
Now that we have a terrain mesh, we need to place objects precisely on top of the terrain. In
this recipe, we will show you how to use Delaunay triangulation edge data for a terrain mesh
to find the elevation of specific point on the terrain. Using this information, we will place an
object precisely on the terrain.

Managing Objects and Scenes

90

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
InsertMesh folder in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC Ogre application named InsertMesh, based on the Create

Delaunay triangulation recipe.

2.	 Next, we add code to the CInsertMeshView::EngineSetup() function, to find
the triangle that contains a point over the terrain. For our application, we are looking
for the height of the terrain at the middle of the terrain mesh.
Vertex.m_Coordinate[0] = 0.5 *
 (m_Triangulation.m_VertexCollection.m_Max.m_Coordinate[0] +
 m_Triangulation.m_VertexCollection.m_Min.m_Coordinate[0]);

Vertex.m_Coordinate[1] = 0.5 *
 (m_Triangulation.m_VertexCollection.m_Max.m_Coordinate[1] +
 m_Triangulation.m_VertexCollection.m_Min.m_Coordinate[1]);

Vertex.m_Coordinate[2] = 0.0;

Edge = m_Triangulation.LocateTriangle(&Vertex, OnEdge);

3.	 Now that we have an edge of a triangle that contains the point, we can interpolate
the positions of the three vertices that make up this triangle, and use the resulting
position to place a robot entity.

m_Triangulation.TriangleInterpolate(Edge->m_Origin,
 Edge->m_Destination, Edge->m_Left->m_Destination, &Vertex);

Ogre::SceneNode *RobotNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(
 Ogre::Vector3(Vertex.m_Coordinate[0],
 Vertex.m_Coordinate[1],
 Vertex.m_Coordinate[2]));

 How it works...
In order to accurately place a mesh on top of the terrain, we need to get the height of the
terrain at the x and z coordinates, where we intend to place the mesh. We use the Delaunay
triangulation functionality to find the triangle under the 2d coordinates, and then interpolate
the positions of the three vertices that make up that triangle to get a 3d point on the terrain.

Chapter 3

91

The CTriangulation::LocateTriangle() method searches for the nearest edge to a
point, or returns the existing edge a point is on. Using the found edge, we are then able to
interpolate the vertex positions of the vertices for the triangle the edge belongs to.

Adding trees as billboards
Many objects on the terrain are displayed as 2D sprites or billboards when viewed from far
away, or even from close up in the case of grass and small plants. In this recipe, we will show
you how to use billboards to display trees on top of a terrain.

Getting ready
For this recipe we use a custom material named Trees. The Trees material is made up of
two files: the trees.material file found in media/materials/scripts and the texture
trees.png in media/materials/textures.

To follow along with this recipe, open the solution located in the Recipes/Chapter03/
AddingTrees folder in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC Ogre application named AddingTrees.

2.	 Next, in EngineSetup(), define an array that contains all the texture coordinates for
the various plant and tree images that are combined in the trees.png image.
Ogre::FloatRect TextureCoordinates[]={
 Ogre::FloatRect(113.0/5000.0,121.0/5000.0,851.0/5000.0,1073.0/
 5000.0),
 Ogre::FloatRect(1021.0/5000.0,114.0/5000.0,3386.0/5000.0,1984.0/
 5000.0),
 Ogre::FloatRect(3825.0/5000.0,1049.0/5000.0,4871.0/
 5000.0,3588.0/5000.0),
 Ogre::FloatRect(1739.0/5000.0,2418.0/5000.0,2796.0/
 5000.0,4774.0/5000.0),
 Ogre::FloatRect(221.0/5000.0,2723.0/5000.0,1464.0/
 5000.0,3795.0/5000.0),
 Ogre::FloatRect(505.0/5000.0,4391.0/5000.0,805.0/
 5000.0,4662.0/5000.0),
 Ogre::FloatRect(339.0/5000.0,2085.0/5000.0,482.0/
 5000.0,2216.0/5000.0),
 Ogre::FloatRect(2803.0/5000.0,3355.0/5000.0,3891.0/
 5000.0,4912.0/5000.0)
};

Managing Objects and Scenes

92

3.	 Next, we create a BillboardSet to manage all of our tree billboards. We
indicate that we want to use our Trees material, and that we want to use the
TextureCoordinates we just defined.
Ogre::BillboardSet *Trees =
 SceneManager->createBillboardSet("Trees");

Trees->setTextureCoords(TextureCoordinates, 8);
Trees->setMaterialName("Trees");
Trees->setCastShadows(true);
Trees->setSortingEnabled(true);
Trees->setBillboardType(Ogre::BBT_ORIENTED_COMMON);

4.	 Finally, we create our tree billboards, and position them in a grid with different texture
indexes. Each texture index corresponds to a different plant or tree graphic in our
trees.png texture.

double x = 0.0;
double y = 0.0;
double z = 0.0;

double TreeWidth;
double TreeHeight;
int TextureIndex;

for (int i = 0; i < 40; i++) {
for (int j = 0; j < 40; j++) {
 x = i * 5;
 y = j * 5;
 z = 0;

 TextureIndex = (i + j) / 10;
 TreeWidth = (i + j + 10) / 10;
 TreeHeight = (i + j + 10) / 5;

 Ogre::Vector3 TreePosition(x, y, z);
 Ogre::Billboard* Tree = Trees->createBillboard(TreePosition);
 Tree->setDimensions(TreeWidth, TreeHeight);
 Tree->setTexcoordIndex(TextureIndex);
}

Chapter 3

93

How it works...
A billboard is a flat rectangular primitive, which, in our application, faces the camera. In
Ogre, billboards are managed by BillboardSets, because they provide many useful set
operations, as well as performance enhancements.

In our application, we use a single texture to hold all of our plant and tree images, and then
indicate which image to use, by providing a texture coordinate index when we create the
billboard. The actual texture graphic looks like this:

Managing Objects and Scenes

94

The Trees material that we use for our billboards references the trees.png texture, takes
transparency into account for shadows, and allows shadows cast from other objects to fall on
the tree billboards.

material Trees {
 transparency_casts_shadows on
 receive_shadows on

	 technique {
 pass {
 ambient 1.0 1.0 1.0 1
 diffuse 1.0 1.0 1.0 1
	 depth_check on
	 depth_write off
 depth_func less_equal
	 depth_bias 0.4
	 scene_blend src_alpha one_minus_src_alpha
	 texture_unit {
 texture_alias 0
 texture Trees.png
 }
	 }
	 }
	 technique {
 pass {
 diffuse 0.0 1.0 0.0
 depth_check off
	 }
 }
}

There's more...
Instead of using a texture coordinates array, we could just specify the texture coordinates
directly just after creating each billboard, as follows:

Ogre::FloatRectTree1(113.0/5000.0,121.0/5000.0,851.0/5000.0,1073.0/
 5000.0);
Tree->setTexcoordIndex(Tree1);

Also, it is best to create billboard sets based on the dimensions of the billboard. By using the
same dimension for each billboard in a set, Ogre can perform calculations more efficiently
when rendering.

Chapter 3

95

Creating and editing a scene
Most professional game studios use applications to build scenes for each level in their games.
In this recipe, we will show you how to build an application with an interface for creating scene
nodes and entities—the basis for your first scene editor!

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
SceneEditor folder in the code bundle available on the Packt website.

How to do it...
1.	 First, create a new MFC Ogre application named SceneEditor.

2.	 Next, edit the main menu and add a submenu named Edit Scene. Add a submenu
item named Scene Manager, which we will use to launch a dialog-box that displays
the scene graph in a tree control. Next, for each type of Ogre object that we wish to
create, add a sub-item, such as Add Entity or Add Node. Lastly, add two submenu
items for destroying all cameras and entities.

Managing Objects and Scenes

96

3.	 Next, add event handlers for each submenu item, by right-clicking on each submenu
item and selecting Add Event Handler.

4.	 After adding all the event handlers, create a dialog-box named Scene Manager with
a tree control inside, which we will use for managing the scene graph.

Chapter 3

97

The handler for the Scene Manager submenu item that brings up the Scene
Manager dialog-box looks like this:
voidCSceneEditorView::OnEditSceneManager() {
 if (this->m_SceneManagerDlg == NULL) {
 m_SceneManagerDlg = newCSceneManagerDlg();
 m_SceneManagerDlg->Create(IDD_SCENE_MANAGER);
 }

 m_SceneManagerDlg->ShowWindow(SW_SHOW);
}

5.	 In the same way, create a dialog-box for adding a child scene node.

This dialog-box will appear when the user clicks on a node in the tree control and
then clicks on the Add Scene Node submenu item. The handler function for the
Add Scene Node submenu item looks like this:
voidCSceneEditorView::OnEditsceneAddscenenode() {
 CChildSceneNodeDlgChildSceneNodeDlg;

 if (IDOK == ChildSceneNodeDlg.DoModal()) {
 HTREEITEM Selected =
 m_SceneManagerDlg->m_SceneTree.GetSelectedItem();
 m_SceneManagerDlg->m_SceneTree.
 InsertItem(ChildSceneNodeDlg.m_NodeName, Selected);
 m_SceneManagerDlg->m_SceneTree.Expand(Selected, TVE_EXPAND);
 m_SceneManager->getRootSceneNode()->createChildSceneNode(
 Ogre::String(ChildSceneNodeDlg.m_NodeName));

 if (m_Root != NULL) {
 m_Root->renderOneFrame();
 }
 }
}

The handler code finds the selected tree element and creates a new node with the
name from the Create Child Scene Node dialog-box. It also creates the scene node
in the scene graph.

Managing Objects and Scenes

98

6.	 Next, create an entity creator dialog-box with Entity Name and Mesh Name
fields. This dialog-box will be activated when the user clicks on the Add Entity
submenu item.

The handler for the Add Entity submenu item opens the Entity Creator dialog-box,
then uses the entity name and mesh name to create a new entity, and adds it to the
selected scene node.
CEntityCreatorDlgEntityCreatorDlg;

if (IDOK == EntityCreatorDlg.DoModal()) {
 HTREEITEM Selected = m_SceneManagerDlg->
 m_SceneTree.GetSelectedItem();
 m_SceneManagerDlg->m_SceneTree.InsertItem(
 EntityCreatorDlg.m_EntityName, Selected);

 Ogre::String SceneNodeName = m_SceneManagerDlg->
 m_SceneTree.GetItemText(Selected);
 Ogre::Entity *Entity = m_SceneManager->createEntity
 (Ogre::String(EntityCreatorDlg.m_EntityName),
 Ogre::String(EntityCreatorDlg.m_MeshName));
 Ogre::SceneNode *SceneNode = m_SceneManager->
 getSceneNode(SceneNodeName);
 SceneNode->attachObject(Entity);

 Ogre::AxisAlignedBox Box = Entity->getBoundingBox();
 Ogre::Vector3 Center = Box.getCenter();
 m_Camera->lookAt(Center);

 m_SceneManagerDlg->m_SceneTree.Expand(Selected, TVE_EXPAND);

 if (m_Root != NULL) {
 m_Root->renderOneFrame();
 }
}

Chapter 3

99

How it works...
Each event handler for the submenu items that we added, creates nodes, entities, lights, and
cameras, or removes them. As entities and nodes are added to the scene, they appear in the
Scene Manager tree structure as well as in the 3D viewport.

There's more...
You can right-click on the tree control to open a pop-up menu with functionality to add a scene
node, add an entity, or delete the scene node.

In addition to the Edit Scene menu item, it might be helpful to create a floating toolbar version
of the Edit Scene menu.

See also
In this chapter:

ff Saving a scene to an XML file

ff Loading a scene from an XML file

Managing Objects and Scenes

100

Saving a scene to an XML file
No scene editor would be complete without the ability to save a scene to file. It is also possible
that you may want to save the state of your game's scene in an XML file. In this recipe, we will
show you how to do just that.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
SaveScene folder in the code bundle available on the Packt website.

In this recipe, we will be using the libxml2 library, which you should download from
http://xmlsoft.org, and put in your Recipes folder.

How to do it...
1.	 First, create a MFC Ogre application named SaveScene.

2.	 Next, in the CSaveSceneView::EngineSetup() function, we instantiate an
Xmlm_XmlWriter object, and use it to create our XML document.
xmlDocPtr doc;
// Create a new Xmlm_XmlWriter for DOM, with no compression.
m_XmlWriter = xmlNewTextWriterDoc(&doc, 0);
// Start the document with the xml default for the version,
// encoding ISO 8859-1 and the default for the standalone
// declaration.
xmlTextWriterStartDocument(m_XmlWriter, NULL, MY_ENCODING, NULL);

SceneExplore(SceneManager);

xmlTextWriterEndDocument(m_XmlWriter);
xmlFreeTextWriter(m_XmlWriter);
xmlSaveFileEnc("1.scene", doc, MY_ENCODING);
xmlFreeDoc(doc);

3.	 We start writing the document in memory, by calling
xmlTextWriterStartDocument(), then call the
CSaveSceneView::SceneExplore() utility function to write all the scene
information to memory, and then finally we save XML to a file called 1.scene.

http://xmlsoft.org

Chapter 3

101

4.	 The CSaveSceneView::SceneExplore() function simply creates the XML root
scene node and then calls CSaveSceneView::SceneNodeExplore() with the
RootSceneNode.
Ogre::SceneNode *RootSceneNode = SceneManager->getRootSceneNode();

xmlTextWriterStartElement(m_XmlWriter, BAD_CAST
 "RootSceneNode");//start RootSceneNode

SceneNodeExplore(RootSceneNode);

xmlTextWriterEndElement(m_XmlWriter); //end RootSceneNode

5.	 The CSaveSceneView::SceneNodeExplore function writes information about the
current scene node to memory, including all the entities attached to the node, then it
iterates over each scene node child and calls CSaveSceneView::SceneNodeExpl
ore with that child, as the current scene node.

Ogre::Entity *Entity = NULL;
Ogre::Camera *Camera = NULL;
Ogre::Light *Light = NULL;
Ogre::ParticleSystem *ParticleSystem = NULL;
Ogre::ManualObject *ManualObject = NULL;
Ogre::BillboardSet *BillboardSet = NULL;

Ogre::SceneNode::ObjectIterator obji =
 SceneNode->getAttachedObjectIterator();

xmlTextWriterStartElement(m_XmlWriter, BAD_CAST "SceneNode");

Ogre::String SceneNodeName = SceneNode->getName();

xmlTextWriterWriteAttribute(m_XmlWriter,
 BAD_CAST "SceneNodeName",
 BAD_CAST SceneNodeName.c_str());

while (obji.hasMoreElements()) {
 Ogre::MovableObject* mobj = obji.getNext();

 Ogre::String Type = mobj->getMovableType();

 if (Type == "Entity") {
 Entity = (Ogre::Entity *)(mobj);
 Ogre::String EntityName = Entity->getName();
 xmlTextWriterStartElement(m_XmlWriter, BAD_CAST "Entity");

Managing Objects and Scenes

102

 xmlTextWriterWriteAttribute(m_XmlWriter,
 BAD_CAST "EntityName",
 BAD_CAST EntityName.c_str());

 Ogre::MeshPtr Mesh = Entity->getMesh();
 Ogre::String MeshName = Mesh->getName();
 xmlTextWriterWriteAttribute(m_XmlWriter,
 BAD_CAST "MeshName",
 BAD_CAST MeshName.c_str());

 xmlTextWriterEndElement(m_XmlWriter);
 }

 if (Type == "Camera") {
 Camera = (Ogre::Camera *)(mobj);
 Ogre::String CameraName = Camera->getName();
 xmlTextWriterStartElement(m_XmlWriter, BAD_CAST "Camera");

 xmlTextWriterWriteAttribute(m_XmlWriter,
 BAD_CAST "CameraName",
 BAD_CAST CameraName.c_str());

 Ogre::Vector3 CameraPosition = Camera->getPosition();

 xmlTextWriterWriteFormatAttribute(m_XmlWriter,
 BAD_CAST "XPosition",
 "%f",CameraPosition.x);

 xmlTextWriterWriteFormatAttribute(m_XmlWriter,
 BAD_CAST "YPosition",
 "%f",CameraPosition.y);

 xmlTextWriterWriteFormatAttribute(m_XmlWriter,
 BAD_CAST "ZPosition",
 "%f",CameraPosition.z);

 Ogre::Vector3 CameraDirection = Camera->getDirection();

 xmlTextWriterWriteFormatAttribute(m_XmlWriter,
 BAD_CAST "XDirection",
 "%f",CameraDirection.x);

 xmlTextWriterWriteFormatAttribute(m_XmlWriter,
 BAD_CAST "YDirection",
 "%f",CameraDirection.y);

Chapter 3

103

 xmlTextWriterWriteFormatAttribute(m_XmlWriter,
 BAD_CAST "ZDirection",
 "%f",CameraDirection.z);

 xmlTextWriterEndElement(m_XmlWriter);
 }

 if (Type == "Light") {
 Light = (Ogre::Light *)(mobj);
 }

 if (Type == "ParticleSystem") {
 ParticleSystem = (Ogre::ParticleSystem *)(mobj);
 }

 if (Type == "ManualObject") {
 ManualObject = (Ogre::ManualObject *)(mobj);
 }

 if (Type == "BillboardSet") {
 BillboardSet = (Ogre::BillboardSet *)(mobj);
 }

}

Ogre::Node::ChildNodeIterator nodei =
 SceneNode->getChildIterator();

while (nodei.hasMoreElements()) {
 Ogre::SceneNode* node = (Ogre::SceneNode*)(nodei.getNext());
 // Add this subnode and its children...
 SceneNodeExplore(node);
}

xmlTextWriterEndElement(m_XmlWriter); //end SceneNode

You may notice that not all the code for writing all the object types is included here, but the
section for writing an entity gives the general idea.

How it works...
We iterate over all nodes in the scene graph, and write information about each node and the
entities attached to that node into a simple XML file.

Managing Objects and Scenes

104

The resulting file will look something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<RootSceneNode>
 <SceneNode SceneNodeName="Ogre/SceneRoot">
 <SceneNode SceneNodeName="CameraNode">
 <Camera CameraName="Camera" XPosition="200.000000"
 YPosition="50.000000" ZPosition="100.000000" XDirection="-
 0.888767" YDirection="-0.006624" ZDirection="-0.458312"/>
 </SceneNode>
 <SceneNode SceneNodeName="Unnamed_1">
 <Entity EntityName="Robot" MeshName="robot.mesh"/>
 </SceneNode>
 </SceneNode>
</RootSceneNode>

See also
In this chapter:

ff Creating and editing a scene

ff Loading a scene from an XML file

Loading a scene from an XML file
In the previous recipe, we showed you how to write information about a 3D scene to an XML
file, and in this recipe we will show you how to read that data back in to re-create the scene.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter03/
LoadScene folder in the code bundle available on the Packt website.

In this recipe, we will be using the libxml2 library, which you should download from
http://xmlsoft.org, and put in your Recipes folder.

How to do it...
1.	 First, create a MFC Ogre application named LoadScene.

2.	 Next, in the CSaveSceneView::EngineSetup() function, we use the
xmlReadFile() API method to load the XML file into memory, and then
get a pointer to the root XML node.

http://xmlsoft.org

Chapter 3

105

xmlDocPtr doc;
xmlNode *root_element = NULL;

LIBXML_TEST_VERSION

doc = xmlReadFile(ScenePath, MY_ENCODING, 0);
root_element = xmlDocGetRootElement(doc);

3.	 Next, we call a function named Traverse(), and pass it the root XML node and the
root scene node.

Traverse(root_element, m_SceneManager->getRootSceneNode());

The CLoadSceneView::Traverse() function will loop through all nodes on
the level of the passed on XML node, and depending on each node's name, will
recursively call itself. If it is a root scene node, create a new scene node and then
recursively call itself. If it is a regular scene node, create an entity and attach it to the
current scene node.
xmlNode *cur_node = NULL;
Ogre::SceneNode *ChildNode = NULL;
Ogre::Camera * Camera = NULL;

for (cur_node = XmlNode; cur_node; cur_node = cur_node->next) {
 if (cur_node->type == XML_ELEMENT_NODE) {
 if (_mbscmp(cur_node->name, BAD_CAST "RootSceneNode") == 0) {
 Traverse(cur_node->children, SceneNode);
 }

 if (_mbscmp(cur_node->name, BAD_CAST "SceneNode") == 0) {
 ChildNode = SceneNode->createChildSceneNode();
 Traverse(cur_node->children, ChildNode);
 }

 if (_mbscmp(cur_node->name, BAD_CAST "Entity") == 0) {
 Ogre::String EntityName((char *)cur_node->properties->
 children->content);
 Ogre::String MeshName((char *)cur_node->properties->
 next->children->content);

 Ogre::Entity *Entity = m_SceneManager->
 createEntity(EntityName, MeshName);
 SceneNode->attachObject(Entity);
 }
 }
}

Managing Objects and Scenes

106

How it works...
The XML scene file we are loading looks something like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
<RootSceneNode>
 <SceneNode SceneNodeName="Ogre/SceneRoot">
 <SceneNode SceneNodeName="CameraNode">
 <Camera CameraName="Camera" XPosition="200.000000"
 YPosition="50.000000" ZPosition="100.000000" XDirection="-
 0.888767" YDirection="-0.006624" ZDirection="-0.458312"/>
 </SceneNode>
 <SceneNode SceneNodeName="Unnamed_1">
 <Entity EntityName="Robot" MeshName="robot.mesh"/>
 </SceneNode>
 </SceneNode>
</RootSceneNode>

Each scene node is represented in the XML by a SceneNode element, and all the entities
attached to that scene node are children of each SceneNode element.

There's more...
The functionality to create lights, cameras, and other types of objects is not included, but is
very similar to and can be based off of the code used to create an entity.

See also
In this chapter:

ff Creating and editing a scene

ff Saving a scene to an XML file

4
Let There Be Light

In this chapter, we will cover the following recipes:

ff Creating weather controls

ff Creating lights

ff Creating dynamic effects

ff Managing particle systems

ff Managing shadows

Introduction
In this chapter, we'll explore some of the dynamic features of Ogre, such as particle systems,
lights, and shadows. All of the dynamic features that we show you in this chapter can be
manipulated with code to increase the realism of the effects or the artistic quality. Particle
systems, in particular, are designed to change dynamically over time to achieve effects, such
as sparks, explosions, or even a waterfall. Similarly, we can manipulate a light dynamically if
we want to simulate the flickering of a fire.

Creating weather controls
When building Ogre applications that simulate an outdoor environment, we often need to
control weather conditions. In this recipe, we'll build an application with controls that change
the parameters of a particle system to simulate different rain-like conditions. We'll also use
sound in our application to enhance the rain effect.

Let There Be Light

108

Getting ready
Add the sounds folder, which contains nature sounds, such as rain and thunder, in your
media folder.

To follow along with this recipe, open the solution located in the Recipes/Chapter04 folder
in the code bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named WeatherConditions, by following

the Creating an MFC Ogre application recipe, in Chapter 1, Delving Deep into
Application Design.

2.	 Next, create a SAPI voice.
m_cpVoice.CoCreateInstance(CLSID_SpVoice);

3.	 Create a submenu named Weather Control in the main menu. Then, add commands:
Rain, Snow, Fog, Sky, and Sun to the submenu. For this recipe, we will only be
implementing the rain functionality, but it will be easy to complete the other controls,
once you see how the rain is implemented.

4.	 Next, add an event handler to the Rain submenu item using the Event Handler
Wizard.
void CWeatherControlView::OnWeatherControlRain() {
 Ogre::SceneNode *RainNode = NULL;

 if (!m_SceneManager->hasParticleSystem("Rain")) {
 m_Rain = m_SceneManager->createParticleSystem("Rain",
 "Examples/Rain");

 if (m_Rain != NULL) {
 RainNode = m_SceneManager->

Chapter 4

109

 getRootSceneNode()->createChildSceneNode("RainNode");
 RainNode->attachObject(m_Rain);
 m_Rain->setVisible(false);
 }
 }

 if (m_RainControlDlg == NULL) {
 m_RainControlDlg = new CRainControlDlg();
 m_RainControlDlg->Create(IDD_RAIN_CONTROL);
 }

 m_RainControlDlg->ShowWindow(SW_SHOW);
}

5.	 In the Rain submenu event handler, we create the rain particle system and the Rain
Control dialog-box, and then show it.

6.	 Create the Rain Control dialog-box using the Dialog Editor.

Using this dialog-box, we can start and stop the rain, control particle dimensions, and
enable or disable rain sounds.

6.	 Now that we've created the dialog-box, we need to add the event handler code for
the dialog-box controls. Add a message handler to the Rain Control dialog-box called
OnHScroll that handles the WM_HSCROLL message. The WM_HSCROLL message
is sent when a click is detected in a horizontal scroll bar. Inside the OnHScroll, we
simply check the position of the particle width and height controls, and modify the
particle system with the updated values.
void CRainControlDlg::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar) {
 CMainFrame *MainFrame = (CMainFrame *)((
 CWeatherControlApp*)AfxGetApp())->GetMainWnd();

Let There Be Light

110

 CWeatherControlView *View =
 (CWeatherControlView *)MainFrame->GetActiveView();

 int ParticleWidth = m_ParticleWidth.GetPos();
 int ParticleHeight = m_ParticleHeight.GetPos();

 View->m_Rain->setDefaultDimensions(ParticleWidth,
 ParticleHeight);

 CDialogEx::OnHScroll(nSBCode, nPos, pScrollBar);
}

7.	 Next, add an event handler named OnClickAction to the Start/Stop button to
handle the click event. Inside OnClickAction, we toggle the rain visibility and
rain sounds.
View->m_Rain->setVisible(!View->m_Rain->getVisible());

if (View->m_Rain->getVisible()) {
 m_Action.SetWindowTextA("Stop");
 View->SetTimer(ID_RAIN_TIMER, 1, 0);
}
else {
 m_Action.SetWindowTextA("Start");
 View->KillTimer(ID_RAIN_TIMER);
 WeatherControlApp->m_cpVoice->Pause();
}

We also start or stop the ID_RAIN_TIMER to toggle rain sounds in our OnTimer()
function that gets called every time we receive a timer message.

8.	 To handle the timer messages, add an ON_WM_TIMER message handler to
CWeatherControlView, and name it OnTimer. In the OnTimer member function,
we will play rain sounds and render the scene when we receive the ID_RAIN_TIMER
timer event.
SoundPath += L"\\..\\..\\media\\sounds\\rain\\rain storm.wav";
CWeatherControlApp* WeatherControlApp = (CWeatherControlApp*)
AfxGetApp();
CComPtr<ISpVoice> Voice = WeatherControlApp->m_cpVoice;
CComPtr<ISpStream> cpWavStream;

switch (nIDEvent) {
 case ID_RAIN_TIMER:

 if (m_RainControlDlg != NULL){
 if (m_RainControlDlg->m_PlaySound && m_Rain->getVisible()) {

Chapter 4

111

 SPBindToFile(SoundPath, SPFM_OPEN_READONLY, &cpWavStream);
 Voice->Resume();
 Voice->SpeakStream(cpWavStream, SPF_ASYNC, NULL);
 }
 else {
 Voice->Pause();
 }
 }
 Root->renderOneFrame();

The SPBindToFile function binds the audio stream to the specified file, and
SpeakStream plays the contents of the stream. In our case, when we receive an
ID_RAIN_TIMER event, we play the rain sound.

How it works...
The settings for our Examples/Rain particle system reside in the media/particle/
Examples.particle file. The .particle file is just a text file and the settings are detailed
in the Ogre online manual:

particle_system Examples/Rain
{
 material Examples/Droplet
 particle_width 20
 particle_height 100
 cull_each true
 quota 10000
 // Make common direction straight down (faster than self oriented)
 billboard_type oriented_common
 common_direction 0 -1 0

 // Area emitter
 emitter Box
 {
 angle 0
 emission_rate 100
 time_to_live 5
 direction 0 -1 0
 velocity 	 50
 width 1000
 height 1000
 depth 0
 }

 // Gravity

Let There Be Light

112

 affector LinearForce
 {
 force_vector 0 -200 0
 force_application add
 }

}

The rain particle effect uses a box emitter, so all the particles originate from a flat 1000x1000
box. Note that we use the Y-axis as the up and down axis in our example, and our material is
the Examples/Droplet material found in the media/materials/scripts/Examples.
material file.

material Examples/Droplet{
 technique {
 pass {
 emissive 0.3 0.3 0.3
	 scene_blend colour_blend
	 depth_write off
	 diffuse vertexcolour

	 texture_unit {
 texture basic_droplet.png
	 }
	 }
	 }
}

When you run the program and turn on the rain effect, you can see the rain particles falling on
our robot overlord.

Chapter 4

113

There's more...
You can add additional elements to the Rain Control dialog-box to control other parameters
of the rain particle system, such as the speed or the color. By adding dialog-boxes for each
weather control, we can create a full-scale weather editor.

Creating lights
In Ogre, when you create a light, you are defining the origin and color for a light, but there
is no visible representation of an object casting light in the scene, such as a light bulb, or a
window, or TV screen. In this recipe, we'll show you how to create those illuminated objects
that represent the light source object in a 3D scene.

Getting ready
First, add Wall.material to media\materials\scripts, and then add the White.jpg,
Grey.jpg, Yellow.jpg, and Black.jpg textures to the media\materials\textures
folder.

To follow along with this recipe, open the solution located in the Recipes/Chapter04 folder
in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC Ogre application named Lights.

2.	 Next, in LightsView::EngineSetup(), add a spotlight can and a light beam, to
represent the light from the spotlight, hitting particles in the air.
// spotlight can
CCone ConeObject;
ConeObject.m_Height = 20.0;
ConeObject.m_Radius = 10.0;
Ogre::ManualObject *Can =
 ConeObject.CreateCone(0,"SpotLightLight","Wall/Black");
Ogre::SceneNode *CanNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(100.0, 181.0, 0.0));
//Can->setCastShadows(true);
CanNode->attachObject(Can);

// spotlight beam
ConeObject.m_Height = 200.0;
ConeObject.m_Radius = 80.0;
Ogre::ManualObject *Beam =
 ConeObject.CreateCone(0.99,"SpotLightBeam","LightBeam",0.5);

Let There Be Light

114

Ogre::SceneNode *BeamNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(100.0, 0.0, 0.0));
Beam->setCastShadows(false);
BeamNode->attachObject(Beam);

// spotlight light
Ogre::Light* SpotLight = SceneManager->createLight("SpotLight");
SpotLight->setDirection((Ogre::Vector3(0.0, 0.0, 0.0) -
 Ogre::Vector3(0.0, 100.0, 0.0)).normalisedCopy());
SpotLight->setType(Ogre::Light::LT_SPOTLIGHT);
SpotLight->setDiffuseColour(1.0, 1.0, 0.0);
SpotLight->setSpecularColour(1.0, 1.0, 0.0);
//SpotLight->setAttenuation(150, 1.0, 0.005, 0.0);
SpotLight->setSpotlightRange(
 Ogre::Radian(0.5),Ogre::Radian(0.9),2.0f);
SpotLight->setVisible(true);
Ogre::SceneNode *LightNode = SceneManager->getRootSceneNode()->
 createChildSceneNode("SpotLight");

LightNode->attachObject(SpotLight);
LightNode->setPosition(Ogre::Vector3(100.0,199,0.0));

We position the light beam cone and the spotlight, just under the can.

3.	 Next, create a point light and a flare billboard sprite as its visual representation.

// point light
Ogre::Light* PointLight = SceneManager->createLight("PointLight");
PointLight->setType(Ogre::Light::LT_POINT);
PointLight->setDiffuseColour(1.0, 0.0, 0.0);
PointLight->setSpecularColour(1.0, 0.0, 0.0);
PointLight->setVisible(true);
PointLight->setAttenuation(3250.0,1.0,0.0014,0.000007);
Ogre::SceneNode *PointLightNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("PointLight");

PointLightNode->attachObject(PointLight);
PointLightNode->setPosition(Ogre::Vector3(-100.0,150,30.0));

// attach a flare to the point light node
Ogre::BillboardSet* FlareSet = SceneManager->
 createBillboardSet("FlareSet");
FlareSet->setMaterialName("Examples/FlarePointSprite");
FlareSet->setDefaultDimensions(50.0,50.0);
Ogre::Billboard* Flare = FlareSet->createBillboard(
 Ogre::Vector3(0,0,0),Ogre::ColourValue(1.0,0.0,0.0,0.5));
PointLightNode->attachObject(FlareSet);

Chapter 4

115

4.	 Finally, add a couple dangerous robots under each light and a ground plane.
// floor mesh
Ogre::Plane Floor(Ogre::Vector3::UNIT_Y, 0);
Ogre::MeshPtr WallMesh =
 Ogre::MeshManager::getSingleton().createPlane("Floor",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, Floor,
 1000,1000,100,100,true,1,5,5, Ogre::Vector3::UNIT_Z);

Ogre::Entity *FloorEntity = SceneManager->createEntity("Floor",
 "Floor");
FloorEntity->setCastShadows(false);
Ogre::SceneNode *FloorNode = SceneManager->getRootSceneNode()->
 createChildSceneNode("Floor");
FloorNode->attachObject(FloorEntity);

Ogre::Entity *RobotEntity = SceneManager->createEntity("Robot",
 "robot.mesh");
Ogre::SceneNode *RobotNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(100.0,00.0,0.0));
RobotNode->yaw(-Ogre::Radian(Ogre::Math::HALF_PI));
RobotEntity->setCastShadows(true);
RobotNode->attachObject(RobotEntity);

Ogre::Entity *RobotEntity2 = SceneManager->createEntity("Robot2",
 "robot.mesh");
Ogre::SceneNode *RobotNode2 = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(-100.0,00.0,0.0));
RobotNode2->yaw(-Ogre::Radian(Ogre::Math::HALF_PI));
RobotEntity2->setCastShadows(true);
RobotNode2->attachObject(RobotEntity2);

How it works...
In Ogre 3D, there are three types of lights: point lights, spot lights, and directional lights.
In this recipe, we use a transparent cone to represent the light from the spot light, hitting air
particles. To accomplish this, we create a cone mesh using an Ogre::ManualObject with
each vertex having an alpha value based on the height of the vertex. This way, the vertices at
the bottom of the spot light cone are fully transparent, and vertices at the top of the cone are
less transparent.

Cone->colour(Intensity, Intensity, 0.0, ((Ogre::Real)
 HeightSegmentIndex / (Ogre::Real)m_HeightSegments) * fadeAmount);

Let There Be Light

116

The alpha value for each vertex in the cone is also multiplied by some variable fadeAmount.
For this recipe, we set the fadeAmount to 0.5, so that the top of the cone is not opaque.

For the point light, we use a flare sprite tinted red that always faces the camera. This
is the most common approach for making light sources visible. We make use of the
Ogre::BillboardSet and the Ogre::Billboard classes to create flares that will always
face the camera, because Ogre will adjust the billboard positions for every frame for us.
The Ogre::BillboardSet class is also very efficient at managing and rendering many
billboards at once.

Our robot overlords sure know how to get their mood on!

There's more...
Our recipe does not have a flare for the spotlight. Create another flare for the spotlight, then
make the transparency of each flare dependent on the view angle from the camera to the
flare, so that, when looking directly at the flare, it is most visible, but as the camera looks
away from the flare, it becomes less visible. Ideally, the flare for the spotlight should only be
visible from under the spotlight.

The directional light, not shown in this recipe, is a good choice for representing the sun or
moon, which also can be represented with a billboard sprite that always faces the camera.

Chapter 4

117

See also
In this chapter:

ff Creating dynamic effects

Creating dynamic effects
In this recipe, we'll show you how to dynamically adjust the intensity of a spotlight beam,
based on the camera's view angle. Our goal is to render a spotlight beam that is barely visible
when the camera angle is perpendicular to the angle of the spotlight beam, and we want the
spotlight beam to be most visible when the camera is directly in the spotlight beam, looking
at it.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter04 folder
in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC Ogre application named DynamicEffects.

2.	 Next, add an Ogre::Light member variable to the CDynamicEffectsView class,
and then initialize it in CDynamicEffectsView::EngineSetup().
Ogre::AxisAlignedBox Box(-1000, -1000, -1000, 1000, 1000, 1000);
Ogre::Vector3 Center = Box.getCenter();

Light = SceneManager->createLight();

m_Camera->setPosition(Ogre::Vector3(25.0, 25.0, 25.0));
m_Camera->setDirection((Ogre::Vector3(0.0, 100.0, 0.0) -
 m_Camera->getPosition()).normalisedCopy());
Light->setDirection((Ogre::Vector3(0.0, 100.0, 0.0) -
 Ogre::Vector3(0.0, 0.0, 0.0)).normalisedCopy());

Ogre::Real Intensity = m_Camera->getDirection().dotProduct(
 Light->getDirection());

Ogre::SceneNode* lightNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(Center);

Light->setType(Ogre::Light::LT_SPOTLIGHT);
Light->setVisible(true);

Let There Be Light

118

Light->setPosition(Ogre::Vector3(0.0, 100.0, 0.0));
Light->setSpotlightOuterAngle(Ogre::Radian(0.4));
Light->setDiffuseColour(Intensity, Intensity, 0.0);
Light->setSpecularColour(Intensity, Intensity, 0.0);

lightNode->attachObject(Light);

3.	 After creating the light, we set its type to Ogre::Light::LT_SPOTLIGHT, and
attach it to the scene graph.

4.	 Next, add the Cone.cpp and the Cone.h files from the example project, and then
create a new CCone object in CDynamicEffectsView::EngineSetup().
CCone ConeObject;
Cone = ConeObject.CreateCone(Intensity);
Ogre::SceneNode *ConeNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(0.0, 100.0, 0.0));
ConeNode->attachObject(Cone);

The cone mesh object will represent our spotlight beam in the scene.

5.	 Now that we have all the graphical elements we need in the scene, it's time to add
controls, so that we can move the camera. Add an integer member variable named
m_WorkingTimer to CDynamicEffectsView.

6.	 Next, add a handler for the ON_WM_KEYDOWN message named CDynamicEffectsV
iew::OnKeyDown().
m_WorkingTimer = 0;

switch (nChar) {
 case VK_LEFT: //left
 case 65: //A
 case 97: //a

 m_WorkingTimer = 1;

 break;

 case VK_UP: //up
 case 87: //W
 case 119: //w

 m_WorkingTimer = 2;

 break;

 case VK_RIGHT: //right

Chapter 4

119

 case 68: //D
 case 100: //d

 m_WorkingTimer = 3;

 break;

 case VK_DOWN: //down
 case 83: //S
 case 115://s

 m_WorkingTimer = 4;

 break;
}

if (m_WorkingTimer != 0)
 SetTimer(m_WorkingTimer, 10, NULL);

In OnKeyDown, we set a different working timer value, depending on which key
is down.

7.	 Next, add a handler for the ON_WM_KEYUP message named
CDynamicEffectsView::OnKeyUP().
KillTimer(m_WorkingTimer);

CView::OnKeyUp(nChar, nRepCnt, nFlags);

Here' we kill the m_WorkingTimer, so we stop generating WM_TIMER messages.

8.	 Next, add a handler for the ON_WM_TIMER message named CDynamicEffectsVie
w::OnTimer().
CEngine *Engine = ((CDynamicEffectsApp*)AfxGetApp())->m_Engine;

if (Engine == NULL)
 return;

Ogre::Root *Root = Engine->GetRoot();

if (Root == NULL) {
 return;
}

Ogre::Vector3 CameraMove;

switch (nIDEvent) {

Let There Be Light

120

 case 1:

 CameraMove[0] = -1;
 CameraMove[1] = 0;
 CameraMove[2] = 0;

 break;

 case 2:

 CameraMove[0] = 0;
 CameraMove[1] = 1;
 CameraMove[2] = 0;

 break;

 case 3:

 CameraMove[0] = 1;
 CameraMove[1] = 0;
 CameraMove[2] = 0;

 break;

 case 4:

 CameraMove[0] = 0;
 CameraMove[1] = -1;
 CameraMove[2] = 0;

 break;
}

9.	 First, we check the timer event ID, and set the CameraMove variable appropriately, to
move the camera in the right direction.

10.	 Next, we calculate the dot product between camera direction and the spotlight
direction. The spotlight intensity is proportional to this dot product.
m_Camera->moveRelative(CameraMove);
m_Camera->setDirection((Light->getPosition() - m_Camera->
 getPosition()).normalisedCopy());

Ogre::Real Intensity = m_Camera->getDirection().dotProduct(Light->
 getDirection());

Light->setDiffuseColour(Intensity, Intensity, 0.0);
Light->setSpecularColour(Intensity, Intensity, 0.0);

Chapter 4

121

11.	 Next, we update the vertex colors for the spotlight beam, so that their intensity
matches the spotlight intensity.

int numSegBase = 24;
int numSegHeight = 24;
Ogre::Real radius = 10.0;
Ogre::Real height = 20.0;

Cone->beginUpdate(0);

Ogre::Real deltaAngle = (Ogre::Math::TWO_PI / numSegBase);
Ogre::Real deltaHeight = height/(Ogre::Real)numSegHeight;

Ogre::Real uTile = 1.0;
Ogre::Real vTile = 1.0;

Ogre::Vector3 refNormal = Ogre::Vector3(radius, height,
 0.f).normalisedCopy();
Ogre::Quaternion q;
int offset = 0;

for (int i = 0; i <=numSegHeight; i++) {
 Ogre::Real r0 = radius * (1 - i / (Ogre::Real)numSegHeight);
 for (int j = 0; j<=numSegBase; j++) {
 Ogre::Real x0 = r0* cosf(j * deltaAngle);
 Ogre::Real z0 = r0 * sinf(j * deltaAngle);
 Cone->position(x0, i * deltaHeight, z0);
 Cone->colour(Intensity, Intensity, 0.0, 0.0);
 q.FromAngleAxis(Ogre::Radian(-j*deltaAngle),
 Ogre::Vector3::NEGATIVE_UNIT_Y);
 Cone->normal(q*refNormal);
 Cone->textureCoord(j / (Ogre::Real)numSegBase * uTile, i /
 (Ogre::Real)numSegHeight * vTile);

 if (i != numSegHeight&& j != numSegBase) {
 Cone->index(offset + numSegBase + 2);
 Cone->index(offset);
 Cone->index(offset + numSegBase + 1);
 Cone->index(offset + numSegBase + 2);
 Cone->index(offset + 1);
 Cone->index(offset);
 }

 offset ++;
 }

Let There Be Light

122

}
/**/
//low cap
int centerIndex = offset;

Cone->position(0,0,0);
Cone->normal(Ogre::Vector3::NEGATIVE_UNIT_Y);
Cone->textureCoord(0.0,vTile);
offset++;
for (int j=0; j<=numSegBase; j++) {
 Ogre::Real x0 = radius * cosf(j*deltaAngle);
 Ogre::Real z0 = radius * sinf(j*deltaAngle);

 Cone->position(x0, 0.0f, z0);
 Cone->colour(Intensity, Intensity, 0.0, 0.0);
 Cone->normal(Ogre::Vector3::NEGATIVE_UNIT_Y);
 Cone->textureCoord(j/(Ogre::Real)numSegBase*uTile,0.0);
 if (j!=numSegBase) {
 Cone->index(centerIndex);
 Cone->index(offset);
 Cone->index(offset+1);
 }
 offset++;
}
/**/
Cone->end();

How it works...
Each time we render a frame, we calculate the dot product of the spotlight direction vector
and the camera view vector, and use that value to set the intensity for the spotlight beam. The
dot product value is the cosine of the angle between the two vectors. So, when the vectors are
parallel, this value will be 1 or -1, and when the vectors are perpendicular, the dot product
will be 0. In this recipe, we set the Intensity variable value based on the dot product, so that if
the camera is looking directly at the spotlight beam, the intensity will be magnified, but if the
camera is looking away, the intensity will be less. The effect of changing the intensity of the
light is meant to be similar to the way our eyes adjust to lights when we look directly at them
or an angle.

If we were using a point light, which has no direction, we would take the dot product of a
camera view vector, and a normalized vector from the light's origin to the camera's origin.

Chapter 4

123

The intensity of the spotlight beam cone is very low when the camera direction vector is
perpendicular to the spotlight direction vector.

As the camera has moved, and the angle between the camera view vector and the spotlight
direction vector is smaller, the intensity has increased.

Let There Be Light

124

Finally, when the camera view vector and the spotlight direction vector are parallel, the
intensity is at its maximum value.

There's more...
In this recipe, we used a solid color for our spotlight beam. A better looking spotlight beam
should use a gradient texture; one that is bright and opaque at the spotlight source, then
progressively fades out, relative to the distance to the source.

Managing particle system
In this recipe, we'll create a basic particle system editor. Using this editor, we will be able to try
out various particle effects that we can then use in our 3D application.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter04 folder
in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC Ogre application named ParticleSystem.

2.	 Next, create a dialog-box named Particle System Editor using the Visual Studio
Dialog Editor. Add two menus to the dialog-box—a menu to add various types of
emitters and a menu to add affecters. Add event handles to each menu item. Next,
add a tree control to manage the structure of the particle system, and controls for
creating particle systems.

Chapter 4

125

3.	 Add a click handler for the Create button named
OnBnClickCreateParticleSystem().
void CParticleSystemControlDlg::OnBnClickedCreateParticleSystem()
{
 CMainFrame *MainFrame = (CMainFrame *)((
 CParticleSystemApp*)AfxGetApp())->GetMainWnd();

 CEngine *Engine = ((CParticleSystemApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Ogre::SceneManager *SceneManager = Root->
 getSceneManager("ParticleSystem");

 m_ParticleSystem = SceneManager->createParticleSystem("Sun");

 m_ParticleSystem->setDefaultDimensions(12, 24);
 m_ParticleSystem->setSortingEnabled(true);
 m_ParticleSystem->setMaterialName("Examples/Flare2");
 m_ParticleSystem->setCullIndividually(true);
 m_ParticleSystem->setParticleQuota(3000);
 m_ParticleSystem->setRenderer("billboard");
 m_ParticleSystem->setKeepParticlesInLocalSpace(false);
}

When the Create button is pressed, we add a new particle system called sun, and
set default dimensions, a material name, the particle type, and the maximum number
of particles.

4.	 Next, create a handler for the Try button named
OnBnClickedTryParticleSystem().
void CParticleSystemControlDlg::OnBnClickedTryParticleSystem()
{
 CMainFrame *MainFrame = (CMainFrame *)((
 CParticleSystemApp*)AfxGetApp())->GetMainWnd();
 CEngine *Engine = ((CParticleSystemApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Ogre::SceneManager *SceneManager = Root->
 getSceneManager("ParticleSystem");

 Ogre::SceneNode *SceneNode = SceneManager->getRootSceneNode()->
 createChildSceneNode();
 SceneNode->attachObject(m_ParticleSystem);
 SceneNode->setPosition(0, 10, 0);
 m_ParticleSystem->setVisible(true);
 Root->renderOneFrame();
 MainFrame->GetActiveView()->SetTimer(1,1,0);
}

Let There Be Light

126

In OnBnClickedTryParticleSystem(), we attach the particle system to a scene
node, and render the scene. We also activate a timer to render the scene and update
the particle system at regular intervals.

5.	 Next, we need to implement the handlers for creating the emitters and affecters. In
this recipe, we will show you how to implement the Box Emitter and the Deflector
plane affecter. The implementation for the remaining emitters and affecters should
be very similar.

The message handler for Add Box Emitter should look like this:
void CParticleSystemControlDlg::OnEmittersAddBoxEmitter()
{
 CBoxEmitterDlg BoxEmitterDlg;

 if (IDOK == BoxEmitterDlg.DoModal()) {
 HTREEITEM EmitterItem =
 m_ParticleSystemTree.InsertItem(BoxEmitterDlg.m_EmitterName,
 m_EmittersItem);
 m_ParticleSystemTree.EnsureVisible(EmitterItem);

 Ogre::ParticleEmitter *BoxEmitter = m_ParticleSystem->
 addEmitter("Box");

When the Add Box Emitter menu item is selected, the BoxEmitterDlg dialog-box is
displayed, and a box emitter is added to the particle system.

6.	 Create a dialog-box named CBoxEmitterDlg with a single text field for the emitter
name.

7.	 Now, let's implement the Add Deflector Plane menu item handler. Create a dialog-
box named CDeflectorPlaneAffectorDlg, and add controls for naming the
affecter, setting the plane origin, normal, and bounce value.

Chapter 4

127

8.	 Next, we add code to the Add Deflector Plane Affector menu item that opens the
CDeflectorPlaneAffectorDlg, then uses the dialog-box settings to create the affecter,
and add it to the scene.

void CParticleSystemControlDlg::
 OnAffectorsAdddeflectorplaneaffector() {
 CDeflectorPlaneAffectorDlg DeflectorPlaneAffectorDlg;

 if (IDOK == DeflectorPlaneAffectorDlg.DoModal()) {
 m_ParticleSystemTree.InsertItem(
 DeflectorPlaneAffectorDlg.m_AffectorName, m_AffectorsItem);

 Ogre::ParticleAffector *Plane = m_ParticleSystem->
 addAffector("DeflectorPlane");

 Plane->setParameter("plane_point", "0 -50 0");
 Plane->setParameter("plane_normal", "0 1 0");
 Plane->setParameter("bounce", "1");
 }
}

How it works...
When you create the particle system, and add emitters and affecters, they are added to the
tree control. When the Try button is pressed, the particle system activates and a timer is
enabled that renders the scene at regular intervals.

void CParticleSystemView::OnTimer(UINT_PTR nIDEvent) {
 	 CEngine * Engine = ((CParticleSystemApp*)AfxGetApp())->m_Engine;
	 Ogre::Root *Root = Engine->GetRoot();
	 Root->renderOneFrame();

	 CView::OnTimer(nIDEvent);
}

Let There Be Light

128

We also add a robot mesh to the scene to give a sense of scale, though you may wish to
remove it, if the particle system you are testing is obscured by it.

There's more...
In this recipe, we only implemented one emitter and one affecter. You can implement the
handlers and dialog-boxes for the remaining emitters and affecters.

You can also add functionality to the tree, to enable and disable emitters and affecters by
adding and removing them from the particle system, when the check-box next to each tree
item is checked.

Managing shadows
When architects design buildings, they must adhere to city building codes and be aware of
the impact on the environment caused by the structures they design. A tall building erected
near others might cast a shadow over them, thus decreasing the warming rays of the sun, and
increasing the cost of heating them. In this recipe, we will assume the role of the architect,
and our job is to determine if the building that we want to erect will cast a shadow on an
existing, nearby building. To simulate shadows cast on buildings, we will create a scene with
a house to represent the affected building, and then use a 3D box model to represent the
building we want to construct. We will also move a point light representing the sun, to simulate
shadows at different times of day.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter04 folder
in the code bundle available on the Packt website.

How to do it...
1.	 First, create an MFC Ogre application with a ribbon named Shadows.

2.	 Next, create the simple scene with a ground plane, a house model, and a box model
to represent the new building.
Ogre::Plane Ground(Ogre::Vector3::UNIT_Y, 0);
Ogre::MeshPtr GroundMesh =
 Ogre::MeshManager::getSingleton().createPlane("Ground",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 Ground, 10000, 10000,20,20,true,1,5,5, Ogre::Vector3::UNIT_Z);

Ogre::Entity *GroundEntity = SceneManager->createEntity("Ground",
 "Ground");

Chapter 4

129

Ogre::SceneNode *GroundNode = SceneManager->getRootSceneNode()->
 createChildSceneNode("Ground");
GroundNode->attachObject(GroundEntity);
GroundEntity->setCastShadows(false);

Ogre::Vector3 InsertionPoint;

Ogre::Entity *HouseEntity = SceneManager->createEntity("House",
 "tudorhouse.mesh");
Ogre::AxisAlignedBox HouseBox = HouseEntity->getBoundingBox();
InsertionPoint = - HouseBox.getCorner(
 Ogre::AxisAlignedBox::NEAR_LEFT_BOTTOM);
Ogre::SceneNode *HouseNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(InsertionPoint);
HouseNode->attachObject(HouseEntity);
HouseEntity->setCastShadows(false);

Ogre::Entity *BoxEntity = SceneManager->createEntity("Box",
 Ogre::SceneManager::PrefabType::PT_CUBE);
BoxEntity->setMaterialName("Examples/BeachStones");
Ogre::AxisAlignedBox Box = BoxEntity->getBoundingBox();
Ogre::SceneNode *BoxNode = SceneManager->getRootSceneNode()->
 createChildSceneNode("Box");
BoxNode->attachObject(BoxEntity);
BoxNode->setScale(Ogre::Vector3(5, 20, 5));
BoxNode->setPosition(Ogre::Vector3(-1000, 0, 1000));
BoxEntity->setCastShadows(true);

3.	 Next, add a point light to represent the sun in our simulation.
SceneManager->
 setShadowTechnique(Ogre::SHADOWTYPE_STENCIL_ADDITIVE);
Sun = SceneManager->createLight("Sun");
Sun->setType(Ogre::Light::LT_POINT);
Sun->setPosition(2500 * Ogre::Math::Cos(0), 1000, 2500 *
 Ogre::Math::Sin(0));
Sun->setDiffuseColour(0.35, 0.35, 0);
Sun->setSpecularColour(0.9, 0.9, 0);
Sun->setVisible(true);

Let There Be Light

130

4.	 Next, add panels and sliders to the ribbon for controlling the height of the building
and the time of day.

5.	 Now, it's time to create the event handlers for ribbon sliders.
void CShadowsView::OnTime() {
 CMainFrame *MainFrame = (CMainFrame *)((
 CShadowsApp*)AfxGetApp())->GetMainWnd();
 CMFCRibbonBar* RibbonBar = MainFrame->GetRibbonBar();

 CMFCRibbonSlider* Slider = DYNAMIC_DOWNCAST(CMFCRibbonSlider,
 RibbonBar->FindByID(ID_TIME));

 Ogre::Radian Angle = Ogre::Radian(Ogre::Math::TWO_PI * (
 double)Slider->GetPos() / 24);

 CEngine *Engine = ((CShadowsApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Ogre::SceneManager *SceneManager = Root->
 getSceneManager("Shadows");
 Ogre::Light *Sun = SceneManager->getLight("Sun");
 Sun->setPosition(2500 * Ogre::Math::Cos(Angle), 1000, 2500 *
 Ogre::Math::Sin(Angle));

 if (Root != NULL) {
 Root->renderOneFrame();
 }
}

6.	 For the Time slider, we convert the slider position to an angle, and use that value to
set the sun position.

void CShadowsView::OnHeight() {
 CMainFrame *MainFrame = (CMainFrame *)((
 CShadowsApp*)AfxGetApp())->GetMainWnd();
 CMFCRibbonBar* RibbonBar = MainFrame->GetRibbonBar();

Chapter 4

131

 CMFCRibbonSlider* Slider = DYNAMIC_DOWNCAST(CMFCRibbonSlider,
 RibbonBar->FindByID(ID_HEIGHT));

 CEngine *Engine = ((CShadowsApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Ogre::SceneManager *SceneManager = Root->
 getSceneManager("Shadows");
 Ogre::SceneNode *BoxNode = SceneManager->getSceneNode("Box");
 BoxNode->setScale(5, Slider->GetPos(), 5);

 if (Root != NULL) {
 Root->renderOneFrame();
 }
}

The Height slider simply scales the 3D box that represents the new building.

How it works...
When the Time slider is moved, we change the position of the sun point light, and render the
scene again. Each time the scene is rendered, Ogre automatically updates the shadows in
the scene, based on the light position, the shadow casters, and receivers in the scene. In this
recipe, we specifically instructed Ogre to only cast shadows for the 3D box that represents our
new building, so the shadow is clearly visible. We also set the shadow type to SHADOWTYPE_
STENCIL_ADDITIVE, so the shadows are very crisp and defined.

Let There Be Light

132

There's more...
To make a complete shadows analyzer, you should add a sun position calculator based on real
locations in the world at various times of year. You can also add terrain to the scene, to more
accurately represent the building location. Finally, using the Creating and Editing a Scene
recipe, from the previous chapter, you can add functionality to add and remove objects in the
scene.

See also
Chapter 3, Managing Objects and Scenes:

ff Creating a terrain from a LandXML file

ff Creating Delaunay triangulation

ff Creating and editing a scene

5
Playing with Materials

In this chapter, we will cover:

ff Using geoimages as terrain textures

ff Creating transparent materials

ff Creating dynamic textures

ff Creating movable text

ff 2D image manipulation

Introduction
In this chapter, we'll use advanced materials in Ogre applications to show you how to
accomplish some common and some uncommon effects. The effects range from terrain
texturing and transparent windows to animated textures and billboard textures.

We will also use a 3D anaglyph image example to show how you can manipulate 2D texture
data in your Ogre 3D application.

Using geoimages as terrain textures
Creating realistic looking terrain is a necessity for most graphics programs. Often, the terrain
is created by referencing a height map that an artist created, or that came from an aerial/
satellite image or map.

In this recipe, we'll use a DEM file for our terrain height data and an image in GeoTiff format
with georeferencing information embedded in it, to get UV co-ordinates for each point on
the mesh. GeoTiff is a public domain metadata standard, which allows georeferencing
information to be embedded within a TIFF file. For more information see the GeoTiff website at
http://trac.osgeo.org/geotiff/.

http://en.wikipedia.org/wiki/Public_domain
http://en.wikipedia.org/wiki/Metadata_(computing)
http://en.wikipedia.org/wiki/Georeference
http://en.wikipedia.org/wiki/TIFF

Playing with Materials

134

Getting ready
To follow along with this recipe:

1.	 Open the solution located in the Recipes/Chapter05 folder in the code bundle
available on the Packt website.

2.	 Next, download the GeoTiff library from http://download.osgeo.org/
geotiff/libgeotiff/.

3.	 Finally, download the sample GeoTiff image o41078a1.tif from ftp://ftp.
remotesensing.org/pub/geotiff/samples/usgs/, and the terrain DEM file
karthaus_pa.dem from http://dbwww.essc.psu.edu/geotree/dbtop/
amer_n/us_ne/pa/n41w078/n41w078a1/data/dem/30m_utm17/karthaus_
pa.dem.gz.

How to do it...
1.	 First, create a new Ogre MFC application named GeoImage, by following the Creating

an MFC Ogre application recipe, in Chapter 1, Delving Deep into Application Design.

2.	 Create a material script text file named terrain.material for the terrain texture in
the media/materials/scripts folder, and put the following text in the file:
material Terrain
{
 technique
 {
 pass
 {
 ambient 1 1 1
 diffuse 1 1 1

 cull_hardware none
 cull_software none

 depth_bias 0

 texture_unit
 {

 // Following Tif file contains map image and geotiff tags.

 texture o41078a1.tif.tif
 }
 }
 }

 technique
 {

ftp://ftp.remotesensing.org/pub/geotiff/samples/usgs/
ftp://ftp.remotesensing.org/pub/geotiff/samples/usgs/

Chapter 5

135

 pass
 {
 diffuse 1 0 0
 }
 }
}

3.	 Next, edit the GeoImageView::EngineSetup() function, and add code to read
the geo information from the header of tiff file.
TIFF 	 *Tif = (TIFF*)0; /* TIFF-level descriptor */
GTIF	 *GTif = (GTIF*)0; /* GeoKey-level descriptor */
int ImageWidth;
int ImageHeight;

double LowerLeftX;
double LowerLeftY;

double UpperRightX;
double UpperRightY;

Tif = XTIFFOpen((LPCSTR)SourcePath, "r");

GTif = GTIFNew(Tif);

GTIFDefn Definition;
GTIFGetDefn(GTif, &Definition);

TIFFGetField(Tif, TIFFTAG_IMAGEWIDTH, &ImageWidth);
TIFFGetField(Tif, TIFFTAG_IMAGELENGTH, &ImageHeight);

LowerLeftX = 0.0;
LowerLeftY = ImageHeight;

GTIFImageToPCS(GTif, &LowerLeftX, &LowerLeftY);

UpperRightX = ImageWidth;
UpperRightY = 0.0;
GTIFImageToPCS(GTif, &UpperRightX, &UpperRightY);

We read the image height and width, and then use the GTIFImageToPCS function
to convert the four corners of the image from image space to projected coordinate
space.

4.	 Next, parse the karthaus_pa.dem file, and create an Ogre::ManualObject
from the terrain information within it. In this recipe, we use the OT_TRIANGLE_FAN
rendering operation type for our mesh. This means that we first input three vertices
for the first triangle, and then one vertex per triangle after that.

Ogre::ManualObject *Terrain = SceneManager->
 createManualObject("Terrain");

Playing with Materials

136

Terrain->setDynamic(false);
Terrain->begin("Terrain", Ogre::RenderOperation::OT_TRIANGLE_FAN);

for (c = 1; c <= columnCount; c++) {

 for (r = firstRow; r <= lastRow; r += rowInt) {
 tempFloat = (float) base[r] * verticalScale;
 Terrain->position(planCoords[0], tempFloat, planCoords[1]);

 Ogre::Real u = 0.0;
 Ogre::Real v = 0.0;

 if (planCoords[0] > LowerLeftX && planCoords[0] < UpperRightX)
 {
 u = (planCoords[0] - LowerLeftX) / (UpperRightX -
 LowerLeftX);
 }

 if (planCoords[1] > LowerLeftY && planCoords[1] < UpperRightY)
 {
 v = (planCoords[1] - LowerLeftY) / (UpperRightY -
 LowerLeftY);
 }

 Terrain->textureCoord(u, v);
 planCoords[1] += deltaY;
 }
}

We use the projection coordinates from the geotiff image to calculate texture
coordinates for each vertex.

The result is a 3D Ogre mesh of the specific place with the tiff map as a texture.

Chapter 5

137

How it works...
In this recipe, we use two topographic information formats: GeoTiff for the terrain texture and
USGS DEM for the terrain elevation.

The GeoTiff format provides the information necessary to convert a 2D image to a model
space or map projection.

The USGS DEM format stores raster-based digital elevation models, and is a very popular
open standard, used throughout the world.

There's more...
Instead of using a map TIFF, you can use one that has a satellite photo of the area for a more
realistic terrain texture.

Creating transparent materials
In this recipe, we'll use a texture with an alpha channel to make a model of a window with
colored glass in it. We use the same technique that is used to render the most flat and
transparent objects, such as trees and plant billboards, in addition to applying a color to the
transparent parts of the image.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter05 folder
in the code bundle available on the Packt website.

Playing with Materials

138

Ensure that you have the window.dds texture in your media/materials/textures folder.
This texture has the necessary transparency information, so that the glass parts of the image
are transparent, and the wood parts are opaque.

How to do it...
1.	 First, create a new Ogre MFC application named TransparentMaterial by

following the Creating an MFC Ogre application recipe, in Chapter 1, Delving Deep
into Application Design.

2.	 Create a material script text file named window.material in the media/
materials/scripts folder, and add the following text in the file:
material window
{
 technique
 {

 // Make the glass in the first pass.

 pass
 {

 // Turn lighting off

 lighting off

Chapter 5

139

 // Turn off culling so that the window will be two-sided

 cull_hardware none
 cull_software none

 // Use alpha blending to tint the object

 scene_blend alpha_blend

 // Do not write to the depth buffer so the window does not
 //obscure objects.

 depth_write off

 texture_unit
 {

 // Apply color.

 colour_op_ex source1 src_manual src_current 0.5 0.5 0

 // Apply opacity 0.2.

 alpha_op_ex source1 src_manual src_current 0.2
 }
 }
 // Make the window frame. Use image window.dds with
 //transparency.
 pass
 {
 lighting off
 cull_hardware none
 cull_software none
 scene_blend alpha_blend
 depth_write off

 texture_unit
 {
 alpha_rejection greater_equal 128
 texture window.dds
 tex_coord_set 0
 }
 }
 }
}

We do not use the colour_op parameter to tell Ogre how to mix the second pass
with the first one, because modulate is the default colour_op. We use the alpha_
rejection parameter for the window frame, so the frame does not draw over the
glass.

Playing with Materials

140

3.	 Next, add code to CTransparentMaterialView::EngineSetup(), to create a
plane mesh with the window material, and add a robot mesh behind the window, so
we have something to look at.

Ogre::ManualObject *Screen = SceneManager->
 createManualObject("Screen");
Screen->setDynamic(true);
Screen->begin("window", Ogre::RenderOperation::OT_TRIANGLE_LIST);

Screen->position(-100,-100,50);
Screen->textureCoord(0,0);

Screen->position(300,-100,50);
Screen->textureCoord(1,0);

Screen->position(300,300,50);
Screen->textureCoord(1,1);

Screen->triangle(0, 1, 2);

Screen->position(-100,-100,50);
Screen->textureCoord(0,0);

Screen->position(300,300,50);
Screen->textureCoord(1,1);

Screen->position(-100,300,50);
Screen->textureCoord(0,1);

Screen->triangle(3, 4, 5);

Screen->end();

Ogre::Entity *RobotEntity = SceneManager->createEntity("Robot",
 "robot.mesh");
Ogre::SceneNode *RobotNode = SceneManager->getRootSceneNode()->
 createChildSceneNode();
RobotNode->attachObject(RobotEntity);

Ogre::SceneNode *WindowNode = SceneManager->getRootSceneNode()->
 createChildSceneNode();
WindowNode->attachObject(Screen);

Chapter 5

141

How it works...
The material we use for the window mesh, draws the glass in the first pass and the opaque
window parts in the second pass. We use the colour_op_ex parameter to make the glass
color yellow, and the alpha_op_ex parameter to define the glass opacity. We turn on
alpha_rejection for the frame, so it doesn't draw over the glass.

When we're finished, we can see the robot through the glass window.

Creating dynamic textures
Many situations call for dynamic textures in graphics programs. Most running water, moving
walkways, or animating screens in 3D applications use dynamic textures to make parts of the
texture move, giving the illusion that the water is moving or a TV is playing. In this recipe, we
will learn how to use a dynamic texture to display a video clip.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter05 folder
in the code bundle available on the Packt website.

Also, we will be using a video clip in .avi format. So, download one from the code bundle, or
use one of your own.

Playing with Materials

142

How to do it...
1.	 First, create a new Ogre MFC application named DynamicTexture, by following the

Creating an MFC Ogre Application recipe, in Chapter 1, Delving Deep into Application
Design.

2.	 Create a material script text file named screen.material in the media/
materials/scripts folder, and put the following text in the file.
material Screen
{
 technique
 {

 pass
 {
 texture_unit
 {
 texture Screen.jpg
 }

 texture_unit
 {
 texture Screen
 }
 }
 }
}

The first texture_unit is going to be a blank white image, and the second
texture_unit, will be the one we use to draw the dynamic texture.

3.	 Next, add a new menu item named TV Control to the main menu, and two
sub-items – Start and Stop. Add event handlers for these sub-items:
void CDynamicTextureView::OnTvcontrolStart()
{
 SetTimer(1, 1, 0);
}

void CDynamicTextureView::OnTvcontrolStop()
{
 KillTimer(1);
}

The first event handler will start the timer, and the second one will stop it.

Chapter 5

143

4.	 Add a public member variable named PixelBuffer that is an Ogre::HardwareP
ixelBufferSharedPtr. We will use this pixel buffer to hold the pixel data for the
dynamic texture.

5.	 In CDynamicTextureView::EngineSetup(), create the dynamic texture, and get
a pointer to the pixel buffer.
Ogre::TexturePtr ScreenTexture =
 Ogre::TextureManager::getSingleton().createManual("Screen",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 Ogre::TEX_TYPE_2D, 640, 480, 0, Ogre::PF_R8G8B8A8,
 Ogre::TU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

PixelBuffer = ScreenTexture->getBuffer();

6.	 Next, in CDynamicTextureView::EngineSetup(), create a plane on which we
will display our dynamic texture.
Ogre::ManualObject *Screen = SceneManager->
 createManualObject("Screen");
Screen->setDynamic(true);
Screen->begin("Screen", Ogre::RenderOperation::OT_TRIANGLE_LIST);

7.	 Now that the texture has been created, and we have a 3D surface to draw it on, we
must initialize the Microsoft AVIFile library, and get our AVI file stream set up.
AVIFileInit();

AVIFileOpen(&aviFile, <Path to your video clip>,OF_READ,NULL);

AVIFileGetStream(aviFile,&aviStream,streamtypeVIDEO,0);

AVIFileRelease(aviFile);

AVIStreamInfo(aviStream,&aviStreamInfo,sizeof(aviStreamInfo));
BITMAPINFOHEADER bmpInfo;

memset(&bmpInfo, 0, sizeof(BITMAPINFOHEADER));
bmpInfo.biSize = sizeof(BITMAPINFOHEADER) ;
bmpInfo.biBitCount = 32;
bmpInfo.biCompression = BI_RGB;
bmpInfo.biHeight = 480;
bmpInfo.biWidth = 640;
bmpInfo.biPlanes = 1;
bmpInfo.biSizeImage = 0;

Frame = AVIStreamGetFrameOpen(aviStream, &bmpInfo);

Playing with Materials

144

8.	 The last step is to create the CDynamicTextureView::OnTimer procedure.

Add code to the OnTimer procedure to read the next frame of the video clip, and
copy it into the buffer for the dynamic texture.
LPBITMAPINFOHEADER lpbi =
 (LPBITMAPINFOHEADER)AVIStreamGetFrame(Frame, ++m_FrameNumber);
LPVOID GetFrame = AVIStreamGetFrame(Frame, ++m_FrameNumber);

PixelBuffer->lock(Ogre::HardwareBuffer::HBL_DISCARD);
memcpy(PixelBuffer->getCurrentLock().data, lpbi +
 sizeof(LPBITMAPINFOHEADER) + 25, lpbi->biSizeImage);
PixelBuffer->unlock();

After copying the video clip frame to the buffer, we render the scene again to draw
the updated texture.

How it works...
We use the Microsoft AVIFile library to open an AVI file, and get a file stream object. Our
timer calls the OnTimer() procedure, which uses the AVIStreamGetFrame function to get
the pixel data for the current video clip frame, and then copies that data into the pixel buffer
for the dynamic texture. The result is a movie playing on a 3D surface.

Chapter 5

145

See also
This recipe can help you produce 3D video, by combining the effects in the 2D Image
Manipulation recipe.

Creating movable text
In this recipe, we will show you how to create billboard-style 3D text in your Ogre3D
application. This text is often used to display player names, and stats over their in-game model
or to label buildings in a simulation. Because the text is attached to a SceneNode, it will
become smaller as the camera moves away from it.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter05 folder
in the code bundle available on the Packt website.

Download files for the MovableText class from the Ogre3d site at http://www.ogre3d.
org/tikiwiki/MovableText.

Prepare definitions for the fonts that you'd like to use in the file sample.fontdef, in the
media/fonts folder.

How to do it...
1.	 First, create a new Ogre MFC application named MovableText, by following the

Creating an MFC Ogre application recipe, in Chapter 1, Delving Deep into Application
Design.

2.	 In CMovableTextView::EngineSetup(), add two robot meshes to the scene.
Ogre::Entity *RobotEntity1 = SceneManager->createEntity("Robot1",
 "robot.mesh");
Ogre::SceneNode *RobotNode1 = SceneManager->getRootSceneNode()->
 createChildSceneNode();
RobotNode1->attachObject(RobotEntity1);

Ogre::Entity *RobotEntity2 = SceneManager->createEntity("Robot2",
 "robot.mesh");
Ogre::SceneNode *RobotNode2 = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(100, 100, 100));
RobotNode2->attachObject(RobotEntity2);

Playing with Materials

146

3.	 Create labels for each robot using MovableText.
Ogre::SceneNode *LabelNode1 = SceneManager->getRootSceneNode()->
 createChildSceneNode("Robot 1");
Ogre::MovableText *Label1 = new Ogre::MovableText("Label 1",
 "Robot 1", "BlueHighway", 1.0, Ogre::ColourValue::Black);

Label1->setTextAlignment(Ogre::MovableText::H_CENTER,
 Ogre::MovableText::V_ABOVE);

Label1->setColor(Ogre::ColourValue::Blue);
Label1->setAdditionalHeight(2.0);
Label1->setCastShadows(false);
LabelNode1->attachObject(Label1);
LabelNode1->setPosition(Center1);

The parameters for Ogre::MovableText are entity name, caption, font name,
character height, and color.

We create our labels at the base of each robot, but for your application, it may make
more sense for the labels to be above each model.

4.	 Next, create a line from one robot label using an Ogre::ManualObject , with the
render operation set to OT_LINE_LIST.
Ogre::ManualObject *Measure = SceneManager->
 createManualObject("Measure");
Measure->begin("BumpyMetal", Ogre::RenderOperation::OT_LINE_LIST);
Measure->position(Center1);
Measure->position(Center2);
Measure->end();

Ogre::SceneNode *MeasureNode = SceneManager->getRootSceneNode()->
 createChildSceneNode("Measure");
MeasureNode->attachObject(Measure);

5.	 Finally, add a label at the mid-point of the line between the robots.

Ogre::Real Distance = Center2.distance(Center1);
char Dimension[20];
sprintf(Dimension ,"%.2f", Distance);
Ogre::SceneNode *MeasureTextNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("MeasureText");

Ogre::MovableText *MeasureText = new Ogre::MovableText("Measure",
 Dimension, "BlueHighway", 1.0, Ogre::ColourValue::Black);
MeasureText->setTextAlignment(Ogre::MovableText::H_CENTER,
 Ogre::MovableText::V_ABOVE);
MeasureText->setColor(Ogre::ColourValue::Blue);
MeasureTextNode->attachObject(&MeasureText);

MeasureTextNode->setPosition(0.5 * (Center1 + Center2));

Chapter 5

147

How it works...
We use the Ogre::MovableText class to create labels for each robot, and to label the
mid-point of the line between the robots. We also set the font, color, and size of the labels
as needed.

2D image manipulation
In this recipe, we will show you how to edit an image on the fly. We will create an anaglyph
image from a pair of stereo images. Anaglyph images are used to provide a stereoscopic 3D
effect, when viewed with red and blue.

http://en.wikipedia.org/wiki/Stereoscopy

Playing with Materials

148

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter05 folder
in the code bundle available on the Packt website.

Grab a pair of trendy 3D eyeglasses with red and blue plastic lenses.

You will also need two stereo images so take a photo for the left-eye picture, and then slide
the camera about 7 to 8 cm to the right, for the right-eye picture.

The following is the image for the left eye:

Chapter 5

149

The next image is for the right eye.

Name the files Left.jpg and Right.jpg, put the pictures in the media/stereo folder,
and add the line FileSystem=../../media/stereo to resources.cfg.

How to do it...
1.	 First, create a new Ogre MFC application named ImageEditor, by following the

Creating an MFC Ogre application recipe, in Chapter 1, Delving Deep into Application
Design.

2.	 Create a material file named stereo.material in media/materials/scripts,
and add the following text to it:
material stereo
{
 technique
 {
 pass
 {
 texture_unit
 {
 texture Screen.jpg
 }
 texture_unit
 {
 texture stereo
 }
 }
 }
}

Playing with Materials

150

The first texture unit is just a blank white image, and the second texture unit is the
one we will edit.

3.	 Create a plane entity and a dynamic texture named stereo to display on it.
Ogre::TexturePtr StereoTexture =
 Ogre::TextureManager::getSingleton().createManual("stereo",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 Ogre::TEX_TYPE_2D, 825, 612, 0, Ogre::PF_R8G8B8,
 Ogre::TU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

Ogre::HardwarePixelBufferSharedPtr PixelBuffer = StereoTexture->
 getBuffer();

We use the Ogre::TU_DYNAMIC_WRITE_ONLY_DISCARDABLE setting, because we
intend to update this image dynamically.

4.	 Load the left eye and right eye images, so that we can combine them to produce the
3D anaglyph.
LoadImage.load("Left.jpg",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
LeftImage = LoadImage.flipAroundX();
Ogre::PixelBox LeftBox = LeftImage.getPixelBox();

LoadImage.load("Right.jpg",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
RightImage = LoadImage.flipAroundX();
Ogre::PixelBox RightBox = RightImage.getPixelBox();

5.	 Convert the left and right images to greyscale.
for (PixelIndex = 0; PixelIndex < LeftBox.getConsecutiveSize()/3;
 PixelIndex++) {
 Red = LeftData[PixelIndex * 3 + 0];
 Green = LeftData[PixelIndex * 3 + 1];
 Blue = LeftData[PixelIndex * 3 + 2];

 Grey = Red * 0.212671 + Green * 0.715160 + Blue * 0.072169;

 LeftData[PixelIndex * 3 + 0] = Grey;
 LeftData[PixelIndex * 3 + 1] = Grey;
 LeftData[PixelIndex * 3 + 2] = Grey;
}

6.	 Fill the pixel buffer of the dynamic stereo texture using the red channel from left
image, and the blue channel from the right image. The Ogre::PixelUtil::bul
kPixelConversion() function converts pixels from one format to another. In our
case, the source and destination format match, so only a simple copy is done.

Chapter 5

151

PixelBuffer->lock(Ogre::HardwareBuffer::HBL_DISCARD);
Ogre::PixelBox Destination = PixelBuffer->getCurrentLock();

BYTE *DestData;

DestData = (BYTE *)Destination.data;

for (PixelIndex = 0; PixelIndex < LeftBox.getConsecutiveSize()/3;
 PixelIndex++) {
 LeftData[PixelIndex * 3 + 1] = 0;
 LeftData[PixelIndex * 3 + 2] = RightData[PixelIndex * 3 + 2];
}

Ogre::PixelUtil::bulkPixelConversion(LeftBox, Destination);

//Releases the lock on the destination buffer.

PixelBuffer->unlock();

We lock the buffer for writing with the HBL_DISCARD option, which provides minor
speed optimizations, because we don't need to preserve any of the content in the old
buffer.

How it works...
When we look at an anaglyph with appropriately colored glasses, each eye sees a slightly
different picture, and the result is that the image looks 3D. Our brains blend the images each
eye receives, and interprets the differences as being the result of different distances. Of
course, the downside is that the image loses the original coloring.

Playing with Materials

152

There's more...
It is best to avoid scenes with red or cyan objects. You may also try generating two views in
Ogre with two cameras. You can even produce 3D video in this way, saving each frame to a
video file using the Microsoft AVI library functions

See also
In this chapter:

ff Creating dynamic textures: This recipe provides examples that explain how to work
with the Microsoft AVI library functions

6
Learning to Move

In this chapter, we will cover the following recipes:

ff Walking between points

ff Walking along a path

ff Collision detection

ff Converting a 2D path into a 3D path

ff Walking on terrain

ff Linked movement

Introduction
Most graphics applications will have some kind of moving, animated objects, and Ogre3D has
all the essential tools that you will need to translate, rotate, and animate 3D meshes. In this
chapter, we will cover the basics of object movement and animation, by moving the familiar
robot mesh along various paths. We will also show you how to find the collision point of a
ray and a 3D mesh, and use that knowledge to create a path for our robot, to follow on top
of terrain.

Walking between points
Moving a 3D mesh from point A to point B is very simple with Ogre3D. In this recipe, we'll
cover the basics of moving a 3D mesh from one point to another, while animating the mesh
along the way.

Learning to Move

154

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter06 folder in the
code bundle available on the Packt website.

How to do it...
First, create a new Ogre MFC application named Walking, by following the Creating an MFC
Ogre Application recipe from Chapter 1, Delving Deep into Application Design.

1.	 Create a sphere behind the robot as a background and a reference, so we can easily
visualize the robot's movement.
Ogre::SceneNode *SphereNode =
 SceneManager->getRootSceneNode()->createChildSceneNode("Sphere",
Ogre::Vector3(0,0,0));
Ogre::Entity *SphereEntity =
 SceneManager->createEntity("Sphere", "sphere.mesh");
SphereEntity->setMaterialName("Wall/Screen");
SphereNode->attachObject(SphereEntity);
SphereEntity->getParentNode()->scale(0.5,0.5,0.5);

2.	 Next, create a robot entity using the robot.mesh file for the model.
Ogre::SceneNode *RobotNode =
 SceneManager->getRootSceneNode()->createChildSceneNode(
 "Robot", Ogre::Vector3(50,0,0));
Ogre::Entity *RobotEntity =
 SceneManager->createEntity("Robot", "robot.mesh");

RobotNode->attachObject(RobotEntity);
RobotEntity->getParentNode()->scale(0.2,0.2,0.2);

Ogre::AxisAlignedBox Box = RobotEntity->getBoundingBox();
Ogre::Vector3 Center = Box.getCenter();
m_Camera->lookAt(Ogre::Vector3(0.0, 0.0, 0.0));

3.	 Enable the Walk animation state so our robot mesh will look as though it is walking
when it animates. The robot mesh file also has an Idle animation, but we will not be
using that for this recipe.
m_Animation = RobotEntity->getAnimationState("Walk");
m_Animation->setEnabled(true);

3.	 Next, add a new menu item named Walking, and two sub-items named Start and
Stop. Add an event handler for the Start sub-item that creates a new timer, which
we will use to make the robot move, and an event handler for the Stop sub-item that
destroys this timer, thus stopping the robot from moving.

Chapter 6

155

4.	 Now that we have a timer set up, we need a callback method for the timer to trigger
periodically. Add a member function named OnTimer to the CWalkingView class,
and add code within that function to increment the robot animation time.
m_Animation->addTime(0.01);

5.	 Finally, make the robot move, by calling the SetPosition() function with new
x and y coordinates that we calculate for each frame. The coordinates we use for
this recipe are points on a circle, based on an angle variable that we increment
every frame.

const Ogre::Real Radius = 50.0;

Ogre::Real x = Radius * Ogre::Math::Cos(m_Angle);
Ogre::Real y = Radius * Ogre::Math::Sin(m_Angle);
m_Angle += 0.01;

RobotNode->setPosition(x, 0.0, y);

The resulting application will show a robot moving in a circle in front of a big yellow sphere.

How it works...
We set up a function named OnTimer that gets called at regular intervals. Each time the
timer function is run, we increment the animation time, update the robot position, and
re-render the 3D scene.

Learning to Move

156

There's more...
You can create other user interface elements to move objects in the scene, and specify other
parameters, such as the speed or the animation state to play.

See also
In this chapter:

The following recipes in this chapter cover the basics of moving the robot along a path:

ff Walking along a path

ff Walking on terrain

Walking along a path
In this recipe, we will show you how to move a robot mesh on a curved path, and draw the
path in the scene. The method we use in this recipe for drawing the path is a useful technique
when you want to visualize the projected movement in a 3D scene. It is often used in 3D
editors for showing the movement paths of cameras and other objects in a scene.

Getting ready
To follow along with this recipe, open the solution located in the Recipes/Chapter06 folder
in the code bundle available on the Packt website.

How to do it...
First, create a new Ogre MFC application named PathWalking, by following the Creating an
MFC Ogre Application recipe from Chapter 1, Delving Deep into Application Design.

1.	 The first step is to prepare an array of vectors that we will use to hold all the
coordinates for the points in our path. Add a member variable named m_Path to the
CPathWalkingView class.
CArray<Ogre::Vector3, Ogre::Vector3> m_Path;

2.	 Next, create a member function named CPathWalkingView::CreatePath()
in which we will add all our points to the m_Path member variable. The path
coordinates will be calculated based on the function for a helix.

Chapter 6

157

A helix is a curve with the following parametric equations:
x = r * cos(t)

y = r * sin(t)

z = c * t;

for t Є [0, 2π), where r is radius of the helix.

3.	 Inside the CreatePath() function, create a ManualObject, so that we can
visualize the path. Next, create a loop that increments an angle variable, and
calculates the points of the helix curve using that angle. The points we calculate
are then added to the path, and also added as positions to the ManualObject.
Ogre::ManualObject *Path =
 SceneManager->createManualObject("Path");
Path->begin("BumpyMetal", Ogre::RenderOperation::OT_LINE_LIST);

const Ogre::Real Radius = 100.0;
const Ogre::Real Step = 10.0;

for (double Angle = 0.0; Angle < 2 * 3.14159265359; Angle += 0.01)
{
 Ogre::Vector3 Point;

 Point[0] = Radius * cos(Angle);
 Point[2] = Radius * sin(Angle);
 Point[1] = Step * Angle;

 m_Path.Add(Point);
 Path->position(Point);
}

Path->end();

Ogre::SceneNode *PathNode =
 SceneManager->getRootSceneNode()->createChildSceneNode("Path");
PathNode->attachObject(Path);

Learning to Move

158

We set the render operation to OT_LINE_LIST, because we want the path to
be rendered as a polyline. We also add the path to the scene graph, so that it will
appear in the scene.

4.	 Now, add a new menu item named Walking, and two sub-items named Start and
Stop. We will use these new menu items to start and stop the robot's movement.
Add an event handler for the Start sub-item that creates a new timer, and an event
handler for the Stop sub-item that destroys this timer.
void CPathWalkingView::OnWalkStart()
{
 SetTimer(1, 1, 0);
}

void CPathWalkingView::OnWalkStop()
{
 KillTimer(1);
}

5.	 Next, create a callback method for the timer to trigger periodically. Add a member
function named OnTimer to the CPathWalkingView class, and add code within
that function to update the robot's position along the path and re-render the scene.
RobotNode->setPosition(m_Path[m_PathIndex]);
m_PathIndex++

Root->renderOneFrame();

Chapter 6

159

How it works...
Just as in the first recipe, here we set up a function named OnTimer that gets called at
regular intervals. Each time the OnTimer function is called, we update the robot position
to a new point on the path, and re-render the 3D scene.

There's more...
This simple path-following example can be improved by using a more useful path collection,
such as a network of roads or an adjustable Bezier curve. You can also add controls to vary
the movement speed of objects along the path using timers with different intervals, or smooth
the movement by interpolating between points along the path.

See also
In this chapter:

ff Converting a 2D path into a 3D path: This recipe shows how you can take a path like
the one in this recipe, and conform it to the terrain using collision detection

Collision detection
The Ogre 3D graphics library provides collision detection tools that can find the intersection
points between a ray cast into a scene and the meshes in that scene. In this recipe, we will
show you how to use Ogre's collision tools.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter06 folder in the code
bundle available on the Packt website.

We will be using the Minimal Ogre Collision Tools class, which is included in the example
CollisionDetection project.

Learning to Move

160

How to do it...
First, create a new Ogre MFC application named CollisionDetection, by following
the Creating an MFC Ogre application recipe from Chapter 1, Delving Deep into
Application Design.

1.	 Next, create a simple scene in CCollisionDetectionView::EngineSetup()
that consists of three spheres, and a camera aimed at the spheres.
Ogre::Entity *SunEntity =
 SceneManager->createEntity("Sun", "sphere.mesh");
Ogre::Entity *EarthEntity =
 SceneManager->createEntity("Earth", "sphere.mesh");
Ogre::Entity *MoonEntity =
 SceneManager->createEntity("Moon", "sphere.mesh");

SunNode->attachObject(SunEntity);
SunEntity->getParentNode()->scale(0.1,0.1,0.1);

EarthNode->attachObject(EarthEntity);
EarthEntity->getParentNode()->scale(0.1,0.1,0.1);

MoonNode->attachObject(MoonEntity);
MoonEntity->getParentNode()->scale(0.1,0.1,0.1);

2.	 Include the Minimal Ogre Collision Tools class named CollisionTools in the
project, and use it to find the collision point of a ray cast from the camera. Add a
member variable named m_CollisionTools to CCollisionDetectionView,
and initialize it in the SetupEngine() member function.
m_CollisionTools = new MOC::CollisionTools(SceneManager);

3.	 Next, use the CollisionTools::collidesWithEntity() function to check if a
ray collides with one of the spheres in the scene. The ray that we will use is a vector
that starts at the camera's position, and points in the direction the camera is facing.

Ogre::uint32 QueryMask = 0xFFFFFFFF;

if (m_CollisionTools->collidesWithEntity(m_Camera->getPosition(),
 Ogre::Vector3(50,0,0), 200.0f, 0.0f, QueryMask))

{
}

The parameters of the collidesWithEntity() method are the origin of the ray, the target
of the ray, radius of collision, ray height, and a query mask, which we set to 0xFFFFFFFF to
enable collisions with any entities.

Chapter 6

161

To demonstrate that the collision detection works, add code to CollisionTools::
collidesWithEntity(), which changes the material of the object the ray collides
with, so that the collided object appears red in the scene.
if (raycastFromPoint(fromPointAdj, normal, myResult, myObject,
 distToColl, queryMask))
 {
 distToColl -= collisionRadius;
 ((Ogre::Entity *)myObject)->setMaterialName("Wall/Red");
 return (distToColl <= distToDest);
}

How it works...
The CollisionTools class that we use in this recipe provides easy-to-use collision
detection methods, but if you look at the code for this class, you will see that it is Ogre's
RaySceneQuery class that does all the heavy lifting. RaySceneQuery can be used to get
all entities that collide with a ray. Once you have the closest entity, you can iterate over the
triangles in the mesh, and test for the closest ray-triangle collision.

A typical RaySceneQuery setup looks as follows:

mRaySceneQuery->setRay(ray);
	 mRaySceneQuery->setSortByDistance(true);
	 mRaySceneQuery->setQueryMask(queryMask);

// execute the query, returns a vector of hits
if (mRaySceneQuery->execute().size() <= 0)
{
 // raycast did not hit an objects bounding box
 return (false);
}

Learning to Move

162

In this example, we sort by distance, because we want to find the closest entity that is hit.
We could also use the query mask to filter out unneeded entities, but our example does
not do that.

If the query returns a non-empty vector of results, we can iterate over the results, and find the
closest entity, and then find the closest triangle that belongs to that entity's mesh that is hit by
the ray.

Ogre::RaySceneQueryResult &query_result =
 mRaySceneQuery->getLastResults();
for (size_t qr_idx = 0; qr_idx < query_result.size(); qr_idx++)
{
 // stop checking if we have found a raycast hit that is closer
 // than all remaining entities
 if ((closest_distance >= 0.0f) &&
 (closest_distance < query_result[qr_idx].distance))
 {
 break;
 }

 // only check this result if its a hit against an entity
 if ((query_result[qr_idx].movable != NULL) &&
 (query_result[qr_idx].movable->getMovableType().
 compare("Entity") == 0))
 {
 // get the entity to check
 Ogre::MovableObject *pentity =
 static_cast<Ogre::MovableObject*>(
 query_result[qr_idx].movable);

 // mesh data to retrieve
 size_t vertex_count;
 size_t index_count;
 Ogre::Vector3 *vertices;
 Ogre::uint32 *indices;

 // get the mesh information
	 GetMeshInformation(((Ogre::Entity*)pentity)->getMesh(),
 vertex_count, vertices, index_count, indices,
 pentity->getParentNode()->_getDerivedPosition(),
 pentity->getParentNode()->_getDerivedOrientation(),
 pentity->getParentNode()->_getDerivedScale());

 // test for hitting individual triangles on the mesh
 //bool new_closest_found = false;

Chapter 6

163

 for (size_t i = 0; i < index_count; i += 3)
 {
 // check for a hit against this triangle
 std::pair<bool, Ogre::Real> hit =
 Ogre::Math::intersects(ray, vertices[indices[i]],
 vertices[indices[i+1]], vertices[indices[i+2]], true,
 true);

 // if it was a hit check if its the closest
 if (hit.first)
 {
 if ((closest_distance < 0.0f) ||
 (hit.second < closest_distance))
 {
 // this is the closest so far, save it off
 closest_distance = hit.second;
 new_closest_found = true;
 }
 }
 }

	 // free the verticies and indicies memory
 delete[] vertices;
 delete[] indices;

 // if we found a new closest raycast for this object, update
 //the closest_result before moving on to the next object.
 if (new_closest_found)
 {
 target = pentity;
 closest_result = ray.getPoint(closest_distance);
 }
 }
}

See also
In this chapter:

ff Converting a 2D path into a 3D path: This recipe shows how to put collision detection
to use, by dropping a 2D path down onto 3D terrain

Learning to Move

164

Converting a 2D path into a 3D path
In this recipe, we will show you how to take a 2D path and drop it down onto a 3D terrain
mesh, so that we can make our robot walk on top of the terrain. To calculate the height
value for each point in the path, we will use the collision detection from the Collision
Detection recipe.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter06 folder in the code
bundle available on the Packt website.

We will also be using a terrain mesh file for this recipe. To create a terrain mesh file, you
can add the following code to the EngineSetup() function in the LandXML project from
Chapter 3, Managing Objects and Scenes, to export a mesh file.

Ogre::MeshPtr TopographyMesh =
 Topography->convertToMesh("Topography");
Ogre::MeshSerializer MeshSerializer;
MeshSerializer.exportMesh(TopographyMesh.getPointer(),
 "Topography.mesh");

Place the exported Topography.mesh file in the media/models folder, so that we can use
it for this and other recipes.

How to do it...
Create a new Ogre MFC application named PathDropping, by following the Creating an
MFC Ogre application recipe from Chapter 1, Delving Deep into Application Design.

1.	 We will be using the same collision detection tools class that we used in the Collision
Detection recipe. In CPathDroppingView::EngineSetup(), create an instance
of the CollisionTools class.
m_CollisionTools = new MOC::CollisionTools(SceneManager);

2.	 Next, create a menu named Walking, and a menu item named Drop. Add an event
handler to the menu item called OnWalkingDrop().
void CPathDroppingView::OnWalkingDrop()
{
 CEngine *Engine = ((CPathDroppingApp*)AfxGetApp())->m_Engine;	
	
 Ogre::Root *Root = Engine->GetRoot();
 DropPath();
 Root->renderOneFrame();
}

Chapter 6

165

In this function, we call DropPath(), and then render the scene.

3.	 Create a function named DropPath(), and add code to it to drop points along a line
starting at one corner of the terrain mesh, and ending at the opposite corner. So that
we can actually see the path, create a ManualObject whose vertices are the points
along the path.
Ogre::ManualObject *Path =
 SceneManager->createManualObject("Path");
Path->begin("BumpyMetal", Ogre::RenderOperation::OT_LINE_LIST);

We set the RenderOperation to OT_LINE_LIST, so that the ManualObject
mesh is rendered as a polyline.

4.	 Now, divide the line into segments, and iterate over these segments, calculating the
height of each segment end point. We add the resulting 3D point to our m_Path
vector, and also to the ManualObject path mesh.
Ogre::AxisAlignedBox TopographyBox =
 TopographyEntity->getBoundingBox();

Ogre::Vector3 Start = TopographyBox.getMinimum();
Ogre::Vector3 Finish = TopographyBox.getMaximum();

for (double Distance = 0; Distance < 1.0; Distance += 0.001)
{
 Ogre::Vector3 Position = Start + ((Finish - Start) * Distance);
 float x = Position[0];
 float y = Position[1];
 float z = Position[2];

5.	 We calculate intersection between the vertical ray that is cast down from each
segment end point and the terrain, using the CollisionTools::collidesWithE
ntity() function.
 m_CollisionTools->collidesWithEntity(Position,
 Ogre::Vector3(x,y-1,z), Ogre::Vector3(x,y+1,z), 100.0f, 0.0f,
 4294967295);
 m_Path.Add(Position);

 Path->position(Position);
}

Path->end();

Learning to Move

166

Ogre::SceneNode *PathNode =
 SceneManager->getRootSceneNode()->createChildSceneNode("Path");
PathNode->attachObject(Path);

You can see the resulting white path on the brown terrain in the following image:

Chapter 6

167

6.	 To make the path easier to see, create a menu named Terrain, and menu items
named Visible and Invisible. Add event handlers to each menu item to show
and hide the terrain. The code for the Invisible handler is as follows:
Ogre::Entity *TopographyEntity =
 SceneManager->getEntity("Topography");
TopographyEntity->setVisible(false);
Root->renderOneFrame();

The result of hiding the terrain, so that only the path mesh is visible, is shown in the
following image:

7.	 The last step is to make a robot mesh walk along the path we just created. To do this,
create a robot entity, and use a timer to move the robot along the path, just as we did
in the Walking between points recipe.

Learning to Move

168

How it works...
The Ogre 3D library has mesh collision detection tools that are sufficient for finding the height
of any point on the terrain mesh. The CollisionTools class simply builds on the existing
Ogre 3D RaySceneQuery class, and provides easy-to-use functions. After we find the height
of each point along the path, we create a mesh from those 3D points, so that we can visualize
it. Finally, we move a robot along the path, using the same method described in the Walking
between points recipe.

See also
In this chapter:

ff Collision Detection: This recipe provides a more in-depth explanation of the
CollisionTools class

Chapter 6

169

Walking on terrain
In this recipe, we will show you how to make a robot walk on terrain, using collision detection
to keep our robot's feet planted on the ground.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter05 folder in the code
bundle available on the Packt website.

We will also be using the same Topography.mesh file that we created for the Converting a
2D path into a 3D path recipe.

How to do it...
First, create a new Ogre MFC application named TerrainWalking, by following the Creating
an MFC Ogre application recipe from Chapter 1, Delving Deep into Application Design.

1.	 In CTerrainWalkingView::EngineSetup(), load the Topography.mesh file
and the robot mesh, and create entities for each.
Ogre::SceneNode *TopographyNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("Topography");
Ogre::Entity *TopographyEntity = SceneManager->
 createEntity("Topography", "Topography.mesh");
TopographyNode->attachObject(TopographyEntity);

Ogre::SceneNode *RobotNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("Robot");
Ogre::Entity *RobotEntity = SceneManager->
 createEntity("Robot", "robot.mesh");
RobotNode->attachObject(RobotEntity);
Ogre::AxisAlignedBox RobotBox = RobotEntity->getBoundingBox();

2.	 Next, add a member variable of type CollisionTools named m_
CollisionTools to the CTerrainWalkingView class, and create an instance of
it in EngineSetup().
m_CollisionTools = new MOC::CollisionTools(SceneManager);

Learning to Move

170

3.	 Add a timer event handler named OnTimer, and add code to it to move the robot.
For this recipe, we will move the robot from one corner of the terrain mesh to the
opposite corner.

void CTerrainWalkingView::OnTimer(UINT_PTR nIDEvent)
{
 Ogre::AxisAlignedBox TopographyBox =
 TopographyEntity->getBoundingBox();

 Ogre::Vector3 Start = TopographyBox.getMinimum();
 Ogre::Vector3 Finish = TopographyBox.getMaximum();

 double x = Start[0] + (Finish[0] - Start[0]) *
 m_RelativeDistance;
 double y = Start[1] + (Finish[1] - Start[1]) *
 m_RelativeDistance;
 double z = Start[2] + (Finish[2] - Start[2]) *
 m_RelativeDistance;

 m_Animation->addTime(0.01);
 m_RelativeDistance += 0.01;

 if (m_CollisionTools->collidesWithEntity(Elevation,
 Ogre::Vector3(x,y - 1,z), Ogre::Vector3(x,y + 1,z), 100.0f,
 0.0f, 4294967295))
 {
 x = Elevation[0];
 y = Elevation[1] + RobotBox.getSize()[1];
 z = Elevation[2];
 }

 RobotNode->setPosition(x, y, z);
 m_Camera->lookAt(x, y, z);
 Root->renderOneFrame();
}

We take the line from one corner of the terrain to the opposite corner, and divide it up into
small segments. Each time the timer function runs, we increment the robots movement
along the line, using the m_RelativeDistance member variable. When the robot is at the
beginning of the line, the relative distance is 0, when the robot reaches the end, the relative
distance is 1, and we stop the timer so the robot stops moving. At each step along the line, we
calculate the height of the terrain at the robots position, so that we can keep his feet planted
on the ground. We use the same collision detection methods as in the previous recipe to get
the terrain height.

Chapter 6

171

How it works...
In this recipe, we used a timer to periodically update the position of the robot. Each time
our timer function was called, we moved the robot further along the terrain, and used the
CollisionTools to get the height of the terrain at the robot's position. Once we knew the
terrain height, we moved the robot, so that his feet lined up with the terrain.

There's more...
You can use this technique to move or insert objects anywhere on a terrain mesh.

See also
In this chapter:

ff Collision Tools: See this recipe for more details on how the CollisionTools
collision detection works

Learning to Move

172

Linked movement
The beauty of a scene graph is that we can parent one node to another, so that it inherits the
transform matrix of the parent. In this recipe, we will show you how the scene graph works
in Ogre 3D, by creating a miniature solar system with the moon orbiting the Earth, and both
orbiting the sun. The way we make the Moon node a child of the Earth node, will make it easy
for us to rotate them both about the sun.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter06 folder in the code
bundle available on the Packt website.

How to do it...
First, create a new Ogre MFC application named LinkedMovement, by following the Creating
an MFC Ogre application recipe from Chapter 1, Delving Deep into Application Design.

1.	 In EngineSetup(), get the root scene node from the SceneManager, so that we
can add child nodes to it for our solar system bodies.
m_SystemNode = SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(0,0,0));

2.	 Create child nodes for the Sun, the Earth, and the Moon entities, so that each new
node is a child of the previous node. The Earth node will be a child of the Sun node,
and the Moon node will be a child of the Earth node.
Ogre::SceneNode *SunNode = m_SystemNode->
 createChildSceneNode("Sun", Ogre::Vector3(0,0,0));
Ogre::SceneNode *EarthNode = m_SystemNode->
 createChildSceneNode("Earth", Ogre::Vector3(50,0,0));
Ogre::SceneNode *MoonNode = EarthNode->
 createChildSceneNode("Moon", Ogre::Vector3(200,0,0));

3.	 Next, create sphere entities for the Sun, the Earth, and the Moon, and attach each
to its respective scene node:
Ogre::Entity *SunEntity = SceneManager->
 createEntity("Sun", "sphere.mesh");
Ogre::Entity *EarthEntity = SceneManager->
 createEntity("Earth", "sphere.mesh");
Ogre::Entity *MoonEntity = SceneManager->
 createEntity("Moon", "sphere.mesh");

Chapter 6

173

SunNode->attachObject(SunEntity);
SunEntity->getParentNode()->scale(0.1,0.1,0.1);

EarthNode->attachObject(EarthEntity);
EarthEntity->getParentNode()->scale(0.1,0.1,0.1);

MoonNode->attachObject(MoonEntity);
MoonEntity->getParentNode()->scale(0.5,0.5,0.5);

4.	 Create a member variable named m_RotationAngle of type Ogre::Radian. We
will increment this rotation angle, and use it to set the rotation of each of our solar
system bodies.

5.	 Finally, start a timer, and add an event handler named OnTimer. When the timer
function is called, update the rotation of scene nodes, so that the Moon orbits the
Earth, and both the Moon and the Earth orbit the Sun.

Ogre::Quaternion Quaternion;
Quaternion.FromAngleAxis(m_RotationAngle,
 Ogre::Vector3(0.0, 0.0, 1.0));

m_SystemNode->setOrientation(Quaternion);

Ogre::SceneNode *EarthNode =
 (Ogre::SceneNode *)m_SystemNode->getChild("Earth");
EarthNode->setOrientation(Quaternion);

Ogre::SceneNode *MoonNode =
 (Ogre::SceneNode *)EarthNode->getChild("Moon");
MoonNode->setOrientation(Quaternion);

m_RotationAngle += m_AngleIncrement;

Root->renderOneFrame();

Learning to Move

174

Ogre 3D uses quaternions to describe the orientation of 3D objects. Quaternions are more
robust than Euler angles, and have other mathematical properties that make them attractive
for use in graphics applications. To create the quaternion that represents the new orientation,
we use the Quaternion.FromAngleAxis() method, which takes an angle in radians, and
an axis about which to rotate. In our recipe, we are rotating about the z-axis. After creating the
quaternion, we apply it to each of the scene nodes, and the result is that each node rotates
about its parent node.

You will see the Sun rotate on its own axis, the rotation of the Earth around the Sun, and
rotation of the Moon around the Earth.

How it works...
The scene graph system in Ogre 3D makes it easy to link entities so that they can rotate and
move relative to one another. In this recipe, we use quaternions to rotate scene nodes, so that
you can easily visualize the effect in a familiar setting – our solar system! Quaternions provide
a good mechanism for representing orientations and rotations of objects in three dimensions.

There's more...
You can create scene node hierarchies to simulate the movement and rotation of more
complex systems, such as robotic arms or molecular dynamics.

http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Orientation
http://en.wikipedia.org/wiki/Rotation

7
Implementing

Animations

In this chapter, we will cover the following recipes:

ff Creating skeletal animations

ff Creating morph animations

ff Creating pose animations

ff Creating SceneNode animations

ff Creating numeric value animations

ff Creating linked animations

ff Animation using controllers

ff Creating linked controllers

ff Blending animations

ff Creating animated light

Introduction
In this chapter, we'll explore Ogre 3D's core animation features. Ogre 3D provides many of
the most popular animation tools, including skeletal, pose, morph, blending, and linked
animations. Using these techniques we will show you how to animate meshes, scene nodes,
and lights.

Implementing Animations

176

Creating skeletal animations
Skeletal animation is a popular technique for animating a mesh by moving a set of
hierarchical bones within the mesh, which in turn moves the vertices of the model according
to the bone assignments stored in each vertex. In this recipe, we will use skeletal animation to
move the vertices on a simple cube.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named SkeletalAnimation, by following

the Creating an MFC Ogre application recipe from Chapter 1, Delving Deep into
Application Design.

2.	 In CSkeletalAnimationView::EngineSetup(), create Ogre::ManualObject
with the name Animation, for our cube mesh.
Ogre::ManualObject* ManualObject = NULL;
ManualObject = SceneManager->createManualObject("Animation");
ManualObject->setDynamic(false);
ManualObject->begin("BaseWhiteNoLighting",
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

3.	 Next, provide the position and triangle information for the first cube face.
ManualObject->position(0, 0, 0);
ManualObject->position(1, 0, 0);
ManualObject->position(1, 1, 0);
ManualObject->triangle(0, 1, 2);

ManualObject->position(0, 0, 0);
ManualObject->position(1, 1, 0);
ManualObject->position(0, 1, 0);
ManualObject->triangle(3, 4, 5);
…
…

4.	 Do the same for the remaining cube faces, and then indicate that we are done adding
the mesh information, by calling ManualObject::end().
ManualObject->end();

Chapter 7

177

5.	 Next, convert the cube ManualObject, into a mesh because ManualObject
doesn't support skeletal animation.
Ogre::MeshPtr MeshPtr = ManualObject->convertToMesh("Animation");
Ogre::SubMesh* sub = MeshPtr->getSubMesh(0);

6.	 We also create a local variable named sub, which is a pointer to the first and only
submesh in our cube mesh. In Ogre 3D, each Mesh object is made up of at least one
SubMesh, which represent the actual vertices of the mesh. The relationship between
Mesh and SubMesh makes sense when you think of it as an entity made up of parts,
such as a car Mesh would be made up of two door SubMeshes, a frame SubMesh,
four wheel SubMeshes, and so on.

7.	 Create a skeleton object named Skeleton by using the aptly named
Ogre::SkeletonManager singleton instance.
Ogre::SkeletonPtr Skeleton =
 Ogre::SkeletonManager::getSingleton().create("Skeleton",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

8.	 Next, create a simple skeleton hierarchy made up of a bone named Root1 with two
child bones, Child1 and Child2.
Ogre::Bone *Root1 = NULL;
Ogre::Bone *Child1 = NULL;
Ogre::Bone *Child2 = NULL;

Root1 = Skeleton.getPointer()->createBone("Root");
Root1->setPosition(Ogre::Vector3(0.0, 0.0, 0.0));
Root1->setOrientation(Ogre::Quaternion::IDENTITY);

Child1 = Root1->createChild(1);
Child1->setPosition(Ogre::Vector3(4.0, 0.0, 0.0));
Child1->setOrientation(Ogre::Quaternion::IDENTITY);

Child2 = Root1->createChild(2);
Child2->setPosition(Ogre::Vector3(5.0, 0.0, 0.0));
Child2->setOrientation(Ogre::Quaternion::IDENTITY);

9.	 Assign several vertices from our cube mesh to the bones we just created using the
Ogre::VertexBoneAssignment class. This structure holds a vertex index, a bone
index, and a weight representing the assignment of a vertex to a bone for skeletal
animation.
Ogre::VertexBoneAssignment Assignment;

Assignment.boneIndex = 0;
Assignment.vertexIndex = 0;

Implementing Animations

178

The weight value indicates how much a vertex should match the movement of
the bone it is attached to. The reason for allowing a variable weight in the bone
assignment is because Ogre 3D supports assigning a vertex to multiple bones, which
can improve the distortion characteristics of joints on models. A weight value of
0 means that the bone's movement will not affect the vertex at all, while a weight
value of 1 means the vertex will follow the bone's movement exactly. In this recipe, we
will not be using blending, so we'll stick with a weight value of 1.
Assignment.weight = 1.0;

10.	 Next, set the default bone position to be the binding pose, that is, the layout in which
the vertices were assigned to the bones.
Skeleton->setBindingPose();

sub->addBoneAssignment(Assignment);

Assignment.vertexIndex = 1;
sub->addBoneAssignment(Assignment);

Assignment.vertexIndex = 2;
sub->addBoneAssignment(Assignment);

11.	 Create an Animation object with the name HandAnimation, and add KeyFrames
to the animation with different positions, for our Root1 bone.
Ogre::Animation *Animation =
 MeshPtr->createAnimation("HandAnimation", 100.0);

Ogre::NodeAnimationTrack *Track = Animation->
 createNodeTrack(0, Root1);

Ogre::TransformKeyFrame *KeyFrame = NULL;

for (float FrameTime = 0.0; FrameTime < 100.0; FrameTime += 0.1)
{
 KeyFrame = Track->createNodeKeyFrame(FrameTime);
 KeyFrame->setTranslate(Ogre::Vector3(10.0, 0.0, 0.0));
}

12.	 Next, indicate that each bone will be manually controlled. This means that we want
to alter the bones at runtime, and we don't want the bone positions to be reset by the
animation routines.
Root1->setManuallyControlled(true);
Child1->setManuallyControlled(true);
Child2->setManuallyControlled(true);

Chapter 7

179

13.	 Normally, when a mesh is loaded from a file, Ogre will pull the skeleton information
from the file as well. However, in this recipe, we are creating the skeleton manually
for demonstration purposes, so we need to tell the mesh which skeleton to use.
Tell the mesh that we want to use our manually created skeleton using the _
notifySkeleton method.
MeshPtr.getPointer()->_notifySkeleton(Skeleton);

14.	 Next, create an entity using our mesh, and add it to the scene graph.
Ogre::Entity *Entity = SceneManager->
 createEntity("Animation", "Animation");

Ogre::SceneNode *SceneNode = SceneManager->
 getRootSceneNode()->createChildSceneNode();

SceneNode->attachObject(Entity);

15.	 Make the skeleton visible using the setDisplaySkeleton method. This is
especially useful when attempting to debug animations.
Entity->setDisplaySkeleton(true);

When the skeleton is set to display, Ogre will render a set of axes at the origin of
each bone.

16.	 Our last step is to enable our custom animation state, set a timer to update the
animation time, and render the scene periodically. In CSkeletalAnimationView:
:EngineSetup()EngineSetup()" , enable the HandAnimation state.
m_AnimationState = Entity->getAnimationState("HandAnimation");
m_AnimationState->setEnabled(true);
m_AnimationState->setLoop(true);

Implementing Animations

180

17.	 In the CSkeletalAnimationView::OnTimer() function, modify the time of the
animation, and re-render the scene.

m_AnimationState->addTime(0.1);
Root->renderOneFrame();

How it works...
Skeletal animation refers to the binding of vertices to the bones in a skeleton. Each vertex
in an object can have up to four bone influences. Each bone influence is assigned a weight,
so that when that bone moves, its influence on the position of the vertex is weighted by that
amount. Assigning vertices to multiple bones with varying weights is useful for more realistic
deformation, when animating joints.

Ogre 3D uses forward kinematics for animating skeletons similar to how the scene graph is
set up. This means that to move a finger downward in a walk cycle, one would calculate the
shoulder movement, then the elbow, then the wrist, and finally the finger. The opposite of
forward kinematics is inverse kinematics, in which one animates the finger, and the parent
bones automatically move to their new position, based on a set of constraints.

OGRE supports the following skeleton animation features:

ff Each mesh can be linked to a single skeleton

ff Unlimited bones per skeleton

ff Hierarchical forward-kinematics on bones

ff Multiple named animations per skeleton (for example, Walk, Run, Jump, Shoot,
and so on)

ff Unlimited key frames per animation

ff Linear or spline-based interpolation between key frames

ff A vertex can be assigned to multiple bones, and assigned weightings for
smoother skinning

ff Multiple animations can be applied to a mesh at the same time, again with a blend

The most common way of using skeletal animation in Ogre is by creating the model, the
skeleton, and the animations in a separate 3D editor, and then exporting the .mesh and
.skeleton files. These files are loaded automatically when you create an entity based on a
mesh, which is linked to a skeleton.

Chapter 7

181

Creating morph animations
Sometimes, a mesh cannot be adequately animated using skeletal animation. That's where
morph animation comes in. Morph animation allows us to store snapshots of vertex positions
in each key frame, and then interpolate between them. Because this technique is based on
simple key frame snapshots, it is quite fast to use when animating an entire mesh, because
it is a simple linear change between key frames. However, this simplistic approach does not
support blending between multiple morph animations, so we will not use the weight option.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named MorphAnimation, by following the

Creating an MFC Ogre application recipe from Chapter 1.

2.	 Create a cube mesh to animate by loading the cube.mesh file that comes with the
Ogre SDK.
Ogre::MeshPtr Mesh =
 Ogre::MeshManager::getSingleton().load("cube.mesh",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

Ogre::SubMesh* SubMesh = Mesh->getSubMesh(0);

In the application, the initial cube mesh will look similar to the following screenshot:

Implementing Animations

182

3.	 Re-organize the cube's geometry, since this mesh has no animations and all vertex
elements are packed into one buffer.
Ogre::VertexDeclaration* newVertexDeclaration = SubMesh->
 vertexData->vertexDeclaration->
 getAutoOrganisedDeclaration(false, true);

4.	 Create a new vertex declaration for our reorganized buffers.
SubMesh->vertexData->reorganiseBuffers(newVertexDeclaration);

5.	 Find the VES_POSITION element in the vertex declaration, and then retrieve a
pointer to the buffer that holds the position data.
const Ogre::VertexElement* PositionElement = SubMesh->
 vertexData->vertexDeclaration->
 findElementBySemantic(Ogre::VES_POSITION);

Ogre::HardwareVertexBufferSharedPtr PositionBuffer =
 SubMesh->vertexData->vertexBufferBinding->
 getBuffer(PositionElement->getSource());

6.	 We will be changing the vertex positions for our morph target. So, create a new
position buffer with updated coordinates for each vertex.
Ogre::HardwareVertexBufferSharedPtr MorphBuffer =
Ogre::HardwareBufferManager::getSingleton().createVertexBuffer
(
 Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
 SubMesh->vertexData->vertexCount,
 Ogre::HardwareBuffer::HBU_STATIC, true
);

The first parameter in the createVertexBuffer method is the vertex size, the
second parameter is the number of vertices, and the third parameter is the buffer
usage. HBU_STATIC means you do not need to update the buffer very often, but
you might occasionally want to read from it. The fourth parameter tells the system
whether you want this buffer mirrored in system memory.

7.	 Lock the buffers before reading in the HBL_READ_ONLY mode or writing in the HBL_
DISCARD mode. HBL_DISCARD means that we want to write over the existing buffer
destructively.
float* pSrc = static_cast<float*>(PositionBuffer->
 lock(Ogre::HardwareBuffer::HBL_READ_ONLY));

float* pDst = static_cast<float*>(MorphBuffer->
 lock(Ogre::HardwareBuffer::HBL_DISCARD));

Chapter 7

183

8.	 Next, write the new positions for the new vertex buffer by offsetting x, y, and z values,
and then unlock the buffers.
for (size_t VertexIndex = 0; VertexIndex < SubMesh->vertexData-
>vertexCount; ++VertexIndex)
{
 *pDst++ = (*pSrc++) + VertexIndex * 10.0f; // x
 *pDst++ = (*pSrc++) + 100.0f; // y
 *pDst++ = (*pSrc++) + VertexIndex * 10.0f; // z
}

PositionBuffer->unlock();
MorphBuffer->unlock();

9.	 Create a morph animation named testanim, and indicate that we want the
animation length to be 10 seconds.
Ogre::Animation* Animation = Mesh->
 createAnimation("testAnim", 10.0f);

Ogre::VertexAnimationTrack* VertexTrack = Animation->
 createVertexTrack(1, SubMesh->vertexData, Ogre::VAT_MORPH);

10.	 Set the first key frame to use the vertex positions in the original position buffer.
Ogre::VertexMorphKeyFrame* KeyFrame = VertexTrack-
>createVertexMorphKeyFrame(0);
KeyFrame->setVertexBuffer(PositionBuffer);

11.	 Next, set a key frame at 5 seconds, and set the vertex buffer to our new morphed
vertex buffer.
KeyFrame = VertexTrack->createVertexMorphKeyFrame(5.0f);
KeyFrame->setVertexBuffer(MorphBuffer);

12.	 Finally, create the final key frame at the end of the animation, using the original
position vertex buffer.
KeyFrame = VertexTrack->createVertexMorphKeyFrame(10.0f);
KeyFrame->setVertexBuffer(PositionBuffer);

13.	 Export the mesh to a file named testmorph.mesh, and create an entity that uses
the new mesh file.
Ogre::MeshSerializer Serializer;
Serializer.exportMesh(Mesh.get(), "testmorph.mesh");

Ogre::Entity* Entity = SceneManager->
 createEntity("test", "testmorph.mesh");
SceneManager->getRootSceneNode()->
 createChildSceneNode()->attachObject(Entity);

Implementing Animations

184

14.	 Activate the testAnim animation state that we created.
Ogre::AnimationState* animState = Entity->
 getAnimationState("testAnim");
animState->setEnabled(true);
animState->setWeight(1.0f);
m_AnimStateList.push_back(animState);

15.	 Create a timer and an OnTimer function to run when the timer message is received.
In the OnTimer function, increment the animation frame time for each animation
state, and then re-render the scene.
std::vector<Ogre::AnimationState*>::iterator AnimIterator;

for (AnimIterator = m_AnimStateList.begin(); AnimIterator !=
 m_AnimStateList.end(); ++AnimIterator)
{
 (*AnimIterator)->addTime(0.01);
}

Root->renderOneFrame();

How it works...
In Ogre 3D, morph animations work by storing snapshots of the absolute vertex positions in
each key frame, and then interpolate between them during the animation. In this recipe, we
used the original positions of a cube for the first key frame in our morph animation, and a
new set of positions for the second. When we activate our animation state and increment the
animation time, Ogre will interpolate the vertex positions for us, so that the vertices morph
from one key frame position to the next.

When run, the application will show a normal cube breaking apart into pieces.

Chapter 7

185

Creating pose animations
Pose animations are very popular for animating faces in various positions to express anger,
fear, sorrow, or a mixture of all three. In this recipe, we will show you how to work with pose
animations in Ogre 3D. Like morph animation, each animation track uses a single unique
set of vertex data, but unlike morph animation, each key frame can reference more than one
pose, so they can be blended.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named PoseAnimation, by following the

Creating an MFC Ogre application recipe from Chapter 1.

2.	 For this recipe, we will create pose animations using the vertices of a simple cube
mesh. So, load the cube.mesh file in CPoseAnimationView::EngineSetup(),
and get a pointer to the first and only SubMesh in the file.
Ogre::MeshPtr Mesh =
 Ogre::MeshManager::getSingleton().load("cube.mesh",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
Ogre::SubMesh* SubMesh = Mesh->getSubMesh(0);

Implementing Animations

186

3.	 Next, generate a new VertexDeclaration based on the existing
VertexDeclaration, and tell the SubMesh to use the new declaration. The
VertexDeclaration contains information about the kind of vertex data stored in
the vertex buffers, and the order of the data.
Ogre::VertexDeclaration* VertexDeclaration = SubMesh->
 vertexData->vertexDeclaration->getAutoOrganisedDeclaration
(true, true);

SubMesh->vertexData->reorganiseBuffers(VertexDeclaration);

4.	 Now, it's time to start creating the poses for our cube. Create the first pose, and name
it Pose1.
Ogre::Pose* Pose = Mesh->createPose(1, "Pose1");

5.	 Next, add all the vertices for this pose, and provide an offset for each vertex.
Ogre::Vector3 offset1(0, 50, 0);

Pose->addVertex(0, offset1);
Pose->addVertex(1, offset1);
Pose->addVertex(2, offset1);
Pose->addVertex(3, offset1);

6.	 Create the second pose named Pose2, and add the vertices for this pose with a
different offset.
Pose = Mesh->createPose(1, "Pose2");
Ogre::Vector3 offset2(100, 0, 0);
Pose->addVertex(3, offset2);
Pose->addVertex(4, offset2);
Pose->addVertex(5, offset2);

7.	 Now that we have a couple of poses to work with, create an animation named
PoseAnimation with an animation duration of 20 seconds.
Ogre::Animation* anim = Mesh->
 createAnimation("PoseAnimation", 20);

8.	 Add an animation track to the animation object, and indicate that the track will use
pose animation data.
Ogre::VertexAnimationTrack* track = anim->
 createVertexTrack(1, Ogre::VAT_POSE);

9.	 Create all the key frames for the animation, and indicate which pose to use for each
key frame.
Ogre::VertexPoseKeyFrame *PoseAnimationKeyFrame = track->
 createVertexPoseKeyFrame(0);

Chapter 7

187

�� Frame 1: Use pose 1 (index 0).
PoseAnimationKeyFrame = track->createVertexPoseKeyFrame(3);
PoseAnimationKeyFrame->addPoseReference(0, 1.0f);

�� Frame 2: Remove all the poses, and return to default positions.
PoseAnimationKeyFrame = track->createVertexPoseKeyFrame(6);

�� Frame 3: Bring in pose 2 (index 1).
PoseAnimationKeyFrame = track->createVertexPoseKeyFrame(9);
PoseAnimationKeyFrame->addPoseReference(1, 1.0f);

�� Frame 4: Remove all poses again.
PoseAnimationKeyFrame = track->
 createVertexPoseKeyFrame(12);

�� Frame 5: Bring in pose 1 at 50 percent, and pose 2 at 100 percent.
PoseAnimationKeyFrame = track->
 createVertexPoseKeyFrame(15);
PoseAnimationKeyFrame->addPoseReference(0, 0.5f);
PoseAnimationKeyFrame->addPoseReference(1, 1.0f);

�� Frame 6: Bring in pose 1 at 100 percent and pose 2 at 50 percent.
PoseAnimationKeyFrame = track->
 createVertexPoseKeyFrame(18);
PoseAnimationKeyFrame->addPoseReference(0, 1.0f);
PoseAnimationKeyFrame->addPoseReference(1, 0.5f);

�� Frame 7: Return to default positions.

PoseAnimationKeyFrame = track->
 createVertexPoseKeyFrame(20);
PoseAnimationKeyFrame->addPoseReference(0, 1.0f);

10.	 Export the mesh with the pose animations to a file, and then create an entity using
the exported file.
Ogre::MeshSerializer Serializer;
Serializer.exportMesh(Mesh.get(), "testpose.mesh");

Ogre::Entity* PoseEntity = SceneManager->
 createEntity("Pose", "testpose.mesh");

Ogre::SceneNode* PoseNode = SceneManager->
 getRootSceneNode()->createChildSceneNode();
PoseNode->attachObject(PoseEntity);

Implementing Animations

188

In order to update the animation time for the animations associated with our new
entity, we will need to get the correct animation state and enable it. Then we can set
up a timer, and update the animation.
Ogre::AnimationState *PoseAnimationAnimState = PoseEntity->
 getAnimationState("PoseAnimation");

m_AnimStateList.push_back(PoseAnimationAnimState);
PoseAnimationAnimState->setTimePosition(0);

// Sets whether this animation is enabled.
PoseAnimationAnimState->setEnabled(true);

11.	 All that remains to be done is to set up a timer and a timer event handler in
which we increment the animation time, and re-render the scene. Create the
CPoseAnimationView::OnTimer() function with the following code to update the
animation time:
std::vector<Ogre::AnimationState*>::iterator AnimIterator;

for (AnimIterator = m_AnimStateList.begin(); AnimIterator !=
 m_AnimStateList.end(); ++AnimIterator)
{

 (*AnimIterator)->addTime(0.01);
}

Root->renderOneFrame();

When you run the program, the cube will animate between the normal cube shape,
which is the default pose, and animate to the deformed cube pose.

Chapter 7

189

The deformed cube looks somewhat similar to a box with the top open.

How it works...
In this recipe, we used pose animation to change the shape of a cube mesh using two poses.
This technique is very popular when doing facial animation, where the facial expressions are
each a separate pose, and then the pose animations are blended together. Poses can be
created for a character's mouth, forming every consonant and vowel shape, and then pose
animation can blend between each pose to make the mouth sync up with a speech audio file.

There's more...
The Ogre SDK comes with a face mesh named facial.mesh, which can be used for
experimenting with facial animation.

Creating SceneNode animations
In this recipe, we will show you how to animate a scene node's orientation, scale, and position.
Animating scene nodes can be a useful way to move all the entities attached to a scene node
on a predetermined path. This type of animation is especially useful for cut-scenes in games,
when a number of entities need to be moved around, without being affected by user input.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

Implementing Animations

190

How to do it...
1.	 First, create a new Ogre MFC application named SceneNodeAnimation, by

following the Creating an MFC Ogre application recipe from Chapter 1.

2.	 In CSceneNodeAnimationView::EngineSetup(), create an animation named
SphereAnimation with a duration of 10 seconds.
Ogre::Animation *SphereAnimation = SceneManager->
 createAnimation("SphereAnimation", 10);

3.	 Set the interpolation mode to IM_SPLINE, which gives us a smoother-looking
animation. The default linear interpolation mode will interpolate values between two
adjacent key frames linearly, but the spline interpolation mode will interpolate the
data, based on several adjacent key frames.
SphereAnimation->setInterpolationMode
 (Ogre::Animation::InterpolationMode::IM_SPLINE);

4.	 Next, create a node animation track for our sphere node, and create the initial key
frame.
Ogre::NodeAnimationTrack* SphereTrack = SphereAnimation-
>createNodeTrack(1, SphereNode);
Ogre::TransformKeyFrame* SphereKey = SphereTrack-
>createNodeKeyFrame(0);

5.	 Add transform key frames, and change the rotation and position data for the
transform key frames at various times in the animation.
SphereKey->setRotation(Ogre::Quaternion(1,1.5,0,0));
SphereKey = SphereTrack->createNodeKeyFrame(2.5);
SphereKey->setTranslate(Ogre::Vector3(70,50,-100));
SphereKey = SphereTrack->createNodeKeyFrame(5);
SphereKey->setTranslate(Ogre::Vector3(-1500,1000,-600));
SphereKey = SphereTrack->createNodeKeyFrame(7.5);
SphereKey->setTranslate(Ogre::Vector3(0,-100,0));
SphereKey = SphereTrack->createNodeKeyFrame(10);
SphereKey->setTranslate(Ogre::Vector3(0,0,0));

6.	 Next, create an animation state for our sphere animation, enable it, and set it to loop
indefinitely.
Ogre::AnimationState *SphereAnimationState = SceneManager->
 createAnimationState("SphereAnimation");
SphereAnimationState->setEnabled(true);
SphereAnimationState->setLoop(true);

Chapter 7

191

7.	 Finally, add a timer and a timer event handler named OnTimer. In the OnTimer
function, advance the sphere animation and re-render the scene.

Ogre::AnimationState *AnimationState = SceneManager->
 getAnimationState("SphereAnimation");
AnimationState->addTime(0.01);
Root->renderOneFrame();

How it works...
SceneNode animation is very similar to skeleton animation, in which child scene nodes will
be affected by their parent node's animation values, just as a child bone in a skeleton is
affected by the parent bone. The difference between scene node animation and skeleton
animation is that scene nodes have entities attached to them, not vertices, and scene nodes
can be scaled, not just moved and rotated. In this recipe, we created an animation track for
animating a scene node and added several key frames with various changes in the position.
When the application is run, you will see a yellow sphere moving, based on the key frame
positions that we set.

Creating numeric value animations
Ogre 3D gives you the ability to animate any value for any class that implements the
AnimableObject interface. A common use for this is to animate the properties of lights in
a scene to change their color or attenuation. In this recipe, we will show you how to use the
numeric value animation to change the color of a light, and then access the animated value
each frame.

Implementing Animations

192

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named NumericValueAnimation, by

following the Creating an MFC Ogre application recipe from Chapter 1.

2.	 Create a light in CNumericValueAnimation::EngineSetup named
AnimatedLight.
Ogre::NumericKeyFrame* kf;
Ogre::Light *Light = SceneManager->createLight("AnimatedLight");

3.	 Next, create an AnimableValuePtr for the named value diffuseColour, and set
the initial value.
Ogre::AnimableValuePtr animableValue = Light->
 createAnimableValue("diffuseColour");
animableValue->setValue(lightInitialColor);
animableValue->setCurrentStateAsBaseValue ();

4.	 Next, create an animation named AnimateValue with a duration of 5 seconds.
Ogre::Animation *Animation = SceneManager->
 createAnimation("AnimateValue", 5);

5.	 Create a NumericAnimationTrack, and associate it with AnimableValue that we
created.
Ogre::NumericAnimationTrack *track = Animation->
 createNumericTrack(0, animableValue);

6.	 Next, create key frames for each time index, and set the values for each key frame to
a varying color of red.
float colourValue = 0.0;

for(int i = 1; i <= 1000; i++)
{
 kf = track->createNumericKeyFrame(i * 0.025);
 colourValue = colourValue + 0.01;
 kf->setValue(Ogre::AnyNumeric(Ogre::ColourValue
 (colourValue, 0.0, 0.0, 1.0)));
}

mk:@MSITStore:C:\Users\Ilya\Documents\Visual Studio 2010\OgreSDK_vc10_v1-7-1\index.chm::/class_ogre_1_1_numeric_animation_track.html
mk:@MSITStore:C:\Users\Ilya\Documents\Visual Studio 2010\OgreSDK_vc10_v1-7-1\index.chm::/class_ogre_1_1_numeric_animation_track.html

Chapter 7

193

7.	 Start a timer, and add a timer event handler named OnTimer. In the timer function,
get the value from the next NumericKeyFrame, and set the background color of the
viewport to the same color value as the light.

Ogre::Animation *Animation = SceneManager->
 getAnimation("AnimateValue");

Ogre::NumericAnimationTrack *track = Animation->
 getNumericTrack(0);
Ogre::NumericKeyFrame *frame = track->
 getNumericKeyFrame(m_TimeIndex++);
Ogre::AnyNumeric value = frame->getValue();
Ogre::ColourValue color = Ogre::any_cast
 <Ogre::ColourValue>(value);

Viewport->setBackgroundColour(color);

Root->renderOneFrame();

How it works...
The attribute we change in this recipe is the light diffuse color. When we create the key
frames, we store a new color in each key frame. The key frame setValue() function only
accepts a value of type AnyNumeric, so we must cast our color value to this type first.
Then, when the timer function is run, we get the value for the current key frame, and set the
background color with that value. The starting background color starts out black and ends
bright red.

Implementing Animations

194

The final frame has a bright red background.

Creating linked animation
Ogre provides a useful method for re-using animations if you have two meshes that have
skeletons with identically named bones, and the same bone hierarchy. In this recipe, we'll
show you how to link two skeletons, so that we animate the first skeleton using the animations
from the second.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named LinkedAnimation by following the

Creating an MFC Ogre application recipe from Chapter 1.

2.	 In CLinkedAnimationView::EngineSetup(), create two robot entities named
Robot1 and Robot2.
Ogre::SceneNode *RobotNode1 = SceneManager->getRootSceneNode()->
 createChildSceneNode("Robot1", Ogre::Vector3(-50,0,0));

Ogre::Entity *RobotEntity1 = SceneManager->
 createEntity("Robot1", "robot.mesh");

RobotNode1->attachObject(RobotEntity1);

Chapter 7

195

Ogre::SceneNode *RobotNode2 = SceneManager->getRootSceneNode()->
 createChildSceneNode("Robot2", Ogre::Vector3(50,0,0));
Ogre::Entity *RobotEntity2 = SceneManager->
 createEntity("Robot2", "robot.mesh");
RobotNode2->attachObject(RobotEntity2);

3.	 Next, set the skeletons to display their bone positions, so we can better see what is
happening in the scene when they animate.
Ogre::Skeleton *Skeleton1 = RobotEntity1->getSkeleton();
RobotEntity1->setDisplaySkeleton(true);
Ogre::Skeleton *Skeleton2 = RobotEntity2->getSkeleton();
RobotEntity2->setDisplaySkeleton(true);

4.	 Next, add a linked skeleton animation source to the first skeleton with a scale factor
of two. The scale factor is there in case there is a size difference in the two meshes.
In this recipe, we are simply scaling the key frames for demonstration purposes. Our
linked source is the second skeleton, since we will be using animations from the
second skeleton to animate the first.
Skeleton1->addLinkedSkeletonAnimationSource(Skeleton2->
 getName(), 2.0);

5.	 Now that the skeletons are linked, we need to rebuild the internal structures for the
entity and refresh animation states before we use any of the linked animations. Re-
initialize each entity, and refresh the available animation states.
RobotEntity1->_initialise(true);
RobotEntity2->_initialise(true);
RobotEntity1->refreshAvailableAnimationState();

6.	 Next, set the animation states for each robot, and enable them. Save the animation
states in member variables, so we can update their animation time in a timer
function.
m_AnimationState1 = RobotEntity1->getAnimationState("Walk");
m_AnimationState1->setEnabled(true);

m_AnimationState2 = RobotEntity2->getAnimationState("Slump");
m_AnimationState2->setEnabled(true);

7.	 Finally, create a timer and a timer event handler named OnTimer. In the timer event
handler function, increment the animation time for each animation state, and then
re-render the scene.

CEngine *Engine = ((CLinkedAnimationApp*)AfxGetApp())->m_Engine;
Ogre::Root *Root = Engine->GetRoot();
m_AnimationState1->addTime(0.01);
m_AnimationState2->addTime(0.01);
Root->renderOneFrame();

Implementing Animations

196

How it works...
Ogre provides the ability to share animations between meshes, if they have skeletons with
identically named bones and the same bone hierarchy. We simply link the two skeletons,
refresh the internal structures, and then we can use the linked animations. The usefulness
of this is mostly for saving memory and time when animating. For example, let's say your
application has 100 cars in it, and they each have the same skeleton. They're all just slightly
different sizes. You can use linked animation, so that all your cars share the animations from
a single mesh file, instead of including the animation data in every car mesh.

The resulting application shows the two robots, their bone positions, and the linked animation.

Animation using controllers
You may find in your application that you do not need the key frame animation to achieve a
certain effect. One example of this might be to make a light pulse or flicker randomly. You
could animate the light with key frames, but that would be time-consuming, and the end
result wouldn't be as dynamic. Ogre provides controller functions and values to give us a
way to animate object values, based on functions. In this recipe, we'll show you how to use
controllers to animate the size of the sphere.

Chapter 7

197

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named UsingControllers by following

the Creating an MFC Ogre application recipe from Chapter 1.

2.	 Create a class named SphereScale with a parent class of ControllerValue. Add
two member variables: one to store a node pointer, and one to store a scale factor.
The constructor will have two parameters for setting the node and the scale, and we'll
override the getValue and setValue functions to manipulate the scale of the node
based on the input value.
class SphereScale :	public ControllerValue<Real>
{
 public:

 SphereScale(Node *Node, Real Scale)
 {
 m_Node = Node;
 m_Scale = Scale;
 }

 Real getValue(void) const
 {
 return m_Scale;
 }

 void setValue(Real value)
 {
 m_Scale = (value / m_Scale) + 0.5;
 m_Node->scale(m_Scale, m_Scale, m_Scale);
 }

 Node *m_Node;
 Real m_Scale;
};

When the controller function calls setValue, the value is used to calculate the
scaling factor for the node.

Implementing Animations

198

3.	 Next, in CUsingControllersView::EngineSetup(), create a controller
function pointer using the existing Ogre::WaveformControllerFunction, and a
controller value pointer using our custom SphereScale controller value class.
Ogre::ControllerFunctionRealPtr func(OGRE_NEW
 Ogre::WaveformControllerFunction(Ogre::WFT_SINE, 0.0, 1.0));

Ogre::ControllerValueRealPtr dest(OGRE_NEW SphereScale(SphereNode,
 1.0));

4.	 Next, create the controller using the controller function and value pointers we just
created.
Ogre::ControllerManager& ControllerManager =
 Ogre::ControllerManager::getSingleton();

m_SphereController =
 ControllerManager.createController(ControllerManager
 .getFrameTimeSource(), dest, func);

The first argument to createController() is a call to getFrameTimeSource(),
which will give us an object that provides the controller with time information.

5.	 Finally, create a timer and a timer event handler named OnTimer. In the timer
function, simply re-render the scene. Ogre will use your controller to update the
animation every time we render the scene, so we do not need to increment any
animation state time or anything like that. Also, add menu items to start and stop the
timer, or simply start the timer in the EngineSetup() function.
CEngine *Engine = ((CUsingControllersApp*)AfxGetApp())->m_Engine;
Ogre::Root *Root = Engine->GetRoot();
Root->renderOneFrame();

CView::OnTimer(nIDEvent);

How it works...
Ogre's controller is an abstract concept. You can generate values based on all sorts of
standard input such as time, or you can provide your own custom function for input. The
values calculated from the input can then be applied to animate any object value. Controllers
are extremely flexible, but the way they work can be a bit tough to wrap your head around, so
you may want to experiment with other controller functions, and other controller values till you
get the hang of it.

Ogre includes several controller functions, such as the WaveControllerFunction. So, you
don't have to re-invent the wheel when it comes to common types of controllers.

Chapter 7

199

When you run the application, you will see the yellow sphere's scale change based on
our controller.

There's more...
The WaveformControllerFunction is a predefined controller function, based on a
dynamic waveform. When plotted on a graph, the waveform takes the shape of a signal
similar to a sine wave.

Waveform function input parameters
There are several factors for the waveform function that affect the output.

ff Wave type: The shape of the wave

ff Base: The wave output base value

ff Frequency: The wave speed in cycles-per-second

ff Phase: The wave start offset; if you set the phase to 0.5, then the start position
would be half way through the wave

ff Amplitude: By default, the wave output will be between 0 and 1, but it is multiplied by
the amplitude value, so you can scale the output

ff Duty cycle: The width of a pulse-width modulation

Waveform types
There are several wave types provided by Ogre.

ff WFT_SINE: Standard sine wave, which smoothly changes from low to high, and
back again.

ff WFT_TRIANGLE: An angular wave with a constant increase/decrease speed with
pointed peaks.

ff WFT_SQUARE: Half of the time is spent at the min, and half at the max with instant
transition between.

mk:@MSITStore:C:UsersIlyaDocumentsVisual Studio 2010OgreSDK_vc10_v1-7-1index.chm::/namespace_ogre.html

Implementing Animations

200

ff WFT_SAWTOOTH: Gradual steady increase from min to max over the period, with an
instant return to min at the end.

ff WFT_INVERSE_SAWTOOTH: Gradual steady decrease from max to min over the
period, with an instant return to max at the end.

ff WFT_PWM: Pulse Width Modulation (PWM) works similar to WFT_SQUARE, except
that the high to low transition is controlled by duty cycle. A duty cycle of 50 percent
(0.5), will give the same output as WFT_SQUARE.

See also
In this chapter:

ff Creating linked controllers: This recipe shows how to re-use controller values and
functions, for use with multiple entities

Creating linked controllers
You will often find that you want to provide a way to animate properties for multiple objects with
different animation functions. One common example of this is the animation of the pulsing or
the flickering of many lights in a scene, each with a different color. In this recipe, we'll show you
how to use a controller to animate the diffuse color property for multiple light entities.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named LinkedControllers, by following

the Creating an MFC Ogre application recipe from Chapter 1.

2.	 In CLinkedControllersView::EngineSetup(), create a sphere and three
billboards, and add them to the scene graph.
Ogre::SceneNode *SphereNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("Sphere",
 Ogre::Vector3(0,0,0));

Ogre::Entity *SphereEntity = SceneManager->
 createEntity("Sphere", "sphere.mesh");

SphereEntity->setMaterialName("Wall/White");
SphereNode->attachObject(SphereEntity);

Chapter 7

201

SphereEntity->getParentNode()->scale(0.5,0.5,0.5);

m_Lights = SceneManager->createBillboardSet("Lights");
m_Lights->setMaterialName("light");
SphereNode->attachObject(m_Lights);

m_RedBillBoard = m_Lights->
 createBillboard(Ogre::Vector3(0, 0, 200));

m_RedBillBoard->setColour(ColourValue::Red);

m_BlueBillBoard = m_Lights->
 createBillboard(Ogre::Vector3(200, 0, 0));

m_BlueBillBoard->setColour(ColourValue::Blue);

m_WhiteBillBoard = m_Lights->
 createBillboard(Ogre::Vector3(-200, 0, 0));

m_WhiteBillBoard->setColour(ColourValue::White);

In order to create the billboards, we first had to create a billboard set. Ogre 3D uses
billboard sets to manage groups of billboards to speed up rendering, and provides
convenience methods for working with multiple billboards.

3.	 Create three lights for each of the billboards, and place the lights accordingly.
m_RedLight = SceneManager->createLight("RedLight");
m_RedLight->setType(Light::LT_POINT);
m_RedLight->setPosition(Ogre::Vector3(0, 0, 200));
m_RedLight->setDiffuseColour(ColourValue::Red);

m_BlueLight = SceneManager->createLight("BlueLight");
m_BlueLight->setType(Light::LT_POINT);
m_BlueLight->setPosition(Ogre::Vector3(200, 0, 0));
m_BlueLight->setDiffuseColour(ColourValue::Blue);

m_WhiteLight = SceneManager->createLight("WhiteLight");
m_WhiteLight->setType(Light::LT_POINT);
m_WhiteLight->setPosition(Ogre::Vector3(-200, 0, 0));
m_WhiteLight->setDiffuseColour(ColourValue::White)

Implementing Animations

202

4.	 Next, create a controller class named LightControl that derives from
ControllerValue as shown in the following code snippet:
class LightControl : public ControllerValue<Real>
{
 protected:

 Light* m_Light;
 Billboard* m_Billboard;
 ColourValue m_MaxColor;
 Real m_Intensity;

 public:

 LightControl(Light* Light, Billboard* Billboard,
 ColourValue maxColor)
 {
 m_Light = Light;
 m_Billboard = Billboard;
 m_MaxColor = maxColor;
 m_Intensity = 1.0;
 }

 virtual Real getValue(void) const
 {
 return m_Intensity;
 }

 virtual void setValue (Real Value)
 {
 m_Intensity = Value;
 ColourValue newColor;

 newColor.r = m_MaxColor.r * m_Intensity;
 newColor.g = m_MaxColor.g * m_Intensity;
 newColor.b = m_MaxColor.b * m_Intensity;

 m_Light->setDiffuseColour(newColor);
 m_Billboard->setColour(newColor);
 }
};

Our custom controller takes a light and a billboard pointer as constructor arguments.
In the setValue() function, we modify the light and billboard color intensity based
on the value parameter.

Chapter 7

203

5.	 Back in CLinkedControllersView::EngineSetup(), create three controller
function pointers, each with a different waveform type. The waveform for the red light
will be a smooth sine wave, the blue light will use a blinking square wave, and the
white light will have a punchy triangle waveform.
Ogre::ControllerFunctionRealPtr RedFunc(OGRE_NEW
 Ogre::WaveformControllerFunction(Ogre::WFT_SINE));

Ogre::ControllerFunctionRealPtr BlueFunc(OGRE_NEW
 Ogre::WaveformControllerFunction(Ogre::WFT_SQUARE));

Ogre::ControllerFunctionRealPtr WhiteFunc(OGRE_NEW
 Ogre::WaveformControllerFunction(Ogre::WFT_TRIANGLE));

6.	 Next, create three controller values, one for each billboard/light pair.
Ogre::ControllerValueRealPtr RedDest(OGRE_NEW
 LightControl(m_RedLight, m_RedBillBoard,
 Ogre::ColourValue::Red));

Ogre::ControllerValueRealPtr BlueDest(OGRE_NEW
 LightControl(m_BlueLight, m_BlueBillBoard,
 Ogre::ColourValue::Blue));

Ogre::ControllerValueRealPtr WhiteDest(OGRE_NEW
 LightControl(m_WhiteLight, m_WhiteBillBoard,
 Ogre::ColourValue::White));

7.	 Create three controllers, one for each light/billboard pair, and specify the frame time
source as the input value.
Ogre::ControllerManager& ControllerManager =
 Ogre::ControllerManager::getSingleton();

m_RedController =
 ControllerManager.createController(ControllerManager
 .getFrameTimeSource(), RedDest, RedFunc);

m_BlueController =
 ControllerManager.createController(ControllerManager
 .getFrameTimeSource(), BlueDest, BlueFunc);

m_WhiteController =
 ControllerManager.createController(ControllerManager
 .getFrameTimeSource(), WhiteDest, WhiteFunc);

Implementing Animations

204

8.	 Finally, create a timer and a timer event handler named OnTimer. In the timer
function, re-render the scene. Ogre will automatically update the controller values
each time the scene is rendered. So, we will see each of the three lights diffuse color,
animating according to their waveform.

void CLinkedControllersView::OnTimer(UINT_PTR nIDEvent)
{
CEngine *Engine = ((CLinkedControllersApp*)AfxGetApp())->m_Engine;
Ogre::Root *Root = Engine->GetRoot();
Root->renderOneFrame();
CView::OnTimer(nIDEvent);
}

How it works...
The Ogre 3D library provides controllers so that we can animate arbitrary properties of objects
using our own functions or the built-in ones. In this recipe, we used Ogre's waveform controller
functions with our own custom controller class to animate three lights, based on the frame
time. One nice side effect of using controllers is that we do not need to manually increment
their frame time if we use the getFrameTimeSource() function of ControllerManager;
instead we simply re-render the scene.

The result of our hard work is a scene with three pulsing lights surrounding a sphere. When
the animation starts, the lights are dim.

As the animation progresses, the lights change intensity based on their assigned waveform.

Chapter 7

205

Blending animations
In this recipe, we will show you how to blend two animations together. This technique is
very useful for making a character transition from a running animation to a standing still
animation, or for using one animation to animate a character's upper body, and a different
animation to animate the lower body. To show you how the different animation blending
modes and weights work, we create a dialog box with controls to modify each of
these properties.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named BlendingAnimations, by

following the Creating an MFC Ogre application recipe from Chapter 1.

2.	 In CBlendingAnimationsView::EngineSetup(), create a robot entity, and add
it to the scene.
Ogre::SceneNode *RobotNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("Robot",
 Ogre::Vector3(50,0,0));

Ogre::Entity *RobotEntity = SceneManager->
 createEntity("Robot", "robot.mesh");

Ogre::MeshPtr Mesh = RobotEntity->getMesh();

Implementing Animations

206

RobotNode->attachObject(RobotEntity);
RobotEntity->getParentNode()->scale(0.2,0.2,0.2);

3.	 Next, set the robot's skeleton to be visible, and the camera mode to wireframe, so
that we can better visualize the blending effect.
RobotEntity->setDisplaySkeleton(true);
m_Camera->setPolygonMode(Ogre::PolygonMode::PM_WIREFRAME);

When the skeleton is set to display, the bone locations appear as tiny axis arrows in
the scene.

4.	 Create two Ogre::AnimationState pointer member variables; one named
m_WalkAnimation for the Walk animation state, and the other named m_
SlumpAnimation for the Slump animation state.
m_WalkAnimation = RobotEntity->getAnimationState("Walk");

Chapter 7

207

m_WalkAnimation->setEnabled(true);

m_SlumpAnimation = RobotEntity->getAnimationState("Slump");
m_SlumpAnimation->setEnabled(true);

5.	 Next, add a menu named Animation. Create menu items named Start walk, Start
slump, Start blend, Stop walk, Stop slump, and Stop blend. Add event handlers for
each of these menu items.

In each event handler add code to start and stop the appropriate timers.
void CBlendingAnimationsView::OnAnimationStart()
{
 SetTimer(1, 1, 0);
 KillTimer(2);
 KillTimer(3);
}

void CBlendingAnimationsView::OnAnimationStop()
{
 KillTimer(1);
}

void CBlendingAnimationsView::OnAnimationStartwalk()
{
 SetTimer(2, 1, 0);
 KillTimer(1);
 KillTimer(3);
}

void CBlendingAnimationsView::OnAnimationStartslump()
{
 SetTimer(3, 1, 0);

Implementing Animations

208

 KillTimer(2);
 KillTimer(1);
}

void CBlendingAnimationsView::OnAnimationStopwalk()
{
 KillTimer(2);
}

void CBlendingAnimationsView::OnAnimationStopslump()
{
 KillTimer(3);
}

Each event handler stops or starts one of the timers that we will use to update our
animations. We use the first timer for the blending animation, and the other two
timers are used for the walk and slump animations.

16.	 Create a dialog box to manage the skeleton blending modes and the weights of
each animation. For the bending modes, create radio buttons named Average and
Cumulative. Next, create two sliders with labels Walk weight and Slump weight.

Chapter 7

209

17.	 Start a timer in CBlendingAnimationsView::EngineSetup(), and add a timer
event handler named OnTimer. In the OnTimer function, check the state of the
radio-buttons and the sliders, and update the animation if there are any changes.

Ogre::Skeleton *Skeleton = RobotEntity->getSkeleton();

if (m_WeightDlg->m_IsAverage)
{
Skeleton->setBlendMode
 (Ogre::SkeletonAnimationBlendMode::ANIMBLEND_AVERAGE);
}
else
{
Skeleton->setBlendMode
 (Ogre::SkeletonAnimationBlendMode::ANIMBLEND_CUMULATIVE);
}

If the Average radio button is selected, we set the blending mode to ANIMBLEND_
AVERAGE, which will result in the final visible animation being a weighted average of
all the animations. If the Cumulative radio button is selected, we set the blending
mode to ANIMBLEND_CUMULATIVE, which will result in the visible animation being
calculated using the weighted cumulative total of all the animations.

double WalkWeight;
double SlumpWeight;

switch(nIDEvent)
{
 case 1:

 WalkWeight = m_WeightDlg->m_WalkWeight.GetPos() / 10.0;
 SlumpWeight = m_WeightDlg->m_SlumpWeight.GetPos() / 10.0;
 m_WalkAnimation->setWeight(WalkWeight);
 m_SlumpAnimation->setWeight(SlumpWeight);

 m_WalkAnimation->addTime(0.01);
 m_SlumpAnimation->addTime(0.01);

 break;

 case 2:

 m_WalkAnimation->addTime(0.01);

 break;

Implementing Animations

210

 case 3:

 m_SlumpAnimation->addTime(0.01);

 break;
}

Root->renderOneFrame();

We also check the slider positions, and change the animation weights for the
walk and slump animations. The last thing to do is to increment the time for each
animation, and re-render the scene.

How it works...
We can use Ogre to blend animations and achieve various effects, by indicating the blend
mode and the weights of the animations to be blended. Blended animations are useful for
transitioning from one animation to another; for example, a running animation to a standing
still one. We can also use blending to use one animation for the top of a character, and one
for the bottom. This is commonly used to make the legs run, stand still, or jump, while the top
animation does something else, such as a weapon firing animation.

The two animation modes are ANIMBLEND_AVERAGE and ANIMBLEND_CUMULATIVE.
For ANIMBLEND_AVERAGE, all the weights must add up to 1.0, and if the sum of all the
animation weights is not 1.0, then Ogre normalizes the weights. When using ANIMBLEND_
CUMULATIVE, Ogre will use the weight of each animation without any rebalancing. Cumulative
blending can be used for skeletal, pose, or morph animations, but only skeletal animations
can use the blended average mode.

Creating animated light
In this recipe, we'll show you how to use a node animation track to make a light and a
billboard fly around the scene. The method for animating a light is similar to the Creating
SceneNode animations recipe, except we attach a light to a SceneNode.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter07 folder in the code
bundle available on the Packt website.

Chapter 7

211

How to do it...
1.	 First, create a new Ogre MFC application named AnimatedLight, by following the

Creating an MFC Ogre application recipe from Chapter 1.

2.	 In CAnimatedLightView::EngineSetup(), create a sphere for the light to fly
around, and add it to the scene.
Ogre::SceneNode *SphereNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("Sphere",
 Ogre::Vector3(0,0,0));

Ogre::Entity *SphereEntity = SceneManager->
 createEntity("Sphere", "sphere.mesh");

SphereEntity->setMaterialName("Wall/Screen");
SphereNode->attachObject(SphereEntity);

SphereEntity->getParentNode()->scale(0.2,0.2,0.2);

3.	 Next, create a spotlight named AnimLight, and add it to the scene.
Ogre::Light* AnimatedLight = SceneManager->
 createLight("AnimLight");

AnimatedLight->setType(Ogre::Light::LT_SPOTLIGHT);

AnimatedLight->setDiffuseColour
 (Ogre::ColourValue(0.25f,0.25f,0.0f));

AnimatedLight->setSpecularColour
 (Ogre::ColourValue(0.25f,0.25f,0.0f));

AnimatedLight->setAttenuation(8000,1,0.0005,0);

AnimatedLight->setSpotlightRange(Ogre::Degree(60),
 Ogre::Degree(70));

AnimatedLight->setDirection(Ogre::Vector3::NEGATIVE_UNIT_Y);

To make this light a spotlight, we set the type to LT_SPOTLIGHT, and provide a
direction and spotlight range. The first parameter for setSpotlightRange() is the
inner cone, and the second parameter is for the outer cone.

Implementing Animations

212

4.	 Next, create a billboard set and add a single billboard to the set to represent the light
source. This billboard will automatically face the camera in any position.
Ogre::BillboardSet* LightBillboardSet =
 SceneManager->createBillboardSet("LightBillboardSet", 1);

LightBillboardSet->setMaterialName("Examples/Flare");

Ogre::Billboard* LightBillboard = LightBillboardSet->
 createBillboard(0,0,0,Ogre::ColourValue(0.5,0.3,0.0f));

5.	 Next, create a scene node named AnimLightNode, and attach the light and the
billboard set to it. We will animate this scene node to move the light around the
scene.
Ogre::SceneNode* AnimLightNode = SceneManager->
 getRootSceneNode()->createChildSceneNode("AnimLightNode");

AnimLightNode->attachObject(AnimatedLight);
AnimLightNode->attachObject(LightBillboardSet);

AnimLightNode->setPosition(20.0, 20.0, 0.0);
AnimLightNode->setScale(0.05f, 0.05f, 0.05f);

6.	 Create an animation instance named LightAnimation with a duration of 4
seconds, and use IM_SPLINE as the interpolation mode. The spline interpolation will
make the changes in direction appear smoother.
Ogre::Animation* Animation = SceneManager->
 createAnimation("LightAnimation", 4.0);
Animation->setInterpolationMode(Ogre::Animation::IM_SPLINE);

7.	 Next, create a node animation track, and add five key frames to the animation.
Ogre::NodeAnimationTrack* track = Animation->
 createNodeTrack(0, AnimLightNode);

Ogre::TransformKeyFrame* key;

key = track->createNodeKeyFrame(0.0f);
key->setTranslate(Ogre::Vector3(-20.0f, -20.0f, 0.0f));
key->setScale(Ogre::Vector3(0.05f,0.05f,0.05f));

Chapter 7

213

key = track->createNodeKeyFrame(1);
key->setTranslate(Ogre::Vector3(-20.0f, 20.0f,0.0f));
key->setScale(Ogre::Vector3(0.05f,0.05f,0.05f));

key = track->createNodeKeyFrame(2.0);
key ->setTranslate(Ogre::Vector3(20.0f, 20.0f, 0.0f));
key->setScale(Ogre::Vector3(0.05f,0.05f,0.05f));

key = track->createNodeKeyFrame(3.0);
key->setTranslate(Ogre::Vector3(20.0f, -20.0f, 0.0f));
key->setScale(Ogre::Vector3(0.05f,0.05f,0.05f));

key = track->createNodeKeyFrame(4.0);
key->setTranslate(Ogre::Vector3(-20.0f, -20.0f,0.0f));
key->setScale(Ogre::Vector3(0.05f,0.05f,0.05f));

8.	 Now create a member variable named m_LightAnimationState, and assign it a
new animation state named LightAnimation. Set the animation state to loop,
and enable it.
m_LightAnimationState = SceneManager->
 createAnimationState("LightAnimation");
m_LightAnimationState->setEnabled(true);
m_LightAnimationState->setLoop(true);

9.	 Finally, create a timer and a timer event handler named OnTimer. In OnTimer, add
code to increment the animation time, and re-render the scene.

CEngine *Engine = ((CAnimatedLightApp*)AfxGetApp())->m_Engine;
Ogre::Root *Root = Engine->GetRoot();

m_LightAnimationState->addTime(0.01);

Root->renderOneFrame();

Implementing Animations

214

How it works...
In this recipe, we used node animation to move a light and a billboard. After creating the
light and the billboard, and attaching them to a scene node, we added key frames for an
animation, with different positions and scales. When the application runs, the scene node
moves according to the positions set in the animation key frames, and we see the light and
the billboard flying around.

There's more...
You can use scene node animation to move the light, and a controller to animate the light
intensity and color.

See also
In this chapter:

ff Animation using controllers: This recipe shows how to create an animation controller

8
Flashy Multimedia

In this chapter, we will cover the following recipes:

ff Render to texture

ff Creating a mirror

ff Creating a video

ff Using sounds

ff Using voice

ff Video to texture

Introduction
Have you ever wanted to add video and audio to your 3D application? It may seem a daunting
task to get a large video into a 3D application, but we'll show you how. In addition to video,
we'll cover the basics of rendering to a texture in Ogre, and show you how to include sound in
your application.

Render to texture
In this recipe, we'll introduce Ogre's method of rendering to a texture, by showing you how
to render the contents of a camera viewport onto a texture in a 3D scene. This technique is
the basis for many useful effects, including shadow maps, GPU-based calculations, deferred
rendering, and so on.

Flashy Multimedia

216

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter08 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named RTT, by following the Creating an

MFC Ogre application recipe from Chapter 1, Delving Deep into Application Design.

2.	 In CMirrorView::EngineSetup(), add a robot to the scene to give us something
to reflect.
Ogre::Entity *RobotEntity = m_SceneManager->
 createEntity("Robot", "robot.mesh");

Ogre::SceneNode *RobotNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode();

RobotNode->attachObject(RobotEntity);

3.	 Next, create a second camera named RTTCam. We will use this camera to render the
scene for the render texture.
m_RTTCamera = m_SceneManager->createCamera("RTTCam");
m_RTTCamera->setNearClipDistance(m_Camera->getNearClipDistance());
m_RTTCamera->setFarClipDistance(m_Camera->getFarClipDistance());

m_RTTCamera->setAspectRatio((Ogre::Real)
 m_RenderWindow->getViewport(0)->getActualWidth() /(Ogre::Real)
 m_RenderWindow->getViewport(0)->getActualHeight());

m_RTTCamera->setPosition(Ogre::Vector3(200.0, 50.0, 100.0));
m_RTTCamera->lookAt(Center);

4.	 Create a function named createRTT in which we will put all the code for displaying a
viewport in a texture.
void CRTTView::createRTT(Ogre::String planeName,
 Ogre::String texName,
 Ogre::Camera* Camera,
 Ogre::Real sizeX,
 Ogre::Real sizeY,
 Ogre::Vector3 position
)
{
}

Chapter 8

217

5.	 First, create a plane and add it to the scene. This plane will be our render texture
surface, and we will change the texture on it, so that it shows the scene from the view
of our RTT camera.
m_Plane = new Ogre::MovablePlane(planeName + "_RTTPlane");
m_Plane->d = 0;
m_Plane->normal = Ogre::Vector3::UNIT_Y;

Ogre::MeshManager::getSingleton().createPlane(planeName +
 "_RTTPlane",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 *m_Plane, sizeX, sizeY,
 1, 1, true, 1, 1, 1, Ogre::Vector3::UNIT_Z);

m_PlaneEntity = m_SceneManager->createEntity(planeName + "_Plane",
 planeName + "_RTTPlane");

Ogre::SceneNode *PlaneNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode();

PlaneNode->attachObject(m_PlaneEntity);
PlaneNode->attachObject(m_Plane);

PlaneNode->setPosition(position);

The createPlane method takes the following parameters: name, group, plane,
width, height, number of segments in the x direction, number of segments in the
y direction, a flag to create normals, one texture coordinate set, one tile in the u
direction, one tile in the v direction, and the up direction of the plane, which is the
z-axis.

6.	 Next, create a TU_RENDERTARGET texture, specify the width and height to be 512
pixels, and the pixel format to be PF_R8G8B8.
Ogre::TexturePtr texture =
 Ogre::TextureManager::getSingleton().createManual(texName,
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 Ogre::TEX_TYPE_2D, 512, 512, 0, Ogre::PF_R8G8B8,
 Ogre::TU_RENDERTARGET);

The TU_RENDERTARGET texture unit parameter indicates to Ogre that we want this
texture to be able to receive the data from a viewport.

Flashy Multimedia

218

7.	 Now, get the RenderTarget for the texture, and add the viewport from our RTT
camera.
Ogre::RenderTarget *RenderTarget = texture->
 getBuffer()->getRenderTarget();

Ogre::Viewport *Viewport = RenderTarget->addViewport(Camera);

This instructs Ogre to render the contents of the RTT camera viewport into this
texture buffer.

8.	 Next, create a material, and add a texture unit state to the first pass using the same
name as we used for the texture that we created. Ogre will use the texture name
parameter to link our custom texture to this material.
Ogre::MaterialPtr Material = Ogre::MaterialManager::getSinglet
on().create(texName,
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

Ogre::TextureUnitState* TextureUnitState =
 Material->getTechnique(0)->
 getPass(0)->createTextureUnitState(texName);

9.	 Set the texture addressing mode to TAM_CLAMP, so the texture doesn't repeat at
the edges of the plane. Also, set the projective texturing flag to true, and indicate
the camera to use the perspective. By using the camera perspective to generate
projected texture coordinates, we get the impression that our custom texture is
projected onto the plane.
TextureUnitState->
 setTextureAddressingMode(Ogre::TextureUnitState::TAM_CLAMP);

TextureUnitState->setProjectiveTexturing(true, Camera);
RenderTarget->setAutoUpdated(true);

10.	 Assign the new material to our plane entity.
	 m_PlaneEntity->setMaterialName(Material.get()->getName());

11.	 If you run the program at this point, the surface will have two problems: it will display
itself, and it will display items below the surface. To fix the plane from displaying
itself, we need to hide it before the RTT camera updates, and reveal it again when
the updating is complete.

Chapter 8

219

12.	 Create a new class named RTTListener that derives from
Ogre::RenderTargetListener, and add the following code to it.
class RTTListener : public Ogre::RenderTargetListener
{
 public:
 RTTListener():Ogre::RenderTargetListener()
 {
 m_PlaneEntity = NULL;
 }

 void preRenderTargetUpdate(const Ogre::RenderTargetEvent& evt)
 {
 if (m_PlaneEntity != NULL)
 m_PlaneEntity->setVisible(false);

 }
 void postRenderTargetUpdate(const Ogre::
 RenderTargetEvent& evt)
 {
 if (m_PlaneEntity != NULL)
 m_PlaneEntity->setVisible(true);
 }

 Ogre::Entity *m_PlaneEntity;

};

13.	 Back in CRTTView::createRTT(), create an instance of our RTTListener. Set
the plane entity member variable, and add the listener to our render target.
RTTListener *Listener = new RTTListener;
Listener->m_PlaneEntity = m_PlaneEntity;
RenderTarget->addListener(Listener);

14.	 To take care of the surface showing objects below the plane, we set the near clipping
plane for the RTT camera to be the plane itself. In this way, everything in front of the
near clipping plane will be hidden.

Camera->enableCustomNearClipPlane(m_Plane);

Flashy Multimedia

220

How it works...
Ogre uses render to texture, to store the contents of camera viewport in a texture. That texture
can then be displayed on a mesh in the scene, or used to perform calculations, or for many
other useful things. The process requires jumping through the right hoops, to connect a
camera with a texture. In this recipe, we created a suitable texture for receiving the contents
of a camera viewport, and set up a camera for rendering the scene to that texture. We then
created a plane mesh with a material that used this texture, so that we could see the results
of our hard work in the application.

There's more...
When the user moves the camera in our application, we should update the position and
orientation of the RTT camera to match it. Add the following code to update the RTT camera
in all the places where the main camera position or orientation changes.

m_RTTCamera->setPosition(m_Camera->getPosition());
m_RTTCamera->setOrientation(m_Camera->getOrientation());

Creating a mirror
One common use of render to texture is for creating flat-mirrored surfaces in 3D applications.
In this recipe, we'll show you how to create a mirror, by extending on the techniques presented
in the Render to texture recipe.

Chapter 8

221

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter08 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named Mirror, by following the Creating an

MFC Ogre application recipe from Chapter 1.

2.	 Create a class called MirrorListener that derives from
Ogre::RenderTargetListener. We will use this listener class to hide the mirror
entity when the Render To Texture (RTT) camera renders the scene, and then unhide
the mirror when the main camera renders the scene.
class MirrorListener : public Ogre::RenderTargetListener
{
 public:

 MirrorListener():Ogre::RenderTargetListener()
 {
 m_PlaneEntity = NULL;
 }

 void preRenderTargetUpdate(const Ogre::RenderTargetEvent& evt)
 {
 if (m_PlaneEntity != NULL)
 m_PlaneEntity->setVisible(false);
 }

 void postRenderTargetUpdate(const Ogre::
 RenderTargetEvent& evt)
 {
 if (m_PlaneEntity != NULL)
 m_PlaneEntity->setVisible(true);
 }

 Ogre::Entity *m_PlaneEntity;

};

Flashy Multimedia

222

3.	 Next, in CMirrorView::EngineSetup(), create a robot entity, so that we have
something to reflect in the scene.
Ogre::Entity *RobotEntity = m_SceneManager->createEntity("Robot",
 "robot.mesh");

Ogre::SceneNode *RobotNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode();

RobotNode->attachObject(RobotEntity);

4.	 Next, create the RTT camera to use for rendering the scene from the mirror
perspective.
m_MirrorCamera = m_SceneManager->createCamera("MirrorCamera");

m_MirrorCamera->setNearClipDistance(m_Camera
 ->getNearClipDistance());

m_MirrorCamera->setFarClipDistance(m_Camera
 ->getFarClipDistance());

m_MirrorCamera->setAspectRatio((Ogre::Real)m_RenderWindow
 ->getViewport(0)->getActualWidth() /
 (Ogre::Real)m_RenderWindow->getViewport(0)->getActualHeight());

m_MirrorCamera->setPosition(Ogre::Vector3(200.0, 50.0, 100.0));

m_MirrorCamera->lookAt(Center);

5.	 Now that the mirror camera exists, create a utility function named createMirror,
and call that function from EngineSetup. We'll put all our code for the mirror entity
setup in there.
createMirror("Mirror","Mirror",m_MirrorCamera, 500, 500,
 Ogre::Vector3(100.0, 0.0, 0.0));

6.	 In CMirrorView::createMirror(), create a plane entity for our mirror, and add
it to the scene.
void CMirrorView::createMirror(Ogre::String planeName,
 Ogre::String texName,
 Ogre::Camera* MirrorCamera,
 Ogre::Real sizeX,
 Ogre::Real sizeY,
 Ogre::Vector3 position)
{
 m_MirrorPlane = new Ogre::MovablePlane(planeName +
 "_mirrorplane");

Chapter 8

223

 m_MirrorPlane->d = 0;
 m_MirrorPlane->normal = Ogre::Vector3::UNIT_Y;

 Ogre::MeshManager::getSingleton().createPlane(planeName +
 "_mirrorplane",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 *m_MirrorPlane, sizeX, sizeY,
 1, 1, true, 1, 1, 1, Ogre::Vector3::UNIT_Z);

 m_MirrorEntity = m_SceneManager->createEntity(planeName +
 "_plane", planeName + "_mirrorplane");

 Ogre::SceneNode *mMainNode = m_SceneManager->getRootSceneNode()
 ->createChildSceneNode();

 mMainNode->attachObject(m_MirrorEntity);
 mMainNode->attachObject(m_MirrorPlane);

 mMainNode->setPosition(position);

7.	 Next, create the texture and material to use for the mirror. It is important that we
specify the texture type as TU_RENDERTARGET, so that Ogre can create a texture that
can receive the contents of a camera viewport.
Ogre::TexturePtr texture = Ogre::
 TextureManager::getSingleton().createManual(texName + "_rttrex",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 Ogre::TEX_TYPE_2D,
 512, 512, 0, Ogre::PF_R8G8B8, Ogre::TU_RENDERTARGET);

Ogre::RenderTarget *rttTex = texture->getBuffer()->
 getRenderTarget();

Ogre::Viewport *v = rttTex->addViewport(MirrorCamera);
v->setClearEveryFrame(true);
v->setBackgroundColour(Ogre::ColourValue::White);

Ogre::MaterialPtr mat =
 Ogre::MaterialManager::getSingleton().create(texName + "rttmat",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

Ogre::TextureUnitState* t = mat->getTechnique(0)->getPass(0)->
 createTextureUnitState(texName + "_rttrex");

t->setTextureAddressingMode(Ogre::TextureUnitState::TAM_CLAMP);
t->setProjectiveTexturing(true, MirrorCamera);
rttTex->setAutoUpdated(true);

Flashy Multimedia

224

8.	 Assign the new material to the mirror entity, and add our MirrorListener, which
will hide and unhide the mirror, depending on which camera is rendering the scene.
m_MirrorEntity->setMaterialName(mat.get()->getName());
MirrorListener *Listener = new MirrorListener;
Listener->m_PlaneEntity = m_MirrorEntity;
rttTex->addListener(Listener);

9.	 The last step is to enable reflection for the mirror camera, so that it renders the scene
from a reflected perspective, and to enable a custom near plane, so that the mirror
camera does not render anything below the mirror surface.

MirrorCamera->enableReflection(m_MirrorPlane);
MirrorCamera->enableCustomNearClipPlane(m_MirrorPlane);
}

How it works...
In this recipe, we used the same RTT technique as the one in the Render to texture recipe.
The main difference is that for the mirror effect, we enabled the reflection for the mirror
camera. So, it always renders the scene from the reflection perspective through the
specified plane.

Chapter 8

225

Creating a video
In this recipe, we will show you how to capture the contents of a camera viewport, and use
them to create a video file. This technique is especially useful if you want to record a video of
your 3D application or game.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter08 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named Video, by following the Creating an

MFC Ogre application recipe from Chapter 1.

2.	 Add a menu named Video, and two sub-items named Start and Stop.

3.	 Next, create event handlers named onVideoStart() and onVideoStop() for the
two new menu sub-items.

4.	 In CVideoView::OnVideoStart, initialize the AVI library, and create a file stream
for writing the AVI file to.
void CVideoView::OnVideoStart()
{
 AVIFileInit();

 AVIFileOpen(&aviFile, "output.avi",OF_WRITE | OF_CREATE,NULL);

 int Left;
 int Top;

5.	 Prepare an AVI stream info structure with all the details of the video stream we are
about to create.
AVISTREAMINFO psi;
ZeroMemory(&psi,sizeof(psi));

psi.fccType = streamtypeVIDEO;// stream type

Flashy Multimedia

226

psi.fccHandler = 0;
psi.dwScale = 24;
psi.dwRate = 1000;
psi.dwSuggestedBufferSize = 0;

Set the stream type to streamtypeVIDEO as we are creating a video stream. The
dwScale variable is for the time scale for the video. The dwRate variable is for
setting the rate. The AVI library will obtain the playback rate by dividing dwRate by
dwScale, to get the playback rate in number of samples per second.

6.	 Next, create the file stream that we will write our render data to, passing in the file
handle, the pointer to the new stream interface, and the pointer to the AVI stream
info struct that we just created.
AVIFileCreateStream(aviFile,&aviStream,&psi);

AVIFileRelease(aviFile);

AVIStreamInfo(aviStream,&aviStreamInfo,sizeof(aviStreamInfo));

7.	 Now that the stream has been prepared, start a timer and create a new member
function named OnTimer to handle the timer event.
SetTimer(1, 1, 0);
}

8.	 Create a new member variable named data to hold the contents of the viewport in a
format that we can write to the video stream.
Ogre::uchar *data;

9.	 In CVideoView::OnTimer(), copy the contents of the render viewport into our
temporary buffer, and write the temporary buffer to the video stream.
Ogre::PixelFormat pf = m_RenderWindow->suggestPixelFormat();

m_RenderWindow->getMetrics(mWidth, mHeight, mColorDepth,
 Left, Top);

data = OGRE_ALLOC_T(Ogre::uchar, mWidth * mHeight *
 Ogre::PixelUtil::getNumElemBytes(pf),
 Ogre::MEMCATEGORY_RENDERSYS);

Ogre::PixelBox m_PixelBox(mWidth, mHeight, mColorDepth, pf, data);

switch (nIDEvent)
{
 case 1:
 m_RenderWindow->copyContentsToMemory(m_PixelBox);

Chapter 8

227

 AVIStreamWrite(aviStream, m_FrameNumber++, 1, m_PixelBox.data,
 m_PixelBox.getHeight() * m_PixelBox.getHeight() * 4,
 AVIIF_KEYFRAME, NULL, NULL);

In order to get the right size of the data buffer, we get the pixel format for the render
window and the window metrics. Next, we create a data buffer using the window
metrics to calculate the size. We specify the memory category as MEMCATEGORY_
RENDERSYS because that category is for render system structures. After creating a
data buffer we use Ogre's PixelBox utility class to copy the contents of the render
window into the data buffer. We then use the AVIStreamWrite function to write
the data buffer to the video stream. Note that we also increment the frame number
member variable here as well. So each time the timer function is run, we are writing
the next frame.

10.	 In CVideoView::OnVideoStop(), kill the timer so that we stop writing data to the
AVI stream, release the AVI stream, and free the data buffer.

void CVideoView::OnVideoStop()
{
 KillTimer(1);

 AVIStreamRelease(aviStream);

 OGRE_FREE(data, Ogre::MEMCATEGORY_RENDERSYS);	
}

How it works...
In this recipe, we created an AVI video file using the Video for Windows AVI library. The library
calls we used were:

ff AVIFileInit: It initializes the AVIFile library

ff AVIFileOpen: It opens an AVI file, and returns the address of a file interface used
to access it

ff AVIFileCreateStream: It creates a new stream using an existing file and an
AVISTREAMINFO structure

ff AVIStreamInfo: It obtains the stream header information

ff AVIStreamWrite: It writes data to the video stream

ff AVIStreamRelease: It releases a stream handle, and closes the stream when all
handles are released

Flashy Multimedia

228

In the timer callback function, we allocated space for a data buffer to hold the contents of
the render window, and wrote those contents of the buffer to the AVI stream with the correct
frame number. When the stop video function is called, we release the AVI stream, and
end recording.

You can use this technique to create video demos of your 3D application without any other
external screen recording software.

Using sounds
Sounds can be integrated with animations in a variety of ways. In this recipe, we'll show you
how to trigger sounds, using controllers. This technique can be useful when you want to play
sounds based on the current frame time, or even if you just want to leverage Ogre's existing
controller functionality.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter08 folder in the code
bundle available on the Packt website.

It may be useful to review the voice and speech recipes from Chapter 2, Let Us Be Multimodal,
and the controller-based recipes from the Chapter 7, Implementing Animations. You'll also
need to prepare a set of sound .wav files to play.

How to do it...
1.	 First, create a new Ogre MFC application named Sounds, by following the Creating an

MFC Ogre application recipe from Chapter 1.

2.	 In CSoundsView::EngineSetup(), add a robot to the scene, and activate the
robot's Walk animation state.
Ogre::Entity *RobotEntity = m_SceneManager->
 createEntity("Robot", "robot.mesh");

Ogre::SceneNode *RobotNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode();

RobotNode->attachObject(RobotEntity);

Ogre::AxisAlignedBox Box = RobotEntity->getBoundingBox();
Ogre::Vector3 Center = Box.getCenter();
m_Camera->lookAt(Center);

m_WalkAnimation = RobotEntity->getAnimationState("Walk");
m_WalkAnimation->setEnabled(true);

Chapter 8

229

3.	 In this recipe, we will use the Microsoft® Speech SDK to play audio. In Sounds.h,
include the API header, and create a member variable named m_cpVoice.
#include <sapi.h>

class CSoundsApp : public CWinAppEx
{
 public:
 //…

 CComPtr<ISpVoice> m_cpVoice;

4.	 In CSounds::InitInstance(), prepare the API for use.
m_cpVoice.CoCreateInstance(CLSID_SpVoice);

5.	 Back in CSoundsView::EngineSetup(), get a pointer to the API interface, so that
we can pass it to our controller.
CSoundsApp* SoundsApp = (CSoundsApp*)AfxGetApp();
CComPtr<ISpVoice> Voice = SoundsApp->m_cpVoice;

6.	 Next, add a member variable named m_SoundController of type
Ogre::Controller<Ogre::Real>* to CSoundsView. Then, in
CSoundsView::EngineSetup(), create a controller function pointer, a controller
value pointer, and a controller using m_SoundController.
Ogre::ControllerFunctionRealPtr func(OGRE_NEW
 Ogre::WaveformControllerFunction(Ogre::WFT_SAWTOOTH));

Ogre::ControllerValueRealPtr dest(OGRE_NEW
 CSoundController(SoundPath, Voice));

Ogre::ControllerManager& ControllerManager =
 Ogre::ControllerManager::getSingleton();

m_SoundController = ControllerManager
 .createController(ControllerManager.getFrameTimeSource(),
 dest, func);

We pass the pointer to the voice API to our custom sound controller, so that it can
use it to play the audio files based on the controller input values.

Flashy Multimedia

230

7.	 Next, create a new file named SoundController.h, and define a new class named
CSoundController that derives from Ogre::ControllerValue in it. This will be
our custom sound controller class that will play sounds based on the value passed
in to the setValue() function. In this recipe, we use the frame time as the value to
select new sounds, so as the application runs and the frame time increments, new
sounds will be played.
class CSoundController : public ControllerValue<Real>
{
 public:
 CString Sounds[10];

 CString m_SoundPath;
 Real m_SoundIndex;
 CComPtr<ISpVoice> m_Voice;

 CSoundController(CString SoundPath, CComPtr<ISpVoice> Voice)
 {
 m_SoundPath = SoundPath;
 m_Voice = Voice;
 m_SoundIndex = 0;

 Sounds[0] = "boatsteam.wav";
 Sounds[1] = "carcrash.wav";
 Sounds[2] = "earlycarengine.wav";
 Sounds[3] = "ferrari250.wav";
 // …
 }

 Real getValue(void) const
 {
 return m_SoundIndex;
 }

You will need to modify the sound filenames in the constructor of
CSoundController to match the filenames of your sounds.

The setValue() function contains the logic for playing a sound based on the input
value, which is the frame time. We use an ISpStream interface to create an object
from a file suitable for SAPI usage, using the BindToFile function, which binds the
audio stream to the specified file. We then play the file using the SpeakStream API
function. The sound file to play is chosen using the input value parameter.
void setValue(Real value)
{
 CComPtr<ISpStream> cpWavStream;

mk:@MSITStore:C:Program FilesMicrosoft Speech SDK 5.1DocsHelpsapi.chm::/ispstream_bindtofile.htm

Chapter 8

231

 int Index = (int)(value * 4);

 if ((int)m_SoundIndex == Index)
 {
 //do nothing
 }
 else
 {
 m_SoundIndex = Index;

 CString SoundPath = m_SoundPath + "\\" + Sounds[Index];

 SPBindToFile(SoundPath, SPFM_OPEN_READONLY, &cpWavStream);

 m_Voice->SpeakStream(cpWavStream, SPF_ASYNC |
 SPF_PURGEBEFORESPEAK, NULL);

 //m_Voice->Resume();
 }
}

The SpeakStream function plays the contents of a stream cpWavStream with flags
used to control the playback process. The allowed flag values are SPF_ASYNC, which
specifies that the call should be asynchronous, and SPF_PURGEBEFORESPEAK,
which purges all pending speak requests prior to this call. We use asynchronous
playback, because we want the audio to play using a background thread, so that we
can continue rendering while the audio is playing.

8.	 Finally, create a timer and a timer event handler named OnTimer to update the
animation time.

void CSoundsView::OnTimer(UINT_PTR nIDEvent)
{
 m_WalkAnimation->addTime(0.001);

 CEngine *Engine = ((CSoundsApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Root->renderOneFrame();

 CView::OnTimer(nIDEvent);
}

Flashy Multimedia

232

How it works...
The SAPI library gives us the functionality to play audio files. In this recipe, we will trigger
audio playback by creating a controller with a custom controller value class named
CSoundController. Every time the OnTimer function is called, we increment the frame
time, and Ogre automatically updates our custom controller and gives it the new frame time.
Our custom controller uses that frame time to select a sound file to play.

Using voice
The SAPI can also be used to speak text, which can be useful when you want to make your 3D
models talk, or simply to provide a synthesized voice for an AI character in your game. In this
recipe, we'll show you how to use the text-to-speech functionality and animation to make two
characters speak lines from Shakespeare's Hamlet.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter08 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named Voice, by following the Creating an

MFC Ogre application recipe from Chapter 1.

2.	 In Voice.h, include the SAPI header, and create a member variable named m_
cpVoice for the SAPI interface.
#include <sapi.h>

class CVoiceApp : public CWinAppEx
{
 public:
 // …
 CComPtr<ISpVoice> m_cpVoice;

The ISpVoice interface enables our application to perform text synthesis
operations. With it, our applications can speak text strings and text files, or play audio
synchronously or asynchronously.

3.	 Next, in VoiceView.h, define an ISpObjectToken member variable for each
voice. In this recipe, we'll be using two voices.
CComPtr<ISpObjectToken> m_cpVoiceToken1;
CComPtr<ISpObjectToken> m_cpVoiceToken2;

Chapter 8

233

4.	 Create an IEnumSpObjectTokens member variable for each of the voice object
tokens.
CComPtr<IEnumSpObjectTokens> m_cpEnum1;
CComPtr<IEnumSpObjectTokens> m_cpEnum2;

5.	 We are going to animate two characters in the scene. So, create two animation state
member variables for us to control the animations with. We will also need a member
variable named m_Event to control the next event in our little play.
Ogre::AnimationState *m_WalkAnimation1;
Ogre::AnimationState *m_WalkAnimation2;
int m_Event;

6.	 In CVoiceApp::InitInstance(), prepare the SAPI interface for use.
m_cpVoice.CoCreateInstance(CLSID_SpVoice);

7.	 In CVoiceView::EngineSetup(), create two robot entities, and add them to the
scene. Next, get pointers to their Walk animation states, and enable each.
Ogre::Entity *RobotEntity1 = m_SceneManager->
 createEntity("Robot1", "robot.mesh");

Ogre::SceneNode *RobotNode = m_SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(-100, 0, 0));

RobotNode->attachObject(RobotEntity1);

Ogre::Entity *RobotEntity2 = m_SceneManager->
 createEntity("Robot2", "robot.mesh");

RobotNode = m_SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(0, 0, 0));

RobotNode->attachObject(RobotEntity2);

m_WalkAnimation1 = RobotEntity1->getAnimationState("Walk");
m_WalkAnimation2 = RobotEntity2->getAnimationState("Walk");

m_WalkAnimation1->setEnabled(true);
m_WalkAnimation2->setEnabled(true);

Now the robots are in the scene, and ready to be animated.

Flashy Multimedia

234

8.	 The only setup that remains for the SAPI voice tokens is to assign the voice to use.
The following code indicates that we want to use the Microsoft® Anna voice, and
assign it to our voice token:
SpEnumTokens(SPCAT_VOICES, L"Name=Microsoft Anna",
 NULL, &m_cpEnum1);

m_cpEnum1->Next(1, &m_cpVoiceToken1, NULL);

SpEnumTokens(SPCAT_VOICES, L"Name=Microsoft Anna", NULL,
 &m_cpEnum2);

m_cpEnum2->Next(1, &m_cpVoiceToken2, NULL);

SpEnumTokens enumerates the tokens for the specified category (voices). Next
retrieves the next object token in the enumeration sequence.

9.	 Create a menu item named Animation, and two sub-items named Start and
Stop, and create event handlers for each. In the event handler for the Start sub-
item, start a timer, and set our event variable to 0.
void CVoiceView::OnAnimationStart()
{
 m_Event = 0;
 SetTimer(1,1,0);
}

10.	 Next, add a timer event handler function named OnTimer, and use the m_Event
member variable to determine the correct voice to play and use the event ID
parameter to set the correct animation.

void CVoiceView::OnTimer(UINT_PTR nIDEvent)
{
 switch (nIDEvent)
 {
 case 1: //main loop

 switch(m_Event)
 {
 case 0:

 SetTimer(2,1,0);

 m_Voice->SetVoice(m_cpVoiceToken1);
 m_Voice->Speak(L"Hamlet 0.txt", SPF_ASYNC |
 SPF_IS_FILENAME, NULL);
 m_Event++;

Chapter 8

235

 break;

 case 1:

 SetTimer(3,1,0);

 m_Voice->SetVoice(m_cpVoiceToken2);
 m_Voice->Speak(L"Hamlet 1.txt", SPF_ASYNC |
 SPF_IS_FILENAME, NULL);
 m_Event++;
 break;

 case 2:

 SetTimer(2,1,0);

 m_Voice->SetVoice(m_cpVoiceToken1);
 m_Voice->Speak(L"Hamlet 2.txt", SPF_ASYNC |
 SPF_IS_FILENAME, NULL);
 m_Event++;
 break;

 case 3:
 SetTimer(3,1,0);

 m_Voice->SetVoice(m_cpVoiceToken2);
 m_Voice->Speak(L"Hamlet 3.txt", SPF_ASYNC |
 SPF_IS_FILENAME, NULL);
 m_Event++;
 break;

 default:
 break;
 }
 break;

 case 2: //first robot speaking

 m_WalkAnimation1->addTime(0.01);
 break;

 case 3: //second robot speaking

 m_WalkAnimation2->addTime(0.01);
 break;
 }

We use the SetVoice function to indicate the voice to use for the following call to
Speak, which does the actual text-to-speech conversion using the provided text file.
We also add time to the animation for the robot that is currently acting. In a real
application, it would be more appropriate for the animation to match the dialog, but
this gives you the general idea of how to make it work.

Flashy Multimedia

236

How it works...
The SAPI can take a text file or a text string, and speak the text using a voice. The sound
playback can be synchronous or asynchronous, but most of the time, you will use
asynchronous playback because it plays the audio using a background process, and the
Speak function returns immediately rather than after the sound playback finishes. If we used
the synchronous playback, then rendering would stop while the voice played.

Video to texture
Just as we are able to take the contents of a render window buffer and create a video with it,
we can take a frame from a video, and display it in a texture in our 3D application. To play the
video in the texture, we simply update the contents of the texture with frames from the video
at the correct time. In this recipe, we will show you how to play a movie in a 3D scene using a
dynamic texture that we manually update.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter08 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC application named VideoInTexture, by following the

Creating an MFC Ogre application recipe from Chapter 1.

2.	 Create a new utility class to manage the video-to-texture functionality, named
CVideoTexture.
class CVideoTexture
{
 public:
 CVideoTexture(void);
 ~CVideoTexture(void);
 CVideoTexture(Ogre::SceneManager *SceneManager, Ogre::Real
 Width, Ogre::Real Height, LPCTSTR szFile);

 Ogre::SceneManager *m_SceneManager;

 int m_FrameNumber;

 PGETFRAME m_Frame;
 BITMAPFILEHEADER m_BMPFileHeader;
 PAVIFILE m_aviFile;

Chapter 8

237

 PAVISTREAM m_aviStream;
 AVISTREAMINFO m_aviStreamInfo;
 BITMAPINFOHEADER m_bmpInfo;

 Ogre::HardwarePixelBufferSharedPtr m_PixelBuffer;
};

3.	 In the constructor of our new CVideoTexture class, create a new texture for us to
write the video frame data to.
Ogre::TexturePtr VideoTexture =
 Ogre::TextureManager::getSingleton().createManual(
 "Video",
 Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
 Ogre::TEX_TYPE_2D, 640, 480, 0, Ogre::PF_R8G8B8A8,
 Ogre::TU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

We set texture type to 2D with a width and height of 640 by 480, a pixel format
of PF_R8G8B8A8, and a texture usage mode of TU_DYNAMIC_WRITE_ONLY_
DISCARDABLE. The texture usage mode TU_DYNAMIC_WRITE_ONLY_DISCARDABLE
indicates that we intend to update the texture buffer often, and that since we will be
updating the entire buffer, there is no need to retain the buffer contents when we are
writing to it. We also will not be reading from the texture buffer, which is why we use
the write only mode.

4.	 Store a pointer to the texture pixel buffer in a member variable named
m_PixelBuffer for easy access.
m_PixelBuffer = VideoTexture->getBuffer();

5.	 We need to display the texture on some object in the scene, so create a manual
object named Screen, and provide the vertex data to create a simple plane out of
triangles with the appropriate texture coordinates.
Ogre::ManualObject *Screen = SceneManager->
 createManualObject("Screen");

Screen->setDynamic(true);
Screen->begin("Video", Ogre::RenderOperation::OT_TRIANGLE_LIST);

Screen->position(0,0,0);
Screen->textureCoord(0,0);

Screen->position(Width,0,0);
Screen->textureCoord(1,0);

Screen->position(Width,Height,0);
Screen->textureCoord(1,1);

Flashy Multimedia

238

Screen->triangle(0, 1, 2);

Screen->position(0,0,0);
Screen->textureCoord(0,0);

Screen->position(Width,Height,0);
Screen->textureCoord(1,1);

Screen->position(0,Height,0);
Screen->textureCoord(0,1);

Screen->triangle(3, 4, 5);

Screen->end();

6.	 Next, add the plane to the scene at the origin.
	 Ogre::SceneNode* node = SceneManager->getRootSceneNode()-
 >createChildSceneNode();
	 node->setPosition(0, 0, 0);
	 node->attachObject(Screen);

7.	 Before we can use the AVI library, we need to initialize it. After that, open the AVI file,
and save a pointer to the AVI stream in a member variable named m_aviStream.
AVIFileInit();

AVIFileOpen(&m_aviFile, szFile, OF_READ,NULL);

AVIFileGetStream(m_aviFile, &m_aviStream, streamtypeVIDEO, 0);
AVIFileRelease(m_aviFile);

8.	 Next, use the AVIStreamInfo library function to get the information about the
stream that we'll need about the video, and store it in a member variable named m_
aviStreamInfo.
AVIStreamInfo(m_aviStream, &m_aviStreamInfo,
 sizeof(m_aviStreamInfo));

9.	 After we have the stream info, fill out a BITMAPINFOHEADER struct with the correct
height, width, and compression mode, and use AVIStreamGetFrameOpen to
indicate to the AVI library the format we want the AVI frame data in.
memset(&m_bmpInfo, 0, sizeof(BITMAPINFOHEADER));
m_bmpInfo.biSize = sizeof(BITMAPINFOHEADER) ;
m_bmpInfo.biBitCount = 32;
m_bmpInfo.biCompression = BI_RGB;
m_bmpInfo.biHeight = 480;
m_bmpInfo.biWidth = 640;

Chapter 8

239

m_bmpInfo.biPlanes = 1;
m_bmpInfo.biSizeImage = 0;

m_FrameNumber = 0;
m_Frame = AVIStreamGetFrameOpen(m_aviStream, &m_bmpInfo);
}

10.	 Now it's time to use our CVideoTexture class in our application. In
VideoInTextureView.h, add a member variable named m_VideoTexture that
is a pointer to a CVideoTexture. Then, in CVideoTextureView::EngineSetup,
create an instance of the CVideoTexture, and pass in the video dimensions and
the filename.
m_VideoTexture = new CVideoTexture(m_SceneManager, 640.0, 480.0,
 "somename.avi");

11.	 Create a new menu named Video, and add two sub-items named Stop and Start.
Add event handlers for Stop and Start that activate or de-activate a timer.
void CVideoInTextureView::OnVideoStart()
{
 SetTimer(1, 1, 0);
}

void CVideoInTextureView::OnVideoStop()
{
 KillTimer(1);
}

12.	 Create a timer event handler function named OnTimer, add the necessary code to
retrieve frame data for a specific frame from the AVI stream, write it to the custom
texture, and re-render the scene.

void CVideoInTextureView::OnTimer(UINT_PTR nIDEvent)
{
 if (m_VideoTexture->m_FrameNumber == m_VideoTexture->
 m_aviStreamInfo.dwLength)
 {
 KillTimer(1);
 return;
 }

 LPBITMAPINFOHEADER lpbi =
 (LPBITMAPINFOHEADER)AVIStreamGetFrame(m_VideoTexture->m_Frame,
 ++m_VideoTexture->m_FrameNumber);

 LPVOID GetFrame = AVIStreamGetFrame(m_VideoTexture->
 m_Frame, ++m_VideoTexture->m_FrameNumber);

Flashy Multimedia

240

 if (lpbi == NULL)
 {
 KillTimer(1);
 return;
 }

 m_VideoTexture->m_PixelBuffer->
 lock(Ogre::HardwareBuffer::HBL_DISCARD);

 memcpy(m_VideoTexture->m_PixelBuffer->getCurrentLock().data,
 lpbi + lpbi->biSize + 25, lpbi->biSizeImage);

 m_VideoTexture->m_PixelBuffer->unlock();

 Ogre::Root *Root = ((CVideoInTextureApp*)AfxGetApp())->
 m_Engine->GetRoot();

 Root->renderOneFrame();

 CView::OnTimer(nIDEvent);
}

Before we grab the frame data from the AVI stream, we must check if there are no more video
frames left. To do that, we check if our current frame number is equal to the AVIStreamInfo
dwLength variable.

If we haven't reached the end of the video, we get the next frame in a decompressed format
using AVIStreamGetFrame, then write the frame data into the pixel buffer, and re-render
the scene.

How it works...
Displaying a video in a 3D scene is a two-step process. First, we must get the frame data from
the video file. The second step is to take that frame data, and copy it into a texture. In this
recipe, we used the video for Windows AVI library to retrieve the video data from a video file
in a format that is decompressed and compatible with Ogre 3D. Then, we copy that raw video
frame into the pixel buffer of our texture and re-rendered the scene.

Chapter 8

241

When you run the application, and press the Video | Start menu item, you will see the video
playing in a texture inside our 3D scene. The applications of this technique are numerous, and
honestly, the process is very straightforward. We're simply moving bits around; the difficulty is
often in converting from a video file format to one that is supported by Ogre.

9
Queries and Views

In this chapter, we will cover the following recipes:

ff Predefined views
ff Zoom management
ff Zooming to a selected object
ff Orbiting an object
ff Selecting objects
ff Object visibility

Introduction
When creating a 3D application, you inevitably must address the problem of selecting objects
in the scene, whether for collision testing, or analyzing. After you have solved the problem of
selecting an object, it is often useful to have the ability to rotate around the object to view the
object's features, or to zoom in to view features more closely. In this chapter, we will show you
how to select objects in a 3D scene, and then manipulate the camera to orbit the object, or
zoom in on it.

Predefined views
Modeling and texturing applications, such as many 3D applications, often need to provide a
way to view the objects from different perspectives in multiple windows. In this recipe, we will
show you how to manipulate a camera to view an object from several perspectives that are
commonly used in the 3D utility applications.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter09 folder in the code
bundle available on the Packt website.

Queries and Views

244

How to do it...
1.	 First, create a new Ogre MFC Ribbon application named ViewManager by following

the Creating an MFC Ogre application with a Ribbon recipe from Chapter 1, Delving
Deep into Application Design.

2.	 In CViewManagerView::EngineSetup(), create a cube entity, and add it to
the scene.
Ogre::Entity *CubeEntity = m_SceneManager->createEntity("Cube",
 "cube.mesh");

CubeEntity->setMaterialName("Examples/SceneCubeMap1");

Ogre::SceneNode *CubeNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode("Cube");

CubeNode->attachObject(CubeEntity);

3.	 Next, create a toolbar that contains the following bitmap for predefined views:

Each cube represents a predefined view.

4.	 Next, add a category named 3D View to the ribbon, and a panel named 3D Views to
the category. Then, add a gallery button to the panel, and apply the toolbar to it.

Chapter 9

245

5.	 Add a second category named Animation to the ribbon, and add two buttons
named Start and Stop. Add event handlers for the new buttons that start and stop
a timer.
void CViewManagerView::OnStartAnimation()
{
 SetTimer(1, 1, 0);
}

void CViewManagerView::OnStopAnimation()
{
 KillTimer(1);
}

6.	 Next, create a timer event handler function named OnTimer(), and in it, re-render
the scene. If your application has animated objects, this is where you would update
the animation frame time.
void CViewManagerView::OnTimer(UINT_PTR nIDEvent)
{
 // update any animations here

 CEngine *Engine = ((CViewManagerApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Root->renderOneFrame();

 CView::OnTimer(nIDEvent);
}

7.	 Right-click on the 3D View toolbar, and add an event handler.

Queries and Views

246

Click on Add Event Handler… on the shortcut menu, and the Event Handler Wizard
will appear.

8.	 Select the COMMAND message type in the Message type box, and
CViewManagerView in the Class list box. Leave the default name in the Function
handler name field, then click on Add and edit to add the event handler to the
project, and open the text editor.

9.	 In CViewManagerView::On3dViews(), get the center of the cube we want the
camera to look at, and then position the camera to look at the cube from the selected
perspective.

void CViewManagerView::On3dViews()
{
 int ViewIndex =
 CMFCRibbonGallery::GetLastSelectedItem(ID_3DVIEWS);

 CEngine *Engine = ((CViewManagerApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();

Chapter 9

247

 Ogre::SceneNode *CubeNode = m_SceneManager->
 getSceneNode("Cube");

 Ogre::AxisAlignedBox Box = m_SceneManager->
 getRootSceneNode()->_getWorldAABB();
 Ogre::Vector3 Center = Box.getCenter();
 Ogre::Vector3 Position;
 Ogre::Vector3 Destination;

 switch (ViewIndex)
 {
 case 2:

 Position = Center;
 Position.x += 4.0 * Box.getSize().x;
			 Destination = Center;

 break;

 case 3:

 Position = Center;
 Position.x -= 4.0 * Box.getSize().x;
 Destination = Center;

 break;

 // add the other views here…

 case 9:

 CubeNode->roll(Ogre::
 Radian(-atan(sin(Ogre::Math::PI/4.0))));
 CubeNode->yaw(Ogre::Radian(Ogre::Math::PI/4.0));
 Destination = Center;
 Position = m_Camera->getPosition();

 break;
 }

 m_Camera->setPosition(Position);
 m_Camera->lookAt(Destination);
 Root->renderOneFrame();
}

Queries and Views

248

The position for top, bottom, left, right, front, and back are calculated by
adding a predefined amount to x, y or z. To calculate the isometric perspective, we
roll the camera, and then yaw to position it over the object looking down at an angle.

How it works...
In this application, you are able to select a predefined view using the buttons in the ribbon.
When a button is pressed, we move the camera to the appropriate location, and re-render the
scene. All of the predefined views are standard in most 3D utility applications, including the
isometric view.

An isometric view is one in which the coordinate axes appear
equally foreshortened, and the angles between the projection
of the x, y, and z axes are all 120 degrees.

When the application runs the initial view will be slightly off-center.

http://en.wikipedia.org/wiki/Cartesian_coordinate_system

Chapter 9

249

When a 3D View button is pressed, the camera view will update to show the new perspective.
In the following image, the front perspective is shown:

By pressing the last button in the 3D View panel, you will see an isometric view of the cube.

Queries and Views

250

There's more...
In addition to these predefined views, it is often useful to allow the user to create their own
saved perspectives, so that they can return to a view quickly.

See also
In this chapter:

ff Zoom management

ff Zooming to a selected object

ff Orbiting an object recipes

These recipes provide instructions on ways to further manipulate views.

Zoom management
We've shown you in the previous recipes how to zoom in and out using the mouse wheel. We
can also automatically zoom, so a model fills the view, or allow the user to select a rectangular
region of the view to zoom in on. In this recipe, we'll show you how to manipulate the 3D
camera to implement these useful zoom tools.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter09 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC Ribbon application named ZoomManager by following

the Creating an MFC Ogre application with a Ribbon recipe from Chapter 1.

2.	 Add a category named Zoom to the ribbon, and in it, add a slider for the zoom scale
and two buttons named Extents and Window.

Chapter 9

251

3.	 Next, add an event handler for the slider named OnZoom. In the OnZoom method,
adjust the camera's proximity to the object based on the slider position.
void CZoomManagerView::OnZoom()
{
 CMainFrame *MainFrame = (CMainFrame *)(
 (CZoomManagerApp*)AfxGetApp())->GetMainWnd();

 CMFCRibbonBar* RibbonBar = MainFrame->GetRibbonBar();
 CMFCRibbonSlider* ZoomSlider = DYNAMIC_DOWNCAST(
 CMFCRibbonSlider, RibbonBar->FindByID(ID_ZOOM));

 CEngine *Engine = ((CZoomManagerApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();

 int Pos = ZoomSlider->GetPos();
 int Min = ZoomSlider->GetRangeMin();
 int Max = ZoomSlider->GetRangeMax();

 int Middle = (Max + Min) / 2;
 ZoomSlider->SetPos(Middle);
 Ogre::Vector3 CameraMove(0.0, 0.0, 0.0);

 Pos = Pos - Middle;
 CameraMove[2] = 0.1 * Pos;
 m_Camera->moveRelative(CameraMove);

 if (Root != NULL)
 {
 Root->renderOneFrame();
 }
}

Queries and Views

252

4.	 Next, create an event handler named OnExtents for the Extents ribbon button.
When this button is pressed, we want to zoom in, so that the robot fills the screen.
void CZoomManagerView::OnExtents()
{
 Ogre::Radian fieldOfView = m_Camera->getFOVy();

 CEngine *Engine = ((CZoomManagerApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Ogre::Entity* Robot = m_SceneManager->getEntity("Robot");
 Ogre::AxisAlignedBox Box = Robot->getBoundingBox();

 Ogre::Vector3 Center = Box.getCenter();
 Ogre::Vector3 Size = Box.getSize();
 float Width = Size[0];
 float Length = Size[1];

 float Height = 0.5 * std::max(Width, Length) /
 Ogre::Math::Sin(fieldOfView / 2.0);

 m_Camera->setPosition(Center[0], Center[1], Height);
 m_Camera->lookAt(Center);
 Root->renderOneFrame();
}

Here, we get the coordinates for the center of the robot entity, and then position the
camera so that the robot fills the screen. The technique used here is to position the
camera at the center of the robot, and then move the camera away along one axis
until the robot fills the screen. When calculating the correct amount to move the
camera away from the center using the robot's bounding box width, height and the
camera's field of view, we must take into account the camera's field of view, because
a larger field of view will show much more of the scene than a small field of view.

5.	 Next, add an event handler named OnWindow for the Window button. When the user
presses this button, we want to turn on the selection mode. In selection mode, the
user can click-and-drag to select an area of the screen to zoom in on.
void CZoomManagerView::OnWindow()
{
 m_SelectMode = true;
}

6.	 Add an event handler named OnLButtonDown for the "left mouse button down"
event. If selection mode is active, start recording the selection bounds using a CRect
member variable, and draw the bounds on the screen.
void CZoomManagerView::OnLButtonDown(UINT nFlags, CPoint point)
{

Chapter 9

253

 if (m_SelectMode)
 {
 m_Start = point;
 m_rubberBand.SetRect(m_Start, m_Start);

 CClientDC dc(this);
 dc.DrawFocusRect(m_rubberBand);
 }

 CView::OnLButtonDown(nFlags, point);
}

7.	 Next, add another event handler named OnMouseMove for the "mouse move" event.
When the selection mode is active, update the selection CRect, and re-draw it on the
screen.
void CZoomManagerView::OnMouseMove(UINT nFlags, CPoint point)
{
 if (m_SelectMode)
 {
 m_rubberBand.SetRect(m_Start, point);
 CClientDC dc(this);

 dc.DrawFocusRect(m_rubberBand);
 Invalidate(FALSE);
 }

 CView::OnMouseMove(nFlags, point);
}

8.	 Create an event handler named OnLButtonUp for the "left mouse button up" event.
If the selection mode is active, and the user releases the left mouse button, use the
selected region to reposition the camera, so that the region fills the screen.

void CZoomManagerView::OnLButtonUp(UINT nFlags, CPoint point)
{

 if (m_SelectMode)
 {
 m_SelectMode = false;
 Invalidate(FALSE);

 CRect rect;
 GetClientRect(&rect);
 Ogre::Vector3 Position = m_Camera->getPosition();

Queries and Views

254

 float ratio = std::min(m_rubberBand.Width()/
 rect.Width(), m_rubberBand.Height()/rect.Height());

 Position[2] *= ratio;
 m_Camera->setPosition(Position);
 CEngine * Engine = ((CZoomManagerApp*)AfxGetApp())->m_Engine;
 Ogre::Root *Root = Engine->GetRoot();
 Root->renderOneFrame();
 }

 CView::OnLButtonUp(nFlags, point);
}

To calculate the new camera position, multiply the camera's z position by the ratio of the
selected width divided by the screen width, or the selected height divided by the screen height
– whichever is smaller.

How it works...
When you start the application, you will see the slider and two buttons in the ribbon. You will
also see the robot entity from far away.

When the user increases the value of the zoom slider, the camera is repositioned closer to
the robot.

Chapter 9

255

When the user presses the Extents button, the camera is positioned so that the robot entity
fills the screen.

Queries and Views

256

The Window button enables zooming to a selectable area. Before zooming, the scene looks
similar to the following image:

Chapter 9

257

The robot entity is fully visible and the selection mode is active. When the user clicks-and-
drags to select a zoom region, a rectangle is drawn on the screen to highlight that region.

Queries and Views

258

After the region is selected, and the user releases the left mouse button, the camera is
repositioned so that the selected region fills the screen.

See also
In this chapter:

ff Zooming to a selected object: This recipe provides instructions on how to manipulate
the camera view so it zooms in on a selected object

Zooming to a selected object
The most common method for selecting objects in any 3D application is to click on it with the
mouse, or highlight it with a selection region. In this recipe, we will show you how to determine
which object the user clicked on, and how to adjust the camera so that the selected object fills
the screen.

Chapter 9

259

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter09 folder in the code
bundle available on the Packt website.

It may help to also review the Collision detection recipe from Chapter 6, Learning to Move, as
we will be using a similar ray casting function.

How to do it...
1.	 First, create a new Ogre MFC Ribbon application named ViewForObject by

following the Creating an MFC Ogre application with a Ribbon recipe from Chapter 1.

2.	 In CViewForObjectView::EngineSetup(), create four robots for the user to
click on.
gre::Entity *RobotEntity;
Ogre::SceneNode *RobotNode;

for (int RobotIndex = 0; RobotIndex < 4; RobotIndex++)
{
 char Number[20];
 itoa(RobotIndex, Number, 10);
 Ogre::String RobotName = "Robot";
 RobotName += Ogre::String(Number);
 RobotEntity = m_SceneManager->
 createEntity(RobotName, "robot.mesh");

 RobotNode = m_SceneManager->getRootSceneNode()->
 createChildSceneNode(Ogre::Vector3(RobotIndex * 100,
 RobotIndex * 100, 0));

 RobotNode->attachObject(RobotEntity);

3.	 Add a boolean member variable to the CViewForObjectView class named
m_SelectionMode to keep a track of the selection state. Then, create a ribbon
category named View, and add a panel named Select to it. Add a button named
Select to the Select panel, and create an event handler named OnSelect for it.
When the select button is pressed, turn on the selection mode.
void CViewForObjectView::OnSelect()
{
 m_SelectionMode = true;
}

Queries and Views

260

4.	 Next, add an event handler named OnLButtonDown for the "left mouse button
down" event. When selection mode is active, we'll get the mouse position when the
user clicks and searches for an entity at that point. If we find an entity, then we'll
zoom in on it.
void CViewForObjectView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_SelectionMode)
 {

 Ogre::Entity *SelectedEntity = GetEntity(point);

 if (SelectedEntity != NULL)
 {
 Ogre::Vector3 Center = SelectedEntity->
 getParentNode()->getPosition();

 Ogre::Real Radius = SelectedEntity->getBoundingRadius();

 m_Camera->setPosition(Ogre::Vector3(Center.x,
 Center.y + 0.5 * Radius, Center.z + Radius));

 m_Camera->lookAt(Ogre::Vector3(Center.x,
 Center.y + 0.5 * Radius, Center.z));

 CEngine * Engine = ((CViewForObjectApp*)AfxGetApp())
 ->m_Engine;

 Ogre::Root *Root = Engine->GetRoot();
 Root->renderOneFrame();
 }
 }

The GetEntity function returns a 3D vector that is the center of the entity mesh
under the cursor. Using the center position, we move the camera, so it looks at that
entity and is close enough to it that the entity fills the screen.

5.	 Next, create a utility function named GetEntity in which we will use ray casting to
find any entities under the mouse cursor.

Ogre::Entity* CViewForObjectView::GetEntity(CPoint point)
{
 Ogre::Camera *Camera = m_SceneManager->getCamera("Camera");
 Ogre::Entity *Entity = NULL;
 Ogre::RaySceneQueryResult Result;
 CRect rect;

Chapter 9

261

 this->GetClientRect(&rect);

 Ogre::Ray SearchRay = Camera->
 getCameraToViewportRay(((float)point.x)/((float)rect.Width()),
 ((float)point.y)/((float)rect.Height()));

 Ogre::RaySceneQuery *ObjectRaySceneQuery = m_SceneManager->
 createRayQuery(SearchRay);

 ObjectRaySceneQuery->setSortByDistance(true);

 Result = ObjectRaySceneQuery->execute();

 Ogre::RaySceneQueryResult::iterator Iterator;
 Iterator = Result.begin();

 Ogre::String ObjectName = Iterator->movable->getName();
 Ogre::MovableObject *MovableObject = Iterator->movable;

 Entity = static_cast<Ogre::Entity*>(MovableObject);
 return Entity;
}

To define the ray, we scale the mouse cursor coordinates by the screen size, so that they are
between 0 and 1. The getCameraToViewportRay() function returns a ray based on these
normalized screen coordinates. Next, we create a ray query with our ray, and execute it. We
return the first entity in the query results, or NULL if there are no results.

How it works...
When you run the application, you will see four robots in various positions on the screen, and
the new ribbon panel and button. Pressing the Select button activates selection mode. In
selection mode, we run a ray scene query every time the user clicks on the screen based on
the mouse cursor position. If an entity is hit by the ray scene query, we zoom in on that entity.

Queries and Views

262

The following screenshots shows what the application looks when you first run it, and when
the selection mode is not active:

Chapter 9

263

After the Select button is pressed, and the user clicks on a robot, the camera gets
repositioned, so that robot fills the screen. The next screenshot is from the application after
the user has clicked on a robot while in the selection mode:

Orbiting an object
Being able to constrain the camera so that it rotates about an object is very useful and saves
time when you wish to view or manipulate the object from various perspectives. Orbiting is a
technique in which the user drags the mouse to move the camera at a fixed distance about
a point, while keeping the camera focused on the point. In this recipe, we'll show you how to
implement tools for orbiting and for constraining the orbit to a single axis.

Queries and Views

264

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter09 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC Ribbon application named OrbitView by following the

Creating an MFC Ogre application with a Ribbon recipe from Chapter 1.

2.	 In COrbitViewView::EngineSetup(), create a robot entity, add it to the scene,
and make the camera look at the center of the robot.
Ogre::Entity *RobotEntity = m_SceneManager->
 createEntity("Robot", "robot.mesh");

Ogre::SceneNode *RobotNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode("Robot");

RobotNode->attachObject(RobotEntity);

Ogre::AxisAlignedBox Box = RobotEntity->getBoundingBox();
Ogre::Vector3 Center = Box.getCenter();

m_Camera->setPosition(Ogre::Vector3(Center[0], Center[1],
 Center[2] + 500.0));

m_Camera->lookAt(Center);

3.	 Next, create a toolbar with three buttons to control the mouse navigation.

4.	 Next, add a category named View to the ribbon with a panel named Orbit. Then,
add a button named gallery to the Orbit panel.

5.	 Add an event handler named OnOrbit() for the gallery button. Also, create a
Boolean member variable named m_Orbit. When the user presses the gallery
button, set m_Orbit to true, indicating that we are in the orbit mode.
void COrbitViewView::OnOrbit()
{
 int ViewIndex =
 CMFCRibbonGallery::GetLastSelectedItem(ID_ORBIT);

Chapter 9

265

 switch (ViewIndex)
 {
 case 0:

 m_Orbit = true;

 break;
 }
}

6.	 In COrbitViewView::EngineSetup(), create a scene node named CameraNode,
and attach the camera to it. We will use this node to rotate the camera around the
target.
CameraNode = m_SceneManager->getRootSceneNode()->
 createChildSceneNode("CameraNode", Ogre::Vector3::ZERO);

CameraNode->attachObject(m_Camera);

7.	 Add an event handler named OnLButtonDown for the "left mouse button down"
event. In this new method, store the mouse cursor coordinates in a member variable
named m_MousePosition, and set the m_MouseNavigation variable to true.
void COrbitViewView::OnLButtonDown(UINT nFlags, CPoint point)
{
 m_MousePosition = point;
 m_MouseNavigation = true;

 CView::OnLButtonDown(nFlags, point);
}

8.	 Next, create an event handler named OnMouseMovefor the "mouse move" event.
Inside OnMouseMove, add code to move the camera based on the active mode.

void COrbitViewView::OnMouseMove(UINT nFlags, CPoint point)
{
 Ogre::Vector3 CameraMove(0.0, 0.0, 0.0);

 CEngine * Engine = ((COrbitViewApp*)AfxGetApp())->m_Engine;
 if (Engine == NULL)
 return;
 Ogre::Root *Root = Engine->GetRoot();
 if (m_Camera == NULL)
 return;

 if (m_MouseNavigation)
 {

Queries and Views

266

 if (m_Orbit)
 {
 Ogre::SceneNode* CameraNode = m_SceneManager->
 getSceneNode("CameraNode");

 CameraMove[1] = m_MousePosition.y - point.y;
 m_Camera->moveRelative(CameraMove);

 CameraNode->
 yaw(Ogre::Radian(0.001 * (m_MousePosition.x - point.x)));
 }

 else
 {
 CameraMove[0] = -(m_MousePosition.x - point.x);
 CameraMove[1] = m_MousePosition.y - point.y;
 m_Camera->moveRelative(CameraMove);
 }

 m_MousePosition = point;
 Root->renderOneFrame();
 }

 CView::OnMouseMove(nFlags, point);
}

If the orbit mode is active, then rotate the camera about the camera scene node using yaw
only. If it is not in the orbit mode, simply move the camera on the x and y axes.

How it works...
In this recipe, we pan the camera in the x and y axes when the user clicks on the screen,
and drags the mouse in the viewport. We also added an orbit button, which activates the
orbit mode when clicked. In the orbit mode, the camera will rotate about the object when the
user clicks-and-drags the mouse cursor on the robot. In both the modes, we simply move the
camera using the moveRelative() function, and in the orbit mode, we also use the yaw()
function to rotate the camera.

When you run the application, you will see our familiar robot on a green background. Click-
and-drag the mouse on the robot to move the camera.

Chapter 9

267

Selecting objects
In addition to the ray casting collision detection method, Ogre 3D also provides a way to find
all the entities that are inside or touching a bounding box. In this recipe, we'll show you how to
use the bounding box scene query to select entities in a scene. We'll also show you how to use
the query mask parameter to filter the results by entity type.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter09 folder in the code
bundle available on the Packt website.

Queries and Views

268

How to do it...
1.	 First, create a new Ogre MFC Ribbon application named Nearest by following the

Creating an MFC Ogre application with a Ribbon recipe from Chapter 1.

2.	 In CNearestView::EngineSetup(), add a robot.
Ogre::FloatRect TextureCoordinates[]=
{
 Ogre::FloatRect(113.0/5000.0,121.0/5000.0,851.0/5000.0,
 1073.0/5000.0),

 Ogre::FloatRect(1021.0/5000.0,114.0/5000.0,3386.0/5000.0,
 1984.0/5000.0),

 Ogre::FloatRect(3825.0/5000.0,1049.0/5000.0,4871.0/5000.0,
 3588.0/5000.0),

 Ogre::FloatRect(1739.0/5000.0,2418.0/5000.0,2796.0/5000.0,
 4774.0/5000.0),

 Ogre::FloatRect(221.0/5000.0,2723.0/5000.0,1464.0/5000.0,
 3795.0/5000.0),

 Ogre::FloatRect(505.0/5000.0,4391.0/5000.0,805.0/5000.0,
 4662.0/5000.0),

 Ogre::FloatRect(339.0/5000.0,2085.0/5000.0,482.0/5000.0,
 2216.0/5000.0),

 Ogre::FloatRect(2803.0/5000.0,3355.0/5000.0,3891.0/5000.0,
 4912.0/5000.0)
};

Ogre::Entity *RobotEntity = m_SceneManager->
 createEntity("Robot", "robot.mesh");

Ogre::SceneNode *RobotNode = m_SceneManager->
 getRootSceneNode()->createChildSceneNode();

RobotNode->attachObject(RobotEntity);
Ogre::AxisAlignedBox Box = RobotEntity->getBoundingBox();
Ogre::Vector3 Center = Box.getCenter();
m_Camera->lookAt(Center);

Chapter 9

269

3.	 Next, add a billboard set named Tree, and add a single billboard to the sets.
Ogre::BillboardSet *Trees = m_SceneManager->
 createBillboardSet("Trees");

Trees->setTextureCoords(TextureCoordinates, 8);
Trees->setMaterialName("Trees");
Trees->setCastShadows(true);
Trees->setSortingEnabled(true);
Trees->setBillboardType(Ogre::BBT_ORIENTED_COMMON);

Ogre::Vector3 TreePosition(0.0, 0.0, 0.0);
Ogre::Billboard* Tree = Trees->createBillboard(TreePosition);
Tree->setDimensions(20.0, 100.0);
Tree->setTexcoordIndex(0);

Ogre::SceneNode *TreeNode = m_SceneManager->getRootSceneNode()->
 createChildSceneNode();

TreeNode->setPosition(0.0, 0.0, -100.0);
TreeNode->setDirection(Ogre::Vector3::NEGATIVE_UNIT_Y);
TreeNode->attachObject(Trees);

4.	 Next, add a manual object entity named Screen.
Ogre::ManualObject *Screen = m_SceneManager->
 createManualObject("Screen");

Screen->setDynamic(true);

Screen->begin("BaseWhiteNoLighting",
 Ogre::RenderOperation::OT_TRIANGLE_LIST);

Screen->position(0,0,0);
Screen->textureCoord(0,0);

Screen->position(100.0,0,0);
Screen->textureCoord(1,0);

Screen->position(100.0, 100.0 ,0);
Screen->textureCoord(1,1);

Screen->triangle(0, 1, 2);

Screen->position(0,0,0);
Screen->textureCoord(0,0);

Queries and Views

270

Screen->position(100.0, 100.0, 0);
Screen->textureCoord(1,1);

Screen->position(0, 100.0,0);
Screen->textureCoord(0,1);

Screen->triangle(3, 4, 5);

Screen->end();

Ogre::SceneNode* node = m_SceneManager->getRootSceneNode()->
 createChildSceneNode();

node->setPosition(-50.0, 0, -20.0);
node->attachObject(Screen);

5.	 Add a category named Select to the ribbon, with a set of checkboxes and a button
also named Select as shown in the following screenshot:

6.	 Add event handlers for each checkbox. In each event handler, activate the
appropriate query mask.
void CNearestView::OnEntity()
{
 m_QueryMask |= Ogre::SceneManager::ENTITY_TYPE_MASK;
}

void CNearestView::OnBillboard()
{
 m_QueryMask |= Ogre::SceneManager::FX_TYPE_MASK;
}

void CNearestView::OnCamera()
{
 m_QueryMask |= Ogre::SceneManager::FRUSTUM_TYPE_MASK;
}

Chapter 9

271

7.	 Add an event handler named OnSelect for the Select button.
void CNearestView::OnSelect()
{
// …
}

8.	 In CNearestView::OnSelect(), update the scene graph, and then get the axis
aligned, bounding the box for all the entities in the world.
m_SceneManager->_updateSceneGraph(m_Camera);

Ogre::AxisAlignedBox Box = m_SceneManager->getRootSceneNode()->
 _getWorldAABB();

9.	 Next, create an axis aligned box scene query using the bounding box from the root
scene node, and use the query mask to filter the results, so that we only get the
entities selected by the active checkboxes.
Ogre::AxisAlignedBoxSceneQuery* Query = m_SceneManager->
 createAABBQuery(Box, m_QueryMask);
Ogre::SceneQueryResult &Result = Query->execute();

10.	 Iterate over the results, and hide all the entities.

Ogre::SceneQueryResultMovableList::iterator Iterator;

for (Iterator = Result.movables.begin(); Iterator !=
 Result.movables.end(); Iterator++)
{
 Ogre::String ObjectName = (*Iterator)->getName();
 Ogre::MovableObject *Object = (*Iterator);

 Object->setVisible(false);
}

Ogre::Root *Root = ((CNearestApp*)AfxGetApp())->m_Engine->
 GetRoot();

Root->renderOneFrame();
}

How it works...
In this recipe, we created controls that allow the user to filter the types of entities that are
affected by the select button. To filter out certain types of entities we use a query mask,
which is a bit mask, when running the axis aligned bounding box query. When certain bits are
set in the mask, those entities are filtered in the results.

Queries and Views

272

Ogre 3D provides the following query masks:

ff WORLD_GEOMETRY_TYPE_MASK: This mask is for world geometry

ff ENTITY_TYPE_MASK: This mask filters entities

ff FX_TYPE_MASK: This mask filters effects, such as billboards and particle systems

ff STATICGEOMETRY_TYPE_MASK: This mask filters static geometry

ff LIGHT_TYPE_MASK: This mask filters lights

ff FRUSTUM_TYPE_MASK: This mask filters frustum-based classes, such as cameras

If you like, you can define your own masks, and then set the query flags for your entities using
the setQueryFlags() method.

To indicate which entities are selected, we hide them from view, and then re-render the scene.

When you run the application, you will see a robot entity, a billboard, and a manual object on
the screen. Select one or more of the checkboxes, and press the select button to see
the results.

Chapter 9

273

Object visibility
In addition to determining objects that a user clicks on, collision detection can also tell us if
there is an obstacle between two objects, or if one object is "looking" at another object. This
can be useful in a game for checking if a non-player character can see the player's character,
or as a rudimentary check to see if two objects are separated by a wall. In this recipe, we'll
use collision detection to show when a robot is looking at another robot, and if its view
is obstructed.

Getting ready
To follow this recipe, open the solution located in the Recipes/Chapter09 folder in the code
bundle available on the Packt website.

How to do it...
1.	 First, create a new Ogre MFC Ribbon application named Visibility by following

the Creating an MFC Ogre application with a Ribbon recipe from Chapter 1.

2.	 In CVisibilityView::EngineSetup(), create two robots, and add them to the
scene.
Ogre::Entity *RobotEntity1;
Ogre::Entity *RobotEntity2;

Ogre::SceneNode *RobotNode1;
Ogre::SceneNode *RobotNode2;
Ogre::Quaternion Quaternion(Ogre::Quaternion::IDENTITY);

RobotEntity1 = m_SceneManager->createEntity("Robot1",
 "robot.mesh");

RobotNode1 = m_SceneManager->getRootSceneNode()->
 createChildSceneNode("Robot1",Ogre::Vector3::ZERO,
 Ogre::Quaternion::IDENTITY);

RobotNode1->attachObject(RobotEntity1);

RobotEntity2 = m_SceneManager->createEntity("Robot2",
 "robot.mesh");

Quaternion.FromAngleAxis(Ogre::Radian(Ogre::Math::PI),
 Ogre::Vector3::NEGATIVE_UNIT_Y);

Queries and Views

274

RobotNode2 = m_SceneManager->getRootSceneNode()->
 createChildSceneNode("Robot2", Ogre::Vector3(200.0, 0.0, 0.0),
 Quaternion);

RobotNode2->attachObject(RobotEntity2);

We rotate the second robot to face the first one, by creating a Quaternion that
represents a 180 degree rotation about the y-axis.

3.	 Next, create an object between the two robots to represent the obstructing object.
Ogre::Entity *WallEntity;
Ogre::SceneNode *WallNode;

Ogre::Real Height = 0.75 * RobotEntity1->getBoundingRadius();
Ogre::Vector3 Center1 = RobotNode1->getPosition();
Ogre::Vector3 Center2 = RobotNode2->getPosition();

Center1[1] += Height;
Center2[1] += Height;

WallEntity = m_SceneManager->createEntity("Wall",
 Ogre::SceneManager::PrefabType::PT_SPHERE);

WallNode = m_SceneManager->getRootSceneNode()->
 createChildSceneNode("Wall", 0.5 * (Center1 + Center2),
 Quaternion);

WallNode->attachObject(WallEntity);
WallEntity->setVisible(false);

4.	 Create a line between the two robots that we will reveal to indicate that the second
robot can see the first one.
Ogre::ManualObject *Ray = m_SceneManager->
 createManualObject("Ray");

Ray->begin("BumpyMetal", Ogre::RenderOperation::OT_LINE_LIST);
Ray->position(Center1);
Ray->position(Center2);
Ray->end();
Ray->setVisible(false);

RobotNode2->attachObject(Ray);

Chapter 9

275

5.	 Define a query mask named COLLIDABLE, and set the query masks of our objects,
so that only the wall and the first robot have the COLLIDABLE mask.
#define COLLIDABLE 1
RobotEntity1->setQueryFlags(COLLIDABLE);
WallEntity->setQueryFlags(COLLIDABLE);
RobotEntity2->setQueryFlags(0);
Ray->setQueryFlags(0);

6.	 Create a toolbar with the following graphic. Next, add a category named Visibility
to the ribbon with a panel and a gallery button.

7.	 Add an event handler named OnCheckVisibility() for the toolbar button.
void CVisibilityView::OnCheckVisibility()
{
//…
}

8.	 First, get the index of the button that was pressed in the toolbar.
int ViewIndex = CMFCRibbonGallery::GetLastSelectedItem(ID_CHECK);

9.	 Prepare some temporary variables that we will be using for collision detection.
Ogre::Quaternion Quaternion;
CEngine *Engine = ((CVisibilityApp*)AfxGetApp())->m_Engine;
Ogre::Root *Root = Engine->GetRoot();
Ogre::Entity * WallEntity;
Ogre::Entity * RobotEntity1 = m_SceneManager->getEntity("Robot1");
Ogre::Entity * RobotEntity2 = m_SceneManager->getEntity("Robot2");

Ogre::SceneNode *RobotNode2 = (Ogre::SceneNode *)m_SceneManager->
 getRootSceneNode()->getChild("Robot2");

Ogre::ManualObject *Ray = (Ogre::ManualObject*)RobotNode2->
 getAttachedObject("Ray");

10.	 Hide the visibility ray by default.
Ray->setVisible(false);

If the first button was pressed, check if robot 2 is looking at robot 1.
switch (ViewIndex)
{

Queries and Views

276

 case 0:
 {
 //check visibility
 Ogre::Entity *Entity = NULL;
 Ogre::RaySceneQueryResult Result;

 Ogre::SceneNode *RobotNode1 = (Ogre::SceneNode
 *)m_SceneManager->getRootSceneNode()->getChild("Robot1");

 Ogre::Real Height = 0.75 * RobotEntity1->getBoundingRadius();
 Ogre::Vector3 Center1 = RobotNode1->getPosition();
 Ogre::Vector3 Center2 = RobotNode2->getPosition();

 Center1[1] += Height;
 Center2[1] += Height;

 Ogre::Ray SearchRay;
 SearchRay.setOrigin(Center2);

 SearchRay.setDirection(RobotNode2->
 _getDerivedOrientation().xAxis());

 Ogre::RaySceneQuery *ObjectRaySceneQuery = m_SceneManager->
 createRayQuery(SearchRay,COLLIDABLE);

 ObjectRaySceneQuery->setSortByDistance(true);
 Result = ObjectRaySceneQuery->execute();

 if(!Result.empty()) {
 Ogre::RaySceneQueryResult::iterator Iterator;
 Iterator = Result.begin();

 Ogre::String ObjectName = Iterator->movable->getName();

 if(ObjectName.compare("Robot1") == 0) {
 Ray->setVisible(true);
 }
 }
 }
 break;

To check if the robots are looking at each other, we create a ray scene query with
our custom query mask. When the query is executed, we will only get objects in the
results that match our query mask. If the first object we get back is the robot, then
the robots are looking at each other, and we reveal the visibility ray.

Chapter 9

277

If the second button is pressed, toggle the sphere's visibility.

 case 1:
 WallEntity = m_SceneManager->getEntity("Wall");
 m_IsWallExists = !m_IsWallExists;
 WallEntity->setVisible(m_IsWallExists);
 //wall is visible
 break;

If the third button is pressed, rotate robot 2.
 case 2:
 // rotate robot
 RobotEntity = m_SceneManager->getEntity("Robot2");

 if (m_IsRotated)
 {
 Quaternion.FromAngleAxis(Ogre::Radian(0.0),
 Ogre::Vector3::NEGATIVE_UNIT_Y);
}

 else
 {
 Quaternion.FromAngleAxis(Ogre::Radian(Ogre::Math::PI),
 Ogre::Vector3::NEGATIVE_UNIT_Y);
 }

 RobotEntity->getParentNode()->setOrientation(Quaternion);

 m_IsRotated = !m_IsRotated;
 break;
}

11.	 Finally, re-render the scene to show the results.

Root->renderOneFrame();

How it works...
In this recipe, we used ray casting to detect when the two robots are looking at each other.
We used a custom query mask, so that our ray casting results only return the entities that we
are interested in. If the first ray casting result is the other robot, then we know that the robots
are looking at each other, otherwise the robots are not facing each other, or there is an object
blocking their view.

Queries and Views

278

When you first run the program and press the visibility button, you will see the two robots and
the line between them, which indicates that they can see each other.

Chapter 9

279

When the wall button is pressed, a large sphere appears between the two robots. If you
press the visibility button, the line between the robots will not appear, meaning that the
robots cannot see each other.

When the rotate button is pressed, the second robot is rotated to face away from the
first robot.

Queries and Views

280

There's more...
We only use a single ray in this recipe to detect if one object can "see" another object.
However, it would be more accurate if we used a cone or a frustum to detect visibility. Ogre
has a Frustum class that contains the functionality to do this kind of visibility testing, and
the Camera class derives from it.

Index
Symbols
2D image

manipulating 147-149
Ogre::PixelUtil::bulkPixelConversion()

function 150
Ogre::TU_DYNAMIC_WRITE_ONLY_DISCARD-

ABLE setting 150
2D path

converting, into 3D path 164-167
3D applications

flat-mirrored surfaces, creating 220-224
video, creating 225-227

3D mesh
moving, from one point to another 153-155

3D path
2D path, converting into 164-167

3D scene
movie playing in, dynamic texture used

236-241
3D View 244
_notifySkeleton method 179
<O> tag 60

A
Add and Edit 85
Add Box Emitter menu item 126
Add Deflector Plane Affector menu item 127
Add Deflector Plane menu item 126
Add Entity submenu 98
Add Event Handler 84, 96
Additional Library Directories property 11
Add Scene Node submenu item 97
Advanced features page 22, 56
alpha_op_ex parameter 141
alpha_rejection parameter 139

AnimableObject interface 191
animated light

creating, steps 210-213
animation

blending animation 205, 210
controllers used 196-198
linked animation 194-196
morph animation 181-183
numeric value animation 191-194
pose animation 185-187
SceneNode animation 189-191
skeletal animation 176-179

Animation object 178
Application Settings page 35
Application type 8
AVIFileCreateStream 227
AVIFileInit 227
AVIFileOpen 227
AVIStreamGetFrame function 144
AVIStreamInfo 227
AVIStreamInfo library function 238
AVIStreamRelease 227
AVIStreamWrite 227

B
BaseWhiteNoLighting material 73
BeginPaint() function 18
billboards

BillboardSets 93
EngineSetup() 91
TextureCoordinates 92
trees, adding as 91
trees material 91, 94

BillboardSets 93
bin/debug folder 6
BindToFile function 230

282

Box Emitter 126

C
CameraMove variable 120
CameraNode 16
CAnimatedLightView::EngineSetup() 211
Category 29
CBlendingAnimationsView::EngineSetup()

205
CCone object 118
CDynamicEffectsView::OnTimer() 119
CDynamicEffectsView class 117
CDynamicGrammarView::EngineSetup() 66
CDynamicGrammarView::ExecuteCommand()

67
CDynamicTextureView::EngineSetup() 143
CEdge objects 80
CEngine class 12, 13, 32
CEngine constructor 17, 26
CEngine wrapper class 12
CInsertMeshView::EngineSetup() function 90
CLandXmlView::GetManualObject() utility

function, adding 73
CLinkedAnimationView::EngineSetup() 194
CLinkedControllersView::EngineSetup() 200,

203
CLoadSceneView::Traverse() function 105
CManualObjectView::OnActionsMaterials()

method 83
CMouseInputView::EngineSetup() 54
CNumericValueAnimation::EngineSetup 192
COgreInMfcApp

InitInstance() 23
COgreInMfcApp constructor 23
COgreInMfcView::EngineSetup() function 26
collidesWithEntity() method 160
collision detection 273, 159-161
CollisionTools::collidesWithEntity() function

160, 165
CollisionTools class 161, 164, 168, 169, 171
colour_op_ex parameter 141
colour_op parameter 139
COMMAND message type 246
COM object 68
Compound document support page 20, 28
Configuration Properties 8

content 76
control 33
controllers

used, for animation 196-198
CPathWalkingView class 156, 158
CPoseAnimationView::EngineSetup() 185
CPoseAnimationView::OnTimer() function 188
create button 125
Create Child Scene Node dialog-box 97
createController() 198
CreatePath() function 157
createPlane method 217
createRenderWindow() method 16
createVertexBuffer method 182
CRTTView::createRTT() 219
CSaveSceneView::EngineSetup() function

100, 104
CSaveSceneView::SceneExplore() function

101
CSaveSceneView::SceneNodeExplore() 101
CSaveSceneView::SceneNodeExplore function

101
CSceneNodeAnimationView::EngineSetup()

190
CSkeletalAnimationView::EngineSetup() func-

tion 180
CSkeletalAnimationView::OnTimer() function

180
CSpeechApp::InitInstance() 68
CSpeechView::EngineSetup() 68
CSpeechView::OnTimer() function 69
CStaticGrammerApp class 58
CSuperEllipsoidView::EngineSetup() 86
CSuperQuadric::DrawMesh() function 86
CSuperQuadric::UpdateMesh() function 87
CSupperEllipsoidView 85
CTerrainWalkingView::EngineSetup() 169
CTriangulation::LocateTriangle() method 80,

91
Cumulative radio button 209
CUsingControllersView::EngineSetup() 198
custom resource manager

creating 40
EngineSetup() function 41
FileSystem resource location 41
importStlFile() function 43
loadImpl() function 41, 43

283

loadImpl() resources 42
m_Root->initialize() 41
m_StlFileManager 41
ManualObject instance 44
Ogre::Resource class 41
StlFile class 40
STL file format 40
StlFileManager::createEntity() method 45
StlFileManager class 40, 44
StlFileManager.h 41
StlFileManager member variable 41
StlFile resources 41, 42
StlFileSerializer class 40, 43
unloadImpl() function 41

CVideoTexture class 237, 239
CViewForObjectView class 259
CViewManagerView::On3dViews() 246
CVoiceApp::InitInstance() 233
CVoiceView::EngineSetup() 233
CWalkingView class 155

D
Database support page 21, 28
Deflector plane affecter 126
DelaunayInCircle condition 80
DelaunayIt() 78
delaunay triangulation

CEdge objects 80
creating 78
creating, from triangle vertex data 77
CTriangulation::LocateTriangle() method 80
DelaunayInCircle condition 80
DelaunayIt() 78
edge.left 79
edge.left.left 79
incremental algorithm 80
Topography object 78
wikipedia page, URL 80

directional lights 115
dllStartPlugin() function 37
dllStopPlugin() function 37
Document Template Properties page 20, 28
DropPath() function 165
dynamic effects

CCone object 118
CDynamicEffectsView::OnTimer() 119

CDynamicEffectsView class 117
creating 117
Ogre::Light member variable 117
ON_WM_KEYDOWN message 118
ON_WM_KEYUP message 119
working 122, 123

dynamic textures
AVIStreamGetFrame function 144
CDynamicTextureView::EngineSetup() 143
CDynamicTextureView::OnTimer procedure

144
creating 141
OnTimer() procedure 144

E
edge.left 79
edge.left.left 79
Edit Scene menu item 99
EndPaint() function 18
engine 61
EngineSetup() function 24, 29, 41, 164, 172,

198
Entity Name field 98
ENTITY_TYPE_MASK 272
Event Handler Wizard 38, 85
ExecuteCommand() 62
Extents button 255
Extents ribbon button 252
externalWindowHandle parameter 15

F
FileSystem resource location 41
folder structure

bin/debug folder 6
media folder 7
ogre.cfg 6
OgreMain.dll 6
Plugin_OctreeSceneManager.dll 6
Plugin_ParticleFX.dll 6
plugins.cfg 6
RenderSystem_Direct3D9.dll 6
RenderSystem_GL.dll 6
resources.cfg 6

form 33
Frustum class 280

284

FRUSTUM_TYPE_MASK 272
Function handler name 38
FX_TYPE_MASK 272

G
gallery button 264
Generated Classes page 23, 29
geoimages

GeoImageView::EngineSetup() function 135
GeoTiff 133
GeoTiff, URL for downloading 134
GTIFImageToPCS function 135
OT_TRIANGLE_FAN rendering operation type

135
using, as terrain textures 133

GeoImageView::EngineSetup() function 135
GeoTiff

about 133
image, downloading 134
library, downloading 134
website, URL 133

geotiff image 136
getCameraToViewportRay() function 261
GetEntity function 260
getFrameTimeSource() function 204
GetManualObject() utility function 73
getName() function 36
getValue function 197
GTIFImageToPCS function 135

H
handle parameter 61
Handle to the device context. See hdc
happy and mad pose 66
HBL_DISCARD option 151
HBL_READ_ONLY mode 182
hdc 18
height slider 131

I
IDR_RIBBON 29
IEnumSpObjectTokens member variable 233
importStlFile() function 43
Include Directories dialog-box 10
incremental algorithm 80

InitEngine() function 12, 23, 29
initialise() method 36
InitializeComponent() method 32
initialize() function 15
InitInstance() function 12
Input properties section 12
invisible handler 167

K
keyboard input

OnHotKey function 51
OnKeyDown function 52
OnKeyUp function 51
OnSysKeyDown function 51
OnTimer function 50
RegisterHotKey function 51
used, for navigating Ogre screen 47
WM_HOTKEY message 51
WM_KEYDOWN message 52
WM_KEYDOWN message handler 49
WM_KEYUP message 50
WM_SYSKEYDOWN message 52
WM_TIMER event 50
WndProc callback function 47

L
LandXML file

BaseWhiteNoLighting material 73
CLandXmlView::GetManualObject() utility func-

tion, adding 73
content 76
Faces XML node 77
GetManualObject() utility function 73
LandXML SDK, URL for downloading 72
LxDocument object 73
ManualObject 75
Points XML node 77
structure 76
SurfaceName variable 73
Surfaces XML node 76
terrain, creating from 72
website, URL 77

LandXML SDK
 URL for downloading 72

language ID parameter 61
Library Directories 10

285

Library Directories property 11
lights

creating 113
directional lights 115
Ogre
BillboardSet class 116
Ogre::BillboardSet 116
Ogre::BillboardSet class 116
point light, creating 114
point lights 115
spot lights 115

LIGHT_TYPE_MASK 272
linked animation

creating, steps 194-196
linked controllers

creating 200
creating, steps 200-203

LinkedMovement 172
Linker Output File property 35
Linker section 11
loadImpl() function 41, 43
loadImpl() resources 42
loadPlugin() 38
Local Windows Debugger 8
LxDocument object 73

M
main configuration filename parameter 13
ManualObject 75
ManualObject::begin() 83
ManualObject::end() 83, 87
ManualObject::setMaterialName() 83
ManualObject instance 44
manual objects

CManualObjectView::OnActionsMaterials()
method 83

CManualObjectView::OnActionsReset()
method 83

creating 81
ManualObject::begin() 83
ManualObject::end() 83
ManualObject::setMaterialName() 83
ManualObject utility class 83
Mebius mesh 81
setMaterialName() function 83

ManualObject utility class 83

Mebius mesh 81
media folder 7
meshes

adding, on terrain 89
Mesh Name field 98
message maps 47
MFC 5

used, for creating MFC Ogre application 19
MFC Application Wizard
MFC Ogre application

Advanced Features page 22
Application type 20
CEngine constructor 26
COgreInMfcApp
dialog-box 57
InitInstance() 23
COgreInMfcApp constructor 23
COgreInMfcDoc::OnNewDocument() function

27
COgreInMfcView::EngineSetup() function 26
COgreInMfcView::OnPaint() method 27
Compound document support page 20
creating 19
creating, MFC Application Wizard used 19
Database support page 21
Document Template Properties page 20
EngineSetup() function 24
Generated Classes page 23
InitEngine() function 23
Messages icon 26
Ogre::ResourceGroupManager 25
Ogre::Root instance 24
OgreInMfcView class 23
OnPaint() function 26
Properties window 26
robot.mesh resource 25
User Interface Features page 22
WM_PAINT message 26

MFC Ogre application, with ribbon
Category 29
Compound Document Support page 28
creating 27
Database Support page 28
Document Template Properties page 28
EngineSetup() function 29
Generated Classes page 29
IDR_RIBBON 29

286

InitEngine() function 29
Properties panel 29
Resource View 29
User Interface Features page 28
View menu, 29
Welcome to the MFC Application Wizard page

28
Microsoft Foundation Classes. See MFC
Minimal Ogre Collision Tools class 159
mirror

about 220
creating, steps 221-223

m_MouseNavigation flag 54
morph animations

creating 181
creating, steps 181-183

mouse input
CMouseInputView::EngineSetup() 54
m_MouseNavigation flag 54
OnLButtonDown function 54, 55
OnLButtonUp function 54
OnMouseMove function 54
OnMouseWheel function 55
used, for navigating Ogre screen 53
zDelta 55

movable text
creating 145
MovableText class 145
Ogre::MovableText class 147

MovableText class 145
moveRelative() function 266
m_RelativeDistance member variable 170
m_Root class member variable 13
m_Root->initialize() 41
m_StlFileManager 41
m_SuperQuadric.DrawMesh() 86
multimodal interactions 47

N
name of resource parameter 61
name of the log file parameter 13
NameValuePair list 16
New Project wizard

used, for creating Windows Forms Ogre ap-
plication 30

numeric value animations

creating, steps 192, 193

O
object

orbiting 263-266
selected object, zooming to 258-260
selecting 267-272
visibility 273-280

Octree scene manager plugin 39
Ogre

Plugin 36
Ogre::MovableText class 147
Ogre::PixelUtil::bulkPixelConversion()

function 150
Ogre::Resource class 41
Ogre::ResourceGroupManager 25
Ogre::Root instance 24
Ogre::SkeletonManager singleton instance

177
Ogre::VertexBoneAssignment class 177
Ogre 3D

screen graph, working 172-174
ogre.cfg configuration file 13
ogre.cfg file 6
OgreForm_Resize() method 32
OgreInMfcView class 23
OgreMain_d.dll file 6
OgreMain.dll file 6
Ogre plugin

Application Settings page 35
creating 34
dllStartPlugin() function 37
dllStopPlugin() function 37
Event Handler Wizard 38
Function handler name 38
getName() function 36
initialise() method 36
Linker Output File property 35
loadPlugin() 38
Octree scene manager plugin 39
Ogre
Plugin 36
Ogre source code, URL 40
renderOneFrame() 36
RenderSystem_GL plugin 39
Robot3Plugin class 36

287

RobotMesh menu item 38
Robot plugin 38

Ogre scene manager 15
Ogre screen

navigating, keyboard input used 47
navigating, mouse input used 53

Ogre source code
URL 40

OnBnClickedTryParticleSystem() 126
OnClickAction 110
OnHotKey function 51
OnHScroll 109
OnKeyDown function 52, 119
OnKeyUp function 51
OnLButtonDown event handler 252
OnLButtonDown function 54, 55
OnLButtonUp event handler 253
OnLButtonUp function 54
OnMouseMovefor event handler 265
OnMouseMove function 54
OnMouseWheel function 55
OnOrbit() 264
OnPaint() function 26
OnRecoEvent() function 62
OnSysKeyDown function 51
OnTimer class 158
OnTimer function 50, 155, 159, 184, 191,

209
OnTimer() function 110, 245
OnTimer member function 110
OnTimer procedure 144
OnTimer() procedure 144
ON_WM_KEYDOWN message 118
ON_WM_KEYUP message 119
ON_WM_TIMER message handler 110
OnZoom method 251
orbiting 263
OT_TRIANGLE_FAN rendering operation type

135
Output File property 11

P
PaintEventHandler function 32
particle file 111
particle system

Add Box Emitter menu item 126

Add Deflector Plane Affector menu item 127
Add Deflector Plane menu item 126
Box Emitter 126
create button 125
Deflector plane affecter 126
managing 124
OnBnClickedTryParticleSystem() 126
Try button 125, 127
Visual Studio Dialog Editor used 124

PixelBuffer 143
Plugin_OctreeSceneManager.dll file 6
Plugin_ParticleFX.dll file 6
plugins.cfg file 6
plugins configuration filename parameter 13
point lights 115
Points XML node 77
pose animations

about 185
creating, steps 185-189

Project menu 8
Project property pages 57
Properties panel 29
Properties window 26
Property Pages dialog-box 8
Pulse Width Modulation. See PWM
PWM 200

Q
quaternion 174, 274
Quaternion.FromAngleAxis() method 174
query masks

ENTITY_TYPE_MASK 272
FRUSTUM_TYPE_MASK 272
FX_TYPE_MASK 272
LIGHT_TYPE_MASK 272
STATICGEOMETRY_TYPE_MASK 272
WORLD_GEOMETRY_TYPE_MASK 272

R
Rain Control dialog-box 109, 113
rain submenu event handler 109
RaySceneQuery class 161, 168
RaySceneQuery setup 161
RegisterHotKey function 51
rendering

to texture 215-219

288

renderOneFrame() 12, 36
renderOneFrame() function 18
render operation 158
RenderSystem_Direct3D9.dll file 6
RenderSystem_Direct3D9_d plugin 14
RenderSystem_GL.dll file 6
RenderSystem_GL plugin 39
Render To Texture (RTT) camera 221
Resize EventHandler function 32
resources.cfg configuration file 14
resources.cfg file 6, 14
Resource View 29
ribbon

used, for creating MFC Ogre application 27
ribbon sliders

event handlers, creating for 130
Robot3Plugin class 36
robot mesh

moving, on curved path 156-159
robot.mesh file 17, 154
RobotMesh menu item 38
robot.mesh resource 25
robot.mesh resource file 17
Robot plugin 38

S
SAPI 59
SAPI library 232
SAPI voice, creating 108
scene

Add Entity submenu 98
Add Event Handler 96
Add Scene Node submenu 97
Add Scene Node submenu item 97
Create Child Scene Node dialog-box 97
creating 95
editing 95
Edit Scene menu item 99
Edit Scene, submenu 95
Entity Name field 98
Mesh Name field 98
saving, to XML file 100, 104
Scene Manager submenu 97
Scene Manager tree structure 99

Scene Manager submenu 97
Scene Manager tree structure 99

SceneNode animations
creating, steps 190, 191

select button 259, 263, 271
Select panel 259
setDisplaySkeleton method 179
setMaterialName() function 83
SetPosition() function 155
setQueryFlags() method 272
setSpotlightRange() 211
SetupEngine() member function 160
setValue function 197
setValue() function 193, 202, 230
shadows

event handlers, creating for ribbon sliders
130

managing 128
panels, adding to ribbon 130
sliders, adding to ribbon 130

shared recognizer 61
skeletal animation

about 176-179
features 180

Slump animation state 206
Solution Explorer pane 32
sound

about 228
using, steps 228-231

SPBindToFile function 111
Speak() method 69
SpeakStream 111
SpeakStream API function 230
SpeakStream function 231
Speech API 58. See SAPI
Speech Recognition context 61
SPEI_RECOGNITION event 62
sphere entities 172
SphereScale controller value class 198
spot lights 115
squareness parameter 89
STATICGEOMETRY_TYPE_MASK 272
StaticGrammarView.cpp 58
StaticGrammer.h 58
StlFile class 40
STL file format 40
StlFileManager class 40, 44
StlFileManager.h 41
StlFileManager member variable 41

289

StlFile resources 41, 42
StlFileSerializer class 40, 43
Sun node 172
superellipsoids

about 83
Add and Edit 85
Add event handler 84
creating 84
CSuperEllipsoidView::EngineSetup() 86
CSuperQuadric::DrawMesh() function 86
CSuperQuadric::UpdateMesh() function 87
CSupperEllipsoidView 85
Event Handler Wizard 85
ManualObject::end() 87
m_SuperQuadric.DrawMesh() 86
squareness parameter 89
wikipedia article, URL 89

superquadrics
wikipedia article, URL 89

SurfaceName variable 73
Surfaces XML node 76

T
terrain

CInsertMeshView::EngineSetup() function 90
creating, LandXML file used 72
CTriangulation::LocateTriangle() method 91
meshes, adding 89
robot, walking on 169-171

terrain textures
geoimages, using as 133

text-to-speech
about 68
COM object 68
CSpeechApp::InitInstance() 68
CSpeechView::EngineSetup() 68
CSpeechView::OnTimer() function 69
functionality using, steps 232-235
Speak() method 69
speech recipe, creating 68
Voice Emphasis Control 69
Voice State Control 69
Voice Volume Control 69

texture
rendering to 215-219

TextureCoordinates 92

texture_unit 142
time slider 130, 131
Tools menu 58
Topography.mesh file 164
Topography object 78
transparent materials

alpha_op_ex parameter 141
alpha_rejection parameter 139
colour_op parameter 139
creating 137, 139
CTransparentMaterialView::EngineSetup()

140
Traverse() function 105
trees

adding, as billboards 91
triangle vertex data

delaunay triangulation, creating 77
Try button 125, 127
TU_RENDERTARGET texture 217
type of resource parameter 61

U
unloadImpl() function 41
updatePoseReference() function 63
User Interface Features page 22, 28
User Interface (UI) 33
USGS DEM 137

V
VC++ Directories 9, 10
VES_POSITION element 182
video

about 225
creating, steps 225-227
playing, in texture 236-241

VID_ExpressionType rule 66
VID_ShowExpression rule 59
View menu 29
views

predefined 243-250
visibility button 278
visibilityto category 275
Visual Studio Dialog Editor used 124
voice

using, steps 232-235

290

Voice Emphasis Control 69
voice input

using, with static grammar 56
voice input, with dynamic grammar

about 66
CDynamicGrammarView::EngineSetup() 66
CDynamicGrammarView::ExecuteCommand()

67
VID_ExpressionType rule 66

voice input, with static grammar
<O> tag 60
about 56
Advanced features page 56
CStaticGrammerApp class 58
engine 61
ExecuteCommand() 62
facial mesh 64, 65
handle parameter 61
happy and mad pose 66
language ID parameter 61
MFC Application Wizard dialog-box 57
name of resource parameter 61
OnRecoEvent() function 62
Project property pages 57
shared recognizer 61
Speech API 58
Speech API (SAPI) 59
Speech Recognition context 61
SPEI_RECOGNITION event 62
StaticGrammarView.cpp 58
StaticGrammer.h 58
Tools menu 58
type of resource parameter 61
updatePoseReference() function 63
VID_ShowExpression rule 59
WM_RECOEVENT message 59

Voice State Control 69
Voice Volume Control 69

W
wall button 278
wave

amplitude 199
base 199
duty cycle 199
frequency 199

phase 199
type 199

WaveformControllerFunction 199
Waveform function

input parameters 199
wave types 199

Waveform function, input parameters
wave, amplitude 199
wave, duty cycle 199
wave, frequency 199
wave output, base value 199
wave, phase 199
wave type 199

Waveform, types
WFT_INVERSE_SAWTOOTH 200
WFT_PWM 200
WFT_SAWTOOTH 200
WFT_SINE 199
WFT_SQUARE 199
WFT_TRIANGLE 199

weather controls
creating 107
event handler, adding to rain submenu item

108
OnClickAction 110
OnHScroll 109
OnTimer() function 110
ON_WM_TIMER message handler 110
particle file 111
Rain Control dialog-box 113
rain submenu event handler 109
SAPI voice, creating 108
SPBindToFile function 111
SpeakStream 111
WM_HSCROLL message 109

weight value 178
Welcome to the MFC Application Wizard page

28
WFT_INVERSE_SAWTOOTH 200
WFT_PWM 200
WFT_SAWTOOTH 200
WFT_SINE 199
WFT_SQUARE 199
WFT_TRIANGLE 199
Win32 application wizard

used, for creating Win32 Ogre application
7, 8

291

Win32 Ogre application
about 7
Additional Library Directories property 11
Application type 8
BeginPaint() function 18
CameraNode 16
CEngine class 12, 13
CEngine constructor 17
CEngine wrapper class 12
Configuration Properties 8
createRenderWindow() method 16
creating, Win32 application wizard used 7, 8
EndPaint() function 18
externalWindowHandle parameter 15
false parameter 16
Handle to the device context (hdc) 18
Include Directories dialog-box 10
InitEngine() 12
InitEngine() function 12
initialize() function 15
InitInstance() function 12
Input properties section 12
library Directories 10
Library Directories property 11
Linker section 11
Local Windows Debugger 8
main configuration filename parameter 13
m_Root class member variable 13
name of the log file parameter 13
NameValuePair list 16
Ogre::Root instance 13
ogre.cfg configuration file 13
Ogre scene manager 15
Output File property 11
plugins configuration filename parameter 13
Project menu 8
Property Pages dialog-box 8
renderOneFrame() 12
renderOneFrame() function 18
RenderSystem_Direct3D9_d plugin 14
resources.cfg configuration file 14
resources.cfg file 14
robot.mesh file 17
robot.mesh resource file 17
VC++ Directories 9, 10
window height parameter 16
window name parameter 16

window width parameter 16
WM_PAINT message 12, 17
WndProc() function 12

window button 252, 256
window.dds texture 138
Windows Forms Designer 31
Windows Forms Ogre application

CEngine class 32
control 33
creating, New Project wizard used 30
form 33
InitializeComponent() method 32
OgreForm_Resize() method 32
PaintEventHandler function 32
Resize EventHandler function 32
Solution Explorer pane 32
User Interface (UI) 33
Windows Forms Designer 31

WM_HOTKEY message 51
WM_HSCROLL message 109
WM_KEYDOWN message 52
WM_KEYDOWN message handler 49
WM_KEYUP message 50
WM_PAINT message 12, 17, 26
WM_RECOEVENT message 59
WM_SYSKEYDOWN message 52
WM_TIMER event 50
WndProc callback function 47
WndProc() function 12
WORLD_GEOMETRY_TYPE_MASK 272

X
XML file

CLoadSceneView::Traverse() function 105
CSaveSceneView::EngineSetup() function

100, 104
CSaveSceneView::SceneExplore() function

101
CSaveSceneView::SceneNodeExplore() 101
CSaveSceneView::SceneNodeExplore function

101
scene, loading from 104
scene, saving to 100
Traverse() function 105
xmlTextWriterStartDocument() 100

xmlTextWriterStartDocument() 100

292

Y
yaw() function 266

Z
zDelta 55
zomming

to, selected object 258
zoom management 250

Thank you for buying

OGRE 3D 1.7 Application Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ogre 3D 1.7 Beginner's Guide
ISBN: 978-1-84951-248-0 Paperback: 300 pages

Create real-time 3D applications using Ogre 3D from
scratch

1.	 Easy-to-follow introduction to OGRE 3D

2.	 Create exciting 3D applications using OGRE 3D

3.	 Create your own scenes and monsters, play with
the lights and shadows, and learn to use plugins

4.	 Get challenged to be creative and make fun and
addictive games on your own

Blender 2.5 Materials and
Textures Cookbook
ISBN: 978-1-84951-288-6 Paperback: 312 pages

Over 80 great recipes to create life-like Blender objects

1.	 Master techniques to create believable natural
surface materials

2.	 Take your models to the next level of realism or
artistic development by using the material and
texture settings within Blender 2.5

3.	 Take the hassle out of material simulation by
applying faster and more efficient material and
texture strategies

Please check www.PacktPub.com for information on our titles

Away3D 3.6 Essentials
ISBN: 978-1-84951-206-0 Paperback: 400 pages

Take Flash to the next dimension by creating detailed,
animated, and interactive 3D worlds with Away3D

1.	 Create stunning 3D environments with highly
detailed textures

2.	 Animate and transform all types of 3D objects,
including 3D Text

3.	 Eliminate the need for expensive hardware with
proven Away3D optimization techniques, without
compromising on visual appeal

4.	 Written in a practical and illustrative style, which
will appeal to Away3D beginners and Flash
developers alike

SketchUp 7.1 for
Architectural Visualization:
Beginner's Guide
ISBN: 978-1-847199-46-1 Paperback: 408 pages

Create stunning photo-realistic and artistic visuals of
your SketchUp models

1.	 Create picture-perfect photo-realistic 3D
architectural renders for your SketchUp models

2.	 Post-process SketchUp output to create digital
watercolor and pencil art

3.	 Follow a professional visualization studio workflow

4.	 Make the most out of SketchUp with the best free
plugins and add-on software to enhance your
models

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Delving Deep into Application Design
	Introduction
	Creating a Win32 Ogre application
	Creating an MFC Ogre application
	Creating an MFC Ogre application with a
	ribbon
	Creating a Windows Forms Ogre application
	Creating an Ogre plugin
	Creating a custom resource manager

	Chapter 2: Let Us Be Multimodal
	Introduction
	Using the keyboard input to navigate an
	Ogre scene
	Using the mouse input to navigate an
	Ogre scene
	Using voice input with static grammar
	Using voice input with dynamic grammar
	Using text-to-speech to make application
	speak

	Chapter 3: Managing Objects
and Scenes
	Introduction
	Creating terrain from a LandXML file
	Creating Delaunay triangulation
	Creating manual objects
	Creating parametric superellipsoids
	Adding meshes on terrain
	Adding trees as billboards
	Creating and editing a scene
	Saving a scene to an XML file
	Loading a scene from an XML file

	Chapter 4: Let There Be Light
	Introduction
	Creating weather controls
	Creating lights
	Creating dynamic effects
	Managing particle system
	Managing shadows

	Chapter 5: Playing with Materials
	Introduction
	Using geoimages as terrain textures
	Creating transparent materials
	Creating dynamic textures
	Creating movable text
	2D image manipulation

	Chapter 6: Learning to Move
	Introduction
	Walking between points
	Walking along a path
	Collision detection
	Converting a 2D path into a 3D path
	Walking on terrain
	Linked movement

	Chapter 7: Implementing Animations
	Introduction
	Creating skeletal animations
	Creating morph animations
	Creating pose animations
	Creating SceneNode animations
	Creating numeric value animations
	Creating linked animation
	Animation using controllers
	Creating linked controllers
	Blending animations
	Creating animated light

	Chapter 8: Flashy Multimedia
	Introduction
	Render to texture
	Creating a mirror
	Creating a video
	Using sounds
	Using voice
	Video to texture

	Chapter 9: Queries and Views
	Introduction
	Predefined views
	Zoom management
	Zooming to a selected object
	Orbiting an object
	Selecting objects
	Object visibility

	Index

