Companion Web Site

* Book's source files, articles, Q&A, and more

Benjamin Gorton, Ryan Taylor, Jeff Yamada

Adobe®

Blur the line between
the Web and the desktop

Create AIR applications
with Flex" and Flash

Build functional applications
in the simplest way possible

T ¥ _;_.‘! i 4 r—

The book you need to succeed!

Adobe® AIR Bible

Benjamin Gorton
Ryan Taylor
Jett Yamada

WILEY

Wiley Publishing, Inc.

Adobe® AIR Bible

Adobe® AIR Bible

Benjamin Gorton
Ryan Taylor
Jett Yamada

WILEY

Wiley Publishing, Inc.

Adobe® AIR Bible

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-28468-1

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2008933791

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

www.wiley.com

About the Authors

Benjamin Gorton has been developing software for the desktop and the Web for over 10 years. For the
past seven years, he has been working in Flash and ActionScript, doing projects for such companies as
Disney, MTV, Neopets, and Sandisk. He currently resides in Los Angeles, where he works as a Senior
Software Developer for Schematic.

Ryan Taylor is an award-winning artist and programmer specializing in object-oriented architecture,
CGI mathematics/programming, as well as both static and motion design. Ryan, 25, has already landed
his name in the credits of the #1 and #5 all-time best selling video game titles, written for multiple
books, and established himself as an all-around leader in the digital arts community. Currently, Ryan
serves as a senior developer on the Multimedia Platforms Group at Schematic. He also works as an inde-
pendent contractor, offering his expertise to top companies and agencies all over the world.

Jeff Yamada lives with his wife AmyLynn and son Jackson in Salt Lake City, Utah, where he is currently
a Senior Interactive Developer at the award-winning RED Interactive Agency. Jeff specializes in the
architecture and development of immersive branded Flash experiences, rich Internet applications, and of
course, AIR applications. As both a designer and developer, Jeff has spent the last ten years freelancing,
consulting, and working for the University of Washington, Microsoft, Avenue A | Razorfish, Schematic,
and Nintendo. Jeff contributes to the open-source community and shares his thoughts and ideas with
the world at http://blog.jeffyamada.com.

Credits

Acquisitions Editor Project Coordinator
Stephanie McComb Patrick Redmond
Project Editor Graphics and Production Specialists
Chris Wolfgang Elizabeth Brooks
Nikki Gately

Technical Editor Andrea Hornberger
Leif Wells

' Quality Control Technicians
Copy Editor Jessica Kramer
Lauren Kennedy Dwight Ramsey
Editorial Manager Proofreading
Robyn Siesky Laura Bowman
Business Manager Indexing
Amy Knies Broccoli Information Management

Sr. Marketing Manager
Sandy Smith

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Barry Pruett

Ben

First, I want to thank everyone at John Wiley and Sons, without whom none of this would be pos-
sible. Also, all of the hard-working people at Adobe for putting out so many great products that
keep us inspired about the work we do. And thanks to everyone at Schematic, who never fail to
challenge us or to give us the time needed to rise to the challenge.

Thanks to Ryan and Jeff, who have made this book a pleasure to work on. Special thanks to Robert
Reinhardt for his moral support and consistently upbeat attitude. I owe a very big thank you to
Bruce Hyslop and the illustrious Richard Herrera for their flawless JavaScript advice. And an extra
special thank you to Colombene Jenner for her UX advice and constant support. And of course my
gratitude goes out to all of my friends and family that keep me sane.

Ryan

Thank you Ben and Jeff; it has been an honor and a privilege writing with you both. I would also
like to thank Stephanie and Chris for all of their patience and support, Alan for this opportunity,
my boss Matt for looking the other direction when I frequently stumbled in at 11:00 a.m. half
asleep, and my wonderful wife Andrea for being so understanding of the countless hours that I
spend in front of the computer screen almost every night.

Jeft

First I must thank my amazing wife AmyLynn and son Jackson. Amy, I could never have written
this without your support and tolerance for the unhealthy amount of late nights writing and
researching, and for taking care of Jackson and our family single-handedly at times while I typed
away. Jackson, thanks for always making me smile.

I'd like to thank Ben and Ryan for taking on this book with me. It has been a great experience to
work with you both as developers and writers. I owe thanks to Schematic for your support and
encouragement, Robert Reinhardt for your words of encouragement and sage advice, RED
Interactive for putting up with a frequently sleep deprived developer, and finally to Stephanie
and Chris, our editors at Wiley for your seemingly endless patience and invaluable guidance.

Partl: Introductionto AIRttt rennnaa.l

Chapter 1: Clearing the AIR..........cooiiiiiiii e 3
Chapter 2: Setting Up Your Development ENvironment..............ccocooivioiiiiiiii i 9
Chapter 3: Building Your First ATR APpplicationcocooiiiiiiiiiiiiiii e 33

Part II: Programming for AIREssentials43

Chapter 4: Crash Course in AIR Programming.............ccoocooioiioiiiiiiioe e 45
Chapter 5: Development ESSENtals...........ccoooiiiiiiiiiiii e 71
Chapter 6: Debugging and Profiling...............ccociiiiiiii e 83

Partlll: AIRAPI it i ittt 99

Chapter 7: Communicating with the Local Machine ... 101
Chapter 8: Using the FIleSYSTEIMcoiiiiiiiiiiiii it 115
Chapter 9: Using the CHPDOArdcoooiiiiiiiii i 147
Chapter 10: Dragging and DIOPPINZ.........c.oouiiiiiiiiiit oot 173
Chapter 11: SQLite Databases.ccoiuiiiiiiiiiiiiii e 193
Chapter 12: Using Native Operating System Windowsc.ccccooiiiiiiiiiiiiie, 217
Chapter 13: HTML CONEENE. ...ttt 255

Part IV: Building an Application......................271

Chapter 14: Preparing to Build a Large-Scale Applicationccoccooiiiiiiiiiiiii e, 273
Chapter 15: Building a Reusable Config Class..............ccocooooiiiiiiiiiii 285
Chapter 16: Application Design Best Practicescocooiiiiiiiiiiiiiiiiiiiiiiiice 305
Chapter 17: SDK DeVeIOPIMEIIciiiiiiiiiiiiiiii e 323
Chapter 18: Sample Application: LOgREAAETcooiiiiiiiiiiiiiiie e 329
Chapter 19: Polishing a Finished AppliCAtionccoooiiiiiiiiiiiiii e 357

Part V: Testing and Deploying383

Chapter 20: Deployment WOTKILOW ..ot 385
Chapter 21: Leveraging Ant to Automate the Build Process.................ccocoiiiiii 395
Chapter 22: Installation and Distribution................ocooiii 419

Acknowledgments i it it .. Vil

INtrodUuCtioON . . v vttt ittt ittt i it teteeeeeeaeaenennneeaeas XXiii

Part I: Introduction to AIR 1
Chapter 1: Clearingthe AIR
Why Use ATR? ..ot
Comparable Technologies................cocociiiiiiiin.
Flash and AJAX for the Web..............co e
SHIVETTIZRE. .o
GOOGLE GEATS ...

Java and NET ...
AIR Development Platforms at a Glance

Chapter 2: Setting Up Your Development Environment...............9

Adobe Integrated RUNUITE ..ottt
System requirements for AIR
Installing AIR

Windows

Uninstalling AIR
WITLAOWS e

MAC OS X e
Development Environments
Flex BUILAET 3.
Download and install Flex Builder
Create an AIR project

Flash CS3 ...
Install Flash CS3.........ccooiiiii
Configure your Publish Settings
Testing your AIR application
DIeamWeaVET CS3 ... ittt
Install Dreamweaver
CTOALE @ SILE ...t
Create an application file ...
Conlfigure AIR application settings

xii

Contents

Chapter 3: Building Your First AIR Application..................... 33
Using Flex BUILAeT 3 ..o 33
USING FIaSh €S3 ..o 35
Using DreamweaveT CS3... ..ottt 38
SUIIIIIIATY ..ottt ettt 41

Part Il: Programming for AIR Essentials 43

Chapter 4: Crash Course in AIR Programming..................... 45
A closer 100k at ACHONSCIIPL........ouiiiiiiiiiiiiiiii e 45

What's Tew 11 AS3 ... 46
Runtime exceptions and type checking................oooviiiiiiiiiiii 46
Sealed ClaSSEs..........oiiiiiii i 46
Method CLOSUTESviieiiic e 46
ECMASCTIPt fOr XMLt 46
ReguIAr eXPIESSIOTISttt 47
INAIMICSPACES ...t 47
New primitive tyPescooiiiiiiiiii 47

AS3 classes and iNterfaces.............ocooiiiiiiiii 47
PACKAZES ... 47
CLASSES. ... 48
TIEETTACES ..o 49
Access MOAIIETS ..o 50
MEEROAS ..o 51
USING INHETIEATICE ..ottt 53

BVEIILS L. 56
Constructing an event ODJECEoiiiiieieiei et 57
Dispatching an eVeNt............ccoeiiiiiiiiiiiiii e 58

DISPIAY TISE ... 59
DISPLAyODBJOCT ..o 60
DisplayObjectCOontaineroociiiiiii i 60

An Introduction to Flash............. 61

The THMELNEoiiiiiii e 61

WOTKIIEZ WIH TEXE. ..ottt 61
Using the TextFieldccooiiiiiiiii e 62
Static and dYNAMIC LEXToviviiiiioiioit e 62
INPUL TEXT L. 63

The LIDTATY ..ot 63
Converting a symbol on the Stagecccooioiiiiiiiiiiiiie e 63
The New Symbol WindOwWcocoiiiiiiiiiiii i 63
Adding a folder..........ocooiiiii i 64
Adding a font or VIAe0........ccoociiiiiiii i 64
AddINg aUAI0. ... 64

Contents

Using ActionScript in Flash ... 64
Setting the document Classcc.ocooiiiiiiiiiiiiii e 65
Class HNKAZEooviiiiii i 65
Timeline ACHONSCIIPL.ioviiiiiiieii it 65
The Highlights 0f FIEX........ooiiiiiiii i
IVEXIMIL e
BaSIC SYTITAK ...t
Components
UICOMPONENL ..ot
Layout components
COTLTOLS .
Event handling...........coociiiii i
SUITIITIATY ...ttt ettt

Chapter 5: DevelopmentEssentials71

The AIR Security Modelcoiiiiiiii i
SANADOXES ...
About application sandboXes..............ccoiiiiiiiiiiiiii i
The application sandbOXcccoiiiiiiiiiii e
Nonapplication sandboxes........................
Code signing.........c..ccocceceeee
Digital certificatesc.ccocoeoiiiiinn
ODbtaining a CertifiCateoooiiiiiiiiii e
Signing your apPlCALIOTL.........cviiiiiiiiii e
SIgNAtUTE HIMESLATIIPS ...t
BeST PIrACTICES. ...t
The application sandboxccooiiiiiiiiiiiii
Sensitive information and credentials
Downgrade attackscoooiiiiiiiiiie
Basic APPlCAtioN PTOPETHESc..iviiiiiiiiiiiioit et
Basic settings...........ccccccceeene
id
Filename
VTSIONL ...
DSCTIPUIOTL. ...
INAIMIE L.
Copyright INfOrmation............ocooiiiiiiiiiiiii e
INStallation SELHIESiiiiiiii i
INSAll FOlT ...
Program menu folder....
Window Settingscccooeevviiiiiiiiiiiiieicecee
Content and title ...
Appearance and raANSPATEIICYouiiiiiiieiaieitetee et
RESIZITIZ ...
Window sizing and poSIONIINGocooiiiiiiiiiii e

Contents

Chapter 6: Debugging and Profiling.ottt 83
DebUGEZING BASICS ...ttt 83
LLOGEINIE e 84
Profiling TeChNIQUESoiiiiiiii e 89

Monitoring the frame Tate.............ocooiiiiiiii e 89
Monitoring the total MeMOTYcioiiiiiiii i 90
Timing the code eXECULIONciiiiiiiiiiiiii e 91
Monitoring memory with the Flex Builder profiler..................ccocooi, 91
Memory and Performance TIPSooioiiiiiiiit ettt 93
Bypassing the Flex framework...........c.c.ocoiiiiiiiiiii e, 93
Using mouseEnabled and mouseChildren propertiescccocooiioiiiiiiiiiiiis 95
Setting Stage QUALLLYooveiiiiiiii e 95
USITE SINATT TNALN ... 96
REUSINE ODJECES ... 96
Use weakly referenced event listeners..............cocooiiiiiiiiiiii e 96
SUIIIIIIATY ..ttt 97

Part 11l: AIR API 99

Chapter 7: Communicating with the Local Machine................ 101
Differences among Operating SYSLEIMSc.ccueiiiiiiiiiiiiiiiiiiec et 102
Native MEeNU SUPPOTTcviiiiiiiii i 102
SYSTEIIL ICOTIS ...ttt 103
Special ChaTACIETSiiiiiiiii e 103

The AIR Security SANADOXo.oiiiiiiiiiiii e 104
MEALLCIOUS SCIIPLS ..ottt 104
Hacked code Hbrariesocoooiiiiiiiiiii i 104

MalICIOUS SLIIILES. ..t 104

SANADOXK LYPES ...ttt 105
Application sandbOX..........cociiiiiiiiiiiii 105

Remote SandbOXccoiiiiiiii i 105

Local with filesystem sandboxXccccooiiiiiiiiiiiiii e 106

Local trusted sandbox...........ccoooiiiiiiii 106

Local with network sandboX.................cociiii 106

USING SANADOXES. ... 106

Working with the Operating SYSEITL............ooiiiiiiiiiiit ittt 108
Monitoring the NETWOTKociiiiii e 108
Monitoring a specific URLccoiiiiiiiiiiicet e 109

MONILOTING USET PIESETICE ...t 112
SUIMIMATY ... 113
Chapter 8: Using the Filesystem............. ot 115
FALESYSTEINL BASICS ...ttt 115
FLE ODJECES .t 116
FALIEMOTE ... 116

xiv

Contents

FALESTIOAIM ... 117

Filesystem information...............ocooiiiiiiiiiii e 117
USING FOLARTS ... 117

Creating @ folder..........ooo oo 117

Creating a temporary fOlder..............oocioiiiiiii i 118

Copying and moving foldersocoiiiiiiiii 118

Deleting folders
Using Files........occooooiiiiiiii

Copyingafile...........cccocoe.

Moving a file

Deleting a fileooooii

Reading and writing files ..o

FAleStream ODJECESiiiiiiii i

WOrking With XML ..ot
File ENCTYPUOTL ¢ttt
SIMPle TEXE EAILOT ..ottt

Setting up the MXML application file

Creating the user interface.................occoccois

Creating TestFileStream.as and its API

TextFileStream’s APTocooiiiiiii i

Building TextFileStreamcoocooiiiiiiiiiiii e

Main APL ...

Building out Main ...

Managing Simple Text Editor’s application stateccocooiviiiviinieninnnnn 133
Managing Simple Text Editor’s application stateccoccooiviiiniienienrannnn 136

Chapter 9: Using the Clipboard147

Choosing a Clipboard FOTMAL...........ooiiiiiiiiiii e

Copying Data to the CHPboardccociiiiiiiiiiiii i,
Pasting Data from the Clipboard ...
Copy and Paste Sample Application.................cccc.e.
Getting started..............cooooiiiiii

Setting UP CalITIZOTIILooiiiiiiiii e

Set up the application model.............ocooiiiiiiiiii

Set up the application control

Implementing the VIEW...........coociiiiiiiiii e

SUIIMIATY <ottt

Chapter 10: Draggingand Dropping.ciiiiiiiiinn...

Drag and DIop CLASSES.........couiiiiiii ittt
NativeDTagManageTocooiiiiiiiiii i
NatiVeDTAZOPLIONSeiiiiiiiiiie et

XV

Contents

NativeDragEVvent ...

NatiVeDTIAZACLIONS ...ttt

CHPDOATA ...t

ClHPDOATAFOTIIALS ...t

ClipboardTransferModeooiiiiiiiii e

DIAZEINE OUL ..ottt

Preparing the data for drag-out

Creating a Clipboard object................c........

Sample Application..........c.ccoooviviiiiiiie

The Tumblr API

The application SEIUCTUTEcooiiiiiiiit i

Sending TUMbBIT POSESooviiiiiiiii i

ADSLTACTPOSE ...

REGUIATPOSE ...

PROLOPOSE ...

Drag@ing fllesooiiiii i
RegularForm.mxmlcoco..
PhotoForm.mxmlccccocooinn.

Chapter 11: SQLite Databasescoiiiiiiiiiiiieeenn.

Introducing SQLILEo.oiiiii e
The anatomy of @ databaseccooiiiiiiiii e
The ACID PIINCIPIE ..vviiiii i
Getting Started With SQLooiiiiiii it
Connecting to a database...............oocoiiiiiiiii e
Creating a simple table ...
Understanding data types.............cooooiiiiiiiiiiii e
Adding data to your table ...
Reading data out of a database
Managing SQL Databases..................cccoccociiis
Using SELECT statements

The FROM clause and the JOIN clause............................
The WHERE ClAUSE ..ot
The GROUP BY clause and the HAVING clause
Compound SELECT SAteIMENTS.oviviiiiieiieiteiteneet e
The ORDER BY ClauSeoviiiiiiiiiiiiiii e
The LIMIT ClAUSEc.viiiiiiiiiii e
Maintaining your databasecocociiiiiiiiiiiiii
The UPDATE statement...................
The DELETE statement
The ALTER TABLE statement.............
SUIIIITIATY ..ottt ettt

XVi

Contents

Chapter 12: Using Native Operating System Windows.217

Creating Systemm WINAOWSoiuiiiiiiiiiii e
WITLAOW LYPES ..ot
NativeWindowType. NORMALccooiiiiiiiiiiiiiii e
NativeWindowType. UTILITYcoooiiiiiiiiiiiii e
NativeWindowType. LIGHTWEIGHT
Window chromeccooooiiiiiii
NativeWindowSystemChrome NONE
NativeWindowSystemChrome. STANDARD
Window sizing and positioning..............cocoooiiiiiiiiii i
Controlling System WINAOWS.iiiiiiiiiiii i
Minimizing, maximizing, and restoring windows..................c.ccocociiii
TINIITZEO) e
MAXIIMZE) e
TESTOTC() e
ClOSEO) ;e
Managing multiple WINAOWSccooiiiiiiiiiiiiii e
orderTOFTOnt(); .c.vvveeeeeeeeeeeeeeeee
orderToFrontOf();
orderToBack();
OrderBehind ().
Adding content to WInAOWSocioiiiiiii it
AddIng SWE CONUEIIL ...ttt
Adding HTML CONEENE. ..ottt
Adding dynamic CONLENToooiiiiiiiieie e
NativeWIndow EVENS........oooiiiiiiii i
Using Application Icons..................
Taskbar and dock icons................cocociis
Windows taskbar icons
OS X dOCK ICOMS ...
SYSLIAY TCOTIS .ttt
DYNAMIC 1COTIS ...ttt
Twitter Client Sample APPHCALIONooviiiiiiiic i
Using the TWItter APL.......oiiiiiiiiii e
Creating Toast-styled Windows.................cooiiiiiiiiii e
TOASt WINAOWS ...t
The TOASLET ...
Creating the dialog boxes
The login window
The status update input window
Putting it all together...........oooiiii i
The Main applCAtION.coviiiiiiiii i

Contents

Chapter13: HTMLContent. ittt it i, 255
Accessing the ATR AP 256
Using the AIR HTML INtTOSPECLOTviiiiiiiiiiiiiiieie ettt 261
USING DICAIMIWEAVETeiiiiiiiiiiie ettt ettt 269
SUIIIIIIATY .ottt 270

Part IV: Building an Application 271

Chapter 14: Preparing to Build a Large-Scale Application............ 273
Planning an APpPLCALIONcooiiiiiiiiiii i 274

TA@ALIONI ... 274

WO e 274

WRAL . 275

WRETE L. 275

WRETL Lo 275

WY s 276

HOW L 277

Selecting a development Pathi..............ocooiiiiiiiiii 277
Information architeCtUre...........cooveiiiiiiiiii i 278

The Architecture Phase ..o 280
Architecture frameworKs ... 280
CATIIZOTIIL ... 281

PUTEMVC . 281

Leveraging existing lIbrariescccooiiiiiiiii 282
SUIIIITIATY ..ottt ettt 283

Chapter 15: Building a Reusable ConfigClass 285

Defining the XML ..o 285
Defining capability requirements................occoooiiiiiiiiiiii 286
Loading the XML........oooiiiiiiiiiiii e 286

Using File and FileStream.................oocociiiiiii e 286
Using URLLOAAET ...ttt 287

Resolving Dynamic PrOPETtIes..........c.uiiuiiiiiiiiiiit e 289

Using Composition for Event DiSpatChingcccocooiiiiiiiiiiiiiiii 291

Global ACCESSIDIIILY ...t 295
Choosing an approach...........ccooiiiiiiiii e 295

DEIEGALIOTL ... 295

The Singleton design PAtterncoiiiiiiiiiiiiiii e 296
Implementing the Singleton Patterncooooiiiiiiiiiiiiii e 296

Your Config Class in ACHONcoouiiiiiiiii i 301
SUIMIMATY ...ttt 303

xviii

Contents

Chapter 16: Application Design Best Practices 305
Preventing Spaghetti COAeoiiiiiiiiiiiiii e 306
How spaghetti has changedocooiiiiiiii e 307

Make 1avioll INSEEAdo.veiiiiii i 307
ENCAPSULALIONL ...t 308
DOCUMENIALION. ...t 309

ENtropy oo 309

Flex and Flash Guidelinesccoooiiiiiiiii e 310
TTANSIIOTIS ... 312
Combining MXML with ACONSCTIPLc.ooiiiiiiii i 315
General Coding GUIAENESooiiiiiiiiii i 317
Package SLIUCTUTIIEeovviiiiii s 318
USINE INEETTACES ...t 318
SUITIITIATY ...ttt ettt 322
Chapter 17: SDKDevelopment., 323
SDK Development Essentials..............ccooiiiiiiiiii i 323
Application descriptor fileocooiiiiiiii e 324
SOUTCE FILES ... 324
Compiling APPLICALIONSeovviiiiii e 324
The acompe COMPILEToiiiiiiii i 325

The acompc configuration file ... 325
Component compiler usage eXamplesoccooiiiiiiiiniiii e 326
DEDUGEITIE ... 327
ADL command-line arguments.cccoueiiiiioiiiiiiiiic e 327

ADL eXaAMPLES ...ttt 328
SUIMIMIATY ...ttt 328
Chapter 18: Sample Application: LogReader 329
REQUITEIIETIES ...t 329
FUNCHONALEY ... 330

USET NEETTACE ...t 330
ATCRITECTUTE ... 330
Making the application updatable ... 331
Preparing the APL............. 338
Creating the application view and logiC...........cocoriiiiiiiiiii 340
TRSUITLE .. 352
SUITIITIATY ...ttt ettt 355
Chapter 19: Polishing a Finished Application 357
The Importance of Design and Usabilitycccocoiiiiiiiiiiiice e 358
The relationship between function, usability, and designc.ccocooeiiiinnn, 358
Properties of g00d deSIZNouiiiiiiiiiii i 362

LAY OUL 1 362
TYPOZIAPIY ..o 362

Xix

XX

Contents

COlOT PALELLES ... 362

TTanSItioNS ... 363

SOUNA. .. 363

Properties of g00d eXPETIEIICEouiiiiiiiiiiiiii it 364
Keyboard shortcuts and versatility............coccooiiiiiiiiiiiiii 365

LaNGUAZE SUPPOTL ...ttt 365
ACCESSIDILILY ..o 366
Performance and reliability ..o 366

Flex Builder 3 Design TUtOTIalccooiiiiiiiiiiiiii e 368
Cascading Style SHEetsccooiiiiiiiiiiii i 368
EMbedding assets...........cooiiiiiiiiiiiii i 371
Creating custom COMPONENESoiiii it 373
Programmatic sKiNS.............ooiiii 375
Using Flex states to guide transitions............coooieriiiiioiiiiii it 379
SUITIIIIATY ..ottt 382
Part V: Testing and Deploying 383
Chapter 20: DeploymentWorkflow o ..., 385
Deploying from the Flex Builder 3 IDEccooiiiiiiiiii e 385
Deploying from the Flash CS3 IDEccoiiiiiiiiiie e 388
Deploying from the Dreamweaver CS3 IDEcocooiiiiiiiiiiie 390
Compiling, Testing, and Deploying with Command-line Tools..............ccccocoeceniiiiniine 392
Using MXMLC to compile an SWEF file.............coooiiiiiiii 392
Using ADL to test an applicationocoociiiiiiiiiiiiii e 393
Using ADT to generate a digital certificateooooiiiiiiiiiiiiic e, 393
Using ADT to package an AIR file ..o 393
SUIMIMIATY ...ttt 394
Chapter 21: Leveraging Ant to Automate the Build Process 395
GetliNg SELUP ..o e 395
Adding Ant view to the stand-alone Flex Builder IDE.............c..cocooiiiiiiiiinie 396
Installing Ant on your machine ... 396
Creating a Build File ... 397
Defining PrOPETUESo.eiiiiiiiiii ittt 397
DefININg LATZELS ...ttt 399
Defining tASKSvioiiii i 401
EXECULNE LATZELS ..ttt 403
AddIng BasiC TATGELSoouiiiiiiieii it 405
MaIN TATZET. .. .o 405

INEE TATZET ... 405
ComPile LATGELS ...t 406
LaunCh AL ... 410
Generate Certificate tATGEl...........ooiiiiiiiiii e 410

Contents

DEPLOY LATZRL. ..ot 411

CLEAN LATZEL ...t 412

Adding Advanced Targetsoocooiiiiii i 412
Generate dOCUMENTALION LATZETevvieiiiiiiiieiieeie ettt 413

Export and package SOUTCE tArZel...........oouiiiiiiiiiiiiiic et 415

USET TNPUL LATEEL ..ot 416

SUIITIATY ©. ettt ettt ettt ettt et 418
Chapter 22: Installation and Distribution 419
Implementing an Update SYSLeIMooiiiiiiii i 419
VerSiOn tTACKINE .. .ovviiiiii i 420

Notifying the user that updates are available ... 423
Downloading and installing updatesccooiviiiiiiiii e 424

Using the Adobe Install Badge...........coocioiiiiiiii i 427
Creating a Custom Install Badgeccooiiiiiiiiii i 428
Manual INStallationcoocioiiiiiiii e 432
SUIMIMATY ... 432
Index ...ttt it i i i i i ittt i e 433

XXi

Introduction

Adobe Integrated Runtime, or AIR, enables developers to create desktop applications using HTML,
JavaScript, and ActionScript. These applications are able to run on Windows, Mac OS X, and
Linux systems, meaning that Web developers will be able to use familiar languages and tools to
easily create desktop software.

A Web application can look the same to every user, on any computer, because the same code is
being executed to create the interface. The browser application itself handles the differences
between operating systems, which allows code to execute in the same way on a wide variety of
machines. A desktop application, on the other hand, starts up quickly because it is run directly
from the user’s computer, accesses data quickly because it can store data locally, does not require
an Internet connection to run, and is not constrained by the browser window.

Consider the current market of e-mail applications. If you use a Web application for your e-mail,
you will be able to access the interface from any computer, and possibly even some mobile devices.
These applications have become very popular as a result, but there are still drawbacks to using a
Web application over a desktop application. For example, if you want to find an e-mail you
received last week or last month, you often need to page through old messages to find the right
place in a Web application. This is a necessity because the data is stored remotely, so the amount
of data passed to the browser must be constrained. In a desktop application, messages can be
stored locally, and you can easily scroll down to find an older message.

Clearly there are uses for both Web applications and desktop applications. With AIR, there is now
a way to use the same interface in both environments. While there may need to be some differ-
ences between a Web implementation and a desktop implementation in order to take full advan-
tage of those environments, there is a lot to be gained from not having to create an entirely new
application for each environment. AIR, along with other recent developments that enable Web
applications to run on the desktop, blurs the line between Web and desktop applications, and it
will raise user expectations on both.

One of the most powerful features of Web development languages is that they are high-level script-
ing languages designed for developing presentation layers. HTML isn’t able to manage memory or
access low-level operating system APIs; it was never intended to do such things. Instead, a browser
interprets HTML, and the developers of that browser’s engine focus on those things. This allows
developers of the higher-level language to focus their efforts on the user experience and the busi-
ness logic of an application.

Introduction

In the world of desktop applications, C, C++, Cocoa, Java, and .NET are considered high-level lan-
guages. There is no question that scripting languages like ActionScript and JavaScript are less pow-
erful than these traditional desktop languages. At the same time, Web-scripting languages are also
much more focused on user experience and allow for much quicker development. AIR opens up
the door to this world and allows the Web development community to prove that user experience
is the key to a great application.

Put simply, this is the direction that application development is heading. Users and businesses
should not have to wait for developers of lower-level programming languages to reinvent the wheel
for every application when the same application could be developed far more quickly using a
scripting language interpreted by a low-level framework. Add to that the fact that these same
scripting languages can be interpreted by Web browsers and mobile devices, and it’s clear that this
is going to create a real shift in the world of application development. AIR is the future of applica-
tion development, and this is the book to get you on your feet.

Who the Book Is For

Our mission was to create a book that welcomes developers to the world of AIR development while
assuming a solid foundational knowledge of ActionScript 3.0 and Flex. Developers who have never
worked with Flex will still be able to take advantage of this book since the early chapters introduce
many of the core concepts of Flex development along the way. If you are completely new to
ActionScript 3.0, we recommend that you pick up an additional book that strictly focuses on
teaching ActionScript 3.0 to accompany this book. We also demonstrate the use of HTML and
JavaScript for developing AIR applications, though our main focus is on the use of ActionScript
and MXML.

This book is not strictly for beginners — we spend a lot of time examining complex project struc-
tures and deployment methods after covering all of the basics. This book will serve both as a great
introduction and handy desk reference for AIR developers at all levels.

How the Book Is Organized

This book is organized into five main parts.

B Part I: Introduction to AIR

W Part II: Programming for AIR Essentials
B Part III: AIR API

W Part IV: Building an Application

B Part V: Testing and Deploying

Each of these parts is broken down into several chapters.

XXiv

Introduction

Part |

The first part contains three chapters which introduce you to AIR development and the tools of the
trade. You can learn about the core concepts of AIR, how to set up the development environment
of your choice, and build your very first Hello World application.

Part Il

The second part focuses on ActionScript 3.0 and Flex fundamentals. There’s a review of the core
concepts, followed by examinations of the AIR security model, and a handy chapter on debugging
and profiling.

Part Il

The third part is devoted entirely to the AIR API. Filesystem access, to use of the clipboard, drag
and drop, HTML content, system windows, and SQLite databases — it is all there. Example usages
of each of the major API elements are included throughout the chapters.

Part IV

The fourth part focuses on more advanced topics. Subjects include the structure and development
of a large-scale application, best practices, and documentation. There is also a chapter dedicated to
the creation of a developer utility application for demonstration and inspiration purposes.

PartV

The fifth and final part is all about deployment and distribution. The chapters demonstrate techniques
for deploying your project as an actual packaged AIR file, generating certificates for digitally sign-
ing your application, automating command-line processes via the use of Ant, distributing your
application to the masses, and how to handle the distribution of updates once an application has
been deployed.

How to Use This Book

If you are new to AIR development, you will likely want to begin by reading the first few parts
straight through. You can get familiar with the tools of the trade and examine some simple project
setups and Hello World applications using a variety of different approaches.

Intermediate AIR developers can probably skip directly to Part Il and use the various chapters that
cover the API as reference material for implementing specific features in an application. The final
parts cover both basic deployment strategies and more advanced topics such as the use of Ant.
These chapters are aimed more toward intermediate and advanced developers and should be refer-
enced as necessary with that in mind.

XXv

Introduction

There is really no wrong way to use this book; some developers may choose to read through chap-
ter by chapter, but we suspect that most will find it ideal as a desk reference to turn to during the
actual development of a project.

XXVi

el

S

Introduction to AIR

IN THIS PART

Chapter 1
Clearing the AIR

Chapter 2
Setting Up Your Development
Environment

Chapter 3
Building Your First AIR
Application

he goal of this book is to teach you how to use Adobe Integrated

Runtime (AIR) to create desktop applications. You can use JavaScript

or ActionScript to develop AIR applications, and you don’t have to
purchase any software package from Adobe to get started.

From the user’s perspective, AIR is similar to the Flash Player, but for a
desktop instead of a browser. Immediately after users go to Adobe’s site to
download AIR, they are able to install and run any AIR application. AIR
applications run on PCs as well as on Macs, and a run time for Linux will be
available soon. Once installed, an AIR application behaves the same as any
other application you have — it has an application-specific desktop and shell
icons, windows and themes, and uninstallers.

From the developer’s perspective, developing for AIR is very similar to devel-
oping for the Web. You use familiar tools to create HTML, JavaScript, and
ActionScript. However, instead of deploying them to the Web, you generate
an application install package for distribution. AIR provides an API to add
additional behavior to JavaScript and ActionScript, so that you can work
within the desktop environment. This includes reading and writing to the
file system, customizing shell window appearance and functionality, and
creating local databases.

Why Use AIR?

If you are a Web developer, then you have probably been having a bit of a
panic lately. It isn’t that things are changing — change is the bread and but-
ter of Web developers. It’s that everything is changing! There are so many
new things to learn, it’s difficult to focus on which ones are the most impor-
tant or even the most interesting. There are tools such as Flex, ActionScript 3,

IN THIS CHAPTER

Why use AIR?

Comparable technologies

AIR development platforms at
a glance

m Introduction to AIR

AJAX, Ruby on Rails, Cairngorm, PureMVC, Papervision, Silverlight, and JavaFX. Then there are
APIs opening up everywhere — Flickr, Twitter, Google Maps, Last.fm — the list goes on and on.
1t’s definitely enough to make your head spin.

Now something different is thrown into the mix — now you are able to create a desktop applica-
tion. Why exactly would you want to do this? There are several things that a desktop application
can do that a browser application cannot, but the most important difference is that a desktop
application can read files from and write files to the file system. This may sound like a minor dif-
ference, but consider all the desktop applications you use regularly, and reasons why you prefer to
have them running locally and storing data locally. Offline modes are essential; you can’t always be
connected to the Internet (not yet anyway). Speed is also an important difference — disk read/write
is a bit faster than upload and download. Another important reason is privacy.

Clearly there are reasons to have desktop applications, but why use AIR to build them? More to the
point, why build them using a scripting language designed for the Web? There are some very pow-
erful tools already established for developing desktop applications. Languages such as C++ give
you complete control over system resources and libraries, and there are WYSIWYG (what you see
is what you get) editors to simplify the process for developers. Even still, developing an application
in C++ is no small undertaking, and a complex application can take a team of developers several
months or even years to finish. With AIR, however, familiar scripting languages allow developers
to focus on the application user interface, while the run time itself handles the details of the vari-
ous operating system APIs.

The process of installing AIR and an AIR application is actually very similar to the way Java pro-
gramming works for desktop applications — the user downloads and installs the Java Runtime
Environment (JRE) and is then able to install Java applications. A Java application is going to be
able to perform complex routines faster than an application written in JavaScript or ActionScript,
but again development for Java tends to be more involved and time consuming than in JavaScript
and ActionScript. The download size of JRE is usually around 10MB, which is about the same as
that for AIR. The exception to this rule is Mac users — the JRE for Mac OS X Leopard is about
8MB. So again the first major difference you see is in the balance between runtime power and per-
formance (which you will get more of with a lower-level environment) and development time
(which you will also get more of with a lower-level environment).

When you start to compare AIR with other technologies, you can find several reasons to use AIR:
Shorter development time

Simplicity

Small file size

Platform adaptability

Superior design

First notice that AIR is a bit easier to use than some other options. AIR is still quite new, so it’s
impossible to give an absolute figure, but it’s not unreasonable to estimate that the development
cycle for an AIR application would take between 30 and 60 percent less time than the development

Clearing the AIR _

cycle for an application with the same functionality in a lower-level language. The reason for that is
simple — well, actually, the reason is simplicity — AIR only adds a few additional class packages to
facilitate working in a desktop environment, as opposed to the host of libraries you may need to
learn for a lower-level language.

The second reason to use AIR instead of a similar technology is small file size. AIR applications and
the run time itself are relatively small downloads. It’s a fundamental truth on the Internet that
download size can make or break a technology. The Flash community has a special appreciation
for that rule — the small file size of the Flash Player and of Flash applications continues to drive
the acceptance, the success, and the ubiquity of our lil’ pal Flash.

Another important factor is platform adaptability. Of course, AIR applications will run on Windows
Vista and XP, on OS X Tiger and Leopard, and on Linux. But given that they are written in either
JavaScript or ActionScript, the same application can be modified to run in a browser. The extent to
which this can be done depends on the application, but it’s still a pretty powerful possibility. There
aren’t many applications out there that have a desktop and a Web interface, and there are almost
none that have the same interface for both. If you are building AJAX applications, you can easily have
a version that works for iPhones and for the Web, and another version that runs on the desktop!

One more factor worth mentioning is design. ActionScript and JavaScript developers are more
likely to focus on design and usability than developers of lower-level languages. This one may
sound like a shot at other developers just to fire up controversy, since there is no real reason why
any other development environment couldn’t be used to create a rich user interface. But there is
actually inherent truth to this: People who choose to develop in ActionScript or JavaScript choose
to focus on the user interface. This may be true for a variety of reasons, but one of the biggest is
that they are personally interested in design and usability. You don’t need to look far to find an
example of an application for which the user interface could be significantly improved. People
recognize the demand for this improvement, but some are responding more slowly than others.

It remains to be seen whether the developer community will fulfill the promise of improved appli-
cation visual design, but a couple of things are certain. One is that it’s perfectly capable of doing
so — there’s little question that the ActionScript and JavaScript communities have been a driving
force in improving the visual quality of user interfaces.

More important, it’s clear that this improvement is demanded. Recent technology industry battles
have played out to clearly demonstrate the demand for solid and friendly user interfaces. The suc-
cesses of iPod, Wii, and Google all point to user-interface simplicity. Put simply, you would have
to be crazy to bring a product to market without making the user interface a primary consideration.

Comparable Technologies

A wide variety of technologies are being compared to AIR, from other emerging technologies to
some more established platforms.

m Introduction to AIR

Flash and AJAX for the Web

One obvious comparison is to the traditional environment for Flash and AJAX.

Some have suggested that the added benefits gained from running an application locally will make
browser applications obsolete. This is not likely to be the case; AIR is not going to bring an end to
browsers, nor is that the intention. There are limitations to applications that run in the browser,
but they’re necessary and self-imposed. The fact that browser applications cannot delete files from
your hard drive and that you still have some files on your hard drive are not coincidental. The lim-
itations of the browser are good, and the usefulness of browser-based applications is not likely to
change in the near future.

However, there are applications that will not work within the context of a browser’s limitations.

1t’s difficult to imagine any one tool being perfect for every job. Some applications make little sense
without the ability to read, write, and delete files from your local hard drive. Other applications
make little sense in offline mode and have no added value as a downloaded and installed applica-
tion other than as a Web site. It’s important to use the right tool for the right job.

Silverlight

Comparing Silverlight and AIR is something of an error. Silverlight is more comparable to Flash,
because it runs in a plugin available for most browsers. There is a planned release of Silverlight 2.0
that will have limited file system access. However, you will only be able to open files in read-only
mode, and write access will only be available to specific directories. This is similar to the concept
of Shared Objects in Flash applications. Developers will also be limited to Windows Vista or XP,
which is an increasingly unfortunate limitation in today’s Web development community.

On the Web, Silverlight has proven itself to be valuable for some tasks. Some sites that require video
with Digital Rights Management (DRM) have been turning to Silverlight, for example. However,
Silverlight is still generally unstable and difficult to develop for. It may eventually shape up to be a
viable competitor to Flash, but there is no real comparison between the two yet. Flash is far more
widely adopted, is available for a wider variety of systems, is easier to use, and creates better-looking
content. Once Silverlight is able to create desktop applications, these same factors will make AIR a
superior choice as well.

Google Gears

Google has released an open-source plugin that will also provide offline storage of Web applications.
Gears, like Silverlight, runs in the browser. The operating system integration is not as flexible as an
AIR application, so things such as customized windows and system menus will not be available.
However, the download size of the Gears plugin is quite small, and developers can use JavaScript
to access the Gears API.

Gears doesn’t provide the same sort of application experience as AIR, but it does provide some
similar functionality, such as offline modes, local SQLite database storage, and local file access. For
JavaScript developers, Gears may be a viable alternative to AIR, particularly if the custom applica-
tion experience is not desired.

Clearing the AIR _

Mozilla Prism, another emerging technology, allows Web applications written in JavaScript to run
in an application-specific browser window, so the application appears to be running outside of the
browser. Prism allows the application to be installed and integrated with the operating system just
like any other application. Prism does not support any offline functionality by itself though, so
while it bears some similarity to AIR, it is not the same. However, the combination of Mozilla
Prism with Google Gears would actually provide a similar set of functionality as AIR, so you should
expect to see some interesting mashups between these two technologies.

There are actually a few other technologies similar to Gears or related to Gears, such as the Dojo
Offline Toolkit for JavaScript. Most of these technologies are conceptually similar — JavaScript
developers can create a Web application that runs from a desktop icon, looks similar to a standard
desktop application, and takes advantage of some local storage capacity. So far, none of these tech-
nologies offer a feature set quite as rich as AIR provides, though most have a smaller plugin than
the AIR installer to download.

Java and .NET

The most comparable tools to AIR may actually be Java and .NET. This suggestion might raise
some eyebrows because Java and .NET are both more powerful and robust languages than script-
ing languages like ActionScript and JavaScript. However, there are some close similarities, as users
need to download and install the JRE or the .NET Framework before they can install a Java or
.NET application. As mentioned before, the download sizes of those environments are comparable
to those of AIR.

One major difference is the contrast between the processing power of a language such as Java and
the processing power of a scripting language such as ActionScript. The other difference is the con-
trast in development time that this level of power and control tends to demand. This could be seen
as the choice that developers are now given, depending on the needs of the application: Some
applications require more processing power while others benefit from a richer user experience.
Another clear contrast is that AIR developers will not be able to access files such as DLLs or JAR
files, which can provide significant functionality to an application.

However, this contrast may not be as large as it seems on the surface. Java applications have a rep-
utation for providing a sluggish user experience for even relatively plain-looking applications. Also,
many desktop applications don’t actually require a great deal of processing power. For most daily
use applications, the average user loses more time to interfaces that do not respond to his needs
appropriately than he loses to long processes. Because of this, AIR could quickly become a threat
even to these well-established technologies.

AIR Development Platforms at a Glance

You can develop AIR applications using JavaScript, Flash, or Flex.

m Introduction to AIR

JavaScript applications will run in the WebKit implementation included in AIR. This is the same
code base used in Safari, so coding in JavaScript and HTML for AIR is the same as coding in
JavaScript and HTML for Safari. Developers use their editor of choice to write code and then pub-
lish using a command-line tool.

You can develop Flash applications in the Adobe Flash CS3 IDE, as well as change their publish
settings to compile AIR applications instead of Web deployments.

Flex developers can use Flex 3 to easily create AIR applications.

In all these cases, an AIR application is not restricted from doing anything that a Web application
can do. The AIR API is easily accessed from a small set of libraries added to the tools that you are
already familiar with.

Summary

AIR is a runtime environment that allows JavaScript and ActionScript developers to create desktop
applications. By choosing JavaScript and ActionScript, you choose to focus your development on
user interfaces, so AIR can very easily breathe new life into the desktop. There is a large shift taking
place as different groups develop technologies that combine the best of Web technology with the
desktop, and AIR is easily one of the most compelling technologies in this movement.

he first step toward developing an AIR application is setting up

your development environment and installing AIR. You have many

options in AIR since you can develop in Flash, Flex, or HTML, as
well as asynchronous JavaScript and XML. Adobe has released support for
AIR in Flash CS3 and Flex 3.0, which includes both the Eclipse-based Flex
Builder 3.0 and the Flex SDK. Dreamweaver CS3 has support for AIR for
AJAX development.

You can use Flash, Flex, and Dreamweaver to test and publish AIR packages,
making development streamlined and simple while allowing you to work

in an environment you may already be very familiar with. For developers
who would prefer to use another IDE, Adobe has also released the AIR SDK,
which you can use to develop and compile AIR applications with just about
any text editor. This chapter goes over how to set up Flash, Flex, and
Dreamweaver, and also how to develop using the SDK.

Along with a development environment, Adobe Integrated Runtime (AIR) is
required to test, run, and install AIR applications. AIR is available on Windows
and Mac OS X and will soon be available in many distributions of Linux.
This chapter gives instructions for both installing and uninstalling the run
time on all three operating systems. Chapter 17 discusses development in
Linux in more detail.

Adobe Integrated Runtime

ActionScript, the language used in Flash and Flex, has evolved significantly
from its beginnings as a simple script used to animate vector graphics.
ActionScript 3.0 is a fundamental evolution of the language that requires an

IN THIS CHAPTER

Adobe Integrated Runtime

Development environments

m Introduction to AIR

entirely new virtual machine called ActionScript Virtual Machine 2, or AVM2. The latest Flash
player, Flash Player 9 used for Flash and Flex, supports both the first virtual machine, AVM1, and
the new ActionScript 3.0 virtual machine. ActionScript 3.0 provides a significant improvement in
performance and a more mature programming model that is far better suited for rich Internet
application development.

System requirements for AIR
Tables 2.1, 2.2, 2.3, and 2.4 detail the system requirements for installing AIR.

TABLE 2.1

Windows
Processor Intel Pentium 1 GHz or faster processor
Operating system version Microsoft Windows 2000 with Service Pack 4

Windows XP with Service Pack 2
Windows Vista Home Premium, Business, Ultimate, or Enterprise
Memory 512MB of RAM

TABLE 2.2

Windows (with full-screen video playback)
Processor Intel Pentium 2 GHz or faster processor
Operating system version Microsoft Windows 2000 with Service Pack 4
Windows XP with Service Pack 2
Windows Vista Home Premium, Business, Ultimate, or Enterprise
Memory 512MB of RAM
32MB of VRAM

Mac OS X

Processor PowerPC G4 1 GHz or faster

Intel Core Duo 1.83 GHz or faster

Operating system version Mac OS X v10.4.910 or 10.5.1 (PowerPC)
Mac OS X v10.4.9 or later, 10.5.1 (Intel)
Memory 512MB of RAM

10

Setting Up Your Development Environment

Mac OS X (with full-screen video playback)

Processor PowerPC G4 1.8 GHz or faster
Intel Core Duo 1.33 GHz or faster
Operating system version Mac OS X v.10.4.9 or later or 10.5.1 (Intel or PowerPC)

Intel processor required for H.264 video
Memory 512MB of RAM
32MB of VRAM

Installing AIR

This section walks you through the steps for installing AIR on both Windows and OS X operating
systems.

Windows
To install AIR on Windows, follow these steps:

1. Go to www.adobe.com/go/learn_air_ runtime_download. Download the
Adobe Integrated Runtime installation file.
Double-click on the downloaded installer file.

Follow the installation instructions.

Mac OS X
To install AIR on Mac OS X, follow these steps:

1. Go to www.adobe.com/go/learn_air_runtime_download. Download the
Adobe Integrated Runtime installation file.
Double-click on the downloaded installer file.

Follow the installation instructions.

In OS X, you may be prompted to enter your username and password to complete the installation.

AIR for Linux

At the time of this writing, AIR for Linux is in the alpha phases of development and is still not feature
complete. System requirements have been listed for the current release, but it is likely that these
requirements will change by the time AIR for Linux is publicly released in its 1.0 version. Make sure
to check for current system requirements before developing for Linux as they may have changed.
Further details on developing for Linux are available in Chapter 17.

11

m Introduction to AIR

12

Uninstalling AIR

Should you tire of having AIR take up space, the following sections detail how to uninstall AIR.

Windows
To uninstall AIR from Windows, follow these steps:

1. Navigate to the control panel.

2. In XP, choose the Add or Remove Programs menu. In Vista, choose the Programs and
Features menu.

3. Select Adobe AIR from the menu.

Click Change or Remove to complete uninstallation.

Mac OS X

To uninstall AIR from Mac OS X, simply double-click the Adobe AIR Uninstaller icon, which is
located in the Applications folder.

Development Environments

There are three Adobe development environments that support AIR development: Flash CS3,
Dreamweaver CS3, and Flex 3. Each has support for the creation of AIR installer files. Flex Builder 3
develops AIR applications using the Flex framework or Actionscript 3.0 projects. Flash CS3 creates
Flash-based AIR applications using Actionscript 3.0. Dreamweaver creates HTML/AJAX applications.

Flex Builder 3

Flex Builder is an Eclipse-based, full-featured Integrated Development Environment (IDE) used to
build Flex and ActionScript 3.0 projects. It has a robust set of features for building, debugging,
profiling, and packaging applications, and it is based on the widely popular Eclipse IDE originally
built for Java development. Flex Builder is available both as a stand-alone installation or as a plugin
to Eclipse, offering identical features with only minor Ul differences among the options. Flex
Builder is available on Windows and OS X, and, as of this writing, is in the beta stages of a Linux
version.

You can use Flex Builder to build AIR projects and handle the compilation and packaging of an
AIR installer package (.air). In Flex Builder, creating an AIR project requires that you create a Flex
project and select AIR as the type of Flex project using the Flex project creation dialog box.

Setting Up Your Development Environment m

Download and install Flex Builder
The following steps walk you through downloading and installing Flex Builder on Windows:

1. Download Flex Builder 3. Go to www.adobe.com/products/flex/ to purchase the Flex
Builder 3 installer or download the 60-day trial.

2. [Install Flex Builder. Double-click on the installer package you downloaded in step 1
and follow the download instructions.

3. Run Flex Builder. The Flex Builder application’s shortcut is placed in Start = Programs=>
Adobe.

Select Adobe Flex Builder 3. Flex Builder starts up.
Create a project.
Like Java, Flex Builder uses what are called projects to organize applications in development. Each

project is essentially a folder package containing all source files and configurations for compiling
an application. Each project contains various configurations that you can set for your project.

To download and install Flex Builder on Mac OS X, follow these steps:

1. Download Flex Builder 3. Go to www.adobe.com/products/flex/ to purchase the Flex
Builder 3 installer or download the 60-day trial.
Install Flex Builder. Drag the application from the desktop to the Applications folder.
Run Flex Builder. Choose Applications=> Adobe => Adobe Flex Builder 3.
Select Adobe Flex Builder 3. Flex Builder starts up.

ook N

Create a project.

Create an AIR project

To create an AIR project, follow these steps:

Choose File=> Newt> Flex Project. A dialog box appears.

2. Choose from the dialog box’s options to set your preferences. Answer the questions
about the project you wish to set up. As shown in Figure 2.1, the first screen asks for
information about the project’s location, type, and server technology. Table 2.5 explains
each of these in detail.

13

m Introduction to AIR

TABLE 2.5

Setting

FIGURE 2.1

Creating an AIR project

B roew Frex Propect

Create a Flex project.

Chowse a narme and locatson for your propect, and canfigure the serves technalogy your project wll be wing. | m

Broject neme:

Progect location
Use default location

Folder: F\projects Browse...
Application type
@ Web application (runs in Flath Player)

@ (7 Desktop apphcation {rans in Adobe AR)

Server technology

Applcation server type: | None -

Cancel

New Flex Project Settings

Description

Project
name

Project
location

Application
type

Server
Technology

Specifies the name of the Flex project. This will also set the default name of your main
application MXML WindowedApplication file, the initial entry point file for your
application. This will also set the default name of your application when it is published as an
AIR file. This is a required field, but can be changed later. This name must be unique to any
currently opened projects in Flex Builder.

This is the location of your Flex Builder project. By default, the location is in a folder of the
same name as your project name in the default Flex Builder projects folder which is a
selection during installation. To select a different location, uncheck the Use default location
check box and select the location you wish to store your project. This can be changed after
your project is created.

Specifies the type of Flex project to create. This will determine the various configuration files
created and the type of main MXML file that is created. This cannot be changed after the
project is created, though the code used to build a Flex Project can be used by an AIR project
and vice versa by referencing the project folders as source directories. To create an AIR
application, select Desktop application (runs in Adobe AIR).

Selecting a server technology allows you to deploy your Flex or AIR application directly to
your server in a specified location. This setting can be useful for building an AIR application
that interacts with a server-side technology for tasks such as accessing a server-side database,
accessing Web services, or making remote object calls. If a server technology is not required
or planned for you, choose None and a local directory will be used to publish your
application for testing and deployment. You can select a server technology later.

14

Setting Up Your Development Environment _

3. Once the first screen in the New Flex Project dialog box is complete, click Next.
Depending on whether you selected a server technology, the Project Creation Wizard
asks you for information about the output folder locations for your application in the
Configure Output dialog box. If you selected None for server technology, the default
location for your output folder is bin-debug.

In most cases for a project that is not associated with a server technology, the name of
this folder is suitable. In some cases, the output folder may be a shared folder used by
other developers or designers, either in a shared location or using technologies like CVS
or SVN for source control; in such a situation, it may be important that you name this
folder more appropriately. If this is your first AIR application and you're looking to just
getting up and running to build a simple AIR application, you can just leave this location
as bin-debug and change it later if needed.

4. Once you've selected an output folder, click Next. The Create a Flex Project dialog
box is the last screen in the Project Creation Wizard. As described in the window’s subti-
tle, this is the window that configures the build paths for the project. In this window, you
can select several options for configuring the Main source folder and additional source
folders for your project.

In this dialog box, you can customize the name of your main application file and your
application ID. In most cases the default values for these are fine, but Table 2.6 describes
in detail the options available in this portion of project creation.

5. Click Finish. Your application project is created in the Navigator palette in Flex Builder.
Your main application MXML file is created in your source folder and is identified with
an icon indicating it as your main Default Application file. You can select another file as
your default application by right-clicking on it and selecting Set as Default Application.

Note that the default application file needs to be in the root of your selected source
folder.

The default application file will extend WindowedApplication and will look like this:
<?xml version="1.0" encoding="utf-8"?>
<mx :WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">

</mx:WindowedApplication>

15

m Introduction to AIR

TABLE 2.6

Setting

Create a Flex Project Settings

Description

Source path

Library path

Main source
folder

Main
application file

Application ID

Specifies additional source folders you may want to use from other locations or projects in
Flex Builder. If you'd like to use the MXML and ActionScript files located outside of your
project, you can use the Add Folder option to select these locations. These folders will be
used to compile your application.

Libraries are a form of compressed source code that can be easily distributed for Flex and
ActionScript projects. Instead of distributing packages with several ActionScript and MXML
files, an SWC library file is a single file zipped into a compact file that can be used in the
same way an external source path can be used. To use an SWC library file, specify its
location using this dialog box.

The main source folder serves as the source root folder for your application. By default the
folder is named src and is where class and MXML packages resolve when compiling your
application. For example, the package org.airbible.example. * will resolve to this
folder and the package org will reside in this folder. Generally speaking, this is where all
your code will reside.

This is the main application MXML file used to compile your application. For AIR projects,
it will be a subclass of WindowedApplication and is the initial entry point for the
application upon compilation. Note that this file is what Flex Builder uses to build your
application and will be used by the debugger to run your application debug sessions and
notify you of errors while you develop using the Build automatically option.

This is a unique identifier to use when creating and managing your AIR application. Like a
class, it is good practice to assign your application a unique identifier such as org.
airbible.applicationname.

Configure, test, and distribute your AIR application. Aside from your Flex Builder project configu-
rations, there are also configurations that you can make to your AIR application using the AIR
configuration XML file. By default, this file has the same name as your application file with an
appended -app and the file extension .xml instead of .mxml. There are various settings available in
the application configuration file that are discussed throughout this book in detail; for now, know
that some of the most basic settings are made here, such as the initial dimensions, system chrome
settings, and icons used by your application.

Now that your application is set up, you are ready to test it. You can publish and test using the
Run menu. There are several methods for testing and deploying your application in Flex Builder,
such as Run, Debug, and Profile.

16

= Debug and Profile modes of testing have many options for testing your applica-
tion that are covered in detail in Chapter 6.

Setting Up Your Development Environment m

When you are ready to distribute your application, you need to export a release build, which is a
selection under the Project menu. When you select Export Release Build, Flex Builder opens the
Export Release Build dialog box before your application is packaged into an installer package for
distribution. The first screen lets you select the project to export; the application MXML file;
whether View Source is selected, which allows users of your application to view the source code of
your application; and the name of the AIR file to be exported.

In the second Export Release Build screen, you are presented with code-signing options (see Figure
2.2). Because AIR applications are online applications with desktop functionality, they are required
to be signed. Though an AIR application can be signed by its creator (called self-signing), it is
important to obtain a proper certificate from a trusted and recognized certificate authority in order
to ensure the security and safety of a desktop application.

Once your application has been given a digital signature, you can select which files will be
included in the installer package (see Figure 2.3). These files will be included in the AIR installer
and made available to your application once installed on a user’s machine.

More information on obtaining certificates is available in Chapter 5.

FIGURE 2.2

Code-signing options
[Expurl Release Build M

Digital Signature

Specify the digital certificate that represents the application publisher's identity.

8! bxport and sign an AIR file with a digital certihicate
Certificate: - : H.mww.... : Create... |
Pazcword:

| Remember password for this session

[¥] Timestamp

Cxport an intermediate AIRI file that will be signed later

| Cencel

17

m Introduction to AIR

FIGURE 2.3

Flash CS3

Flash is the leading multimedia-content authoring environment used to develop rich Internet
applications, immersive interactive Web experiences, instructional Web sites, presentations,
and games. Used heavily by both designers and developers to create rich animations along with
advanced application functionality over the Web, Flash reaches a wide audience with a cross-
operating system/cross-browser deployment model. It is available on Windows and Mac OS X.

The following sections walk you through installing Flash, configuring Flash to publish AIR applica-
tions, and authoring a blank AIR application.

Install Flash CS3

If you haven't already installed Flash CS3, you need to download and install it before you can
continue. A 30-day trial is available from Adobe if you're not sure you want to purchase it yet, or
you can purchase it alone or as part of one of the CS3 bundles. Follow these steps to download
Flash CS3:

1. Download Flash from www.adobe.com/products/flash.

2. Once you've downloaded Flash, double-click on the download file on your desktop.
Flash installs on your machine if you're on Windows.

3. If you're working on Mac OS X, drag the install file into the Applications folder.

Select files to be included in the installer package.

8 Expurt Release Build [= [O e

18

AlR File Coments
Select the output files to include in the exparted AlR or AIRI file,

Included files: 71 B Window-appxmi (as META-INF/AIR/ spplication.ml) (required | Check All |
7] T# Window.swf (required
> Uncheck All |

Finish] | Cancel

Setting Up Your Development Environment

The Adobe AIR support for Flash CS3 comes in the form of an update available on Adobe.com at
www . adobe . com/support/flash/downloads.html. At the time of this writing, the latest
update for Flash CS3 is the Adobe AIR Update for Flash CS3 Professional, which was posted on
February 25, 2008. Download this update for Flash and follow the installation instructions to
apply the update to Flash CS3. Once the update is installed, you should see the commands avail-
able under Commands=> AIR — Application and Installer Settings=> AIR — Create AIR File.

To create an AIR application in Flash, you need a new FLA file. An FLA file is the source file for the
SWF format and is used to compile a collection of library items and ActionScript classes. Follow
these steps to create a new FLA file for your application:

1. Choose Filew> New. The New Document window appears with several options for files
that you can create within Flash, as shown in Figure 2.4.
2. Select Flash File (ActionScript 3.0).

3. Click OK. Open a new FLA file.

FIGURE 2.4

The New Document window

New Document {=25]
Geerdl | Templates

Type:) Descripten:

st e P domen 10 e P Do
P e e g

T Flash Fie (Motie) for Flash mavies and applications.
Th r1ash Sicke Fresentason

. ArtonSeript Communication Fie
™= Flash lavaSariot Fie
= Flash Fropect

4. Go to Filew> Save As to save the file to the location you want to use as your project
folder. This is the folder where your AIR application settings and published installer will
be created unless you specify otherwise in the Publish Settings window.

Configure your Publish Settings

Before you can set the FLA AIR configurations, you must set the output format of your Flash file to
AIR. To set the output format of your FLA file, follow these steps:

1. Choose Filec> Publish Settings.
2. Click on the tab titled Flash.

19

m Introduction to AIR

3. Set the Version drop-down list to Adobe AIR 1.0. In future releases of AIR, it is likely
that options for AIR 1.1 or 2.0 will also be placed here, but the operation itself will likely
remain the same. Figure 2.5 shows the Publish Settings window and the correct selection
for Version.

Now that your Flash file is set to output AIR applications, you can continue to configure the AIR
application itself. Access the Air — Application & Installer Settings window found in the
Commands menu, as shown in Figure 2.6.

You can configure numerous settings for your AIR application in this window. These settings affect
how your AIR application is published, its appearance, and things like what icons your application
will use when installed on a user’s machine. Table 2.7 lists the various options available in this
window.

FIGURE 2.5

The Publish Settings window

(Publish Settings E=

[:lanrrnﬁlP:|i)Pblit 4+ FH e

AClioniSUivl version: Fash Mayer 1 | Setgs.. |

Opbions: Fach Player & t

Password:

Suipl tme lmil: 15 sewonds

IPEG guality: U HI

0 100

Pty
Audio stream: MP3, 16 kbps, Mono Set...

Audio evenl: MP3, 16 kbxrs, Monu Stthers

7] Oveerricke sound setlogs

|| Expart device sounds

Local playback seowity: | Access local fles only
pien | [ok | [cancel

20

Setting Up Your Development Environment m

FIGURE 2.6

The Air — Application & Installer Settings window

AIR - Application & Installer Settings eS|

Appiication cettings

FHie name: | [E

Mame; test Version; 1.0
ID: com.adobe.cxample, test

Description:

Copyright:

Window style: | System Chrome -

Tcon: | Select Icon Images |

Advanced: | Semngs...

| Use custom apphcation descriptor fle

Ingtaller catings
Digital signature: Select a cerfificate to sign AIR fia Set..
Destination: test.air J
Induded fles: 1? =|(ga
[C:\usere\leDesktop\acdf\test.enf
Ci\cers\JeffiDecktop\acdfitect-app.xml
| PbtshamFle | [ok | | cancel |

J

[tep |
TABLE 2.7

Air — Application & Installer Settings

Setting Description

File name The name of the executable AIR file when users install your application. This name must
only contain ASCII characters and cannot end or begin with a period. This name is
required and defaults to the name of your site in Dreamweaver.

Name The name that appears in the installer of your application. It is not required. It must contain
only valid characters for file and folder names and defaults to the SWF file.

Version Specifies the version number of your application.

ID This is a unique identifier for your AIR application. It cannot contain special characters and

accepts only 0-9, a-z, A-Z, . (dot), and - (dash).

continued

21

TABLE 2.7 continued

Setting Description

Description Sets a description of the application the user is installing and is not required.

Copyright Specifies copyright information that is shown in OS X. This is not shown in Windows or
Linux.

Window Style Specifies the style of window for your application. More information on window styles is
available in Chapter 12.

Icon Specifies the application icons that will display in the operating system. The default icons
are Adobe AIR icons; to customize the icons, click the Select Icons button and select an
icon for each size in the dialog box. AIR only accepts PNG images as icons.

Advanced Opens the Advanced Settings window.

Use custom To create a custom application descriptor file, specify the values you want. To view the

application default application descriptor files, deselect the check box and browse to the current

descriptor file descriptor file.

Digital Selects the digital signature your application will use. To learn more about signing your

signature application, see Chapter 5. For development, select the option Prepare an AIR Intermediate
(AIRI) package that will be signed later.

Destination Specifies where the application installer file (AIR) will be saved. Defaults to the root

Included files

directory where the Dreamweaver site is created.

Selects files to include in the application. You can add HTML files, CSS files, and
JavaScript Library files.

In the Application & Installer Settings window, you may have noticed the Advanced Settings menu
(see Figure 2.7). The Advanced Settings menu exposes settings for associated file types, initial win-
dow settings, the install folder location, the program menu folder location, and the option to use

custom Ul for updates.

Table 2.8 describes the options in the Advanced Settings window.

22

FIGURE 2.7

Setting Up Your Development Environment m

The Advanced Settings window

Advanced Settings
Accodiated file types

| =

<None >

Initial window cettings
Width:
X:
Maimum width:

Panimum weidth:

Other sptfings
Install tolder:

Program mend fodder:

TABLE 2.8

Setting

Height:
T
Manwmim height:
Minimum height:
| Maximizable
| Minimizable
| Resizable
| Visible
Use custom U for updates
| OK | | Cancel

Advanced Settings

Description

Associated file
types

Initial window
settings

Install folder

Program Menu
Folder

Custom Update
ul

Associates file types with your application. These are not required. You can find more
details on file type associations in Chapter 5.

Includes settings for initial width, height, x position, and y position of the application
window. There are also settings for whether the application window is maximizable,
minimizable, resizable, and visible.

Specifies the folder to install the application to.

Specifies the subdirectory in the Windows menu where the application shortcut should
be placed (Windows only).

Indicates if the Adobe Installer or the application itself performs updates. If you deselect
this option, your application will need to perform its own updates. You need to provide
an application that performs these updates.

23

FIGURE 2.8

Introduction to AIR

Testing your AIR application

To preview your application as you develop it, use the keyboard shortcut Ctrl+Enter on Windows,
or 3+Return in Mac OS X. To debug your application and use tools like line breaks and to get
more detailed information about errors that may be thrown during testing, use Ctrl+Shift+Enter.

To publish the AIR installer file for distribution, choose AIR — Create AIR File in the Commands
menu. You are prompted to select a digital signature (see Figure 2.8). You can self-sign the applica-
tion, but it is more important to obtain a trusted certificate so that users can trust your application
when it is installed.

I You can find more details on digital signatures in Chapter 5.

The Digital Signature window

Help

Digltal Signature E=
Speafy the digeal certificate that represents the applcation publisher’s idennity.
B 5 the AIR Sl with & digtal cersficate

cersheate: v | B, | | Cresten |

Paszword:

Termember passwerd for this session
| Tmestamo

Prepare an AR Intermediste (AIRI] file that vl be signed later

24

Dreamweaver CS3

Dreamweaver is a Web development and design application widely used by developers and design-
ers alike for its intuitive visual layout tools and advanced coding development environment. You
can use Dreamweaver to develop AIR applications with an installed extension available from Adobe.
The following sections detail how to get up and running for AIR development in Dreamweaver CS3.

Install Dreamweaver

If you haven't already installed Dreamweaver CS3, you need to download and install it before you
can continue. A 30-day trial is available from Adobe if you're not sure you want to purchase it yet,
or you can purchase it alone or as part of one of the CS3 bundles. Follow these steps to download
Dreamweaver:

1. Download Dreamweaver at www . adobe . com/products/dreamweaver.

2. Once it has downloaded, double-click on the download file on your desktop.
Dreamweaver installs on your machine.

Setting Up Your Development Environment m

The Dreamweaver extension comes in the form of an MXP file that you can install using the Adobe
Extension Manager. It is available at www . adobe . com/products/air/tools/ajax/.
Download and save the MXP file.

If you have a previous version of the extension from a prerelease version of AIR, use the Adobe
Extension Manager to uninstall it before installing the current extension. The Adobe Extension
Manager is installed when you install Dreamweaver CS3. To install the extension, you can either
double-click on it and it will prompt the Adobe Extension Manager to install it, or you can open
Adobe Extension Manager and choose File &> Install Extension.

Create a site

It may seem unintuitive to create a site in Dreamweaver in order to create a desktop application,
but a site in Dreamweaver is actually more like a project in Flex Builder or Flash; it helps manage
a grouping of files for your application. To set up a site in Dreamweaver, follow these steps:

1. Choose Sitew> New Site. A pop-up window appears.

2. In the Site Definition pop-up window, give your project a name in the What would
you like to name your site? field, as shown in Figure 2.9. Name your project and click
Next.

FIGURE 2.9

The Site Definition window

Site Definition for AirProjectName ==
; . =5 s
Site Definition . 5 4

Hditing Hiles

A site, in Adobe Dreamweaver C53, is a colection of fles and folders that coresponds to a
website on a server.

What wenudd yno lee tn name your sited
ArProjectiiame

Fyample: mysite

Whal is the HTTP Address (URL) of your site?
http:/f
Example: hilw: ffwwv.myHost.com finySite

If you want to work drectly on the server using I or KIS, you should create an I or BOG
server connection. Wirkng drectiy nn the server does nat allow you to perform sitewds
operations ke link checking or site reports.

o) e) e

25

m Introduction to AIR

26

3. Leave the default selection for a server-side technology to No, I do not want to use a

server technology. Click Next as shown in Figure 2.10.

FIGURE 2.10

Choose a server technology.

Site Definition for AirProjectName (Exa]
[asic | advanced

Site Definition

Hditing Hiles, Part 2

[yoas want b wanek with & seever techoningy such as ColdPusion, A5P NET_ASP_ISP. ar PHP?

@ Mo, | do not wark 1o use a server technology.
Yet, | want o use a verver technology.

cBack | [mext> J[canca |[hHep

Choose a location for your project by either typing the name of the location or using
the browse button next to the location field (see Figure 2.11), and then click Next.

Select None when asked for a method for connecting to a remote server (see Figure
2.12), and then click Next. Since you're building a client-side application, you won't be
connecting to a remote server while building an AIR application.

In the final screen of this process, verify all the selections you’ve made (see Figure
2.13). Click Done, and your project will be set up in the directory you chose.

Setting Up Your Development Environment _

FIGURE 2.11

Choose where to save your project.

Site Definition for AirProjectName

: =

Site Definition W“
e ™

Hditing Hiles, Part

Hrwa rdn o want i wnrk with woaar files durning desvelnponent 7

@ Edit local copies on my machine, then upload to server when ready [recommended)
+ Edit diveclly un serve using kecal network,

“wihere on your computer do you want to store your fles?
C L) sl el Diucunienls'

i
<gock | [Mext>][concel [[e |
FIGURE 2.12
No need to connect to a remote server.
Site Definition for AirProjectName =
Dasic

Site Definition

Hrwa rln pows cnnnecd T yous temnke seres T

None

FTP

LocalMetwark

ekl

HUOS

Miciosoft® Visual SourceS afe®

<o | [Next> J[concd |[bep |

27

m Introduction to AIR

28

FIGURE 2.13

Verify your selections in the final screen.

Site Definition for AirProjectName (Exa]
[asic | advanced

Site Definition _‘i T\—@

-
“fiour gibe hat the lollovang setbngs:

Local info: (Local root folder will be created)
Siler Mame. AiFiviectane
I nral Rnot Froddes T Tzprah e D aroment s \birPrinjeetN amet.

Remole info:
A |0 wet this on [ates

Testing server
Acsess, 11 sel this up lale,

“riour gite ran he hather configured 1sing the Arbvanced Tah

Create an application file

The next step is to create the initial HTML file for your application. This file is similar to an
index.html file or a Document ActionScript Class in ActionScript. This file will be the initial
starting point for your application and will initiate your application. In HTML, it is standard

to name this file index.html or default.html, but you might name it main.html, or
application.html. Just know that it’s the entry point for your AIR application.

To create your initial file, follow these steps:

1.

Choose Filew> New File. You can also do this by using the keyboard shortcut Ctrl+N
in Windows or 8+N in OS X. The New Document window appears showing the many
different files you can create.

Select Blank Page=> HTML = <none> as shown in Figure 2.14.

You can also create the initial HTML file by right-clicking in the Files window.
Either choose Windows = Files or press F8. When you right-click in the window, a con-
textual menu appears (see Figure 2.15). The New File option creates a blank HTML file
for you.

FIGURE 2.14

Setting Up Your Development Environment _

The New Document window

i
i

B e
_'3 Blardk Tranplote

133 Piage e Tenplis

HTML template
Uibeary e

KELT (Enltire page)
XELT (Fragment]

css
Javascrpt
M

(YR IR TRIH TR TR T

Il Paoe hom Savrple
ASF lavaSorpt

' e ASP VEScrot

AsPaETCE

ASPHET VB

ColdFusion

CokFusen companent

xp

prp

(TR N TR TR I Y TN

Layouls
“none>
1 enkemn elaste, conternd
1 column elastic, centered, header anc
1 o fived, centeved
1 enkumn fived, centrred, header and
1 column biguid, centered
1 cobomn boud, centered, header ared
2 enkmn elaste, Ieft sidehar =
2 cobumn elaste, left sidebar, header o
2 cwbamn elavti, right sebar
2 eokemn elnstic, right sidehar, hender
2 cobumn foced, left sdebar

«<Nu preview >

MTML document

2 cokaon fined, left sdebiar, e an
2 enkmn fived, right sidebar

2 eohmn fived, right sidebar, header 8
2 cokamns Hybeil, left sidebiar

2 enkmn hoybeid, Ieft sidebar, header a
2 cokmn hybeid, nght sidebar

2 cokamnn Fybril, right sidebar , header
2 enkemn by, left sidebar

2 cohmn baud, left sidebar, hesder an
2 coksmn b, right sidebiar

Gelmgre conbent,,,

Do Type:

_Attach C55 H_e: - =

FIGURE 2.15

Choose New File to create a blank HTML file.

\ Adobe Dieamweaver C53 - [C:\Users\eMDocuments\AirProjectia

File Edt Miew [Inset Modify Tot Commands Site Window Help

i 11w Insa

Mew File

Mew Folder
Open
Open With
Edil

Select

Get

Configure AIR application settings
You need to configure your AIR application before you can preview and publish it. There are vari-

ous settings to configure, including the name and version of your application. To begin configuring
your application, choose Site=> AIR Application Settings. The AIR Application and Installer Settings
window appears, as shown in Figure 2.16.

29

m Introduction to AIR

The AIR Application and Installer Settings window

[AIR Application and Installer Scttings =
Appication scttings
*File name: | MyAirApp Save
Hame: Create AIR Fie
*ID: MyAirApp Verson: 1 Previen
“Inhal tent: index.himl Bri =
<o ! [owee,

Deecription: This is my first AIR app!

Hely

Cnpynight:
Window style: [Syah:md‘m '-]
Window size: Width: 800 Height: GO0

Irnn: | Select icon images. ..

Assodated Mie Types: | Edil kst
Application Updates: /| 1andled by AIR application instaler
Inctaler cethngs
Included files: 4=
[application.xmi

[index.html
*Digital cignature: AIRT Padage will not be signed Set...
Program menu folder:
*Destination: UnnamedsSite 2, airi Drowse... |
* asterick indicates required information

Table 2.9 describes the settings in the AIR Application and Installer Settings window.

In the AIR Application and Installer Settings window, you can test that your settings are working
properly by clicking Preview. If you see a blank AIR application in Preview mode, your configura-
tions have worked properly. You can always go back and adjust these in the future, and you’ll want
to get a trustworthy certificate when you're ready to publish the final application.

1E‘F Read more on certificates in Chapter 5.

Finally, you're ready to build the application. It is highly useful to be able to preview your applica-
tion as you build it. To do this, right-click the main application file in the Files window and choose
Preview in Browser = Preview in Adobe AIR. Alternatively, you can use Ctrl+Shift+F12.

30

Setting Up Your Development Environment _

TABLE 2.9

Application and Installer Settings

Setting Description

File name The name of the executable AIR file when users install your application. This name must
only contain ASCII characters and cannot end or begin with a period. This name is
required and defaults to the name of your site in Dreamweaver.

Name This is the name that appears in the installer of your application. It is not required.

ID This is a unique identifier for your AIR application. It cannot contain special characters and
accepts only 0-9, a-z, A-Z, . (dot), and - (dash).

Initial content The initial starting page for your application that was set up in the section “Create an
application file.” This is the starting application file that serves as the application HTML
file. The file must be inside the root directory of your site and is required.

Description Sets a description of the application the user is installing and is not required.
Copyright Specifies copyright information that is shown in OS X. This is not shown in Windows or
Linux.

Window Style Specifies the style of window for your application. More information on window styles is
available in Chapter 12.

Icon Specifies the application icons to be displayed in the operating system. The default icons
are Adobe AIR icons; to customize the icons, click the Select Icons button and select an
icon for each size. AIR only accepts PNG images as icons.

Associated Associates file types with your application. These are not required. You can find more
File Types details on file type associations in Chapter 5.

Application Indicates if the Adobe Installer or the application itself performs updates. If you deselect
Updates this, your application will need to perform its own updates. You need to provide an

application that performs these updates.

Included Files Selects files to include in the application. You can add HTML files, CSS files, and
JavaScript Library files.

Digital Selects the digital signature your application will use. To learn more about signing your

Signature application, see Chapter 5. For development, you can select the option Prepare an AIR
Intermediate (AIRI) package that will be signed later.

Program Specifies the subdirectory in the Windows menu where the application shortcut should be

menu folder placed (Windows only).

Destination Specifies where the application installer file (AIR) will be saved. Defaults to the root

directory where the Dreamweaver site is created.

31

m Introduction to AIR

32

Summary

With the setup instructions included in this chapter, you're ready to start exploring the AIR API by
using Flex Builder 3 to build Flex-based AIR applications, by using Flash CS3 for Flash-based
applications, or by using Dreamweaver CS3 for HTML and AJAX applications. With these three
platforms, most any Web developer should feel comfortable building applications using the API
chapters in this book. Don’t forget that these platforms can also be intermingled to some degree.

n this chapter, you can develop your first AIR applications using Flex
Builder, Flash, and Dreamweaver. Though this may sound a little intimi-
dating, you will discover that the Adobe IDEs make it very simple and

IN THIS CHAPTER

Using Flex Builder 3
straightforward to develop and test your projects without ever needing to e
touch the Command line. Using Flash CS3
To keep things simple at this stage, I help you focus on setting up projects Using Dreamweaver CS3
using the various IDEs and testing the applications, but not deploying them
as AIR files.

F For more information on digitally signing your applica-
! tions and deploying them, see Chapter 20.

Using Flex Builder 3

To get started in Flex Builder, begin by creating a new Flex Project. In the
window that appears, select Desktop application as your application type
and give your project a name. In the windows that follow, you may choose
to configure a custom project structure or use the default structure. Using
the default is recommended.

Once you have finished setting up your project, the main application
MXML file located in the src directory should contain something similar
to Listing 3.1.

33

m Introduction to AIR

The code basically declares that your main application class subclasses WindowedApplication
and contains nothing to display. Clicking the debug button in the top toolbar launches the applica-
tion for testing purposes. If you were to click the debug button at this point, a window would
launch and contain just an empty gray background. Go ahead and try it. If a window launches and
no errors are displayed in the console, you are setup correctly and ready to move on.

LISTING 3.1

Bare Essentials of Main Application MXML File

<?xml version="1.0" encoding="utf-8"?>
<mx : WindowedApplication

xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"

</mx:WindowedApplication>

Next, add a Label component to the display and add some text to it as seen in Listing 3.2. Click
the debug button once more and the window that is spawned should now contain a text field that
reads “Hello world!”

LISTING 3.2

The Main Application MXML File with the Addition of a Label Component

<?xml version="1.0" encoding="utf-8"?>

<mx :WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"

<mx:Label
id="myLabel"
text="Hello world!"
/>

</mx:WindowedApplication>

34

Building Your First AIR Application

You should also make sure that you can successfully output messages to the console at run time. A
simple way to do this is to add an event listener for the creationComplete event and place a
trace statement inside of the event handler as seen in Listing 3.3. If the message is displayed in
the console upon launching the application, everything is setup correctly.

From here, you can continue to add components, logic, and customize your application as you
please. When you are ready to deploy your application as an AIR file and distribute it to the world,
see Chapter 20.

LISTING 3.3

Adding an Event Handler and a Trace Statement

<?xml version="1.0" encoding="utf-8"?>

<mx : WindowedApplication
xmlns :mx="http://www.adobe.com/2006/mxml"
layout="absolute"
creationComplete="creationCompleteHandler ()"

<mx:Script>
<! [CDATA[
private function creationCompleteHandler () :void
{
trace("My first console message!");
}
11>
</mx:Script>

<mx:Label
id="myLabel"
text="Hello world!"
/>

</mx:WindowedApplication>

Using Flash CS3

Flash CS3 does not include support right out of the box for publishing AIR files. The good news is
that Adobe did issue a free update for Flash CS3 that adds support for deploying projects as AIR
files from within the IDE. You can acquire the update from Adobe’s Web site or directly through
the Adobe Updater.

35

m Introduction to AIR

LISTING 3.4

Once the update has been installed, you will be able to create a new Flash file for Adobe AIR
within the New Document window. For the player version, your file should be targeting Adobe
AIR if it isn’t already.

Create a new directory for your project. Inside of your project directory, create a directory named
src. Now, go ahead and create a new Flash file for Adobe AIR and save the FLA file into the src
directory that you just created. Open up the New Document window once more and create a new
ActionScript file. This file will be used as your document class. Add the bare essentials as seen in
Listing 3.4 and go ahead and save the file as HelloWor1ld. as in your project’s src directory.

The Bare Essentials of the Document Class

package

{

36

import flash.display.MovieClip;

public class HelloWorld extends MovieClip

{
public function HelloWorld()

{

}

Tab back over to your FLA file and set the document class to be your HelloWor1ld class in the
properties panel. Go ahead and test your movie by pressing command/control + enter. If every-
thing is setup correctly, the AIR application should launch a test window containing nothing but a
plain white background and no errors should be thrown in the output panel.

Building Your First AIR Application

With your project setup and ready to go, the next step is to add something to the display. In the
constructor of your HelloWor1ld class file, create a new label, give it some text, and then add it to
the display as seen in Listing 3.5.

LISTING 3.5

The Document Class with the Addition of a TextField

package

{
import flash.display.MovieClip;
import flash.text.TextField;

public class HelloWorld extends MovieClip

{
public function HelloWorld()
{
var label:TextField = new TextField();
label.text = "Hello World!";
addChild(label) ;
}

Once again, test your movie; this time the window should contain some text in the upper left cor-
ner. Assuming that there weren’t any problems, you should now perform one last check before
considering your HelloWorld application to be complete. Below the addChild call, add a
trace statement with a simple message as seen in Listing 3.6 to confirm that the output panel is
correctly working.

37

m Introduction to AIR

LISTING 3.6

38

The Document Class with the Addition of a Trace Statement for Testing Purposes

package

{

import flash.display.MovieClip;
import flash.text.TextField;

public class HelloWorld extends MovieClip

{ public function HelloWorld()

{ var label:TextField = new TextField();
label.text = "Hello World!";
addChild(label) ;
trace("My first console message!");

}

Test your movie one last time and check the output panel. If the message is correctly displayed in
the output panel, you are all finished and have completed setting up your first AIR application in
Flash CS3.

If you are interested in deploying your application as an AIR file at this
point, refer to Chapter 20 for information on how to do so.

Using Dreamweaver CS3

If you want to create an AIR application using HTML and JavaScript rather than ActionScript and/
or MXML, the Dreamweaver IDE simplifies this process for you. Before getting started, you will
need to download and install the Adobe AIR extension for Dreamweaver CS3. The extension is
available as a free download from Adobe’s Web site.

To begin, you will need to create a new site; you can do so by selecting Dreamweaver Site... from
the welcome screen or by selecting New Site. .. from the Site menu. In the window that pops up,
give your project a name and move on to the next window. You can ignore everything asking
about servers and URLs; the only two pieces of information that are relevant for your project are
the project name and the project location. The project location will be your project root on your
hard drive.

Building Your First AIR Application

Once you have setup your site project, the first step is to create an index.html file as you would
for any regular Web site; an example of which is shown in Listing 3.7.

LISTING 3.7

The Bare Essentials of the index.html Page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title></title>

</head>

<body>
</body>
</html>

Now, navigate to the AIR Application Settings... window located under the Site menu. In the
Initial Content box, enter index.html. To the right of the Initial Content box is a button named
Preview; clicking this button will launch a test version of your application. Go ahead and do so —
a blank white window should be spawned if everything is setup correctly.

To complete your HelloWorld application, you need to add some text to the application’s dis-
play. Listing 3.8 demonstrates the addition of some text in the body of the page, as well as a title
which will show up in the window’s title bar.

Once again, navigate to the AIR Application Settings... window and click the preview button.
This time the application should launch and some text should be displayed in the corner of the
window.

Now, unlike a Flash/Flex project, you do not have a console readily available to output debug-
related messaging to at runtime. Sure, you can always use the JavaScript alert method for quick
testing, but fortunately Adobe has created a better solution. If you haven’t already downloaded the
AIR SDK from the Adobe site, go ahead and do so. Inside the SDK is a framework directory that
contains two useful JavaScript files that you should copy into your project directory. The files are
ATRAliases.js and AIRIntrospector. js.

39

m Introduction to AIR

LISTING 3.8

LISTING 3.9

40

The index.html Page with the Addition of a Title and Body Text.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtml]l /DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello World!</title>

</head>

<body>

Hello World!
</body>
</html>

Inside your index.html file, go ahead and include the AIRIntrospector. js file as seen in
Listing 3.9.

The index.html File Now Including the AlRIntrospector.js File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello World!</title>

<script type="text/javascript" src="AIRIntrospector.js"></script>

</head>

<body>

Hello World!
</body>
</html>

You can now output messages at runtime into the AIR Introspector window, which will be
spawned automatically upon usage. It also includes some various utilities for viewing the HTML as
a tree and so forth.

Building Your First AIR Application

Listing 3.10 shows an example of an output message being sent to the AIR Introspector using the
included JavaScript logic. The Console includes the following methods for output: 1og, warn,
info, error, and dump.

LISTING 3.10

The index.html File with Sample AIR Introspector Console Output

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello World!</title>

<script type="text/javascript" src="AIRIntrospector.js"></script>

<script type="text/javascript">

air.Introspector.Console.log("My first console message!");

</script>

</head>

<body>

Hello World!
</body>
</html>

Upon previewing the application once more and everything working correctly, you have success-

fully completed your first AIR application using HTML and JavaScript in Dreamweaver! If you are
interested in jumping to the chase and deploying the application as an AIR file, see Chapter 20 for
more information on digital signing and deployment.

Summary

As you have no doubt learned, Adobe has made the process of developing and testing AIR applica-
tions using there IDEs a simple, intuitive process. The chapters that follow will all build on top of
this core foundation for creating a project and getting the bare essentials configured for testing. 1f
you are interested in compiling, testing, and deploying from the Command-line, Chapter 20 covers
the usage of Command-line tools, as well as deployment strategies using the IDEs as mentioned
throughout this chapter.

41

geliiat 1L

Programming for
AIR Essentials

IN THIS PART

CCCCCCCC

Programming

CCCCCCCC
Development Essentials

CCCCCCCC
Debugging and Profiling

IR is likely to draw the attention of a wide array of developers and

designers, including Flash, Flex, and Ajax developers, as well as

possibly developers from other platforms who are not as familiar
with ActionScript, MXML, and JavaScript. If you're not yet familiar with
ActionScript 3.0, Flex, or Ajax, this chapter gives you a quick primer on the
languages AIR currently supports, and gives insight into the multiple ways
AIR can be developed.

While this chapter is not intended to be the sole source of reference for
developing in Actionscript 3.0, Flex, or Ajax, it is our hope that developers
new to any of these languages will be able to use it to at least get up and run-
ning while working with many of the examples throughout this book.

A closer look at ActionScript

ActionScript, the language used in Flash and Flex, has evolved significantly
from its beginnings as a simple script used to animate vector graphics.
ActionScript 3.0 is a fundamental evolution of the language that requires an
entirely new virtual machine called ActionScript Virtual Machine 2, or
AVM2. The latest Flash Player, Flash Player 9, is used for Flash and Flex and
supports both the first virtual machine, AVM1, and the new ActionScript 3.0
virtual machine. ActionScript 3.0 provides a significant improvement in per-
formance and a more mature programming model that is far better suited for
rich Internet application development.

45

IN THIS CHAPTER

A closer look at ActionScript

An introduction to Flash

The highlights of Flex

m Programming for AIR Essentials

46

What’s new in AS3

The following section details some of the new features of ActionScript 3.0.

Runtime exceptions and type checking

ActionScript 3.0 (AS3) reports more error conditions than previous versions of ActionScript.
Runtime exceptions are used for common error conditions, improving the debugging experience
and enabling you to develop applications that handle errors robustly. Runtime errors can provide
stack traces annotated with source file and line number information, helping you quickly pinpoint
errors.

In ActionScript 2.0, type annotations were primarily a developer aid; at run time, all values were
dynamically typed. In ActionScript 3.0, type information is preserved at run time and used for a
number of purposes. Flash Player 9 performs runtime type checking, improving the system’s type
safety. Type information also represents variables in native machine representations, improving
performance and reducing memory usage.

Sealed classes

ActionScript 3.0 introduces the concept of sealed classes. A sealed class possesses only the fixed set
of properties and methods defined at compile time; additional properties and methods cannot be
added. This enables stricter compile-time checking, resulting in more robust programs. It also
improves memory usage by not requiring an internal hash table for each object instance. Dynamic
classes are also possible using the dynamic keyword. All classes in ActionScript 3.0 are sealed by
default, but can be declared to be dynamic with the dynamic keyword.

Method closures

ActionScript 3.0 enables a method closure to automatically remember its original object instance.
This feature is useful for event handling. In ActionScript 2.0, method closures would not remem-
ber what object instance they were extracted from, leading to unexpected behavior when the
method closure was invoked. The mx.utils.Delegate class was a popular workaround, but it
is no longer needed.

ECMAScript for XML

ActionScript 3.0 implements ECMAScript for XML (E4X), recently standardized as ECMA-357.
E4X offers a natural, fluent set of language constructs for manipulating XML. In contrast to tradi-
tional XML-parsing APIs, XML with E4X performs like a native data type of the language. E4X
streamlines the development of applications that manipulate XML by drastically reducing the
amount of code needed.

To view ECMA’s E4X specification, go to www . ecma-international.org/publications/
files/ECMA-ST/ECMA-357.pdf.

Crash Course in AIR Programming _

Regular expressions
ActionScript 3.0 includes native support for regular expressions so that you can quickly search for

and manipulate strings. ActionScript 3.0 implements support for regular expressions as they are
defined in the ECMAScript edition 3 language specification (ECMA-262).

Namespaces

Namespaces are similar to the traditional access specifiers used to control visibility of declarations
(public, private, protected). They work as custom access specifiers, which can have
names of your choice. Namespaces are outfitted with a Universal Resource Identifier (URI) to avoid
collisions and are also used to represent XML namespaces when you work with E4X.

New primitive types

ActionScript 2.0 has a single numeric type, Number, a double-precision, floating-point number.
ActionScript 3.0 contains the int and uint types. The int type is a 32-bit signed integer that
lets ActionScript code take advantage of the fast integer math capabilities of the CPU. The int
type is useful for loop counters and variables where integers are used. The uint type is an
unsigned, 32-bit integer type that is useful for RGB color values, byte counts, and more.

AS3 classes and interfaces

Classes are used to store methods and properties in a manner that is both intuitive and reusable. All
the classes used in this book are located in the folder org/airbible and are represented in
ActionScript as org.airbible.

Interfaces define methods that must be implemented by a class but do not provide functionality.

Packages

ActionScript 3.0 class packages are nearly identical to ActionScript 2.0 packages; they are folders
that contain categorized classes that can be addressed in dot syntax. Typically a package is struc-
tured in a unique folder path that indicates their origin. In ActionScript 2.0 it was possible to
directly refer to a class in ActionScript using the package and class names without using the import
statement to refer to a class, like this:

// access the method "method" in the class "Class"
com.airbible.package.Class.method() ;

This is no longer possible in ActionScript 3.0, and the import statement must be used to refer to a
class like this:

// use import to refer to a class
import com.airbible.package.Class
Class.method() ;

47

m Programming for AIR Essentials

Classes

Classes are the blueprints of objects used in object-oriented language. In ActionScript and most
object-oriented languages, a class is a file whose contents define the behaviors of an object, or
instances of objects. In previous versions of ActionScript, code was often written on the frames of
the timeline of an FLA file in Flash, or in an include file. However, ActionScript 2.0 classes and
interfaces have become not only supported features in ActionScript but also immensely important
tools for developing rich Internet applications.

Defining a class
To define a class in ActionScript 3.0, the class keyword defines a class, and class properties and
methods are stored inside curly braces, much like the following method closure:

package org.airbible {
class MyClass {
// class variables and methods

}

Notice that the MyClass class is inside the package org.airbible package. MyClass will
need to be placed in an org/airbible folder and named MyClass.as in order to run.

Instantiating a class

Creating instances of class objects is called instantiation, and to use an instance of a class, a class
object needs to be instantiated. Classes use constructor functions, which are functions that provide
instructions for the creating of a class instance, for instantiation. An ActionScript class constructor
function is a function whose name matches the name of its class. The constructor function can
accept arguments like any other method. The following example shows a constructor function for
the class MyClass:

package {
class MyClass {
function MyClass(argl:Number) {
}

}

To create an instance of the MyClass class, the new keyword is used. When the new keyword is
used to construct a class, the newly created instance of the class is returned. It is typical to store
the returned instance in a variable so that the created instance methods can be accessed. Here’s
what class creation typically looks like:

Var myInstance:MyClass = new MyClass(123);

One common way to obtain an instance of a class that does not directly utilize the

L constructor is to use the Singleton design pattern. The Singleton pattern uses a
static method to retrieve an instance of a class and ensures that only one instance of a class is
created.

438

Crash Course in AIR Programming _

Interfaces

Interfaces are used both to ensure that a certain set of classes have a common set of methods and
to type an object. For example, you might have an interface called TAutomobile, which defines
two methods, accelerate () and decelerate (). Because there are many types of automo-
biles, you may have classes for trucks, cars, and vans, all of which implement the TAutomobile
interface. By implementing the TAutomobile class for trucks, cars, and vans, you can then type
them as TAutomobile instead of their exact class. This allows your code to become less strictly
coupled to one particular class and instead loosely couples it with a “type” of class instead of a par-
ticular class. The following example illustrates how this can be useful:

var vehicle:IAutomobile;
vehicle = new Car();
vehicle new Van() ;
vehicle = new Truck();

Notice how the vehicle variable can store multiple types. This is because vehicle is typed as the
interface that all vehicles would implement. This allows you to add different vehicles, such as a bus
or tractor, in the future without having to make major modifications to your code.

An interface is similar in nature to a class in that it is given a package using the package keyword
and is kept as a file whose filename matches the interface name. It is common to name a class with
a convention so that developers can easily identify interfaces and differentiate them from classes.
One of the most common conventions used when naming an interface is adding a capital “I” to the
interface name. It is also useful to name your class according to what it represents. If your interface
enforces a set of methods used to allow classes to be used as a collection, you might call your inter-
face ICollection.as. If you'd like a class to enforce methods that allow it to be used in a col-
lection, you might name your interface ICollectable.as.

Defining an interface

Defining an interface in ActionScript 3.0 is similar to defining a class, but instead of using the
class keyword, you use the interface keyword. Unlike classes, an interface’s methods are not
given functionality, but instead given only a name and typed parameters, like this:

interface ICollectable {
function get label() :String;
function set label(1l:String) :void;
function getName () :String;
function getID() :int;

}

Notice that in the previous example, the intrinsic get and set keywords were used; this wasn’t
possible in ActionScript 2.0 and offers a means of enforcing properties in a way. Though you can-
not list properties in an interface, using getters and setters mimics their functionality.

49

m Programming for AIR Essentials

50

Implementing an interface

A class uses the implements keyword in the class declaration to implement an interface. The fol-
lowing example shows how a class named Truck would implement an interface called
IVehicle:

package {
class Truck implements IVehicle {
}

}

It’s important to remember that when a class implements an interface, a class promises to contain
the methods in the implemented interface, and compile time errors are produced when a class fails
to do so. When a class implements a method used in an interface, it must use the same signature,
which means that it must use the same number and type of arguments. The methods must also
return the same type as stated by the interface. If the interface IClass shown next contained the
methods go () and stop (), the class Truck would need to implement them.

package {
interface IVehicle {
function go () :void
function stop() :void

}
To implement the IVehicle interface, the class Truck would look like this:
package {

class Truck implements IVehicle {
function Truck() {

}

function go () :void {

}

function start () :void {
}

}

If you were to forget to implement or implement a method incorrectly in the Ivehicle interface,
the compiler would generate an error message similar to this:

1144: Interface method start in namespace IVehicle is implemented
with an incompatible signature in class Truck.

Access modifiers

You may have noticed keywords like public, internal, protected, and private before the
class and interface definitions in the examples so far. These are called access modifiers, and they
modify the level of access that other classes or objects have to them.

Crash Course in AIR Programming

Access modifiers are very important when it comes to good object-oriented application design
because they are used to define an application’s API; the API is exposed in a class for use by other
objects and in turn by other developers. A good API can help other developers use your classes
easily if your public methods are named well and are intuitive to use.

ActionScript 3.0 introduced a major improvement to its class modifiers by adding the internal
and protected modifiers. These two new modifiers offer functionality that was not available in
2.0 and allow developers more control over which methods and properties are available outside of
a class.

The internal modifier exposes a property or method only to other classes that are located in the
same package. If a class existed in org.airbible.package. * and had a method marked inter-
nal, it would only be accessible to other classes in org.airbible.package. This is very useful
when using classes that are built specifically for use by other classes in the same package; internal
modifiers are also useful for other object-oriented techniques that may allow a class to offer the
functionality of one class using several classes included in its package without having to expose
every class in a package.

3 .- L Every method and property should be given an access modifier. When creating a
SEVAE R class, set each method and property, then save the constructor to private until
greater access is required or designed. If no access modifier is specified for a class, method, or

property, it will default to internal.

Methods

Class methods store functionality that can be used both internally or by a class, or externally by
other objects. A method can take various arguments and can return data or objects to its caller.
Like most object-oriented languages, there are five major elements to a method definition:
Method name

Level of access

Return type

Method argument

Function statement

The first and perhaps most obvious is a method’s name. It is best practice to name your methods in
camel case, where the first character is lowercase. It may seem obvious, but a well-named method
is a great way to describe to other developers what your method does. It’s always nice to know
what a method does without ever having to understand how it does it.

It is best practice to name only classes and static properties with a capital first letter, such as
DoSomething (). A generic method name, such as doSomething (), doesn’t say anything about
its functionality, forcing developers to read the contents of a method to find out. A well-named
method, like getData (), states precisely what it does, telling developers all they need to know.

51

m Programming for AIR Essentials

LISTING 4.1

52

The second element of a method is the level of access it is given and its scope. This chapter’s earlier
discussion about access modifiers goes into detail about what each ActionScript-supported access
modifier means to your method. A major distinction between public methods and other methods
is that public methods are available for other developers to see when they are using a class, and
thus are uniquely important.

The return type is the third major element of a method. It describes what a method returns to a
caller. The return type is declared after the colon that is placed after a method’s parentheses. If no
return value is passed from the method, the keyword void is used as in the following example:

// Boolean return type
public function getData() :Boolean

// void return type
Public function noReturnTypeMethod () :void

Often the sole purpose of a method is to return a value that a caller is requesting. The return type
of a method can also offer valuable information about the success or failure of a method and can
also allow for more streamlined code. For example, if a method returns a Boolean success value,
the if statement shown in Listing 4.1 becomes succinct and easy to read.

public function getData():Boolean {
if(!'data) {
return false;
} else {
return true;

}

public function initialize() :void {
// notice how the method call can be used as a Boolean value

if(getbata()) {
// launch application
} else {

// do not launch application

Method arguments are the fourth major element of a method. Arguments, or parameters, are the val-
ues passed to a method and are listed inside the parentheses of a method. In ActionScript, each
method argument needs a type, or a * symbol, which signals that it can accept any type. In

Crash Course in AIR Programming _

ActionScript 3.0 it is now possible to assign parameters default values by assigning the values to
the parameter as shown here:

public function myMethod(arg:String, arg:Number = 1):void {}

Last but certainly not least are the statements used inside a method’s function enclosure. Each state-
ment inside a function describes what a function does when it is called, which is what gives a
method its functionality. Without the function statements, a method does nothing.

Using inheritance

Inheritance is an important object-oriented programming technique that allows an object to inherit
or use the behaviors and properties of another object. It is very common to have a class that offers
nearly all the functionality needed by another. The ability to reuse the functionality found in one
object while slightly modifying it or adding to the original object is very powerful and is much
faster than writing every class from scratch.

Though the topic of object-oriented programming, specifically inheritance, is applicable to devel-
oping applications for Adobe AIR, this book does not cover a detailed discussion of object-oriented
programming (OOP) and inheritance. Instead this section will quickly show you how to imple-
ment these concepts in ActionScript 3.0. If these concepts are unfamiliar, you should definitely
check out further reading. Inheritance and composition (an alternative to inheritance) are both cov-
ered in more detail in the ActionScript 3.0 Bible by Roger Braunstein, Mims H. Wright, and Joshua J.
Nobel (Wiley, 2007).

When a class inherits a class, it’s called a subclass of the class it inherits. The inherited class is called
the superclass for the class that inherits it. ActionScript 3.0 allows only single inheritance, meaning
a class can only subclass one class. Any given superclass may have subclasses that subclass its sub-
classes and so on, which is called an inheritance chain.

Inheriting a class

ActionScript uses the keyword extends in the class declaration to subclass another class. When a
class inherits another class, it inherits all but its private properties and methods. It’s important not
to forget that private members are not inherited by subclasses. To inherit members that are effec-
tively private, use the internal access modifier. Using the internal modifier allows members to be
practically private in nature but able to be inherited.

-E‘ B Inheriting a public method that uses a private member will generate compile
S % time exceptions. It is good practice to use protected over private if you expect
to use a class as a superclass. Use the £inal keyword when you don’t want subclasses to over-
ride a member.

For example, Listing 4.2 shows superclass class A and its methods and properties. Listing 4.3
shows subclass class B inheriting class A and therefore having the ability to use those class
A methods and properties that are not set as private.

53

m Programming for AIR Essentials

LISTING 4.2

package {

}
}
}

class A{

protected var name:String = "A";
public function sayName () :void {
trace('my name is ' + name);

LISTING 4.3

package {

54

class B extends A({

// constructor function
public function B() {
// traces 'my name is A'
sayName () ;

Notice that the extends keyword is used directly after class B is declared and before class A.
When class B is run, notice that it traces A when the method sayName is called. This is because
it inherited the sayName method and the name property, which is used by sayName. This illus-

trates how a subclass literally inherits the members of its superclass.

Overriding methods and properties

In Listing 4.3, class B was essentially a copy of class A. Class B inherited the method say-
Name and thus traced exactly what class A would have traced. Though this is sometimes useful,
it is more common for a subclass to add or alter the functionality of a superclass. You can add
methods to a subclass to add functionality, or you can change inherited classes. Changing an
inherited method or property is called method or property overriding.

To override a method or property, use the override keyword. When a method or property name
is identical to the name of a property or method of its superclass, you must use the override key-
word, or a compile time error is generated. Listing 4.4 illustrates how you can override a class
property so that class B traces my name is B instead of incorrectly reciting what class A says:
my name is A.

Notice that class B now correctly traces its name as B instead of A. This is because class B
overrides the name property. Notice how in this example the functionality of class A was altered

Crash Course in AIR Programming

in class B with little effort. This is only a simple example of what can be a powerful tool for
enhancing existing classes and adding functionality to already existing code.

LISTING 4.4

Superclass:
package {
class A{
protected var name:String = "A";
public function sayName () :void {
trace('my name is ' + name) ;
}
}
}
Subclass:
package {
class B extends A{
override protected var name:String = "B";

// constructor function
public function B() {
// traces 'my name is B'
sayName () ;

Adding to superclass methods

When overriding a class method, it is possible to combine a subclass’s functionality with a super-
class’s functionality. In other words, overriding a method doesn’t mean you must completely over-
write the superclass method.

The super statement is used to invoke a parent superclass’s version of a method when used in the
constructor method. Unlike ActionScript 2.0, the call to the super constructor no longer needs to
be the first statement in a constructor. When the super statement is used inside of a class method
other than the constructor, the dot syntax accesses the superclass method, and the correct number
and type of arguments are required. Listing 4.5 shows how to use the super statement in both a
constructor and a method.

Notice how Listing 4.5 uses superclass A’s methods and also adds functionality to them. As

you can imagine, this flexibility allows for many ways to utilize a superclass while adding specific
functionality to a subclass.

55

m Programming for AIR Essentials

package {
class B extends A{
override protected var name:String = "B";
// constructor function
public function B() {
super () ;
// traces 'my name is B'
sayName () ;
}

public function sayName () :void {
super.sayName () ;
trace('and I am a subclass of A');

Events

Flash and Flex are event-driven development platforms that react to service calls, changes in state,
and user interface events such as mouse clicks and rollovers. ActionScript 3.0 introduces a major
improvement with its new event model patterned after the W3C DOM3 Events specification that
provides a standardized method for generating and handling events and data associated with
events. An ActionScript 3.0 event consists of an event object, an event dispatcher, and an event
handler. This section discusses ActionScript events and how to use them, as well as how to create
custom events for application-specific events.

The Event class found in the £1lash.events package is the base class for any event object that
is passed as a parameter to event listeners using the dispatchEvent method. There are many
types of events found in both Flash and Flex that are used to describe certain events. These events
contain event-specific information such as the target, or origin, of an event. Such information helps
event handlers understand the nature of an event.

Some common event types are MouseEvent, KeyboardEvent, DataEvent, TextEvent, and
FocusEvent. You can find many of these events in the £1ash.events package. If you are not
already familiar with ActionScript 3.0 events, it would be helpful to familiarize yourself with the
event objects found in this package, as they will be used frequently when developing in
ActionScript 3.0.

56

Crash Course in AIR Programming

Constructing an event object
The base class Event’s constructor takes three parameters:

B type
B Dbubbles
B cancellable

The first parameter, type, is required while the second and third, bubbles and cancellable,
are both optional. The Event type refers to the event that is of the type String and is typically
stored as a static constant value in the Event or Event subclass.

The Event base class has several event types such as Event . ACTIVATE, Event . ADDED,
Event.RESIZE, and Event . UNLOAD. Each specifies a certain type of event. When a certain
event occurs, an Event object is dispatched and given a type that describes the event that
occurred.

The second parameter of the Event class, bubbles, refers to the ability of some events to bubble
up the display list when dispatched. The bubbles parameter is false by default. If it is set to true,
the event will bubble. This means that when an event is dispatched, it travels from the parent dis-
play object to that display object’s parent until it reaches the root. Bubbling is extremely useful for
capturing events upstream from the event origin and allows for much looser event handling that
can be centralized and handled in a more organized fashion.

You can catch and cancel events before bubbling any higher than where the events are cancelled. If
the third parameter, cancellable, is true, you can cancel an event before it travels past the
point of being cancelled.

Here is what a resize event construction would look like:

// sets type to RESIZE, bubbling to true, and cancellable to
false
var event:Event = new Event(Event.RESIZE, true, false);

To create a custom event, simply create a class that subclasses the Event class. Subclassing the
Event class is useful when there is custom information needed in an event not provided by a
built-in Event class. An example of a custom class might be a shopping cart event called
PurchaseEvent that contains specific information about a purchase, such as the product ID
number and product price. Listing 4.6 is an example of a custom event called PurchaseEvent.

57

m Programming for AIR Essentials

58

LISTING 4.6

package org.airbible.events.chapterd.events {
public class PurchaseEvent ({

static public const PURCHASE:String = "PURCHASE";

public var price:Number;
public var id:Number;

public function PurchaseEvent(type:String,
price:Number,
id:int) {
super (type, false, false);
this.price = price;
this.id = id;

Dispatching an event

Many events are generated by built-in classes that do not require you to manually dispatch them.
For example, when you click an event object, the MouseEvent . CLICK event dispatches auto-
matically from a display object without any need for manual dispatching of the event.

When generating a custom event, it is typically required that you use the EventDispatcher
class method dispatchEvent to dispatch an event. To use the dispatchEvent method, you
need to subclass the EventDispatcher, or you need to subclass a subclass of
EventDispatcher, such as the DisplayObject class. The dispatchEvent method requires
a single parameter, which is the Event object it should dispatch, and returns a Boolean value to
indicate if the event was successfully dispatched. To dispatch the PurchaseEvent shown in the
section on constructing an Event object, a PurchaseEvent object is created and then passed to
the dispatchEvent method, as shown in the following example:

var purchase:PurchaseEvent = new Event (PurchaseEvent, 10.99, 1
)i

dispatchEvent (purchase) ;

Listening for an event

Listening to events is the term used to describe how ActionScript reacts to and handles an event. As
described earlier, ActionScript is an event-driven language. In order to react to an event when it
occurs, the event must be specified as an event to listen for. To listen for any specific event, use the
addEventListener method of the EventDispatcher class to specify which type of event to
listen for and what method should be used to handle the event if it occurs.

Crash Course in AIR Programming

Use Caution when Passing Null

n occasion, you may need to use both an event handler and a method used by other objects.
If this is the case, the other objects either need to pass an event object, as that is the first
parameter required by an event handler, or null can be passed. You should be careful when passing
null as a value to an event handler because an event handler will likely use the event as a value in
its method body; and if it tries to access a null object, a runtime error is generated. Where there is a

likely chance for null objects, it is good practice to try and catch statements that are risky in order to
handle errors in a graceful manner.

Event handlers define certain behaviors that should occur when an event happens, such as a but-
ton being clicked, or in the case of the PurchaseEvent, when a purchase event is dispatched.
When an event listener executes an event handler, the event handler passes the event instance that
was created when the event occurred. Listing 4.7 shows how a PurchaseEvent would be lis-

tened to, as well as an example of an event handler that would handle the PurchaseEvent when
it occurs.

LISTING 4.7

addEventListener (PurchaseEvent.PURCHASE, purchaseHandler):void;

public function purchaseHandler (e:PurchaseEvent):void {
trace(item.id + " purchased for: $" + item.price);

}

Notice that the purchaseHandler event handler has a parameter of the type PurchaseEvent.
When an event is dispatched, it expects the first parameter to be of the type Event, or of the sub-
class used as the event. If the parameter is not there, a runtime exception occurs.

Display list

The ActionScript 3.0 display architecture is a significant improvement over the architectures of 1.0
and 2.0. The new display list offers several major advantages that have helped to improve both the
display performance and the ease of development when working with display items. In
ActionScript 1.0 and 2.0, virtually every display object was a MovieClip, which required any
object to carry the added weight of supporting the Timeline, even when the Timeline wasn’t used.

ActionScript 3.0 offers a range of display objects with more individualized specializations to reduce
the overhead of display objects’ classes.

59

m Programming for AIR Essentials

60

DisplayObject

The DisplayObject class is the base class for any object that can be displayed.
DisplayObject objects have properties related to their display such as x and y coordinates. The
core display classes, AVM1Movie, Bitmap, InteractiveObject, MorphShape, Shape,
StaticText, and Video, are direct subclasses of the DisplayObiject class.

DisplayObjectContainer

DisplayObjectContainer is a subclass of the InteractiveObject class, which subclasses
the DisplayObject class and is used to contain display objects. The DisplayObject
Container class improves significantly on display object depth-management and the ability to
easily iterate through a display object’s display list. When an item is added to or removed from a
DisplayObject container, each display child is kept in an index that can be iterated by using
the DisplayObjectContainer’s numChild property.

When a display object is created, it is not automatically displayed and does not use resources for
rendering. The addchild and removeChild methods add or remove a DisplayObject
instance to or from the display list of a DisplayObjectContainer.

The following example shows how to add a Sprite to the Stage class and then add a
MovieClip to the Sprite’s display list:

var sprite:Sprite = new Sprite();
stage.addChild(sprite);

var movie:MovieClip = new MovieClip();
sprite.addChild(movie);

You may notice that the display list instantiation and display are far more intuitive and follow the
normal object instantiation. This is a major improvement over MovieClip instantiation in
ActionScript 1.0 and 2.0, which relied on the attachEmptyMovieClip method and did not
provide as simple of a method as in ActionScript 3.0 to instantiate a display object without display-
ing the object. This is important because a display object often must be configured or modified
before it is displayed.

Next the MovieClip and Sprite are removed from the display lists:

sprite.removeChild(movie) ;
stage.removeChild(sprite);

The removeChild method offers the ability to remove a display object and its children from the
display list, and helps control which objects will use resources when being rendered. After an
object is removed from the display list, it and its children will not be rendered.

Crash Course in AIR Programming _

An Introduction to Flash

Flash has been around for more than ten years and is the leading platform for developing rich
experiences on the Internet that involve complex animation and customized visual interactions.
Developing AIR applications in Flash is similar to developing Flash applications for the Web. You
can use the Flash authoring tool, Flash CS3, to publish AIR applications using the extensions freely
available at www.adobe.com/go/air.

This section cannot possibly cover the wide range of topics involved in Flash CS3 development
and design; rather it is a quick primer for those looking to get started in Flash and to understand
how an AIR application would be developed from the Flash IDE (Integrated Development
Environment). If you're looking for more information on designing and developing in Flash, Flash
CS3 Bible by Robert Reinhardt and Snow Dowd (Wiley, 2007) offers in-depth coverage of all things
Flash.

The Timeline

The Flash Timeline is a powerful tool for organizing and animating display objects. If you are not
familiar with Flash, you might guess that the Timeline displays objects on a line across time, and
you'd be correct! The Timeline tool uses frames to represent the visual state of objects in time. The
Timeline displays layers of frames that are reminiscent of strips of film. Each Timeline has a play-
head that plays from left to right on the Timeline at the document’s frame rate. You can set the
frame rate in the Document Properties palette, or ActionScript can set them dynamically.
ActionScript can control the playhead by targeting a specific frame or by playing or stopping the
playhead. You can use the Timeline for a wide degree of purposes, ranging from frame-by-frame
cartoon animation to managing the visual state of an application.

MovieClip objects have been around for as long as Flash has been Flash. In the context of
ActionScript 3.0, a MovieClip is a display object that is a subclass of InteractiveObject
and includes support for the Timeline. Each MovieClip supports one Timeline and, like any
other DisplayObjectContainer, can contain other display objects, including MovieClips.
In Flash, you can edit a MovieClip using the Flash GUI and the Timeline. Each MovieClip in
the IDE has a stage where you can place and manipulate objects. Objects on the stage have proper-
ties that you can edit, such as their positioning (x and y coordinates), scale, rotation, and depth.

Working with text

There are many ways to work with text in Flash, but nearly all include the use of the TextField
object. There are many settings and features available for text in Flash that range from how the text
is rendered to the letter spacing. TextField objects are highly dynamic and expose nearly every
setting in both the Flash IDE and ActionScript. You can set the TextField object to simply dis-
play text, to display dynamic text that changes during the course of the application, or to display
animation. You can use text in Flash as input text in visible or password style, selectable or non-
selectable. The TextField class can use system fonts, which are fonts that exist on most

61

m Programming for AIR Essentials

FIGURE 4.1

machines, or it can use custom fonts that can be embedded into the SWF. The TextField object
offers several anti-alias settings.

Using the TextField

Creating text in Flash is similar in nature to creating text in most graphics programs and
involves the selection of the Text tool in the Tools window, as shown in Figure 4.1. Once you
have selected the Text tool, left-click and drag on the stage to create a text field and release when
the text field is the height and width desired. The text field will be created on the currently
selected layer on the Timeline and in the current frame or the frame closest to the left of the
playhead.

Selecting the Text tool in the Tools window

-
5

62

You can resize and move TextField instances once created. You can also animate
TextField instances on the Timeline using a Motion Tween.

Static and dynamic text

You can separate text in Flash into two basic types: static and dynamic. There are some important
differences between the two. You can only create static text in the IDE similar to how any
TextField objects created in ActionScript are dynamic fields. You cannot change a static field’s
text once the SWF is published; the static field’s text is typically used for display text only. You
cannot use ActionScript to directly reference static text, though you can manipulate a
DisplayObject to animate a static field. To set a TextField to be static or dynamic, use the
Text Field Properties palette, as shown in Figure 4.2.

Crash Course in AIR Programming _

The Text Field Properties palette

& Propertes

v| A TweeMicondensdenrs v % [« B B 7 EEEmy Y @

v oo (o] At (o -] [Ant-skas tor reaatsity -
" A o ¥ auto ke
o Target:

In most cases, using dynamic text is preferable since you can manipulate a dynamic field using
ActionScript and you can assign an instance name. To render anti-aliased text, a dynamic text field
must have its font embedded using the Embed Fonts dialog box initiated in the Text Field proper-
ties palette. It is important to select the proper set of characters for each field, as selecting all char-
acters adds significantly to the published SWF file’s size. Dynamic text also has the advantage of
having several anti-alias settings available for Readability, Animation, or None.

Input text

Input text is the third type of TextField. When you create a TextField on the stage instead of
choosing Static or Dynamic, you can use a third option for input text. If you select input text, the
TextField will be available for input at runtime by the user.

The Library

In Flash, the Library stores assets that are compiled into the AIR application and made available at
runtime without the need to load external files. The Library contains symbols. Symbols represent
both display objects that you can drag onto the stage and assets that are used by display objects,
such as audio files or fonts.

Symbols are a staple of Flash development as they represent all containers and visual elements of a
Flash application. You can give MovieClips created in the Library an ActionScript class association,
which is discussed in the section on using ActionScript in Flash in this chapter.

Converting a symbol on the stage

Whenever you create a MovieClip on the stage, a corresponding MovieClip is placed in the Library
automatically. You can convert any symbol found on the stage to a MovieClip. The resulting
MovieClip will then contain what was selected.

The New Symbol window

You can add MovieClip, Button, and Graphic symbols to the stage using the New Symbol dialog
window. You can access the New Symbol dialog in one of three ways. The first is by clicking the
New Symbol icon on the bottom left of the Library. The second is by selecting New Symbol under
the menu navigation’s Insert category. The third, and most common, method is by using the key-
board shortcut Ctrl+F8 or 88+F8.

63

m Programming for AIR Essentials

64

Adding a folder

When creating more complex applications that involve many assets, a lot of symbols can clutter up
your Library. Organizing the Library using folders can be very useful for keeping things tidy. To
create a Library folder, click the folder icon on the bottom of the Library. A folder appears in the
Library. To place symbols into a folder, drag them into the folder. Library folders do not affect how
a symbol is referenced; they serve only as means to organizing the Library.

Adding a font or video

You can store fonts in the Library, which is useful for working with an FLA file that uses custom
fonts that may not be included on a given machine. To add a font to the Library, right-click in the
Library and select New Font. A dialog box appears where you can select a font. Once this dialog
box is complete, the font appears in the Library, and you can reference it using its linkage id.

To add a video clip to the Library, use the same method of right-clicking in the Library, but select
New Video.

Adding audio

To add audio files such as MP3- or WAV-formatted sound files to the Library, use the Import
action. To import a file to the FLA, use the File= Import command in the main menu. When
selecting an audio file, you may import the audio directly to the stage, or to the Library. When
Audio is added to the stage, it is also added to the Library. You can use audio on the Timeline; the
audio is represented graphically in key frames and will play when the playhead reaches the con-
taining key frame. You can also use audio through ActionScript by means of the Sound object.

Using ActionScript in Flash

ActionScript was originally designed for use with Flash as far back as Flash 4. Flash CS3 is still
capable of publishing with ActionScript 1.0, 2.0, and 3.0. For development in AIR, however,
ActionScript 3.0 is required since the AIR runtime uses the ActionScript Virtual Machine 2.0,
which was built specifically for ActionScript 3.0. ActionScript provides Flash with the ability to
dynamically create and manipulate the behavior of an AIR application built using Flash.

The original 1.0 implementation of ActionScript involved either attaching script directly to the
Timeline key frames or placing code in onC1lip events on specific symbols on the stage.
ActionScript 3.0 is designed to be written in classes, however, and in most cases is easier to main-
tain, read, and write when separated into independent class files. This section discusses how to
work with ActionScript classes and the Timeline but also touches on how ActionScript is attached
to the Timeline for Timeline scripting.

The overview of ActionScript 3.0, earlier in this chapter, covers the basics of using ActionScript
classes; ActionScript itself will not be covered in this section. Here you'll see how ActionScript is
used when creating AIR applications from Flash CS3; please refer to the ActionScript section for
details on how to actually write ActionScript.

Crash Course in AIR Programming _

Setting the document class

A document class is the entry point class that represents the overall containing MovieClip of an
AIR application. Entry points are found in most software platforms and represent the very first line
of code that is executed. In some lower-level languages, the entry point is the very first operation
performed when an application is executed, and is called the entry point because it's where an
application enters operation. The Flash and AIR AVM (ActionScript Virtual Machine) executes
many operations behind the scenes to prepare for an application to run. However, for Adobe AIR
development in Flash, this document class’s constructor method is considered the entry point, as
no code for AIR is executed before this method executes.

To set the document class in Flash, the Document Properties panel is used, as shown in Figure
4.3. If the document class does not reside in the same directory as the FLA file, the fully qualified
path of the document class is required in the dot syntax form. If the document class resides in the
folder path org/airbible/application/ relative to the FLA and the class name is Main,
the fully qualified address would be org.airbible.application.Main.

FIGURE 4.3

The Document Properties panel

& Propertes x | =

I Z

fl Document Sue: | SSywAO0pues | Backgoud: | Framerate; 12 fm @
Untstled- 1 Publish: | Setings... | Player: @ ActionSoipt 30 Profie: Default

Doaument dass: ey, ssbible, Ducumen|Class 29

B The document class must subclass the MovieClip class by using the extends key-
- word. In Flash, the top-level container is a MovieClip and is what is originally added
to the stage. If the document class does not subclass the MovieClip class, a compile time
exception will be thrown.

Class linkage

MovieClips in the Library can include what is called class linkage, which links them to ActionScript
3.0 classes. A MovieClip’s linkage class must subclass MovieClip or the DisplayObject
Container subclass set in the base class field in the MovieClip properties dialog box. When a
MovieClip that has class linkage set is placed on the Timeline, the class associated with it
through linkage is instantiated and its constructor method is executed. Inversely, a MovieClip
contained in the Library can be instantiated in ActionScript by using the object instantiation new
keyword. Unlike MovieClips that are placed on the Timeline, an ActionScript instantiated
MovieClip is visible until it is added to the stage using the addChild () method of
DisplayObject.

Timeline ActionScript

In most cases, using classes is the preferred method for using ActionScript in Flash. However, there
are often small scripts or commands needed that are placed on the Timeline and that are executed

65

m Programming for AIR Essentials

66

when the playhead meets the frame that contains a script. The advantage of ActionScript placed on
the Timeline is that it has a fixed relationship in time to other items on the Timeline. To place
ActionScript on the Timeline, simply select the key frame that should contain the script and place
the ActionScript in the Actions panel.

The Highlights of Flex

Flex is an open-source framework that combines ActionScript and MXML, a declarative XML-
based language for describing UI layout and behavior. Prior to AIR, Flex was primarily intended
for rich Internet application (RIA) development to be viewed using Flash Player 9. The Flex SDK,
which includes a command-line compiler and the complete Flex class library, is available as a free
download from Adobe with no limitations. Adobe offers an eclipse-based IDE development envi-
ronment called Flex Builder that provides a streamlined method for developing Flex applications
and added development features.

MXML

MXML is a declarative markup language based on XML and is used for laying out Ul components
and utilities such as animations and data sources. Markup languages have proven to be successful
and popular for laying out applications, so MXML is used similarly to HTML to lay out Ul ele-
ments and visual objects in a Flex application. MXML follows a more structured syntax than
HTML and includes a rich set of tags such as TabNavigator, Accordian, and Menu. You can extend
and customize each MXML tag.

Perhaps the most important advantage of MXML is that it is rendered identically across all plat-
forms that support Flash Player 9, including Windows, Mac OS X, and many popular Linux distri-
butions. This cross-platform compatibility allows a wide audience to access customized rich user
experiences while greatly reducing the need for extra development for each operating system.

Basic syntax

MXML tags typically refer to ActionScript classes and include most of the properties associated
with those classes.

You can use blocks of ActionScript within an MXML file by using the <mx : Script> tag.
ActionScript included in the <mx : Script> tag can define variables and functions and is accessi-
ble by any component defined in the MXML file. The ActionScript for a Script tag can also be
included in an external .as file by using the Script tag’s source attribute. Both inline ActionScript
and external ActionScript style Script tags are shown in Listing 4.8.

Notice that the ActionScript code is placed inside of CDATA tags. CDATA stands for character data
and is used in markup languages such as XML, HTML, and in this case MXML. CDATA tags
declare to the MXML parser that the contained data is not to be parsed as MXML, but as plain text.

Crash Course in AIR Programming

You can also include ActionScript directly in the event attributes of an MXML component. Placing
ActionScript in event handler attributes is addressed in the event-handling portion of this section.

LISTING 4.8

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="400"
height="300">
<mx:Script>
<! [CDATA [
// place actionscript here
public function myFunction () :void

{

trace('this is inline actionscript in MXML'):
}
11>
</mx:Script>
</mx:Canvas>

Components

Flex is a component-based platform that utilizes reusable flexible pieces of software. Components
are used in software to package tools that can be used and reused to save time and provide a more
efficient way of using application elements that are frequently used. You can use Flex components
for various purposes such as U, layout, and application data management.

There are many built-in components for Flex and AIR available when developing an AIR applica-
tion in Flex. The built-in components in Flex come in several categories, such as Controls, Layout,
Navigators, Adobe AIR, and Charts. Not only are the prebuilt components very easy to modify
through inheritance and skinning, but it is also possible for you to create custom components.

UlComponent

The UIComponent class serves as the base class for all visual Flex components. The
UIComponent class is a subclass of the Sprite DisplayObject class. UIComponent class
inherits the DisplayObjectContainer behaviors and provides behaviors specific to Flex,
including the enabled, percentWidth, percentHeight, id, and styleName properties.

Layout components

One of the major advantages to developing in Flex is the prebuilt Layout components that manage
the layout of an application’s user interface and visual elements. It is common to spend a sizable
amount of time developing layout managers from scratch in other platforms, but the Flex Layout
components offer an easy and effective way of developing applications that do not require a signifi-
cant amount of work toward layout development.

67

m Programming for AIR Essentials

TABLE 4.1

The Flex Layout Manager manages the layout of visual elements in Flash and follows rules speci-
fied by Layout components used to contain UILComponents. Table 4.1 includes some of the most
commonly used Layout components along with examples of their default appearances and sample
MXML implementations.

Flex Layout Components

Container Components Definition
Canvas <mx:Canvas x="49" y="40" width="200" Defines an area where you can
height="200"> place child components

HBox

VBox

manually. The Canvas
component allows you to define
the x and y positions explicitly
inside the width and height of
the Canvas.

</mx:Canvas>

<mx:HBox x="21" y="21" width="100%"> Lays out its children in a single
horizontal row.

</mx:HBox>

<mx:VBox x="21" y="82" height="100%"> Lays out its children in a single

vertical row.
</mx:VBox>

68

Controls

Flex includes a large selection of user interface components, such as Button, TextInput, and
ComboBox controls. After you define the layout and navigation of your application by using con-
tainer components, you add the user interface controls.

The following are just a few of the many prebuilt UI controls available in Flex:

B Button: <mx:Button x="64" y="59" label="Button"/>
B CheckBox: <mx:CheckBox x="131" y="137" label="Checkbox" />
B Label: <mx:Label x="85" y="114" text="Label" />

Event handling

As in most object-oriented application platforms, events broadcast the various states of objects. In
Flex, there are many events that can occur; event handlers are used to respond to these events.
Flex uses ActionScript events to communicate various events that occur during the execution of an
AIR application but also exposes these events in MXML. There are many ways to handle events in
Flex; many are covered in the ActionScript 3.0 section of this chapter, so this section addresses
how events work in MXML specifically.

Crash Course in AIR Programming _

MXML events are exposed in the MXML components as XML attributes of an MXML component.
A good example of a component that uses events is the mx . controls.Button component. The
following example illustrates the most basic method for creating an event listener for the Button
component:

<?xml version="1.0" encoding="utf-8"?>

<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="400"
height="300">
<mx:Button x="167" y="97" label="Button"
click="enabled=false;" />

</mx:Canvas>

The click attribute found in the Button component represents the click event generated when
the button is clicked. Notice that ActionScript is used in this attribute to serve as the event handler.
When the button is clicked, the application’s enabled property is set to false.

Summary

This chapter is a crash course on the various development platforms used for developing Adobe
AIR applications. For those familiar with languages and platforms other than Flash, Flex, and Ajax,
this chapter should serve as a starting point for becoming fluent in these languages and comfort-
able in these platforms.

69

hough AIR leverages existing Web development skills such as Flex,

Flash, HTML, and Ajax to build rich Internet applications that run on

the desktop, it is a platform that introduces several features that
require special attention. This chapter discusses the added trust that must be
placed in someone developing AIR applications that have full access to a
user’s machine.

This chapter will focus on the security model in AIR along with topics that
will get you started developing AIR applications like the application properties
used to set initial values for appearance and location of an AIR application.

The AIR Security Model

The AIR security model differs from browser-based Internet application
security models. AIR applications are granted the privileges of desktop appli-
cations and are capable of performing tasks such as reading and writing to
the filesystem, placing icons in operating system menus like the Windows
taskbar, and creating operating system windows in which to run.

The increased range of functionality granted to desktop applications requires
an increased level of security when developing an application and also
demands a higher level of trust between the user and the developer of an
application. By installing an application, a user entrusts that a developer
does not take advantage of his access to the desktop.

71

IN THIS CHAPTER

The AIR security model

Basic application properties

m Programming for AIR Essentials

72

Sandboxes

Because AIR has access to the local filesystem, it is important that an AIR application only grant the
ability to read or write trusted files to the filesystem. The AIR security architecture defines what are
called sandboxes. In AIR the term sandbox is used to describe the restriction of capabilities of sub-
sets of items. Sandboxes also assign levels of permissions based on a file’s origin. The logical group-
ing of AIR security sandboxes helps ensure that applications or scripts do not access either remote
or local files when they shouldn’t.

About application sandboxes

A security sandbox is essentially the grouping of files according to the level of trust that can be
given to them. There are different sandboxes for different files depending on their origin. Files
installed with an AIR application are granted full access to the AIR API, while files that are found
either on the local machine or from a remote location such as a network source or the Internet are
given differing levels of access to the AIR APL

The AIR security model builds on the Flash Player security model by adding the application sandbox.
Files in the application sandbox have full access to the AIR API. Files not included in the applica-
tion sandbox are given restrictions similar to the restrictions found in the Flash Player security
model’s sandboxes.

The application sandbox

The application sandbox is the sandbox in which all items installed with an AIR application are
placed. All files, regardless of type, that are included in the application sandbox are granted full
privileges to the AIR API and are able to perform such activities as reading and writing to the local
filesystem. Such files can also access both local network resources and the Internet without domain
restrictions. Since the application sandbox is capable of accessing nearly all files on the filesystem
of the local user, it is important that an AIR application is well tested and secure.

As a desktop application, an AIR application is capable of potentially dangerous operations, such
as deleting data on a user’s filesystem or sending data about files on the local filesystem to a dis-
trusted network or Internet location.

When an AIR application is installed, it is placed in an application directory that is easily accessed
by files within the sandbox using either the app: // URL scheme or using the AIR only flash.
filesystem.File method applicationDirectory property.

Nonapplication sandboxes

Though many AIR applications only use files located in the application security sandbox, it

is common and useful to access files outside of the sandbox. Files loaded from outside the appli-
cation sandbox are assigned to separate nonapplication sandboxes. Sandboxes other than the
application sandbox are similar to the sandboxes used by the Flash Player security model.

Table 5.1 describes the different sandboxes outside of the application sandbox.

TABLE 5.1

Development Essentials

Other Sandboxes

Sandbox Description

remote

Files obtained from the Internet are placed in the remote sandbox. The remote
sandbox comprises sandboxes that are based on domain name rules similar to the
domain sandboxes used in the Flash Player.

local-trusted A user can designate a file as trusted using the Settings manager or the Flash Player

trust configuration file. Files in the local-trusted sandbox can read local data sources
and communicate with the Internet but do not have full access to the AIR API.

local-with- SWEF files published with a networking designation that has not been configured as a
networking trusted file by the user are placed in the local-with-networking sandbox and are able

to communicate with the Internet but do not have access to the local filesystem.

local-with-filesystem Local scripting files that are not published with a networking designation and are not

explicitly trusted by the user are placed in the local-with-filesystem sandbox and are
able to read from local data but are not able to communicate with the Internet.

Code signing

AIR installer files are required to be code signed. Code signing is a security measure taken to prove
that the listed origin of the software is accurate and has not been accidentally or maliciously altered
from its original state. Digitally signing your application requires that an electronic certificate be
provided by either linking to a certificate provided by a trusted certificate authority or by creating
your own certificate.

Digital certificates

A digital certificate is a document that contains information about the identity of the publisher of
an application. A digital certificate also contains the publisher’s public key and the identity of the
owner of the certificate itself. Digital certificates are signed by third parties, which allows for verifi-
cation of a public key’s owner and relies on a level of trust placed on the third-party signature.
These trusted third parties are commonly known as certificate authorities.

The certificate authority verifies the information in a certificate. Normally this trusted third party
issues certificates, signed by its own private key, to attest that it has verified the identity of the cer-
tificate holder. A certificate issued by a certificate authority is itself signed by a certificate belonging
to the issuing certificate authority.

Alternatively, the certificate’s publisher can self-sign its certificates; however, this negates the third
party that is used to verify the identity of a certificate. If an AIR installer is self-signed, it cannot
be determined that the AIR installer file has not been altered since it was signed, because it cannot
determine the origin of the installer and who signed it.

73

m Programming for AIR Essentials

74

I strongly recommend that you use a certificate linked to a certificate authority.

ON.

Obtaining a certificate

Obtaining a certificate involves visiting the site of a certificate authority and following each authority’s
process for purchasing a certificate. Two of the largest certificate authorities are VeriSign (www.
verisign.com) and Thawte (www.thawte.com), both of which offer certificates for code signing that
can be used by AIR.

Both VeriSign and Thawte offer several types of certificates for code signing. You may use certifi-
cates from certificate authorities other than VeriSign and Thawte, but they must be marked for
code signing, and typically an SSL certificate will not work with AIR. You can use the following
types of certificates from VeriSign and Thawte to sign an AIR application:

B Sun Java Signing Digital ID
W VeriSign certificate:
Microsoft Authenticode Digital ID
B Thawte certificates:
AIR Developer Certificate
Apple Developer Certificate
JavaSoft Developer Certificate

Microsoft Authenticode Certificate

Signing your application

Certificates are stored as either PFX or P12 files and are typically stored as backup certificate files
from browsers such as Firefox or Internet Explorer. Once you have generated and saved your cer-
tificate with an associated protection password, you are ready to use it with ADT (a command-line
development tool for AIR; for more details see Chapter 17), Flash CS3, Flex 3, or Dreamweaver CS3.
Note that you must install the AIR support extensions for Flash and Dreamweaver before you can
apply the certificate to an AIR application (see Chapter 2 to learn how to install these extensions).

In Flash, Flex, and Dreamweaver, a dialog box appears (when you publish an AIR application) that
includes options for signing with a digital certificate, as shown in Figure 5.1.

To sign your application, follow these steps:
1. Browse for the certificate that was saved when you stored the PFX or P12 file.
Locate and select the certificate.

Enter the password you used in order to export the certificate.

Use the check boxes if you would like to have your password remembered for the
session and if you would like to use a timestamp.

Development Essentials m
FIGURE 5.1

A dialog box for signing with a digital certificate

Digltal Signature E=

Speafy the digeal cartificate that represents the appheation publisher's dennity.

B Sgn the AIR e with & dgital certficate
Cerficate MRE . TR,
Paswords

Termemher passwerd for this session
| Tmestamo
Frepare an ASH Intermediste (ALRI) file that val be ngned later

e o][coma |

Signature timestamps

The timestamp option shown in the Digital Signature window in the AIR configuration dialog box
of Flash, Flex, and Dreamweaver determines if the signature on the digital certificate will include
the time that the application was signed. When the application installer is created, the packaging
tool obtains the date and time from a timestamp authority to create an independently verifiable
creation date and time. This time is embedded in the AIR file.

The AIR file is installable so long as the timestamp provided is created during the time that a certif-
icate is valid, even after the certificate expires. Without a timestamp, the AIR file is not installable
after the date that the certificate expires. AIR should always be time stamped; however, if Geotrust,
the authority used by the AIR packaging tools, is not available, it is possible to create an AIR file
without a timestamp.

Best practices

With the increased risk of the added privileges granted to a desktop application, it is important for
developers to take extra care to build applications that run safely and do no harm to the local sys-
tem. Even though AIR takes several measures to minimize the risk of any insecurity that may harm
a system, there are still ways that security vulnerabilities can be created.

Best practices are an easy way to further minimize the risk of dangerous exploitations or flaws in
an application. By following security best practices and actively seeking to identify and exclude
risky coding techniques, your applications will be more trustworthy and harm can be avoided.

The application sandbox

Files included in the AIR installer are granted full privileges and are capable of reading and writing
to the local filesystem. These files are also granted access to the local network as well as to the
Internet. For these reasons, it is important to carefully decide which files are included with the AIR
application and granted this access; it’s also important to thoroughly test the application to ensure
that it behaves as intended. It is especially important to use caution when importing files into the
application sandbox using scripting files in an AIR file.

75

m Programming for AIR Essentials

Never use data obtained from network sources as parameters to the AIR API that
: E may lead to code execution such as Loader.loadBytes () and the eval ()
method in JavaScript. Doing so can potentially lead to what is called code injection.

Though the AIR API has access to its own application directory using either the URL app: //
property or the File class property applicationDirectory, Adobe advises that AIR applica-
tions not write to or alter files in Adobe’s own application directory. Instead, each AIR application
has an application storage directory which can be accessed by the URL app-storage: // prop-
erty or through File.applicationStorageDirectory.

Sensitive information and credentials

It is common to use credentials such as a username and password to store login information to a
Web service or to access account information. Storing this information is inherently risky since
other applications or users who should not have access to this information may be able to transmit
the credentials to undesirable locations.

If a user’s credentials must be stored locally, it is important to store them as encrypted values that
can only be read by the AIR application that needs to use them. You can encrypt and store data in
what is called the AIR encrypted local store. Values stored in the encrypted local store are persistent
and not easily decrypted by other applications or users. Each AIR application has its own encrypted
local store that uses AES-CBC 128-bit encryption. The AIR class EncryptedLocalStore contains
static methods that are used to store and retrieve data in data hashes that include a string key and
data in the form of a byte array. Listing 5.1 is an example of storing and then retrieving a username
in the encrypted local store.

LISTING 5.1

// stores the username "jyamada" using the key "username"
var storedData:ByteArray = new ByteArray();
storedData.writeUTFBytes("jyamada");
EncryptedLocalStore.setItem("username", storedData, true);

// retrieves the data stored under the ky "username"

var retrievedData:ByteArray;

retrievedData = EncryptedLocalStore.getItem("username");

var username:String = retrievedData.readUTFBytes(retrievedData.length
)

// traces "jyamada"
trace('username: ' + username) ;

76

Development Essentials _

Downgrade attacks

Downgrade attacks are attacks that use older versions of an application to exploit flaws that have been
patched by more recent releases of an application. When the AIR installer installs an application, it
checks to see if the installing application already exists on the targeted machine. If the application
already exists on a user’s machine, the run time makes sure that the installed version and the
installing version are different. It does not check to make sure that the installing version is newer
than the installed version, so attackers can potentially distribute older versions of an application in
order to expose vulnerabilities or security weaknesses.

A preventative measure for such an attack is to build version-checking functionality into an appli-
cation. If an application automatically checks for a more recent version of itself and alerts a user to
the newer version, it makes installing an old version less exploitable as a user will know that the
currently running version is not the latest. It is also useful to use an easily identifiable versioning
schema, making it more difficult to trick users into installing an older version of an application.

Basic Application Properties

Each AIR installation package includes an XML application descriptor file that describes various
basic properties of an AIR application, such as its name and version id. When developing an AIR
application using Flex Builder, Flash CS3, or Dreamweaver CS3, the application descriptor file is
generated automatically. In Flash and Dreamweaver, the settings included in the application
descriptor file are set using a wizard menu included in the AIR application creation wizards. When
developing using the AIR SDK (Software Development Kit), you must create the descriptor file
manually; this shouldn’t be too inconvenient as the SDK includes a template descriptor file.

Even if you plan on developing using Flash or Dreamweaver, it may be useful to understand the

contents of this descriptor file. Because an AIR application installer file — an AIR file — is actually
a compressed zip file, it is possible to inspect an AIR file and read its descriptor file from within AIR.
This may be useful when updating to a newer version of an application using the AIR updater API.

Listing 5.2 is an example of an application descriptor file.

When the application descriptor file is created in Flex, it also includes helpful comments describ-
ing each setting that hasn’t been included in this sample for the sake of saving space. Several of the
settings included are described in detail throughout this book, as well. This section will describe a
few of the important settings that you can customize using either the XML or the wizards in Flash
and Dreamweaver.

When generated by Flex, useful comments are included in the application descriptor file. Note that
you can remove these comments, and that for the most part, you can change the order of these
nodes to suit your preference. Of course, the hierarchy for nested nodes such as file types and
icons must stay the same.

77

m Programming for AIR Essentials

LISTING 5.2

78

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.

<id>org.airbible.project</id>
<filename>NewProject</filename>
<name>NewProject</name>
<version>vl</version>
<initialWindow>
<content></content>
</initialwindow>

<!-- <installFolder></installFolder> -->
<!-- <programMenuFolder></programMenuFolder> -->

<l-- <icon>
<imagel6xl6></imagel6x16>
<image32x32></image32x32>
<image48x48></imaged 8x48>
<imagel28x128></imagel28x128>
</icon> -->

<!-- <customUpdateUI></customUpdateUI> -->

<!-- <allowBrowserInvocation></allowBrowserInvocation> -->

<!-- <fileTypes> -->
<!-- <fileType> -->
<!-- <name></name> -->
<!-- <extension></extension> -->
<!-- <description></description> -->
<!-- <contentType></contentType> -->

<!-- The icon to display for the file type. Optional.
<!-- <icon>

<imagel6xl6></imagel6x16>

<image32x32></image32x32>

<image48x48></imaged 8x48>
<imagel28x128></imagel28x128>

</icon> -->

<!l-- </fileType> -->
<!-- </fileTypes> -->
</application>

o">

-—>

Development Essentials m

Basic settings

The basic settings in the application descriptor file essentially describe the application or provide
basic information used when installing or running the application. They are at the top of the appli-
cation descriptor file when generated by Flex, Flash, or Dreamweaver. The following nodes include
the required id, filename, version, optional name, description, and copyright information:

<id></1id>
<filename></filename>
<name></name>
<version></version>
<description></description>
<copyright></copyright>

id

The application identifier is a required configuration used to identify an application. This identity
is used by the LocalConnection class when verifying the origin of an application and when
updating an application. It is common practice to use an identifier similar to a domain name,
which is also commonly used when naming class packages like org.airbible.application.
By using an identifier in the reverse form of a domain name, the chances that another developer
will use the same id are greatly reduced. The id is required.

Filename
The filename setting is used as a filename for the application when the application is installed. The
filename can contain any Unicode (UTF-8) characters except *, “, :, >, <, ?,\, and |. The file also

cannot end in a period. The filename is required.

Version

The version of an application is defined by a publisher. Users installing the application use the
version information to identify the version of the application; the version information must be
specified when updating an application. When you update an AIR application using the Updater .
update () method, the version specified must match the version specified in the application
descriptor. The version is required.

Description

The description is displayed in the installer window while the application is installing and is
optional.

Name

The name node is optional but recommended and is displayed in the window title bar when your
application is being installed. It is also used to name the install folder of your application.

Copyright information
The copyright information is displayed on OS X in the About dialog box and is optional.

79

m Programming for AIR Essentials

80

Installation settings

The installation settings describe the install location and menu location of an installed AIR applica-
tion and are configured in the following nodes:

<installFolder></installFolder>
<programMenuFolder></programMenuFolder>

Install folder

The Install folder configuration determines the subdirectory of the default installation directory
when the application is installed. In Windows, the default directory for installed AIR applications
is the Program Files directory; in OS X, it is the Applications directory. It is common practice to
place an application inside of a folder named after the company or organization that publishes an
application. Most Adobe applications are installed in an Adobe subdirectory. This setting will cre-
ate a subdirectory where your application will be installed.

You can create nested folders by using a forward slash to denote folders within folders in the form
of folder/subfolder. Using nested folders may be useful when publishing multiple applica-
tions that youd like to be grouped in the same containing folder.

Program menu folder
The program menu folder setting is only used in the Windows operating system.

Window settings

The document application descriptor file can set the properties of the initial window created by
your application (see Listing 5.3). The window settings are optional, but are useful to ensure
that your initial window appears the way you prefer it before you have a chance to set it from
within your application.

! Windows and their settings are discussed in further detail in Chapter 12.

Content and title

The content value in the descriptor file specifies the URL of the initial SWF or HTML file used to
run the application. The value of the content file is treated as a URL and must be URL encoded.
The title is the window title displayed in the initial window, as shown in Figure 5.2 as “Window
Title.”

Appearance and transparency

System chrome is the operating system chrome placed around an AIR application window that by
default displays the operating-system styled window title and minimize, maximize, and restore
buttons. In AIR, a window’s chrome can be customized and transparent. The systemChrome,
transparent, and visible settings are used to set the chrome of the initial window.

Development Essentials m

Chapter 12 discusses the various versions of chrome that can be displayed.

LISTING 5.3

<initialWindow>
<content></content>
<title></title>
<systemChrome></systemChrome>
<transparent></transparent>
<visible></visible>
<minimizable></minimizable>
<maximizable></maximizable>
<resizable></resizable>
<width></width>
<height></height>
<xX></X>
<y></y>
<minSize></minSize>
<maxSize></maxSize>
</initialWindow>

FIGURE 5.2

Window title

EI Window Title P o e

81

m Programming for AIR Essentials

82

Resizing

The minimizable, maximizable, and resizable settings dictate whether a window can be minimized
or maximized and whether it is resizable. Minimizable, maximizable, and resizable are all set to
true by default.

Window sizing and positioning

You can set the initial width, height, and x and y coordinates of a window using the <width>,
<height>, <x>, and <y> tags. By default these settings are dictated by the root SWF or, in the
case of HTML, by the operating system.

Summary

Some of the essential tasks needed to build a secure and safe AIR application have been discussed
in this chapter. It is important to always remember the level of trust that is placed in an application
when a user installs it. Dangerous and harmful operations can result from malicious attacks and
unintentional mistakes.

It is nearly impossible to build an application that is invulnerable to either dangerous attacks or
flaws, but it is possible to improve upon vulnerabilities by updating an application as soon as a
vulnerability is discovered.

ne of the biggest differences between a junior developer and a

senior developer is the ability to quickly and successfully locate and

remove problems within an application. This is where experience
truly shines; the more time people spend working with a particular technol-
ogy, the more likely they are to have already seen an issue and solved it in
the past.

As any veteran will tell you, putting tools such as a logger, debugger, and
profiler to good use is not just a best practice — it is a must. This chapter
introduces you to these tools and teaches you how to efficiently use them. 1
also share some tips and techniques specifically for optimizing memory and
performance in your applications.

Debugging Basics

A few different tools can assist you in debugging a problem within your
application. First and foremost is the Flex Builder debugger (see Figure 6.1).
If your application is throwing an error, you can use the Integrated
Development Environment (IDE) to set breakpoints and then step through
the code to monitor property values and see where things go wrong.

Though helpful, use of the debugger alone usually results in slower turn-
around times. That is why many developers choose to use a logger for moni-
toring the internal activities of an application.

83

IN THIS CHAPTER

Debugging basics

Logging

Profiling techniques

Memory and performance tips

m Programming for AIR Essentials

FIGURE 6.1

The debug controls are located in the top toolbar in the Flex Builder debugging perspective.

% Debug B | = B |[0- variabiles 52 [% breakpoi.. | 4 Expressi.. | = B
Ll [S =5 el ol =
v u Main [Flex Application] Name Value
v i@ r @ this Main (@122a7601)
¥ P Main Thread (Suspended) B O event flash.events Event (@122
= Main/onEnterFrame
wid = =
L B il
) jalv

Similarly, the Flash CS3 IDE also includes a similar debugger that you can optionally access during

testing.

Dreamweaver, on the other hand, is a different story. As mentioned in Chapter 3, you need to use
the AIRIntrospector. js file included with the AIR SDK. By including the file in each of your
HTML/JavaScript files, you can then output messages at run time to the AIR Introspector console
as well as use it to browse the HTML and DOM trees.

| For more information on getting the AIR Introspector setup, see Chapter 3.

Logging

Logging is a formal way of outputting information about what is occurring inside of an application
at run time. The simplest way to do this is to use the built-in trace statement. Though use of the
trace statement alone is simple enough, using a formal logger is beneficial for several reasons:

84

Filtering: Most good loggers feature log levels and/or categories for filtering log output as
necessary. This is an elegant way to narrow large amounts of output down by relevance.

Targets: Another common quality of a good logger is the ability to add multiple log
targets. For example, one target might take a given message and output it as a trace
statement, while another might send it over a local connection to another application
where it will be displayed in a color-coded text field.

Formatting: By funneling all output through a logger, you have complete control over
message formatting. The following demonstrates the difference between an informal
trace statement and one that is output by a logger:

// Simple, informal trace statement:

Main.init () called

// Nicely formatted trace statement output by a logger:

[SWF]
Main]

[DEBUG] [04/22/2008 03:26:45:981]
[init] Method called.

[org.airbible.logging.

Debugging and Profiling

The Flex framework includes a pretty decent logging package that should be suitable for most
requirements. To get started using the Flex logging package, begin by creating and configuring a
target, as shown in Listing 6.1. Once the target is configured, add it to the system using the Log
class.

LISTING 6.1

Setting Up the Flex Logging Classes

package org.airbible.logging

{
import mx.core.WindowedApplication;
import mx.logging.Log;
import mx.logging.LogEventLevel;
import mx.logging.targets.TraceTarget;

public class Main extends WindowedApplication
{
public const NAME:String = "org.airbible.logging.Main";

public function Main()
{

init();

protected function init () :void
{
initLogger () ;

protected function initLogger () :void
{

var logTarget:TraceTarget = new TraceTarget () ;
logTarget.level = LogEventLevel.ALL;
logTarget.includeCategory = true;
logTarget.includeDate = true;
logTarget.includeLevel = true;

logTarget.includeTime = true;

Log.addTarget (logTarget) ;

85

m Programming for AIR Essentials

86

With a target added, you can now begin logging. Loggers are stored by category, so you need to
pass the Log . getLogger method the category you are logging for; then it will return that catego-
ry’s logger, as shown here:

Log.getLogger ("myCategory") .debug ("This is a test message.");

// or

_logger = Log.getLogger ("myCategory") ;
_logger.debug ("This is a test message.");

Either of the two approaches shown above are fine; it is a personal preference. In addition to simply
taking a message parameter, the Flex logger also supports specifying a format using a special nota-
tion, as shown here:

var methodName:String = "init";
var message:String = "The application is now initializing...";

// Output: [init] The application is now initializing...
_logger.debug("[{0}] {1}", methodName, message) ;

Lastly, to filter output by level, you need to add a check before each logger call, as shown here:

if (Log.isDebug())
_logger.debug (" [{0}] {1}", methodName, message) ;

You may prefer to build a static class that handles the process shown above for you. Listing 6.2
demonstrates such a class.

Debugging and Profiling _

LISTING 6.2

A Static Logger Class

package org.airbible.logging
{

import mx.logging.Log;

public class Logger
{

public function Logger ()
{
}

public static function debug(className:String, methodName:String,
message:String) :void

{

if (Log.isDebug())

Log.getLogger (className) .debug("[{0}] {1}", methodName, message) ;
}
}

This is a great way to get everyone that is working on a particular project to output messages that
are formatted consistently. Altogether, getting your logger initialized and outputting your first mes-
sage will look something like Listing 6.3.

87

m Programming for AIR Essentials

The Logger Class in Use

package org.airbible.logging

{
import mx.core.WindowedApplication;
import mx.events.FlexEvent;
import mx.logging.Log;
import mx.logging.LogEventLevel;
import mx.logging.targets.TraceTarget;
public class Main extends WindowedApplication
{
public const NAME:String = "org.airbible.logging.Main";
public function Main ()
{
super () ;
init () ;
}
protected function applicationCompleteHandler (event:FlexEvent)
:void
{
Logger .debug (NAME, "applicationCompleteHandler", "Method
called."); }
protected function init () :void
{
initLogger () ;
addEventListener (FlexEvent .APPLICATION_COMPLETE,
applicationCompleteHandler) ;
}
protected function initLogger () :void
{
var logTarget:TraceTarget = new TraceTarget () ;
logTarget.level = LogEventLevel.ALL;
logTarget.includeCategory = true;
logTarget.includeDate = true;
logTarget.includeLevel = true;
logTarget.includeTime = true;
Log.addTarget (logTarget) ;
}
}
}

88

Debugging and Profiling _

From here, you may wish to write your own target(s) to use instead of or in addition to TraceTarget.
An example of a target that you might create is one that sends the messages over a local connec-
tion. You could then make a separate log application that displays the messages received over the
local connection in a nice, stylized text field. You may even add some various controls for aiding in
the sorting and filtering process.

Profiling Techniques

Profiling an application is the process of analyzing its performance. Using a number of different
techniques, you can squeeze the most out of your application in terms of performance and seal any
existing memory leaks. You can explore each of these techniques in the sections that follow.

Monitoring the frame rate

Depending on the type of application that you are developing, the frame rate is either very impor-
tant or not important at all. A game, for example, relies very heavily on a consistent frame rate —
not only for the sake of visual elements, but also for the quality of game play. Other types of
applications that feature lots of animations also need to pay close attention to this. On the other
hand, if your application is mainly just forms and static User Interface (UI) elements, the frame rate
really is not important.

Assuming that you are working on an application in which you need to monitor the frame rate,
Listing 6.4 demonstrates how you can accomplish this.

LISTING 6.4

An ENTER_FRAME Event Handler for Monitoring the Frame Rate

protected function enterFrameHandler (event:Event) :void

{
if (getTimer () - _timeStamp > 1000)
{
fpsLabel.text = "FPS: " + String(_frames);
_frames =1;
_timeStamp = getTimer () ;
}
else
{
_frames++;
}
}

89

m Programming for AIR Essentials

LISTING 6.5

90

The getTimer method always returns how many milliseconds the application has been running.
By capturing the current time in a property and then checking it again each time a frame is ren-
dered, you can count how many frames are rendered in one second. This is referred to as frames
per second, or FPS for short. Frames per second is the standard measurement of frame rate. If this
is something that you may end up using frequently, you may benefit from making your own nifty
little FPS component that you can simply add to the display in any project.

Monitoring the total memory

Perhaps even more important than the frame rate is the amount of memory your application uses.
A problem that is more common in applications than it should be is memory leak. A memory leak
is when the amount of memory your application is using continues to increase over time until it
uses up all the computer’s memory. In a best-case scenario, only your application will crash, but in
a worst-case scenario, it could force a user to restart his machine.

As shown here, monitoring memory consumption is very easy to do:

protected function enterFrameHandler (event:Event) :void
{
memoryLabel.text = "Memory: " + System.totalMemory;

}

Because memory output is measured in bytes, you may wish to convert the number to megabytes
so that it is easier to read. Listing 6.5 shows how you can convert the bytes to megabytes and then
round the number off to a specified number of decimal points.

An ENTER_FRAME Event Handler for Monitoring Memory Usage

protected function enterFrameHandler (event:Event) :void

{
// BYTES = 1 / 1024
memoryLabel.text = "Memory: " + String(round(System.totalMemory *
BYTES * BYTES, 2)) + " MB";
}

protected function round(value:Number, decimals:Number) :Number
{

var divisor:Number = Math.pow (10, decimals) ;

return Math.round(value * divisor) / divisor;

Debugging and Profiling

Though you can now monitor memory consumption and detect a leak, you have little insight as to
where the source of the leak is. That is where the Flex Builder profiler comes in handy; you can
explore this great tool later on in this chapter.

Timing the code execution

The simple trick that you are about to learn is one of the most useful techniques that you can pos-
sibly use to find slow-performing code and optimize it. Listing 6.6 demonstrates the use of the
getTimer method for timing the number of milliseconds a line of code (or a block of code) takes
to execute.

LISTING 6.6

The getTimer Method for Clocking Code

var time:int = getTimer () ;
// INSERT OPERATION #1 CODE HERE

trace("Operation #1 took " + String(getTimer () - time) + "
milliseconds.");

time = getTimer () ;
// INSERT OPERATION #2 CODE HERE

trace("Operation #2 took " + String(getTimer () - time) + "
milliseconds.");

Using this approach, you can locate slow code and experiment with possible solutions until you
find one that performs acceptably.

Monitoring memory with the Flex Builder profiler

The Flex Builder profiler is your best friend. This is your best resource for monitoring your appli-
cation’s memory consumption. It shows you how many instances of each object currently exist and
how much memory they take up. If your application has a memory leak, you will likely be able to
locate the problem very quickly with this tool.

I The profiler tool is only included with Flex Builder Professional.

91

m Programming for AIR Essentials

FIGURE 6.2

To get started using the Profiler tool, click the Profiler button in the top toolbar of Flex Builder (see
Figure 6.2). It is located to the right of the Debug button. Upon clicking it, the perspective should
change to the Flex Builder profiler perspective and a popup window should appear. The window
contains a handful of options for configuring the profiler before running it. The default settings are
typically sufficient.

The Flex Builder profiler perspective
Ir | O s @ie | Qe] 4]0 v 00s =R T |8 Flex Profiling
*;MJ (D Saved Prafiling mul = 0O || 2 cansole | 5 Memary Usage 5 | = m]
mmAERE|LE|x~
¥ [localhost — Prak Memory: 21K —— Cutrent Memary: 21 K
> 20480 K
2% [Running] w
&
3
£ 3 <l] Time {seconds) 100
5 Live Objects. 5 U E R CB
|Class. Package (Filtered) Cumulative Instances Instances Cumulativ
Main L{50.00 L{100.0%)

92

Once you have the profiler up and running, you can now monitor some very important happen-
ings inside of your application. For example, the memory-usage graph shows you how much
memory your application is using. It is fine for memory consumption to increase as long as the
garbage collector eventually kicks in and brings the number back down. If the memory level is
increasing, but never decreases or only decreases partially, you have a memory leak.

Though memory leaks are not optimal, dealing with memory leaks is a common part of application
development. The Live Objects spreadsheet shows you all the object instances that are currently in
memory. Using the toolbar at the top, you can create a memory snapshot while the profiler is run-
ning. By taking a snapshot when the application begins running and then comparing the snapshot
spreadsheet to the live objects a few minutes later once you terminate the profiler, you can see
which objects are not getting cleaned up properly by the garbage collector.

To resolve the issue, make sure that you are removing all references to an object when you are
done with it. If any reference to a given object remains, the garbage collector will not remove the
object from memory. The next section explores some additional tips for managing memory and
performance in your applications.

LISTING 6.7

Debugging and Profiling

Memory and Performance Tips

Using the techniques that were demonstrated earlier in this chapter, you can now efficiently locate
problem areas in your application. When you find them, what can you do to fix them? In this sec-
tion, you can explore some solutions for common problems and learn techniques for preventing
them in the first place.

Bypassing the Flex framework

The Flex framework saves you a lot of extra development time; however, it can also get in your
way when performance is crucial. If you are having a difficult time getting a Flex component to
perform well, then you are probably better off bypassing the framework. To do this, you need to
subclass a basic display object type, such as Sprite, and then add it directly to the display list.

Listing 6.7 demonstrates this technique when dealing with a Flex container, such as Canvas.

Listing 6.8 demonstrates the same technique but uses UIComponent.

Using rawChildren to Gan Direct Access to the Display List

package org.airbible.components

{

import flash.display.Sprite;
import mx.containers.Canvas;

public class MyComponent extends Canvas

{
public function MyComponent ()

{

super () ;
var mySprite:Sprite = new Sprite();
rawChildren.addChild (mySprite) ;

}

93

m Programming for AIR Essentials

LISTING 6.8

package org.airbible.components

9

import flash.display.Sprite;
import mx.core.UIComponent;

public class MyComponent extends UIComponent
{
public function MyComponent ()
{
super () ;
var mySprite:Sprite = new Sprite();

addChild (mySprite) ;

For maximum performance, you can bypass additional checks and method calls by gaining access
to the mx_internal namespace and calling the $addchild method, as shown in Listing 6.9.

When you have your display object directly in the display list, you are no longer tied down by the
heavy Flex code and all the display constraints. A noticeable increase in performance results from
this tactic at the expense of the convenience that the Flex framework provides.

Debugging and Profiling

LISTING 6.9

Accessing the mx_internal addChild Method

package org.airbible.components
{
import flash.display.Sprite;

import mx.core.mx_internal;
import mx.core.UIComponent;

use namespace mx_internal;

public class MyComponent extends UIComponent

{
public function MyComponent ()
{
super () ;
var mySprite:Sprite = new Sprite();
$addChild (mySprite) ;
}
}

Using mouseEnabled and mouseChildren properties

All interactive display objects feature support for mouse events. In an application that has a lot of
objects on-screen, your processor load will increase when the mouse is over the application. To
greatly reduce this unnecessary load on your processor, you can set the mouseEnabled and
mouseChildren properties to false for any objects that do not require mouse interactivity.

The mouseEnabled property enables and disables mouse support for the object in scope, where
as the mouseChildren property disables mouse support for any child objects of the object in
scope. It is important that you are careful when making these changes because you can potentially
block mouse events from reaching a nested button or control.

Setting stage quality

Setting the stage quality to LOW is a great way to increase the number of display objects that you
can successfully render without problems occurring. The trade-off is that vector graphics will no
longer render nicely; you need to use bitmaps for graphics, and device fonts rather than embedded

fonts. This is a good technique to have in your bag of tricks, but you will most likely not need to
use it very often.

95

m Programming for AIR Essentials

96

Using smart math

Chunks of code that perform a lot of math can usually be optimized for better performance. For
example, when flooring a number, the following code shows some various options and how they
stack up in terms of performance:

// Bad.
var myInteger:int = Math.floor (myNumber) ;

// Good.
var myInteger:int = int (myNumber) ;

// Best.
var myInteger:int

myNumber >> 0;

In almost all cases, bitwise operations will outperform everything else, so use them whenever pos-
sible. The following code shows another example of a useful bitwise operation, though in this case
it may not be useful if your result cannot be an integer. In such a case, you are still better off using
multiplication instead of division because it is faster.

// Bad.
var myNewNumber :Number = myNumber / 2;

// Good.
var myNewNumber :Number = myNumber * 0.5;

// Best, but only useable if result can be an integer.
var myNewNumber :Number = myNumber >> 1;

You also need to be smart about which type (Number, int, uint) you are using for your opera-
tions. Conversions from one type to another can reduce performance, so it’s usually best to stick
with either all Numbers or all ints. It is recommended that you only use uints for working with
color values.

Reusing objects

This is a biggie for both memory and performance. Object creation is a costly process, both at
the time of creation and later on when garbage collection has to clean it up. For this reason, you
should try to reuse objects as much as possible rather than constantly removing old objects and
creating new ones.

Use weakly referenced event listeners

As a best practice, you should almost always favor the use of weakly referenced event listeners. Only
refrain from the use of a weakly referenced event listener when you are absolutely sure that the object
that you are adding a listener to will never need to be removed. Unlike a strong reference, a weak ref-
erence does not need to be removed in order for the listener to be garbage collected. It is still highly

Debugging and Profiling _

recommended that you explicitly remove each event listener when you are finished using it; however
the practice of using weak references does act as a fail safe to prevent potential memory leaks.

To specify a listener as weak, you need to set the fifth parameter in the addEventListener
method to true; it is false by default. The following code shows an example of this:

addEventListener (MouseEvent .CLICK, onClick, false, 0, true);

Summary

The techniques that you learned in this chapter are extremely important. By mastering the material
that was discussed, you will find yourself developing projects with fewer headaches and with more
control over what is going on inside of your application.

97

Sedhnl Bt

et et

AIR API

IN THIS PART

Chapter 7
Communicating with the
Local Machine

Chapter 8
Using the Filesystem

Chapter 9
Using the Clipboard

Chapter 10
Dragging and Dropping

Chapter 11
SQLite Databases

Chapter 12
Using Native Operating System
Windows

Chapter 13
HTML Content

his chapter is an introduction to the specific features of the AIR
Application Programming Interface (API).

The capabilities that distinguish a project created for AIR from a project cre-
ated for the browser generally all stem from the same simple fact. By choos-
ing to download and install your application instead of just navigating to it
in their browser, users have made a decision to trust your software.

This requires restrictions on what software can do to, or for, your local
machine, depending on your perspective.

To enable an application to act freely on the files stored on their computers,
you must always give users the opportunity to accept the risk of trusting
your application. By the same token, users should always ask you (the pub-
lisher or developer of the software) to provide assurance that the software is
safe to use. This is the purpose of the installation process and software
certificates.

Once a user has decided to trust an application, a wide array of new capabili-
ties becomes available. Most importantly, the application can freely read files

from and save files to the local machine. On the surface, this might sound like

a minor step, but in reality it is the basis for several different capabilities of

AIR, including storing and connecting to local databases, saving user-generated

content, backing up user-generated content, storing user preferences, caching
files for offline use, and accessing content stored on the local machine.

Increasingly, browser applications allow the user to load

{ or store files, but only through File Open or File Save dia-
log boxes. This is a very useful feature but does not open the same possi-
bilities as free access. Because the user must be prompted to store the
files, this scenario is much more limited.

101

IN THIS CHAPTER

Differences among operating
systems

The AIR security sandbox

Working with the operating
system

102

For you, the developer, this new contract of running as a desktop application marks a significant
shift. Now that your code is running in AIR, you have to become aware of the new environment,
its restrictions, and its benefits.

Differences among Operating Systems

The new environment you are acting in is, of course, the operating system. Programmers familiar
with JavaScript and HTML are no doubt familiar with the “browser wars,” which have led to count-
less variations in the features available in the common browsers. Web standards, set by indepen-
dent third parties, such as the W3C, have helped minimize the effect competition has on
standardization, but there are no such standards to define what is correct for an operating system.
As a result, variations are even more frequent for operating systems than they are for browsers.

In your application, you can determine the operating system being used by looking at the
Capabilities.os property. This property is a string value such as Windows XP, Windows
Vista, or Mac 0S 10.5. As you can see in this section, you do not usually need to explicitly
extract the type of operating system being used. This is because you can check against other prop-
erties that are specific to areas where the operating systems behave differently.

AlR is available for several versions of Microsoft Windows and Mac OS X, and will soon be avail-
able for Linux as well. Any application you create in AIR automatically works in all these environ-
ments. This is truly a huge benefit of using the AIR platform; most applications written in native
code need to be largely rewritten or recompiled before they can be moved from one operating sys-
tem to another.

"= Chapter 17 covers the Linux operating system behavior in detail.

However, this does not mean that you will never need to account for differences between operating
systems. There are a few critical differences between the major operating systems, and you need to
be aware of them before you begin. Remembering these differences is a good start, but nothing is a
substitute for good testing. You should always test your application across the operating systems
you intend to deploy it to, and you should perform these tests early and often.

"= Chapter 9 covers testing the differences between operating systems and the differ-
g =% ences between applications regarding the system clipboard. This is a good example
of how much variation you might encounter as you deploy applications to different systems.

Native menu support

One difference among operating systems is the support for native menus. Native menus are the
menus that appear at the top of the screen or the window. For example, File, Edit, and Help
menus are some of the most common native menus.

Communicating with the Local Machine

Mac OS X supports menus at the application level, not the window level. This means the menu
appears at the top of the screen, and is available no matter which application window is open,
or even if no application windows are open. On Windows systems, menus are connected to the
window, not the application.

This means that you need to determine which capabilities are available before you add your
menu. To determine what type of menus the current operating system uses, you can use the
NativeApplicaiton.supportsMenu property. If this value is true, then Mac-style applica-
tion menus are supported. When that is the case, you can assign a new menu to the application
by creating a NativeMenu object and assigning it to the NativeApplication.
nativeApplication.menu property.

Otherwise, you can check the NativeMenu . supportsMenu property. If this value is true, then
you should assign your new menu to NativeMenu .menu.

It is best to use these properties to determine what type of menu to use. Even though you know
that one type of menu would be available on a Mac while the other is available on Windows, it is
better to let AIR determine which type of menu to use than it is to determine the operating system
and decide for yourself. For example, the next version of Windows might support application level
menus, leaving your application looking outdated on those systems if you were looking to the
Capabilities.os property instead of NativeMenu. supportsMenu.

Native menus are covered in detail in Chapter 12.

System icons

The types of system icons supported also vary across operating systems. The object type for
NativeApplication.icon is different depending on whether the application is run on the
Mac version of AIR or the Windows version. You do not need to create the icon directly in either
case, but you may want to change properties of these icons manually. Therefore, you need to know
what type of icon to expect.

To check what type of icon is supported, use the NativeApplication. supportsDockIcon
and the NativeApplication.supportsSystemTrayIcon properties. The OS X-style dock
icon and the Windows system tray icon are very similar from the perspective of the AIR developer,
except that the dock icon has a bounce method for event notification, while the system tray icon
supports a tooltip. Both can have custom menus and contain an array of different Bi tmapData
objects representing the various sizes of available icons.

Special characters

On Mac OS X, the forward slash character (/) is used as a separator between folders in a file path.
On PCs, the backslash character (V) is used. You can use the File. separator property when
constructing paths, so that you don’t have to determine which value is correct.

103

104

Similarly, the special character used to indicate line ending in a file is different between Mac and
Windows systems; fortunately, there is a constant that you can use to ensure that the proper value
is being used:

File.lineEnding

The AIR Security Sandbox

As with any platform, AIR presents certain security risks. The more popular a platform becomes,
the more likely it is that someone will try to exploit that platform. The more you understand about
security, the less likely it is that your application will be exploited.

Your application has a responsibility to the user because the user has chosen to trust that your
application will not do anything malicious or risky to her system. To ensure that AIR applications
meet these responsibilities, the developers at Adobe have put a special set of restrictions on the
ways your application can load content and the ways your application can execute scripts that are
not in the application directory.

Malicious scripts

The primary security concern these restrictions defend against is the possibility that a malicious
script could be executed on the user’s local machine. There are a few general ways in which this
could happen.

Hacked code libraries

One way that a malicious script could be added into your application is through a script that you
load dynamically from the Web during execution. If you have an application with commands that
you expect to modify regularly, you may decide to leave certain libraries online, either compiled
into an SWF file or in a JavaScript file.

This may be a good solution for some problems, but it introduces a potential risk. If someone is
able to gain access to the Web server that hosts these libraries, he can replace them with malicious
code. This could put everyone who has installed your application at risk by giving the hacker
access to their files and the ability to delete or modify their files.

To prevent these attacks, AIR generally allows you to load script files from the Web, but places
those script files in a special sandbox, limiting what they are able to do.

Malicious strings

Another potential threat arises if your code executes a string loaded from an untrusted source, then
executes that string as code. The JavaScript eval () function is a good example of this risk, because

it can be used to execute strings input from outside sources as code. To protect against this kind of
threat, AIR does not allow JavaScript or HTML to generate dynamic code after a document has fin-

ished loading.

Communicating with the Local Machine

This may sound like an odd risk, but it is commonly exploited in cross-site scripting (XSS) and
cross-site request forgery (CSRF) attacks. Vulnerabilities such as these have been used to get user
information from sites like Gmail and PayPal, and illustrate the need for developers to carefully
manage user input such as HTTP POST data and GET data. Wikipedia provides a comprehensive
overview of these risks at wikipedia.org/wiki/Cross-site_scripting.

Sandbox types

Script files, whether they are SWF files, SWC files, HTML files, or JavaScript libraries, are placed in
sandboxes based on their location. This section explains the five possible sandboxes:

Application

Remote

Local with filesystem

Local trusted

Local with network

Application sandbox

When you add source files to your AIR installer, those files are added to the Application directory.
All these files are trusted as part of the intended structure of the application, so they are automati-
cally put in the application sandbox when the application starts. All files in the application
sandbox have full access to the AIR API, and they can read and display content from the local com-
puter or from remote locations.

However, if you load in scripts from outside of the application directory, they are placed in a
different sandbox. To determine what sandbox a script is running on, you can use the £lash.
system.Security object. For example, here’s a method that returns the current sandbox type
from ActionScript:

import flash.system.Security;

public function getSecuritySandbox () : String
{
return Security.sandboxType;

}

Remote sandbox

If you load a script file from a remote host, then all scripts in that SWF are placed into the remote
sandbox. An SWF in the remote sandbox has the exact same behavior as it would in the browser.
This means it can access content from its own domain, as well as content from other domains if
there is a proper crossdomain policy file on those other hosts to allow it. A Web-deployed SWF
has no access to local content or to the AIR API, and neither does a script that has been placed into
the remote sandbox.

105

106

Local with filesystem sandbox

If your application loads a script file from a local folder outside of the application directory, then
there are three possibilities for which sandbox it will be added to. Usually, the local-with-
filesystem sandbox is used, meaning that the scripts can access the local filesystem but are
strictly forbidden to access remote files.

Local trusted sandbox

If one of these scripts needs to access both remote content and local content, then it is also possible
to set the file as trusted content. To make a file or folder trusted, create a FlashPlayerTrust file on
the user’s system. FlashPlayerTrust files are located at the following locations:

B Windows: C:\windows\system32\Macromed\Flash\FlashPlayerTrust\

B OSX: /Library/Application Support/Macromedia/FlashPlayerTrust/

To trust the files in a particular directory, simply add a text file into one of these folders, where the
content of the text file is the path to the directory you wish to make trusted.

Files in directories that have been trusted in this way are added to the local-trusted sandbox,
which means that they can access both remote content and local content.

Local with network sandbox

It is possible to publish an SWF file with a network designation, so that it can be run from a local
location but can access remote content. This setting in Flash CS3 is shown in Figure 7.1.

Flash content that has been published in this way is added to the local-with-network sand-
box, and it is allowed to access network content. As a result, it is also strictly forbidden to access
local content or to communicate with content that is located in the local-with-filesystem
sandbox. This is the only sandbox that is specific to Flash content — the others are all possible
with any type of content.

Using sandboxes

For most AIR applications, it should not be necessary to work with sandboxes other than the
application sandbox. If an occasion arises where you find that another sandbox may be useful,
you should carefully weigh the risks versus the rewards of that decision.

For instance, suppose you have a suite of applications with different functions, but that share a
great deal of code. It is possible to create a Runtime Shared Library (RSL) by making a Flex library
project that includes AIR libraries. This RSL would be an SWC file that contains all the shared
classes. This technique is beneficial for some Web applications, because the SWC file is only
downloaded once, even if it is used by several applications on the same domain.

Communicating with the Local Machine

FIGURE 7.1

Publish settings in Flash CS3 with the network designation selected

Publish Settings

Current profile:| Default - _*1_.:_+ :.'.—:]' o

“Formats | Flash | HTML |

Version: | Flash Player 9 12 ! nft

Load arder: | Bartom up e

ActionScript version: | ActionScript 3.0 ':_l (Settings...)

Options: | | Generate size report
[Protect from import
) Omit trace actions
"] Permit debugging
h—_ﬂ Comprass movie
Optimize f h Player 6 r6
@1 Export hidden layers

™ Export SWC
Password:
Script time limit: 15 seconds
JPEG quality: | 0= =
0 100
Audio stream: MP3, 16 kbps, Mano T‘
Audio event: MP3, 16 kbps, Mono "T
" Override sound scttings
) Export device sounds
Local playback security: | Access network only =]

Publish) (Cancel) (0K

Those benefits are lost in an AIR application, though. First, you can’t keep the file at a remote
location, because the remote sandbox doesn’t have access to the AIR API, and the file needs to
be downloaded whenever it is cleared from the cache. Second, placing an RSL into one of the
application directories means that it is in the application sandbox of only one of your applica-
tions, but in the local-with-filesystem sandbox for the other. Also, keeping that file in the
local directory so that it can be shared between applications creates a dependency between the
applications, where updating one application could potentially break the others.

Perhaps the most important drawback of using an RSL in an AIR application is the memory cost.
The compiler usually only includes parts of a framework that are used in the application, but the
nature of an RSL requires that the entire framework be included because it is unknown what
aspects of it will be used at run time.

107

108

This means that you will be using more system memory at run time than necessary, potentially
much more. For a Web application that needs downloaded every time it is run, it may be prefera-
ble to use more system memory to save some of the download time. However, this equation is very
different for a desktop application that is downloaded once and run often.

Working with the Operating System

While there is quite a bit to learn about desktop programming and the risks associated with it,
there is also a lot of opportunity for new types of applications. For example, AIR provides Web
developers a means to write programs that still work when the user isn’t even connected to the
Internet. The remainder of this chapter addresses some general features of the AIR API that are
related to operating system communication.

Monitoring the network

Because AIR applications run on the desktop, they do not inherently require network access to
run. However, the extent to which your application requires the Internet depends entirely on the
needs of your application. Some applications, like a text editor, for example, may not need net-
work access to function. But the success of Buzzword, Adobe’s Web-based text editor, shows that
even applications that were traditionally local have many uses for basic online functionality such as
quick linking and sharing.

Your application may have additional menu options based on the availability of the network, or it
may have a completely different stage layout, or it may even go into a dormant state when the net-
work is unavailable. However your application responds, most AIR applications are probably going
to have some online behavior.

It is possible in AIR to respond to general changes in network activity by watching for changes at
the application level, as shown in Listing 7.1.

Communicating with the Local Machine

LISTING 7.1

Watching for network changes at the application level

NativeApplication.nativeApplication.addEventListener (
Event .NETWORK_CHANGE,
onNetworkChange) ;

private function onNetworkChange (event:Event) : void
{

trace("network changed") ;

This event will fire if the user’s network connection drops or is restored, but will also recognize
other changes to the network connection. If the user is connected to the network and this event
fires, it does not necessarily mean that the user has been disconnected; if the user is not connected,
this event does not always mean that the user has established a connection.

Monitoring a specific URL

If your application needs to access a specific resource for certain functionalities, then it is best to
monitor that resource in particular. Network connectivity doesn’t guarantee a connection to a par-
ticular resource for a number of reasons. For example, the server hosting the networked service
could be down.

To monitor a specific resource, you can use the URLMonitor class. If you create an instance of

this class, you can watch the status of a URLRequest object. Listing 7.2 shows a test Flex AIR
application that creates a URLMonitor to watch for changes in connectivity to airbible.org.

109

Simple Flex application that monitors a URL

<?xml version="1.0" encoding="utf-8"?>

<mx :WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
applicationComplete="onAppComplete ()"
>

<mx:Script>
<! [CDATA[

import air.net.URLMonitor;

private var monitor:URLMonitor;

private function onAppComplete() : void
{
var myURL:String = "http://www.airbible.org";

var myRequest:URLRequest = new URLRequest (myURL) ;
monitor = new URLMonitor (myRequest) ;
monitor.addEventListener (StatusEvent.STATUS,

onURLStatusChange) ;
monitor.start () ;
}
private function onURLStatusChange (event:StatusEvent) : void
{
trace("url status change", event.code);
}

11>
</mx:Script>

</mx:WindowedApplication>

110

Communicating with the Local Machine

When this is run, the event will fire after the application starts to give the status. Possible values for
the status code are Service.available and Service.unavailable. Adobe recommends
inspecting the URLMonitor.available property instead of using the code from the event, as
that provides a Boolean value instead of a string.

The URLMonitor continues to watch this value until URLMonitor. stops ()is called. However,
it only checks for changes if there is a change to the application-level network status, which was
shown in Listing 7.1. This means that if a remote event causes the connection to that host to fail,
the monitor will not recognize the lost connection until a local event affects the application level
network status. To make the URLMoni tor poll for status changes more regularly, you can set a
value higher than zero for URLMonitor.pollInterval:

monitor = new URLMonitor (myRequest) ;

monitor.addEventListener (StatusEvent.STATUS,
onURLStatusChange) ;

//set the poll interval to be higher than zero

monitor.pollInterval = 5000;

monitor.start() ;

This way, the URLMonitor checks every five seconds to see if the status has changed.

URLMonitor has an optional second parameter, acceptableStatusCodes. This is an array of
HTTP status codes that should be taken to mean that the service is available. The default values for
the acceptable status codes are 200, 202, 204, 205, and 206.

For example, if you are polling a host for connectivity, but pointing at a forbidden URL, you could
list 403 as an acceptable status code:

monitor = new URLMonitor (myRequest, [403]);

monitor.addEventListener (StatusEvent.STATUS,
onURLStatusChange) ;

monitor.start () ;

In this case, a 403 response from the host would leave the monitor.available true, and if the
network became unavailable, the response would change to a 404. However, a 200 response would
set it to false, too, so you should always be certain to include the 200-class status codes in the
acceptable array. Table 7.1 provides some common status codes.

111

TABLE 7.1

Common HTTP Status Codes

Common
Status Range Status Class Examples Description
200-299 Success 200 OK: Successful request
202 Accepted: Successful but still processing
204 Accepted but no content is available
205 Reset content: The requesting document should reset any
form data used to generate this request
206 Partial content
300-399 Redirect 301 Moved permanently
400-499 Client Error 400 Bad request: The request to the host was rejected
401 Unauthorized: The user needs to be authenticated
403 Forbidden: The server understood the request and will not
allow it
404 File not found
500-599 Server Error 500 Internal server error

Monitoring user presence

Not only can you monitor whether or not the network is available, you can also detect whether or
not the user is available. Whether or not the user is actively using the computer may have an effect
on how you choose to display events, how often you choose to scan a remote server for new data,
or any number of things. Listing 7.3 demonstrates how to monitor when the user is present or idle
(the user is considered idle if he has not used the keyboard or the mouse for more than 60 sec-
onds). When the user returns, the USER_PRESENT event fires.

112

Communicating with the Local Machine

LISTING 7.3

Monitoring user activity

private function setup() : void

{

NativeApplication.nativeApplication.idleThreshold = 60;
NativeApplication.nativeApplication.addEventListener (
Event .USER_IDLE,
onUserIdle) ;
NativeApplication.nativeApplication.addEventListener (
Event .USER_PRESENT,

onUserPresent) ;

}
private function onUserIdle(event:Event) : void
{

trace("user idle");
}
private function onUserPresent (event:Event) : void
{

trace("user present");
}

Summary

AIR applications run in the operating system, which is a completely new environment for Web
developers. Browser wars won't affect developers working in the AIR environment, but desktop
software presents a whole new set of challenges. Foremost among those challenges is security —
it is essential that AIR developers understand what steps need to be taken to protect users’ data.
Once the developer understands security, AIR provides significantly more visibility into the envi-
ronment and freedom to leverage that visibility than Web developers have ever had before.

113

ne of the most useful features in AIR is the ability to work with the

local filesystem. Unlike the Flash Player, whose security model is

appropriately much stricter and prohibits writing and manipulating
files both server side and client side directly, AIR has the ability to interact
directly with files.

You can perform some simple tasks using the filesystem, including using
configuration files, using log files to record errors and events, inspecting
directories and files, and storing user specific data. The filesystem package
offers the ability to provide an application with more complex tasks, such as
generating files based on user interactions. This opens the door for the devel-
opment of applications like word processors, sound editors, image editors,
and a whole host of applications yet to be made.

Filesystem Basics

AIR provides a relatively robust set of tools for interacting with the filesystem.
These tools are exposed in the class package £lash.filesystem, which
contains three classes: File, FileStream, and FileMode. Combined,
these classes provide features that allow developers to perform tasks such as
reading, writing, moving, copying, and deleting files. There are no classes
specifically meant for handling directories alone. Because most of the func-
tionality such as copying, moving, deleting, renaming, and creating pertains
to files already, the directory handling was rolled into the File handling.

| Use File.isDirectory to differentiate between files
" and folders before attempting to access folder-specific

functionality.

115

IN THIS CHAPTER

Filesystem basics

Using folders

Using files

File encryption

Simple Text Editor

File objects

The File class is a subclass of the FileReference class found in the Flash Player and in AIR.
File adds methods and properties that are not found in the Flash Player due to the security
model of the Flash Player used primarily for Web development.

The File object represents files and folders in the filesystem that either exist or are to be created.
File is used to open, copy, move, or create files or folders; delete or move them to the trash; and
inspect directories. When editing a file, FileStream uses File to access specific files.

' You can think of File as comparable to Explorer in Windows or Finder in Mac OS
S8 X, as it allows you to navigate through the filesystem.

The File class has several public properties that indicate several important details about a file or
directory, such as its existence (exist), its file path (url), whether it's hidden (i sHidden), and
whether it’s a directory or file (isDirectory).

Other properties represent useful information such as the file path to the desktop, user directory,
application resource directory, and application storage directory:
applicationResourceDirectory: The application’s resource folder
applicationStorageDirectory: Points to the application’s private folder
desktopDirectory: Points to the user’s desktop

documentsDirectory: The folder path of the user’s documents folder

userDirectory: Points to the user’s folder

moveTo and moveToAsync
File has several methods that perform identical tasks synchronously or asynchronously, such as:

copyTo and copyToAsync
deleteDirectory and deleteDirectoryAsync

getDirectoryListing and getDirectoryListingAsync

moveTo and moveToAsync

You can explore the differences between these methods and how to use them in the section on
asynchronous File and FileStream methods in this chapter.

FileMode

The FileMode class defines string constants — READ, WRITE, APPEND, and UPDATE — which
are used to indicate the modes in which the FileStream class opens a file. Specifically, you use
these modes when opening a file using the FileStream methods open () and openAsync (),
as the second parameter named f£ileMode. Each of these modes has differing capabilities that
pertain to how the file will be written to if the file should be used in a “read-only” mode.

116

Using the Filesystem _

FileStream

The FileStream class reads and writes to files on the filesystem. A FileStream object repre-
sents the connection between the AIR application and a local file and requires a File instance to
point to the file that can be read, written to, or appended to using FileStream. FileStream

objects are discussed in further detail in the section on FileStream objects in this chapter.

Filesystem information

The File class and the Capabilities class contain information about the user’s filesystem;
this information is useful when there are differences across operating systems and system settings
that may alter how you want your application to behave. The information specific to the system on
which your application is running is available through static properties found in these two classes.
The static properties include the following:

B File.lineEnding: The characters used by the host operating system to indicate the end of
a line. Apple OS X indicates the end of a line with a line-ending character; Windows uses
the carriage-return character followed by the line-feed character.

B File.separator: The character used to indicate a folder path. Apple OS X uses the forward
slash (/) and Windows uses the backslash (\).

B File.systemCharSet: The default character encoding used for files by the client operating
system, which indicates the client language character set.

B Capabilities.hasIME: A Boolean value indicating whether the host system has an input
method editor, which allows for the input of complex character sets such as Japanese.

B Capabilities.language: Specifies the language code that the host system is using.

B Capabilities.os: Indicates the current operating system.

Using Folders

When developing an AIR application, accessing and working with folders is a common and often
vital task. Fortunately, it is relatively intuitive to create and modify folders using the File class.
Before you perform any of these tasks, you need to create a File object. Once your File object is
pointed to a directory, the run time provides methods for creating, copying, moving, and deleting
folders.

Creating a folder

To create a folder on the filesystem, use the File.createDirectory () method.
createDirectory () will create a folder in the directory that a File instance is pointing to. If
the directory pointed to by the File instance already exists, createDirectory () silently does
nothing. To determine if createDirectory () is creating a new folder, use File.exists.
Determining if a folder exists already can be helpful when you need to have a new and empty
folder.

117

LISTING 8.1

In the following example, an empty folder named AIRFolder is created in the user’s desktop
directory:

var fl:File = File.desktopDirectory.resolvePath("AIRFolder") ;
fl.createDirectory () ;

Creating a temporary folder

You can create a temporary folder in the filesystem’s temporary folder directory to store unique
folders for use during a single session. To create a new temporary folder, use File’s create-
TempDirectory () method. The createTempDirectory () method automatically creates a
new folder that is unique and does not need to be named or resolved.

Temporary folders and files are not automatically deleted when a runtime session is
ended. Remember to delete files before closing an application.

In the following example, a temporary directory is stored to a File object:
var myTemporaryFolder:File = File.createTempDirectory() ;

There is also a method for creating temporary files called createTempFile () that is discussed
later in this chapter in the section on creating a temporary file.

Copying and moving folders

Copying and moving folders are similar tasks in nature and come in synchronous and asynchronous
forms. Both require that you create two File objects, the first being the source directory and the
second being the destination directory.

Listings 8.1 through 8.4 demonstrate how to copy and move directories using the synchronous
and asynchronous methods provided in the File class. You may notice that folders containing
many files and folders take longer to copy and move than empty folders. When you need to move
larger folders, it is useful to use the asynchronous methods instead of the synchronous methods so
that your application can perform other tasks while waiting for the operating system to move or
copy your folders.

Synchronously copying a folder

var source:File = File.desktopDirectory.resolvePath("Source") ;
var destination:File = File.desktopDirectory.resolvePath("Source Copy");
sourceDir.copyTo (resultDir) ;

118

Using the Filesystem _

Asynchronously copying a folder

var source = File.desktopDirectory.resolvePath("Source") ;

var destination:File = File.desktopDirectory.resolvePath("Source Copy");
original.addEventListener (Event.COMPLETE, copyCompleteHandler) ;
original.addEventListener (IOErrorEvent.IO_ERROR, copyIOErrorHandler) ;
original.copyToAsync (destination) ;

function copyCompleteHandler (event:Event) :void {
trace(event.target); // [object File]

}

function copyIOErrorHandler (event:IOErrorEvent) :void {
trace("I/O Error.");

LISTING 8.3

Synchronously moving a folder

var source:File = File.desktopDirectory.resolvePath("Source") ;
var destination:File = File.desktopDirectory.resolvePath("Source Copy");
sourceDir.moveTo (resultDir) ;

LISTING 8.4

Asynchronously moving a folder

var source = File.desktopDirectory.resolvePath("Source") ;
var destination:File = File.desktopDirectory.resolvePath("Source Copy");

original.addEventListener (Event.COMPLETE, copyCompleteHandler) ;
original.addEventListener (IOErrorEvent.IO_ERROR, copyIOErrorHandler) ;
original.moveToAsync (destination) ;

function copyCompleteHandler (event:Event) :void {
trace(event.target); // [object File]

}

function copyIOErrorHandler (event:IOErrorEvent) :void {
trace("I/O Error.");

119

Note that the copyTo and copyToAsynchronous methods include Boolean optional second
parameters that indicate whether or not these methods should overwrite existing directories. By
default, this parameter is false and an I0 Error event is used to indicate that the destination
folder already exists. If this parameter is set to true, the destination folder is overwritten with the
source folder.

Deleting folders

To delete a directory, you can use the synchronous deleteDirectory () or asynchronous
deleteDirectoryAsync () method provided in the File class. Just as moving and copying
large folders can take a noticeable amount of time, the same is true for deleting a directory; it is
good to use the asynchronous method when deleting directories since your application will seem
frozen while the operating system deletes a directory.

Both deleteDirectory () and deleteDirectoryAsync () accept the deleteDirectory
Contents parameter. The deleteDirectoryContents parameter is a Boolean parameter
that indicates whether the non-empty folders should be deleted along with their contents. The
default value of this parameter is false. Unless it is set to true, the folder being deleted would need
to be empty in order to delete it.

Listings 8.5 and 8.6 demonstrate how to delete a folder that has content in the synchronous and
asynchronous forms.

LISTING 8.5

Synchronously deleting a directory

var dir:File = File.desktopDirectory.resolvePath("FolderName") ;
dir.deleteDirectory (true) ;

LISTING 8.6

Asynchronously deleting a directory
var dir:File = File. desktopDirectory.resolvePath("FolderName") ;
dir.addEventListener (Event.COMPLETE, deleteCompleteHandler)

dir.deleteDirectoryAsync (true) ;

function deleteCompleteHandler (event:Event) :void {
// statements to perform upon completion

120

Using the Filesystem _

You can also move folders to the trash instead of deleting them entirely by using the
moveToTrash () and moveToTrashAsync () methods. You can use these methods in the same
manner as you use the deleteDirectory () and deleteDirectoryAsync () methods.

Using Files

Interacting with files is similar to working with folders. The only difference is that when working
with files, you have the added ability to manipulate the data in a file by reading, writing, and
appending. Most of the methods, such as copyTo and moveTo, that are available for folders are
also available for use on files. Moving and copying files is identical to moving and copying folders,
only the File object needs to be pointed to a file instead of pointed to a folder. Deleting a folder is
nearly identical to deleting a folder, only you use deleteFile () and deleteFileAsync ()
instead of deleteFolder () and deleteFolderAsync ().

Copying a file
Copying files are similar to copying folders, as discussed in the section on using and copying

folders. A small difference between copying and moving folders and files is that when creating the
source and destination File objects, a file is referenced instead of a directory.

You use the same methods of a File object — copyTo (), copyToAsync (), moveTo (),
moveToAsync () — to copy and move files.

The following example shows how to copy a file:

var source:File = File.desktopDirectory.resolvePath("source.
txt");

var destination:File = File.resolvePath("destination.txt");

source.copyTo (destination, true);

Notice that the second parameter of copyTo is set to true to indicate that the destination file
should be overwritten if it exists already.

Moving a file

Moving a file is nearly identical to moving a folder. When moving a file using the File class, you
need a source file location and a destination file location. You use the same File class methods for
moving folders — moveTo () and moveToAsync () — to move a file as discussed in the sections
on using and copying and moving folders.

The following examples demonstrate how to move a file synchronously:
var source:File = File.desktopDirectory.resolvePath("source.txt");

var destination:File = File.resolvePath("destination.txt");
source.moveTo (destination) ;

121

To move a file asynchronously, see the section on copying and moving folders.

Deleting a file

The File class provides synchronous and asynchronous methods for deleting files: deleteFile ()
and deleteFileAsync (). To delete a file you must create an instance of the File object and
point it to a file on the filesystem.

Listings 8.7 and 8.8 demonstrate how to delete a file synchronously and asynchronously.

LISTING 8.7

Synchronously deleting a file

var file:File = File.desktopDirectory.resolvePath("FileName.txt") ;
file.deleteFile();

LISTING 8.8

Asynchronously deleting a file

var file:File = File. desktopDirectory.resolvePath("FileName.txt") ;
file.addEventListener (Event.COMPLETE, deleteCompleteHandler)
file.deleteFileAsync() ;

function deleteCompleteHandler (event:Event) :void {
// statements to perform upon completion

}

Reading and writing files

Use the FileStream class to read and write the contents of a file on the filesystem. FileStream
has several methods for reading and writing in order to deal with several different file types and file
encodings.

Before you can read a file or write it to FileStream, use the methods open () and openAsync ()
to both open a file and set the mode in which it will be accessed. The open () and openAsync ()
methods accept two parameters. The first parameter is the File instance to be opened and the
second is the mode in which to open the file. Opening a file using open () looks like this:

var file:File = File.documentsDirectory;
var stream:FileStream = new FileStream();
stream.open(file, FileMode. WRITE);

122

Using the Filesystem _

As discussed earlier in this chapter in the sections on filesystem basics and FileMode, there are four
modes in which a file can open: FileMode.READ, FileMode.WRITE, FileMode . APPEND,
and FileMode.UPDATE. Each represents the following certain behaviors when opening a file:

B FileMode.READ: Opens a file in read-only mode. You can read but not write to
FileStream. This is a good way to access data in a file while ensuring that nothing will
be changed in it by accessing it.

B FileMode . WRITE: Writes to a file. When a file opens in WRITE mode, the existing data
in the file is deleted and the file is write accessible.

B FileMode. APPEND: Opens a file and appends data to the already existing data. If the file
were a text file, all written data would be appended to the end of the file. This mode is
useful for log files because you can add information to the end of the file without having to
keep track of where the data will be written to when leaving the previously written logs.

B FileMode.UPDATE: UPDATE is the most commonly used mode when writing to a file
because it leaves the data previously contained in the file while allowing for editing any-
where in the existing file.

FileStream objects

To use the FileStream class, open a file using either the synchronous open () or the asynchro-
nous openAsync () method. As discussed in the previous section, a file can open in one of four
modes, READ, WRITE, APPEND, and UPDATE. These four modes offer differing file access modes
that allow you to just read, to clear and write, to append to the end of a file, or to read and write at
the same time.

When opening files asynchronously, a file’s contents are available while it is loaded into the
FileStream object much like a file is downloaded when accessing Web-based content. The
available data is represented by bytesAvailable. For most files, you'll notice only a very short
delay between O bytes available and all bytes available. During this delay, your application is in

a paused state when using the synchronous version of open () ; when using the asynchronous
version, openAsync (), your application is to perform other tasks while it opens the file.

It's a good idea to use the asynchronous version of open () because it can be invasive to the user
experience to have all animation and interactivity paused in your application even if only for a brief
moment. To use the asynchronous openAsync () open method, add an Event listener to your
FileStream object just as you do for all the asynchronous File and FileStream methods
that include asynchronous versions.

Once a file is opened using FileStream, there are several methods for reading and writing files
in several data formats and encodings, such as £loat, int, multibyte, object, short,
unsigned int, UTF, and UTF Bytes.

123

Working with XML

Working with XML locally is similar to working with XML files using URLLoader and is a conve-
nient way to store and retrieve data without using a database. See Chapter 11 for more details.

Reading a local XML file is as easy as using FileStream to access the file and casting the bytes to
an XML object as shown in Listing 8.9. Write the XML to a file by opening the file in FileMode.
WRITE mode as shown in Listing 8.10.

LISTING 8.9

var fl:File = File.documentsDirectory.resolvePath ("myXML.xml") ;
var fs:FileStream = new FileStream() ;

fs.addEventListener (Event.COMPLETE, processXMLData) ;
fs.openAsync (fl, FileMode.READ) ;

var xml:XML;

function processXMLData (e:Event) :void

{
xml = XML (fs.readUTFBytes (fs.bytesAvailable)) ;
fs.close();

LISTING 8.10

var fl:File = File.documentsDirectory.resolvePath ("myXML.xml") ;
var fs = new FileStream() ;
fs.open(fl, FileMode.WRITE) ;

var xml:XML = new XML;
xml = '<?xml version="1.0" encoding="utf-8"?>\n<myXML></myXML>";

fs.writeUTFBytes (outputString) ;
fs.close();

124

Using the Filesystem _

File Encryption

When storing data that is used by an application, the storage location is important. Storing a vital
application in a user’s documents directory can be dangerous, since a user may delete or move the
files being used without knowing their importance to your application. For the same reason, it can
be useful to store files in a user’s directory, provided that your application does not rely on the files
and they are files the user could and may want to discard, such as document files that your appli-
cation might generate.

There are several situations when you’ll want to store information in a secure manner so that users
or other applications cannot access or alter the files. For example, if you were to create an e-mail
application, you wouldn’t want to expose the connection settings for e-mail accounts in an area
that could be accessed by malicious programs or other users. For these occasions, AIR provides an
encrypted local store called EncryptedLocalStore where files can be kept safely.

Data stored using EncryptedLocalStore is available only to the AIR application that generated
it and only on the account that it was created on. If two users on one system with two separate
user accounts were to have the same AIR application installed, each user account would have an
independent local store. The data stored by EncryptedLocalStore is, of course, encrypted in
a format that cannot be deciphered by other applications, which is important when storing private
information such as passwords.

EncryptedLocalStore stores data as a hash table where the data is identified by a string and
the data itself is in the form of byte arrays. You can create, access, and remove these arrays using
the static methods of EncryptedLocalStore called setItem(), getItem(), and
removeItem (). Additionally, the static method reset () allows you to clear the local store
entirely per application and per user. Listing 8.11 demonstrates how these methods are used in
order.

LISTING 8.11

var password:String = "myPassword";
var byteArray:ByteArray = new ByteArray () ;
byteArray.writeUTFBytes (password) ;

// sets the local store value for "password"
EncryptedLocalStore.setItem("password", byteArray);

// gets the local store value for "password"
var stored_pass:ByteArray = EncryptedLocalStore.getItem("password") ;

// removes the local store value for "password"
EncryptedLocalStore.removeltem("password") ;

// clears all data stored in the local store
EncryptedLocalStore.reset () ;

125

126

Simple Text Editor

This section walks you through using Flex to create a simple text editor that will demonstrate the
basics of accessing and modifying files in the filesystem. This application will be capable of open-
ing and reading text files, modifying them, and saving new files. The result will be a simple but
functional AIR application that will be easy to build onto for a more feature-rich editor.

Though this application is written in Flex, you should be able to easily replace the
: MXML elements with Flash components or HTML elements. The ActionScript events
carry over easily to an ActionScript-based application for use in Flash.

Setting up the MXML application file

First things first: You need to set up your application MXML file, which will create your Ul elements
using Flex components. The MXML file will serve to set some important application configurations
such as how the layout of the application will behave and the window title that will be shown.

<?xml version="1.0" encoding="utf-8"?>

<simpletext:Main
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:simpletext="com.airbible.samples.simpletext.*"
layout="absolute"
title="Simple AIR Text Editor" >

</simpletext:Main>

Notice you've also assigned an entry point class (com.airbible.samples.simpletext.
Main) that youll use to initialize and control this application. This will allow you to separate the
functionality of your application and the layout and placement of your components, thus cleanly
separating the view from the controller and model, Main. as.

Itis also a common practice to use the <mx: Script> element to place in line

e “ ActionScript in an MXML file. Though this practice is not widely discouraged, it is
a better idea to separate form and functionality. By separating these two, it will be easier in the
future to customize the layout and style of your text editor.

Creating the user interface

In Flex, creating But ton objects and TextArea objects is quite efficient and simple when using
MXML. For this simple editor, you need buttons for creating, opening, closing, and saving text
files. In the Flex 3 Design View, you can add these buttons using the components panel. In Flash,
these could also be components placed on the stage with the corresponding event handlers.

First create a TextArea to display the text that you'll be reading and writing to files. Width and
height need to be set to 100% so that the TextArea will span the window as it’s resized. You also
need to make sure that editable is set to true so that the user can edit the text.

<?xml version="1.0" encoding="utf-8"?>

Using the Filesystem

<mx :WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute" title="Simple AIR Text Editor" >

<mx:TextArea id="textArea" x="0" y="40" width="100%"
height="100%" editable="true" />
</mx:WindowedApplication>

Now that you have a TextArea to display and edit text, you need to create buttons for creating,
opening, closing, and saving the text documents you want to work with.

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute" title="Simple AIR Text Editor" >
<mx:TextArea id="textArea" x="0" y="40" width="100%"
height="100%" editable="true" />
<mx:Button x="10" y="10" label="Open" id="openFileBtn"
/>
<mx:Button x="74" y="10" label="Close" id="closeFileBtn" />
<mx:Button x="138" y="10" label="Save" id="saveFileBtn" />
<mx:Button x="200" y="10" label="Save As" id="saveAsFileBtn" />
</mx:WindowedApplication>

As you see in Figure 8.1, this is all it takes to create the text area and buttons you'll be using. You
now have all the components you'll be using and have event handlers assigned to each button.
Next you'll create the event handlers that you assigned to the buttons; time to start developing the
functionality you’ll need to work with files.

FIGURE 8.1

The text area and buttons

& Simple AIR Text Editor [ollEEs

Open | | fase || Sawe Save As |

127

128

Creating TestFileStream.as and its API

Along with your SimpleTXT.mxml file, you'll use two ActionScript classes, Main.as to give
your application its functionality, and com.airbible.samples.simpletext.TextFile,
which will wrap the flash.filesystem.FileStream classes.

Whenever you create a class, it is important to consider its APl (Application Programming
Interface) carefully for several reasons. One reason is that the API consists of public methods that
will commonly be used by other developers. Therefore, not only do the public methods need to be
consistently available for those that rely on the services offered by your class, but they also need to
be well organized and easy to use for other developers who may prefer that your class just work
without having to dig.

Before creating an API, think about a class’s responsibilities and what it will be used for. This helps
determine what methods will be most useful for those seeking to use your class. Next, you'll out-
line the responsibilities of your two classes and decide on their public APls. Because Main.as
depends on TextFileStream’s API, start with TextFileStream.

TextFileStream’s API

Since TextFileStream is a wrapper class for FileStream, it will serve nearly the same purpose
of FileStream and will be a virtual representation of a text file, either an opened file or a file to be
saved to the filesystem. Its content, however, will not be represented directly by TextFileStream
itself, though it should provide methods for accessing its content. TextFileStream will handle
the opening, closing, and saving of text files by using FileStream by means of composition.
However, like FileStream, TextFileStream requires that a File instance be provided, as it
will not be responsible for finding or setting document locations; this will be done in Main.

As TextFileStream is responsible for opening, saving, and closing text documents, you need to
create appropriately named methods for use by Main.as. After opening a file, return the contents
of the file, but for ease of use and later retrieval of content, you'll also expose a TextFileStream’s
content. Listing 8.12 demonstrates TextFileStream’s APl

Using the Filesystem

LISTING 8.12

package com.airbible.samples.simpletext

{

import flash.filesytem.File;

public class TextFileStream
{
// The constructor
public function TextFileStream() {}

// Gets the current content
public function get content() :String {}

// opens a file from a File, and returns the content
public function open(file : File) : String {}

// closes the TextFileStream and clears its content
public function close() : void {}

// saves a file to the given location
public function save(file : File, txt:String) : void {}

}

Building TextFileStream

Now that you have TextFileStream's APl worked out, you can move on to fleshing out its
methods. Most of this will be relatively simple since you'll simply be using composition to mimic
some of the behaviors of FileStream. First start with the constructor; you'll need to create an
instance of FileStream and store it in a private instance variable. Here’s what it will look like:

private var fs:FileStream;
public function TextFileStream/()
{

fs = new FileStream() ;

}

Next you'll work on open () and close () as shown in Listing 8.13. Notice that both methods
close the FileStream. It's important to close the file stream when you're done in order to allow
other applications to access the file and to free up resources. Also notice that you're going to open

the file in FileMode .READ mode, since all you need to do in open () is obtain the contents of the
file.

129

Create Read-Only Properties

Though you can use public variables instead of the intrinsic get and set accessor methods, these
methods allow free access to outside classes to modify the property. In many cases this could be a
risk. You won’t want other classes inadvertently overwriting your _content property. By using a
getter accessor method and not including a setter method, you are effectively creating a “read-
only” property. If you're new to ActionScript 3.0, you may also want to look into the various access
modifiers newly available in 3.0 that also help control the access to classes, properties, and methods.

LISTING 8.13

// opens a file from a File, and returns the content
public function open(file : File) : String
{
fs.open(file, FileMode.READ) ;
_content = fs.readUTFBytes(fs.bytesAvailable);
fs.close();
return _content;

}

// closes the TextFileStream and clears its content
public function close() : void

{

_content = null;
fs.close();

130

Using the Filesystem _

Now that the open () and close () methods are completed, move on to the exciting part: saving!
For this application simply accept a File instance and new content to save to the file location.
Notice you have two parameters already in your API just for this. When you're done with the sav-
ing, make sure to store the new content in _content and close the file stream.

public function save(file:File, txt:String) : void
{
fs.open(file, FileMode.WRITE) ;
fs.writeUTFBytes(txt);
_content = txt;
fs.close();

}

You've got one final task for TextFileStream: the content accessor method. You want to expose
the content of the files you open and save so that other objects can use TextFileStream to store
the content of a file for reference whenever the TextFileStream is open. You also need a pri-
vate variable inside of TextFileStream to store the content.

// a private variable to store the content
private var _content:String;

// a getter for _content.
public function get content () :String { return _content; }

And that’s that! You're all done with TextFileStream. It should be easy for Main to use, as well
as other classes in the future. Refer to Listing 8.14 to see what the finished class looks like.

131

LISTING 8.14

package com.airbible.samples.simpletext

{

132

public class TextFileStream

{

// A reference to the filestream
private var fs:FileStream;

// stores the file's content
private var _content:String;

public function TextFileStream()

{
fs = new FileStream() ;
}
// opens a file from a File, and returns the content
public function open(file : File) : String
{

fs.open(file, FileMode.READ) ;

_content = fs.readUTFBytes(fs.bytesAvailable);
fs.close();

return _content;

}

// closes the TextFileStream and clears 1its content
public function close() : void

{

_content = null;
fs.close();

// saves a file to the given location
public function save(file:File,

newContent:String) : void
{
fs.open(file, FileMode.WRITE) ;
fs.writeUTFBytes (newContent) ;
_content = newContent;
}
// a getter for _content.
public function get content() :String
{

return _content;

Using the Filesystem _

Main API

Your Main.as class is the main application class. It manages the application’s state and the events
that correspond to these states. It creates and uses TextFileStream instances to access and
modify files.

In this application, you will not be using methods of Main.as by any other classes. The construc-
tor function will be exposed as will the Button instances and the TextArea instance. This leaves
Main’s API as:

// The TextArea instance that will display a text file's contents
public var textArea:TextArea;

// The buttons used to open, close, save and save as
public var openFileButton:Button;

public var closeFileButton:Button;

public var saveFileButton:Button;

public var saveAsFileButton:Button;

// The constructor
public function Main()

Building out Main

In this sample application, your main entry point class will be Main.as. For the purposes of dem-
onstration, Main.as will also serve as your controller class, and to some degree your model. This
is not recommended for real-world development, but demonstrates all the essentials for reading

and writing data to files.
SSE £ For a recommended approach, please see Chapter 16 for a review on application
M— ‘&Jt development best practices where design principles and development approaches
will be discussed.

Managing Simple Text Editor’s application state

Your buttons and TextArea are already created in MXML. You have access to them in your Main
class because you've extended WindowedApplication. All you need to do now is turn them on!
This means you'll need to attach event handlers to each of these components so that when the user
clicks on them or types in the text area, your application will behave accordingly.

One thing to consider is that during certain application states, you want to enable or disable some
of your components and their respective event handlers. To manage your components and event
handlers, create a private method called setState (state:String). This section also guides
you through creating three constant variables that represents four different states: NEW, OPENED,
CLOSED, and CHANGED. You may wonder why there isn’t a SAVED state. This is because when a
text file is saved, it is essentially the same as being freshly open; so for now, just use OPENED
whenever the file is saved.

133

Store these states as string constants and create a variable to store the current state. Call it cur-
rentState. Listing 8.15 demonstrates what your setState () method and your new variables

will look like.
LISTING 8.15
private const NEW:String = "new";
private const OPENED:String = "open";
private const CLOSED:String = "closed";
private const CHANGED:String = "changed";

private function currentState:String;

private function setState(state:String) : void

{
// check to make sure we're not already in this state
if(currentState == state) return;

switch(state)

{

case NEW:
break;

case OPENED:
break;

case CLOSED:
break;

case CHANGED:
break;
}
currentState = state;

Next, enable and disable your components as needed in your setState method (see Listing 8.16).
For example, you wouldn’t want to have the close button enabled if you're already in the closed
state; there would be nothing to close! You also wouldn’t want to disable the TextArea when no
file is opened or clear its contents when it is closed.

134

Using the Filesystem _

case NEW:
newFileButton.enabled = false;
openFileButton.enabled = false;
closeFileButton.enabled = true;
saveFileButton.enabled = false;
saveAsFileButton.enabled = true;
textArea.eneabled = false;
break;

case OPENED:
newFileButton.enabled = false;
openFileButton.enabled = false;
closeFileButton.enabled = true;
saveFileButton.enabled = true;
saveAsFileButton.enabled = true;
textArea.enabled = true;
break;

case CHANGED:
newFileButton.enabled = false;
openFileButton.enabled = false;
closeFileButton.enabled = true;
saveFileButton.enabled = true;
saveAsFileButton.enabled = true;
break;

case CLOSED:
newFileButton.enabled = true;
openFileButton.enabled = true;
closeFileButton.enabled = false;
saveFileButton.enabled = false;
saveAsFileButton.enabled = false;
textArea.text = '';
textArea.enabled = false;
break;

135

Managing Simple Text Editor’s application state

Now that you have your application’s state ready to go, simply attach all your event listeners to
methods that in turn set your state. Next, create File objects to reference new or existing files,
and then access TextFileStream to open and save them. Before you assign the event handlers,
you need to make them. Here are the empty event handlers you'll use:

private function onNewClickedHandler (e:Event):void {}
private function onOpenClickedHandler(e:Event):void {}
private function onCloseClickedHandler(e:Event):void {}
private function onSaveClickedHandler(e:Event):void {}
private function onSaveAsClickedHandler(e:Event):void {}
private function onTextChangedHandler (e:Event):void {}

Next create a method called setEventHandlers and add the event handler functions you've
just created using addEventListener (see Listing 8.17).

LISTING 8.17

private function setEventHandlers () :void

{
newFileButton.addEventListener (MouseEvent.CLICK,
onNewClickedHandler) ;
openFileButton.addEventListener (MouseEvent.CLICK,
onNewClickedHandler) ;
closeFileButton.addEventListener (MouseEvent.CLICK,
onCloseClickedHandler);
saveFileButton.addEventListener (MouseEvent.CLICK,
onSaveClickedHandler);
saveAsFileButton.addEventListener (MouseEvent.CLICK,
onSaveAsClickedHandler);
textArea.addEventListener (MouseEvent.CLICK,
onTextChangedHandler) ;
}

136

Using the Filesystem

You can also assign event handlers to buttons using MXML, like this:

<mx:Button x="10" y="10" label="Open" id="openFileBtn"
click="onClickHandler(event);" />

You may notice that when you compile this, you are given no compilation errors or warnings if
you are missing methods that are referenced by this MXML. If you are using Flex Builder, you will,
however, notice problem markers that indicate that you've referenced nonexistent methods. This
inconsistency is cause for concern.

When coding in ActionScript 3.0, you would normally not be able to compile without errors when
referencing a property that does not exist. As a developer, you want these errors so that you can
avoid having to find out that there are problems at run time and then having to spend extra time
discovering that your application isn’t behaving as intended because you've forgotten to write a
method or have misspelled the name of a property.

Before you fill in your event handlers, prepare your constructor to instantiate both a File object
and a TextFileStream object. You need to create private variables for both of these objects in
order to access them throughout Main.as. Finally, for your constructor, you need to set the types
of files you will allow FileFilter to open, and then add a call to setEventHandlers ().
Listing 8.18 demonstrates these steps.

LISTING 8.18

private var file:File;
private var textFile:TextFileStream;
private var fileFilter:FileFilter;

public function Main()

{
addEventListener (FlexEvent.CREATION_COMPLETE, run);
}
private function run() :void
{
file = new File();
textFile = new TextFileStream() ;
fileTypes= new FileFilter ("Text", "*.as;*.css;*.html;*.txt;*.xml;*.
jsi");
setEventHandlers () ;
}

137

Your next step is filling in the event handlers. Add a couple more methods to handle events, such
as for when you use the operating system file-browsing dialog box to select file locations. Add a
method for the open and save as event handlers that will handle the file location selections made
by the operating system.

First, populate the event handlers that won't require you to use extra event handlers or properties
as in Listing 8.19.

LISTING 8.19

private function onNewClickedHandler (e:Event):void

{
setState(NEW) ;
}
private function onSaveClickedHandler(e:Event):void
{
textFile.save(file, textArea.text);
setState(OPEN) ;
}

Next up is your Open event handler as shown in Listing 8.20. OnOpenClickedHandler will use
an event listener to listen to the Event . SELECT event generated when you use browseForOpen
to trigger the file browse menu. Once this event occurs, your File object has a file location to

pass to your TextFileStream object that uses FileStream to open the document and return
its content to Main.

LISTING 8.20

private function onOpenClickedHandler (e:Event):void

{
file.browseForOpen ("Open", [fileTypes]);
file.addEventListener (Event.SELECT, onOpenDialogComplete);
}
private function onOpenDialogComplete(event:Event):void
{
textFile.open(file);
file.removeEventListener (Event.SELECT, onOpenDialogComplete);
setState(OPENED) ;
}

138

Using the Filesystem

Similar to how you created your onOpenClickedHandler, create a new event handler for your
Save As handler, following the example in Listing 8.21. When onSaveAsClickedHandler is

called, use the browseForSave method to find a new file location for the currently opened or
created document.

LISTING 8.21

private function onSaveAsClickedHandler(e:Event):void

{

file.browseForSave(file.name.toString());
file.addEventListener (Event.SELECT, onSaveAsDialogComplete);

}
private function onSaveAsDialogComplete(e:Event):void
{
textFile.save(file, textArea.text);
setState(OPEN) ;
}

Next populate your onCloseClickedHandler and onTextChangedHandler. When you try
to close a document, check if the content has been changed by setting currentState to
CHANGED when the onTextChangedHandler is called.

This triggers a warning message asking the user if it’s okay to close without saving. Using this dia-
log box requires you to write one last event handler, as shown in Listing 8.22.

139

private function onTextChangedHandler (e:Event):void
{
setState(CHANGED) ;

}
private function onCloseClickedHandler(e:Event) :void
{
if(currentMode == CHANGED)
{
Alert.show("Close without saving?",
"Save Changes",
3,
this,
onCloseWithoutSavingHandler) ;
return;
}
else
{
textFile.close();
textArea.text = '';
setState(CLOSED) ;
}
}
}

private function onCloseWithoutSavingHandler(e:CloseEvent):void
{
if(event.detail == Alert.YES)
{
textFile.close() ;
textArea.text = '"';
setState(CLOSED) ;

This is the last of your work on Main.as. Refer to Listing 8.23 to see what the class looks like all
put together.

140

Using the Filesystem _

package com.airbible.samples.simpletext

{

import flash.events.*;
import flash.filesystem.File;
import flash.net.FileFilter;

import mx.controls.Alert;

import mx.controls.Button;

import mx.controls.TextArea;

import mx.core.WindowedApplication;
import mx.events.CloseEvent;

import mx.events.FlexEvent;

public class Main extends WindowedApplication

{

private const NEW:String = "new";

private const OPENED:String = "open";
private const CLOSED:String = "closed";
private const CHANGED:String = "changed";

private var currentMode:String;

public var textArea:TextArea;
public var newFileButton:Button;
public var openFileButton:Button;
public var closeFileButton:Button;
public var saveFileButton:Button;
public var saveAsFileButton:Button;

private var file:File;
private var textFile:TextFileStream;
private var fileFilter:FileFilter;

public function Main()

{
addEventListener (FlexEvent.CREATION_COMPLETE, run);

public function run(e:Event):void
{

file = new File();

textFile = new TextFileStream() ;

fileFilter = new FileFilter ("Text", "*.as;*.css;*.html;*.txt;*.xml;*.
jsi");
setEventHandlers () ;

continued

141

_ Partill QU
TN (e WX (continued)

setState(CLOSED) ;

private function setState(state:String) : void
{

if(currentState == state) return;

switch(state)
{
case NEW:

newFileButton.enabled = false;
openFileButton.enabled = false;
closeFileButton.enabled = true;
saveFileButton.enabled = false;
saveAsFileButton.enabled = true;
textArea.enabled = true;
break;

case OPENED:
newFileButton.enabled = false;
openFileButton.enabled = false;
closeFileButton.enabled = true;
saveFileButton.enabled = true;
saveAsFileButton.enabled = true;
textArea.enabled = true;
break;

case CHANGED:
newFileButton.enabled = false;
openFileButton.enabled = false;
closeFileButton.enabled = true;
saveFileButton.enabled = true;
saveAsFileButton.enabled = true;
break;

case CLOSED:
newFileButton.enabled = true;
openFileButton.enabled = true;
closeFileButton.enabled = false;
saveFileButton.enabled = false;
saveAsFileButton.enabled = false;
textArea.text = '';
textArea.enabled = false;
break;

}

currentMode = state;

142

Using the Filesystem _

private function setEventHandlers () :void

{
newFileButton.addEventListener (
MouseEvent .CLICK, onNewClickedHandler);

openFileButton.addEventListener (
MouseEvent .CLICK, onOpenClickedHandler) ;

closeFileButton.addEventListener (
MouseEvent .CLICK, onCloseClickedHandler);

saveFileButton.addEventListener (

MouseEvent .CLICK, onSaveClickedHandler);
saveAsFileButton.addEventListener (

MouseEvent .CLICK, onSaveAsClickedHandler) ;

textArea.addEventListener (
MouseEvent .CLICK, onTextChangedHandler) ;

private function onNewClickedHandler(e:Event):void

{
setState(NEW) ;

private function onSaveClickedHandler (e:Event):void

{
textFile.save(file, textArea.text);
setState(OPENED) ;

private function onOpenClickedHandler(e:Event):void

{
file.browseForOpen ("Open", [fileFilter]);
file.addEventListener (Event.SELECT, onOpenDialogComplete) ;

private function onOpenDialogComplete(event:Event):void

{
textArea.text = textFile.open(file);
file.removeEventListener (Event.SELECT, onOpenDialogComplete

setState(OPENED) ;

private function onSaveAsClickedHandler (e:Event):void

{
file.browseForSave(file.name.toString());

continued

143

__ Partill UV
(R ILN(eR WX (continued)

file.addEventListener (Event.SELECT, onSaveAsDialogComplete);

}
private function onSaveAsDialogComplete(e:Event):void
{
textFile.save(file, textArea.text);
setState(OPENED) ;
}

private function onTextChangedHandler (e:Event):void

{
setState(CHANGED) ;

private function onCloseClickedHandler(e:Event):void
{
if (currentMode == CHANGED)
{
Alert.show("Close without saving?",
"Save Changes",

3,
this,
onCloseWithoutSavingHandler) ;
return;
}
else
{
textFile.close();
textArea.text = '';
setState(CLOSED) ;
}

private function onCloseWithoutSavingHandler (e:CloseEvent

) :void
{
if(e.detail == Alert.YES)
{
textFile.close();
textArea.text = '';
setState(CLOSED) ;
}
}

144

Using the Filesystem _

Simple Text Editor is now feature complete! Your little application is extremely light and, while it
serves mostly to get you started on the way to a more robust text editor, it clearly illustrates how
easy it is to create a quick text editor and how to handle files in the filesystem.

Summary

In this chapter you've learned the basics of accessing and working with the filesystem. From here
you should be able to explore the rest of the File, FileMode, and FileStream API as dis-
cussed in Adobe’s documentation in further detail.

When working with a local filesystem, always be careful that your application does no harm to

a user’s machine. Having the ability to modify and work with a user’s files is a new and exciting
capability available for ActionScript and Ajax developers alike, but the advice given to Spiderman
by Uncle Ben rings true: “With great power comes great responsibility.”

145

he clipboard is something users generally take for granted with the

applications they use (because every successful operating system and

every successful application has one), but take a step back and reflect
on it and you will realize how essential it really is. Imagine the software you
use from day to day and try to picture how it would be different if you could
not use copy and paste. Would you still use a Web browser, an e-mail client,
or an instant messaging application if you could not copy anything from or
paste anything into that application? What about a text editor or an image
editor?

Most users would not accept an application that only offered save and import
functionality if there was a similar application available that allowed copy
and paste. On the surface, copy-and-paste is just a time-saving mechanism,
but it is so effective that most users depend on it heavily.

Because the clipboard is consistent across operating systems and applica-
tions, it is a glaring omission when applications fail to have a copy-and-paste
feature. Effective use of the clipboard can be a great enhancement to your
application.

Choosing a Clipboard Format

Whenever an application adds data to the clipboard, it specifies the format
for that data so that other applications can use it. It is also possible to add
the same piece of data in more than one format, to give other applications a
choice.

147

IN THIS CHAPTER

Choosing a clipboard format

Copying data to the clipboard

Pasting data from the clipboard

Copy and Paste sample
application

TABLE 9.1

For example, if your application displays formatted text, you could choose to add the data to the
clipboard as an HTML representation of that format. A simple text editor might choose to display
the tags as plain text, or to ignore data in the HTML format altogether. To make sure that the data
in the clipboard is useable by a wider array of other applications, it is a good idea to offer a choice. In
this case, you could add the same data to the clipboard twice: once with tags in the HTML format,
and once without in the text format.

In this way, the clipboard on every operating system is actually more like a filing cabinet, with a
different drawer for each type of data. Every application can pick which drawer to use based on its
own needs.

The basics of the clipboard are the same across operating systems, but the details vary widely. The
types of formats you can expect often change names; the way those formats are encoded also changes,
depending on whether the user is on Windows XP, Windows Vista, OS X Tiger, or OS X Leopard.
For older systems, the changes are even more apparent.

Fortunately for you, AIR handles most of those variations for you. AIR has simplified the common
clipboard formats into five types, defined in flash.clipboard.ClipboardFormats. See
Table 9.1 for the AIR-recognized clipboard formats.

Clipboard Formats Recognized by AIR

Corresponding Corresponding MIME Type Used
Clipboard Format ActionScript Type in HTML Applications Description
BITMAP_FORMAT BitmapData image/x-vnd.adobe.air. Image data
bitmap

FILE_LIST_FORMAT Array of file objects application/x-vnd.adobe. A listof files

air.file-1list

HTML_FORMAT String text/html HTML formatted text
TEXT_FORMAT String text/plain Plain text
URL_FORMAT String text/uri-list Link to a Web location

148

Copying Data to the Clipboard

The clipboard on every operating system is an ordered array of data. Each element in the array rep-
resents the same data and is associated with some type. The array is ordered by how useful each data
type is, from the most useful to the least. In other words, the program that added the data to the
clipboard orders the array to indicate which type or types it would prefer other programs to use.

Using the Clipboard m

For example, if you add formatted text to the clipboard, you might put the HTML type first, in
hopes that the program it was pasted into would preserve the formatting. Next, you might add the
plain text type and add the same text without HTML tags. The format would be lost, but all the
text would still be available. Finally, you could include a bitmap capture of the text so that it could
be pasted into an image-editing program.

This is important to remember, because not all programs will be looking for every data type in the
clipboard. If you add formatted text as only the HTML type, many programs will not even recog-
nize that it is there. Whenever possible, you should include a plain text representation or a bitmap
representation of the data (depending on what sort of data it is), as these are the most commonly
implemented data types.

In ActionScript, you can access the operating system clipboard using the static variable general -
Clipboard found in flash.desktop.Clipboard. During a copy operation, you usually add
data to the clipboard using generalClipboard.setData().

Clipboard.setData (format:String, data:Object,
serializable:Boolean)

The format parameter will usually match one of the formats listed in Table 9.1. In HTML appli-
cations, you can use one of the mime types listed for this string, and in ActionScript you use one of
the constants specified in £lash.clipboard.ClipboardFormats. It is also possible to create
a custom type of data, but you should remember that this will only be readable by an application
that you create or by an application that recognizes your custom format.

The data for each format should always match the type listed in Table 9.1 for that format. The
serializable parameter defaults to true. Changing this parameter to false means that when
this data is pasted back into the current AIR application, only a reference to the original object
will be available, and not a copy. If the user tries to paste data into another AIR application, and
serializable is false, she will not be able to obtain the reference. This means that setting
serializable to false prevents the data from being used in other AIR applications. This param-
eter will not affect the behavior of paste operations outside of the AIR run time.

When adding data to the clipboard, it is important to keep in mind how it will be used by other
applications. For example, Listing 9.1 is a test operation that adds three types of data to the clip-
board. Instead of making each data type represent the same piece of data, this test makes each
piece of data different to show which type is being used by other applications.

As with any copy operation, the first step in Listing 9.1 is to clear the data currently stored in the
clipboard. Even if you are adding data to all the formats available to AIR, you should remember to
clear the data because there may be additional formats already populated there.

149

Test copy operation for string types

private function doCopy (event:Event) : void
{
var clipboard:Clipboard = Clipboard.generalClipboard;

// Clear the clipboard
clipboard.clear () ;

// Add a URL to the URL_FORMAT section of the clipboard
var copyURL:String = "http://www.uritext.com";
clipboard.setData (ClipboardFormats.URL_FORMAT, copyURL) ;

// Add formatted text to the HTML_FORMAT section
var copyHtml:String = "Red";
clipboard.setData (ClipboardFormats.HTML_FORMAT, copyHtml) ;

// Add plain text to the TEXT_FORMAT section

var copyText:String = "Plain text.";
clipboard.setData (ClipboardFormats.TEXT FORMAT, copyText) ;
}

For example, suppose the user has a text editor that uses a custom format for internal copy and
paste operations, and one of those copy operations is populating the clipboard. If you do not clear
the clipboard before you add text data and the user pastes into his text editor, the text editor may
choose to read the custom formatted data instead of the data you added.

Next, you start to add data to various formats in the clipboard. The setData operation is actually
a push operation, which means that the order in which you add things is important. As previously
mentioned, the order defines which format you prefer to have paste operations use. In the example
given in Listing 9.1, paste operations should use the URL format first, the HTML format if they
don’t recognize the URL format, or, finally, the text format if they don’t recognize either.

How will other applications use this data? Table 9.2 shows which of these data types is used by
various common applications. It also illustrates how your copy operations are dependent on other
software and how that software implements paste operations. That specific example shows that the
URL format is not commonly recognized. It may still be valuable for operations within your own
application or your own suite of applications though, and it causes no harm to put it in the clip-
board when appropriate.

150

TABLE 9.2

Using the Clipboard

Paste Operation Results from the Copy in Listing 9.1

Operating system

Application

Paste result

OS X
OS X

OS X
OS X

oS X

OS X

OS X

Windows
Windows

Windows
Windows

Windows

Microsoft Word

Microsoft Excel

TextMate, BBEdit, Eclipse
TextEdit

Adobe Photoshop CS3, Adobe
Illustrator CS3, Adobe Flash CS3,
Adobe Dreamweaver CS3

Mozilla Firefox
Safari
Microsoft Word

Microsoft Excel

Firefox, Internet Explorer

Adobe Photoshop CS3, Adobe
Illustrator CS3, Adobe Flash CS3,
Adobe Dreamweaver CS3

Notepad, Eclipse

Text format (URL and HTML are ignored)

Text format when pasted into formula bar;
none when pasted directly into spreadsheet

Text format

HTML format (the word “Red” is pasted and
colored red, as expected)

Text format

Text format
Text format
HTML format (URL format is ignored)

Text format when pasted into formula bar;
HTML format when pasted directly into
spreadsheet

Text format

Text format

Text format

Another thing that Table 9.2 shows is that, for formatted text, using the HTML format followed by
the plain text format is an effective technique. The HTML portion may only be recognized by a few
applications, but when it does work it looks quite nice. However, you should be aware that the
formatted text only appears in certain applications before you begin, as it may take a great deal of
extra effort to compose the proper tags.

One last thing to take away from the test results in Table 9.2 is that the Text format almost always
works. All the applications tested and any reasonably stable application are able to paste text data.

For copy operations that require a great deal of processing, you may also choose to use a deferred
copy. This means that you assign a method to one or more of the format types, and this method
will only be called when the data is requested. To do this, use Clipboard.setDataHandler ()
instead of Clipboard.setData (). Clipboard.setDataHandler () takes the same param-
eters as Clipboard.setData (), except that you pass it a handler function instead of a data
object.

151

Paste Events with Safari

Safari has a different way of handling paste events and does not follow the usual conventions.
Instead of treating the array of types in order, Safari searches for a preferred type. If you include text
format, HTML format, and URL format, Safari uses text format always. However, if you only use
HTML format and URL format, Safari uses the HTML part, and if you only pass the URL portion,
Safari recognizes this and uses it.

I You should use Clipboard.setDataHandler () carefully. The expected behavior
: % of copy and paste operations is that the paste operation will reflect the state of the
copied data at the time it was copied. If you defer processing until the user decides to paste, you
should be sure to maintain the state of the data between the time it was copied and the time it is
pasted. Another risk is that the user may close the application before pasting, causing the
deferred copy to fail.

Pasting Data from the Clipboard

Much like copy operations, paste operations are often dependent on other applications. The pri-
mary rule to consider is still that at any given time, the first data type listed in the clipboard is the
preferred format.

To find out what formats are available in the clipboard, you can use either Clipboard. formats
or Clipboard.hasFormat () (see Listing 9.2).

The return type of Clipboard.getData () is Object, so you need to cast the value
i returned for a particular format to the correct type before you can use it. However,
casting a null object will throw an error, so you should always verify that a particular format is
available before you try to extract data from it.

152

Using the Clipboard

LISTING 9.2

Reading the Available Formats from the generalClipboard

public function readFormats() : void

{
//Get the array of formats available in the Clipboard

var clipboard:Clipboard = Clipboard.generalClipboard;
var formatArray:Array = clipboard.formats;
trace("Here are the formats available:", formatArray);

//Extract the text part of the Clipboard
var textData:String;
textData = clipboard.getData (ClipboardFormats.TEXT FORMAT) as String;
trace("Text data available in the clipboard:", textData);

//Check for a specific format

var hasBitmap:Boolean;
hasBitmap = clipboard.hasFormat (ClipboardFormats.BITMAP_FORMAT) ;
trace("Is there any Bitmap data available?", hasBitmap) ;

}

If the clipboard were populated by the copy operation from Listing 9.1, then the result of Listing 9.2
would be:

Here are the formats available: air:url,air:html,air:text
Text data available in the clipboard: Plain text.
Is there any Bitmap data available? false

The preferred method for reading which formats are available is to use the Clipboard. formats
array, because this is the only way to determine what order the formats are in. In the previous
example, you specified that you preferred to use the URL format most, followed by the HTML for-
mat, and then the text format last.

Ensuring that your data is readable by other applications during a copy operation is fairly straight-
forward once you know what other applications expect. Interpreting paste operations, on the other
hand, can be a bit more of an adventure. Table 9.3 shows a few examples of paste operations from
common software. To perform the test that gained these results, data was copied from the applica-
tion being tested and pasted into an AIR application.

153

Paste Data Available from Common Applications

Operating
system Application Paste result formats Description
OS X Microsoft Word air:html, air:text, air:bitmap The HTML format portion will be mostly
(Office X and readable by WebKit, but there is additional
later) text at the top that will need to be parsed or
stripped out first.
The text format works as expected. The
bitmap data is either a snapshot of the
selection or of the first page of the selection.
oS X Microsoft Excel ~ air:html, air:text, air:bitmap Excel works similarly to Microsoft Word. In
(Office X and the HTML format, a table is used to format
later) the spreadsheet. In the text format, tabs
separate columns and new lines separate
rows.
oS X OpenOffice.org air:text All applications in the Open Office suite
(all applications) add only text data to the clipboard on OS
X. This may change when Open Office
Aqua is released.
oS X TextMate, air:text The text format works as expected for all
TextEdit, standard text editors.
BBEdit, and
soon
oS X Adobe air:text, air:bitmap Data copied from Illustrator always has the
[llustrator text format followed by bitmap format.
The text part will have any text that was
included in the selection, or will be null if
there was none. The bitmap is a snapshot
of the minimum area needed to show the
selection.
Os X Adobe Flash air:bitmap The bitmap is a snapshot of the minimum
area needed to show the selection.
OS X Adobe air:bitmap The bitmap of the selection. Data from
Photoshop shape layers does not copy.
oS X Preview air:bitmap Depending on the selection type, Preview
or adds either bitmap data or text data to the
clipboard. The Selection tool in Preview
air:text does not allow both to be selected at once.

154

Using the Clipboard m

Operating

system Application

Paste result formats

Description

OS X Mozilla Firefox

OS X Safari

OS X Finder

Microsoft Word
(Office 2003
and earlier)

Windows

air:text
or

air:bitmap

air:text

or

air:url, air:text
or

air:bitmap, air:url, air:text

air:file list, air:url,
air:bitmap, air:text

or

air:file list, air:url, air:text

air:html, air:text

Copying data out of Firefox places only text
in the clipboard, even if images are
included in the selection.

One exception to this rule is when the user
selects Copy Image from the context menu.
In that case, Firefox adds the bitmap data to
the clipboard.

Copying data out of Safari always places
only text, much like with Firefox.

However, if the user selects Copy Link from
the context menu, Safari places the URL

in the clipboard in URL format and text
format.

If the user selects Copy Image from the
context menu of an image with a link
associated, Safari adds the image to the
bitmap data, followed by the associated
link in both URL and text formats.

When a file is pasted into an AIR
application from Finder, the File List format
is followed by three other options. The URL
contains an absolute path to the file on the
system; the bitmap data contains the icon
of the file; and the text data contains the
filename.

If multiple files are copied, the bitmap data
is not included. Also, the URL data will
only include a path to one of the files
copied, and the text data may only include
folder names if selections are made from
multiple folders.

On Windows, Microsoft Word uses a much
simpler HTML format, with no body
declaration and with span tags used to
specify style changes. This HTML should
not be expected to conform to recent Web
standards, and may not render properly in
WebKit. No header information is included,
so there is nothing to parse or strip out.

continued

155

TABLE 9.3 (continued)

Operating

system

Application

Paste result formats

Description

Windows

Windows

Windows

Windows

Windows

156

Microsoft Excel
(Office 2003
and earlier)

OpenOffice.org
Writer

OpenOffice.org
Calc

Mozilla Firefox

Internet
Explorer

air:html, air:text

air:html, air:text

air:bitmap, air:html, air:text

air:html, air:text
or

air:bitmap

air:text, air:html
or

air:file list, air:url,
air:bitmap, air:html

Much like Microsoft Word, Excel on
Windows provides a much simpler HTML
format to the clipboard. Only the table data
is given, without a body declaration or
header information.

Open Office Writer provides a simple
HTML block, usually contained in a <p>
tag with some style information. Style
definitions are standardized, and should
render properly in WebKit. The text format
works as expected.

Open Office Calc provides a snapshot of
the minimum area needed to display the
spreadsheet in the bitmap format. The
HTML format contains a table, and the text
format works as expected.

On Windows, Firefox includes HTML data
for the selection added to the clipboard.
Image data is provided using image tags
with absolute URLs (even if a relative URL
was used in the original document). The
HTML format may also include JavaScript if
it was used in the original document. The
text format works generally as expected,
but does include a relatively unusual
amount of white space.

If the user selects Copy Image from the
context menu, Firefox adds it to the
clipboard in the bitmap format only.

Internet Explorer 6 includes image tags
from the original document, but leaves
relative URLs as is, which generally makes
them unuseable. The text format works as
expected.

If the user selects Copy from the context
menu of an image, Internet Explorer adds it
to the clipboard as the second array listed
here. The file list object is empty in this
case, but the other formats behave as
expected.

Using the Clipboard m

Operating
system Application Paste result formats Description
Windows Adobe Flash air:bitmap Not useable. The bitmap data provided
CS3 appears as a black box the same size as the
minimum size needed to show the
selection.
Windows Adobe air:bitmap The bitmap of the selection. Data from
Photoshop CS3 shape layers does not copy.
Windows Windows air:file list Explorer only adds the File List array to the
Explorer clipboard, but this is, of course, plenty of

information. The File class contains all
the properties made available by the extra
formats provided by Finder, but more
reliably. For most uses, the File List array
should be used whenever it is available.

The tests in Table 9.3 were performed across several systems, but still barely scratch the surface of
the variety of operating systems, application versions, and use cases that you can expect. It should
be clear from this that there are a number of possible pitfalls to avoid when working with the clip-
board. However, if you know the type of data you’re looking for and you're careful to check for
valid data before you assume a particular format is the best, the results will generally be good.

The HTML format provided by some Microsoft applications bears further mention. The file begins
with some information about the HTML, as shown here:

Version:1.0
StartHTML:0000000105
EndHTML: 0000001374
StartFragment:0000001251
EndFragment: 0000001321

You can use these keywords to find various segments of the data, such as the specific fragment that
contains the selected text and related markup tags. Other keywords are sometimes included to
specify the URL of the original document, which you can use to locate assets linked to relative URLs.

You can find a complete description of the HTML clipboard format used by Microsoft applications
at the MSDN Developer Center:

http://msdn2.microsoft.com/en-us/library/aa767917.aspx.

157

Copy and Paste Sample Application

In order to dig a bit deeper into the AIR implementation of the clipboard, this section provides a
tutorial that walks you through building a sample application. The goal of this application is to
give the user a place to paste all sorts of data, preview that data, and add it back into the clipboard
for use in other applications. Such an application might be useful for someone performing a repeti-
tive task that requires several blocks of text to be pasted repeatedly, or possibly even as just a
handy place to store links that the users might want to send to their friends later in the day.

Getting started

First, note that this application requires some good data visualization tools; Flex is probably the
ideal choice (although HTML is an excellent choice as well). Because this application is going to be
built around two events (copy and paste, to be specific) and the data those events either generate
or use, it needs a framework that can work nicely with those demands and that can be expanded as
those initial demands change. One such framework is Cairngorm, so this project will be a Flex
application built on the Cairngorm framework.

Next, this application is being built in the absence of qualified designers, so it will lay out very
simply. There are two basic sections: a list of selectable items that have been pasted, and a preview
pane to show the current selection (see Figure 9.1).

FIGURE 9.1

A simple wireframe for a copy and paste sample application

Previously pasted items Preview section

158

Using the Clipboard

With all this in mind, you only need to do a few things to get started:

1. Make sure you have Flex Builder 3. In this example, Standard Edition provides all the
functionality you need.

2. Download the latest version of Cairngorm from Adobe Labs (labs.adobe.com/wiki/
index.php/Cairngorm). You can choose to download the full source for Cairngorm so
that you can refer to the classes it provides, or you can simply include the precompiled
binary version.

3. If you choose to use the precompiled binary, Cairngorm.swc, add it to the libs/
folder that is automatically created after you create a new project.

4. Choose Project= Properties > Flex Build Path. Click the Library path tab in the Flex
Build Path window. This is where you would add the SWC library, except that you
already have. Notice that the 1ibs/ folder is already included as an SWC folder in this
section, so any SWC placed in that directory will automatically be included.

Next, you can use Flash Professional CS3 with the Flex Skinning Template to create a few custom
skinned elements for this application.

| See Chapter 19 for a detailed discussion of the Flex Skinning Template.

Create a new CSS document for this application and save it as paste. css in the src/ folder of
your project (see Listing 9.3).

159

CSS Document for Skinning a New Application

@font-face

{
fontFamily: "Helvetica Neue";
fontWeight: normal;
fontStyle: normal;
src: local ("Helvetica Neue") ;
}
@font-face
{
fontFamily: "Helvetica Neue";
fontWeight: bold;
src: local ("Helvetica Neue") ;
}
WindowedApplication
{
fontFamily: "Helvetica Neue";
fontSize: 12;
color: #0F1C1F;
backgroundImage: Embed(skinClass='WindowSkin') ;
}
Button
{
skin: Embed(skinClass='ButtonSkin') ;
}
.previewPane
{
borderSkin: Embed(skinClass='PreviewPaneSkin') ;
}

160

Using the Clipboard m

This document embeds a couple of weights of the font Helvetica Neue and specifies a size and
color to serve as a default in this application. Also, three symbols are embedded from the SWC file
generated by the Flex Skinning Template in Flash CS3. The symbols in Flash are all different, but
they were exported in the same way.

You can choose the styles using Design Mode for CSS documents in Flex Builder 3, so you don’t
need to research each component to see that backgroundImage is an appropriate specification
for the Application, or that skin is the appropriate specification for a But ton, or that
bordersSkin is appropriate for a Canvas control.

Setting up Cairngorm

Cairngorm is an increasingly popular framework for Flex applications. Part of this popularity stems
from its ease of use. Cairngorm requires a few steps to set up and provides a set of rules to follow;
following these rules will often prevent you from rushing into development mistakes that cause
your application to be less flexible and less scalable.

The more prepared your application is for change, the more likely it is that you will make those
changes when they are needed and not wait until it is too much work to do so. Everyone has
developed applications that run into this problem to some extent. Sometimes an application gets
too bulky or the code that controls it too messy, and even the slightest change becomes an
immense frustration.

A lightweight framework like Cairngorm prevents that from happening. However, developers are
often intimidated at first by the amount of work involved in setting up an application this way.
There are a few steps involved, but the truth is that it really isn’t much work at all. Following the
steps will always save you time in the long run.

Set up the application model

First, implement the Cairngorm IModelLocator interface with a new class specific to your applica-
tion (see Listing 9.4). The ModelLocator is a Singleton class that will be used by a number of
classes in your application to read and write data to the model. The ModelLocator helps to
enforce a single data structure that is accessible from anywhere in the application. An unmanage-
able data structure is a sure sign of an unmanageable application, and the ModelLocator will
keep everything under control.

The only part of this class that is specific to your application is the set of public variables you
choose to create. In this case, there is only one variable needed: pasteData. This variable will
hold all the pasted items for this application.

161

LISTING 9.4

Application Instance of the ModelLocator

package org.airbible.model

{

import com.adobe.cairngorm.model.IModelLocator;

[Bindable]
public class PasteModelLocator implements IModelLocator

{

private static var _instance :PasteModelLocator;

public var pasteData:PasteData;

public function PasteModelLocator (enforcer :SingletonEnforcer)

{

pasteData = new PasteDatal() ;

}

public static function getInstance() :PasteModelLocator

{

if

{

}
}

(_instance == null)

_instance = new PasteModelLocator (new SingletonEnforcer());

return _instance;

class SingletonEnforcer {}

162

Now, in the same folder, create the PasteData class (see Listing 9.5).

PasteData has only two variables. The first one, pasteList, is simply a list of all the items that
have been pasted into the application. The second, selectedItem, is one of the items in that list
that is currently in focus.

As you can see, this class does not need to borrow any logic from the Cairngorm framework. The
only rule for this class is to keep it as simple as possible. Specifically, there does not need to be any
logic in this class at all: PasteData does not need to know anything about what data it contains,
when the data should change, or how the data should change. All it needs to do is contain the data.

Using the Clipboard m

PasteData Class

package org.airbible.model

{

import mx.collections.ArrayCollection;
import org.airbible.vo.Clipboardvo;

[Bindable]
public class PasteData

{

public var pasteList:ArrayCollection;
public var selectedItem:Clipboardvo;

public function PasteData()

{

pastelList = new ArrayCollection();

}

The next part of the model is also not particular to Cairngorm and does not need any logic from
Cairngorm (see Listing 9.6). This is the class referenced in PasteData, Clipboardvo.

Clipboardvo is a value object. This means that all it does is hold a value. In this case, it holds a
copy of the clipboard; every time the user pastes data into the application, you can hold that data
as long as you like, even if the user copies a different set of data into the clipboard. Much like
PasteData, it does not need to do anything but contain data.

That's the entire model of this application. You can think of the model as the props in a theater, and
think of the control of the application as the actors. The props shouldn’t really have any behavior
at all; that is the job of the actors. If the props start to upstage the actors, the whole production is
in trouble, so try to keep any behavior out of the model.

163

Class ClipboardVO

package org.airbible.vo
{
import flash.display.BitmapData;

[Bindable]
public class ClipboardvO
{

public var fileTypes:Array;
public var primaryType:String;
public var fileList:Array;

public var bitmapData:BitmapData;
public var htmlData:String = "";
public var textData:String = "";
public var urlData:String = "";

public function Clipboardvo ()
{
fileTypes = new Array();

}

Set up the application control

Next, extend the Cairngorm FrontController class, so that you can add commands to your
application-specific subclass (see Listing 9.7).

You do not need to call the FrontController directly, but you will need to create an instance
of it later. When you dispatch a CairngormEvent from anywhere in your application, the
FrontController finds the appropriate command to call and creates an instance of it for you.

Continuing with the theater metaphor, the FrontController would be the back stage. This is
where the actors wait until they are called.

164

Using the Clipboard

LISTING 9.7

Extending the FrontController Class

package org.airbible.control

{

import com.adobe.cairngorm.control.FrontController;
import org.airbible.commands. *;

public class FrontController extends
com.adobe.cairngorm.control.FrontController

{

public function FrontController ()

{
addCommand (ClipboardEvent .PASTE, PasteCommand) ;

addCommand (ClipboardEvent .COPY, CopyCommand) ;
addCommand (ClipboardEvent . SELECT, SelectCommand) ;

For now, you can create empty classes for the commands. However, you should create the custom
event class, ClipboardEvent (see Listing 9.8).

The ClipboardEvent specifies the different types of events that it can represent as static string
variables. This allows each event to be identified by type, so that the FrontController knows
which command is appropriate.

For all these types of events, the same kind of data is needed. In this case, that data is the
Clipboardvo. Whether you are adding a new piece of data because of a paste event, placing a
piece of data in the clipboard because of a copy event, or showing a piece of data in the preview
because of a select event, the data is the same. The type of data you need to communicate should
always be the signature of an event, and what you want to do with that data is the type of the event.

165

ClipboardEvent Custom Event Class

package org.airbible.control
{
import com.adobe.cairngorm.control.CairngormEvent;

import org.airbible.vo.ClipboardvoO;

public class ClipboardEvent extends CairngormEvent

{
public static const PASTE:String = "paste";
public static const COPY:String = "copy";
public static const SELECT:String = "select";

public var clipboardData:Clipboardvo;

public function ClipboardEvent (
type:String,
bubbles:Boolean=false,
cancelable:Boolean=false)
{
clipboardData = new ClipboardvoO() ;
super (type, bubbles, cancelable);

Implementing the view

Now that you have Cairngorm set up and have laid out a model and a control for this application,
it is time to create a view. First, return to the main MXML file for your application, which was cre-
ated when you set up the project. Referring to the wireframe in Figure 9.1, you need a list of but-

tons and a canvas on-screen (see Listing 9.9).

In this iteration of the MXML class, you've referenced the CSS spreadsheet to use for styles, instan-
tiated the FrontController, and instantiated two main view components for this application:
the TileCanvas and the PreviewCanvas.

166

Using the Clipboard m

Adding Elements to the Stage of the WindowedApplication

<?xml version="1.0" encoding="utf-8"?>

<mx : WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:control="org.airbible.control.*"
xmlns:components="org.airbible.view.components.*"
layout="absolute"
applicationComplete="onCreationComplete ()"
>
<mx:Style source="paste.css" />

<control:FrontController />
<mx:HBox height="100%" width="100%" horizontalGap="2">
<components:TileCanvas height="100%" width="50%"/>
<mx:VBox height="100%" width="50%" >
<mx : Label
text="Clipboard Preview:"
width="100%"
textAlign="center"
/>
<components:PreviewCanvas
height="{height-100}"
width="100%"
/>
<mx:Canvas width="100%">
<mx:Button
label="Copy"
horizontalCenter="0"
width="80%"

</mx:Canvas>
</mx:VBox>

</mx: HBox>

</mx:WindowedApplication>

The TileCanvas is just going to watch the model to see if any new items are added, and display
a button if they are (see Listing 9.10).

By binding a repeater component to the PasteData in the model, no additional code is necessary.
Each instance of the PasteButton gets the C1ipboardvo it is associated with as a data property.

167

TileCanvas Component

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas
xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:components="org.airbible.view.components.*"
creationComplete="onCreationComplete ()"
>
<mx:Script>
<! [CDATA[
import mx.collections.ArrayCollection;
import org.airbible.model.PasteModelLocator;
import org.airbible.model.PasteData;

[Bindable]
private var _pastelList:ArrayCollection;

[Bindable]
private var pasteTypes:Array;

private function onCreationComplete() : void
{
_pastelList = PasteModellLocator.getInstance() .pasteData.pastelList;
}
11>
</mx:Script>
<mx:Tile
id="tile"
bottom="0"

paddingTop="5"

paddingBottom="5"

paddingLeft="5"

horizontalGap="6"

width="100%"

height="100%"

>

<mx:Repeater id="repeat" dataProvider="{_pasteList}" >
<components:PasteButton data="{repeat.currentItem}">

</components:PasteButton>
</mx:Repeater>
</mx:Tile>
</mx:Canvas>

168

Using the Clipboard m

You can now create the PasteButton class (see Listing 9.11), which will display an icon for each
item pasted, depending on what ClipboardFormat that item is associated with.

LISTING 9.11

Button Class that Displays an Icon Corresponding to ClipboardFormat Types

<?xml version="1.0" encoding="utf-8"?>
<mx:Button
xmlns:mx="http://www.adobe.com/2006/mxml"
icon="{typeIcon}"
maxWidth="110"
click="selectItem()"
>
<mx:Script>
<! [CDATA[
import org.airbible.control.ClipboardEvent;
import org.airbible.vo.Clipboardvo;
import flash.desktop.ClipboardFormats;

private var _clipboardItem:Clipboardvo;

[Bindable]
private var typeIcon:Class = TEXT_ICON;

[Bindable]
private var labelText:String;

[Embed (source="../../../../../assets/icons.swf",
symbol="fileListIcon")]
public static const FILE_ICON:Class;

[Embed (source="../../../../../assets/icons.swf",
symbol="htmlIcon")]
public static const HTML_ICON:Class;

[Embed (source="../../../../../assets/icons.swf",
symbol="imageIcon")]
public static const IMAGE_ICON:Class;

[Embed (source="../../../../../assets/icons.swf",
symbol="1inkIcon")]
public static const LINK_ICON:Class;

[Embed (source="../../../../../assets/icons.swf",
symbol="textIcon")]

continued

169

_ Partlll JEVY
LISTING 9.11 (continued)

public static const TEXT_ICON:Class;
[Bindable]

private function set clipboardItem(item: ClipboardvO) : void
{
_clipboardItem = item;
switch(item.primaryType)
{
case ClipboardFormats.BITMAP_FORMAT:
typeIcon = IMAGE_ICON;
break;
case ClipboardFormats.FILE_LIST FORMAT:
typeIcon = FILE_ICON;
labelText = item.textData;
break;
case ClipboardFormats.HTML_FORMAT:
typeIcon = HTML_ICON;
labelText = item.htmlData;
break;
case ClipboardFormats.TEXT_FORMAT:
typelIcon = TEXT ICON;
labelText = item.textData;
break;
case ClipboardFormats.URL_FORMAT:
typeIcon = LINK_ICON;
labelText = item.urlData;

break;

}
}
private function get clipboardItem() : ClipboardvO
{

return _clipboardItem;
}
private function selectItem() : void
{

var selectEvent:ClipboardEvent =

new ClipboardEvent (ClipboardEvent.SELECT) ;
selectEvent.clipboardData = clipboardItem;
selectEvent.dispatch() ;

11>

</mx:Script>

170

Using the Clipboard m

<mx:Binding source="{data as ClipboardvO}"
destination="clipboardItem" />

<mx:label>{labelText}</mx:label>

</mx:Button>

Even though the PasteButton is one of the smaller components in this application, it is one of
the most complex. When the data property is set on this component, it triggers the setter function
for clipboardItem. This function sets the icon based on the primaryType variable in the
Clipboardvo. Each icon is a static variable that refers to an embedded library item from an SWF
file called icons.swf. When the clipboardItem setter function associates one of these classes
with the typeIcon variable, the icon is changed, because the icon property of this Button is
bound to that variable.

Summary

Copy-and-paste may not sound like the most glamorous feature that an application can have, and
it isn’t. It is, however, practical and necessary for almost every application. To implement copy
and paste properly, you will likely need some planning and a lot of testing.

171

IR’s drag-and-drop Application Programming Interface (API) allows

users to drag data between an AIR application and the desktop,

between other applications, or within AIR itself from one component
to another. The drag events are driven by and rely on both the AIR applica-
tion and the user’s operating system. AIR uses what are referred to as gestures
to help communicate with an operating system to interpret the intentions of
a user while data is being dragged and dropped.

A user drags an item by holding the mouse button down over a file, text
selection, or application component and moving the mouse while holding
the button down. The user drops the dragged data by releasing the mouse in
a new location. Dragging-and-dropping is a common task used frequently
in Windows, Mac, and Linux. A common use of dragging-and-dropping is
to drag files to a folder or onto the desktop.

This chapter discusses the use of the drag-in and drag-out gestures in detail.
ActionScript is the primary method here for using the API, and is followed
by a section covering how the drag-in and drag-out gestures work in
JavaScript.

Following the explanation of the API and various features of the drag-in

and drag-out API, this chapter walks you through building a sample Tumblr
client application to illustrate the use of these gestures. Tumblr is a micro-
blogging Web service with a well-documented and simple APL; it’s well
suited to demonstrate the usefulness of the drag-in APL

173

IN THIS CHAPTER

Drag and drop classes

Dragging out

Sample application

174

Drag and Drop Classes

Dragging-and-dropping in AIR is supported by the use of native AIR classes and several events that
occur every time an item is dragged. The drag-and-drop API consists of three AIR specific classes
and also uses the Clipboard object to hold the data that is transferred when items are dragged or
dropped.

There are two sets of AIR-only classes used for dragging-and-dropping. The first set is specifically
related to the drag-and-drop actions in AIR, and the second is the set of classes used to access the
data that is dragged and dropped (part of the AIR Clipboard API). This chapter discusses how to
access the Clipboard object for dragging-and-dropping.

| We recommend that you read up on the Clipboard object in Chapter 9 for more
details on accessing the operating system clipboard.

NativeDragManager

The NativeDragManager class manages drag-and-drop operations in an AIR application and
provides the coordination between an AIR application and the operating system; other applica-
tions, including AIR applications; and components inside the originating AIR application.
NativeDragManager is responsible for displaying things such as the mouse icons displayed
during certain drag operations, indicating to the user if a drop target is a compatible target and
what type of drop it would be. NativeDragManager also provides the doDrag () method,
which allows you to drag items within AIR out of the originating AIR application for such activities
as dragging an image from AIR to the desktop or other applications.

NativeDragOptions

The NativeDragOptions class specifies the actions that a source of a drag operation should
allow. The options are allowLink, allowCopy, and allowMove; they are all Boolean values
that are set to true by default. These options are only used as references when operating on data
being transferred using drag operations and serve as a hint to the operating system; it is left to the
initiator and the target drag-and-drop objects to handle the operation appropriately. An initiating
object should set the NativeDragEvent’s drag options property to the operations that should be
supported. If you don’t intend for sent data to be moved or deleted, you should set the
NativeDragOptions properties accordingly.

NativeDragEvent

The NativeDragEvent class alerts AIR of the several events associated with dragging-and-
dropping, such as an entering drag and drag-dropping. NativeDragEvent contains the clip-
board data when an item is dragged over a potential drag-drop target and is used to both validate
the data being dragged and to accept a drag-drop. NativeDragEvents are dispatched to two
types of drag elements: the initiating drag element and the receiving drag element.

Dragging and Dropping m

Initiating drag elements are the components or objects that initiate a drag gesture. The following
events are dispatched to an object that is the origin of a drag gesture:

nativeDragStart
nativeDragUpdate
nativeDragComplete

The receiving element, or drag target, is dispatched to the following drag events:

B nativeDragEnter: Dispatched when the drag gesture is dragged into the boundaries
of a drag target.

B nativeDragOver: Dispatched while the drag gesture is inside the drag target and the
mouse moves.

B nativeDragExit: Dispatched when the drag gesture exits the boundaries of a drag
target.

B nativeDragDrop: Dispatched when the user drops a drag item onto a drag target and
NativeDragManager has been notified that the drag target is a valid drop target using
the NativeDragManager .acceptDragDrop method.

NativeDragActions

Similar to NativeDragOptions, NativeDragActions contains static constant string variables
that are used to represent the NativeDragOptions available to a drag option. The
NativeDragAction constants are COPY, LINK, MOVE, and NONE.

Clipboard

The Clipboard class serves to contain objects that contain the data used when dragging-and-
dropping objects in AIR. The C1lipboard object can contain several types of formatted data
including bitmap, file list, HTML, text, and URL-formatted data.

=y For further details on using the clipboard and the different formats available to the
i clipboard object, refer to Chapter 9.

ClipboardFormats

ClipboardFormats defines String constants that represent the types of clipboard data for-
mats stored in a Clipboard object.

ClipboardTransferMode

ClipboardTransferMode defines constants for the modes used as values of the transfer
Mode parameter of the Clipboard.getData () method: cloneOnly, clonePreferred,
originalOnly, and originalPreferred.

175

176

Dragging Out

There are two types of drag-out actions that are available in the AIR API: dragging files into an
external location such as an operating system folder or to another application, and dragging within
the same AIR application window. Central to the operation of dragging a file out of AIR is the
NativeDragManager.doDrag () method, which takes the formatted data meant for drag-out
and initiates the process by accessing the operating system data-dragging functionality.

This section discusses how data is stored and then transferred using the NativeDragManager .
doDrag () method. We also walk you through dragging a screenshot of an AIR application and
saving it as a JPEG to a folder on the user’s filesystem.

The clipboard object is covered in depth in Chapter 9 and will not be covered in
- detail in this section. A simple example of storing bitmap data in a cClipboard
object is, however, used to prepare for the drag-out operation.

Preparing the data for drag-out

Before you can drag data out, you must prepare the data and store it in a Clipboard object in
one or more formats. Standard data formats can be translated automatically to native operating
system clipboard formats, and application-defined objects can also be passed.

If you have not read Chapter 9 yet, refer to it before attempting to drag out types of data that are
not demonstrated in this section, such as text, URLs, and serialized data.

In both the “Dragging In,” and “Dragging Out” sections, File objects are used to store references
to files and folders on an operating system. The File object is used frequently when creating
drag-in and drag-out functionality.

I See Chapter 8 for more details on how to work with files and folders in AIR.

Creating a Clipboard object

When data is dragged out of an AIR application, the originating AIR application has no control
over how the data will be received and used; therefore, it is important to store the data in as many
formats as possible to better the chance that it will be received successfully in its destination drop
location.

The clipboard can contain several formats of data. To drag an image from AIR to the filesystem, the
ClipboardFormats.FILE_LIST_FORMAT format is used to store an array of File objects. In
this example, the goal is to drag an image from AIR to the user’s desktop; the first step is to create a
temporary copy of the image on the filesystem for the operating system to copy onto the desktop
using the File and FileStream classes.

Dragging and Dropping

Listing 10.1 demonstrates how to convert a snapshot of the application stage into bitmap for stor-
age on the filesystem.

LISTING 10.1

// create a BitmapData object to store the screenshot

var bitmapData:BitmapData = new BitmapData (stage.stageWidth,
image.stageHeight,
false,
0xff0000) ;

// take a snapshot of the stage and store it in the bmpData object
bmpData.draw(stage) ;

Now that the bitmapData object is ready, you're almost ready to create the Clipboard object
that will be used to transfer the data. Given that the C1ipboard object needs a file reference to
pass to the operating system, you first need to temporarily save the image. To save the Bitmap
object as a JPEG file, use the JPEGEncoder class to encode BitmapData as a ByteArray.
Listing 10.2 converts BitmapData to a JPEG, creates the File object that will be stored in the
Clipboard object, and then saves it to the application’s temporary directory.

LISTING 10.2

// use the JPEGEncoder to encode the bitmap into jpg format
var bytes:ByteArray = new JPEGEncoder(80).encode(bitmapData);

// create a File object pointing to where the image will be saved
var file:File = File.createTempDirectory () .resolvePath("screen.jpg") ;

// create, open, and then write the jpg using the FileStream
var fileStream:FileStream = new FileStream() ;
fileStream.open(file, FileMode.WRITE) ;
fileStream.writeBytes(bytes);

You can set a preview image to display when data is dragged from AIR by the operating system.
You can even control the mouse x and y coordinate offset that displays. In this example, the sam-
ple application will appear as a preview image while dragging the image.

177

178

Sample Application

This chapter’s sample application is a Tumblr blog-posting client that accepts dragged text and
images. Tumblr is a micro-blogging Web service used to post text, photos, quotes, links, chats,
audio, and video in a simple micro-blog style format. The Tumblr API is a simple and easy service
that can be both read by and posted to nearly any Web-enabled technology. In this sample appli-
cation, the Tumblr client receives dragged text, photos, audio, and video from a user’s filesystem
and posts them to his Tumblr blog. Links and chats are also possible by selecting the type of text
submission when text is dragged into the client.

The Tumblr API

The Tumblr APT uses standard HTTP requests, which makes it easy to use and easily available. You
can find the API details at www . tumblr . com/api. The Tumblr API documentation is easy to
read and simple to use. This sample application does not utilize the read functionality, but it is
easy to add this functionality to the client using the /api/read functionality.

The source code for this sample application is available at www.airbible.org. You'll find a ver-
sion that matches the Tumblr client shown in this chapter along with a more fully developed and
fully designed version.

The application structure

This sample application consists of the main application class TumblrClient .mxml; a
MainController class that utilizes the Singleton pattern; post form components such as
Login.mxml, PhotoForm.mxml, and RegularForm.mxml; and post classes that both repre-
sent and handle the different types of posts that you can make to Tumblr and also handle the
actual sending of the post data to Tumblr.

To be clear, we refer to a post as an object that represents the data that posts to the Tumblr blog
in this application. When referring to the HTTP POST method, POST will be capitalized, and the
post object will be in lowercase.

For the sake of brevity, this sample will use a very simple structure. It is intended to serve as a very
quick example of how to use drag-and-drop functionality in a useful way. This client could easily
include many more features than are demonstrated here, so feel free to use this sample as a foun-
dation for a more robust approach, or even a simpler one!

Sending Tumblr posts

Posting to Tumblr is a simple matter of formatting the post data as simple variable and value pairs
using HTTP POST requests in order to fit the types of posts available in the /api/write APL
This sample application demonstrates how to post to Tumblr using ActionScript; for further
reading, the types of posts and their associated variable requirements are all listed in the online
documentation.

Dragging and Dropping m

Before you begin to code, start by defining the structure of the Tumblr post objects. You will use
each post object to handle the different types of data for each type of post. For example, a photo
post needs to handle photos and captions, and a text post only needs to handle text. As there are
several types of posts that you can make to Tumblr, you'll want to create an AbstractPost class
that will serve as an Abstract class; this Abstract class will act as the superclass, searching all post
classes you'll create when posting to Tumblr.

AbstractPost

The AbstractPost class handles all functionality that is shared by all posts. Each post to Tumblr
requires three arguments: username, password, and post type. With each type of post, there are
added argument requirements. For example, a regular post requires either a title or body; the body
can be either plain text or HTML. The Tumblr API Web page lists the types of posts and their asso-
ciated required and optional parameters. You can find this list at www . tumblr . com/api. This
sample covers both the regular post and the photo post and only utilizes some of the options
available.

The AbstractPost class will be built around these common arguments and then provide func-
tionality for customizing the post to suit the type of post being sent. Begin building the basic struc-
ture of an AbstractPost by providing the AbstractPost with a constructor and properties to
store these shared arguments.

This very basic AbstractPost class (see Listing 10.3) will store the type of the post and indicate
if the post is private or not. AbstractPost will set the isPrivate variable to false by default,
and the constructor’s second parameter, isPrivate, will allow the isPrivate Boolean vari-
able to be set to true.

LISTING 10.3

package org.airbible.tumblr.model.posts

{
public class AbstractPost
{
// Abstract constructor
public function AbstractPost(type:String,
isPrivate:Boolean = false) {
}
public function addTag(tag:String) :void {}
public function send() :void {}
}
}

179

Next you can start adding functionality to the methods. AbstractPost will help support the actual
sending of the posts. Given that some posts use the File object to send a post to the Tumblr API
and some use the URLLoader class to send text to the API, the actual sending of the post is left to
the individual post classes that subclass the AbstractPost class.

All classes do, however, need both a URLVariables object and a URLRequest object to send
their data to the Tumblr service. Because each post subclass uses these objects and shares some
basic variables like username and password, you can add these to AbstractPost. Listing 10.4
demonstrates.

LISTING 10.4

protected var variables:URLVariables;
protected var request:URLRequest;

public function AbstractPost(type:String, isPrivate:Boolean = false)

{

this.type = type;

this.isPrivate = isPrivate;

variables = new URLVariables();

request = new URLRequest("http://www.tumblr.com/api/write");
}

For those new to ActionScript 3.0, protected is a new access modifier similar to
- “ the private access modifier but allows for inheritance, unlike ActionScript 2.0 where
only public members were inherited.

The AbstractPost class is now ready to serve as a basic building block for any post. It also sup-
ports the required variables for any post except the username and password, which are stored in
the TumblrModel class and used when the post is sent.

Though this sample application is a functional application capable of posting to the Tumblr API,
it is rather basic. Using the AbstractPost class to supply functionality to individual posts as
subclasses will make adding features relatively painless in the future if you wish to build on the
application’s features. To illustrate how you can add a feature, this sample will walk you through
adding tag support and adding data for the generator argument for posts. Each post can have
optional tags that help readers sort between types of posts, and each post can also contain the
generator argument to help Tumblr track the origin of posts using the APIL.

Listing 10.5 adds support for tags and adds a constant variable, a generator with the title of this
sample application.

180

Dragging and Dropping

LISTING 10.5

// used to set the post generator optional argument
public static const generator:String = "AIR Bible TumblrClient 1.0"

public var tags:Array;
public var date:Date = new Date() ;

public function AbstractPost(type:String, isPrivate:Boolean = false)

{
// initialize the tags array
tags = new Array();

variables = new URLVariables() ;

variables.email = MainController.getInstance() .username;
variables.password = MainController.getInstance () .password;
variables.type = type;

variables.private = isPrivate.toString() ;

// add tags to the post
variables.generator = generator;

request = new URLRequest("http://www.tumblr.com/api/write");
request.method = URLRequestMethod.POST;

public function addTag(tag:String) :void {
if(tags.indexOf(tag) == -1)
tags.push(tag);

Next the AbstractPost class needs to add functionality to the send () method for sending the
posts. Because the method for sending each post differs, the send () method simply assigns the
URLVariables object to the URLRequest object and lets the individual post classes define how
the data should be sent. When you create the photo and regular posts, you'll see how to send the
posts by using either the URLLoader class or the File class.

The send () method looks like this:

public function send() :void {
request.data = variables;

}

The AbstractPost class is now ready for you to use and supports basic posts. It does, however,
require additional information from each type of post. Listing 10.6 demonstrates what the com-
plete AbstractPost class looks like.

181

LISTING 10.6

package org.airbible.tumblr.posts

{

182

import flash.net.URLRequest;
import flash.net.URLRequestMethod;
import flash.net.URLVariables;

import org.airbible.tumblr.MainController;

public class AbstractPost
{

public static const generator:String = "AIR Bible TumblrClient
1.0"

protected var tags:Array;
protected var variables:URLVariables;
protected var request:URLRequest;

public function AbstractPost(type:String,
isPrivate:Boolean = false) {

tags = new Array();
variables = new URLVariables() ;
variables.email = MainController.getInstance() .username;
variables.password = MainController.getInstance() .password;
variables.type = type;
variables.private = isPrivate.toString();
variables.generator = generator;
request = new URLRequest("http://www.tumblr.com/api/write");
request.method = URLRequestMethod.POST;

public function addTag(tag:String):void {
if(tags.indexOf(tag) == -1)
tags.push(tag);

public function send() :void {
request.data = variables;

Dragging and Dropping m

Now that AbstractPost is complete, you can create a few basic concrete classes that will sub-
class AbstractPost and implement an actual post. This sample application walks you through a
text post, a photo post, and a quote post. Adding support for additional types of posts should be
easy once you're comfortable creating these posts using AbstractPost.

RegularPost

A regular post is the simplest form of post and requires little work. Essentially a simple text post, it
only requires two additional arguments that AbstractPost does not already handle: Title and
Body. The Body argument can be either plain text or HTML text. Listing 10.7 shows what the
RegularPost class looks like.

183

package org.airbible.tumblr.posts

{
import flash.events.HTTPStatusEvent;
import flash.net.URLLoader;
import flash.net.URLRequestHeader;
import flash.net.URLRequestMethod;
public class RegularPost extends AbstractPost
{
protected var title:String;
protected var body:String;
public function RegularPost(title:String,
body:String,
isPrivate:Boolean=false) {
// uses the super keyword to access the AbstractPost
constructor
super (PostType.REGULAR) ;
// adds the title and body arguments to variables
variables.title = title;
variables.body = body;
}
override public function send() :void {
// uses super.sent() to execute AbstractPost's send method
super.send() ;
// uses the URLLoader class to send the post to Tumblr
var loader:URLLoader = new URLLoader () ;
loader.load(request);
}
}
}
PhotoPost

The PhotoPost class works nearly identically to RegularPost but accepts a File object and a
caption String instead of body and header. PhotoPost uses the assigned File object to upload
the file along with the URLVariables and URLRequest objects instead of the URLLoader class
because it is sending both a physical file and text data. Listing 10.8 demonstrates the PhotoPost
class.

184

Dragging and Dropping m

package org.airbible.tumblr.posts

{

import flash.filesystem.File;

public class PhotoPost extends AbstractPost

{
protected var file:File;
public function PhotoPost(file:File,
caption:String,
isPrivate:Boolean=false) {
super (PostType.PHOTO, isPrivate);
variables.caption = caption;
this.file = file;
}
override public function send() :void {
super.send () ;
file.upload(request, "data");
}
}

Dragging files
Now that the posts and application structure have been taken care of, you can focus on the pur-

pose of this sample application: dragging! The two forms covered in this section are the form for
sending a regular post and the form for sending photo posts.

You can create both of these forms using MXML and built-in Flex components for layout and Ul,
such as the TextInput, Button, Canvas, Hbox, and Vbox components. This section doesn’t focus on
the component usage too much here. To keep things simple and save trees, this exercise uses mini-
mal MXML to describe the components used in these forms, but includes a complete MXML layout
for each form at the end of each Form section.

ROSS-REF

To become more familiar with MXML and the components used in this section,
refer Chapter 4.

185

FIGURE 10.1

RegularForm.mxml

The RegularForm.mxml component includes TextInput fields for both the title and body
arguments used by the RegularPost class, and a Submit button component to send the post to
the RegularPost class for submission. The two TextInput fields will be drag targets for dragging
text into, but will allow the user the option to type text, also.

Once functionality is ready, you can customize the look and feel of this form, but for now you'll
just create the two TextInput fields, two Text components to label them, and the Submit but-
ton. See Figure 10.1 to see what this looks like when compiled. Listing 10.9 shows what the two
TextInput fields and the Submit button will look like in MXML.

Creating Textlnput fields, Text components, and the Submit button

Title

B Window (= [E]

Submit

LISTING 10.9

<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:nsl="org.airbible.tumblr.forms.*">

<mx:Text text="Title" />
<mx:TextInput id="titleField" width="100%" />

<mx:Text text="Body" />
<mx:TextArea id="titleField" width="100%" height="100%" />

<mx:Button id="submitBtn" label="Submit" width="100%" />

</mx:Canvas>

186

Dragging and Dropping m

Now that you have the Ul elements you'll be using, you can start adding inline ActionScript

ina <mx: Script> node to add support for dragging text into these fields. Notice that the
TextInput and TextArea components have IDs: These will be used for access in ActionScript
when you add the drag event listeners. To start adding functionality, add the initialize lis-
tener to the Canvas component and add the method onInitialize in inline ActionScript inside
the <mx : Script> node (see Listing 10.10).

LISTING 10.10

<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:nsl="org.airbible.tumblr.forms.*"
initialize="onInitialize(event)">

<mx:Text text="Title" />

<mx:TextInput id="titleField" width="100%" />

<mx:Text text="Body" />

<mx:TextArea id="titleField" width="100%" height="100%" />
<mx:Button id="submitBtn" label="Submit" width="100%" />

<mx:Script>
<! [CDATA[
protected function onInitialize(e:Event):void {
// add initialize code
}
11>

</mx:Script>

</mx:Canvas>

Next you'll add event handlers for the NativeDragEvent . NATIVE_DRAG_ENTER,
NativeDragEvent .NATIVE_DRAG_DROP, and submitBtn click event handler, as shown here:

protected function onTitleDragEnter(e:NativeDragEvent):void {}
protected function onTitleDragDrop(e:NativeDragEvent):void {}
protected function onBodyDragEnter (e:NativeDragEvent):void {}
protected function onBodyDragDrop(e:NativeDragEvent) :void {}
protected function onSubmitHandler (e:MouseEvent):void {}

When the user drags an item over the titleField or bodyField input fields, onDragEnter
Handler is called and needs to analyze the dragged contents to verify that it contains text that can
be placed in the fields. If the user drops the items, onDragDropHandler is called to handle the
Clipboard object dropped into the field.

187

LISTING 10.11

PhotoForm.mxml

The PhotoForm component is the form you'll use to upload photos using the PhotoPost and
includes the capability to drag a photo from the filesystem onto a target in the component. The
PhotoForm also includes the Browse-for-File menu-style of finding a photo file. In this example,
there is only support for dragging single photos because the Tumblr API currently only supports
posting single photos. It wouldn’t be too difficult to modify this example to post photos succes-
sively when multiple photos are dropped into the form though.

This form uses standard Flex components to record and submit the photo’s caption once a photo
has been dragged and successfully dropped into the Photo Drop button. Before you add the drag-
and-drop functionality, you need to set up these simple components. The elements used in the
PhotoForm are contained in a single Vbox component for layout. For this example, these compo-
nents do not have custom styles applied, but you can easily add them if you'd like your application
to look different than the default Flex components. These basic components will look similar to
Listing 10.11.

<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:nsl="org.airbible.tumblr.forms.*">

<mx:VBox x="0" y="0" height="100%" width="100%">

<mx:Text text="Caption" />

<mx:TextInput id="captionText" width="100%" />
<mx:Text text="Photo" />

<mx:Button id="photoDrop" width="100%" height="100%" />
<mx:Button id="submitBtn" label="Submit" width="100%"

enabled="false" />
</mx:VBox>

</mx:Canvas>

188

Dragging and Dropping

Now that you have the basic components laid out, you can add the event listeners in an

<mx: Script> node. Notice that the elements need to add event listeners in order to have IDs
assigned. These are used in the same way that instance variables are used, and your event listeners
can be added to these IDs. Before you add event listeners to the components themselves, you'll
want to add an event listener to the PhotoForm component itself to listen for initialization. This
event listener is effectively an MXML document’s constructor and will serve to initialize the appli-
cation’s functionality. The code in Listing 10.12 adds this listener, and also creates the event han-
dlers you'll use to capture the events needed for drag and drop, and post submission.

The initialize method is now functioning and the Photo Drop button is actively listening to drag
events. In order for the Photo Drop button to accept and process a drop, the NativeDragManager
must be notified that the Photo Drop is capable of receiving the drop. In most operating systems,
the mouse arrow changes to an icon that indicates that the user can drop the dragged item into the
target. In Windows Vista, this is a plus icon that also indicates the type of drop that is allowed,
such as Copy or Move.

In order to determine if the dragged item is of the correct type, you must first define the types that
the Tumblr client can accept. For this sample application, stick to accepting only the image types
that Tumblr accepts: JPEG, GIF, PNG, and BMP-formatted images.

It would be possible to convert nearly any DisplayObject into a JPEG-formatted file using the
JPEGEncoder class, or to PNG format using the PNGEncoder format, and send these instead.
This process would potentially allow for the uploading of user-generated images, screenshots of an
AIR application, screenshots of a video being played, or a wide variety of other sources of bitmap
data.

189

<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:nsl="org.airbible.tumblr.forms.*">
<mx:VBox x="0" y="0" height="100%" width="100%">
<mx:Text text="Caption" />
<mx:TextInput id="captionText" width="100%" />
<mx:Text text="Photo" />
<mx:Button id="photoDrop" width="100%" height="100%" />
<mx:Button id="submitBtn" label="Submit"
width="100%" enabled="false"/>
</mx:VBox>

<mx:Script>
<1 [CDATA [

import mx.events.DragEvent;

protected function onInitialize(e:Event):void {
photoDrop.addEventListener (
NativeDragEvent .NATIVE_DRAG_ENTER,
onDragEnter) ;
photoDrop.addEventListener (
NativeDragEvent .NATIVE_DRAG_DROP,
onDragDrop) ;

protected function onDragEnter (
event:NativeDragEvent) :void {

protected function onDragDrop (
event:NativeDragEvent) :void {

protected function onSubmit(event:MouseEvent):void

}
11>
</mx:Script>
</mx:Canvas>

190

Dragging and Dropping

Given that you'll only be accepting Tumblr-accepted file types, the onDragEnter method needs
to both make sure that the dragged clipboard contains data in ClipboardFormats.FILE_
LIST_FORMAT and that a valid image file is included in this list before notifying the
NativeDragManager that the drag item can be handled by your application.

Listing 10.13 shows what onDragEnter should look like, including a new array variable that will
contain the valid file types, JPEG and PNG.

LISTING 10.13

protected var validTypes:Array =
new Array(I|‘jpg|l, I|‘jpegl|l |l‘pngl|l |l‘gifl|l |l‘bmpl|);

protected function onDragEnter (event:NativeDragEvent):void {
// check if the dragged item is a list of File objects
if(event.clipboard.hasFormat (
ClipboardFormats.FILE_LIST_FORMAT)) {
var files:Array = event.clipboard.getData (
ClipboardFormats.FILE_LIST FORMAT) as Array;
var fileType:String = File(files[0]).type;
// check to see if the list contains a .jpg or .png file
if(validTypes.indexOf(fileType) > -1)
NativeDragManager.acceptDragDrop (this) ;
}
addEventListener (NativeDragEvent.NATIVE_DRAG_DROP,
onDragDrop) ;

Notice that onDragEnter (event :NativeDragEvent) did a few things. First it checked to
make sure there was a list of File objects in the dragged clipboard item. It then checked to make
sure that the first item in that list was a JPEG, PNG, GIF, or BMP file. Given that Tumblr accepts
only single photos for now, stick to checking only the first file in the list. In the future, it would be
a good idea either to indicate to the user that only single image files can be placed in the Tumblr
client or to support multiple images by uploading them individually.

You may have also noticed that a new event handler has been assigned to the
NativeDragEvent .NATIVE_DRAG_DROP event. This event handler is executed when and if
the user decides to drop the files onto the photoDrop component. This event handler is also the
method for accessing the items in the dragged Clipboard object in the same way they were ana-
lyzed in the onDragEnter handler method using the NativeDragEvent event.

191

Once the onDragDrop event handler is executed, the contents of the Clipboard object will no
longer be accessible. It is important that the onDragDrop method either store the Clipboard
object or its contents, or manage them as needed. In the case of the PhotoForm, you'll use the
File object in the FileList stored in the Clipboard object to send the photo, so you'll store
it until the Submit button is pressed. Listing 10.14 shows the completed onDragDrop method.

LISTING 10.14

protected var file:File;

protected function onDragDrop(event:NativeDragEvent) :void {
var files:Array
= event.clipboard.getData(ClipboardFormats.FILE_LIST_ FORMAT)
as Array;
file = File(files[0]);
submitBtn.addEventListener (MouseEvent.CLICK, onSubmit);
submitBtn.enabled = true;

Notice that submitBtn is now enabled and is now assigned an event handler for the
MouseEvent . CLICK handler; the submitBtn enabled property was set to false in the MXML
when you created it. Before a file is added to the PhotoForm, there would be nothing to submit.
Once a file is available for upload, this is where you enable it, signaling to the user that he may
submit his photo. Lastly, you need to handle the CLICK event of the Submit button by sending the
stored file and the caption text to Tumblr using your PhotoPost class.

protected function onSubmit(event:MouseEvent):void {
new PhotoPost(file, captionText.text).send();

}

Summary

Dragging-and-dropping is a feature widely used by desktop applications; AIR offers the opportu-
nity for Flash, Flex, and HTML developers to use it in new and exciting ways that could be a great
way for the world of Web applications to meet the added features of the desktop. This chapter cov-
ered how to drag items into and out of an AIR application, and how to create user experiences that
make filesystem interactions more engaging, intuitive, and simple.

192

ne of the most powerful new tools introduced with the AIR API is

the addition of local SQLite databases. Now you can store the data

your application needs in a compact and quickly accessible format
for later use, offline use, or transfer between computers. If you are building
an application that is going to need its own file format or is going to use even
a moderate amount of data, you probably want to use SQLite.

This chapter provides you with a quick introduction to SQLite itself, and
then helps you dive straight into using it. You don’t have any configuration
or setup to worry about, so all you really need to understand is a little bit of
SQL, a few new classes, and a couple of new data types. By the end of this
chapter, you should be able to print up new business cards to add “DBA” to
the end of your title.

Introducing SQLite

SQLite is an open-source relational database. It was released publicly in
2000 and has garnered a large community of supporters and users. You can
trust it. It really is the perfect database engine for a desktop application, and
one that is incredibly easy to use.

The stated goal of the SQLite development community is to make the data-
base simple. This means that they have left some features of other database
engines out in the cold; if you're an Oracle administrator, you may not be
amused. For most of us though, this is fantastic — with simplicity comes sta-
bility, so SQLite is an engine you can use and an engine you can depend on.

193

IN THIS CHAPTER

Introducing SQLite

Getting started with SQL

Managing SQL databases

Another thing that makes SQLite easy to use is that it doesn’t require configuration. Other engines
can be a bit intimidating because there are a dozen administrative tasks required before you can
start calling SQL on a new database. This sort of thing is especially frustrating for beginners,
because when something doesn’t work you have to question all the choices you made as the data-
base administrator. With SQLite you just create the table and go.

There is a wealth of information about SQLite at the project Web site (www.sglite.org), and you will
be able to find help with the SQL it recognizes as well. If you are new to all of this, you will most
likely have much more to learn about the SQL language than you will about SQLite in particular.

The anatomy of a database

You probably have a reasonable idea of what a database is, but you may not be a seasoned database
admin — not yet anyway. A database consists of tables, and each table is a set of rows and col-
umns. Essentially, a table is just an array of objects — the columns are the variables of the objects,
and the rows are the items in the array. If you wanted to catalog your socks in a database, then the
Boolean that indicated whether or not they were clean would be a column in your table, those
’70s-looking ones with the green stripes would be a row, and the value true to indicate that that
pair is clean would be a cell.

Each table needs to have a primary key. The primary key is a value that is distinct for each row, and
is usually simply a counter. You may also choose a natural key as your primary key, which would
be a value you were already going to include in the table and is by definition distinct.

In SQLite, each database is a single file. By convention, databases are stored with the extension .db,
but there are no actual restrictions on the extension. This means that if you would like to create your
own custom file format, you can do so using an SQLite database if you want. Of course, you could
save any file with a custom extension, but there are quite a few benefits to using a database — exten-
sibility and reliability are probably the top two.

Choosing a Natural Key

magine using mobile phone numbers as a natural key on a table of your friends — it seems per-
fectly reasonable at first, because by their nature, the numbers are distinct. But not everyone has a

cell phone; some people have more than one cell phone; and people change their numbers on
occasion. You could be making a great deal of trouble for yourself down the road. If you have three
tables in your database that reference a friend by her key, and the key is a phone number that has
changed, you will have to write a script to update that value wherever it appears in the other
tables.

194

SQLite Databases

The ACID principle

SQLite transactions are ACID — atomic, consistent, isolated, and durable. This is an old principle
in database design, and understanding how SQLite answers the problems of database design can
give you some context as to just what sort of database SQLite is meant to be.

Atomic means that the transaction either happens or it doesn’t — if an error occurs, your change
rolls back without corrupting your data. You can visualize the transaction as something that hap-
pens instantaneously, and there is no way for an error to cause it to get stuck in the middle. SQLite
transactions are even atomic if there is a power failure or a system crash!

Gl It is no small feat to promise that a transaction will not corrupt your table even in
s the event of a power failure. A much-simplified explanation for how this is possible
is that the centrifugal force of the hard disk makes your transaction cling in place; if the disk
stops, the transaction goes flying off. Unfortunately, this explanation is oversimplified and
doesn’t make sense for a few reasons. You can find a real explanation from the engineers at
www.sqglite.org/ac/atomiccommit.html.

Consistent means that the transaction throws an error (and quits the transaction) if an illegal value
is stored or a data conflict arises. Again, no corrupted tables are left behind. This ensures that a
transaction is consistent; each transaction knows that the data in the table is valid before it starts
working.

An isolated transaction is a transaction that occurs at its own distinct time relative to other transac-
tions. If you send two transactions at once, neither transaction sees the data in a “half-edited” state.
SQLite achieves isolation by locking tables down while they are being acted on. An enterprise-level
database doesn’t have that luxury, because it has to support concurrency — dozens of users inter-
acting with the same data at the same time.

This doesn’t mean that concurrency isn’t supported by SQLite, but it does mean that if you have
more than a few hundred users acting on the same data at the same time, you are sure to see a per-
formance loss as transactions queue up and wait for tables to unlock. Isolation is something that
many database systems strive toward, but can never fully accomplish in order to preserve concur-
rency. Because SQLite uses table locking, the transactions are absolutely isolated without any risk,
and even better, without a lot of code written to try to manage that risk. These are the principles of
simplicity, stability, and lightness working in perfect harmony.

Finally, durable means that once a transaction is completed and you've been informed that it was
successful, those changes are there to stay. This characteristic seems somewhat dubious; do you
believe that there was a database engine in the past that was rolling back transactions for no appar-
ent reason? Maybe there was, but then again maybe they just needed a “d.”

195

196

Getting Started with SQL

SQL is the language of choice for manipulating databases. It is really easy to find help on the SQL
language, but keep in mind that each database engine has minor syntax differences. The database
implementation in AIR supports most of the SQL-92 standard, which is exactly as old as it sounds,
so much of the documentation you find online for SQL includes newer features not available in
AIR. When in doubt, you should start with help for AIR and then look to help for SQLite.

Basic SQL calls come in three phases:

B Creational
B Modification
B Retrieval
Creational calls define the structure of your tables, so basically anything that changes what columns

are available is a creational call. Modifications add or change data in your tables. Retrieval gets that
data back out.

Connecting to a database

The first thing you're going to want to do with a database is to connect to it and create a table.

The SQLConnection class handles the connection; for that reason it is the central class to the
AIR SQLite API. If you're using Flash or Flex, you can find this in the £1ash.data package;
from JavaScript you can reference it using air.SQLConnection if you have imported
ATIRAliases.js.

There are two steps to initiating an SQLConnection:

1. Reference a file for your database.

2. Open the connection.

SQLite Databases

Listing 11.1 demonstrates a few fundamental decisions. First, you decide the name for your data-
base. Second, you decide to use asynchronous mode for the SQLConnection, because that is the
default.

If you wished to do synchronous mode, you could pass a value of true into the constructor:
connection = new SQLConnection(true);

In synchronous mode, you wouldn’t need to register for an event to find out when the open opera-
tion completed successfully. You could proceed to create and modify tables directly within that
same block of code. On the other hand, you wouldn’t be able to register for an event to tell you if
the operation failed, and you would need to wrap that block of code in a try ... catch statement.

Asynchronous mode is your recommended choice for SQLConnection.
Synchronous mode treats an asynchronous operation as though it were synchro-
nous, which means that if the operation does actually take much time to complete, the user is
going to see an hourglass. It is much easier to use asynchronous mode from the beginning than
it is to refactor when you start to see the hourglass.

Another decision made in Listing 11.1 is whether or not to use a file at all. It is possible to pass a
null value for the file reference in SQLConnection.open (), which creates a database in mem-
ory rather than in a file on disk. This means that the data will not be available to later sessions of
your application, particularly if the application closes unexpectedly.

As a general rule of thumb, always use a file to store your database unless the data stored there
would not be desirable in a later session. There are numerous reasons why this might be the case:
For example, you might not want the data available in a later session if the data were sensitive and
you wanted to make sure that another user wouldn’t be able to restore it.

If you are using a table to store data temporarily and then letting the user store this data to a per-
marnent file later, consider using a temporary file instead of an in-memory database. Data entry can
be a time-consuming process for the user, and you may be able to save users a great deal of hassle
by simply writing a routine that restores the state of the UI after an unexpected event such as sys-
tem failure.

197

Opening an SQLConnection in AS3

package org.airbible.services.database
{
import flash.data.SQLConnection;
import flash.filesystem.File;
import flash.events.SQLEvent;
import flash.events.SQLErrorEvent;

public class Database

{

private var connection :SQLConnection;

private var dbFile :File;
public function Database() : void
{

// Reference a file for your database
var resources :File = File.applicationResourceDirectory;
dbFile = resources.resolvePath (imyDatabase.dbl) ;

// and connect to it
connection = new SQLConnection() ;
connection.addEventListener (SQLEvent.OPEN,
onDatabaseOpen) ;
connection.addEventListener (SQLErrorEvent.Error,
onOpenError) ;
connection.open (dbFile, true, false, 512);
}
}
}

The last choice made in Listing 11.1 was the page size for the database. According to AIR docu-
mentation, the default value for this is -1, but the only valid values are powers of 2 between 512
and 32,768 (in other words, 2n between 29 and 215). Page size is analogous to cluster size in the
operating system. Basically, that means that this is the smallest size for a chunk of storage space, so
when you need to store new data, it frees up the space needed in chunks of this size.

198

SQLite Databases

When choosing a page size, the optimal choice is probably going to be the same as the cluster
size of the operating system your application is running on. Given you are building a platform-
independent application, this can be tough to know. For Mac OS X, cluster size is 512, and there
aren’t too many ways for a user to alter that.

For most Vista machines, cluster size is 4,096 by default, and on Linux it’s 1,024. With those sys-
tems, the user has more opportunities to change the cluster size to any wacky value they please,
within powers of two and reason of course. The SQLite default page size is 1,024, and this is prob-
ably the same default you would get if you didn’t specify anything in your call to connection.
open (). Benchmarking may show that your application has better performance if a different value
is used here though, so it’s good to keep in mind if you decide to really push the limits of SQLite.
If nothing else, don't fall into the temptation to just set this to 32,768 under the assumption that
bigger is better. That isn’t exactly how it works.

Now you'll use this SQLConnection to create a very simple application to store application
names so that you can keep track of your ideas.

Now that you have successfully opened the database, the database name is main. If

: you wish to use additional database files from this same sQL.Connection, you can
use the SQLConnection.attach () method to add them. These databases need to have their
own name specified.

Creating a simple table

You can add a handler to the SQLEvent . OPEN event to start the creation process, as shown in
Listing 11.2.

LISTING 11.2

private function onDatabaseOpen(event:SQLEvent) : void
{

if (connection.version == 0)

{

createDatabase() ;

}

}

199

LISTING 11.3

In this method, you are checking the version number on the database. The version number is an
integer value specified by you to be stored with the tables you create, so it is your responsibility as
the developer to keep track of what has changed between versions. You will update this value after
you're done creating the table, so the next time you open the application you won’t need to call the
create method again.

It wouldn't cause any harm to skip this step, because you can always use the SQL clause IF NOT
EXISTS in your create statement to ensure that you aren’t trying to create a table that’s already
there. However, it's good practice to use versioning. If you skip versioning and release your appli-
cation, but then add columns to a table in a new update, you will have to sort out how to tell
whether you are changing existing tables or creating everything from scratch; having version num-
bers to guide you is really useful.

Now you get to the good part, creating the table, as shown in Listing 11.3.

Using CREATE TABLE from an SQLStatement

private var createStatement :SQLStatement;

private function createDatabase() : void

{

createStatement = new SQLStatement () ;

createStatement.text = "CREATE TABLE IF NOT EXISTS pun ("o+
"id INTEGER PRIMARY KEY AUTOINCREMENT, " +
"title TEXT, "o+
"description TEXT, "4
" funny BOOLEAN "o+

n) n I.
createStatement.sglConnection = connection;

createStatement.addEventListener (SQLEvent .RESULT, onCreate);
createStatement.addEventListener (SQLErrorEvent.ERROR, onError) ;
createStatement.execute() ;

}
private function onCreate(event:SQLEvent) : void
{
trace("create successful");
connection.version = 1;
}

200

SQLite Databases

As far as the AIR API is concerned, this is all very simple. You need at least two listeners so that
you can respond to success or failure of the request, just as you did when you opened the connec-
tion. For any SQLStatement, you must assign an SQL string to the SQLStatement. text
property and provide an SQLConnection to the SQLStatement.sglConnection property.

EF To say that sQLstatement is well-suited for the command pattern would be an
2% understatement. Check out Chapter 15 for more details.

The SQL statement itself is fairly readable once it’s written. The order and the keywords are quite
specific, so if you're new to SQL you will certainly need a reference when you're starting out. SQL
keywords are all caps by convention, and it’s a well-established convention so you may as well pre-
tend it’s required.

White space is ignored, so you are free to use as much or as little as you wish (so long as you leave

at least a space between keywords, of course). This is something to take advantage of, because your
SQL statements will become complicated quickly. Nailing down a few formatting conventions will

help you keep things readable.

Starting at the top of the SQL statement in Listing 11.3, you see the primary purpose at the very
beginning: CREATE TABLE. This part is the same for almost all create statements. The exception is
when you want to create an in-memory table that is removed when the application is closed. For
those you can use the TEMPORARY modifier: CREATE TEMPORARY TABLE.

There are two ways to create a table in memory: The first is to pass a null value as
% the file when opening the connection, and the second is to create the table using
CREATE TEMPORARY TABLE. If you have a stored database, and especially if you are going to
want to compare or share data between your stored database and your temporary table, using
SQL to specify that it is temporary is probably your best option.

Next, Listing 11.3 used the IF NOT EXISTS clause. This isn’t entirely necessary, because you're
going to use the version number to check that you don't create the same table twice. It is a good
practice, though; you can never be too careful.

After that, you specify the name and structure of the table. The table name passed here, pun, is
really shorthand for the fully qualified [databaseName] . [tableName], which in this case
would be main.pun. Remember, the database name is main for the database you referred to in
the SQLConnection.open command. There are a couple of ways to define the columns, but the
most common is to simply list them out as done here. You use an id field as the primary key and
give it the constraints PRIMARY KEY AUTOINCREMENT. When you add new rows to this table,
you won't need (or want) to specify a value for 1d, because the AUTOINCREMENT constraint will
do the work for you.

201

TABLE 11.1

AIR API

Understanding data types

The other fields of this database have been set to the TEXT and BOOLEAN types. The types avail-
able for creating column definitions are:

TEXT

INTEGER

REAL

NUMERIC

BOOLEAN

DATE

XML

NONE

SQLite uses column affinity for the data types assigned to each column, which is unusual for an SQL
engine. Column affinity means that when you apply a value to a column, it tries to type that value
to the column’s type but does not throw an error if the type doesn’t match. For ECMAScript pro-
grammers, this probably sounds all too familiar — dynamic typing. If you have been programming
in JavaScript or ActionScript for very long, then you are sure to have had your share of ups and
downs with dynamic typing. In the data retrieval section, you will see some techniques designed to
reinforce the typing on your columns and hopefully reduce the temptation to store data of various
types in the same column.

Column affinity will work in your favor under most circumstances, because it will try to cast the
variable for you. The way variable casting works is very similar to the way it worked in AS2. Table
11.1 demonstrates the way that SQLite evaluates a value stored into a column with type affinity set
to BOOLEAN.

Type Conversions in SQLite Based on Column Affinity BOOLEAN

Value Stored from ActionScript or JavaScript Resulting Value Stored in SQLite
false false

" " (empty String) false

"0" (String containing number 0) false

"false" (String containing word false) false

undefined ornull false

1 true

"random string" true

202

SQLite Databases

Adding data to your table

Now that you've defined the columns, it’s time to start adding data. The first thing you need to do
is create a value object that matches the structure of your table. This is an optional step, but will
help you constrain typing. A value object is a simple class that represents some small object used by
your application. Anywhere in your model where you need to refer to an object, you should con-
sider using a value object. Adding value objects is a very simple step that will save you a lot of has-
sle and make for much cleaner and more readable code (see Listing 11.4).

That's all there is to it. Now you can pass a typed object to the function you use to add data, and
you can read data back out as a typed object.

LISTING 11.4

Creating a value object to match your table structure

package org.airbible.vo

{
public class PunVO
{
public var id :uint;
public var title :String;
public var description :String;
public var funny :Boolean;
}
}

The code to set up an SQLStatement for an INSERT is almost identical to that used for the
CREATE request. For an INSERT statement though, you will most lik ely want to pass in some
variables to be saved. You can specify variables in your SQL statements by using either : or @ as
the first character of the variable name. You can then add values to those variables using the
SQLStatement .parameters hash table as shown in Listing 11.5.

203

Adding data to your table

private var addStatement :SQLStatement;

public function addPun(pun:PunvVO) : void
{
addStatement = new SQLStatement () ;
addStatement.text = "INSERT INTO pun "4
"(title, description, funny) "t
" VALUES "+

"(:title, :description, :funny)";

pun.title;
pun.description;
pun. funny;
connection;

addStatement .parameters[":title"]
addStatement .parameters|[":description"]
addStatement .parameters[": funny"]
addStatement.sglConnection

addStatement .addEventListener (SQLEvent .RESULT, onAddComplete) ;
addStatement .addEventListener (SQLErrorEvent .ERROR, onAddError) ;
addStatement .execute () ;

If you follow the very basic SQL statement shown in Listing 11.5, you're asking to insert a row into
the table pun by placing values into the columns title, description, and funny. You can then specify
three variables to hold the values you wish to save and use SQLStatement .parameters to pass
those values to SQLite. Alternatively, you could skip the parameters step altogether and assign the
values directly as in Listing 11.6.

LISTING 11.6

addStatement.text = 'INSERT INTO pun '
' (title, description, funny)
' VALUES '
" "'+ pun.title
L "'+ pun.description
R "'+ pun.funny

+ o+ + + + o+

204

SQLite Databases

This will be an identical statement to the one that used parameters as far as SQLite is concerned.
The only problem with this technique is the mishmash of quotes and commas and parentheses —
it’s prone to error, so you're going to end up having to count parentheses in Debug mode.

Either way works though, and now you've inserted data into your table. But remember, you speci-
fied four columns for this table and only added data to three. Of course, that’s because you set the
id field to use the AUTOUPDATE constraint. It would be possible to specify a value for the id, but
because this is being used as the key, you will get a constraint violation error if you try to add a
duplicate value. It’s best to let AUTOUPDATE do its magic.

If you wish to update your value object with the id generated by SQLite, you can do so after the
complete event has fired by looking at the SQLResult object. You can get a reference to it using
SQLStatement.getResult ():

private function onAddComplete (event:SQLEvent) : void

{
var addResult:SQLResult = addStatement.getResult () ;
var punId:int addResult.lastInsertRowID;

SQLStatement .getResult () will pop a result from the queue of results for that
% sQLStatement. This means that after you call this method once, the result
returned will be pulled out of the queue. Make sure you store the SQLResult in a variable if
you need to do multiple things with it. This one could have you scratching your head when you
pop the result into a trace statement to verify that it has the expected values, only to find that
those values aren’t there anymore when you actually need to use them!

Reading data out of a database

Now that you've created your table and added in data, the next step is to read the stored data back
out. This exercise uses Flex, so you could just put a DataGrid component in the main MXML
class and give it four DataGridColumns with dataField properties that match up to the prop-
erties in Punvo.

How you choose to reflect the contents of your database back into the model of your application is
a choice that really depends on your needs. For this application, take the easy route and overwrite
your list of puns each time the database is changed (as shown in Listing 11.7).

205

Using SELECT to read data out of your database

private function onAddComplete (event:SQLEvent) : void
{
getAllRecords ()
}
private function getAllRecords() : void
{
selectStatement = new SQLStatement () ;
selectStatement.text = "SELECT * " +
"FROM pun"
selectStatement.itemClass = PunVoO;
selectStatement.sglConnection = connection;
selectStatement.addEventListener (SQLEvent .RESULT, onSelectComplete) ;
selectStatement.addEventListener (SQLErrorEvent .ERROR,
onSelectError) ;
selectStatement.execute() ;
}
private function onSelectComplete(event:SQLEvent) : void
{

var result:SQLResult = selectStatement.getResult();
storedList.source = result.data;

Listing 11.7 changes the onAddComplete event handler so it now calls for the SELECT request.
The SELECT statement itself is about as simple as it could be, given you want all the records in the
table. The asterisk in the SELECT statement means “all columns” — if you were going to put
restrictions on the number of rows returned, you could use a WHERE clause.

206

SQLite Databases

Otherwise, the only thing you've done differently to set up a SELECT request is that you specified
an SQLConnection.itemClass. This is the class type used to hold the results, so you can con-
tinue to keep all the puns you use in value objects.

B= If there are columns in your result set that are not represented in the class you

- = specify as the itemClass, you will get a ReferenceError (unless that class is
dynamic of course). This is not an SQL-related error, so it won’t be caught and passed to your
SQLErrorEvent handler.

For the RESULT event, all you need to do is display the array that’s been placed in the
SQLResult object. For this example, you're going to populate an ArrayCollection that
you've bound to the dataProvider of a DataGrid component. That's all there is to it, and now

you have one very simple application (see Figure 11.1)!

FIGURE 11.1

Your completed application is designed to store application names.

enn Pundat
Title AIRDusH
Description | paintng aggliatien
Funny?
save

" | tive I[daseription fuey?
1 AIRGutar Ot tals welilr [
2 Writshl AR Mot Toxt Exdter =
3 roAIR subrvarsion bug tracher? [
4 TrmsgahiFant s, sararilucasght talsm
5 Aina ncsie famhmiog lina nageantsd [

By now you should be able to see how easy it is to use the AIR API to access and control SQLite
databases. The basic SQL commands you've used are a good starting point, but they just scratch
the surface of what you can do using SQL.

207

LISTING 11.8

Managing SQL Databases

In this section, I go through SQL-92 in depth to provide you with a more complete understanding
of this powerful tool. The fundamentals from the previous section are enough to create something
functional, but the true power of databases comes when you are dealing with larger and more
complex data sets, so this section provides some better examples.

Using SELECT statements

This section starts where the last section left off, with SELECT statements. Selecting everything
from a particular table is a valid use, but you will find that SELECT can do quite a bit more. In
fact, SELECT is really the central statement in the SQL language. It’s all well and good to have all
this data saved and organized, but it doesn’t do much good until you start reading it back out. You
also really need to understand how SELECT works before you begin to design the architecture of
your databases.

A SELECT statement returns a set of columns and rows matching the conditions you specify. A
good way to think of this is that the result of a SELECT statement is a table. That table could con-
tain almost any number of columns (up to 2000) from a number of different tables (up to 64).

Keep in mind that the table returned from a SELECT statement will not necessarily have the same
set of columns as one of your tables. Therefore, if you are using value objects, you may find that
you need to retrieve data from your database that doesn’t match an existing value object. There’s
no shame in that, and you should create as many value objects as you need. In this case, you are
using them to transport data from the database to a view, so if you have several value objects con-
taining a similar set of variables, then that probably means that you have also created several ways
of viewing the same data.

When you look up the syntax for the SELECT statement understood by SQLite, you get something
like what is shown in Listing 11.8.

Specification for the SELECT Statement

SELECT [ALL | DISTINCT] resultList

[FROM tableList]

[WHERE constraintExpression]

[GROUP BY groupExpressionList]

[HAVING constraintExpression]

[UNION | UNION ALL | INTERSECT | EXCEPT selectStatement]
[ORDER BY expressionList]

[LIMIT integer [OFFSET integer]

208

SQLite Databases

| Notice that with SELECT statements in particular, the code listings in this book
adopt the convention of keeping SQL keywords in a column to the left and expres-
sions and values to the right. Some SQL programmers even insist on right-justifying the key-
words and left-justifying the values to get everything lined up in a neat little column.

This section takes the SELECT statement one line at a time. The only line that is required in a
SELECT statement is the first line in this list. If you specify DISTINCT, then duplicate results will
be omitted, which might be used to get a list of all the music genres you have in your library.
Otherwise, you will get all rows matching the rest of your SELECT statement.

The resultList is usually the list of columns you want returned. To get all columns from all tables,
use the asterisk as mentioned earlier — you can get a complete dump of your database using
SELECT *. Otherwise, you give a comma-delimited list of tables and the desired columns from
each table. To get all the columns from a particular table, use tableName. *; to get only certain
columns, use tableName.columnNamel, tableName.columnName2, ...

You may also choose to have the SELECT statement perform an aggregate function on columns
from your tables. This option is explored in the discussion of the GROUP BY clause later.

Another option for the resultList is an expression, which means that you want the SELECT
statement to return a value instead of a table. This may not be terribly useful by itself, but could be
very handy when used as a part of a more complex SQL statement. Some examples of expressions
that you can use are listed in Table 11.2.

TABLE 11.2

SELECT Statements that Return a Value

SELECT random () Returns a random 64-bit integer (between
-9223372036854775808 and 9223372036854775807)

SELECT MAX(x, vy, Z) Returns the largest value from the list

SELECT SUM(x, vy, Z) Returns the sum of the non-null values in the list

The FROM clause and the JOIN clause

The FROM clause lists th e tables you wish to use to select data, but more importantly, it is how
you guide SQL to match a row from one table with a row from another. When you have multiple
tables, you can specify how the rows line up using JOIN. Behind the scenes, joining tables actually
creates a series of loops in most cases, as SQL needs to look through tables to find values matching
those from the tables they are being joined with.

For this reason, JOIN plays an important role in how efficient your searches are, and therefore
should be a factor you consider when architecting your database. If you join a table to another, you

209

are using one or more columns from each table to decide which row (or rows) from the first table
should line up with which row (or rows) from the second. Whatever the conditions are, SQL has
to search the second table to find rows that meet the conditions it found in the first. If you have
specified that the columns it uses should be used as an INDEX, you make this search significantly
easier. An INDEX should not be confused with a PRIMARY KEY, given there is no requirement that
a value in an INDEX column be distinct. To set up a column to be indexed, you use the CREATE
INDEX command.

The JOIN clause is specified as:

[NATURAL] [LEFT | RIGHT | FULL] [OUTER | INNER | CROSS] JOIN
[ON linkExpression]
[USING linkColumnList]

T Don’t be confused by the JOIN clause. The directional specifications of LEFT,
- RIGHT, and FULL only apply to OUTER JOIN statements. INNER and CROSS JOIN
statements have the same set of results no matter what order you list your tables in.

This may be more easily understood by example, so Tables 11.3 and 11.4 introduce a database of
baseball players with high numbers of career home runs. To keep this simple, this database only
allows one team for each player. There are two tables in this database: one for the players and one
for the teams.

TABLE 11.3

Example Database of Top Home Run Careers — Players

playerld name homeruns hand teamid
1 Barry Bonds 762 L SFG

2 Hank Aaron 755 R ATL

3 Babe Ruth 714 L NYY

4 Willie Mays 660 R SFG

5 Sammy Sosa 609 R CHC

6 Ken Griffey Jr. 593 L CIN

210

TABLE 11.4

SQLite Databases

Example Database of Top Home run Careers — Teams

teamlid name city

ATL Braves Atlanta

CIN Reds Cincinnati
NYY Yankees New York
SFG Giants San Francisco

A NATURAL JOIN matches rows based on column names they have in common. It can be risky to
use these, because adding columns to tables could cause unintended results. For example, here
you can't really do a NATURAL JOIN, because it would try to join on both the teamld column and
the name column. That points to another problem, because the columns called name might be clear
within their own tables, but they are ambiguous within the context of the database. This data
would be easier to work with if there were more specific column names such as playerName and
teamName. If you do this and keep teamld the same (because it refers to the same data set in both
tables), then a NATURAL JOIN works as expected.

Instead of using the NATURAL JOIN, you could use the ON clause to specify how to line up col-
umns; for example:

SELECT players.name, players.homeruns, teams.name

FROM players
JOIN teams
ON (players.teamId = teams.teamId)

This would yield the same result as if you used the USING clause instead of ON:

JOIN teams
USING (teamId)

If you were to set these tables up and run this operation, you would notice that the list of results
was missing Sammy Sosa. This is because Chicago Cubs (CHC) does not appear in the table of
teams. The way that unmatched columns are treated is determined by whether you choose to use
an INNER JOIN, a CROSS JOIN, or an OUTER JOIN.

If you do not specify a direction for the JOIN operation, it defaults to a CROSS JOIN. However, if
you specify an ON or USING clause to restrict the results, a CROSS JOIN behaves like an INNER
JOIN. As a result, an INNER JOIN is what you really see with the previous statements. There is no
team listed for the teamld CHC, so any row from the players table with that teamlId is ignored. The
same also works in reverse — any team without a matching player is ignored. In this case, you get
five rows in your result, one for each player except for Sammy Sosa.

211

212

A CROSS JOIN, on the other hand, returns the cross product of the two tables. You can see the
results of a CROSS JOIN by removing the ON clause or the USING clause from the previous state-
ments. The resulting table has 24 rows in it, one for every possible combination of player and
team. This makes little sense for this set of data, and most references warn you to avoid this type of
JOIN because of its potentially astronomical number of resulting rows. It can be useful however,
so you shouldn’t dismiss it entirely.

Suppose, for example, you had a table of programmers and a table of programming languages, and
you wanted to construct a chart that showed which programmers knew which languages. Another
JOIN type might omit a programmer that didn’t know any of the languages you have listed, or
omit a language that none of your programmers know, but a CROSS JOIN gives you everything.

The last type of JOIN is the OUTER JOIN. An OUTER JOIN can usually be one of three types:
LEFT, RIGHT, or FULL. Currently, AIR only supports LEFT OUTER JOINS, but the others will
most likely be supported before long. A LEFT OUTER JOIN includes all the rows from the first
table you list and gives null values for rows that don’t have any matching values in the other table.
If you run the same operation to join players with teams using a LEFT OUTER JOIN, you get all
the players listed but a null value in the team name column for Sammy Sosa.

If you choose to use a RIGHT OUTER JOIN instead, you see that Sammy Sosa is omitted again —
he has no representation in the right-most table (teams). You do, though, get two instances with
Giants as the team, because there are two players who played for San Francisco in the table.

In other words, you can interpret a LEFT OUTER JOIN as “make at least one row for every row in
the first table mentioned, but if there are multiple matches in the second table, then make one row
for each match.” The RIGHT OUTER JOIN is the same, except that it reverses the role of the tables,
so you will get one or more rows for every row in the second table listed. A FULL OUTER JOIN
does both, so you will get at least one row for every row in both tables.

The WHERE clause

You can narrow down the results of your SQL statement using the WHERE clause. You can test for
conditions on values found in any column from any table that you've joined in, whether or not that
column is in your result set.

Returning to the example database of baseball players, you could get all the player and team names
for players who are left-handed:

SELECT players.name, players.homeruns, teams.name
FROM players
LEFT OUTER JOIN teams
ON (players.teamId = teams.teamId)

WHERE (hand = "L")

Or you could restrict that even further by only getting the left-handed players who hit more than
700 home runs:

SQLite Databases m

SELECT players.name, players.homeruns, teams.name
FROM players
LEFT OUTER JOIN teams
ON (players.teamId = teams.teamId)

WHERE (hand = "L") AND (homeruns > 700)

Also, keep in mind that you can use parameters in these statements as well, and pass in variables of
your choosing.

O B You often see examples that use the WHERE clause in place of an ON clause. The
= results of this technique are the same, but the work behind the scenes is not. It’s
best to use these clauses the way they were intended to be on the safe side.

The GROUP BY clause and the HAVING clause

You can use the GROUP BY clause when one or more elements in your result list are aggregate
functions. Aggregate functions available to you are AVG, COUNT, MAX, MIN, SUM, and TOTAL. For
example, suppose you want to compare the number of left-handed players to the number of right-
handed players in your database. You could use the COUNT function to do this:

SELECT COUNT (players.hand)
AS handcount
FROM players

The As clause simply gives a name to the result of the aggregate function. This statement returns

one result, with handcount equal to 6. Given that the statement didn’t specify any rules to distin-
guish one row from another, COUNT returns the number of rows with a value in this column. You
can make these results more useful with the GROUP BY clause:

SELECT players.hand, COUNT (players.hand)
AS handcount

FROM players
GROUP BY (players.hand)

Now the result has two rows in it, one with the total number of left-handed players and one with
the total number of right-handed players.

You can use the HAVING clause to limit the results read into the groups you specify in the same
way that the WHERE clause limits results read into a SELECT statement that doesn’t use aggregate
functions. For example, you could compare how many left- to right-handed players hit more than
600 career home runs:

SELECT players.hand, COUNT (players.hand)
AS handcount
FROM players
GROUP BY (players.hand)
HAVING (players.homeruns > 600)

213

214

Compound SELECT statements

You can do compound SELECT statements by using the UNION, UNION ALL, INTERSECT, and
EXCEPT operators. To do this, create two different SELECT statements that return the same set of
columns, and then connect them using one of the compound operators.

The UNION operator gives you any row found by either of your two SELECT statements. The
UNION ALL operator does the same, but includes duplicates in cases where both SELECT state-
ments returned the same item.

INTERSECT only returns rows found by both SELECT statements. On the other hand, EXCEPT
only returns the rows found by your first SELECT statement that do not appear in the second.

As the demands of your application increase, you may find that you are doing some SELECT state-
ments {requently, but not always within the same context. This can be especially true if you are
using compound statements or aggregate functions to set variables inside of larger SELECT state-
ments. When this happens, you may want to save these statements so that you can treat them like
their own methods. To do that, use the CREATE VIEW command. The syntax for that is:

CREATE VIEW viewName
AS selectStatement

You can treat views like any table in your database, except that you cannot modify the data in a
view. You can delete a view using the DROP VIEW command. This doesn’t delete any of the data
this view shows; it only removes the virtual table that the view represents.

The ORDER BY clause

You use the ORDER BY clause to specify what column or columns you want to use to determine the
order of the results. These columns do not need to be listed in the results, but it is important to
remember that having an INDEX on those columns will shorten the execution time needed for
large lists of rows.

The LIMIT clause

You use the LIMIT clause to set a maximum number or results you want returned. Suppose you
had a very long list of possible results, and you wanted to only list 50 at a time. You can use the
LIMIT clause to get your first page of results, and then increment the OFFSET value by 50 for the
subsequent pages.

SQLite Databases

Maintaining your database

You now know how to create a new table, add rows to your tables, and retrieve data from your
database. All you need to know now is how to change the data already stored in your tables.

The UPDATE statement

You use the UPDATE statement to change values in existing rows. The syntax is:

UPDATE [OR conflictAlgorithm] tableName
SET assignmentList
[WHERE constraintExpression]

For example, if you wanted to create an UPDATE statement so that you could change Sammy Sosa’s
team to the Texas Rangers, you would do this:

UPDATE players
SET (teamId = "TEX"
WHERE (name = "Sammy Sosa")

The DELETE statement

Use the DELETE statement to remove rows from a particular table. The syntax for DELETE is:

DELETE FROM tableName
WHERE constraintExpression

The ALTER TABLE statement

There are two variants of ALTER TABLE available in AIR. You can use ALTER TABLE to rename a
table or to add a column to a table. The syntax for these is:

ALTER TABLE tableName
RENAME TO newTableName

ALTER TABLE tableName
ADD COLUMN columnDefinition

The ADD COLUMN variant is the more common of these. However, any use of ALTER TABLE
should be used with caution, because changing your table structure could have an effect on all the
statements that add, change, or read data from that table.

215

U

UPDATE Statement

PDATE statements are another type of statement where you will regularly use parameters. When
using parameters in your SQLStatement variables, remember that they will persist between

calls to sQLStatement.execute (). You usually won't use local variables for your statements
because you need to read the result of the statement after execution has completed. However, you
do need to be sure that you use the correct set of parameters for each statement. One way to ensure
that there are not stray parameters in your statements is to use a unique SQLStatement variable for
each task. For example, you could have one SQLStatement variable that you use when you are
updating the teamId, and a different one that you use when updating the number of home runs.

216

Usually, the reason you need to have an ALTER TABLE statement is because you have released a
version of your application, made changes that require a different table structure, and want the
new release of your application to be able to update existing tables from the first version so that old
data doesn’t become invalidated. This means that ALTER TABLE will be a step in a process of
updating from one version of your database to a new version. It is important to remember to use
the version variable in SQLConnection for this reason, both before and after ALTER TABLE
operations. Adding columns can be a complex process, especially if you need to add data into the
new cells, and you can make all of this much less of a headache with strategic use of database
versioning.

Summary

SQLite databases are a powerful tool, but they are still incredibly easy to use. If your application
demands offline storage of large amounts of data, or if your application needs to save user prefer-
ences and settings, or especially if your application needs to have its own custom file type, then
SQLite databases should be your first choice.

here are many features that qualify AIR as a true desktop platform,

but perhaps the most obvious one is that it uses a new feature for

Flash and Flex developers: the use of the host operating system (OS)
windowing environment. Flash, Flex, and Ajax developers are accustomed to
the restrictions of browser windows, but in AIR this isn’t the case. Full use of
browser chrome windows is fully supported by the NativeWindow API.

NativeWindow is the class that exposes the methods and properties used
to create, manage, and customize your application’s windows. For Flash and
Flex developers, using windows is similar in nature to managing multiple
SWFs in a single browser, or on multiple browsers, though the communica-
tion between windows has been greatly improved.

The use of ExternalInterface is no longer the sole means of cross run-
time communication. From a central location, you can control and manipu-
late each AIR application window that your application creates, and you can
use listeners to communicate between these windows.

For Ajax developers, the use of windows will also seem familiar; working
with them is not far from working with separate floating browser windows.

One of the most exciting aspects of AIR’s new windowing functionality is the
level of window chrome customization possible. Chrome is the term used to
describe a window’s container or facade. For most applications, the OS
chrome is used to contain an application. In Microsoft Windows, for exam-
ple, the minimize, restore, and close buttons are contained in the top-right
corner of the window, while Mac OS X’s are contained in the top-left corner.
There are many ways a window can be represented on-screen, including, but
not limited to, OS chrome, custom chrome, and transparent nonrectangular-
shaped chrome.

217

IN THIS CHAPTER

Creating system windows

Controlling system windows

Using application icons

Twitter client sample
application

N

There are other items related to your AIR application that you can customize, such as how your
application will appear in the taskbar in Microsoft Windows or the system dock in OS X, or how
applications are represented in the various Linux distributions. In Microsoft Windows, you can
also customize your application’s representation in the Notification Area located on the right of the
taskbar.

AIR applications can also run in the background without a visual representation at all, as a passive
application that only alerts its users to certain events such as Twitter alerts. Twitter is an online ser-
vice that alerts its subscribers when a subscriber updates his or her status. It is a popular technol-
ogy that is growing quickly in both social and business implementations. In this chapter, you'll
learn how to build a sample application that uses Toast-styled windows to alert the user when
Twitter messages are broadcast using the Twitter APL

Creating System Windows

Creating system windows is as simple as creating an instance of the NativeWindow class and
activating it. However, you need to do a little more to customize a NativeWindow class to suit
the needs of any particular application.

The only parameter of the NativeWindow constructor is NativeWindowInitOptions.
NativeWindowInitOptions is a basic class that accepts values for the different settings for a
NativeWindow. I discuss the properties that you can set in NativeWindowInitOptions in
further detail throughout this chapter.

The second means of customizing a NativeWindow is through the AIR Application Descriptor
File. In this file, XML nodes specify the display settings of the initial application window generated
by your main application. Your main application may create new windows and set their options
using NativeWindowInitOptions, but you need to configure your initial window using this
application XML file. The default Application Descriptor File looks like Listing 12.1.

NativeWindow Properties

ativeWindowInitOptions properties need to be set and passed to the Nativewindow
object in the constructor. If the settings are not passed once a NativeWindow object is cre-

ated, the default values are used and will be read only through the NativeWindow object. The
default values for each of the NativeWindowInitOptions properties are

systemChrome = NativeWindowSystemChrome.STANDARD
type = NativeWindowType.NORMAL

transparent = false

resizable = true

maximizable = true

minimizable = true

218

Using Native Operating System Windows m

LISTING 12.1

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0.M5"
appId="TwitterToast" version="1.0 Beta">
<!-- the name to appear in the operating system window -->
<name>TwitterToast</name>
<title/>
<description/>
<copyright/>
<initialWindow>
<title/>
<content>TwitterToast.swf</content>
<systemChrome>standard</systemChrome>
<transparent>false</transparent>
<visible>true</visible>

<!-- optional settings
<minimizable>true</minimizable>
<maximizable>true</maximizable>
<resizable>true</resizable>
<width>500</width>
<height>500</height>

<x>150</x>

<y>150</y>

<minSize>300 300</minSize>
<maxSize>800 800</maxSize>

-— >

</initialWindow>

<!-- more optional settings -->
<!-- <installFolder></installFolder> -->
<!-- <programMenuFolder>Example Company/Example Application</
programMenuFolder> -->
<icon>
<!-- <imagel6xl6>icons/AIRApp_16.png</imagel6bxl6> -->
<!-- <image32x32>icons/AIRApp_32.png</image32x32> -->
<!-- <imaged48x48>icons/AIRApp_48.png</imaged48x48> -->
<!-- <imagel28x128>icons/AIRApp_128.png</imagel28x128> -->
</icon>
<!-- <handleUpdates/> -->
<fileTypes>
<!--
<fileType>

<name>com.example</name>
<extension>xmpl</extension>
<description>Example file</description>
<contentType>example/x-data-type</contentType>

continued

219

_ Partlll JEVY
LISTING 12.1 (continued)

<icon>
<imagel6xl6>icons/AIRApp_16.png</imagel6x16>
<image32x32>icons/AIRApp_32.png</image32x32>
<imaged48x48>icons/AIRApp_48.png</imaged8x48>
<imagel28x128>icons/AIRApp_128.png</imagel28x128>

</icon>
</fileType>
-—>
</fileTypes>
</application>

Notice that there are quite a few options in the Application Descriptor File, many of which are
optional. If you're building an AIR application using Flash CS3, Flex Builder 3, or Dreamweaver, this
file generates automatically with helpful documentation alongside each node, and you are free to
adjust portions of the file as your application progresses. You can adjust most of the options in the
Application Descriptor File using NativeWindowInitOptions when creating new windows. As 1
discuss these options throughout this chapter, I show the NativeWindowInitOptions, the
NativeWindow settings, and nodes in the Application Descriptor File.

Window types

There are three types of windows: NORMAL, LIGHTWEIGHT, and UTILITY. Each has differing
properties and behaves a little differently. Each type is set using a string constant value found in
the NativeWindowType class, which is in the £lash.display. * package.

To set the window type in NativeWindowInitOptions you must first instantiate a Native
WindowInitOptions object, and then set its type using the type property, as shown in Listing 12.2.

LISTING 12.2

import flash.display.NativeWindowInitOptions;
import flash.display.NativeWindowType;
import flash.display.NativeWindow;

// creates an instance of NativeWindowInitOptions
var options:NativeWindowInitOptions
= new NativeWindowInitOptions() ;

// sets the type to NORMAL
options.type = NativeWindowType.NORMAL;

// creates a new NativeWindow and activates it

var window:NativeWindow = new NativeWindow(options);
window.activate () ;

220

Using Native Operating System Windows m

The three constant values represent the three types of windows; their names and behaviors are
NativeWindowType.NORMAL, NativeWindowType.UTILITY, and NativeWindowType.
LIGHTWEIGHT.

NativeWindowType.NORMAL

Setting the window type to NativeWindowType . NORMAL creates the typical system chrome window
that appears on the taskbar in Windows or the dock in OS X, as shown in Figures 12.1 and 12.2.

// to set the window type to normal
options.type = NativeWindowType.NORMAL;

FIGURE 12.1

Microsoft chrome window

3 NORMAL =3 IcH [

FIGURE 12.2

Mac OS X chrome window

a6 NORMAL

kERAwE ,§

e &

221

NativeWindowType.UTILITY

A Utility window has reduced system chrome and does not show on the taskbar in Windows or on
the dock in OS X. Generally, utility windows are used as palettes for normal windows as demon-
strated in Figures 12.3 and 12.4.

// sets the window type to utility
options.type = NativeWindowType.UTILITY;

FIGURE 12.3

Microsoft utility window

FIGURE 12.4

Mac OS X utility window

eee UTILITY

“EEw @

NativeWindowType.LIGHTWEIGHT

Lightweight windows are exactly that: lightweight. They do not have a system chrome, and thus
require that systemChrome be set to false when being used. Lightweight windows do not show
up on the taskbar or dock and are most useful for notifications or temporary windows. Because the

222

Using Native Operating System Windows

user has no way, by default, to close these windows, you should use these lightweight windows
carefully and with moderation.

As shown in Figure 12.5, these windows are simply white rectangles by default.

// set the window type to lightweight
options.type = NativeWindowType.LIGHTWEIGHT;

FIGURE 12.5

A lightweight window displaying as a simple white rectangle over another window

TiRGODE Flosh Cos P ey (e (L Adobe Photoshop C..,

SIEEE

Window chrome

The term window chrome refers to the container that operating systems wrap applications and docu-
ments in. In Windows Vista, the chrome is by default a transparent and glassy blue if Aero is on,
with minimize, restore, and close buttons on the top right, and the name of the document or appli-
cation on the left of the header. Each OS has its own chrome; Microsoft Windows’s chrome is
shown in Figure 12.6. Mac OS X, in Figure 12.7, has a silver-gray chrome, and each distribution of
Linux has a chrome also. In Figure 12.8, you'll see what the system chrome looks like in Ubuntu.

223

Microsoft Windows’s chrome

SystemChrome

FIGURE 12.7

Mac OS X’s chrome

Xals) main

224

Using Native Operating System Windows m

FIGURE 12.8

Ubuntu’s chrome

(=)

In each of these operating systems, the system chrome is customizable to some degree, such as
changing tints or styles in Linux. In AIR, you can fully customize the system chrome so it appears
identical in Windows, OS X, or Linux, which can be convenient and creatively more consistent.
This can help your application stand out or simply appear the way you think it should.

The two settings involved in customizing the chrome are systemChrome and transparent.
Combined, these two settings allow for just about any kind of window. The default setting for
systemChrome is NativeWindowSystemChrome . STANDARD. You can set the system chrome
the same way that you set type, as displayed in Listing 12.3.

LISTING 12.3

import flash.display.NativeWindowInitOptions;
import flash.display.NativeWindowSystemChrome;
import flash.display.NativeWindow;

// creates an instance of NativeWindowInitOptions
var options:NativeWindowInitOptions
= new NativeWindowInitOptions/() ;

// sets the systemChrome to STANDARD
options.systemChrome = NativeWindowSystemChrome.STANDARD;

// creates a new NativeWindow and activates it

var window:NativeWindow = new NativeWindow(options) ;
window.activate() ;

225

226

There are three modes that systemChrome can be set to: NativeWindowSystemChrome.
NONE, NativeWindowSystemChrome.STANDARD, and NativeWindowSystemChrome.
ALTERNATE, which has yet to be defined by Adobe.

NativeWindowSystemChrome.NONE

When systemChrome is set to NativeWindowSystemChrome . NONE, the window created will
have no chrome; it takes the form of whatever is drawn inside of it. If transparent is set to true,
there will be nothing displayed on-screen unless content is provided. Providing content for a new
window is covered in the section on adding content to windows.

// sets the systemChrome to NONE
options.systemChrome = NativeWindowSystemChrome.NONE;

NativeWindowSystemChrome.STANDARD

NativeWindowSystemChrome . STANDARD is the default chrome setting for NativeWindows.
The standard chrome will use whatever the host OS is using for chrome. This means your windows
will look like they are standard OS windows. When creating a STANDARD window, note that
transparency must be set to true, or a compile-time error will occur notifying you that transpar-
ency must be set to true when using STANDARD chrome.

// sets the systemChrome to STANDARD
options.systemChrome = NativeWindowSystemChrome.STANDARD;

You cannot disable system chrome to NONE when developing in Flex for the initial
* window; you need to hide the initial window and generate a new NativeWindow
that has the customizations your application requires. This means you need to know how to load
content into the created window, which is covered in the section on adding content to windows.

Window sizing and positioning

Controlling the window size and positions is much like controlling a display object, or a MovieClip
for those accustomed to ActionScript 1 or 2; in fact, the properties for doing so are nearly identical.
For example, a window’s width, height, x position, and y position are all set using the familiar
properties width, height, x, and y. It is advisable to make the modifications just before activat-
ing a NativeWindow instance so as to avoid any momentary resizing of the windows just after
the window is created and just before the size and position are placed as decided.

When adjusting the dimensions of a window, it is useful to know how much space is available on
the desktop. To measure the available space, you need to use the Screen class, which is found in
the flash.display.* package. Screen exposes a virtual desktop that can consist of one or
more monitors. You can obtain each screen as a Screen object by iterating through the static
property of Screen called screens. Listing 12.4 demonstrates how to obtain the screens and
their boundaries by creating a rectangle that represents the available desktop space and then creat-
ing a NativeWindow that is half the width and half the height of the desktop.

Using Native Operating System Windows

LISTING 12.4

var bounds:Rectangle = new Rectangle();

for each (var screen:Screen in Screen.screens) {
if (bounds.left > screen.bounds.left) {
bounds.left = screen.bounds.left;}

if (bounds.right < screen.bounds.right) {
bounds.right = screen.bounds.right;}

if (bounds.top > screen.bounds.top) {
bounds.top = screen.bounds.top;}

if (bounds.bottom < screen.bounds.bottom) {
bounds.bottom = screen.bounds.bottom; }

}

var window:NativeWindow = new NativeWindow () ;
window.x = bounds.width/2;

window.y = bounds.height/2;

window.width = bounds.width/2;

window.height = bounds.height/2;

Controlling System Windows

Once you have created and initially configured a NativeWindow, you need to take into consider-
ation the many other actions and events that occur while using an application. You'll need to man-
age these events and actions and will frequently need to supply behaviors that adjust to the
different window states. For example, when a window is minimized to the task tray, it is often
ideal to turn off any processes in your application that may be utilizing system resources.

Minimizing, maximizing, and restoring windows

To minimize, restore, or close a custom-chrome window, you need to create custom buttons or
user interface elements to mimic the functionality that is normally provided by an OS window.
You can create these controls and access the OS functions for minimizing, restoring, and closing
through the NativewWindow object you wish to work with.

First, you need to have a NativeWindow object to work with, which would either be the default
window created by the WindowedApplication class that you used to create your AIR applica-

tion, or a window created as shown in Listing 12.5. Once your window is activated, you can mini-
mize it, maximize it, restore it, or close it.

T@ o e Closing a window doesn’t close your application unless you're closing the last win-
e “¥55% dow opened by your application.

227

LISTING 12.5

<?xml version="1.0" encoding="utf-8"?>
<mx :WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">
<mx:Button x="10" y="10" width="120"
label="minimize" enabled="true" click="minimize();"/>

<mx:Button x="10" y="40" width="120"
label="maximize" enabled="true" click="maximize();"/>

<mx:Button x="10" y="70" width="120"
label="restore" enabled="true" click="restore();" />

<mx:Button x="10" y="100" width="120"
label="close" enabled="true" click="close();"/>

</mx:WindowedApplication>

228

The following NativeWindow methods allow you to manage the state of your windows and are
demonstrated in Listing 12.6:

minimize() ;

maximize() ;

restore () ;

close() ;

minimize();
This method minimizes a NativeWindow to that taskbar in Windows, or to the dock in Mac OS
X. In Linux, the minimized representation of your application window varies depending on the

distribution being used, but will most commonly be located in the bottom taskbar that is similar to
the Windows taskbar.

maximize();

Maximizing a window sets a window into a full-screen mode so it occupies as large of a space as
available on a single screen. This functionality differs slightly across operating systems. In
Windows, the screen expands and takes up the available desktop space minus the area where the
taskbar is located. In OS X, maximize () generally makes your application the height of the desk-
top minus the height of the finder bar on top and the dock.

restore();

Restoring a window sets it back to the position and location that it was at before it was maximized
or minimized.

Using Native Operating System Windows m

close();

The close () method closes a window and, as discussed earlier, terminates a window’s run time

and removes it from display on the desktop and the taskbar or dock. When closing a window, it is
important to remember that the only windows that close are the ones to which close () is being

applied. The applications themselves still run until all the application’s windows are closed.

LISTING 12.6

var window:NativeWindow = new NativeWindow ()
window.activate() ;

// minimizes the window
window.minimize () ;

// maximizes the window
window.maximize () ;

// restores a window to the position it was
// found in before minimizing or maximizing
window.restore() ;

// closes the window
window.close() ;

To link these methods to buttons or events, attach listeners to the buttons that call window meth-
ods, as shown in Listing 12.6. Attach the listeners in an inline MXML file (using the MXML node
attribute click) to create the buttons. The resulting window is shown in Figure 12.9.

FIGURE 12.9

Methods linked to buttons and events

B (=le &S
minimice |

maximize |
| I S—

| roctnre

[claze |

229

230

Managing multiple windows

You can manage many properties of multiple windows at a time, such as the windows’ depth, posi-
tion, and size. If an application has a main window and a set of tool panels or palettes, you need to
make sure that the tool palettes are above the main window. You will also possibly want them to
snap to a certain location in the window.

There are two display groupings for depth management. The first is the grouping that should
almost always be used. It consists of all windows being displayed that are not forced to the fore-
ground of the OS display order.

The second group is always in front, regardless of user interaction with the first group. Typically
when a user interacts with a window, the window moves to the front of the display order and is in
focus. When a window is in the alwaysInFront group, it is always shown above other win-
dows. You should only use this second group for displaying temporary or urgent messages, and
you should rarely use it to display anything for more than a short period. You need to consider the
users of your application; they may not want to have a window forced onto their screen, taking up
valuable desktop space.

By default, windows belong to the first group and behave like most other operating system win-
dows. They receive focus when the user clicks in them and only capture keyboard and mouse
events when in focus. To set a window to be in the second or alwaysInFront group, use the
NativeWindow instance property of alwaysInFront, as shown here:

var window:NativeWindow = new NativeWindow () ;
window.alwaysInFront = true;
window.activate () ;

For windows in the first group (which are not always at the front of the screen), there are four
NativeWindow methods that may be used to control the depth of the windows among the dis-
played windows on a desktop:

B orderToFront () ;

B orderToFrontOf () ;

B orderToBack() ;

|

orderBehind() ;

Using Native Operating System Windows m

orderToFront();
This method brings a window to the front of all windows being displayed.

orderToFrontOf();

This method brings a window to the front of another window. (Adobe currently lacks documenta-
tion for this method, but expect it to evolve with future releases.)

orderToBack();

This method puts a window behind all other windows.

orderBehind();

This method sends a window behind a specified window.

When creating multiple windows, it is useful to manage them much like you'd manage multiple
display objects when creating Flash or Flex applications. In this chapter’s sample application, a
WindowManager class creates windows and manages them. In the WindowManager class cre-
ated for the sample application, note that the windows are created and stored in an array so that
you can insert and remove them from the manager as you create and dispose of them.

Adding content to windows

Once you've created a new NativeWindow, you need to load content into it. There are a few
ways to do this, but all methods require that you add a display object to the new window’s display
tree.

Adding SWF content

You can load SWF or HTML content into a NativeWindow using the Loader class for SWF files
or the HTMLLoader class for HTML content. When loading SWF content, add the loaded SWF to
the display tree using addChild (), as shown in Listing 12.7.

231

package {
import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLRequest;
import flash.display.Loader;

public class SWFContentLoader extends Sprite ({

public function LoadedSWF () {
var loader:Loader = new Loader () ;
loader.load (new URLRequest ("visual.swf"));
loader.contentLoaderInfo.addEventListener (Event.
COMPLETE, loaded) ;
}

private function loaded(event:Event) :void {
addChild(event.target.loader) ;
}

Adding HTML Content

To add HTML content to a NativeWindow, use the HTMLLoader class. Alternatively, you can
create a window with an HTMLLoader using HTMLLoader . createRootWindow () . Listing
12.8 shows how you can load HTML content into a new window.

LISTING 12.8

//newWindow is a NativeWindow instance

var htmlView:HTMLLoader = new HTMLLoader();
html .width = 300;

html _height = 500;

//set the stage so display objects are added to the top-left and not
scaled

newWindow.stage.align = “TL;

newWindow.stage.scaleMode = ‘“noScale”;

newWindow.stage.addChild(htmlView);

//urlString is the URL of the HTML page to load
htmlView.load(new URLRequest (urlString));

232

Using Native Operating System Windows m

Adding dynamic content

A third and possibly more intuitive way of loading content into a window is by generating it
dynamically. You can do this by creating a display object or a subclass of a display object and add-
ing it to the window’s display tree. In many cases, subclassing a display object like a Sprite is a
great way to isolate the functionality that you wish to load into a Nat iveWindow without having
to deal with separate SWF files.

NativeWindow Events

There are several NativeWindow specific events that are important to listen to in many cases.
You'll often want to know when a user has minimized your application, or when your application
has been resized or maximized.

Most NativeWindow events generally dispatch an event when an action is about to be taken and
can be canceled, like Event . CLOSING, and then dispatch another event for when an action actu-
ally occurs, like Event . CLOSE. In most cases, the warning events used by NativeWindow are
only used when triggered by the system chrome.

NativeWindow dispatches events of the type Event and of the type
NativeWindowBoundsEvent. To listen to these events you need to attach an event listener to
the window you'll be listening to, as shown in Listing 12.9.

LISTING 12.9

// creates a new window
var window:NativeWindow = new NativeWindow () ;

// attaches a listener to a window
window.addEventListener (NativeWindowBoundsEvent .MOVING, onMove) ;

// activates the window
window.activate() ;

// handles the MOVING event
public function onMove(e:NativeWindowBoundsEvent):void {
trace('this window has been moved!');

}

233

FIGURE 12.10

Using Application Icons

When creating windows, keep in mind that there are several ways for operating systems to repre-
sent the presence of your application window. The features available for interacting and displaying
these representations differ depending on the OS.

In Windows, the taskbar displays an application or document window. The taskbar consists of
rectangular tabs that include an icon on the left and a label on the right, as shown in Figure 12.10.
The Windows taskbar is typically located on the bottom of the screen and spans the width of the
screen; of course, the user can customize the taskbar to reside on any side of the main screen.

A typical Windows taskbar

FIGURE 12.11

In OS X, the dock displays an application and its windows (see Figure 12.11). The dock consists of
icons that are typically larger than the icons in Windows and, depending on user settings, usually
displays labels below the icon.

Mac OS X'’s dock

“E@Ew ¥

234

Configuring the icons used in the taskbar, dock, and system tray is important to the functionality
of just about any application. Having proper icons allows the user to easily find and work with
your application.

Taskbar and dock icons

Setting icons in each OS is slightly different because each OS has different features and functional-
ity. There are two types of icons: one for Windows, SystemTrayIcon;and one for OS X,
DockIcon. The SystemTrayIcon and DockIcon classes are subclasses of
InteractiveIcon, but expose differing functionality.

Using Native Operating System Windows

When setting the taskbar and dock items, it is important to know which OS you are working
with since trying to access the features of the wrong OS results in runtime exceptions. To
determine which type of taskbar you're working with, there are two Boolean properties
available in NativeApplication: NativeApplication.supportsDockIcon and
NativeApplication.supportsSystemTrayIcon. Use each of these properties to deter-
mine which type of icons you'll be working with before accessing either DockIcon or
SystemTrayIcon.

To set the icon image used in either the dock or the taskbar, you must provide the
NativeApplication.nativeApplication.icon property with an array of images. Each
OS has differing icon sizes that can also be adjusted by the user. In order to avoid scaling of your
icons, the array assigned to NativeApplication.nativeApplication.icon should repre-
sent images that range in size to meet the needs of each OS, as shown:

NativeApplication.nativeApplication.icon.bitmaps = [bmpl6x16.
bitmapData, bmpl28x128.bitmapDatal;

The host OS determines which of the images assigned to NativeApplication.native
Application.icon is closest to the size needed. To remove or reset the icon used in either
the taskbar or dock, set the array value to an empty array.

As I mentioned earlier, both OS X and Windows expose differing functionality. Listed next are the
various features available to each operating system.

Windows taskbar icons

You can set the Windows taskbar icon tab to alert the user in two ways. The first notification type
is called critical. When the taskbar is set to critical, it blinks until the user clicks on the tab. This
notification is intended to alert the user of an important event that has occurred while the window
is minimized or out of focus.

The second type of notification is called informational. It is used to alert the user of an event in the
application while the window is out of focus in a more passive way.

You can access these two types of notification by using a method of NativeWindow instances
called notifyUser. This method accepts one parameter, which should be one of two static
constant strings of the NotificationType class that is kept in the f1lash.desktop package.
The two constants are called CRITICAL and INFORMATIONAL. Listing 12.10 demonstrates how
you can trigger each alert mode.

235

import flash.desktop.NotificationType;
import flash.display.NativeWindow;

// creates and activates a native window instance
var window:NativeWindow = new NativeWindow () ;
window.activate() ;

// sets the taskbar tab to critical mode
window.notifyUser (NotificationType.CRITICAL) ;

// sets the taskbar tab to informational mode
window.notifyUser (NotificationType.INFORMATIONAL) ;

Be careful not to call the notifyUser method when not in Windows; otherwise it

- & will cause a runtime exception. When attempting to perform methods that are plat-
form dependent use try, catch, or £inally to deal with the error and log the problem. You
can test for the OS before trying to use notifyUser by checking the NativeApplication.
supportsSystemTrayIcon property and making sure it equals true.

OS X dock icons

The OS X dock behaves similarly to the Windows taskbar, but instead of blinking, activated icons
bounce to alert the user. It also displays additional menu items when right-clicked or Ctrl+clicked.

The two types of notification alerts used in the dock are called critical and informational, just like
the Windows taskbar, and use the same static constants to indicate each: NotificationType.
CRITICAL and Notification.INFORMATIONAL. When the notification type is set to critical,
the application’s icon bounces on the dock until the application is brought into focus. When the
notification type is set to informational, the icon on the dock bounces only once.

Unlike the Windows taskbar, OS X dock icons use a method called bounce (), which accepts one
parameter of the type String. The parameter accepts NotificationType.CRITICAL and
NotificationType.INFORMATIONAL.

To add items to the dock menu, you need to create a NativeMenu object as discussed earlier in
this chapter in the section on creating system windows. The NativeMenu object, along with its
commands, simply needs to be assigned to the NativeApplication.nativeApplication.
icon.menu property and the additional menu items will be displayed above the standard menu
items.

236

Using Native Operating System Windows m

Systray icons

System tray icons, commonly referred to as systray icons, are found only in Windows. These are the
icons to the right of the taskbar items and to the left of the clock if the taskbar clock is turned on.
Some common systray icons include the speaker and networking icons. Many applications use the
systray icons to give users quick access to applications and functionality. In Windows Vista, a sys-
tray icon appears when Windows is in the process of downloading system updates.

To display a systray icon, you need to supply NativeApplication.nativeApplication.
icon with an array of images that will be your icons. To add a menu to the systray icon, create a
NativeMenu object and assign it to the NativeApplication.nativeApplication.icon.
menu property of a window.

Dynamic icons

It can be useful for certain icons in the dock or systray to indicate the state of an application. For

example, Windows has a systray icon available for displaying network connectivity. The network

connectivity icon changes to display whether the computer is correctly connected to the Internet

and displays two screens that light up when data is transferring between the Internet and the host
computer.

To achieve this functionality, simply reset the NativeApplication.nativeApplication.
icon.bitmaps array to display a different set of icons. You can easily animate the icons by hav-
ing this array cycle through different icons on every EnterFrame event or on a Timer event.

Twitter Client Sample Application

Twitter is a simple Web service used socially and professionally to keep people updated on events.
The service updates a set of user feeds generated by short updates posted by users. A Twitter user
has a friend list similar to many of the popular instant messaging protocols. For example, if you
have ten friends on your list, an XML feed notifies you of their updates.

This chapter’s sample application uses a simple Twitter client as a means of illustrating several uses
of Native Windows and icons in an operating system. It will also use alerts in the Windows taskbar
menu or the docs in OS X and what are commonly referred to as Toast-styled alert windows. Toast
windows are windows that pop up like pieces of toast from a toaster on the bottom-right side of
the taskbar. These windows serve as an unintrusive way to alert the user of events. As of this writ-
ing, the Twitter AP is openly available for use on www. twitter.com, and the version of the
ActionScript 3.0 library used in this example will be kept on www.airbible.org. You can use
the ActionScript library to access the API.

237

Using the Twitter API

The Twitter API provides methods for reading and broadcasting updates. In this sample applica-
tion, you'll read from a Twitter feed that represents all the users in your friend list. You'll also be
able to broadcast your updates. There are a few other features available to Twitter, such as a public
feed and a single user’s feed, both of which function similarly to listening to a group feed.

To interact with the Twitter API using the ActionScript 3.0 library, download the package from
http://twitter.com/Twitter_AS3_2.0.zip. Once youve downloaded the package, put
it in your project folder in the correct classpath location. You can find the class that will handle
most of your requests for sending and receiving events in the TwitterAPT class, which is located
in the twitter.api package. There are three other classes that you'll need in order to interact
with Twitter: TwitterStatus, TwitterUser, and TwitterEvent. Before doing anything
with TwitterAPI, you must set the username and password by using TwitterAPI.

setAuth (username, password).

As of this writing, the Twitter APl uses a HTTP Basic Authentication. Though it is

- simple to use and widely supported, it is not entirely secure because the authenti-
cation information is passed as plain text and can easily be intercepted. Twitter.com has stated
their intention to improve this aspect of the Twitter API, so be sure to check the Twitter site for
updates on authentication.

Using the Twitter API library is as simple as creating a TwitterAPI instance and accessing its
methods. Because the methods used by TwitterAPI are asynchronous, you also need to react to
events that the TwitterAPI class generates, and you need to attach event listeners and handle the
events when they occur. Listing 12.11 demonstrates how to create the TwitterAPI instance, set
the username and password, attach listeners, and then handle the event that corresponds to the
method called.

LISTING 12.11

tw.setAuth("username", "password");

tw.addEventListener (TwitterEvent.ON_FRIENDS_TIMELINE_RESULT,
updateAlerts);

tw.loadFriendsTimeline(username.text);

public function updateFriendsAlerts(e:TwitterEvent):void {
var items:Array = e.data as Array;

for(var i:int = 0; i < items.length; i ++) {
var status:TwitterStatus = TwitterStatus(items[i]):;
trace(status.user + ': ' + status.text);

}

// traces "some username: some twitter alert"

238

Using Native Operating System Windows m

Creating Toast-styled windows

Toast-styled windows are windows with no chrome that exist shortly on the very front of the OS’s
display list. Toast windows disappear promptly after alerting the user and are used to alert the user
of events without being invasive or requiring user action to disable them. To create these toast win-
dows cleanly, you'll need two classes: the Toast . as class, which will represent the toast messages
themselves and their visual representation; and the Toaster . as class, which will handle generat-
ing the Toast instances and managing their display positions on-screen. The data being displayed
on the Toast windows will be in the format of the TwitterEvent and contained in the event’s
property called data, which is an array of TwitterStatus instances. The TwitterStatus
class represents a single status update.

Toast windows

Creating a toast window requires that you create a new NativeWindow instance to contain the
visible containers for the toast and to show the bounds and text of a Twitter message. Given that
you can consider the Toast class’s relationship to the NativeWindow class to be an Is a relation-
ship instead of a Has a relationship, make the Toast class a subclass of NativeWindow.

Subclassing NativeWindow is a common way of creating custom windows using ActionScript and
is often more convenient than using composition. To create the Toast class, follow these steps:

1. Create the class.

2. Use the extends keyword to subclass NativeWindow, as shown in Listing 12.12.
The Toast window is created.

3. Use a simple MovieClip to display the name, time, and content of the twitter
event. The MovieClip should use the linkage org.airbible.twitter.
EventWindow and needs to have three dynamic TextFields named nameTF, timeTF,
and contentTF.

239

The Toast windows create their own NativeWindowInitOptions instance upon initialization.
Each Toast window will have the same options. Toast windows always appear on top of other win-
dows so the NativeWindowInitOptions instance property alwaysOnTop will be set to true.
Because the windows will be disappearing automatically on their own without user interaction,
you can set the systemChrome property to NativeWindowSystemChrome . NONE.

A Toast instance is created for every Twitter update and responds to a TwitterStatus object
passed to it that contains the information related to a Twitter update. Each TwitterStatus
instance has several properties, but for this sample application, only the username, time created,
and update text will be used for display in the Toast instances.

Superclass Constructor

In the Toast constructor, the special function super () relays the NativeWindowInitOptions
to the superclass Nativewindow. When subclassing a class that uses a superclass constructor, it
is good practice to use the super () method to let readers of a class know that a superclass con-
structor is being used. In the case of the Toast class, the constructor requires one parameter, which
isaninstance of theNativeWindowInitOptions class. Because Toast requiresa TwitterStatus
instance instead of a NativeWindowInitOptions instance, it is necessary to pass the
NativeWindowInitOptions instance to the superclass NativeWindow.

240

Using Native Operating System Windows m

LISTING 12.12

package org.airbible.twitter

{

import flash.display.NativeWindow;

import flash.display.NativeWindowInitOptions;
import flash.display.NativeWindowSystemChrome;
import flash.display.NativeWindowType;

import twitter.api.data.TwitterStatus;

public class Toast extends NativeWindow {

public static const WIDTH:int = 200;
public static const HEIGHT:int = 150;
public static const TIMEOUT:int = 5000;

protected var eventMovie:EventMovie;
protected var closeTimer:Timer;

public function Toast(status:TwitterStatus) {
var options:NativeWindowInitOptions = new
NativeWindowInitOptions () ;
options.systemChrome = NativeWindowSystemChrome.NONE;
options.transparent = true;
options.type = NativeWindowType.LIGHTWEIGHT;
super (options);
open () ;

protected function open() :void {
eventWindow = new EventWindow () ;
eventWindow.nameTF = status.user.name;
eventWindow. timeTF = status.createdAt;
eventWindow.contentTF = status.text;
addChild(eventWindow) ;

}

Protected function close(e:Event):void {
// close actions

Protected function setAutoClose():void ({
closeTimer = new Timer (TIMEOUT, 1);
closeTimer.addEventListener (Timer, close);
closeTimer.start () ;

241

242

The Toaster

The Toaster class is the class that will be responsible for managing and creating the instances of
the Toast windows; hence the name Toaster. The Toast windows themselves have methods for
showing and hiding themselves, but their position on-screen is a responsibility best left to a man-
aging class like Toaster. When Toaster creates the Toast instances, it controls each instance’s
location on-screen and animates them upward as the Twitter messages arrive.

Toaster will receive TwitterEvents from the Main application class and will use these events
to create the Toast windows. Each TwitterEvent contains instances of TwitterStatus
objects, which contain properties that pertain to each Twitter status update. These properties are:

// the date and time of the update creation as a Date object
public var createdAt:Date;

// the id number of the event represented of the type Number
public var ID:Number;

// the update text as String ie: "going shopping"
public var text:String;

// The TwitterUser object for the user that posted the update
public var user:TwitterUser;

The user property of the TwitterStatus object represents the user who posted the update and
contains properties that can be used to identify the user. The TwitterUser properties screen
Name and profileImageURL display the user’s identification in the Toast instance. Toaster
will pass the TwitterStatus object to the Toast object when it creates Toast instances.
Toast uses the information in each TwitterStatus to display itself.

The Toaster class uses static constant properties of the Toast classes WIDTH and HEIGHT along
with the Screen.mainScreen.visibleBounds object’s width and height properties to deter-
mine the positioning of the Toast windows. It stores a default position based on these properties,
which represent where a Toast window is placed when first created. If there are windows already
being displayed when creating a new window, they move above the new window until they time
out or are interacted with. This default position is stored as a Point object that is created upon
initialization of the Toaster, as shown in Listing 12.13.

Using Native Operating System Windows

Now that Toaster has a default position, it is nearly ready to create Toast instances and position
them. First it needs to keep track of currently displayed Toast windows so that it can animate them
according to their order. For this, Toaster stores the Toast objects it creates with a simple array
that it can push, pop, and splice. Each time a window is created or closed, this array is updated and
Toaster iterates through the array animating each window to the correct position based on its
index. You'll instantiate an array called windows in the constructor of Toaster and add and
remove its items using two methods called addToastWindow and removeToastWindow.

LISTING 12.13

package org.airbible.twitter {

class Toaster {
protected var defaultPosition:Point;

public function Toaster() {
defaultPosition = new Point();

defaultPosition.x = Screen.mainScreen.visibleBounds.width -
ToastWindow.WIDTH - ToastWindow.MARGIN;

defaultPosition.y = Screen.mainScreen.visibleBounds.height -
ToastWindow.HEIGHT - ToastWindow.MARGIN;

243

244

To add a toast window in the addToastWindow method, a TwitterStatus argument is
required, because you cannot create a useful Toastwindow without information for it to display.
The addToastWindow method creates a ToastWindow, passes it the TwitterStatus object,
and then adds it as a reference to the windows array using the Array method Array.unshift ().

public function addToastWindow(status:TwitterStatus) :void {
var window:ToastWindow = new ToastWindow(status);
windows.unshift (window) ;
update () ;

}

To remove a toast window, use an argument for the event Event . CLOSE. This is used to broad-
cast the closing of a Toast instance in order to remove it from the windows array by means of the
array method Array.splice().

public function removeToastWindow(e:Event):void {
windows.splice(windows.indexOf (e.target), 1);
update () ;

}

In both the addTwitterWindow and removeTwit teriWindow methods, notice a call to an
update method. The update method refreshes the positions of each window after one has been
added or removed.

public function update () :void {
for(var i:int = 0; 1 < 0; 1 ++) {
// animate window to i* (height+margin)+defaultposition

}

The Toaster is done! It is relatively simple, providing the basic functionality of adding and
removing Toast windows from the toast stack. It is now ready to be used by the Main application
in concert with the Twitter APL Listing 12.14 shows what the complete Toaster class looks like.

Using Native Operating System Windows m

LISTING 12.14

package org.airbible.twitter {

import caurina.transitions.Tweener;
import twitter.api.data.*

import flash.events.*;

class Toaster {

protected var defaultPosition:Point;

public function Toaster() {
defaultPosition = new Point();

defaultPosition.x = Screen.mainScreen.visibleBounds.width
- ToastWindow.WIDTH - ToastWindow.MARGIN;

defaultPosition.y = Screen.mainScreen.visibleBounds.height
- ToastWindow.HEIGHT - ToastWindow.MARGIN;

}
public function update() :void {
for(var i:int = 0; 1 < 0; 1 ++) {
// animate window to i* (height+margin)+defaultposition
}
}
public function removeToastWindow(e:Event):void {
windows.splice(windows.indexOf (e.target), 1);
update() ;
}
public function addToastWindow(status:TwitterStatus) :void {
var window:ToastWindow = new ToastWindow(status);
windows.unshift (window) ;
update() ;
}
}

245

246

Creating the dialog boxes

The Twitter client needs two simple input windows for both login and updating the user’s Twitter
status. Because both windows are similar in function and style, they share what is called an abstract
class, AbstractDialogueWindow. These windows consist of input TextFields, Submit buttons,
and simple labels. In Flash CS3, there are components for each of these elements. Components are
an easy way to implement functionality when customized behavior is not needed, or to use when
trying to achieve functionality before adding customized form. Flash components are similar in
nature to Flex components and can be skinned and customized relatively easily.

The login window

The login window sends the login username and password for a Twitter user. The login and pass-
word are sent using basic HTTP authentication. You can access the login and password by using
the Twitter class’s instance method setAuth (username: String, password:String).
The login window is a MovieClip in the Flash CS3 library named LoginWindow and has class link-
age directed at a class you'll call LoginWindow in the package org.airbible. twitter. *.

The login window needs two input TextFields as well as a submit button and will have labels for
each field.

When the username and password both have text in them, the submit button is activated and is
available for clicking. Once the submit button is clicked, both fields and the submit button are
deactivated and reactivated if the username and password fields do not match and succeed. If the
username and password submission is successful, they are made invisible using visible =
false, and the status update screen is made visible using visible = true.

There is currently no validation of username and password available in the Twitter

- API as of this writing. The setAuth () method has been updated to return an event
to reflect the success or failure of this login attempt and will be available on the site. This addi-
tion to the Actionscript 3.0 Twitter API package has been submitted to the developers maintain-
ing the AS3 Twitter APl and may appear in future releases.

The Login class uses an initialize method (to locate and assign the TextFields) and the submit
button by using the DisplayObject method getChildByName. Event listeners are added in
the setEventListeners method. Listing 12.15 shows what the class should look like when it’s
done.

Using Native Operating System Windows m

LISTING 12.15

package {
import flash.display.Sprite;
import flash.display.NativeWindow;
import flash.events.MouseEvent;
import org.airbible.twitter.data.TwitterData;
import twitter.api.Twitter;

import fl.controls.*;
public class LoginWindow extends Sprite {

protected var window:NativeWindow;
protected var moveButton:MovieClip;
protected var closeButton:MovieClip;
protected var minimizeButton:MovieClip;
protected var submitButton:Button;
protected var usernamelnput:TextInput;
protected var passwordInput:TextInput;
protected var api:Twitter;

public function Login(api:Twitter) {
this.api = api;
initialize();

}

public function moveDownHandler (e:MouseEvent):void {
window.startMove () ;

public function closeButtonHandler (e:MouseEvent):void {
window.close() ;

public function minimizeButtonHandler (e:MouseEvent):void {
window.minimize () ;

public function submitButtonHandler (e:MouseEvent):void {
api.setAuth(usernamelInput.text, passwordInput.text);

protected function setListeners() :void {
moveButton.addEventListener (MouseEvent .MOUSE_DOWN,
moveDownHandler) ;
closeButton.addEventListener (MouseEvent.CLICK,
closeButtonHandler) ;

continued

247

_ Partlll JEVY
(IR [eR VAT (continued)

248

minimizeButton.addEventListener (MouseEvent.CLICK,
minimizeButtonHandler);

submitButton.addEventListener (MouseEvent.CLICK,
submitButtonHandler);

}

private function initialize () :void {
window = stage.nativeWindow;

moveButton = getChildByName ("moveButton_mc") as
MovieClip;

closeButton = getChildByName("closeButton_mc") as
MovieClip;
minimizeButton = getChildByName("minimizeButton_mc") as MovieClip;
usernameInput = getChildByName("usernameInput_tf") as TextInput;
passwordInput = getChildByName ("passwordInput_tf") as TextInput;

submitButton = getChildByName("submitButton_mc") as
Button;

usernamelInput.tabIndex = 1;

passwordInput.tabIndex = 2;

submitButton.tabIndex = 3;

setListeners() ;

}
}

The status update input window

The status update window is very similar to the login window, only it has only a single input
TextField. The input field is limited to 128 characters due to the Twitter character limitation. You
also have to set the input TextField to multi-line instead of single-line. You can set the line limita-
tions in the TextInput properties dialog box.

The UpdateWindow class will look as shown in Listing 12.16.

LISTING 12.16

Using Native Operating System Windows m

package org.airbible.twitter.main {

import flash.display.SimpleButton;
import flash.display.Sprite;
import twitter.api.Twitter;

import flash.controls.TextInput;

public class UpdateWindow extends Sprite {

private var api:Twitter;
private var updateInput:TextInput;

public function UpdateWindow(aptwitter.api.Twitter) {
this.api = api;

initialize();
}
protected function initialize() :void {
updateInput = getChildByName ("updateInput_tf") as TextInput;
submitButton = getChildByName("submitButton_mc") as
SimpleButton;

setEventListeners () ;

protected function setEventListeners () :void {
submitButton.addEventListener (MouseEvent.CLICK, submit);

protected function submit(e:MouseEvent):void {
if (updateInput != '') api.setStatus(updateInput.text);

Putting it all together

With Toaster and Toast built and LoginWindow and UpdateWindow created, all the parts
needed for a simple Twitter client (having the ability to display Twitter updates as toast —style win-
dows and to update your Twitter status) are ready to be assembled. The main application is the ini-
tial window and will include both LoginWindow and UpdateWindow. Once the user is logged
in, the Twitter updates are shown using Toaster, which will manage the individual toast-style
windows created.

249

250

The Main application

The Main application class serves as a main controller for the Twitter client application and is called
Main. Main creates an instance of the Toaster class and serves as the initial login window. Main
also controls the systray icon or dock icon used to activate the status-updating input window.

Most of the work dealing with the Twitter API is handled by the Twitter package found on Twitter.
com, but you'll need to manage a few things from your main application, such as which updates to
send to the Toaster. To keep track of which updates have been shown, the update id number is
stored locally using the File object as discussed in Chapter 8. Fortunately, the Twitter update id
numbers are in the form of a global integer that can easily be compared instead of having to parse
and compare the dates provided by the AIR API.

The Twitter API provides dates in the standard XML date format of “dd: mm-yyyy,”
S8 which is widely used by Web services. Unfortunately, ActionScript 3.0 does not pro-
vide built-in support for this format at the time of this writing. The ActionScript 3.0 Date object
does accept several string formats for dates using the Date object method parseDate. A simple
utility for XML Date conversion has been included in the org.airbible.utils. * package
found on www.airbible.org/resources.

The Main class creates a Twitter object and attaches event listeners to it so that when Twitter
events are received, it can process the results and pass them along to Toaster. Before any events
occur, Main passes a reference to the created Twitter object, to both LoginWindow and
UpdateWindow when they are instantiated.

Once the event listeners are added to the Twitter object and the username and password are set,
a Timer object checks the Twitter status every five minutes. Timer needs an event listener to
execute the method checkForUpdates (e:TimerEvent), which uses the Twitter instance
method called loadFriendsTimeline (userID). Notice that the loadFriendsTimeline
method requires a username but no password. It is required that you set the username and pass-
word before using this method to access the timelines of all friends of the user.

The call to loadFriendsTimeline is asynchronous, and its response comes in the form of a
TwitterEvent that broadcasts when the status has been retrieved. This TwitterEvent con-
tains a property called data, which contains an array of TwitterStatus objects. As discussed
in the section on using the Twitter API, each TwitterStatus object contains the Twitter
updates. In the handler of loadFriendsTimeline, you need to inspect the status IDs contained
in the returned array. Only TwitterStatus objects with IDs that are newer than the last stored
ID should be sent to the Toaster.

You can sort through the array using a simple for loop that iterates through the returned array,
sends items that are valid to the Toaster, records the latest item’s ID in the array, and sends it to
the stored location for future sorting. Because this sort is done every five minutes or as frequently
as you've set it, it is important to do this efficiently. It is possible that a user may have a very long
list of updates to sort through. It would be more efficient to iterate from the end of the array to the
beginning. This way, if the first item compared is invalid, iterating from the end saves the time it
would take to go through all the items in the array.

Using Native Operating System Windows m

Here is what this sort method will look like:

protected function statusUpdateHandler(statusList:Array) :Array

{
var list:Array = e.data as Array;
var valid:Array = [];

var status:TwitterStatus;
var last:int = lastStoredId;
for (var i:int = list.length; i >= 0; 1 --) {
status = list[i] as TwitterStatus;
if (status.ID > last) {
valid.push(status)
} else {
if (valid.length > 0) {
sendListToToaster (valid);
}

return;

}

The array of valid items, if there are any, is sent to the method sendListToToaster:

protected function sendListToToaster(statusList:Array):void ({
storelLastId(TwitterStatus(valid[0]).ID);
for (var m:int = 0; m < statusList.length; m ++) {
Toaster.addItem(TwitterStatus(statusList[m]));

}
Listing 12.17 shows what the whole finished Main class looks like.

There are features available in the Twitter API that this sample application doesn’t give access to,
such as adding and removing friends, displaying user icons, and viewing the updates in a static
form other than Toast windows. It should be fairly straightforward to add these features, as the
Twitter package exposes most of these features.

251

package {

import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.events.TimerEvent;
import flash.utils.Timer;
import org.airbible.twitter.main.UpdateWindow;
import twitter.api.data.TwitterStatus;
import twitter.api.events.TwitterEvent;
import twitter.api.Twitter;
import flash.filesystem.*;

public class Main extends Sprite {

protected var twitter:Twitter;
protected var toaster:Toaster;
protected var loginWindow:LoginWindow;
protected var updateWindow:UpdateWindow;

public function Main() {
// create Twitter object
twitter = new Twitter();

// create the toaster
toaster = new Toaster () ;

// create login and update windows
updateWindow = new UpdateWindow () ;

loginWindow = new LoginWindow /() ;

// attach listeners to the Twitter object

loginWindow.addEventListener (MouseEvent.CLICK, loginSubmitHandler

// show loginWindow
addChild(loginWindow) ;

protected function loginSubmitHandler (e:MouseEvent
removeChild(loginWindow) ;
addChild(updateWindow) ;
var statusTimer:Timer = new Timer(300000);
statusTimer.addEventListener (TimerEvent.TIMER,
statusUpdateHandler) ;
statusTimer.start () ;

protected function statusUpdateHandler(e:TwitterEvent) :void {

var list:Array = e.data as Array;

252

Using Native Operating System Windows

var valid:Array = [];
var status:TwitterStatus;
var last:int = lastUpdateId;
for (var i:int = list.length; i >= 0; 1 --) {
status = list[i] as TwitterStatus;
if (status.ID > last) {
valid.push(status)
} else {
if (valid.length > 0) {
sendListToToaster (valid);
}

return;

protected function sendListToToaster(statusList:Array):void {
storelLastId(TwitterStatus(valid[0]).ID);

for (var m:int = 0; m < statusList.length; m ++) {
Toaster.addItem(TwitterStatus(statusList[m]));

}

protected function get lastUpdateId() :int {
var fl:File =
txt") ;
var fs:FileStream = new FileStream() ;
fs.open(fl, FileMode.READ) ;
return fs.readUTFBytes(fs.bytesAvailable) as int;

File.applicationStorageDirectory.resolvePath("last.

}

protected function set lastUpdateId(id:int) {
var fl:File =
txt") ;
var fs:FileStream = new FileStream() ;
fs.open(fl, FileMode.WRITE) ;
fs.writeUTF(id.toString());

File.applicationStorageDirectory.resolvePath("last.

253

254

Summary

This chapter discusses the basics of managing windows in AIR, one of AIR’s vital functions. Using
the OS windows gives a desktop presence for your applications that rich Internet applications
(RIAs) cannot typically provide. The customization of system windows gives AIR applications the
capability to present themselves in the most suitable way for a particular application. The visual
freedom of AIR offers greater flexibility for creatively delivering a desktop application.

The possibilities available for desktop applications using AIR could be the beginnings of “Desktop
2.0,” which may reinvigorate desktop application experience in a rapidly growing online-
application world, doing for the desktop what Flash and Ajax have done for Web 2.0.

uch of this book focuses on Flex applications, due to the fact that

ActionScript 3 and the Flex framework are such powerful and ver-

satile tools for building and deploying applications. Still, there are
few things more widely adopted and versatile than HTML, and that fact
alone makes HTML-based AIR applications very appealing. Compared to
other Web content formats, an application written in HTML and JavaScript
can be run in the widest array of browsers across the widest array of systems
and devices.

With AIR, you can compile these same applications to run on the desktop.
You can also modify them to access any part of the AIR API, so they can use
local SQLite databases, create new windows, read and save files to and from
the local computer, and all the rest. The best part is that AIR uses the open-
source WebKit engine as its HTML engine, which is the same engine used by
the Safari browser. This engine supports CSS, DOM, HTML, JavaScript, and
XHTML. Also, if you use a JavaScript library that works on Safari, then the
chances are very good that you can compile your code into an AIR applica-
tion without any modifications.

You can create and publish AIR applications in HTML and JavaScript either
by using Adobe Dreamweaver or by using your favorite text editor, the AIR
Software Development Kit (SDK), and the command-line publishing tools
ADL and ADT. The SDK and the command-line tools are entirely free, and if
you have a licensed copy of Dreamweaver, then you do not need to pay any
additional fees to get the AIR Extension for Dreamweaver.

255

IN THIS CHA

Accessing AIR API

Using the AIR HTML
Introspector

Using Dreamweaver

LISTING 13.1

There are two ways in which an AIR application can contain a WebKit stage. These are really deter-
mined by the content node of the initialWindow settings in your application descriptor XML
file. For a Flex application, the Flex compiler automatically fills this setting with the application
SWE file. In that case, you can instantiate WebKit by using the mx . controls . HTML object or by
using the flash.html . HTMLLoader display object, and control the WebKit stage just as you
would any InteractiveObject or DisplayObject.

For an HTML application, you can specify an HTML file as your initialWindow content, pro-
vided that the file is in your application sandbox. Listing 13.1 provides an example of how the
application descriptor file might appear.

Application Descriptor File for an HTML Application

<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/1.0.M6">

<filename>Air Bible Example</filename>
<customUpdateUI>false</customUpdateUI>
<id>AirBibleExample</id>
<version>l</version>

<initialwWindow>

<content>index.html</content>
<height>600</height>
<width>800</width>
<systemChrome>standard</systemChrome>
<transparent>false</transparent>
<visible>true</visible>

</initialwindow>

</application>

256

If you create and save this file in your application directory and create a certificate using ADT, then
you have all the files you need to convert your Web application into a desktop application.

Accessing the AIR API

The AIR AP itself is, of course, not native to the browser, so the next step is to learn how to access
it. Most of the AIR API is available to JavaScript through the window object and can be easily
accessed using the aliases in the ATRAliases. js script. This also exposes the Flash framework
to JavaScript; there are many useful classes included in ATRAliases. js outside of the AIR-
specific ones.

HTML Content

Most of what you, as a JavaScript developer, need to learn about AIR is listed in this class, so a
complete listing of the aliases in that namespace, shown in Table 13.1, is a good starting point.

TABLE 13.1

Class Usage

JavaScript AIR Namespace

Aliases Available from AlIRAliases.js

Flash Namespace Equivalent

Flash logging mechanism

AIR filesystem access

Operating system
information

Clipboard access

Drag and drop access

Operating system icon
types

Window or application
menu items

air.trace

air.File

air.FileStream
air.FileMode
air.Capabilities

air.System

air.Security

air.Updater

air.Clipboard
air.ClipboardFormats
air.ClipboardTransferMode
air.NativeDragManager
air.NativeDragOptions
air.NativeDragActions

air.Icon

air.Docklcon
air.Interactivelcon
air.NotificationType
air.SystemTraylcon
air.NativeApplication

air.NativeMenu

air.NativeMenultem

trace

flash.filesystem.File

flash.filesystem.FileStream
flash.filesystem.FileMode
flash.system.Capabilities

flash.system.System
flash.system.Security
flash.desktop.Updater
flash.desktop.Clipboard
flash.desktop.ClipboardFormats
flash.desktop.ClipboardTransferMode
flash.desktop.NativeDragManager
flash.desktop.NativeDragOptions
flash.desktop.NativeDragActions
flash.desktop.lcon

flash.desktop.Docklcon
flash.desktop.Interactivelcon
flash.desktop.NotificationType
flash.desktop.SystemTraylcon
flash.desktop.NativeApplication
flash.display.NativeMenu

flash.display.NativeMenultem

continued

257

TABLE 13.1 (continued)

Class Usage

JavaScript AIR Namespace

Flash Namespace Equivalent

Flash Loader, for SWF, JPG,
GIF, or PNG assets

Bitmap manipulation

AIR native window access

Flash geometry library

Flash HTTP access

258

air.Screen

air.Loader

air.Bitmap
air.BitmapData

air.NativeWindow

air.NativeWindowDisplayState
air.NativeWindowInitOptions

air.NativeWindowSystemChrome

air.NativeWindowResize
air.NativeWindowType
air.NativeWindowBoundsEvent

air.
NativeWindowDisplayStateEvent
air.Point

air.Rectangle
air.Matrix

air.navigateToURL
air.sendToURL

air.FileFilter
air.LocalConnection
air.NetConnection
air.URLLoader
air.URLLoaderDataFormat
air.URLRequest
air.URLRequestDefaults
air.URLRequestHeader

flash.display.Screen
flash.display.Loader

flash.display.Bitmap
flash.display.BitmapData
flash.display.NativeWindow

flash.display.NativeWindowDisplayState
flash.display.NativeWindowInitOptions

flash.display.
NativeWindowSystemChrome

flash.display.NativeWindowResize
flash.display.NativeWindowType
flash.events.NativeWindowBoundsEvent

flash.events.
NativeWindowDisplayStateEvent

flash.geom.Point

flash.geom.Rectangle
flash.geom.Matrix

flash.net.navigateToURL
flash.net.sendToURL

flash.net.FileFilter
flash.net.LocalConnection
flash.net.NetConnection
flash.net. URLLoader
flash.net.URLLoaderDataFormat
flash.net. URLRequest
flash.net. URLRequestDefaults
flash.net. URLRequestHeader

HTML Content

Class Usage

JavaScript AIR Namespace

Flash Namespace Equivalent

air.URLRequestMethod

flash.net. URLRequestMethod

air.URLStream

flash.net. URLStream

air.URLVariables

flash.net. URLVariables

air.Socket

flash.net.Socket

air.XMLSocket

flash.net. XMLSocket

air.Responder

flash.net.Responder

air.ObjectEncoding

flash.net.ObjectEncoding

air.NetStream

flash.net.NetStream

Flash shared object

air.SharedObject

flash.net.SharedObject

air.SharedObjectFlushStatus

flash.net.SharedObjectFlushStatus

Keyboard and mouse

air.Keyboard

flash.ui.Keyboard

air.KeyLocation

flash.ui.KeyLocation

air.Mouse

flash.ui.Mouse

Flash utils

air.ByteArray

flash.utils.ByteArray

air.CompressionAlgorithm

flash.utils.CompressionAlgorithm

air.Endian

flash.utils.Endian

air.Timer

flash.utils. Timer

air.XMLSignatureValidator

flash.security. XMLSignatureValidator

air.HTMLLoader

flash.html.HTMLLoader

air.HTMLPDFCapability

flash.html.HTMLPDFCapability

Flash media library

air.ID3Info

flash.media.ID3Info

air.Sound

flash.media.Sound

air.SoundChannel

flash.media.SoundChannel

air.SoundLoaderContext

flash.media.SoundLoaderContext

air.SoundMixer

flash.media.SoundMixer

air.SoundTransform

flash.media.SoundTransform

air.Microphone

flash.media.Microphone

air.Video

flash.media.Video

air.Camera

flash.media.Camera

continued

259

TABLE 13.1 (continued)

Class Usage

JavaScript AIR Namespace

Flash Namespace Equivalent

AIR SQLite database access

air.EncryptedLocalStore

flash.data.EncryptedLocalStore

air.SQLCollationType

flash.data.SQLCollationType

air.SQLColumnNameStyle

flash.data.SQLColumnNameStyle

air.SQLColumnSchema

flash.data.SQLColumnSchema

air.SQLConnection

flash.data.SQLConnection

air.SQLError

flash.errors.SQLError

air.SQLErrorEvent

flash.events.SQLErrorEvent

air.SQLErrorOperation

flash.errors.SQLErrorOperation

air.SQLEvent

flash.events.SQLEvent

air.SQLIndexSchema

flash.data.SQLIndexSchema

air.SQLMode

flash.data.SQLMode

air.SQLResult

flash.data.SQLResult

air.SQLSchema

flash.data.SQLSchema

air.SQLSchemaResult

flash.data.SQLSchemaResult

air.SQLStatement

flash.data.SQLStatement

air.SQLTableSchema

flash.data.SQLTableSchema

air.SQLTransactionLockType

flash.data.SQLTransactionLockType

air.SQLTriggerSchema

flash.data.SQLTriggerSchema

air.SQLUpdateEvent

flash.events.SQLUpdateEvent

air.SQLViewSchema

flash.data.SQLViewSchema

Events

air.AsyncErrorEvent

flash.events.AsyncErrorEvent

air.BrowserlnvokeEvent

flash.events.BrowserlnvokeEvent

air.DataEvent

flash.events.DataEvent

air.DRMAuthenticateEvent

flash.events. DRMAuthenticateEvent

air.DRMStatusEvent

flash.events. DRMStatusEvent

air.Event

flash.events.Event

air.EventDispatcher

flash.events.EventDispatcher

air.FileListEvent

flash.events.FileListEvent

air.HTTPStatusEvent

flash.events.HTTPStatusEvent

260

HTML Content

Class Usage JavaScript AIR Namespace Flash Namespace Equivalent
air.IOErrorEvent flash.events.|OErrorEvent
air.InvokeEvent flash.events.InvokeEvent
air.NetStatusEvent flash.events.NetStatusEvent
air.OutputProgressEvent flash.events.OutputProgressEvent
air.ProgressEvent flash.events.ProgressEvent
air.SecurityErrorEvent flash.events.SecurityErrorEvent
air.StatusEvent flash.events.StatusEvent
air.TimerEvent flash.events.TimerEvent
air.ActivityEvent flash.events.ActivityEvent

Using the AIR HTML Introspector

Using the aliases in the air namespace, you can access any of the APIs discussed in this section.
From here, you can create a sample application to start testing. You can start with another Hello
World application just to verify that everything is set up properly.

In order to debug an HTML-based AIR application, you need a debugger that is able to recognize
the AIR environment. Fortunately, Adobe has provided the AIR Introspector for this purpose. The
AIR Introspector is a stand-alone debugger, and if you include the ATRIntrospector. js file in
your application, you can access it using the F12 key by default.

First, copy AIRAliases.js and AIRIntrospector. js from the AIR SDK package to your
application directory. Next, create a simple HTML document to serve as the initial content for this
sample application, as shown in Listing 13.2.

LISTING 13.2

HTML for a Sample Application

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta
http-equiv="Content-Type"
content="text/html; charset=UTF-8"
/>

continued

261

__ Partill UV
LISTING 13.2 [R(elliialifte))

<title>Sample Application</title>
<link
rel="gstylesheet"
href="cmn/css/example.css"
type="text/css" media="screen"
/>
</head>

<body>
<div id="Container">
<h2>This is a Sample application.</h2>
</div>

<!-- Flow 1.0 (http://flowjs.com) -->
<script
src="cmn/js/flow-vl.js"
type="text/javascript"
charset="utf-8"

/>
<!-- Our Application Code -->
<script

src="cmn/js/sample.js"
type="text/javascript"
charset="utf-8"

/>
<!-- Aliases -->
<script

src="cmn/js/AIRAliases.js"
type="text/javascript"
charset="utf-8"

/>
<!-- introspector -->
<script

src="cmn/js/AIRIntrospector.js"
type="text/javascript"
charset="utf-8"
/>
</body>
</html>

262

HTML Content

This application includes four JavaScript files:

B The AIRAliases file

B The AIRIntrospector

B The application source (sample.js)
|

The Flow framework

The Flow framework is a lightweight, open-source JavaScript library developed by Richard Herrera
that will simplify DOM access for this application. Several popular libraries work well in AIR,

including jQuery, Mootools, and Spry. You can find more information about these frameworks at
http://flowjs.com.

Leveraging the Flow framework, you can now create a basic implementation for the application
file, as shown in Listing 13.3.

LISTING 13.3

Basic Sample Application JavaScript Source

// create a new namespace
window.SampleApp = window.Sampleapp || {}:

// create an enclosure for the application source
(function ()

{

this.init = function()
{
air.Introspector.Console.log("hello world.");

}

// Do this on DOMContentLoaded
window.addEventListener ("DOMContentLoaded",
SampleApp.init, false);

}
) .call (SampleApp); // initialize

This is a basic implementation that creates a new namespace called SampleApp and then waits for
the DOMContentLoaded event to fire. That event then calls the init () method on the
SampleApp namespace.

263

When you run this application, the 1og () method is called on the Introspector, which is also
located in the air namespace. The AIR HTML Introspector appears immediately with the text that
you have logged. Figure 13.1 shows the Introspector console view.

If you do not call any methods on the AIR Introspector, you can still bring it up
using the F12 key as long as it was included in your application.

FIGURE 13.1

The AIR HTML Introspector console

ADDBE® ATR™ Introspector | Somple App| &

INSPECT CONSOLE HTML DOM ASSETS BSOURCE XHR

4] hello world.

EES

The Introspector is an indispensable utility for AIR development in HTML, as it logs information
for you, displays errors, and allows you to analyze CSS and the current DOM. Common methods
that are available to you through the Introspector are log (), warn (), info (), and error ().

For most situations, the Log () method alone is more than enough, because it enables you to send
complex objects to the Introspector.

264

HTML Content

As with any debugging tool, it is best to use the Introspector sparingly in your code.
' When you deploy your application, you will want to remove all references to the
Introspector, so you should only have these messages in sections that you are currently
debugging.

The Introspector’s DOM navigator is a particularly valuable tool (see Figure 13.2), because you
can see the entire model of your application and the objects available to your application
(see Listing 13.4).

FIGURE 13.2

AIR HTML Introspector DOM navigator

ADOEBE® ATR™ Introspector
INSPECT CONSOLE HTML DOM ASSETS BSOURCE XHR
 window. [nhject DOMWindnw] |a
_addEventListener [function] <
_getComputedStyle [function]
_remuoveEventlistener [function]
addEventiListener [function]
air [ubject Objuect]
alert [function]
atob [function]
Attr [object AttrConstructor]
blur [function]
btea [function]
captureEvents [function]
CDATASection [object COATASectionConstructor]
CharacterData [object CharacterDataConstructor]
childSandboxBridge [undefined]
clearInterval [Function]
clearTimaout [function]
chentinformatinn [nhject Navigator]
close [functinn] v

265

Sample Application Reading Content from AIR API

// create a new namespace
window.SampleApp = window.SampleApp || {}:

// create an enclosure for the application source

(function()
{
this.init = function|()
{
var parent = document.getById("Container");
var addition = '<div id="Sample">"';
addition += '<h3>Capabilities.os</h3>"';
addition += air.Capabilities.os;
addition += '</div>"';
parent.setInnerHTML (addition, "append") ;
addition = '<div id="Sample">"';
addition += '<h3>Security.sandboxType</h3>";
addition += air.Security.sandboxType;
addition += '</div>"';
parent.setInnerHTML (addition, "append") ;
}
// Do this on DOMContentLoaded
window.addEventListener ("DOMContentLoaded",
SampleApp.init, false);
}

) .call(SampleApp); // initialize

When this version is run, two new div tags are added to the Container section containing
information specific to the AIR API. Figure 13.3 shows how this application might appear.

266

HTML Content

FIGURE 13.3

HTML application showing system information

[.00 Sample Application

This is a Sample application.

Mac OS 10.6.2

application

This sample application demonstrates that you have access to the AIR API. Anything that was dis-
cussed in this section is available to an HTML application, including clipboard access, drag-and-
drop behavior, and filesystem access. To demonstrate this, Listing 13.5 shows another application
that traces out the contents of its own application directory recursively.

LISTING 13.5

Sample Application Designed to Display Its Own Source Files

// create a new namespace
window.SampleApp = window.SampleApp || {};

(function ()

{

this.init = function()

{

var rootList = new air.File();

SampleApp.listing = rootList;

rootList = air.File.applicationDirectory;

// register for event that fires when directory is listed

rootList.addEventListener ("directoryListing",
SampleApp.onListing) ;

rootList.getDirectoryListingAsync () ;

continued

267

__ Partill UV
R I N (CR R (continued)

}

window.addEventListener ("DOMContentLoaded",

// once directory contents are available, do this.
// the Event here is an air.FileListEvent
this.onListing = function (evt)

{

var foldertag = '<div id="Sample">';
foldertag += '<h3>'+evt.currentTarget.name+'</h3>"';
for (var i=0; i < evt.files.length; i++)

{
var file = evt.files[i];
if (!file.isHidden)
{
if (file.isDirectory)
{
// if this is a subfolder, list it in a separate
// element entirely by calling this same function.
file.addEventListener ("directoryListing",
SampleApp.onListing) ;
file.getDirectoryListingAsync () ;
}
else
{
// if this is a file, just list the file name
foldertag += '<div class="file">'+file.name+'</div>";
}
}
}

foldertag += '</div>"';

var parent = document.getById("Container");
parent.setInnerHTML (foldertag, "append") ;

// Do this on DOMContentLoaded
SampleApp.init,
false) ;

) .call (SampleApp); // initialize

268

HTML Content

Using Dreamweaver

It is not difficult to build AIR applications using ADT and a text editor, but it can be time-consuming
to maintain your application package structure using these tools. One way to make it much easier
to develop, test, and maintain your application is to use the AIR Extension for Dreamweaver.

Not only does Dreamweaver contain text-editing tools with syntax highlighting and code comple-
tion for HTML, CSS, and JavaScript, but it also provides tools for building and deploying AIR
applications. To set up Dreamweaver to develop a desktop application, first download and install
the AIR Extension for Dreamweaver. Next, create a site definition within Dreamweaver, which will
set up your project.

Last, use the AIR Application Settings Wizard under the Dreamweaver Site menu (see Figure 13.4).
You can use this wizard to create and edit your application descriptor XML file; it can also contain
options for testing and publishing your application.

FIGURE 13.4

Dreamweaver AIR Application and Installer Settings panel

AIR Application and Installer Setti
Application settings
T , [Save 1
*File name: [Kir Bible e
Name Create AR File
1D, AirBible *Version. |1 (Preview 3
*Initial content: |index.huml (" Browse...) m—r e —
Desuriptivn. ————
(Help)
Copyright:
Window style: [System Chrome]
window size: wWidth: |350 Height: 400

lcon: | Select icon images..)

Assoclated File Types: (Editfist..)
Application Updates: M Handled by AIR application installer
Installer settings ~
Included files: [4]|=]|

D_ application.xm|
[l index.ntmi
cmnf

=== v

“Digital signature: AIR Package will be signed Set...)

Program menu folder:

*Destination: airflow:sample:AirBible.air (" Browse...

* asterisk indicates required informartion

269

Summary

HTML applications are capable of running on a wide variety of devices and systems. They can also
display dynamic text and image data without requiring a great deal of processing power. With AIR,
the capabilities of HTML and JavaScript are extended to function as full-featured desktop applica-
tion development tools.

270

Dorpr [\

—_— A pa— e

Building an
Application

IN THIS PART

Chapter 14
Preparing to Build a Large-Scale
Application

Chapter 15
Building a Reusable Config Class

Chapter 16
Application Design Best Practices

Chapter 17
SDK Development

Chapter 18
Sample Application: LogReader

Chapter 19
Polishing a Finished Application

en you build an application in AIR, there will usually be more
demand on features than there would be for a Web application.
Some of the reasons for this are simply based on perception
about the difference in roles between desktop and Web applications, but
others have sound technical justifications.

One reason for this increased demand is that desktop applications are
designed for regular use. If you use an application every day, then you will
expect it to work well with other software, either through clipboard commu-
nication or through alternate file-format interpretation. Also, you expect
common shortcut keys to work, and other details such as paging or mouse
wheel behavior to function.

Another reason that there is more demand on a desktop application is secu-
rity. Because the user has to agree to trust the application’s publisher, it is
your responsibility to remove any potential risks that your application may
pose.

One inescapable reason why there is demand for more application features is
the method of delivery. A Web application can often be delivered in the
browser with a single click. For an AIR application, you often have a Web
page that explains and provides the installer file, and then the user has to go
through the install process.

Of course, this process is more involved for a purpose, because the user
should always be given the chance to accept and control the installation of
software. Still, as a software distributor, you need to provide enough promise
of functionality to convince a user to download and install the application.

273

IN THIS CHAPTER

Planning an application

The architecture phase

LA AS Building an Application

274

Planning an Application

Because there is additional demand for features, there is an additional demand for planning. Even
if you are only intending to build a small widget, you should always plan to build an application
that can be extended and improved. This is also true for applications that you are building for a
limited audience and even applications that you are building for personal use.

Every finished application has potential for improvement; it could always be easier to use, look
nicer, do more, or work faster. If your application is useful, then there is demand for these
improvements. To a programmer, improvements translate to changes in code, and changes in code
often translate into trouble. This section is dedicated largely to that concern, because managing
change is one of the largest and most consistent programming challenges.

Some tools to guide you through the specifics of managed change include employing best practices
and design patterns, but the most effective tool will always be planning. The planning, scoping,
and gathering of business needs for an application are not always thought of as a programming
challenge, but you as a programmer should be prepared to provide guidance through these stages.
The changes that occur during the course of development will often come from demands that
weren't considered during planning, and though it may not always be your responsibility to deter-
mine those demands, it will always be your responsibility to fix the problems that arise from
changes. If you want to manage change effectively, you must know what to prepare for and teach
people how to plan.

Ideation

First, you should have a clear vision of what the application is intended to do and who the audi-
ence will be, and have a general sense of how it should behave. This is similar to the five Ws and
the H of journalism: Who, What, Where, When, Why, and How, which is the model journalists
use to determine whether or not they have a complete story. This might be a useful model to apply
to the ideation stage of planning, to make sure that you have a complete idea.

Who

In terms of an application, the answer to “Who?” is the audience. If the application you are build-
ing is for your own personal use, for internal use within a company or organization, or for use by
the general public, it is going to have different demands.

If the audience of an application is strictly technical, then you may be able to use different termi-
nology to describe features than you would for an application with a broader target audience, and
you may be able to streamline the user interface with that in mind. The Unix and Linux command-
line text editors VI/VIM and Emacs are examples of applications with a strictly technical target
audience, with user interfaces streamlined to the point of barely even existing, but with long-stand-
ing and continued popularity.

Preparing to Build a Large-Scale Application m

It is also not uncommon to have multiple audiences for a single-use case. For example, if you are
building an application designed for employees of a retail store, then the demands of the employee
using the application have to be considered, but often the management of that store may also have
their own demands to consider. The same might be true of a branded application, where the appli-
cation distributor might have needs for the application that aren't strictly the same as those of the
end user.

When considering whom the application is for, language should also be a factor, as should
accessibility.

What

Of course, the central question is always “What will the application do?” During the ideation stage,
think about what problem or problems this software should solve. At the first pass, try to state
these goals in very simple terms, in order to add clarity to other questions and to every phase that
follows.

Suppose you are building an application for a florist with a greenhouse. They would like to be able
to come to work in the morning, see what needs to be planted, repotted, or fertilized, and see what
is available for sale. In order to know this information, the application needs to know some infor-
mation specific to the plants being grown, such as any special instructions for those plants (for
example, “an azalea needs to be repotted after six weeks”), how long it will take before they are
ready to sell, and if there is a time when they can no longer be sold (given that many plants only
bloom at certain times). Also, the application needs to be told what seeds were planted on what
day, and what items have been sold. You might describe this set of features in a list:

B Input mechanism to add new types of plants
B Update mechanism for plants sold or otherwise removed

B Calendar-based interface for viewing current status of tasks and sellable items

Where

For software, the physical location is the device the application is running on, but you should also
consider whether or not that device is connected to the Internet. AIR applications span a wide
range of devices, given that they can run on Windows, OS X, or Linux, and they can also be used
offline. With a few simple modifications, the same JavaScript application can run in the browser, in
an AIR application, and on a mobile device such as the iPhone. Flash applications can also run on
a variety of mobile devices, so they have a similar range of possibilities.

The range of target devices for your application will affect your development platform decisions, so
you should determine your range early on in the ideation process.

When

When will this application be used? How will it fit into the workflow of the user, and how will it
change the user’s workflow? You can generate a set of use cases to answer these questions. Use
cases are simply explanations of the workflow a user would go through in order to perform some
task. They should be explained from the perspective of the user, not the software, because using
the software is only one part of the user’s workflow.

275

LA AS Building an Application

276

In the case of the greenhouse application discussed in the “What” section, the stated desire is to
use this application to help determine a list of daily tasks. There will certainly be a computer avail-
able in the flower shop section of their business, but will there also be one available in the green-
house, where many of those tasks are to be performed? If not, there may need to be a printable
version of the task list. On the other hand, if there will be a computer in the greenhouse, addi-
tional consideration should be given to mouse functionality over keyboard functionality, because a
mouse is easier to use and keep clean when being handled with dirty gardener’s gloves. From this
example, you can see that the user’s workflow has an effect on the software.

The workflow of the user can also be largely based on the feature set of the application. If this
application requires other applications to solve a problem completely, then it may complicate the
experience and affect the value of the application. If the florists have an existing application used to
record sales, is there a way of sharing this information seamlessly with your new application, so
that they don’t have to manually record each sale in two places? If this application can’t be incor-
porated smoothly into the workflow of its users, then it will not be very useful.

It may be tempting, but the question “When?” should not be used to indicate deadlines. In the real
world there are often deadlines, and deadlines will have an effect on the scope of the application
delivered. This should not be allowed to overshadow the ideation process though. You should use
this phase of planning to dream up the ideal implementation of an application, and once that is
agreed upon, scale the scope of the application back to suit the reality of deadlines. The realistic
scope of the application is extremely important, but it should be carefully balanced with the ideal
scope of the application during the planning stages. You shouldn’t allow deadline pressures to pre-
vent you from considering how you will extend an application in the future. This is really the pur-
pose of planning in the first place, because you want to ensure that long-term goals are taken into
consideration in spite of short-term demands.

Why

This is the value proposition. Is there software that already performs some or all the functions that
will be provided by this application? In what ways will this software improve the workflow of its
users? The value of the application should be stated clearly before scope is considered, because
time constraints may reduce your application’s value below that of stable but noncustomized
commercial software. Also, the value of the software should be compared against nonsoftware
techniques.

When the greenhouse employees take a large or unusual order, they mark the day of the order on
a calendar on the wall of the shop, then count back a certain number of weeks and mark the day
the seeds need to be planted. If they don’t know how many weeks to count back, they either ask a
coworker or consult a reference book, which doesn’t always give growth times in such simple
terms.

This solution worked reasonably well for the florists, and was not incredibly time-consuming,. It
was, on the other hand, very error prone. If the employee remembered the growth times wrong or
counted the weeks wrong, the order could be ruined. Also, if flowers were grown for a large order,
they weren’t necessarily marked as such, and there was a risk that they could be sold to other

Preparing to Build a Large-Scale Application

customers instead of being kept on reserve. If the business were to make these mistakes for a
wedding, it could have a disastrous effect on their reputation.

The value of the application is the assurance that it could provide in solving these problems, with-
out creating additional problems for employees. If the software does not fulfill these values, then it
is unlikely to be adopted.

How

How an application solves a problem is related to use cases, but from the perspective of the soft-
ware. It might be more accurate to think of this question as “How much?” How much of the work-
flow is this software going to encompass?

In the greenhouse example, there are two ends of the core purpose of the application: input mech-
anism for plant types and input mechanism for sales. These both could be filled by the software
itself or by other applications.

To determine the input mechanism for plant types, the application needs to know basic data about
some plants; note that the amount of data fed in will probably change over time. The plant name,
how long it takes to grow, and certain events within its life cycle will all need to be recorded. But it
would also be nice to have images of the plant on certain screens, or links to Web sites with more
detailed information. It might be possible to find an online resource for this information, or you
could create forms to allow the florists to input this data themselves. Another possibility would be
to combine those solutions, and give the florists an opportunity to ingest data from the online
resource, modify it, and store it to a local database for offline use.

The other end of the application is the input mechanism for sales. To have an accurate picture of
what plants are available to sell, your software’s database needs to be updated whenever a sale is
made. It is possible that you could link your application in some way to an existing application
used to calculate sales; or users could input sales records into both applications; or your applica-
tion could take on the additional responsibility of calculating sales itself. This decision requires
some research and certainly has a significant impact on the scope of your application. Extending
your application into a cash register adds a significant number of additional features and demands,
but it would also open up an entirely new level of value to the business.

Selecting a development path

Once you have answered the five Ws and the H, a clear picture of the requirements and the risks
of your application should be forming. Now you need to gather as much information as you can
about the systems you will need to tie into and the platform you will run the application on. Based
on this information, you should be able to pick the most logical technology to use. For AIR appli-
cations, this means choosing between Flash, Flex, and JavaScript.

Usually this decision is flexible, and you can decide which technology you prefer based on which
one you are most comfortable with. However, there are demands that may narrow your options.
For example, if the application needs to have a Web version that can run on an iPhone, then it
would probably make the most sense to develop the desktop version in JavaScript.

277

LA AS Building an Application

Information architecture

By this time, you have a general idea of the application you are going to build and the technology
you will use. You should also have a general idea of what sort of data will need to be entered into
your application either through data sources or by users, what sort of data will need to be dis-
played to users, and what sort of options will need to be available.

The information architecture phase involves constructing data into a logical workflow and set of
options. The more sensible and consistent ways you can find to access things, the easier it will be
for users to navigate through your application. You need to decide what sort of states your applica-
tion will have, how those states can be navigated to, and what the base state of the application is.

For the greenhouse application, you may decide that you need six basic views: a view for adding
new types of plants, a view for adding and editing costs of items in the shop, a view for getting
daily tasks, a view for verifying plant availability, a view for calculating and recording sales, and a
view for end-of-month forms. These views don’t need to be equivalent for any reason; for example,
the forms for adding information could be pop-up dialog boxes. Still, there are a wide variety of
functions added to your application scope now, and you should try to find the best way to tie them
together; this will add clarity to every step in the process, from your class model to the user experi-
ence.

A good way to find examples of information architecture is to look at the application menus of
software that you use regularly. For example, Figure 14.1 shows the Modify menu for Adobe Flash
CS3.

FIGURE 14.1

Information architecture in Adobe Flash CS3, specifically the Modify menu

Flash File Edit View Insert Text Commands Contral Debug Window Help

Document... |
Convert to Symbol... a8
Break Apart =8
Symbal 12
Timeline »
Free Transform
Arrange » Vistor
Align L2
Scale
Rotate and Skew

Croup G
_ Scale and Rotate... C#5

Rotate 90° CW T4HI
Ratate 90° CCW T4w7
Flip Vertical

Flip Horizontal

Remove Transform ¢8Z

278

Preparing to Build a Large-Scale Application

As you can see in Figure 14.1, the Modify menu contains a wide variety of options, some of which
could be categorized under other menu headings. For example, “Convert to Symbol” is logically a
modification, but it could also be considered a command. As you grow accustomed to using the
Flash IDE, though, you begin to think of commands as things that are related to publishing, while
the Modify menu contains things that are related to items on the timeline or stage.

For application development, the File menu (either the NativeApplication.menu or the
NativeWindow.menu in AIR) is a standard location for most application options and is often the
first place that users will look when they need to find something. This actually makes information
architecture significantly easier for desktop applications than it is for Web applications, because
there is no single standard format for Web application menus. If you look at the File menu organi-
zation for common, stable applications (see Figure 14.2), you will see that there are some well-
recognized standards for how to organize these menus.

FIGURE 14.2

File menus for some common applications

Finder File Edit View Go Window Help

Preview File Edit View Go Tools Bookmarks Window Help

TextMate File Edit View Text Navigation Bundles Window Help

Firefox File Edit View History Bookmarks Tools Window Help

Flex Builder File Edit Navigate Search Project Data Run Window Help

Photoshop File Edit Image Layer Select Filter Analysis View Window Help
Word File Edit View Insert Format Font Tools Table Window Work Help

When you are in doubt about where to place a certain piece of functionality, it is a good idea to
look through other applications to find similar outliers, and how that software deals with them.
The most important aspects of information architecture are

B [ogic

B Common sense

B An understanding of the users and their perspectives of the application’s purpose
You should still remember that most users will have experience with common applications like
browsers and text editors; if you use similar logic to that found in those applications, users are

likely to understand. If you reinvent the wheel when creating your application, users will have
more to learn and will be less likely to adopt your software.

279

LA AS Building an Application

280

The Architecture Phase

During the ideation phase of production, you gathered requirements that can be thought of as hav-
ing come from external sources. For example, the requirements of the user are external forces act-
ing on your application, as are the requirements of any data source or external API. Once you have
a clear picture of what is expected of this application from all the sources you cannot change, it is
time to begin the architecture phase of development, to plan how you will build the things you can
change.

The architecture phase will include information architecture and design. Once the information
architecture is complete, you will be able to start planning the structure of your application. Of
course, much of this planning is based on flexibility, but the information architecture will provide
the planned implementation, and the ideation phase will provide some indication as to what
changes are likely and what areas you should make the most flexible. For an application of any
scale, be it small or overwhelmingly large, these truths are the same: You will begin building an
initial implementation with some amount of expected changes.

Flexibility is a complicated thing to prepare for in application design because there are so many
ways that a given application can be flexible. If you expect your application to be translated into
several different languages, then you will need to externalize the fonts your application uses, the
size of your text elements, and often the position of your text elements. If you expect your data
sources to change, then you will need to create a flexible interface to those data sources. If you
expect your user interface to change, you may need to think of possible application states that
aren’t apparent in your initial design. Accounting for any one of these possible changes is not terri-
bly difficult, but building an application that is flexible in every way you could need it can be very
difficult.

As the art of programming has matured, a few techniques have developed that help programmers
deal with this challenge: writing code that is flexible enough to deal with unforeseen problems.
First, design patterns have been created to deal with specific and general coding problems. Design
patterns vary in scope, but they share the common goal of enabling you to build flexible solutions.

Another way that programmers prepare for the unexpected is to use a framework that enforces cer-
tain principles to protect you {rom mistakes. These frameworks are generally one of two types:
architecture frameworks or libraries. An architecture framework is usually a set of design patterns
implemented in ways that developers have found to be almost universally useful. A library is a set
of classes developed to implement difficult tasks using simple interfaces.

Architecture frameworks

Architecture frameworks usually define the general layout of your application, which is something
that many programmers are suspicious of. Every application is different, after all, and it’s difficult
to believe that one general layout could work for any application. This is something of a miscon-
ception about application frameworks, as they generally just describe the relationship between the
model, view, and controller, and are much less restrictive than many developers believe.

Preparing to Build a Large-Scale Application m

There are several values of using an application framework. First, these frameworks often have a com-
munity of users, which means that they have been both tested and documented. Not everyone visual-
izes an application’s architecture in the same way, but if there are a large number of developers working
on similar architectures and in agreement about how to set up these structures, it is more likely that the
developers on your team will also agree. This consensus can often be difficult to reach when creating a
new framework specific to your application. Using an application framework also reduces the amount
of time that a new developer may require before becoming productive when introduced to a new
application, because there will be carefully thought-out documentation on the general application
framework.

Cairngorm

One popular architecture framework is Adobe’s Cairngorm Microarchitecture. This is a framework
specific to Flex applications that is designed to enforce the concepts of model, view, and controller.
In a Cairngorm application, objects that constitute the model are all accessed using ModelLocator,
which is a Singleton class. These objects are typically just value objects, meaning that they contain
values but do not explicitly contain any logic pertaining to those values, such as what events to fire if
those values are changed.

In order to change a value in the model, Cairngorm uses commands, which are all registered with
FrontController, another Singleton class. To respond to changes in the model, the view uses
data binding, and many view classes will directly access the ModelLocator Singleton to find the
necessary bindings. If an external service is required, commands will access those services by creat-
ing a delegate class that locates the correct service using the ServiceLocator Singleton and
sends the response back to the command so that it can update the model.

For simple events, a developer will need to create a new command, register that command with
FrontController, and dispatch the event. If the event results in new information for the appli-
cation, then that information will need to be added to some object within ModelLocator, and
any view class will be able to bind to that data if it is interested.

The concepts of model and controller that Cairngorm uses are not unusual, and the use of binding
to connect the view to the model is a commonly used property of the Flex framework. However,
Cairngorm places these concepts into simple, loosely coupled packages. The usefulness of the
Cairngorm framework is illustrated by the size of the community that supports it. If you would like
to learn more about the Cairngorm framework, you can find documentation and downloads on
Adobe Labs (http://labs.adobe.com/wiki/index.php/Cairngorm) and extensive doc-
umentation at Cairngorm Docs (http: //cairngormdocs.org).

PureMVC

Another application architecture that has gained quite a bit of popularity in the Flash and Flex
developer communities is PureMVC. Much like Cairngorm, this framework is designed to preserve
the notions of model, view, and controller. Also, PureMVC uses Singleton instances to locate

There is also a sample application in Chapter 13 that uses a basic implementation of
the Cairngorm Microarchitecture.

281

LA AS Building an Application

282

classes within the model and controller, and an additional Singleton instance to locate classes in
the view. However, in PureMVC, those Singletons are only referred to directly once in any applica-
tion, and classes in the model, view, or controller only assume to know the interface provided for
each Singleton. This is done to reduce the assumptions in each section. For example, the direct ref-
erence from view classes to the Cairngorm ModelLocator could be considered a tight coupling,
and those view classes would all need to be modified if the ModelLocator was unavailable for
some reason.

To provide further flexibility, PureMVC uses variants of the facade design pattern in three places.
To use the facade pattern, create a class whose role is to simplify the interface with a class or a set
of classes. When any class in your application needs to access data, call a method, or register for an
event from the class you are wrapping, it will use the facade, so that changes to the class being
wrapped do not need to affect other classes. To use a real-world analogy, think of two tightly cou-
pled classes as a joint on a cabinet, where two parts are joined together. A facade would be like a
hinge: It would join the two parts together and define their relationship with each other, but if
either part needed to be changed, it would only need to affect the facade and not the other parts.

In PureMVC, there is a central application facade, which any class can use to communicate with
any other class in the model, view, or controller. Next, every object in the model uses a facade to
grant access to the data it stores. In the case of the model, this facade is referred to as a proxy. If the
data object is a remote object, this class will behave as a true proxy. Last, every class in the view
uses a facade called a mediator, which grants access to information about the view to other classes
or gathers data from outside sources to pass to the view.

OTE The Mediator pattern and the Proxy pattern are not typically thought of as specific
AR types of the Facade pattern, but this is a simple way of thinking of them. All three
patterns share the role of sitting between classes to provide an interface, but each defines the
relationship between those classes in slightly different ways.

PureMVC strictly enforces loose coupling in this way, and a completed PureMVC application is
very flexible and is prepared to absorb changes to the view or to the location of data gracefully.
PureMVC is platform agnostic and is available for use in Flash, Flex, ColdFusion, C#, haXe, Java,
Perl, PHP, Python, and Ruby. You can find more information about this framework at http://
puremvc.org.

Leveraging existing libraries

Libraries do not dictate the structure of your code, but rather provide a simple way of dealing with
a complex system. Examples of popular libraries include the jQuery JavaScript framework, the
Tweener animation library, and the Papervision 3D engine. Developers use these libraries to per-
form tasks that would otherwise consume a great deal of development time to perform.

These libraries can also provide a consistent and reliable solution to work with objects that are not
always consistent or reliable. These objects could include language elements that are difficult to

Preparing to Build a Large-Scale Application m

work with or environmental factors outside of the language. For example, JavaScript libraries like
jQuery provide a consistent interface to the Document Object Model (DOM), which is imple-
mented in browsers. Access to the DOM is not always the same for each browser, so libraries like
this are created so that developers won'’t have to constantly be concerned with how their scripts
will work in various browsers. Also, the libraries are tested heavily across browsers and continu-
ously improved upon by the community that supports them, which is why leveraging libraries has
become an indispensable tool for JavaScript development.

In many ways, you can think of AIR itself as a library of code designed to provide a simple inter-
face for developers working with complex systems. For each operating system, there are different
APIs for storing files, getting data from the clipboard, or finding information such as the user’s
screen dimensions.

Developers will occasionally decide not to use an existing library because they feel that they could
create a more efficient solution themselves. This is often realistic: Open-source libraries are often
designed to fit a wide array of uses, while a specific application is likely to only need a subset of
those uses. This means that there is code in the library that you don’t need for your project; you
could write a library to perform a similar task without the added overhead.

For example, the Papervision 3D library contains a robust camera object, which allows developers
to change the perspective on the scene they are viewing or to programmatically move through a
scene. If you are creating an application that requires 3D, but does not need to have a dynamic
camera, then it might be reasonable to expect that you could create a new 3D engine without a
camera, and that your engine might be more efficient as a result.

However, it is obviously not a small task to develop a 3D engine, so you would need to develop
and test your new library. If you were to leverage an open-source library, you could generally
depend on the code you use to be tested and relatively stable. Not only that, but it is possible that
a change in your application could put increased demand on a particular library; if you are using
an existing open-source library, the chances are much better that it will fulfill these additional
needs.

Essentially, the fact that open-source libraries tend to contain a great deal of functionality you don’t
need is a benefit, because that additional functionality will help you absorb changes that may arise.

Summary

When you are preparing to build any application, you should expect for that application to grow
in scale. Preparing for change involves a certain degree of guesswork about what those changes will
be unless you ask the right questions during the planning stage: who, what, when, where, why,
and how. Another way to prepare for change is to use established libraries and frameworks when
building your application, because most have been designed to work in a variety of applications
and have been tested by a community of developers.

283

ne of the most common external files you will find with any appli-

cation is a configuration file. The purpose of a configuration, or

config, file is to externalize settings so that they can be adjusted
without needing to recompile the application. Though not mandatory, XML
is usually the format of choice for creating a config file, and will be the for-
mat targeted for the Config class in this chapter to consume.

Defining the XML

Before you can get started on your class’s architecture, you need to define
what your XML will look like. Listing 15.1 is the basic structure you will be

using.

LISTING 15.1

<?xml version="1.0"
<config>
<property name="examplePropertyl"
#1." />
<property name="exampleProperty2"
#2." />
<property name="exampleProperty3"
#3." />
</config>

encoding="UTF-8"

?>

value="I am value
value="I am value

value="I am value

285

IN THIS CHAPTER

Defining the XML

Resolving dynamic properties

Using composition for event
dispatching

Global accessibility

Your Config class in action

LA AS Building an Application

Depending on the application, these properties could be a lot of things ranging from data refresh
intervals to the location of other external files. By standardizing on a format like this, you can write
a class that is reusable in all your applications. Should the need ever arise to make a more compli-
cated config file, you can subclass your Config class to handle the exceptions. This chapter looks
at that later, but first let’s focus on building the class itself.

Defining capability requirements
To begin, list the capabilities that you would like your Config class to have. You want the
Config class to be pretty versatile, so aim for the following;

B Load an XML file and provide easy access to the data

B Dispatch an event once the external data has been loaded and is ready to be used

B Provide global accessibility throughout an application

With your requirements defined, it’s time to begin writing some code!

Loading the XML

The core functionality of your Config class revolves around loading XML data from an external
document. There are two different approaches we could take to accomplish this: using File and
FileStream or using URLLoader.

Using File and FileStream

The AIR framework includes a package of useful classes for working with the local filesystem.
Using a combination of the File and FileStream classes, you can load the text from the exter-
nal XML document into your application and then parse it to become native XML as shown in
Listing 15.2.

LISTING 15.2

protected function loadXML(filePath:String) :void

{
var file:File = File.applicationResourceDirectory.
resolvePath(filePath) ;
if(file.exists)
{
var fileStream:FileStream = new FileStream() ;
fileStream.open(file, FileMode.READ) ;
var xmlData:String = fileStream.readUTFBytes (fileStream.
bytesAvailable) ;
fileStream.close() ;
_xml = new XML (xmlData) ;
}
}

286

Building a Reusable Config Class m

This approach is fast and works great; however, you limit yourself to using it in a desktop applica-
tion with this code. Given that a big part of AIR development is the power of reusing code between
the Web and the desktop, a better solution might be to use URLLoader instead.

i T In many cases, you sacrifice functionality when favoring reusability of code between
s S5 the desktop and the Web. Be sure to carefully evaluate your options before settling
on a solution for your application.

Using URLLoader

The URLLoader class is not limited to AIR development; you can use it in any ActionScript 3
(AS3) project. For that reason, it’s worth considering in this situation given that your Config class
would be equally handy in the development of a Web application, as shown in Listing 15.3.

LISTING 15.3

protected function loadXML(filePath:String) :void

{
var loader:URLLoader = new URLLoader () ;
loader.addEventListener (Event .COMPLETE, onXMLLoadSuccess) ;
loader.load (new URLRequest (filePath)) ;

}

protected function onXMLLoadSuccess (event:Event) :void

{
_xml = new XML (URLLoader (event.target) .data) ;

}

Something else to consider is the fact that the URLLoader approach is asynchronous, whereas the
File/FileStream approach is synchronous. This means that URLLoader begins loading the
file and everything else moves on in the mean time. When the file is done loading, an event is dis-
patched. With the FileStream class, once you begin reading bytes, no other lines of code in the
script are executed until the task is complete. This probably isn’t a big deal unless the file you are
loading is massive. Just food for thought.

With these two options in mind, continue using the URLLoader class to manage the loading.
Take a look at your Config class with the URLLoader in place in Listing 15.4.

Thus far, your class has some basic functionality. An AP is present for loading an XML file; if a file
is not specified, a default file is used. Additionally, error handling is in place in case a file is not
loaded successfully. Currently, the XML is being stored, but there is no way to access it outside of
the class.

In your capabilities definition, you wanted to serialize the XML data into class properties, making
it nice and easy to use. The next section helps you accomplish that.

287

LA AS Building an Application

LISTING 15.4

package org.airbible.configexample

{

288

import
import
import
import
import

public
{

flash.errors.IOError;
flash.events.Event;
flash.events.IOErrorEvent;
flash.net.URLLoader;
flash.net.URLRequest;

class Config

public const DEFAULT XML_FILE:String = "xml/config.xml";
protected var _xml:XML;

public function Config()

{

init () ;

protected function onXMLLoadSuccess (event:Event) :void
{
parseXML (URLLoader (event. target) .data) ;

protected function onXMLLoadFail (event:IOErrorEvent) :void

{

throw new IOError ("Unable to load the specified XML file. Details: "

+ event.

text) ;
}

public function load(xmlFile:String = DEFAULT_XML_FILE) :void
{
loadXML (xmlFile) ;

protected function init () :void
{
}

protected function loadXML(filePath:String) :void
{
var loader:URLLoader = new URLLoader () ;
loader.addEventListener (Event .COMPLETE,

onXMLLoadSuccess) ;

Building a Reusable Config Class

loader.addEventListener (IOErrorEvent.IO_ERROR,

onXMLLoadFail) ;
loader.load (new URLRequest (filePath)) ;
}
protected function parseXML (xmlData:String) :void
{
_xml = new XML (xmlData) ;
}

Resolving Dynamic Properties

The Flash.utils.Proxy class is one of the most powerful, and yet unexplored, classes in AS3.
It gives you access to some pretty useful functionality and is, in fact, used quite a bit throughout
the Flex framework. If you are familiar with AS2, you may remember how the Object class
allowed you to dynamically create get and set methods at run time, as well as resolve dynamic
properties. In order to accomplish this in AS3, you must subclass the Proxy class and override its
methods.

B All methods of the Proxy class must be called from the f1lash_proxy namespace.

To better understand this, take a look at Listing 15.5.

LISTING 15.5

import flash.utils.Proxy;
import flash.utils.flash_ proxy;

dynamic public class ProxyExample extends Proxy
{

public function ProxyExample ()

{

}

override flash_proxy function getProperty (name:*) :*

{
return "You just called the '" + String(name) + "' property.";

289

LA AS Building an Application

LISTING 15.6

As you can probably tell by the code, anytime you call a dynamic property on an instance of the
ProxyExample class, the dynamic property returns a string informing you of what property you
just called. Now take things to the next level and examine the implementation that you will actu-
ally use for your Config class:

override flash_proxy function getProperty (name:*) :*
{
return _xml.property. (@name == String(name)) .@value;

}

Now, when you call a non-existent property of the Config class, the get Property method
intercepts it and searches the XML Property nodes for a name attribute that matches up with the
dynamic property attempting to be called. Assuming a match is made, the corresponding value will
be returned. Review your Config class with these new changes, shown in Listing 15.6, before
moving on.

package org.airbible.configexample

{

290

import flash.errors.IOError;
import flash.events.Event;

import flash.events.IOErrorEvent;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.utils.Proxy;

import flash.utils.flash_proxy;

dynamic public class Config extends Proxy
{
public const DEFAULT_XML_FILE:String = "xml/config.xml";

protected var _xml:XML;

public function Config()
{

init () ;

protected function onXMLLoadSuccess (event:Event) :void
{
parseXML (URLLoader (event . target) .data) ;

protected function onXMLLoadFail (event:IOErrorEvent) :void

{

throw new IOError ("Unable to load the specified XML file. Details: "
+ event.text) ;

}

Building a Reusable Config Class

public function load(xmlFile:String = DEFAULT_XML_FILE) :void

{
loadXML (xmlFile) ;
}
override flash_proxy function getProperty (name:*) :*
{
return _xml.property. (@name == String(name)) .@value;
}
protected function init () :void
{
}

protected function loadXML(filePath:String) :void
{
var loader:URLLoader = new URLLoader () ;
loader.addEventListener (Event . COMPLETE,
onXMLLoadSuccess) ;
loader.addEventListener (IOErrorEvent.IO_ERROR,

onXMLLoadFail) ;
loader.load(new URLRequest (filePath)) ;
}
protected function parseXML (xmlData:String) :void
{
_xml = new XML (xmlData) ;
}

At this point, your Config class can load XML from an external document, and then you can turn
around and access its data by calling dynamic properties of the Config class. In order for you to
know when the XML data has finished loading and the Config class is ready to be used, you must
implement event dispatching.

Using Composition for Event Dispatching

Typically, to gain the ability to dispatch events, you would simply subclass the
EventDispatcher class (or a class that subclasses it). However, in this situation you are already
subclassing the Proxy class, so you must take an alternative approach. The proper way to handle
this is to use a combination of composition and the implementation of the IEventDispatcher
interface. In other words, create a new EventDispatcher instance and store it in a property of
your Config class.

291

LA AS Building an Application

Next, implement the IEventDispatcher interface, which will mandate that you have the same
methods as the EventDispatcher class available in your Config class. Inside these methods,
you will simply pass the call and parameters along to your EventDispatcher instance, as
shown in Listing 15.7.

LISTING 15.7

public function addEventListener (type:String, listener:Function,
capture:Boolean = false, priority:int = 0, useWeakReference:Boolean =
false) :void

{
_eventDispatcher.addEventListener (type, listener, capture, priority,
useWeakReference) ;
}
public function dispatchEvent (event:Event) :Boolean
{
return _eventDispatcher.dispatchEvent (event) ;
}
public function hasEventListener (type:String) :Boolean
{
return _eventDispatcher.hasEventListener (type) ;
}
public function removeEventListener (type:String, listener:Function,
capture:Boolean = false) :void
{
_eventDispatcher.removeEventListener (type, listener, capture);
}
public function willTrigger (type:String) :Boolean
{
return _eventDispatcher.willTrigger (type) ;
}

With the addition of this functionality inside your Config class, take a look at how everything is
shaping up in Listing 15.8.

292

Building a Reusable Config Class m

package org.airbible.configexample

{

import flash.errors.IOError;

import flash.events.Event;

import flash.events.EventDispatcher;
import flash.events.IEventDispatcher;
import flash.events.IOErrorEvent;
import flash.net.URLLoader;

import flash.net.URLRequest;

import flash.utils.Proxy;

import flash.utils.flash_ proxy;

dynamic public class Config extends Proxy implements
IEventDispatcher
{
public const DEFAULT_XML_FILE:String = "xml/config.xml";
protected var _eventDispatcher:EventDispatcher;

protected var _xml:XML;

public function Config()

{
init();
}
protected function onXMLLoadSuccess (event:Event) :void
{
parseXML (URLLoader (event . target) .data) ;
}

protected function onXMLLoadFail (event:IOErrorEvent) :void

{

throw new IOError ("Unable to load the specified XML file. Details: "
+ event.text) ;

}
public function load(xmlFile:String = DEFAULT_XML_FILE) :void
{
loadXML (xmlFile) ;
}

continued

293

LA AS Building an Application

public function addEventListener (type:String, listener:Function,
capture:Boolean = false, priority:int = 0, useWeakReference:Boolean =
false) :void
{
_eventDispatcher.addEventListener (type, listener, capture, priority,
useWeakReference) ;
}

public function dispatchEvent (event:Event) :Boolean

return _eventDispatcher.dispatchEvent (event) ;

public function hasEventListener (type:String) :Boolean

return _eventDispatcher.hasEventListener (type);

public function removeEventListener (type:String, listener:Function,

capture:Boolean = false) :void
{
_eventDispatcher.removeEventListener (type, listener,
capture) ;
}

public function willTrigger (type:String) :Boolean
{

return _eventDispatcher.willTrigger (type);

override flash_proxy function getProperty (name:*):*
{

return _xml.property. (@name == String(name)) .@value;

protected function init () :void

{

_objEventDispatcher = new EventDispatcher () ;

protected function loadXML (filePath:String) :void
{
var loader:URLLoader = new URLLoader () ;
loader.addEventListener (Event . COMPLETE,
onXMLLoadSuccess) ;

294

Building a Reusable Config Class m

loader.addEventListener (IOErrorEvent.IO_ERROR,

onXMLLoadFail) ;
loader.load (new URLRequest (filePath)) ;
}

protected function parseXML (xmlData:String) :void

{
_xml = new XML (xmlData) ;
dispatchEvent (new Event (Event.INIT)) ;

}

You're pretty close to being done at this point. Your Config class now dispatches an event when
XML has finished loading and is readily accessible. That leaves just one task for you to knock out,
and it’s sort of an optional one that is very subjective to your personal design preferences. The task
is making the Config class easily accessible throughout an application.

Global Accessibility

The final requirement on your To Do list is to make the data inside your Config class globally
accessible. There is more than one way to go about this, so examine your options and choose an
approach that is right for you.

Choosing an approach

When it comes time to choose an approach for how data is to be spread throughout an application,
you need to make decisions very carefully. Making a poor decision at this stage in the game can
cause some real headaches later on when trying to expand upon the architecture. There are really
only two choices for you to choose from in this particular situation:

B Delegation
B The Singleton design pattern

Delegation

Delegation is the process of delegating data from object to object through the use of their APIs.
This is a core concept in object-oriented programming, as it allows for objects to decouple from
the rest of the application as much as possible.

295

LA AS Building an Application

296

In the case of your Config class, you would need to pass an instance reference down through
your various components in order for them to have access to its data. Obviously, this approach
isn’t making your Config class itself globally accessible, but it’'s a much better way to spread data
around your application. By placing class dependencies into method signatures, your code
becomes much easier to read and understand by others.

More often than not, this is going to be the way to go. However, examine your other options before
making a decision.

The Singleton design pattern

The Singleton pattern presents an elegant solution for allowing a class to be globally accessible
while also allowing for the benefits of instantiation. It is more or less a controversial pattern; devel-
opers are either for it or against it. Developers who are against it argue that it tightly couples classes
together. This is very true, but only if it is used incorrectly — and usually it is.

As a rule of thumb, anything that is global (static) should be read-only. When you begin breaking
this rule, especially in larger applications, you are destined to run into major issues. The following
elements are acceptable in a Singleton:

W Access to a service or factory

B Constant values
If you find yourself using a Singleton pattern simply to avoid having to pass data deep down into
your application, you probably need to reevaluate the way that the code is designed. Good exam-

ples of a proper situation to use the Singleton pattern are few and far between, so be sure to care-
fully consider your options before moving forward with this pattern.

Because your Config class is going to house application settings that you intend to set only once
(at startup) and you would prefer them to be as easily accessible as possible, you are probably fine
to move forward and build the Config class as a Singleton.

Implementing the Singleton pattern

Implementing the Singleton pattern into a class is a fairly easy task; only a few simple steps are
required:

Create a static property for storing the Singleton instance.

Create a static method for retrieving a reference to the Singleton instance.

Add logic to the class for creating one, and only one, instance of the class.

b=

Add logic to the class for preventing instantiation outside of the class itself.
Breaking these steps down into code, first define the static property for storing the instance:

private static var _instance:Config;

Building a Reusable Config Class

Note that you could create the instance at the same time that you define the property. However
there will be some issues with doing so when you actually try to enforce your class as a Singleton.
Furthermore, it’s good practice to only create an object as needed,; so first define the property and
then create the instance itself in your method for retrieving it.

public static function getInstance() :Config

{

if (_instance == null)
{

_instance = new Config();
}

return _instance;

}

Though what you have so far certainly works, you now need to address the fact that your class can
still be instantiated on its own, thus breaking the pattern. In order to do that, you need to mandate
that the class can only be instantiated inside the class itself. In AS2, and other languages for that
matter, the solution is to simply define the constructor as private. In AS3 you are unable to do that,
so you must use a somewhat unconventional approach instead.

The idea is to create an enforcer class that is internally defined and then require it as a parameter in
the constructor. Given that other classes will be unable to access the enforcer class, they will there-
fore be unable to pass it to the constructor of your class and thus be locked out from instantiating
it. This may sound a bit confusing, so take a look at the code itself in the following steps:

1. Define your enforcer class at the end of your class document, just below the closing
bracket for the package:

internal class SingletonEnforcer {}

2. Modify your constructor to require it as a parameter:

public function Config(enforcer:SingletonEnforcer)
{
init () ;

}

3. Add the parameter to the code inside your Config getInstance method where
you create the instance:

public static function getInstance() :Config

{
if(_instance == null)
{
_instance = new Config(new SingletonEnforcer());
}
return _instance;
}

Put it all together in your Config class, as shown in Listing 15.9, and you're finished.

297

18 A'S Building an Application

Singleton vs. Static Class

A common question regarding the use of the Singleton pattern is why it is even needed when you
can simply create a static class (a class that cannot be instantiated but that can have its static proper-
ties and methods accessed globally throughout an application). The Singleton pattern does have its
benefits, however.

Obiject-oriented programming revolves around the concept of creating objects. When a class is
static (never instantiated as an object), only its static methods can be called. These static methods
are limited to the ones that are defined in the class itself; they cannot be inherited from other classes,
nor can they be enforced by the definition of an interface.

The Singleton pattern allows you to globally access an instance of a class. Because the class was
instantiated, you can inherit from other classes and also implement interfaces. In the case of your
Config class, this is necessary for allowing you to both subclass the Proxy class and implement the
IEventDispatcher interface.

Turning a class into a Singleton pattern is very easy to do and therefore also very easy to undo. As
requirements change, you may decide that a class needs to have more than just one instance. Easy
enough — just remove a few lines of code and you are ready to go.

LISTING 15.9

package org.airbible.configexample

{
import flash.errors.IOError;
import flash.events.Event;
import flash.events.EventDispatcher;
import flash.events.IEventDispatcher;
import flash.events.IOErrorEvent;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.utils.Proxy;
import flash.utils.flash_proxy;

dynamic public class Config extends Proxy implements
IEventDispatcher
{

public const DEFAULT XML_FILE:String = "xml/config.xml";

private static var _instance:Config;

protected var _eventDispatcher:EventDispatcher;

298

Building a Reusable Config Class m

protected var _xml:XML;

public function Config(enforcer:SingletonEnforcer)

{
init();
}
protected function onXMLLoadSuccess (event:Event) :void
{
parseXML (URLLoader (event . target) .data) ;
}

protected function onXMLLoadFail (event:IOErrorEvent) :void

{

throw new IOError ("Unable to load the specified XML file. Details: "
+ event.text) ;

}
public static function getInstance() :Config
{
if (_instance == null)
_instance = new Config(new SingletonEnforcer());
}
return _instance;
}
public function load(xmlFile:String = DEFAULT XML_FILE) :void
{
loadXML (xmlFile) ;
}

public function addEventListener (type:String, listener:Function,

capture:Boolean = false, priority:int = 0, useWeakReference:Boolean =
false) :void
{

_eventDispatcher.addEventListener (type, listener, capture, priority,
useWeakReference) ;

}

continued

299

LA AS Building an Application

public function dispatchEvent (event:Event) :Boolean
{
return _eventDispatcher.dispatchEvent (event) ;

}

public function hasEventListener (type:String) :Boolean
{

return _eventDispatcher.hasEventListener (type) ;

public function removeEventListener (type:String, listener:Function,

300

capture:Boolean = false) :void

{

_eventDispatcher.removeEventListener (type, listener,

capture) ;

}

public function willTrigger (type:String) :Boolean
{

return _eventDispatcher.willTrigger (type) ;

override flash proxy function getProperty (name:*) :*
{

return _xml.property. (@name == String(name)) .@value;

protected function init () :void
{

_eventDispatcher = new EventDispatcher () ;

protected function loadXML (filePath:String) :void
{
var loader:URLLoader = new URLLoader () ;
loader.addEventListener (Event .COMPLETE,

onXMLLoadSuccess) ;

loader.addEventListener (IOErrorEvent.IO_ERROR,

onXMLLoadFail) ;

loader.load (new URLRequest (filePath)) ;

Building a Reusable Config Class

protected function parseXML (xmlData:String) :void
{
_xml = new XML (xmlData) ;

dispatchEvent (new Event (Event.INIT)) ;

internal class SingletonEnforcer {}

Your Config Class in Action

It’s finally time to throw together a couple of test files to ensure that your class is working cor-
rectly. First create a very basic XML file that contains some sample data for you to load in.

<?xml version="1.0" encoding="UTF-8" ?>

<config>
<property name="examplePropertyl" value="I am value #1." />
<property name="exampleProperty2" value="I am value #2." />
<property name="exampleProperty3" value="I am value #3." />
</config>

By default, your class checks for a file named config.xml in a directory named xml inside the
application directory. Save your sample XML file there for sake of example. With the XML ready to
go, write a quick application class for testing your Config class, as shown in Listing 15.10.

If everything is set up correctly, you should see a handful of traces appear in the console confirm-
ing that everything worked correctly. That’s basically it.

On a final note, it is important to remember that you could potentially create a more complicated
variation of the config XML document that requires additional logic in the Config class. To do so,
you would simply subclass the Config class and override the get Property method to include
additional instructions for pulling data from the XML. You will, however, run into an issue when
doing this.

301

LA AS Building an Application

package org.airbible.configexample
{

import flash.events.Event;

import mx.core.WindowedApplication;
import mx.events.FlexEvent;

import org.airbible.designpatterns.singleton.Config;

public class SingletonExample extends WindowedApplication

{
public function SingletonExample ()
{
init();
}
protected function onCreationComplete (event:FlexEvent) :void
{
loadConfig() ;
}
protected function onConfigInit (event:Event) :void
{
trace ("examplePropertyl -> " + Config.getInstance().
examplePropertyl) ;
trace ("exampleProperty2 -> " + Config.getInstance().
exampleProperty?2) ;
trace("exampleProperty3 -> " + Config.getInstance().
exampleProperty3) ;
build();

protected function init():void
{
addEventListener (FlexEvent .CREATION_COMPLETE,
onCreationComplete) ;

}

protected function loadConfig():void
{
Config.getInstance () .addEventListener (Event.INIT,
onConfigInit) ;
Config.getInstance() .load() ;

302

Building a Reusable Config Class m

protected function build() :void

{
trace("Now ready to build the app...");

}

Summary

Generally speaking, Singletons are evil — hopefully this will be one of the rare instances that you
use the pattern. It’s an important pattern to know and understand, but as this chapter discusses, it
is heavily overused and abused by many.

With a somewhat simple piece of application framework under your belt, it’s time to move on to
bigger and more complicated things. Many of the core concepts discussed in this chapter will carry
through though.

303

est practices are conventions outside of the programming language

itself that have developed over time and through experience to help

keep your code organized and maintainable. They keep your project
from turning into a mess.

Anyone who has been programming for very long is sure to have seen proj-
ects become messy, with the result being that the project becomes increas-
ingly difficult to change or maintain.

A project can become messy for a number of different reasons, including
poor planning, poor communication, unforeseen demands, or changing
requirements. These sorts of issues are constants in the real world, but pro-
gramming practices have been recognized and developed to mitigate the
damage.

Mistakes are a fact of life; when you are orchestrating a complex system from
the ground up, they’re practically unavoidable. A successful programmer is
not a person who can consistently write code without ever making a mistake.
A successful programmer is a person who can write code that can easily be
fixed when mistakes are made.

Now is the time to forgive yourself (and your associates) for any project
you've ever worked on that became chaotic. Programming practices is one of
the most discussed topics in the technology industry. This would not be the
case if it were unusual for a project to become difficult to work on. Reflecting
on past messy projects, and what could have been done to repair them, is
your best tool to ensure that you avoid those results in the future.

305

IN THIS CHAPTER

Preventing spaghetti code

Flex and Flash guidelines

General coding guidelines

{8 M'E Building an Application

Preventing Spaghetti Code

Early on in the history of programming, the term spaghetti code emerged as a popular description of
code that was difficult to understand. If you look at a plate of spaghetti noodles, it is difficult to tell
where one noodle ends and the next one starts (see Figure 16.1). In spaghetti code, the same is
true, but instead of noodles you have data and tasks going in too many directions to sort out.

FIGURE 16.1

Confusing code can be as messy as a plate of spaghetti.

The term spaghetti code came about before most modern object-oriented languages, and the spe-
cifics of its meaning have changed over time. In fact, structured programming languages and
object-oriented programming languages were created in response to the pitfalls recognized in older
languages.

Many of these older programming languages, such as BASIC, were often sequential programming
languages. A Hello World application in BASIC might look like this:

10 PRINT "HELLO WORLD"
20 GOTO 10

306

Application Design Best Practices m

This snippet will continue to print HELLO WORLD over and over until the execution is stopped,
because line 20 will return execution to line 10 every time it is reached. Imagine creating a com-
plex application in this style, with no methods or classes, and the flow controlled by the careful
use of GOTO statements and conditional statements — IF this GOTO there. It isn’t difficult to see
how this could lead to some seriously confusing code.

How spaghetti has changed

Experience with sequential programming contributed to the inspiration for more modern program-
ming paradigms such as procedural programming and object-oriented programming. The ECMA
specification, on which both JavaScript and ActionScript are based, has both procedural and
object-oriented aspects.

Although the languages and their characteristics have changed, the general principles have not. If
there is a section of code that has a wide array of responsibilities, it is at risk of becoming bloated
and chaotic.

For example, imagine that you are writing a game, and decide early on to animate it using a
method called moveSprites. Every 20 milliseconds, this method is called, and it loops through
all the sprites in the game and moves them to the appropriate place. During early phases of devel-
opment, this works perfectly well.

However, as you move forward, you realize that there is a lot of responsibility encompassed by
moving a sprite. For one thing, hit detection will have to be part of movement, and hits can result
in changes in game flow, changes in game score, or physics calculations. Also, there are many types
of sprites, including the playable characters, computer-controlled enemies, projectiles, or even
moving map pieces. As these additional demands emerge, more and more logic finds its way into
the moveSprites method. By the time you reach the end of development, the central method of
your game has turned into 500 lines of spaghetti.

Make ravioli instead

Not long after spaghetti code was recognized as a dangerous end for a project, other software
design pitfalls started gaining other pasta-themed labels as a matter of contrast. For example, lasa-
gna code was identified as software with discrete but practically immovable layers. There were sev-
eral other examples, each one tinged with at least one terrible programming experience.

The ideal that arose from this running joke is usually referred to as ravioli code. Ravioli are bite-
sized bits of pasta, and each one holds its own delicious filling (see Figure 16.2).

In software development terms, ravioli basically refers to object-oriented programming. This may
be a useful way to visualize your objects — they should be as bite-sized and self-contained as pos-
sible. But this raises the question: What is a “bite” of software code? You could define a bite of food
as the amount of food that a normal person can eat comfortably at one time. In the same way, an
object should be large enough to perform a task capably, but should be small enough that a nor-
mal person can visualize the scope and responsibility of it comfortably — you should be able to fit
it in your head!

307

LA AS Building an Application

Of course, logic should always dictate the overall structure of your application, but the mental
aspect is critical to knowing when a particular object or system has gotten too complicated. If the
role of a particular piece isn’t clear to every developer who works on the project, then it is more
likely that the piece’s role will be modified or expanded erroneously.

FIGURE 16.2

Ravioli code is as bite-sized and self-contained as possible.

. | - - ' "
A4 5 f(A
’ "_*’“‘:;’ {f £

JJ(
wh

. ,\'“

A 1

\

kl

308

Encapsulation

If you visualize your objects as ravioli and work to keep them bite-sized and self-contained, your
objects should be simple and encapsulated. Encapsulation is a fundamental principle of object-
oriented programming, which stresses the importance of letting objects keep their information to
themselves as much as possible. The interface between classes should be as simple as possible so
that if one class changes, the interface doesn’t have to.

Encapsulation, as a principle, is similar to the facade design pattern. The facade pattern is essen-
tially the idea that a complex system should have a simple interface, so the code that uses the sys-
tem will not be tightly coupled to the complex underpinnings. If two objects become too closely

Application Design Best Practices m

related in this way, modifications to one object invariably require modifications to the other.
Encapsulation really means that this concept — to keep the interface as simple as possible —
should be applied to every object.

Documentation

The other aspect of ravioli code is that each object should be bite-sized. This is more related to the
human aspect of programming. If you are building an application with a team of other developers,
communication is one of the most important reasons for employing best practices. Most of these
practices are designed to keep code understandable and flexible. If it is difficult to communicate
the purpose of a particular object or class, then that object or class is at risk of being misused.

Poor communication is a major cause of chaotic code. In fact, poorly documented or incompre-
hensible solutions can be considered forms of poor communication, and these factors together
account for most code chaos.

It is not always possible to implement a truly simple solution or to encapsulate a complex solution
into a neat piece of ravioli. These situations call for documentation. It should always be easy to find
a clear explanation, from the ground up, for any system that is not self-explanatory.

Entropy

The second law of thermodynamics states, basically, that a system with no outside influence will
tend towards chaos. A real-world example of this would be an ice sculpture — if left unattended, it
will melt into water and the sculpture will become unrecognizable.

The second law of thermodynamics is commonly referred to as the law of entropy, and it applies to
programming as well. In particular, it applies to the architecture and planning that go into a com-
plex project at the beginning. As you implement the architecture that you had initially intended,
you begin to focus on details. Sometimes these details necessarily change the original plan, and
sometimes corners are cut simply to meet a goal.

In any large project, there will be a time when you consciously make a decision whether to fix a
certain piece of code now or to move forward with the intention of fixing it later. This decision is
always weighted by time constraints or other external pressures, and it is often a difficult decision,
even for those who fully comprehend the risk.

If you choose to move forward without fixing the code, then one of two things will happen: either
there will not be a significant amount of demand placed on that piece of code, and it will be easily
replaced in the future, or there will be enough demand on that piece of code that it infects related
elements with equally chaotic implementations. This is entropy at work on your architecture.

The solution to code entropy comes from the second law of thermodynamics — remember that
this will only happen when a system is left unattended. Tending to code that has become problem-
atic is called refactoring. When you refactor code, you start with a working system in which certain

309

LA AS Building an Application

310

sections of code are becoming chaotic, and your end goal is a working system made up of much
neater pieces of ravioli. With that in mind, the theory behind refactoring suggests that it is best to
go through this process gradually, cleaning up sections or layers of code one at a time, so that the
system’s functionality is kept intact throughout.

The sooner you address a problem of course, the easier it is to refactor. If a confusing section of
code is left in place, it will start to affect sections of code that need to interface with it, because
those interfaces will also be confusing. Over time, as all these sections continue to be modified, the
infection spreads.

Eventually, it will require less work to start over than it will to refactor the entire system, and this
is the true threshold between ravioli and spaghetti.

For Web applications, this threshold has been only a mild threat in the past. The reason it hasn’t
been a serious threat is that Web technology has been growing and maturing at an incredible rate.
Once the threshold is reached and a project becomes unwieldy to maintain, it is often easy to jus-
tify a clean start because the technology has changed. Most Web applications are relatively small,
which also shields Web developers from entropy.

As you begin developing larger applications in AIR, you should not rely on those factors. The tech-
nology will certainly expand and mature, but you should try to build applications that can grow
with the technology. If you allow your code to cross the threshold from ravioli to spaghetti, then
your application becomes disposable.

To build a durable application, the practice should be clear. First, slow down and try to lighten the
load of external pressures that would prevent you from refactoring when necessary. Second, keep
your code like ravioli to prevent tight coupling and confusion between developers. Finally, always
document systems clearly, because confusion is both the cause and the effect of spaghetti.

Flex and Flash Guidelines

Flex and Flash applications are both coded primarily using ActionScript and are designed to run in
the AIR environment or the Flash Player in the browser. The difference between them is really that
Flex is an extension of Flash — a Flex application is a Flash movie with two frames, one for the
preloader and one for the Flex framework and the application.

From a development perspective, Flash applications are typically built using the Flash IDE, while
Flex applications are built using Flex Builder or a text editor with the Flex SDK and the Flex
command-line compiler.

Flash applications often take advantage of the timeline, which provides a detailed design-time pre-
view of objects on the stage or the way that objects move around the stage.

Application Design Best Practices m

Flex applications, on the other hand, typically use MXML documents to lay out the stage of view
classes instead of a Flash MovieClip. A MovieClip can still be instantiated from Flex, and if the
timeline is needed, it is still possible to embed a Flash SWF and control any MovieClip from its
library.

One major factor to consider when choosing between Flex and Flash is load time. The Flex frame-
work itself is about 200K to download; this cost often outweighs the benefits of the framework on
Web projects where load time is a critical factor and the coding demands are mild. Load time is a
valid concern for many Web applications but is less important for a desktop application, given that
the user only needs to download the application once.

There is a misconception that Flex is geared toward form-based content, while Flash is better
suited for heavily animated content. While it is true the Flex Builder does not have native drawing
tools, as Flash does, keep in mind that Flex is able to embed and manipulate Flash library objects
with ease. Also, Flex does provide substantial support for forms and form elements, but it also
enables a wide variety of animations to transition from one application state to the next.

Essentially, Flex is geared toward application development, and while both Flex and Flash have the
same capabilities, the Flex framework provides a significant head start into any application devel-
opment cycle.

One of the most important choices you will make for a project is choosing what technology to use.
For AIR applications, Flex is probably a more logical choice than Flash. There will always be
exceptions to this, of course. For example, an AIR application built from a previously existing
Flash application should probably be built in Flash. Also, the developer’s skill set must be taken
into account, as learning Flex does take time.

One key difference between Flex and Flash is that Flex applications are built in both ActionScript
and MXML. MXML is a declarative language that allows developers to construct complex classes
with a minimal amount of code. Additionally, you can use the Flex Design Mode to preview visual
components, which provides a stage of sorts to aid you in visualization at design time.

For example, suppose you need to create a list of button components. If you were to build this in
MXML, the code might look like Listing 16.1.

LISTING 16.1

Vertical List of Buttons in MXML

<mx:VBox id="buttonList" x="100" y="100">
<mx:Button id="btnOne" label="Hi" click="onClick(event)" />
<mx:Button id="btnTwo" label="Hi too" click="onClick(event)" />
<mx:Button id="btnThree" label="Hi also" click="onClick(event)" />
</mx:VBox>

311

LA AS Building an Application

In contrast, this same code in ActionScript would look like Listing 16.2.

As you can see in Listings 16.1 and 16.2, the MXML version is significantly less verbose. Also, it
clearly shows containment relationships, so it's much easier to see that the VBox contains the three
Button instances. These two factors make MXML vastly superior to ActionScript in terms of read-
ability and maintainability when you are laying out visual components on a stage.

| Chapter 19 contains a sample application with more options for using states and
transitions together.

LISTING 16.2

Vertical List of Buttons in ActionScript

public var buttonList:VBox;
public var btnOne:Button;
public var btnTwo:Button;
public var btnThree:Button;
buttonList = new VBox() ;
buttonList.x = 100;
buttonList.y = 100;
addChild (buttonList) ;

btnOne = new Button() ;

btnOne.label = "Hello";

btnOne.addEventListener (MouseEvent.CLICK, onClick);
buttonList.addChild (btnOne) ;

btnTwo = new Button() ;

btnTwo.label = "Hello too";
btnTwo.addEventListener (MouseEvent .CLICK, onClick);
buttonList.addChild (btnTwo) ;

btnThree = new Button() ;

btnThree.label = "Hello also";
btnThree.addEventListener (MouseEvent.CLICK, onClick);
buttonList.addChild (btnThree) ;

Transitions

MXML also provides a very simple way to define transitions for the elements on stage, and transi-
tions between various component states. Listing 16.3 shows a sample application that uses a
Parallel transition to move components between states.

312

Application Design Best Practices

The transitions defined in Listing 16.3 may look a bit verbose at first glance, but they actually rep-
resent fairly complex behavior. The <mx: states> tag allows you to define alternate component
states, and the layout of the stage for each of those states. The <mx: transitions> tag then
allows you to describe how components should move between their various positions.

LISTING 16.3

MXML Application with Two States and Parallel Transitions

<?xml version="1.0" encoding="utf-8"?>
<mx :WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute">
<mx:Script>
<! [CDATA[
import mx.effects.easing.Exponential;

public static const STATE_TWO :String = "two";
11>
</mx:Script>
<mx:Button
id="buttonOne"
x="100"
y="100"
label="Hi"
click="{currentState = STATE_TWO}"
/>
<mx:Button
id="buttonTwo"
x="100"
y="130"
label="Hi too"
click="{currentState = undefined}"
/>
<mx:Button
id="buttonThree"

x="100"

y="160"

label="Hi also"
/>

<mx:states>
<mx:State name="{STATE_TWO}">
<mx:SetProperty target="{buttonOne}" name="x" value="300" />
<mx:SetProperty target="{buttonTwo}" name="x" value="200" />

continued

313

LA AS Building an Application

<mx:SetProperty target="{buttonTwo}" name="y" value="100" />
<mx:SetProperty target="{buttonThree}" name="x" value="100" />
<mx:SetProperty target="{buttonThree}" name="y" value="100" />
</mx:State>
</mx:states>
<mx:transitions>
<mx:Transition
fromState="*"
toState="{STATE_TWO}"
>
<mx:Parallel>
<mx:Move
target="{buttonOne}"
easingFunction="{Exponential.easeInOut}"
duration="300"
/>
<mx:Move
target="{buttonTwo}"
easingFunction="{Exponential .easeInOut}"
duration="500"
/>
<mx :Move
target="{buttonThree}"
easingFunction="{Exponential.easeInOut}"
duration="700"
/>
</mx:Parallel>
</mx:Transition>
<mx:Transition
fromState="{STATE_TWO}"
toState="*"
>
<mx:Parallel>
<mx :Move
target="{buttonOne}"
easingFunction="{Exponential .easeInOut}"
duration="700"
/>
<mx :Move
target="{buttonTwo}"
easingFunction="{Exponential.easeInOut}"
duration="500"
/>

314

Application Design Best Practices m

<mx:Move
target="{buttonThree}"
easingFunction="{Exponential.easeInOut}"
duration="300"
/>
</mx:Parallel>
</mx:Transition>
</mx:transitions>
</mx:WindowedApplication>

Combining MXML with ActionScript

You can use MXML and ActionScript interchangeably. You can write an ActionScript class that
extends an MXML component just as an MXML component can extend an ActionScript class. Also,
MXML components can contain <mx: Script> tags that allow developers to insert ActionScript
code directly into MXML components.

There are several ways to combine the two, but the most common are using <mx: Script> tags
and through inheritance. In fact, any MXML component is going to extend an ActionScript class,
but inheritance can be used in more than one way.

For example, suppose you are building an MXML component called GameScoreBoard.mxml for
a pinball game you are developing. This component will only be responsible for displaying the
score of the game, so it will need to watch that value in the application model. One way to do this
is to extend Canvas directly to compose your component, as shown in Listing 16.4.

The most popular alternative to this method is known as code-behind. If you were to use code-
behind for the example in Listing 16.4, you would first create an ActionScript class called
GameScoreBoardClass.as that extends Canvas, and then extend that class when you create
GameScoreBoard.mxml. This way, all your ActionScript is contained within the class, and only
the declarative MXML tags are contained in the MXML component.

The distinction between code-behind, which is a form of inheritance, and normal inheritance tech-
niques is that the ActionScript class “behind” the MXML component is specific to, and tightly cou-
pled with, the component. Generally, a base class is designed so that it can be extended by
multiple subclasses, but that is not the intention with code-behind.

Whether you do or do not use the code-behind technique is a matter of choice, but for very com-
plicated visual components it can be a very helpful tool. Also, if the demands on a visual compo-
nent change over time, and it becomes too complicated, code-behind is a good first step for
refactoring.

315

LA AS Building an Application

MXML Component Directly Extending Canvas

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:utils="flash.utils.*"
creationComplete="onComplete ()"
>
<mx:Script>
<! [CDATA[

import org.airbible.pinball.model.ModelLocator;

[Bindable]
private var displayScore:Number = 0;

private var _score:Number = 0;
private var changeTimer:Timer;

/**

* Setter for the current game score, will get the

* value through binding from the application model

* using a Cairngorm style Model Locator class.

* When the value is changed, the setter will make

* sure that the timer is running. The timer updates

* incrementally to emulate behavior of classic pinball

* games.

**/
public function set score(value:Number) : void
{

_score = value;

if (!changeTimer.running)

{

changeTimer.start () ;

}
}
public function get score() : Number
{

return _score;
}
private function onComplete() : void
{

changeTimer = new Timer (0, 0);

changeTimer.addEventListener (TimerEvent.TIMER, updateScore) ;
}

316

Application Design Best Practices m

private function updateScore (event:TimerEvent) : void
{
if (displayScore < score)
{
displayScore++;
}
else
{
changeTimer.stop () ;
}
}

11>

</mx:Script>

<mx:Binding
source="{ModelLocator.gameScore}"
destination="score"

/>

<mx:Label text="{displayScore}" />

</mx:Canvas>

Chapter 3 contains a more extensive discussion of the code-behind technique.

You can use MXML components for all types of classes, but they are ideal for visual elements.
MXML is an excellent format for composition, because it allows a variety of elements to be added
together, but encourages developers to simplify the interfaces of those elements. If your classes are
ravioli, then MXML is the perfect plate.

You should use component states regularly, and think of an MXML component as an element that
has one or more states. If you have states that affect only a particular part of a stage and states that
affect the entire stage, and those states conflict with each other, then you should break that stage
up into multiple components with their own individual states. Remember that you can never have
too many classes, but you can have too much confusion.

General Coding Guidelines

JavaScript and ActionScript are both ECMAScript languages and are fairly similar. On the Web,
JavaScript has a unique set of demands, as it must work in various browsers. Fortunately, AIR
eliminates that frustration, because JavaScript code only needs to work in a single environment.
Because of this, JavaScript coding and ActionScript coding have similar sets of demands, and the
guidelines for both can be discussed together.

317

LA AS Building an Application

318

Package structuring

In recent years, ActionScript and JavaScript developers have adopted the standard for package
structuring from Java. This standard is the inverse domain standard, where you keep all the classes
you write in a package specific to your domain, but inverted from the order that would appear on
the Web. Examples of this include org.airbible and com.adobe.

The primary purpose of this convention is to provide a unique namespace for classes, so that
imported libraries from a third party will not conflict with your own classes. Also, when packages
are named this way, it is easy for developers to recognize who is responsible for the code within;
this package-naming convention may even be useful for locating additional documentation or
updated versions.

Itisn’t uncommon for core libraries to break from standard inverse domain package

: names, as the core packages of Flash and Flex do. However, optional extensions
provided by Adobe, such as Cairngorm, do adhere to this standard, so this should not be used as
an excuse to break from convention.

Beyond the domain, your package structure should be designed to help developers locate specific
classes and to clarify the intended use of each class. One convention that has gained popularity is
to make model, view, and control subfolders for each domain. This particular distinction may not
apply to every project, but it does demonstrate exactly the kind of distinction that should be made
at this level.

Package naming and class naming are more important than a lot of developers realize. A clearly
designated full class path is more effective than a paragraph of documentation at the top of the
class. This is a simple truth of the human aspect of programming: People judge a book by its cover
and people judge a class by its name. You should never rush into a class name too quickly. If you
aren’t certain that you are choosing the right word for a package or a class, consult a thesaurus.

Using interfaces

ActionScript 3.0 enforces data types much more strictly than previous versions, and one of the
most powerful tools in a strictly typed language is the interface. Developers often ignore interfaces,
thinking that because they don’t contain an implementation then they can’t have much use. In fact,
it is not uncommon to see an abstract class used without an interface to implement, even though
the original intention of an abstract class was to provide a basic implementation of an interface.

So what is the purpose of an interface? The answer is simple: abstraction.

FIGURE 16.3

Application Design Best Practices

When you design a class, you should always start thinking about it in terms of how it will be used
by other classes. In other words, imagine you are using an instance of the class you are designing,
and try to think of the ideal interface. The closer you are able to come to implementing this ideal
interface, the less likely it will be that a change to a class will require a change to others.

When you create this ideal design for the interface of your new class that will be used by other
classes, you should make an interface to represent it. Your interface will reinforce this design for
developers who wish to build a different implementation of the same class.

Note that implementing an interface means the compiler will require that your implementation
have a method with the same name and return value as that listed in the interface. It does not,
however, require that you implement these methods in a functional way or that you don’t add
additional methods to circumvent the original intent of the interface. So when you use a class that
implements an interface, you should refer to that class by the interface name, not the name of the
implementation.

For example, suppose you are creating a layout manager for an image strip based on the wireframe
in Figure 16.3.

Wireframe for an image strip

4

The goal of a layout manager is simply to provide a position for a particular element in your list of
elements. The results will be very simple for the wireframe in Figure 16.3, because the images have
a linear progression, so the first element will have an (x, y) position of (0, 0), the second will have
a (100, 0) position, the third will have a (200, 0) position, and so on. This hardly seems like an
engineering problem at all.

But how will this list behave if there are fewer than five images? Also, when one of the images
slides out of view, where does it appear to go? How hard will it be for you to adjust your code if
the wireframe is changed to Figure 16.4 after you're finished?

319

LA AS Building an Application

Updated wireframe that tests your code design

o

Based on these questions, you may decide that a layout manager is in order. For this basic example
there are three parts:

B The layout manager

B The position object

B The carousel that uses the layout manager
The carousel does all the work of rendering the items and is responsible for interpreting the data
coming in from the application model. It tells the layout manager what it needs to know about the

list and expects to be able to retrieve a position for any item in the list. The first thing you do is to
define what a “position” should mean, as shown in Listing 16.5.

LISTING 16.5

Position Value Object Used by Layout Manager

package org.airbible.vo
{
public class PositionVO
{
public var x:Number;
public var y:Number;
public var z:Number;
public var width:Number;
public var height :Number;
public var visible:Boolean;

320

Application Design Best Practices m

For the manager itself, you decide that the least amount of information it needs to know is the
length of the list being navigated through and which element in the list is in focus. With that infor-

mation, it should be able to provide a PositionVo for every item in the list, and the interface will
look like Listing 16.6.

LISTING 16.6

Interface for Layout Manager

package org.airbible.view.carousel
{

import org.airbible.vo.PositionVO;

public interface IPositionManager

{
/**
* the length of the list being displayed
**/
public function get length() : uint;
public function set length(value : uint) : void;
/**
* focus is the "center" position, and is used to
* communicate where the list is scrolled to
**/
public function get focus() : uint;
public function set focus(value : uint) : void;
/**
* given an index relative to the length of this list,
* return a valid position
**/
public function getPositionAt(index : uint) : PositionVO;
}

Next, implement this interface as a LinearPostionManager, which generates a layout like the
one defined in Figure 16.3. Now suppose that in the carousel class, you refer directly to the class
LinearPositionManager. Also, suppose that during the course of development of this carou-
sel class, you decide that the methods provided by the interface aren’t sufficient, so you add a

method to LinearPositionManager that circumvents the interface; for example a getvisi-
blePositions method.

321

LA AS Building an Application

322

In this case, it is possible that the added method or methods could be applied to the interface, but
it is also possible that you would add methods that didn’t make sense for the general case. This
means that you have coupled your carousel class tightly to the LinearPositionManager
implementation, and the purpose of using an interface in the first place has been lost.

The solution to this is to refer to IPositionManager whenever possible. You can set method
parameters and return values to an interface just as easily as you can set them to a concrete imple-
mentation. This way, almost all the code in the carousel class is able to recognize the manager only
by the interface name. The only exception to this would be if your carousel was responsible for
instantiating the concrete position manager, but this responsibility could be cordoned off into its
own method.

This technique is often referred to as the Strategy Pattern for behavior management. For example,
AnimalControl.moveOnLand () can call IAnimal.moveOnLand (), which will be imple-
mented as a “waddle” behavior by the Penguin class, which extends TAnimal. For structural
management, this technique is referred to as the Bridge Pattern.

If the fact that there are two design patterns based on this technique is not enough to convince you
of its value, consider that it also employs the basic Object Oriented Principles (OOP) of abstrac-
tion, encapsulation, and polymorphism. All this terminology tends to violate the rules of simplicity
that they were designed to communicate, but this technique can be stated simply: If you program
to interfaces, you protect your original plan and prevent changes from causing a ripple effect across
your classes.

Summary

Spaghetti code is code with different behaviors and structures intertwined to the point that even
the smallest change to one part causes a ripple effect across other parts. The solution to this prob-
lem is to write ravioli code instead and wrap each part neatly into its own package. There is no
such thing as too much code, too much engineering, or too many classes. There is such a thing as
too much confusion.

he AIR Software Developer Kit (SDK) offers an alternative to using

Flash CS3, Flex 3, or Dreamweaver CS3 for AIR development. Using

nearly any simple text editor of a developer’s preference, you can
develop Flex or HTML and Ajax AIR applications using the SDK command-
line tools. The free command-line tools are included in both the Flex and
AIR SDKs.

SDK Development Essentials

Developing AIR applications using the SDK can involve a different workflow
than working in Flash, Flex, or Dreamweaver. The SDK does not generate or
manage the tools that automatically generate and manage the required files,
such as the application descriptor file for compiling an AIR application. To
employ the SDK, use the command-line tools to compile, debug, and pack-
age the application, and require the use of a command prompt such as cmd.
exe in Windows, or Terminal in OS X or Linux. This section covers the
basics of using the command line and the essential requirements for develop-
ing with the SDK.

There are several files required for compiling an AIR application. In Flash,
Flex, and Dreamweaver, these files are generated automatically, and the
application descriptor file is edited by wizards in the case of Flash and
Dreamweaver. These files must be created in order for the command-line
tools to compile an AIR application.

323

IN THIS CHAPTER

SDK development essentials

Compiling applications

Debugging

LA AS Building an Application

324

Application descriptor file

As described in Chapter 2, the compiler uses the application descriptor file to build your applica-
tion. The compiler gives the file several basic properties upon launch, such as its size, position, and
the initial system chrome to use.

Source files

Also required to compile an AIR application are the source files for your application. At least one
source file is required to run your application.

Compiling Applications

You can compile a Flex or ActionScript project using a version of the mxmlc compiler called amx-
mlc. The amxml compiler accepts an MXML file as the main application file and then uses addi-
tional parameters to specify the application descriptor file. The amxmlc compiler is identical to the
mxmlc compiler used in the Flex SDK, except that it accepts an AIR application descriptor file as
an argument. The following is the basic format for compiling an AIR application using amxmlc,
where [compiler options] specifies the command-line options used to compile your AIR
application:

amxmlc [compiler options] -- MyAIRApp.mxml
The following is an example of the arguments used to compile an AIR application with amxmlc:
amxmlc MyApplication.mxml -load-config=MyApplication-config.xml

Note that the application descriptor MyApplication-config.xml is actually loaded automati-
cally if your application descriptor’s filename matches the name of your application.

You need to specify the libraries that your application uses by employing the -1ibrary-path
option. You can use several library paths by adding += when assigning a path to an argument. The
following example illustrates how you can use multiple library paths:

amxmlc MyApplication.mxml -library-path=libraries/libl.swc
-library-path+=1libraries/1lib2.swc

Table 17.1 lists examples of using amxmlc to compile your files.

TABLE 17.1

SDK Development

Compiling with amxmlc

Task Code

Compile an AIR MXML file amxmlc MyApplication.mxml

Compile and set the output name amxmlc —output MyFirstApplication.swf --
MyApplication.mxml

Compile an AIR ActionScript file amxmlc MyActionscriptProject.as

Specify a compiler configuration file amxmlc -load-config config.xml -- myApp.mxml

You can compile components and shared runtime libraries with the acompc compiler. Components
are source files in the SWC format that are easily shared among developers in a compressed single
file format that can be referenced when developing and compiling a Flex AIR application. Shared
runtime libraries are libraries used by Flex for runtime sharing. Runtime Shared Libraries use mod-
ules to help Flex applications share source code more efficiently; the libraries load modules at run
time that contain shared classes. In this way, two applications can use the same module and reduce
download times.

The acompc compiler

The acompc compiler works similarly to the amxml compiler with a few differences. Unlike the
amxmlc compiler, acompc requires that you specify which classes within a codebase to compile.
acompc also does not automatically search for a local configuration file.

The acompc configuration file

The acompc compiler can use a configuration file to specify the classes to compile into an SWC
library or a shared component library. The configuration file consists of a source path used to
locate the root folder of your source files, as well as a list of fully qualified class names using dot
syntax (the same syntax used in ActionScript and MXML). In Listing 17.1, the class packages are
located in the source folder, and the classes ClassNamel and ClassName?2 are located in
classes/org/airbible/samples/.

325

LA AS Building an Application

LISTING 17.1

<flex-config>

<compiler>

<source-path>
<path-element>classes</path-element>
</source-path>

</compiler>
<include-classes>

<class>org.airbible.samples.Samplel</class>
<class>org.airbible.samples.Sample2</class>

</include-classes>

</flex-config>

TABLE 17.2

The configuration file is a more practical way of invoking the acompc compiler and allows for
fewer mistakes and a shorter command-line command. The following command demonstrates
compiling an SWC component using a configuration file:

acompc -load-config Samples-config.xml -output Samples.swc

Using the configuration file to execute the acompc compiler is significantly easier than typing each
class on the command line as it may be common to compile a library that includes hundreds of
classes depending on the complexity of the component. When using acompc without a configura-
tion file, the command must be on a single line, or you must use the command-line continuation
character of the command-prompt application being used. The following illustrates how classes
can be compiled using a single line on the command-line:

acompc -source-path classes -include-classes org.airbible.samples.
Samplel org.airbible.samples.Sample2 -output Samples.swc

Component compiler usage examples

Table 17.2 lists examples that use acompc to compile component libraries and Runtime Shared
Libraries using a configuration file called samples-config.xml.

Compiling with acompc

Task Code

Compile an AIR component or library acompc -load-config samples-config.xml
-output lib/samples. swc

Compile a runtime-shared library acompc -load-config samples -config.xml
-directory -output 1lib

Reference a runtime-shared library acompc -load-config samples -config.xml

326

-output 1lib/ samples.swc

SDK Development
Debugging

Previewing and debugging an application while developing is an important vital task that allows
developers to understand how their code is behaving at run time. When developing AIR applications
in Flash, Flex Builder, or Dreamweaver, Preview and Debug menu items and shortcuts allow for
quick and convenient testing of an application using simple traces or other debugging techniques.

When developing using the AIR SDK, use the AIR Debug Launcher (ADL) to test Flex, ActionScript,
and HTML-based applications. ADL allows you to preview an AIR application without creating the
final . air installer package that requires signing and installing. The ADL uses an AIR run time
included with the SDK and does not require that you install the AIR run time separately.

ADL displays messages using the trace () method to display statements in the output, but does
not include support for breakpoints or other debugging features. For more advanced debugging
support, use Flash or Flex Builder.

When developing an AIR application, use the ADL to launch a preview of the application. Unlike
compiling an application with amxmlc, ADL initiates a run time and visually displays the applica-
tion in its current state while also tracing statements that are placed in the source code. To launch
ADL, use the following syntax and arguments on one line:

See Chapter 6 for advanced debugging, profiling, and optimization techniques.

adl [-runtime runtime-directory] [-pubid publisher-id] [-nodebug]
application.xml [rootdirectory]

ADL command-line arguments
Table 17.3 describes the arguments used when launching ADL.

TABLE 17.3

ADL Launching Arguments

Argument Description
-runtime runtime- Specifies the directory containing the run time to use. If a directory is not
directory specified, this uses the runtime directory in the SDK directory from which the

ADL is being used. If ADL does not reside in its SDK folder, the runtime location
must be specified.

-pubid Specifies the unique ID of the publisher of the application. This would normally
publisher-id be specified by the certificate used to publish the application. The Publisher ID is
also used by the run time when communicating with other AIR run times.

continued

327

LA AS Building an Application

Argument Description

-nodebug Turns off debugging support. Windows for unhandled errors are not generated
while the trace statement continues to print to the output window. While debug
is turned off, an application will run slightly faster and will mimic an installed
application more accurately. This can be useful when attempting to experience
an application as it will be when it is published and installed.

Application.xml Specifies the application descriptor file as described in Chapter 2. This descriptor
file specifies various application properties that include size, position, and
appearance.

--arguments Used to pass arguments to the application as command-line arguments.

ADL examples

Table 17.4 lists examples of launching with ADL.

TABLE 17.4

Launching with ADL
Task Code
Launch the application using ADL in the current director adl application.xml

Launch the application using ADL with the command-line adl application.xml - helloworld!
argument helloworld!

Launch the application using ADL in the directory debug adl application.xml debug

Launch the application using ADL using a different run adl -runtime /AnotherSDK/runtime
time than the run time included in the SDK application.xml

Summary

This chapter covers the basics of developing applications using the SDK, but does not cover all the
tools and syntaxes for using command-line applications. You can use the SDK for development in
combination with an IDE of your choosing; this allows you to create AIR applications without the
need of Flex, Flash, or Dreamweaver. It also gives you the opportunity to create customized AIR
application installer systems that may be processed with varying degrees of automation.

Using the command-line can be very powerful and flexible but may not always be the most practi-
cal workflow for development. It may be worth investing in a Flex, Flash, or Dreamweaver license;
the SDK leaves that option open to developers wishing to develop in AIR.

328

t this point, you are probably aching to build a useful, real-world

application rather than just experiment with example projects. You're

in luck! This chapter walks you through developing a log reader. The
purpose of this application is to display logger output from Flash content —
whether it be a Web site or fellow AIR application. Having a nice log reader Architecture
in your toolkit is an invaluable resource, as it is something you can use to aid
in the development of every one of your projects.

IN THIS CHAPTER

Requirements

Testing

As you will learn while developing this application, you do not need to use
every single AIR feature to make a great AIR application. There are certainly
features such as filesystem access that you will use more often than not, but
this project aims to demonstrate how a useful application can be derived
using the same Flash and Flex components that you may be familiar with
from Web development.

At the end of the chapter is a challenge for reworking this application to be
more versatile and take full advantage of the AIR framework.

Requirements

Before diving into the architecture, let’s establish some requirements regard-
ing the application’s functionality and user interface.

329

LA AS Building an Application

330

Functionality

A good log reader is simple, yet flexible. More specifically, it needs to have:

W A basic Application Programming Interface (API) for sending log messages to the reader
B Easy integration with a logger, such as the Flex logger

W The ability to clear the log reader’s console from the application’s interface or from
the API

B The ability to filter log levels using the application’s interface
B Hot-key support for triggering core application functionality
B A vertical scroll bar that automatically scrolls to the end of the document as messages are

added to the console so that the output can be monitored correctly

Those are the basic functionality requirements for a good log reader. Additionally, like all good
applications, your log reader needs to be able to check for updates and upgrade itself if a newer
version comes along.

User interface
With the functionality requirements laid out, it’s time to define the user interface (UI). To make
the log reader as efficient to use as possible, its interface should have:
W Full-screen support when maximized
B A user-definable color-scheme for console background and text on a per-level basis
B Minimal Ul controls
B A default OS skin rather than a custom skin
You may be questioning the last bullet listed. There are certainly applications such as widgets in

which custom skins make a lot of sense, but for a useful development tool, the default OS skin is
going to be a better choice.

The only reason that you may consider using a custom skin is to take advantage of lowering the
opacity of the application. It is often useful to overlay these types of tools over the top of other
windows, so you can architect the application with this in mind as a possible change in the future.

Architecture

With the functionality and user interface requirements listed, it is time to begin architecting the
application. Architecture can be divided into three separate parts for easier consumption:

B Make the application updatable

B Prepare the API

B Create the application view and logic

Sample Application: LogReader m

The first part that you will be working on is the core framework for making the application updat-
able; this is a foundational piece of the application.

Making the application updatable

In order to future-proof the application, it needs to have some logic in place for checking for
updates and then retrieving them if necessary.

Chapter 22 covers distribution in more detail.

Because this is a process that you will likely use in every AIR application
that you develop, it makes a lot of sense to create some sort of base class from which to derive your
application classes. Listing 18.1 demonstrates the creation of such a base class for managing appli-
cation updates.

LISTING 18.1

A Base Class for Inheriting Updatable Logic

package org.airbible.core

{
import flash.desktop.NativeApplication;
import flash.desktop.Updater;
import flash.events.Event;
import flash.events.ProgressEvent;
import flash.filesystem.File;
import flash.filesystem.FileMode;
import flash.filesystem.FileStream;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.net.URLStream;
import flash.utils.ByteArray;

import mx.core.WindowedApplication;
import mx.events.FlexEvent;
import mx.managers.PopUpManager;

import org.airbible.components.popUps.YesNoPopUpComponent ;
import org.airbible.events.PopUpEvent;

public class UpdatableWindowedApplication extends
WindowedApplication
{

continued

331

LA AS Building an Application

LISTING 18.1

private static const VERSION_URL:String =
examples/updater/version.xml";

332

public var updatePopUp:YesNoPopUpComponent;
protected var _appXML:XML;

protected var _airXMLNamespace:Namespace;
protected var _versionURL:String;

protected var _versionXML:XML;

protected var _updateDownloadStream:URLStream;
protected var _updateFile:File;

public function get versionURL() :String

{

return _versionURL;

public function set versionURL(value:String) :void
{

_versionURL = value;

[Bindable (event="descriptorChanged")]
public function get version() :String
{
return _appXML._airXMLNamespace: :version;

public function getUpdate(url:String) :void
{

var updateDownloadRequest:URLRequest = new

URLRequest (url) ;

if (_updateDownloadStream == null)
{

_updateDownloadStream = new URLStream() ;

_updateDownloadStream.addEventListener (Event . COMPLETE,
updateDownloadStreamCompleteHandler, false, 0, true);

}

"http://www.airbible

.org/

_updateDownloadStream.addEventListener (ProgressEvent . PROGRESS,
updateDownloadStreamProgressHandler, false, 0, true);

Sample Application: LogReader m

_updateDownloadStream. load (updateDownloadRequest) ;

protected function checkForUpdates () :void

{

var versionRequest:URLRequest = new URLRequest (_
versionURL) ;

var versionLoader:URLLoader = new URLLoader () ;

versionLoader.addEventListener (Event .COMPLETE,
versionLoadCompleteHandler, false, 0, true);

versionLoader.load(versionRequest) ;

protected function updateApplication(updateFile:File,
updateVersion:String) :void

{
var updater:Updater = new Updater();

updater.update (updateFile, updateVersion) ;

protected function creationCompleteHandler () :void

{

_appXML = NativeApplication.nativeApplication.
applicationDescriptor;

_airXMLNamespace = _appXML.namespaceDeclarations() [0];

if (updatePopUp != null)
{

dispatchEvent (new Event ("descriptorChanged")) ;
updatePopUp.addEventListener (PopUpEvent .NO, updatePopUpNoHandler,

false, 0, true);

updatePopUp.addEventListener (PopUpEvent.YES, updatePopUpYesHandler,
false, 0, true);

checkForUpdates () ;

protected function versionLoadCompleteHandler (event:Event) :voi

continued

333

LA AS Building an Application

_versionXML = new XML (URLLoader (event.target) .data) ;

if (_versionXML._airXMLNamespace: :version != version)
{
PopUpManager .addPopUp (updatePopUp, this) ;
PopUpManager .centerPopUp (updatePopUp) ;
updatePopUp.visible = true;

protected function updateDownloadStreamProgressHandler (event:P
rogressEvent) :void

{

protected function updateDownloadStreamCompleteHandler (event:E
vent) :void
{
var updateFileStream :FileStream = new
FileStream() ;
var updateFileBytes :ByteArray = new
ByteArray () ;

_updateFile = File.applicationStorageDirectory.resolvePath ("Update.
air");

_updateDownloadStream.readBytes (updateFileBytes, 0,
updateDownloadStream.bytesAvailable) ;

updateFileStream.addEventListener (Event.CLOSE,
updateFileStreamCloseHandler, false, 0, true);
updateFileStream.openAsync (_updateFile, FileMode.WRITE) ;

updateFileStream.writeBytes (updateFileBytes, 0, updateFileBytes.
length) ;
updateFileStream.close () ;

protected function updateFileStreamCloseHandler (event:Event) :v
oid

updateApplication(_updateFile, String(_versionXML._
airXMLNamespace: :version)) ;

}

protected function updatePopUpNoHandler (event:PopUpEvent) :void
{

334

Sample Application: LogReader m

PopUpManager . removePopUp (updatePopUp) ;

protected function updatePopUpYesHandler (event:PopUpEvent) :voi

{
PopUpManager . removePopUp (updatePopUp) ;

getUpdate (_versionXML._airXMLNamespace: :url) ;

Basically an XML file such as the one shown in Listing 18.2 is created and placed on a server
somewhere.

LISTING 18.2

Example of an XML File Containing Application Version Information

<?xml version="1.0" encoding="utf-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0">

<!-- The latest version of the application. -->
<version>1.0</version>

<!-- The URL in which the latest version of the application can be
acquired. -->
<url>http://www.airbible.org/examples/log_reader/LogReader.air</
url>
</application>

The application will load the XML file and compare the listed version to its own version in order to
determine if a newer version exists. If so, the AIR file listed in the XML will be downloaded and
saved temporarily to the user’s hard drive. Once ready, the AIR file installs as an update to the
existing application.

Another common need is a pop-up window that features a question and two buttons for yes and
no. The class in Listing 18.3 defines such a component.

335

LA AS Building an Application

A Window Component for Displaying Yes and No Options

<?xml version="1.0" encoding="utf-8"?>

<mx:TitleWindow
xmlns:mx="http://www.adobe.com/2006/mxml"
width="300"
height="130"
title="Update"

<mx:Script>
<1 [CDATA[
import org.airbible.events.PopUpEvent;

protected function yesBtnClickHandler () :void

{
dispatchEvent (new PopUpEvent (PopUpEvent.YES)) ;

protected function noBtnClickHandler () :void
{
dispatchEvent (new PopUpEvent (PopUpEvent.NO)) ;

11>

</mx:Script>

<mx:TextArea
width="100%"
height="100%"
wordWrap="true"
borderThickness="0"

text="A newer version of this application exists. Would you like
install the updates now?"
/>

<mx:ControlBar
horizontalAlign="center"

<mx : HBox>
<mx:Button
id="yesBtn"
label="Yes"
click="yesBtnClickHandler ()"
/>

336

Sample Application: LogReader m

<mx:Button
id="noBtn"
label="No"
click="noBtnClickHandler ()"
/>
</mx : HBox>
</mx:ControlBar>

</mx:TitleWindow>

It is also useful to create an event that is specific to pop-up windows; this way you can dispatch
events that are specific to the outcome of a user’s selection. Listing 18.4 shows the class that the
YesNoPopUp class in Listing 18.3 uses.

LISTING 18.4

Event Subclass for Representing Pop-Up Events

package org.airbible.events

{

import flash.events.Event;

public class PopUpEvent extends Event

{ public static const CANCEL :String = "popUpCancel";
public static const CONTINUE :String =
"popUpContinue";
public static const NO :String = "popUpNo";
public static const OK :String = "popUpOK";
public static const YES :String = "popUpYes";

public function PopUpEvent (type:String, bubbles:Boolean=false,
cancelable:Boolean=false)

{
super (type, bubbles, cancelable);

}

override public function clone () :Event

{
return new PopUpEvent (type, bubbles, cancelable);

337

LA AS Building an Application

With these pieces built, you now have a reusable foundation for all of your applications to build
off of. Such a foundation can also handle the update process for you automatically. Next, you need
to spend some time creating the AP that will be used to send messages to the log reader from
other applications.

Preparing the API

Before continuing with the rest of the application development, now is a good time to create the
API. First and foremost, you need to declare the log levels that the reader will support for filtering.
In this case, you will be using the same levels as the Flex logger for maximum compatibility,
though most loggers use the same or very similar levels that can be mapped to these. In Listing
18.5, the levels are defined in a FilterLevel class as public static constants for use elsewhere in
the API and the application itself.

LISTING 18.5

Class for Housing Filter Level Constants

package org.airbible.logReader

{
public final class FilterLevel
{
public static const ALL :String = "all";
public static const DEBUG :String = "debug";
public static const ERROR :String = "error";
public static const FATAL :String = "fatal";
public static const INFO :String = "info";
public static const LOG :String = "log";
public static const WARN :String = "warn";
public function FilterLevel ()
{
}
}
}

Next, you will need to create the core class that is responsible for sending log messages over a local
connection to the log reader application. It also defines the name of the local connection that will be
used. The underscore () at the beginning of the connection name is required to allow a connection

338

Sample Application: LogReader m

between two different domains. Additionally, the log reader application itself needs to use the
allowDomain method, but that will be covered shortly.

Listing 18.6 shows how the static methods send each message of a specific level to the log reader
for filtering purposes.

LISTING 18.6

The LogReader Class

package org.airbible.logReader
{

import flash.net.LocalConnection;

public final class LogReader

{
public static const LOCAL_CONNECTION_NAME :String = "_
LogReaderLC";
public static const CLEAR_METHOD :String =
"clear";
public static const OUTPUT_METHOD :String =
"output";
private static const LOCAL_CONNECTION :LocalConnection =

new LocalConnection() ;

public function LogReader ()
{
}

public static function clear () :void
{
LOCAL_CONNECTION. send (LOCAL_CONNECTION_NAME, CLEAR_
METHOD) ;

}

public static function fatal (message:String) :void

{

continued

339

LA AS Building an Application

LOCAL_CONNECTION. send (LOCAL_CONNECTION_NAME, OUTPUT_METHOD, message,

340

FilterLevel .FATAL) ;
}

public static function error (message:String) :void

{

LOCAL_CONNECTION. send (LOCAL_CONNECTION_NAME, OUTPUT_METHOD,
FilterLevel.ERROR) ;
}

public static function warn(message:String) :void

{

LOCAL_CONNECTION. send (LOCAL_CONNECTION_NAME, OUTPUT_METHOD,
FilterLevel .WARN) ;
}

public static function info(message:String) :void

{

LOCAL_CONNECTION. send (LOCAL_CONNECTION_NAME, OUTPUT_METHOD,
FilterLevel.INFO) ;
}

public static function debug(message:String) :void

{

LOCAL_CONNECTION. send (LOCAL_CONNECTION_NAME, OUTPUT_METHOD,
FilterLevel .DEBUG) ;
}

message,

message,

message,

message,

With a basic API setup, you are ready to begin sending messages to the log reader once its view

and logic has been created.

Creating the application view and logic

At this point, you have created a foundational framework for managing updates and defined an

API for sending messages to the log reader application to be filtered and displayed. Now it is time

to get started on the log reader application itself.

Before laying out the view, you need to create a special component to meet the needs of one of
your functionality requirements. As text is added to a TextArea component, the vertical scroll

bar by default remains at its current position. Your functionality requirement was to override this

Sample Application: LogReader m

behavior and force the scroll bar to be at its maximum value as content is added so that the flow of
messages can be correctly monitored.

To accomplish this, create a new MXML component named ConsoleTextArea, as shown in
Listing 18.7, and a Script tag for containing the logic as shown in Listing 18.8.

The solution is to create an event listener for monitoring when a new value is committed to the
text area. Upon doing so, a delayed call is scheduled to update the vertical scroll position to the
new height of the text field. The callLater method is necessary to allow the component time
to finish updating its measurements before taking action.

LISTING 18.7

The ConsoleTextArea Class without Logic

<?xml version="1.0" encoding="utf-8"?>
<ConsoleTextArea

xmlns="org.airbible.logReader.*"
xmlns :mx="http://www.adobe.com/2006/mxml"

</ConsoleTextArea>

LISTING 18.8

The ConsoleTextArea Class with Added Logic

<?xml version="1.0" encoding="utf-8"?>

<ConsoleTextArea
xmlns="org.airbible.logReader. *"
xmlns :mx="http://www.adobe.com/2006/mxml"
creationComplete="creationCompleteHandler ()"

<mx:Script>
<! [CDATA[
import mx.controls.TextArea;
import mx.events.FlexEvent;

public function maximizeVerticalScrollPosition() :void
{

verticalScrollPosition = textHeight;

continued

341

LA AS Building an Application

protected function creationCompleteHandler () :void

{

addEventListener (FlexEvent .VALUE_COMMIT, onValueCommit, false, O,
true) ;

protected function onValueCommit (event:FlexEvent) :void
{

calllater (maximizeVerticalScrollPosition) ;

11>

</mx:Script>

</ConsoleTextArea>

LISTING 18.9

You are now ready to define the log reader application’s view using the components that you have
created thus far. The layout is very simple; it contains the special ConsoleTextArea component
that you just created and the UpdatePopUp component as well.

Also note in Listing 18.9 that a bunch of UI elements flags have been set to false. This will not
affect the application when it's set up to use the default OS chrome, but will hide everything upon
setting up the application XML file to use a custom chrome.

The Main Application Class without Any Logic

<?xml version="1.0" encoding="utf-8"?>

<core:UpdatableWindowedApplication

342

xmlns="org.airbible.logReader.*"
xmlns:components="org.airbible.components.*"
xmlns:core="org.airbible.core.*"
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
horizontalScrollPolicy="off"
verticalScrollPolicy="off"
showFlexChrome="false"
showGripper="false"
showStatusBar="false"
showTitleBar="false"

Sample Application: LogReader m

<mx:Style source="../assets/css/defaults.css" />

<ConsoleTextArea
id="console"
width="100%"
height="100%"
borderThickness="0"
/>

<components : UpdatePopUp
id="updatePopUp"
visible="false"

/>

</core:UpdatableWindowedApplication>

You will also notice in Listing 18.9 that the defaults. css file is being embedded at compile
time for defining application styles. Use this file as shown in Listing 18.10 to make the application
custom-chrome ready and define some styles for the scroll bar components. You will be storing the

console styles in a separate CSS file that is loaded at run time so that users can edit it later on.

LISTING 18.10

The defaults.css File

Application {

backgroundColor: .
bacgkroundImage: ",
margin-top: 0;
margin-right: 0;
margin-bottom: 0;
margin-left: 0;
padding: 0px;
}
ScrollBar {
borderColor: #555555;
fillAlphas: 1, 1;
fillColors: #000000, #000000;
highlightAlphas: 0, 0;
themeColor: "
trackColors: #000000, #000000;

}

ScrollControlBase {

continued

343

LA AS Building an Application

LISTING 18.11

backgroundAlpha: 1;

backgroundColor: #000000;
borderColor: #000000;
color: #000000;
disabledColor: #000000;

The application is now fully ready to use a custom skin if that is what you desire. Go ahead and set
the systemChrome value to none and transparent value to true in the application XML file,
but keep the nodes commented out, as shown in Listing 18.11.

A Small Excerpt from the Application Descriptor File

<!-- Settings for the application's initial window. Required. -->
<initialwWindow>
<!-- The type of system chrome to use (either "standard" or "none").
Optional. Default standard. -->
<!-- <systemChrome>none</systemChrome> -->
<!-- Whether the window is transparent. Only applicable when
systemChrome is false. Optional. Default false. -->
<!-- <transparent>true</transparent> -->

</initialwindow>

344

Again, in the event that a custom skin is ever needed, the application is ready to go for the most
part. For now, stick with the default OS skin.

Next, create a file named console.css located in a css directory in your bin directory for
loading in at run time. This file will contain styles for the console background color and alpha,
as well as font size and colors for each of the various filter levels, as shown in Listing 18.12.

Last, but not least, it is time to add logic for the log reader application. Most of it is pretty straight-
forward. Notice the use of regular expressions to insert filter levels dynamically into HTML tem-
plates for correctly styling each span as it is added to the console.

Sample Application: LogReader m

Also note the use of the al1lowDomain method of the local connection object. By passing it the
wildcard (*) character in addition to the connection name beginning with an underscore as men-
tioned earlier, the local connection now has full permission to communicate over multiple
domains. This is very important for the log reader to work properly.

LISTING 18.12

The console.css File to Be Loaded at Run Time

console {

alpha: 1;
backgroundAlpha: 1;
backgroundColor: #000000;

}

.log {
color: #8BC953;
fontFamily: Verdana;
fontSize: 12;
fontWeight: bold;
leading: 5;

}

.fatal {
color: #CA2A2B;
fontFamily: Verdana;
fontSize: 12;
fontWeight: bold;
leading: 5;

}

.error {
color: #BF5634;
fontFamily: Verdana;
fontSize: 12;
fontWeight: bold;
leading: 5;

}

.warn {
color: #B8CBAC;
fontFamily: Verdana;
fontSize: 12;
fontWeight: bold;
leading: 5;

}

continued

345

LA AS Building an Application

.info {

}

.debug {

LISTING 18.13

color: #4B9AB1;
fontFamily: Verdana;
fontSize: 12;
fontWeight: bold;
leading: 5;
color: #93947A;
fontFamily: Verdana;
fontSize: 12;
fontWeight: bold;
leading: 5;

Also worth mentioning in Listing 18.13 is the listener that monitors when the application window
is resized. When the window is maximized, full screen mode is activated. This was another one of
your functionality requirements: to allow easy access to full screen mode.

By having the application running full screen in a separate monitor, you will be able to easily mon-
itor logger output while stepping through the application.

That concludes the initial development of the log reader application. Go ahead and publish a
release version of the application and prepare to test out the API in the next section.

The Main Application Class with All Components and Logic Added

<?xml version="1.0" encoding="utf-8"7?>

<core:UpdatableWindowedApplication

346

xmlns="org.airbible.logReader. *"
xmlns:components="org.airbible.components.*"
xmlns:core="org.airbible.core.*"
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
horizontalScrollPolicy="off"
verticalScrollPolicy="off"
showFlexChrome="false"
showGripper="false"

showStatusBar="false"
showTitleBar="false"
creationComplete="creationComplete ()"

Sample Application: LogReader m

<mx:Style
source="../assets/css/defaults.css"
/>

<mx:Script>
<! [CDATA[

import flash.display.NativeWindowDisplayState;
import flash.display.StageDisplayState;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.net.LocalConnection;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.text.StyleSheet;

import mx.events.FlexNativeWindowBoundsEvent;
import org.airbible.components.consoleTextArea.

ConsoleTextAreaComponent ;
import org.airbible.core.UpdatableWindowedApplication;

private static const VERSION_URL:String = "http://www.airbible.org/
examples/log_reader/version.xml";

private static const CONSOLE_CSS_FILE:String = "css/console.css";

private static const CONSOLE_OUTPUT_TEMPLATE:String = "{message}\n";

private static const CONSOLE_OUTPUT_MESSAGE_PATTERN:RegExp = /\
{message\}/;

private static const CONSOLE_OUTPUT_LEVEL_PATTERN:RegExp = /\
{level\}/;

protected var _log:String = "";
protected var _filter:String = FilterLevel.ALL;

protected var _connection:LocalConnection;

public function get filterLevel () :String
{

continued

347

LA AS Building an Application

return _filter;

}
public function set filterLevel (value:String) :void
{ _filter = value;
refreshConsole () ;
}

override public function maximize() :void

{
stage.displayState = StageDisplayState.FULL_SCREEN_

INTERACTIVE;
}

public function clear () :void

{
console.htmlText = "";

_10g — ";

output ("LogReader cleared.", FilterLevel.LOG) ;
}

public function output (message:String, level:String) :void

{
if(_filter == FilterLevel.ALL || _filter == level)

{
var output:String = CONSOLE_OUTPUT TEMPLATE;

output = output.replace (CONSOLE_OUTPUT MESSAGE_PATTERN, message) ;

output = output.replace (CONSOLE_OUTPUT LEVEL_PATTERN, level);

console.htmlText += output;

_log += output;

}
}
protected function refreshConsole() :void
{ if(_filter == FilterLevel.ALL)
{ console.htmlText = _log;
}

348

Sample Application: LogReader m

else

var tokens:Array = new Array();

var tokensLength:int = 0;

var patternl:RegExp = new RegExp("class='");
var pattern2:RegExp = new RegExp("'");

var filterPattern:RegExp = new RegExp (patternl.source + _filter +
pattern2.source) ;
var consoleText:String = _log;

tokens = consoleText.split("\n");
tokensLength = tokens.length;
console.htmlText = "";

for(var i:int = 0; 1 < tokensLength; i++)
{
var token:String = tokens[i];
if (token.search(filterPattern) != -1)
console.htmlText += (token + "\n");
}
}
}
protected function creationCompleteHandler () :void
{

versionURL = VERSION_URL;
super.creationCompleteHandler () ;

_connection = new LocalConnection() ;

_connection.client = this;

_connection.allowDomain ("*") ;

_connection.connect (LogReader . LOCAL_CONNECTION_
NAME) ;

var urlloader:URLLoader = new URLLoader () ;
var urlRequest:URLRequest = new URLRequest (CONSOLE_CSS_FILE) ;
urlLoader.addEventListener (Event .COMPLETE,

styleSheetLoadCompleteHandler, false, 0, true);
urlLoader.load (urlRequest) ;

addEventListener (FlexNativeWindowBoundsEvent .WINDOW_RESIZE,
windowResizeHandler) ;

continued

349

LA AS Building an Application

addEventListener (KeyboardEvent .KEY_DOWN,
keyDownHandler) ;
}

protected function windowResizeHandler (event:FlexNativeWi
ndowBoundsEvent) :void

{

if (nativeWindow.displayState == NativeWindowDisplayState.MAXIMIZED)
maximize () ;

}

protected function keyDownHandler (event:KeyboardEvent) :vo
id
{
switch (event.charCode)
{
// a
case 97:

{
filterLevel = FilterLevel.ALL;
break;

// c
case 99:

clear () ;
break;

// d
case 100:

filterLevel = FilterLevel.DEBUG;
break;

// e
case 101:

filterLevel = FilterLevel.ERROR;
break;

// £
case 102:

350

Sample Application: LogReader m

filterLevel = FilterLevel.FATAL;

break;

}

// i

case 105:

{
filterLevel = FilterLevel.INFO;
break;

}

/] w

case 119:

{
filterLevel = FilterLevel.WARN;
break;

}

protected function styleSheetLoadCompleteHandler (event:Ev
ent) :void

var css:String = String(URLLoader (event.target) .
data) ;
var styleSheet:StyleSheet = new StyleSheet () ;

styleSheet.parseCSS(css) ;

console.setStyle("alpha", styleSheet.getStyle("console") .alpha);

console.setStyle("backgroundAlpha", styleSheet.getStyle("console").
backgroundAlpha) ;

console.setStyle("backgroundColor", styleSheet.getStyle("console").
backgroundColor) ;
console.styleSheet = styleSheet;

output ("LogReader ready.", FilterLevel.LOG) ;
}
11>
</mx:Script>
<ConsoleTextArea

id="console"
width="100%"
height="100%"

continued

351

LA AS Building an Application

borderThickness="0"
/>

<components : UpdatePopUp
id="updatePopUp"
visible="false"

/>

</core:UpdatableWindowedApplication>

LISTING 18.14

Testing

With the log reader application published and ready to go, it is now time to test out the API on its
own, as well as integrate it with the Flex logger. Go ahead and fire up a new Flash, Flex, or AIR
project, import the LogReader class, and create some test code, such as the code shown in
Listing 18.14.

Some Examples of Testing Output from Each of the Methods

LogReader.debug ("Testing debug...");
LogReader.info ("Testing info...");
LogReader.warn ("Testing warn...");
LogReader.error ("Testing error...");
LogReader.fatal ("Testing fatal...");

352

Launch the LogReader application and then publish your test file. You should see the output show
up in the LogReader with each message displaying as a different color as specified in the con-
sole.css file. If everything worked correctly, then you are in good shape.

Try out the hot-keys for filtering to see those in action as well. For example, pressing I should clear
the display except for info messages. Pressing A should bring all of the messages back. Using the
LogReader class as is may be plenty sufficient for you, but you may also wish to integrate it with
a logger such as the one included in the Flex framework. By doing so, you can also output your
messages in a specially formatted manner and to multiple targets, such as trace output to the
Eclipse console.

Sample Application: LogReader m

In order to integrate the log reader API with the Flex logger, you need to create a new target. In
Listing 18.15, a new target class is defined for outputting all logger messages to the LogReader
application. The class that it subclasses, LoggerTarget, is derived from TraceTarget and
simply formats the message before passing it and the log level to the internalLog method. By
overriding this method, you can now send the message to the LogReader application rather than
using the trace statement to output the message.

LISTING 18.15

Creating a Custom Logger Target for Integration with the Flex Logging Package

package org.airbible.logging
{

import mx.logging.LogEvent;

import org.airbible.logReader.FilterLevel;
import org.airbible.logReader.LogReader;

public class LogReaderTarget extends LoggerTarget
{

public function LogReaderTarget ()

{

LogReader.clear () ;

override protected function internallog(message:String,
level:int) :void
{

var logEventLevel:String = LogEvent.getLevelString(level).
toLowerCase () ;

switch (logEventLevel)
{
case FilterLevel .DEBUG:
{
LogReader .debug (message) ;
break;

case FilterLevel.INFO:

{
LogReader.info (message) ;
break;

continued

353

LA AS Building an Application

case FilterLevel.WARN:
{

LogReader .warn (message) ;
break;

case FilterLevel.ERROR:
LogReader.error (message) ;
break;

case FilterLevel.FATAL:

LogReader. fatal (message) ;
break;

You can now create this target along with other targets and pass them to the logger while initializ-
ing your application, as shown in Listing 18.16.

LISTING 18.16

An Example of Using the Custom Logger Target

protected function initLogger () :void

{
var traceTarget :TraceTarget = new TraceTarget () ;
var logReaderTarget :LogReaderTarget = new

LogReaderTarget () ;

traceTarget.level = LogEventLevel .ALL;
traceTarget.includeCategory = true;
traceTarget.includeDate = true;
traceTarget.includelLevel = true;
traceTarget.includeTime = true;
logReaderTarget.level = LogEventLevel .ALL;
logReaderTarget.includeCategory = true;

354

Sample Application: LogReader m

logReaderTarget.includeDate = true;
logReaderTarget.includeLevel = true;
logReaderTarget.includeTime = true;

Log.addTarget (traceTarget) ;
Log.addTarget (logReaderTarget) ;

By leveraging the Flex logger’s capability to output to multiple targets, you can now enjoy the same
messages in both the Eclipse console and the LogReader application. This is ideal as developers are
free to use the console of their choice to monitor log output while using a single API for logging as
shown here:

Logger .debug (getQualifiedClassName (this), "build", "Method
called.");

| The use of a Logger class to funnel Flex logger output is discussed in more detail in
Chapter 6.

That is it. You have finished creating your very own log reader application.

Summary

This chapter walks you through creating a very useful AIR application in a short amount of time.
Traditionally, this type of application was created and deployed as a SWF file to be ran in a stand-
alone version of Flash Player while debugging a project.

That brings us to the reader challenge. Since this is an AIR application and not a SWF file like the
traditional versions of this application were back in the day, you now have access to the file sys-
tem. Our challenge is this — using what you have learned in previous chapters, load the Flash
Player log file and display its contents in the console rather than needing to depend on a special
LogTarget. This way all trace output will be visible, not just special output. Good luck!

355

en you reach the end of a long project, the same thing almost
always happens: Things get hectic. If people are finding a lot of
bugs, then you will be in a rush to fix them. If people aren’t find-
ing any bugs, then they will probably send lists of features they would like to
see added. After all, no application is ever complete. There are always things
it could do a little bit faster, something more that it could do, or some way
that it could be improved visually.

When you get to this part of a project, you should be focused on the polish
of the application. Polish can be split into two general categories: design and
usability.

The design of an application is, of course, how it looks and includes:
B Typography
m Colors
B Layout

Usability describes how it works for the user and includes:

B Readability
B Reliability
B Versatility

As the programmer, it is easy to forget just how important these things are to
an application, especially when there is a deadline approaching.

Some last-minute design demands might be the improvement of animations,
additional button states, changes to improve typography, or changes to the way
things line up. Usability demands will most likely include performance improve-
ments, bug fixes, keyboard shortcut options, language support, or accessibility.

357

IN THIS CHAPTER

The importance of design and
usability

Flex Builder 3 design tutorial

LA AS Building an Application

358

For you, this all amounts to quite a bit of work. It shouldn’t be a source of despair though, because
the difference you make with this work is the difference between an application and a great appli-
cation. If your application is worth doing, it is worth doing well!

The Importance of Design and Usability

Whether you are building an application intended only for your own personal use, for the use of a
specific company, or for the general public, design and usability are always important. Put simply,
making an application nicer to look at or easier to use makes it more desirable. The purpose of any
application is to perform some function in a way that was more difficult to do without that applica-
tion. Essentially, the purpose of your application is to make it the most desirable means of com-
pleting that function. In that sense, the design and usability of your application are just as
important as the function.

Design and usability are very broad terms, which makes it difficult to visualize exactly what effect
they have on your application. To better understand their value, try to imagine an application with
no design and no usability. Without either, an application could still have a function.

For example, suppose you are working for a numbskull manager who has insisted that you stop
wasting your time on design and usability. Suppose that this manager has asked you to build an
application whose function is to calculate the monthly payroll of your business. To minimize
design and usability, you created a command-line application that takes as input a database of
employees, a begin date, and an end date, and outputs the total amount of pay for those employees
in that period.

The database is expected to be an SQLite database, but you haven't invested a great deal of time in
documenting the exact structure expected — after all, that would be a bit too usable. The dates
should be given in the number of seconds since midnight on January 1, 1970, but should fall
exactly on midnight the morning of the starting day and midnight after the ending day. The output
is returned, but not printed or stored in any way.

In order to use this application at all, you need at least three additional applications: one to create
and edit the database, one to calculate the dates, and one to store or display the output. As you
(and your now very frustrated manager) can see, without design and usability, it is not likely that
anyone would be willing to use such an application.

The relationship between function, usability, and
design

Function, usability, and design are actually three integral parts of a complete application. In other
words, any application that is insufficient in any of those three arenas is incomplete. This is some-
what subjective, of course, and again the cold reality is that no application will ever be absolutely
complete.

Polishing a Finished Application

However, if you understand how and why these three aspects compose an ideal application, you
will be able to visualize clearly what the ideal version of your application should be. The closer you
are able to get your application to the ideal that you envision, the more likely it is that your appli-
cation will be the most desirable means available to fulfill its functions.

When you visualize the structure of your application, you should think of it as a pyramid con-
structed of these three components: function, usability, design.

The first thing to notice about Figure 19.1 is the way in which each section blends into the next.
Features with usability implications can often be seen as basic functions of an application, and
many design elements are also aspects of usability.

FIGURE 19.1

A complete application can be represented as a pyramid with the application’s function supporting user
experience and the design.

For example, if you make a text editor, the ability to import documents from or export documents to
various document formats will make your editor easier to adopt and use. Supporting several docu-
ment types falls right between usability and function, because this could have substantial functional
implications. For example, you may not have chosen to include tables or to support attached images
in your text editor before you considered the document formats you wanted to support.

Similarly, many design elements also have an effect on the usability of an application. For example,
the fonts and the colors you use will determine the readability of text in the application. However,
design decisions rarely have much effect on the core function, so you can see why the pyramid in
Figure 19.1 is structured the way it is.

To build on the way Figure 19.1 shows the relationship between design, user experience, and func-
tion, you can plot any aspect of an application in this diagram. Figure 19.2 shows a few examples.

When you view an application this way, it is clear that usability and design are an indispensable
part of an application. Another key thing to note about this perspective is the way each part sup-
ports the others. If an application has a missing piece of functionality, then there will be a giant
gap in the pyramid, given that there can be no user experience for it to support. That's pretty obvi-
ous without a diagram, but what may not be is this: If you have a piece of functionality but don’t
support it with a usable experience, then the gap left is equally as large.

359

LA AS Building an Application

FIGURE 19.2

Any aspect of an application can be plotted into the pyramid from Figure 19.1.

Tab order works logically

Buttons display states clearly

360

Data can be edited in place

Another way to apply this perspective is to use Figure 19.1 as a prism through which to view the
timeline of your project. If you do so, you may come out with something like Figure 19.3.

In Figure 19.3, the relationship between function, user experience, and design becomes a cycle. As
you work through the various phases of planning and development, this cycle repeats itself in the
same logical order from low-level decisions (functionality) to high-level decisions (design).

During the ideation phase, this is very natural — the demand for a new application is the need for
some functional role to be filled. It’s difficult to imagine the process being kicked off by the desire
to have an application with a certain look and feel, whose function will be determined later. At the
very least, if you reverse the order of the cycle and let design be the motivation for the other
aspects of the application, it is unlikely that the resulting application will be very useful.

The cycle will usually have its second phase during the planning stage:

1. Decide what platform or platforms the application will need to run on, and what
technologies are best suited for this application.

Decide what features are needed to make this an effective and useful application.

Determine what resources you have available, which can often have a strong influ-
ence on the design of the application.

For example, this is particularly true for a video application — the quality of your source files and
the dimensions of the video will play a major role in the look of your application.

The next phase of the project will be development, and the same cycle appears. You may want to
first create wireframes of the application, which will be like blueprints for the design, and show
what information should be available for major pages or states. Another useful step will be use
cases, which will show a map of the logic of how a user would navigate through various important
tasks. You can think of a use case as a list of everything that could possibly go wrong with a task
and how to resolve it.

The rest of Figure 19.3 is probably pretty familiar, and the logic is certainly difficult to argue
against. You should have at least some degree of design complete before you begin coding an
application, especially in AIR. Of course you will probably start development by building the parts
of the application that are completely independent of the design specifics, but with AIR, the bulk

Polishing a Finished Application

of your work will still probably be the view, and you will want some concrete design goals early in
development.

As was true with the individual features shown in Figure 19.2, the roles of function, design, and user
experience are often blended during the steps of development. Even so, you can see that there is a
natural relationship between these properties of your application, and that design and user experi-
ence play a fundamental role in both a complete development process and a complete application.

FIGURE 19.3

The project plan of an application as viewed through the prism of Figure 19.1

Ideation Function
What should this application do?

Experience
How will it be used?

Design
What kind of experience should it be?

Planning Function
Technology Requirements Gathering

Experience
Feature Requirements Gathering

Design
Material Requirements Gathering

Development
Wireframes

Use Cases
Design
Coding
Testing

Review

361

LA AS Building an Application

362

Properties of good design

Design is largely subjective, and there is not a magic wand that will tell you how to combine
shapes and colors to make them pleasant to look at.

There are some aspects of design that are not subjective, and those are the properties of design that
effect user experience. This section will provide a few examples.

Layout

The layout of any particular state of your application effects the readability of the things being dis-
played, and so should be judged objectively in that respect. Layout is what items you choose to
display on the screen in any given state and how you choose to arrange those items.

Deciding what items should be displayed onscreen in a particular state should be decided by logic.
You can group items by their relationship to one another and rank them by their probable fre-
quency of use. You can then choose whether to have a button on screen at all times, in a collaps-
ible menu, or tucked away where it won’t cause any trouble.

With AIR, you should really take advantage of the NativeMenu when making these decisions. Most
desktop applications have nearly all of their dialogs and button options accessible through the
menu ba, and leave the rest of the stage to only display key information. The less information you
feel like you need to have on the screen, the easier it will be to make the information you do
choose to display clean and clear. The menu bar is a familiar and natural place to look for a desired
feature, so use it as much as possible.

Typography

Good typography makes an enormous difference in the look of an application. You have an advan-
tage with typography in AIR, because Flash has extraordinary font rendering capabilities.
Typography is one aspect of applications that is rarely constant across operating systems; though it
is a subtle difference, the capability to display the same fonts well on multiple operating systems is
one distinction that sets AIR applications above other runtime frameworks.

Color palettes

There are really only a couple of properties of an application’s color palette that can be judged
objectively. The first is contrast — whether or not the color palette allows key items to stand out,
and whether or not text can be read without straining the eyes.

The second property of the color palette to consider is accessibility. Remember that not all users
can distinguish between certain colors, and that you should not use color as the only means of
conveying information.

Polishing a Finished Application

Font Licenses

hen embedding a font into your application, you should be sure to read the license of the font.

Many foundries will expect you to buy a separate kind of license before installing a font on a
user’s computer. The idea that you could embed a font in such a way that it can only be displayed
by your application is something of a gray area in many licenses. It is best to think of this early on,
as a change in typography can mean a significant change in the design of your application. When
working on projects for large corporate clients, keep in mind that the legal department of any corpo-
ration is always bored, and they will thank you for tossing tasks like this into their laps.

Transitions

Transitions between different states of an application are a great opportunity for eye candy, and
Flash developers are particularly notorious for having a sweet tooth for that kind of candy. As you
start building applications that you intend to have users use regularly, you should identify transi-
tions that are going to become obnoxious when viewed repetitively and shorten them.

Another important opportunity afforded by transitions is that you can use them in a visual way to
explain the application state they have just entered. A great example of this is the transition used
on OS X to minimize a window. Instead of expecting the user to know that the window didn’t just
disappear, the operating system uses shrinking animation to show the user exactly where the win-
dow has gone. This is a simple, intuitive, and powerful teaching tool. Even if you feel like your
application is already easy to understand, you should consider techniques like this to make it even
clearer.

Sound

Sound is another fantastic way to enhance an application. Applications with good sound design are
rare, and this is one way to make your application really stand out. However, as with transitions,
good sound design typically means that the sound doesn’t stand out much.

When you are thinking about your sound design, consider three user scenarios. First, think of a
user that is listening to music through her speakers while using the application. This user isn’t
going to want constant sounds, very loud sounds, or otherwise disruptive sounds. She will proba-
bly go looking for the Disable Sound preference box the first time you play a 30-second heavy-
metal guitar riff to indicate that a download has completed, for example.

The second scenario to consider is a user who has a slight visual impairment. This user will proba-
bly appreciate certain subtle sounds, as this may help him know what is happening without need-
ing to rely on his eyes.

The third user to consider is one with serious visual impairment. That user will also appreciate
sound cues, but she will also be using a screen reader, so if your sound cues disrupt the screen
reader she will become counterproductive.

363

LA AS Building an Application

364

Properties of good experience

The purpose of most applications is to provide a positive user experience for the largest possible set
of users while they are performing some task. If you have been a computer user for long, you can
probably think of a few applications that you've used that were decidedly difficult to master. Keep in
mind that you want your AIR application to be the opposite of those experiences, not just better.

Flash in particular has a storied relationship with the community of usability theorists. Much of
that is due to the role of Flash as an animation technology, and people were often annoyed that
they had to wait for an intro animation to complete before they could view the content of a Web
site. This argument has subsided some, since few Web sites continue to use long intro animations.

Another exception people take with Flash is the concept of a Web page as a multimedia experience.
Flash was the first real success at providing this kind of experience, but it is no longer alone. The
argument here is between two schools of thought about what a Web page should be: Should it be a
purely informative document or could it also be an engaging multimedia experience? For a multime-
dia experience, it is often necessary to use preloaders, which can be just as obnoxious as intro anima-
tions. Loading content in advance is unavoidable if you want the user to have a fluid experience once
it begins, unless you are willing to discard the multimedia content to avoid preloading.

The truth is that there is room for both informative and multimedia experiences. If you are looking
up the definition for the word “inane” or trying to resolve an argument with a friend that says that
the Crimean Wars happened in George Lucas’ fictional universe, you do not really want to pause
and watch an animation. On the other hand, the adoption rate of the Flash player alone is proof
that people do not mind being entertained.

The distinction you should make, as an application designer, is that heavy branding and animation
is only appropriate for certain types of applications. Most desktop applications are intended for fre-
quent use, and users are less likely to tolerate an application if they feel like unnecessary animation
is slowing down their ability to work.

One of the most valid complaints about the typical Flash experience is with customized experi-
ences. A frequently cited example of this is a navigation element that forces the user to use his
mouse and learn a new, often awkward, means of scrolling through elements. Another common
example is the use of custom scrollbars that do not exhibit all of the behaviors that have become
standard for scrollbars.

One interesting complaint related to custom experiences that has been made by the usability com-
munity is that Flash doesn’t use “real” buttons. This is an odd complaint, because it doesn’t make
much sense when stated this way — none of the buttons on your computer screen are real; they’re
all made of ones and zeros. However, this complaint really exposes the truth behind all of these
usability concerns, and what they mean to the developer. What these people are probably referring
to, perhaps without realizing it, is that the typical button in a Flash experience does not follow all
of the standard rules for a button. For example, they may be accustomed to using the tab key to
navigate through buttons, and have not been able to use tab navigation in many Flash experiences.
Bear in mind that in Flash, focus management and tab navigation has been something the pro-
grammer has had control over for quite some time.

Polishing a Finished Application m

What all of this amounts to is simply this: For the programmer, usability actually refers to the com-
pleteness of the application. This is the reason why this chapter discusses usability in terms of pol-
ishing a finished application. You may have all of your navigation working perfectly for mouse and
click control, but that does not mean the application is complete. Much of usability is just com-
mon sense, and the issues that arise are generally things that developers know they could add to
enhance the application. The lesson to learn is this: Until you do add these enhancements, your
application is not complete.

Keyboard shortcuts and versatility

The more frequently an application is used, the more likely it is that users will expect to shortcut
past mouse and click control. This usually means tab navigation, arrow key navigation, paging up
and down through lists, scroll wheel functionality, and control key shortcuts. Most of us are guilty
of ignoring these types of navigation and leaving these keys to perform their default behavior,
which is either undesirable or nonexistent.

As you start creating applications intended for frequent use, you should also start paying much
more attention to keyboard navigation in particular. The problem with custom experiences is usu-
ally that they are incomplete. Most users will appreciate a creative and attractive custom experi-
ence, but that appreciation will quickly wane if they cannot use the keyboard to quickly navigate
around.

You can achieve versatility, or the ability to do a given task in multiple ways, through keyboard
shortcuts like Ctrl+key combinations, by enabling alternate mouse behaviors such as the scroll
wheel or right-clicks, or by enabling different sections to link to each other in multiple ways.

The usefulness of alternate keys and controls is pretty apparent, but linking between sections may
not be. To use an example, suppose you have a database application for a small business with a
table of products and a nice editor to add and change that table. Once all of the products are
stored, the application has a number of tools that leverage this table, such as lists of current inven-
tory or lists of orders placed by customers. Anywhere that the data from the list of products
appears, you should consider putting a link back to the product editor, so that users can update
prices or correct errors with the least amount of effort.

Language support

It goes without saying that localization, the ability to support multiple languages, greatly expands
your potential user base. Still, such support is often neglected, usually because translation services
seem too expensive, or because it isn’t until you finish an application that you really know what
text you need to have translated.

The solution to both of these problems is to select translators that you can afford, so that you don’t
feel like you need to wait until the last minute to get everything translated at once. It is much less
difficult than you may think to find a bilingual person willing to do some quick translations for
small fee, especially if you leverage online resources.

365

LA AS Building an Application

366

Accessibility

Accessibility refers to making an application more usable for visually impaired, mobility impaired,
and cognitively impaired users. Generally, the focus of accessibility is enabling screen readers to
function properly, as these steps also address a wide range of accessibility issues.

Many clients, particularly government organizations, demand accessible applications because they
are often required by law to make their services accessible. Even if accessibility isn’t legally man-
dated, it is well worth the effort. Accessibility increases your potential user base into an extremely
underserved market of users.

To use a screen reader, users navigate using only the keyboard. Keyboard navigation is also a must
for many users with mobility impairments. Color-blind users will not be able to distinguish contrasts
between certain colors, and users with low vision may not be able to distinguish subtle contrasts.

The first step for developers is to ensure that all navigation in the application can be performed
using the basic keyboard navigation keys: Tab, Space, Enter, the arrow keys, and modifier keys like
Control and Shift. This is usually the most difficult part for developers, and it often requires a great
deal of planning to be sure that every element on the screen can be reached in a logical way using
directional and tab navigation.

For experimental or unusual Flash interfaces, this can be a particular challenge. For any AIR appli-
cation, it is not difficult technically to listen for keys and use those keys to manage the focus. It can
be quite a bit of work, but for a well-architected application it should not be difficult. However, it
can be a significant logical challenge to make sure that you build an interface that can be navigated
entirely with the keyboard.

The second step for developers is making sure that for each item that can be focused, there is a
caption that can be read by a screen reader. The Flex and Flash frameworks provide a wide array
of components capable of providing that functionality, and have been tested against popular screen
reading software, particularly JAWS for Windows. HTML generally supports such functionality
very naturally, and the caption options on HTML forms and images are standard.

Whether you use Flex, Flash, or HTML in your AIR application, the only way to ensure that you
have built an accessible application is through testing. If you are not able to obtain your own copy
of JAWS, you might want to consider seeking out a local user group for the blind and visually
impaired. If you stop and really think about how difficult it must be to use a computer with only
keyboard navigation, especially if you could not see the screen, it becomes apparent why these
users are likely to form user groups. It also becomes apparent why these users would be happy to
help you improve that situation.

Performance and reliability

During the testing phase, every aspect of an application that was planned during the other phases
becomes visible. The testing phase is hugely important to making an interface work logically and
enriching the way users access features. Even so, the primary function of testing is debugging.

Polishing a Finished Application m

Bugs are a part of life for every programmer, and they are particularly challenging for programmers
of high-level languages like ActionScript and JavaScript. This is because you are not only working
through your own mistakes, but also mistakes left by the builders of the Flash and Flex frame-
works, the WebKit developers, operating system developers, and many more. The beauty of pro-
gramming in a high-level platform is that you can focus on the interface of the application, because
other groups have already done the low-level work. This can also be its curse, because you have to
work around any mistakes made by those other groups.

Major bugs will drive your user base away quickly, and that is no surprise. Minor bugs, on the
other hand, will usually drive your user base away almost as quickly. This is really a matter of
perception — if your users see kinks in the armor of your application, they will have less confi-
dence in its reliability. Given that this is a rule of perception, it won’t always apply. For example,
if your application is already perceived by your user base to be the standard application for a par-
ticular task, then they will forgive bugs more readily.

Bugs and performance issues will appear throughout development, and they are usually one of
three types:

B Straightforward development bugs
B Bugs in the logic of your application

B Bugs outside of the scope of your application framework

Sraightforward development bugs have a clear resolution within the logic of your application
framework. An example of this might be if there were two lists of objects being merged for display,
but you notice that you forgot to hide duplicate objects.

An example of bugs in the logic of your application might be a case where you need to merge two
lists of objects for display, but the type of the objects in one list is totally different from the type in
the other list. This situation can make searching for duplicates and displaying the results both
pretty hacky endeavors.

Bugs outside of the scope of your application framework could be either with services required by
your application or with some underlying framework that you are using.

Straightforward development bugs usually have one logical resolution, because you can fix these
bugs in their entirety without any refactoring. The other two types of bugs often have more than
one resolution, and there are two general categories for those resolutions: fixes and workarounds.
In these cases, fixes will often involve refactoring, and workarounds will often involve allowing the
bug to occur but dealing with it in a way that masks it from the user.

The larger your application is, the more important these decisions are. In fact, these can be some of
the most important decisions in the development process. Significant refactoring is a time-consum-
ing process and carries the risk that you may create new bugs or you may not be able to avoid an
issue that is outside of your framework. However, workarounds are like bad apples in that they
can infect other parts of your code more quickly than you expect. For a large project, you have to
be prepared to put the brakes on development in order to fix mistakes before they become serious
design flaws.

367

LA AS Building an Application

Flex Builder 3 Design Tutorial

Skinning in Flex is still vexing for many developers, so here is a quick tutorial on Flex Builder 3
component skinning. This tutorial is by no means intended to show every way of skinning a Flex
application, but rather provides a few solid techniques that you can apply quickly and easily.

There are several ways to change the look of a particular component, but they can be broken up
into four general techniques. Usually, you will combine two or more of these techniques to achieve
a particular look.

First, you can skin Flex components using Cascading Style Sheets (CSS). CSS can be defined
within MXML or in a separate CSS document, but the easiest way is to use a CSS document edited
from within Flex to take advantage of the new Flex Builder 3 CSS Design View. Every Flex project
should really have a style sheet, as this is the most indispensable tool for skinning.

Second, you can compose custom components out of standard Flex components. This technique,
especially when combined with style sheets, can yield almost any effect you will need.

Third, you can write your own skins programmatically, which will allow you to use the drawing
API to generate the shapes and colors that compose your component, and will give you a much
higher degree of control than simply defining colors in the CSS document.

Finally, you can create entirely new components in ActionScript by extending UIComponent or
one of its subclasses. This technique provides the highest degree of control, both over the look of
the component and over its performance.

Cascading Style Sheets

Cascading Style Sheets, or CSS, are a way of defining themes and styles using a simple markup lan-
guage. It is best to use only one style sheet for your application, so you can create a new applica-
tion and start there, as shown here:
<?xml version="1.0" encoding="utf-8"?>
<mx :WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute"
>

<mx:Style source="application.css" />
</mx:WindowedApplication>

Using the <mx: Style> tag in your top-level MSML file allows you to define what CSS document
to use throughout the application. Now you need to create that document; follow these steps:

1. In the same folder as your main application file, use Flex Builder 3 to create a new
CSS document.

368

Polishing a Finished Application

2. Select File>New=> CSS File. Make sure you have everything set up properly by defin-
ing a background color for your application:
/* CSS file */
WindowedApplication

{
backgroundColor: #4C5B56;
}

When you run this new application, it should have a dark algae green color for a background. Gross.
Now that you know that you have everything set up properly, it is a good time to explore the CSS
Editor in Flex Builder 3. Take a look at the top of the editor window, shown in Figure 19.4, while
you have a CSS Document selected.

FIGURE 19.4

The editor window options for CSS documents

W acviewnsml | To applicationcss 23 =0

[soarce [T 0esian] O | Syle: | Windowean .. 58] 3 B4

Backgrouna:

The big difference here is, of course, that there is now a design view for CSS documents. This
design view works very much like the Flex Style Explorer, which was a Web resource Adobe pro-
vided with Flex Builder 2. Now that it’s built in, you can use this view to see all of the editable
properties on a component, and use it to write much of your CSS for you.

Now click the Add Style button, shown in Figure 19.5.

FIGURE 19.5

The Add Style button

This brings up the New Style dialog, shown in Figure 19.6.

There are four Selector types in this dialog. If you use All Components (global), you can define
what goes into the global tag in your CSS document. This will define your default styles.

The global style element accepts style definitions for any component. Given that many style defini-
tions apply to several types of components, it can be useful to set your own default values here.

It's a good idea to select a default font style, so go ahead and select All components to choose a set-
ting for that. It will bring up a second dialog that asks you what component to use for preview.
You can choose any component that displays text, and then use the Properties panel to pick a font
(see Figure 19.7).

369

LA AS Building an Application

FIGURE 19.6

The New Style dialog

80 New Style

Selecior e (7 All components (global)

) All compunerits with style name

®) Specific component
) Specific component with style name

Component: Bccordion v]

Name:

ancel) o)

FIGURE 19.7

The Font selection window

= Text

A Century Gothic "] 12 BIU

| Embed this font ===
ANNE A5 EHACE

ok

FIl |

370

If you select the Embed this font check box, Flex will write your embed tag for you, too. Now your
CSS document will look like Listing 19.1.

Because you have this CSS document as the style property of your WindowedApplication
component, this selection will be applied to any component you use. From this point forward,
you don’t need to make any distinction about what font to use unless you want it to differ from
the global style.

For example, notice that you are using the same color for the font that you are using for the back-
ground. This might work fine in components that have a visible background color, but we do need
to make sure that we don’t put any text against the background without changing the color.

The Text component usually has a transparent background, so we will change the font color for all
instances of that component with the following steps:
1. Bring up the New Style dialog box again (see Figure 19.6).
Select Specific component, and find Text in the drop-down list.

Choose a color that stands out against the background, so you won’t have to worry
about being able to read Text components anymore.

Polishing a Finished Application m

/* CSS file */

@font-face

{
fontFamily: "Century Gothic";
fontWeight: bold;
fontStyle: normal ;
src: local ("Century Gothic");
}
global
{
fontFamily: "Century Gothic";
color: #4C5B56;
fontWeight: bold;
fontSize: 16;
}
WindowedApplication
{
backgroundColor: #4C5B56;
}

For many designs, you may have a small number of styles, but with slightly different color
schemes. For example, you may have some sections with a dark background and light text, but
other areas that use the same light color as the background and the darker color for the text. For
situations like this, you may find that the All Components with style name selection useful. You
can set all of your global defaults, but then create a style name that uses light colors where the
default uses dark, and dark colors where the default uses light.

Embedding assets

The next step is to create custom components that have specialized skin elements. These custom
components may use some customized shapes, so you can use Flash to create a library for vector
shapes. Any shapes that you want to access can be added to the library and exported for
ActionScript, as shown in Figure 19.8.

Publish your SWF to a place where it can be easily located by your Flex code. For example, sup-
pose you choose to store your asset libraries in the 1ibs folder in your source directory, and you
store your SWF file in a subdirectory called swf.

371

LA AS Building an Application

FIGURE 19.8

Export settings for a Flash library item that will be used as a Flex library item

LISTING 19.2

Linkage Properties

Identifier: ok)
Class: right_side P4 _Cancei_-
Base class ".1'3;-!1.'d"s-ﬁ'ié'y'.\;"bv'ié'cii}ﬁ Il '_/

Linkage: W Export for ActionScript

__ Export for runtime sharing
'Z" Export in first frame

port for

The next step is to import this new library into your Flex application. One way to do this is to have
a single class that you use for all embedded assets. This allows you to reuse those assets anywhere
in the application, and gives you a convenient reference point for anything you've embedded.

When you create this class, it will probably look something like Listing 19.2.

First, notice that you are defining your variables as public and static, which will allow you to call
on them from anywhere and bind to them from MXML. In the Embed tag, specify a source and a
symbol, because you are using Flash library items. If you were using the main timeline of a Flash
file, or if you were using a JPEG, PNG, or GIF file for your assets, the symbol attribute would not
be needed.

The last thing to notice here is this relative path:
oo/ /. /1ibs/swE/pseudokami . swf.

This is particularly useful, because an absolute path would need to be edited every time you moved
your workspace or changed computers. Not too cool, so it’s always a good idea to take the time to
count out the directories and use a relative path like this.

AssetLibrary Class Used to Hold All Embedded Assets for the Application

package org.airbible.airview.view.assets

{

372

public final class AssetLibrary

Polishing a Finished Application

{

[Embed (
source="../../../../../../1libs/swf/pseudokami.swf",
symbol="background_element")]

public static const BACKGROUND_ELEMENT:Class;

[Embed (
source="../../../../../../1libs/swf/pseudokami.swf",
symbol="1left_side")]

public static const LEFT _SWIRL:Class;

[Embed (
source="../../../../../../1libs/swf/pseudokami.swf",
symbol="right_side")]

public static const RIGHT_SWIRL:Class;

Creating custom components

Now that you have your assets embedded, it’s time to put them on the stage. Probably the most
common way to create a custom component is to compose it out of standard Flex components.
This is something that MXML was born to do, and it is incredibly easy. First, create a new MXML
component based on Canvas, as shown in Listing 19.3.

This is a simple text display component, but skinned with images on either side. The images were
designed for a specific height, so the Canvas is set to have a fixed height. Next, the images are dis-
played by setting the source to the corresponding images in the asset library.

Setting includeInLayout to false ensures that the size and shape of these images isn’t factored
into the measurement of the overall component. This way, you can use relative positioning inside
this component or when placing the component on another stage without having to worry about
oddly shaped pieces.

For example, if one of the swirl elements dipped down far below the 30-pixel height of the Canvas
and the Label component was aligned to the horizontalCenter, the swirl element would
appear off center. This can be particularly important to note for images that are loaded at runtime
instead of embedded; if you do not set inclueInLayout to false, you will see elements shift
around as images load and change the layout of the component that holds them.

373

LA AS Building an Application

SwirlLabel.mxml Component

<?xml version="1.0" encoding="utf-8"?>
<mx:Canvas
xmlns:mx="http://www.adobe.com/2006/mxml"

height="30"
mouseChildren="false"
>
<mx:Script>

<! [CDATA[

import org.airbible.airview.view.assets.AssetLibrary;

11>

</mx:Script>

<mx: Image
source="{AssetLibrary.LEFT_SWIRL}"
left="0"
includeInLayout="false"

/>

<mx:Image
id="rightSwirl"
source="{AssetLibrary.RIGHT SWIRL}"
includeInLayout="false"
left="{width}"
horizontalAlign="right"

/>

<mx :Label
text="{label}"
paddingLeft="8"
paddingRight="8"
verticalCenter="0"
horizontalCenter="0"

/>

</mx:Canvas>

The last step is to add this new component to the CSS document in order to set up its default style.
This component uses the default text color, which is the same as the application background, so it
needs a different background color. Simply add this to the end of your CSS document:

SwirlLabel
{

374

Polishing a Finished Application m

backgroundColor: #FCFI9F9;

Programmatic skins

Some component styles cannot be adequately customized through CSS and MXML alone. The rea-
son for this is usually that the default programmatic skin for many Flex components is the Halo
skin, and it may not provide the look you are trying to achieve. For a highly stylized application
theme, it is very likely that you need to create your own programmatic skin.

Using programmatic skins is actually much easier than it sounds. All you need is a bit of
knowledge about the ActionScript 3 drawing API. For example, if you want to create a Button
skin without the borders and gradients used in the Halo theme, you can simply extend
mx.skins.ProgrammaticSkin and override the updatePlaylistMethod, as shown
in Listing 19.4.

The updateDisplayList method takes two parameters, unscaledWidth and unscaled-
Height. This tells you how large an image you should draw, and you can gather colors from the
CSS style definition using the getStyle method. PlainButtonSkin only expects one color,
the themeColor, and determines any variants of that color for itself.

Next, this method uses the name property of ProgrammaticSkin to determine what button
state is being drawn and selects a color based on that. To generate a lighter and a darker version of
the theme color, this class uses mx.utils.ColorUtil to adjust the brightness. This technique
is borrowed from the Halo theme, and it’s a nice way to generate default color variants so that you
don’t have to define colors for the over and down styles.

To use this class in Button instances, you create a specific style name. Any button can take on this
style using the styleName property; this will always override the default Button style. Add this to
the bottom of your CSS document:

.plainButton

{
themeColor: #DCF4E9;
skin: ClassReference("org.airbible.airview.view.skins.
PlainButtonSkin") ;

}

It’s also possible to embed assets directly through the CSS document. You can use the Design View
for CSS documents to do this part for you, in fact. If you switch to Design View and select the
plainButton specification, you can choose to preview the custom style as any component using the
Select Component link.

375

LA AS Building an Application

PlainButtonSkin.as

package org.airbible.airview.view.skins
{
import mx.skins.ProgrammaticSkin;
import mx.utils.ColorUtil;

public class PlainButtonSkin extends ProgrammaticSkin

{

public function PlainButtonSkin()
{

super () ;

override protected function updateDisplayList (w:Number,
h:Number) :void

{

var themeColor:uint = getStyle("themeColor");
var fillColor:uint;
switch (name)
{
case "selectedUpSkin":
case "upSkin":
fillColor = themeColor;
break;
case "selectedOverSkin":
case "overSkin":

fillColor = ColorUtil.adjustBrightness2 (themeColor, -20);
break;
case "selectedDownSkin":
case "downSkin":

fillColor = ColorUtil.adjustBrightness2 (themeColor, 10);
break;
case "selectedDisabledSkin":
case "disabledSkin":

fillColor = ColorUtil.adjustBrightness2 (themeColor, 20);
break;

}

graphics.clear() ;
graphics.beginFill (fillColor, 1);
graphics.drawRoundRect (0, 0, w, h, 4, 4);

376

Polishing a Finished Application

graphics.endFill () ;

Choose to preview this as a Button, and take a look at the Flex Properties panel, shown in Figure 19.9.

The pane at the bottom of the panel in Figure 19.9 is the Icon selection pane. Much like the Design
View tools for coding, choices you make here can also be coded in directly, and there are some

options that aren’t available through Design View. However, it is an excellent place to start as you
get a feel for what is possible.

FIGURE 19.9

CSS Document Flex Properties panel for Button skinning

= Flex Properties 53 | EEFM=O
J Button [style | skin
= Border

£ =

(] =
* Fill

L)

* Text

A B # BIU
AN 4~ E JSE

ot =

* Layout

Padding:

Left: 1 Right: 10

Top: [Bottom: -

* leon

Icon: | (defaulty _31

Cap: | EC]

377

LA AS Building an Application

Before you select an icon, notice one thing in this panel. At the very top, there are three buttons
that you can use to select different property views (see Figure 19.10).

FIGURE 19.10

Property View selection buttons

EEN

Usually, you can find the elements you wish to skin in the default view. This is preferred, as it will
bring up specialized dialogs that do much of the work for you. However, it is a good idea to glance
over one of the other views, as they provide a full list of the properties that apply to the current
component type.

An example of a specialized dialog provided by the default property view is the Skin and Icon
selection dialog. When you click on the Icon bar in that pane, you can choose to select Flash sym-
bols or Image files. If you choose either, you can load in separate SWF or image files to be embed-
ded for each state. If you choose Flash symbols (see Figure 19.11), you have an additional option
to load a single file for all states.

FIGURE 19.11

Flash symbol selection dialog box for embedding icons and skins

80 Choose Flash Symbols
SWF or SWC file:
Q
Chonse symbols
) same symbol for all states
, Learn how to creare a mult-stare symbol in Flash.
) One symbol for cach state:
State Symbol
Up not sen
Over {not set) U
Down {not set)
Disabled {nut set) i
selectediip nat set) v
Cancel)

You can download the Flex Component Kit for Flash CS3 or the Flex Skinning Template for Flash
CS3 to create specific skins for Flex components in Flash. These export SWC files, which you can
then load into Flex using this dialog. If you load an SWC file, you can select specific library items

for each state, or use one item for all states.

378

Polishing a Finished Application

The Flex Skinning Template for Flash CS3 allows you to select from among many common Flex
components, and provides a timeline that is already filled with images with 9-slice scaling applied.
This may well be one of the easiest ways to skin a Flex application. As of this writing, this is not
fully functional: 9-slice scaling can be applied to embedded PNG objects, but not to SWF objects.
This is expected to work by the final release.

Using Flex states to guide transitions

Now you can put these elements together into an application. This application is going to use
states to guide transitions. Any MXML component can have multiple states, which simply means
that it can change the set of elements it displays in some way.

There are many types of changes that can be handled using this technique, included adding or
removing elements from the stage, editing properties of elements, or moving elements. For this
simple example, the application will move two labels from one layout to another depending on its
state.

Listing 19.5 shows the full source for this component.

Taking Listing 19.5 from the top, first notice that this application uses the CSS document you have
constructed by including the Style tag. This is only necessary to do because this is the main appli-
cation component, so you will not need to import the CSS document again.

Next, in a Script tag, this application imports the AssetLibrary and an easing equation to use
for transitions. After that, the name of a component state is defined. There will be two states for
this component: the default state and state two. It is a good idea to use local constants to define the
states of the component and to listen for changes through binding or some other event mechanism
to determine which of these local states should be active.

Two methods are defined to switch between the various states in this component by setting a value
on currentState. This is a property of UIComponent, so you should use the currentState
variable to hold the state value in all of your Flex components. You can use null to define the
default state, just as an easy way to keep the relationship between the layout and currentState
consistent, because this variable will have an initial value of null.

Next a few components are added to the stage. A background design element is added, with
includeInLayout set to false. One reason for this is because this element could be any size with
regard to the stage; if it was included in the layout and it was larger then the window size selected
by the user, it would cause scrollbars to appear. Scrollbars are needed if there are key elements that
can’t be fit on the stage, but is rarely the desired behavior for design elements.

There are two instances of the SwirlLabel class created earlier and two instances of the Button
class that use the plainButton style, which points to a programmatic skin. Notice that the
instances of SwirlLabel use absolute positions, instead of aligning themselves to relative posi-
tions on the stage. Relative positioning should be used whenever possible, but it will conflict with
a transition that is trying to act on the same axis. In other words, if you have a component centered
horizontally on the stage (horizontalCenter="0"), and you try to change its x value, that
change will be overridden by the centering.

379

LA AS Building an Application

MXML Component, which Employs States and Skinned Elements

<?xml version="1.0" encoding="utf-8"?>

<mx : WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
xmlns:controls="org.airbible.airview.view.controls.*"
>
<mx:Style source="application.css" />
<mx:Script>

<! [CDATA[

import mx.effects.easing.Exponential;
import org.airbible.airview.view.assets.AssetLibrary;

private static const STATE_TWO :String = "two";
private function selectStateOne() : void
{
currentState = null;
}
private function selectStateTwo() : void
{
currentState = STATE_TWO;
}

11>

</mx:Script>

<mx:Image
source="{AssetLibrary.BACKGROUND_ELEMENT}"
bottom="0"
alpha=".3"
includeInLayout="false"

/>

<controls:SwirlLabel
id="labell"
x="200"
y="100"
label="This is one screen element"
/>
<controls:SwirlLabel
id="label2"
x="200"
yv="160"
label="This is another"

380

Polishing a Finished Application

/>

<mx : HBox
bottom="10"
horizontalCenter="0"
>
<mx:Button label="State One"
styleName="plainButton"
click="selectStateOne ()"
/>
<mx:Button label="State Two"
styleName="plainButton"
click="selectStateTwo ()"
/>
</mx:HBox>

<mx:states>
<mx:State name="{STATE_TWO} ">
<mx:SetProperty target="{label2}" name="x" value="330" />
<mx:SetProperty target="{label2}" name="y" value="30" />
<mx:SetProperty target="{labell}" name="x" value="30" />
<mx:SetProperty target="{labell}" name="y" value="30" />
</mx:State>
</mx:states>
<mx:transitions>
<mx:Transition
fromState="*"
toState="*"
>
<mx:Move
targets="{[labell, label2]}"
easingFunction="{Exponential.easeOut}"
duration="700"
/>
</mx:Transition>
</mx:transitions>
</mx:WindowedApplication>

Finally, this class defines the states and transitions. Because there are only two possible states in
this component, you only need to define one alternate state. In this example, the labels are moved
from their original positions at the center of the stage up to the top of the stage and made to line
up horizontally instead of vertically.

There is also only one transition defined, which means that the movement will be the same when
transitioning from the default state to state two as it is for the transition back. This example uses a
very simple case with only one transition, a Move.

381

LA AS Building an Application

382

However, more complex state changes can be easily accommodated. For example, you can use a
Parallel transition, which will move, fade, or otherwise change the elements on the stage all at
once, or you can use a Sequence transition if you wish to let one thing finish changing before
another begins. In fact, you could have a sequence of parallel transitions, or have several sequences
move in parallel with each other.

Using this technique, you can add subtle animations and major application state transitions easily
and reliably.

Summary

The qualities that distinguish an application that people really want to use from applications that
people simply have to use are the qualities achieved through polish and testing. The AIR frame-
work provides all the tools you need to make your application stand out from competitive applica-
tions. However, you still have to commit to take the time needed to see your application through
to completion.

B A

™ ot

Testing and
Deploying

IN THIS PART

Chapter 20
Deployment Workflow

Chapter 21
Leveraging Ant to Automate
the Build Process

Chapter 22
Installation and Distribution

here are many different development tools that you can use to

develop your AIR applications. Adobe’s various software packages

include built-in support for deploying your project as a packaged
AIR file. This chapter leads you through exploring these workflows, as well
as learning how the command-line tools included with the Flex 3 SDK make
it possible to develop and deploy AIR applications using development tools
other than the ones offered by Adobe.

Deploying from the
Flex Builder 3 IDE

Flex Builder provides a fairly straightforward, step-by-step process for
deploying your project as an AIR file. To give Flex Builder a try at deploying
your project, follow these steps:

1. Click the Export Release Build button. This button is located in
Flex Builder’s toolbar to the right of the Profile button. The Export
Release Build button initiates the deployment process and a new
window appears, as shown in Figure 20.1.

2. In the Export to file field, specify the AIR file’s name if you
would like to use a name other than the default.

3. Once you are satisfied with the settings, click Next. A new win-
dow for creating digital signatures appears, as seen in Figure 20.2.

4. Unless you already have a certificate ready to go, click Create to
the right of the Certificate drop-down list. A window for creating
a self-signed digital certificate appears, as shown in Figure 20.3.

385

IN THIS CHAPTER

Deploying from the Flex
Builder 3 IDE

Deploying from the Flash
CS3 IDE

Deploying from the
Dreamweaver CS3 IDE

Compiling, testing, and
deploying with command-
line tools

Testing and Deploying

FIGURE 20.1

The first window that you should see after clicking the Export Release Build button

.00, Export Release Build
Export Release Build
Build and export an optimized releaze-quality SWF or Adobe AIR application installer.
Project: | Example ﬂ
Application: | Example.mxml 52]
View source
"] Enable view source
Expurt to file: Example.air [Browse..)
(in /Example}
@ { Wemz) Finish (" Camel)

5. Fill in the fields with the appropriate information and then specify a location and
filename for the certificate to be saved as.

6. Once everything is ready, click OK to continue. You should now be back at the Digital
Signature window shown in Figure 20.2.

7. Enter the password that you specified when creating the certificate into the
Password field.

8. Click Finish to advance to the final window, as shown in Figure 20.4. The files listed

in the pane are the files that were automatically generated or copied to the bin-release
directory.

| If you are having problems advancing to the final window, try deselecting the

9. If there are any files listed that you do not wish to include inside of the packaged
AIR file, deselect them and then click Finish.

Your AIR file should now be packaged and deployed to the location that you specified. Be sure to
install it on your machine and take it for a test drive before sharing it with the world.

386

Deployment Workflow m

The window for specifying a digital signature

($..0. Export Release Build

Digital Signature

Specify the digital certificate that represents the application publicher's identity.

@ Export and sign an AIR file with a digital certificate

3 3

Certificate: ol [Bowse. [Create...
Password.

") Remember password for this session

W Time stamp

:':‘ Export an intermediate AR file that will be signed later

@ (<Back) Finish (" Camel)

FIGURE 20.3

The window for creating a self-signed digital certificate

&N Create Self-Signed Digital Certificate

Puhlisher name™ |

Organizational unit:

Organization name

Country: us (Choose..)
Tpe: 1024-RSA 13
Password":

Confirm password™:

*required
Save as: (srowse...)
7 { cancet) o)

387

Testing and Deploying

The final window allows you to include/exclude files in the packaged AIR file.

.00, Export Release Build
AIR File Contents
Select the output files to include in the exported AIR or AIRI file.
Included files: [& = npxml (as METAINF/AIR — |
M @ o
€ :] alr
7 (<Back) NEAL > ¢ Finish—)

Deploying from the Flash CS3 IDE

As mentioned in earlier chapters, Flash CS3 does not include support right out of the box for pub-
lishing AIR files. You can acquire the necessary update for publishing AIR files from Adobe’s Web

site or directly through the Adobe Updater.

Once you have installed the update, you can create a new Flash file for Adobe AIR, as shown in

Figure 20.5.

In the Publish Settings dialog box, notice that you can now target Adobe AIR 1.0 in the Player
drop-down list, as shown in Figure 20.6. This tells the Flash IDE to use a different set of tools

when compiling and launching a debug build.

In order to configure your AIR project, go to the Command menu at the top of the Flash IDE and
select Application & Installer Settings. A new window should appear that looks something like

Figure 20.7.

388

FIGURE 20.

The New Document window with AIR support

Deployment Workflow

New Dotument

Type

1l Frash File (ActionSeripe 3.0)
T Flash File (ActianSerint 2.0)
h File (Adobe AR

h File {Mobibe)

h Slide Presentation

General Temeiares

Description

Create a new Flash document (*fla) in the Flash
Document Window. The publish settings will be set for
Adobe AIR. Use Flash AIR document to develop
applications that are deployed on the Adabe AIR crass-
platform deskton runtime.

B Frash Form Application
T ActionSeript File
T ActionSeript Communication File

(Cancel) FOR)

FIGURE 20.6

The Publish Settings window with AIR support

Publish Settings

Current prafile Default b] 4+ =0

Formars | Flash | HTML

Mayer: | Adobe AIR 1.0 184 [Settings...)

seript: | ActionSeript 3.0 + [Settings...)
Images and Sounds

JPEC quality: p—

80
Enable |PEC deblocking
Audio stream: MP3, 16 kbps, Mono (" Set..)
Audio event: MP3, 16 kbps, Mono Set...

| 'Override sound settings
Export device sounds
SWF Settings
Hardware:

¥ Compress movie

M Include hidden layers
™ Include XMP metadata
T Expart SWC

Advanced
Trace and debug: ! Generate size report
! Protect from Import
! Omit trace actions
! Permit debugging
Password:

Local playback security:

Seript time limit: 15 seconds

(publish) (Cancel) € 0K)

389

Testing and Deploying

The newly added Application & Installer Settings window

AR - Application & Installer Settings

Applicarion sertings

File name: ¢, omple

Name: Example Version: 1.0

ID: org.airbible.example.Example

Description:

Copyright:

Window style: ' System Chrome -]

lcon: (Select lcon }ma;ges‘

Advanced: [Settings...)

"l Use custom application descriptor file

Installer settings

Digital signature: Select a certificate to sign AIR file "_ Set...

Destination: Example.air

Included files. |dh|= |27

JUsers/Ryan/Library/Caches Temporaryltems /L
{Users/Ryan/Library/Caches/Temporaryltems /Ui

(" Help) (Publish AR File) (Cancel) (oK)

Once you have everything configured, you can proceed with publishing your AIR project as a
packaged AIR file by clicking the Publish AIR File button.

Deploying from the Dreamweaver CS3 IDE

As noted in earlier chapters, you will need to download and install the Adobe AIR extension for
Dreamweaver CS3 if you have not done so already. The extension is available as a free download

from Adobe’s Web site.

Once installed, you can test and publish site projects as AIR applications. Dreamweaver creates an
application descriptor file for you automatically using the settings that you input into the

390

FIGURE 20.8

Deployment Workflow m

Application and Installer Settings window shown in Figure 20.8. You can access the window under
the Sites menu at the top of the IDE.

As you enter content, the corresponding changes will take place in the application descriptor file.
For example, if you set the initial content to point towards your index.htm1 file, the resulting
application descriptor file will look something like the one in Listing 20.1.

If you can successfully preview your AIR application at this point, you should be all set. Before
deploying as an AIR file, you need to generate a digital certificate for signing your application or
aquire one from a third party.

To create one on your own, click the set button next to the Digital Signature row and input infor-
mation into the form fields as applicable. Once your certificate has been generated, you can then
deploy the application as a packaged AIR file by clicking the Create AIR File button located back in
the Application and Installer Settings window. A dialog box will notify you if the file was packaged
and deployed successfully. As always, be sure to install and test the application thoroughly before
distributing to the public.

The Dreamweaver Application and Installer Settings window

AlR Application and Installer Settings

Application sermings = F

“File name: Exampie

“Digital signature has not been set Set

Program menu

*Destinarion: | Framgle ir (Browse...

)

Name: [Example (" Create AR File)

*ID: [Bxampie Wersion: |1 (preview)
“Initial content; index.htmi [Browse..) 8 Cancel 2
Description: -
(" Help)
Capyright:
window sryle: | System Chrome "
Window size Widih 500 Height GO0

tcon: [select icon images...)

Associated File Types: (eoitist.)

applicarinn Updares @i Handled by AIR applicarion installer
Installer settings -
Included files: [+]/=]|

!

[l apelication,xmi
[index.htmi
[l ARAliases.js

folder

3

* asterisk indicates required information

391

Testing and Deploying

LISTING 20.1

An Example of the Application Descriptor File

<?xml version="1.0" encoding="utf-8"?>

<application xmlns="http://ns.adobe.com/air/application/1.0">

<initialWindow>

<content>index.html</content>

</initialWindow>

</application>

392

Compiling, Testing, and Deploying with
Command-line Tools

Using the Flex 3 and AIR SDKs, you can develop your AIR applications using whichever develop-
ment tools you prefer; not just Adobe’s products. The SDKs contain all the source files that you
need and a collection of command-line tools for compiling, testing, and deploying.

T B To avoid having to include the complete path before each of the utilities, you can
SSSS add a path to your system’s PATH environment variable. By including the path to
the Flex 3 SDK’s bin directory in the PATH environment variable, you can simply reference the

name of the utility without including its entire path.

Using MXMLC to compile an SWF file

The mxm1lc utility is the tool that you need to use to compile an SWF file. In the simplest of use
cases, it accepts an input source file and an output SWF file as shown here. The input file can be
either an ActionScript file or an MXML file:

mxmlc -file-specs src/Main.mxml -output bin/main.swf

Deployment Workflow

There is a long list of other parameters that you can use to configure the compiler. Some of these
settings are examined in Chapter 21, but you should also refer to Adobe’s official documentation
for more information. The one additional parameter that does need mentioned is the debug
parameter. By default, the debug parameter is set to false, so if you would like to publish your
SWE file with debugging enabled, you need to set it to true, as seen here:

mxmlc -file-specs src/Main.mxml -debug true -output bin/main.swf

Using ADL to test an application

It would be rather inconvenient to have to package and install your AIR application every single
time that you recompiled it and wanted to test your changes. Fortunately, Adobe has provided a
tool by the name of ADL (AIR Debug Launcher) that allows you to launch your AIR application for
debugging without ever needing to install it.

Usage is simple — just pass it a reference to your application’s descriptor file, as shown here:
adl 'bin/application.xml’

Assuming that there were no issues, your application should have launched successfully.

Using ADT to generate a digital certificate

In order to package and deploy your application as an AlR file, you need to digitally sign it using a
certificate. The ADT (AIR Developer Tool) includes functionality for generating a digital certificate.
The following code demonstrates the use of the ADT for generating a certificate:

ADT -certificate -cn yourCertificateName -o yourNameOrCompany
2048-RSA bin/yourCertificateName.pfx yourCertificatePassword

Make sure that you remember the location of the certificate and the password that you chose for it
because you will need both to package and deploy your application as an AIR file.

Using ADT to package an AIR file

With your application finished and a digital certificate ready to go, you are now ready to use ADT
once more. This time you will be using it to package your application as an AIR file. As demon-
strated here, you specify your digital certificate, password, resulting AIR file that you would like to
create, your application’s descriptor file, and the directory to include in the packaged AIR file:

ADT -package -storetype pkcsl2 -keystore bin/yourCertificateName.
pfx -storepass yourCertificatePassword bin/yourApp.air bin/
application.xml -C bin .

Assuming that there were no issues, the AIR file that you specified should have been generated.
At this point, you should launch the AIR file to install your application on your machine and test
everything to ensure that it is working properly.

393

Testing and Deploying

Summary

You should now have a pretty good idea of how you can turn your projects into AIR applications using a
variety of different tools, such as Flex Builder 3, Flash CS3, Dreamweaver CS3, and command-line tools.
In Chapter 21, you will learn about a tool called Ant and how it can greatly automate command-line
processes for you and make sharing a project amongst a team a much easier task.

394

pache Ant (http://ant.apache.org) is a Java-based build tool.

Unlike older solutions such as Make, Ant uses XML-based configura-

tion files rather than shell-based commands, giving it the capability
to be cross-platform rather than tied to a certain OS.

IN THIS CHAPTER

Getting set up

Creating a build file

Ant first showed up in a small percentage of Flash development pipelines
back in the early days of ActionScript 2.0. It was used to better integrate Adding basic targets
MTASC (an open-source, command-line compiler) into development work-
flows. With the addition of the Flex SDK in modern ActionScript develop-
ment, more and more developers are beginning to use command-line
compilers to compile their code, rather than rely on the Flash or Flex Builder
IDEs to do it for them transparently.

Adding advanced targets

Beyond simply giving you more control over the build process, using Ant
along with command-line tools decouples you from being locked into using
any particular IDE. For this reason alone, it is a very good idea for you to get
familiar with Ant and begin leveraging it in your projects.

Getting Set Up

The Eclipse IDE includes Ant support right out of the box, so if you are run-
ning the plugin version of Flex Builder — or an alternative plugin such as
FDT — you are ready to go. If you are using the stand-alone version of Flex
Builder or wish to use Ant with a non-Eclipse-based tool such as
FlashDevelop or TextMate, some additional setup is required.

395

Testing and Deploying

Adding Ant view to the stand-alone Flex Builder IDE

Even though Ant view isn’t included with the stand-alone version of Flex Builder, it is bundled
with the Java development tools that are available as a simple-to-install Eclipse update. To install
the Java development tools and gain access to Ant view, follow these steps:

1. In the Flex Builder menu bar, browse to Help = Software Updates = Find and
Install.

Select Search for new features to install, and then click Next.
Select Eclipse project updates, and then click Finish.

Select a location, preferably one that is near you for faster download times, then
click OK.

5. Browse the various SDK versions in the Eclipse Project Updates’ tree until you find
Eclipse Java development tools. Check the box next to it, and then click Next to begin
the download process.

6. Once the Update manager finishes downloading the necessary files, you will be
prompted with a feature verification dialog box. Click Install All.

7. Upon installation completing, go ahead and restart Flex Builder.

8. You can now launch Ant view by browsing to Window => Other Views > Ant.

You now have a view for easily using Ant inside of Flex Builder. Read on if you are interested in
using Ant outside of Flex Builder and the Eclipse IDE; otherwise, go ahead and skip to the section
on creating a build file to get started.

Installing Ant on your machine

Installing Ant is pretty straightforward. Download the latest archive (zip) from the official Apache
Ant Web site (http://ant.apache.org) and extract the files to the directory of your choice.
For added convenience, use a simple path such as ¢ : \ant on Windows or /usr/local/ant on
OS X. Next, you will need to create some environment variables so that you can easily call Ant
from the command-line.

B On Windows (command prompt):

set ANT_HOME=c:\ant

set PATH=%PATH%; $ANT_HOME%\bin
H On OS X (terminal):

export ANT_HOME=/usr/local/ant
export PATH=${PATH}:${ANT HOME}/bin

Close out of the existing Command prompt/Terminal window in order for settings to take effect.
Reopen a Command prompt/Terminal window, type ant, and then press Enter/Return. If you get
an error message saying something about a build file not existing, you are setup correctly.

396

Leveraging Ant to Automate the Build Process

Creating a Build File

An Ant build file is simply an XML-based configuration file for defining properties, targets, and tasks.
The standard convention for a build file is to name it build.xml and place it either in the root of
your project directory or in a directory titled build located in the root of your project directory.

Using the editor of your choice, create a new XML file and save it as build.xml. Inside the build
file, begin by adding the root project node as seen here:

<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir=".">
</project>

The name attribute is the name in which the build file will show up in the Eclipse Ant view. The
basedir attribute should point to the root of your project directory. If you placed your build file
inside a directory titled build rather than directly inside the root directory, make sure to set the
basedir attribute to . instead.

Defining properties

You can define properties inside of a build file for storing paths, compiler settings, and so forth. Listing
21.1 shows some common properties you will likely want to define for use throughout your build file.
Once a property has been defined, you can reference it using the $ {propertyName} syntax.

LISTING 21.1

Defining Properties Inside of a Build File

<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir=".">

<!-- PROPERTIES -->

<property name="flex.sdk" value="/Applications/Adobe Flex Builder 3/
sdks/3.0.0" />

<property name="mxmlc" value="${flex.sdk}/lib/mxmlc.jar" />
<property name="ADL" value="${flex.sdk}/bin/ADL.exe" />
<property name="ADT" value="${flex.sdk}/1lib/ADT.jar" />
<property name="src.dir" value="${basedir}/src" />

<property name="src.modules.dir" value="${src.dir}/modules" />
<property name="bin.dir" value="S${basedir}/bin" />

<property name="bin.modules.dir" value="${bin.dir}/modules" />
<property name="libs.dir" value="S${basedir}/libs" />

</project>

397

Testing and Deploying

Alternatively, you may also define properties in a separate build.properties file. It really
comes down to personal preference; some people prefer to have everything defined in their build
file, while others feel more comfortable storing their properties externally.

To create a build.properties file, simply create an empty text file and save it as build.
properties in the same directory as your build.xml file. Inside the file, you can define prop-
erties, as shown in Listing 21.2.

LISTING 21.2

Defining Properties Inside of a Separate Properties File

PROPERTIES

flex.sdk=/Applications/Adobe Flex Builder 3/sdks/3.0.0
mxmlc=${flex.sdk}/lib/mxmlc. jar
ADL=S${flex.sdk}/bin/ADL.exe
ADT=${flex.sdk}/1ib/ADT.jar

src.dir=${basedir}/src
src.modules.dir=${src.dir}/modules
bin.dir=${basedir}/bin
bin.modules.dir=${bin.dir}/modules
libs.dir=${basedir}/libs

Inside the build file, you can now access these properties by adding a node for the properties file,
as shown in Listing 21.3.

LISTING 21.3

Including the Properties File in a Build File
<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir=".">

<!-- PROPERTIES -->
<property file="build.properties" />

</project>

It’s important to note that both build.xml and build.properties are default filenames that
Ant will always look for automatically when it runs. Even so, it is still a best practice to declare the
properties file inside your build file, as demonstrated in Listing 21.3.

398

Leveraging Ant to Automate the Build Process

This makes it clear to other developers who are unfamiliar with your build file that there is an
additional file that contains properties that they may wish to modify or reference.

One last note on working with properties — once a property is set, it cannot be redefined with a
new value. In other words, if you were to define a property named color and give it a value of
red, and then define another property with the same name and give it a value of blue, the prop-
erty color would remain set to red. Listing 21.4 demonstrates this.

LISTING 21.4

Properties Cannot Be Redefined Once Declared

<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir=".">
<!-- PROPERTIES -->

<property name="color" value="red" />
<property name="color" value="blue" />

<!-- ECHO -->
<!-- Outputs: 'color = red' -->
<echo message="color = ${color}" />

</project>

Defining targets

Targets are basically methods that you can define and call to execute a series of tasks. In the sec-
tions to come, you will be creating targets for compiling and testing your applications, as well as
generating documentation.

The real power of targets lies in their ability to depend on other targets. For example, you could
have four targets, named one, two, three, and four. Target four may depend on the actions of
the other three targets to be carried out before its tasks can be properly executed. Listing 21.5
demonstrates just how simple this is to handle.

Creating target dependency chains is one of the key concepts that you will use the most in your
build files. In a more realistic example, you will use dependencies to compile your SWF files before
launching and testing your application.

Another important target node attribute is the description attribute. As a best practice, you
should always create a description for every target you create. These descriptions are available
when help is accessed via the command-line; they are also displayed if verbose or debug is
enabled when the build is run.

399

Testing and Deploying

LISTING 21.5

Last, but not least, are the i f and unless attributes. You can use these attributes to check if a
particular property has been set. Using the if attribute, you can dictate that a target should only
be executed if the property it is checking has been set. The unless attribute does exactly the
opposite.

An Example of Target Dependencies

<?xml version="1.0" encoding="utf-8" ?>

<project name="MyAntProject" basedir=".">

<!-- EXAMPLE TARGETS -->

<target name="one">
<echo message="Target 'one' is complete!" />
</target>

<target name="two">
<echo message="Target 'two' is complete!" />
</target>

<target name="three">
<echo message="Target 'three' is complete!" />
</target>

<target name="four" depends="one, two, three">
<echo message="Target 'four' is complete!" />
</target>

</project>

400

Building upon the original example with targets one, two, three, and four, Listing 21.6 imple-
ments the description, if, and unless attributes.

In Listing 21.6, a property named odds is defined. Because it exists, targets one and three will
execute; however, target two will not. In actual practice, 1 £ and unless attributes are generally
used to check for properties that result from user interaction. This will be demonstrated in the sec-
tions to come.

Now that we've gone over how targets work, it’s time to discuss what they can contain. Targets can
be made up of many child nodes, which carry out tasks such as outputting messages, copying and
moving files, compiling, updating a repository, and much, much more.

Leveraging Ant to Automate the Build Process

You will learn some very useful tasks in this chapter; however, you should also visit the Apache
Ant Web site (http://ant.apache.org) and familiarize yourself with the documentation. There are
many more tasks and options available than this book could possibly cover.

LISTING 21.6

Examples of the Description, If, and Unless Attributes

<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir=".">
<!-- PROPERTIES -->
<property name="odds" wvalue="true" />
<!-- TARGETS -->

<target name="one" description="Outputs an example message."

if="${odds}">
<echo message="Target 'one' is complete!" />

</target>

<target name="two" description="Outputs an example message."

unless="${odds}">
<echo message="Target 'two' is complete!" />

</target>

<target name="three" description="Outputs an example message."

if="${odds}">
<echo message="Target 'three' is complete!" />

</target>

<target name="four" description="Outputs an example message."

depends="one, two, three">
<echo message="Target 'four' is complete!" />

</target>

</project>

Defining tasks

Tasks are essentially nodes that represent corresponding Java classes. By writing new classes and
packaging them accordingly, you can extend upon the core tasks made available by Ant. In partic-
ular, this section focuses on the use of the Flex tasks that are bundled with the Flex SDK.

401

Testing and Deploying

It is usually a good idea to include any optional tasks you are using in your build file along with your
source code. In this case, create a new directory named ant in the root of your project directory and
copy the £lexTasks . jar file located in the Flex SDK’s ant /1ib directory over to it. If you were
to end up adding any other additional tasks, you would place them in this directory as well.

Now, inside of your build file, you can import the optional tasks by creating a task definition, as
shown in Listing 21.7.

LISTING 21.7

Adding a Task Definition for the Flex Tasks
<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir=".">

<!-- TASK DEFINITIONS -->
<taskdef resource="flexTasks.tasks" classpath="${basedir}/ant/
flexTasks.jar" />

</project>

So what did all that trouble earn you? Well, originally you would have needed to create an exec
or java task to manually call mxm1c, but you now have access to actual tasks for handling this.
That means that a tool such as Eclipse can detect mistakes in your file before you even run it.
Listing 21.8 shows examples of this in action.

Beyond the real-time error catching, using the Flex tasks also helps make your code cleaner and
more readable. While this certainly isn’t a mandatory step, it’s one that you should definitely con-
sider taking.

Importing Optional Tasks

N ot all optional tasks are as easy to import as the Flex tasks are. In some cases, you need to create
custom class loaders to accomplish this in your build file. It’s usually best to avoid that and just
include the tasks using the command-line '-1ib"' option instead. In Eclipse, you can accomplish
this by browsing to Window™ Preferences. .. Ant ®Runtime and adding your external JAR
files to the ' Ant Home Entries' list.

402

Leveraging Ant to Automate the Build Process

LISTING 21.8

Comparison of the mxmlc Command-line Tool Versus the mxmic Flex Task

<?xml version="1.0" encoding="utf-8" ?>

<project name="MyAntProject" basedir=".">
<!-- This is one way you could compile without importing the Flex tasks.
—-——>

<target name="compileMain" description="Compiles the main application

files.">
<echo>Compiling '${bin.dir}/main.swf'...</echo>
<java jar="${mxmlc}" fork="true" failonerror="true">
<arg value="-file-specs=${src.dir}/Main.mxml" />
<arg value="-output=${bin.dir}/main.swf" />
</java>
</target>
<!-- This is how you can compile once you have imported the Flex tasks.
-—>

<target name="compileMain" description="Compiles the main application

files.">

<echo>Compiling '${bin.dir}/main.swf'...</echo>

<mxmlc file="${src.dir}/Main.mxml" output="${bin.dir}/main.swf"" />
</target>
</project>

Executing targets

So far, this chapter has covered the processes for defining properties, targets, and tasks and how
they all come together to form instructions for making your life easier. What it hasn’t covered is
how you actually execute them.

Before you begin, there is an additional attribute that you can add to your project node that will
enable you to create an entry point of sorts for your build file. The attribute is default, and it
allows you to specify a target that will automatically run upon the build file being consumed by
Ant. As shown in Listing 21.9, a common convention is to add a main target and set it to the file’s
default target.

403

Testing and Deploying

Adding a Main Target

<?xml version="1.0" encoding="utf-8" ?>
<project name="MyAntProject" basedir="." default="main">

<!-- MAIN -->

<target name="main" description="Entry point for the build
process. ">

<echo message="Hello world!" />
</target>

</project>

With that in place, it’s time to try everything out. Follow these steps:

If you are in Eclipse, open the Ant view if you haven’t already.

2. Dragthe 'build.xml’ file from the view in which your project tree exists to the
Ant view. You should now see an item listed as MyAntProject or whatever name you
set in the project node.

3. Toggle the little symbol next to the Ant file’s name to show/hide the targets that
exist in the build file.

4. Double-click a target to execute it. You should see output show up in the console view.
If you double-click the name of the Ant file, the target specified by the default attri-
bute in the project node will be executed.

If you are using the command-line rather than a tool with an Ant U, the process is still fairly simi-
lar. Listing 21.10 demonstrates some various commands for executing your Ant build file.

Between these two approaches, you should have everything you need to run Ant from the develop-
ment tool of your choice.

LISTING 21.10

Sample Ant Command-line Calls

// Simply calling Ant will check the current directory
// for a 'build.xml' file and then execute the default
// target if one exists.

ant

404

Leveraging Ant to Automate the Build Process

// Additionally, you can manually specify a build file
// by using the '-buildfile' option.

ant -buildfile build.xml

// You can specify a target to be executed by simply
// listing it.

ant -buildfile build.xml main

// If you just need to run the build file and default
// target, but have some optional tasks you would like
// Ant to reference for use in your build file, the

// '-1lib' option allows you to specify a directory

// for Ant to check and find these optional files.

ant -1ib ../ant

Adding Basic Targets

At this point, you should be pretty comfortable with getting the basic structure of an Ant build file
set up. In this section, you can begin adding useful targets to your build file for actual use in an
AIR project.

Main target

As mentioned in the previous section, the common convention is to create a main target and set it
as the default target for your build file. For now, start your main target out as just a blank target
with a name and description; you will be adding to it very soon.

Init target

In a team environment, you may have some developers who work under Windows, some under
OS X, and even some under Linux. Because the location of the Flex SDK needs to be known for
some of the tasks that follow, and because this location varies on each OS, it is useful to write a tar-
get for handling this. In Listing 21.11, the OS is detected by Ant, and the Flex SDK location is
dynamically set accordingly. The assumption is made that Flex Builder is installed on each
machine and in the default directories. This can certainly be modified as need be. Also note that
the init target is added to the depends attribute of the main target so that it is called upon run-
ning the build file.

405

Testing and Deploying

LISTING 21.11
The Addition of an init Target

<!-- MAIN -->
<target name="main" description="Entry point for the build process."

depends="init" />

<!-- INIT -->
<target name="init" description="Initializes any necessary properties

before running additional tasks.">
<condition property="FLEX_ _HOME" value="C:\Program Files\Adobe\Flex
Builder 3\sdks\3.0.0">
<os family="windows" />
</condition>
<condition property="FLEX_ HOME" value="/Applications/Adobe Flex
Builder 3/sdks/3.0.0">
<os family="mac" />
</condition>

<condition property="FLEX_HOME" value="/opt/Adobe_Flex_ Builder_Linux/
sdks/3.0.0">

<os family="unix" />
</condition>

</target>

406

How and when this target should be called will be demonstrated later in this chapter.

Compile targets

Perhaps the most useful and obvious targets to add to a build file are for compiling. Listing 21.8,
which appears earlier in the chapter, examines two different approaches for calling the Flex SDK’s
mxmlc compiler. From here forward, you'll be using the Flex tasks for calling mxm1c; however,
there are some targets you'll be adding later that do not use the Flex tasks, so you'll become famil-
iar with both approaches by the end of this chapter.

In its simplest form, a task for compiling needs to contain a reference to the main application class
or MXML file, the source directory, and the output SWF to produce. Additionally, because you are
building an AIR application rather than a plain Flex application, you need to specify the use of the
air-config.xml file.

Listing 21.12 demonstrates an example of this, where src.dir and bin.dir are properties that
reference the project’s src and bin directories, respectively, and FLEX_HOME is the location of
the Flex SDK.

Leveraging Ant to Automate the Build Process

LISTING 21.12

Target for Compiling the Main SWF File

<!-- COMPILE MAIN -->

<target name="compileMain" description="Compiles the main application
files.">
<echo>Compiling '${bin.dir}/main.swf'...</echo>

<mxmlc file="${src.dir}/Main.mxml" output="${bin.dir}/main.swf">
<load-config filename="${FLEX_HOME} /frameworks/air-config.
xml" />
<source-path path-element="${src.dir}" />
</mxmlc>
</target>

T Any options that you define in the build file will override the ones specified in the
=SS air-config.xml file. Additionally, you can create your own project-specific con-
fig file for use instead.

If your application is a single SWF file, then you are pretty much set at this point; however, if you
are building a more complicated application that is comprised of various modules, these next steps
will show you how to efficiently address this in your build file.

In Listing 21.13, the target for compiling the main SWF has been modified with an additional
option link-report. This option tells the mxmlc compiler to output an XML file (wWhose name
you define) containing what is basically a list of all the classes and interfaces used in that SWF.
You'll see why this is useful in just a little bit.

LISTING 21.13

Compile Main Target with Addition of Link-report Attribute

<!-- COMPILE MAIN -->

<target name="compileMain" description="Compiles the main application
files.">
<echo>Compiling '${bin.dir}/main.swf'...</echo>

<mxmlc file="${src.dir}/main.mxml" output="${bin.dir}/main.swt"
link-report="report.xml">
<load-config filename="${FLEX_HOME} /frameworks/air-config.
xml" />
<source-path path-element="${src.dir}" />
</mxmlc>
</target>

407

Testing and Deploying

With that in place, it’s time to move on to handling modules. Given that all modules will use the
same compiler settings, it makes sense to write a generic target that each module can use. To do

this, simply write the target with the assumption that a couple of parameters will be passed to it

when called.

In Listing 21.14, the module .mxml and module. swf properties are basically your local vari-
ables in code terms.

LISTING 21.14

Generic Target for Compiling Modules

<!-- COMPILE MODULE -->
<target name="compileModule" description="Compiles a module specified by
the 'module.mxml' and 'module.swf' parameters.">
<echo>Compiling '${module.swf}'...</echo>
<mxmlc file="${module.mxml}" output="${module.swf}" load-
externs="report.xml">
<load-config filename="${FLEX_HOME}/frameworks/air-config.
xml" />
<source-path path-element="${src.dir}" />
</mxmlc>
</target>

The key element here is the 1load-externs option, which you should point toward the XML file
that you generated via your compileMain target using link-report. This causes mxmlc to
review the list of classes and interfaces that are already present in the main. swt file and not com-
pile them into the module SWF file(s).

This means you'll have much smaller SWF file sizes — this is not as much of a concern when
developing AIR applications as it is when developing for the Web, but it is still useful nonetheless.

Cache Static Classes

The catch to using the load-externs option is that you need to cache static classes such as the Flex
managers (CursorManager, and so on) in your main SWF file to avoid having multiple instances in
memory. To do this, simply import them into your main application class and reference each one in
the constructor by writing the class name followed by a semicolon. This step is mandatory because
importing and not referencing the class anywhere will cause it to not be compiled.

408

Leveraging Ant to Automate the Build Process

Now that your generic module target is ready to go, you need to create individual targets that call
it for each module. For example, say you were building an audio application and one of your mod-
ules was a visualizer. Listing 21.15 shows what that might look like, where src.modules.dir
and bin.modules.dir are properties that reference the src/modules and bin/modules
directories, respectively.

LISTING 21.15

Compile Target that Passes Parameters to the Generic compileModule Target

<!-- COMPILE VISUALIZER MODULE -->

<target name="compileVisualizer" description="Compiles the visualizer
module. ">
<antcall target="compileModule">

<param name="module.mxml" value="${src.modules.dir}/Visualizer.mxml"
/>

<param name="module.swf" value="${bin.modules.dir}/visualizer.swt"
/>
</antcall>

</target>

As you might expect, the target calls the generic compileModule target and passes it the two
necessary parameters. What remains at this point is simply putting it all together. To do so, you
need to create a target that runs each compile target. The beauty of Ant is that it is really easy to
accomplish using the depends attribute that this chapter covered earlier. The following code
demonstrates how each compile target is listed out in the depends attribute of a target named
compileAll:

<!-- COMPILE ALL -->
<target name="compileAll" description="Compiles all application
files." depends="compileMain, compileVisualizer" />

Revisiting the main target once more, append the compileall target to the depends attribute,
as shown here:

<!-- MAIN -->
<target name="main" description="Entry point for the build

process." depends="init, compileAll” />

After running your build file, init will be called to detect the location of the Flex SDK and store it
in the FLEX_HOME property. compileAll will then be called, and the application’s SWF files
will be generated. So far, so good.

409

Testing and Deploying

LISTING 21.16

Launch target

The next step is to create a target for launching and testing your newly generated application files.
To do this, you will use the ADL command-line tool. Currently, the Flex Ant tasks do not include a
task for ADL, so you will need to call it yourself. This is easy enough though, as shown in Listing
21.16.

In this launch target, the Ant exec task calls the ADL command-line tool, and a reference to the
application XML file is passed as an argument. Note that the . exe extension is present in this
example, meaning that this call will only work on a Windows machine.

As a personal challenge, you can add logic to the init target created earlier by setting an ADL
property that is pointed toward the correct version of the tool based on the OS that is detected. In
most cases, Adobe has included Java versions of their tools with the Flex SDK. This is one of those
few instances where there isn’t a single cross-platform tool available, so a little extra work is
required on your end to ensure that the build file works correctly under all operating systems.

Launch Target for Testing an Application

<!-- LAUNCH APPLICATION -->
<target name="launch">

<exec executable="S${FLEX_ HOME}/bin/ADL.exe">

<arg line="'${bin.dir}/main-app.xml'" />

</exec>

</target>

410

Also at this point, you can go ahead and add the launch target to the depends attribute of the
main target as seen here:

<!-- MAIN -->
<target name="main" description="Entry point for the build
process." depends="init, compileAll, launch” />

Generate certificate target

Once you have completed your application and you are ready to deploy it as an AR file for distri-
bution, you need to generate a certificate file to sign the application with. To accomplish this, use
the ADT command-line tool that is included with the Flex SDK. Listing 21.17 demonstrates an
example of what your target for generating a certificate may look like.

LISTING 21.17

Leveraging Ant to Automate the Build Process

Target for Generating a Certificate to Digitally Sign an Application

<!-- GENERATE CERTIFICATE -->
<target name="generateCertificate" depends="init">
<java jar="${FLEX_HOME}/1lib/ADT.jar" fork="true">

<arg
<arg
<arg
<arg
<arg
<arg
<arg
<arg

</java>
</target>

value="-certificate" />

value="-cn" />

value="YourCertificateName" />

value="-o" />

value="YourNameOrCompany" />

value="2048-RSA" />
value="${bin.dir}/YourCertificateName.pfx" />
value="YourCertificatePassword" />

Unlike the ADL tool, Adobe has included a Java version of ADT, so use that for cross-platform com-
patibility. In Listing 21.17, you would simply substitute the placeholder values for values applica-
ble to your project or even take things a step further and define properties for those values instead.

Deploy target
With a certificate ready to go, you are now ready to deploy your application as an AIR file. To do

so, you will once again be using the ADT tool. In Listing 21.18, the application is signed and gener-
ated as an AIR file.

LISTING 21.18

Target for Deploying an Application as an AIR File

<!-- DEPLOY APPLICATION -->

<target name="deploy" depends="generateCertificate">
<delete file="${bin.dir}/application.air" />
<java jar="${FLEX_HOME}/1lib/ADT.jar" fork="true">

<arg
<arg
<arg
<arg
<arg
<arg
<arg
</java>
</target>

line="-package" />

line="-storetype pkcsl2" />

line="-keystore ${bin.dir}/certificate.pfx" />
line="-storepass YourCertificatePassword" />
line="${bin.dir}/application.air" />
line="${bin.dir}/main-app.xml" />

line="-C ${bin.dir} ." />

411

Testing and Deploying

Notice that the deploy target depends on the generateCertificate target being run before
it executes. This ensures that a certificate has been generated before attempting to sign and create
the AIR file. Because this operation is not one that you will likely be running as frequently as the
compile and launch targets, do not add it to the main target’s depends attribute. Instead, exe-
cute the deploy target itself in the Eclipse Ant view or from the command-line.

You now have everything you need to compile, test, and deploy your application. As a best practice,
there is one more target that you should always try to include in your build files — a clean target.

Clean target

The purpose of a clean target is to clean up and remove all files that were generated by the build
file. Some examples of files that could be removed are the report .xml link report, any cache
files generated by an incremental mxmlc build, the certificate file, and the AIR file itself. In other
words, the clean target should revert your project directory back to its original state, leaving
things as they were before you ran the build file for the first time.

The example target in Listing 21.19 does exactly that — it deletes the files generated by the build
file and leaves everything else untouched.

With the basic targets discussed in this section, you can do a lot; however, you are only scratching
the surface of what you can accomplish via Ant. In the section that follows, you will take things a
small step further with some more filesystem manipulation and user input.

LISTING 21.19

Clean Target for Removing All Files Generated by the Build File

<!-- CLEAN -->
<target name="clean" description="Cleans all applicable directories and
files.">

<delete file="${build.dir}/report.xml" />
<delete file="${bin.dir}/certificate.pfx" />
<delete file="${bin.dir}/MyApplication.air" />
<delete>
<fileset dir="${src.dir}" includes="**/*_ cache" />
</delete>
</target>

Adding Advanced Targets

By now, you are probably starting to get really excited about Ant, if you weren’t already. While the
targets in this section aren’t mandatory to complete a project, they will certainly come in handy. If
nothing else, they should inspire you to take things further on your own.

412

Leveraging Ant to Automate the Build Process

Generate documentation target

This one is a gem. Creating and maintaining documentation for an application can be a tedious
task; however, if you (and your team) have been good about writing JavaDoc comments through-
out your code, then this target can make this process a breeze.

There is a tool included with the Flex SDK by the name of asdoc. Whether you realize it or not,
you are probably already very familiar with its work. If you have ever used or seen Adobe’s live-
docs (ActionScript 3.0 language reference), all of that was generated using asdoc. What asdoc
does is generate HTML files for each class and interface file in a specified directory. If JavaDoc
comments are present in the code, the documentation will include all of that as well.

Before creating the target that generates the documentation, you need to create a target that cleans out
your project’s docs directory. This is important so that once you begin generating documentation,
you can clean out the old documentation so that pages for files that no longer exist do not remain in
the docs directory. Listing 21.20 demonstrates a simple solution for clearing the directory.

LISTING 21.20

Target for Deleting All Files in the docs Directory

<!-- CLEAN DOCS -->
<target name="cleanDocs" description="Cleans out the documentation
directory.">
<echo>Cleaning '${docs.dir}'...</echo>
<delete includeemptydirs="true">
<fileset dir="${docs.dir}" includes="**/*" />
</delete>
</target>

It would be a good idea at this point to go ahead and add a call to the clean target that you cre-
ated earlier for calling your cleanDocs target as well, as shown in Listing 21.21.

With that stuff in place, it’s time to create the target that generates the documentation. This process
is pretty straightforward, but it is easy to get caught up on little issues such as getting asdoc to
correctly locate everything that your code references. Listing 21.22 demonstrates what a typical
target for accomplishing this deed will look like.

Most of the arguments are pretty self-explanatory; however, it is important to take note of the
+flex1ib line. In some cases when working with the Flex SDK Java tools, you will get an error
complaining that it cannot find something in the Flex or AIR conlfig file.

The +f1lex11ib line resolves this issue. Also note that the asdoc tool catches errors that mxmlc
does not. This is due to the fact that it checks every single class and interface file in the specified
directories, not just the ones that are actually referenced in the project code.

413

Testing and Deploying

Addition of cleanDocs Target Call to Clean Target

<!-- CLEAN -->
<target name="clean" description="Cleans all applicable directories and
files.">

<delete file="${build.dir}/report.xml" />
<delete file="${bin.dir}/certificate.pfx" />
<delete file="${bin.dir}/MyApplication.air" />

<delete>
<fileset dir="${src.dir}" includes="**/*_ cache" />
</delete>
<antcall target="cleanDocs" />
</target>

LISTING 21.22

Target that Uses ASDoc to Generate Code Documentation

<!-- GENERATE DOCUMENTATION -->
<target name="generateDocs" description="Generates application
documentation using ASDoc." depends="init, cleanDocs">
<echo>Generating documentation...</echo>
<java jar="${FLEX_HOME}/lib/asdoc.jar" fork="true"
failonerror="true">
<arg line="+flexlib='S${FLEX HOME}/frameworks'" />
<arg line="-load-config 'S$S{FLEX_HOME}/frameworks/air-config.
xml'" />
<arg line="-source-path ${src.dir}" />
<arg line="-doc-sources S${src.dir}" />
<arg line="-main-title Your Documentation Name" />
<arg line="-window-title Your Documentation Name" />

<arg line="-footer (c) 2008 Your Name or Company" />
<arg line="-output ${docs.dir}" />
</java>

</target>

414

Leveraging Ant to Automate the Build Process

Export and package source target

Another semi-common task that may come in handy is the ability to export a project directory
(without any unwanted source control or project files) to a new directory and then zip it up to
hand off to a client.

As usual, you should first decide where you will be exporting the files to and create a target for cre-
ating and clearing that directory before attempting to export to it. In Listing 21.23, an export direc-
tory represented by the property export .dir is created if it does not already exist, and if it does,
all files inside of it are deleted.

LISTING 21.23

Target for Removing Generated Files from the Export Directory

<!-- CLEAN EXPORT -->
<target name="cleanExport" description="Cleans out the export
directory.">
<echo>Cleaning 'S${export.dir}'...</echo>
<mkdir dir="${export.dir}" />
<delete includeemptydirs="true">
<fileset dir="S{export.dir}" includes="**/*" />
</delete>
</target>

Now you are ready to create the target that handles the exporting and packaging of the source files.
It’s surprisingly simple to do using a combination of the Ant file system tasks and built-in zip task.
Listing 21.24 shows the magic in action.

LISTING 21.24

Target for Exporting and Packaging Project Files as Zip File

<!-- EXPORT AND PACKAGE SOURCE -->
<target name="export" description="Exports and zips up application
source files." depends="cleanExport">
<echo>Exporting files to '${export.dir}'...</echo>
<copy overwrite="true" todir="${export.dir}">
<fileset dir="S${basedir}">
<exclude name="**/ */**" />
<exclude name="**/_ *" />
</fileset>
</copy>

continued

415

=1{AS Testing and Deploying

<zip file="${export.dir}/../source.zip">
<fileset dir="${export.dir}" />
</zip>

</target>

LISTING 21.25

This target can easily be broken into two targets, one for exporting and one for packaging the files
into a zip file, if need be. The two exclude nodes prevent any files or folders that begin with a .
from being exported, thus filtering out Eclipse project files, SVN files, and so forth.

User input target

This is where things get interesting. Many developers are unaware of the fact that you can actually
present the user with options and handle their input — all via Ant. Why is this useful?

Well, for starters, if the build file is run from a development tool such as Eclipse, the user is actu-
ally prompted with a UI pop-up window.

Because not all development tools offer a nice Ant view like Eclipse does, this gives you the oppor-
tunity to create a consistent user experience independent of the development tool being used.
Likewise, if the build file is run from the command-line, the user is still prompted with the options
and has the ability to enter input.

In Listing 21.25, you will be generating a pop-up window that features a drop-down list contain-
ing a list of tasks for the user to choose from. In your input target, you will check to see which
option was selected and then create properties accordingly.

These properties that you create act as Booleans essentially, so you can chain all your targets
together in your main target’s depends attribute, call each one, but tell it to only execute if the
specified property exists. This will make more sense once you see the code in Listing 21.25.

Target for Accepting User Input to Determine which Targets Need Executed

<!-- INPUT -->
<target name="input" description="Presents the user with a dialog box

416

for selecting tasks to run.">
<input message="Please select a task..." validargs="compile, launch,

deploy, generateDocs, exportAndPackage" addproperty="input.action" />

<condition property="do.compile" value="true">
<0or>
<equals argl="${input.action}" arg2="compile" />

Leveraging Ant to Automate the Build Process

<equals argl="S${input.action}" arg2="launch" />

</or>

</condition>

<condition property="do.launch" value="true" else="false">
<equals argl="${input.action}" arg2="launch" />

</condition>

<condition property="do.deploy" value="true" else="false">
<equals argl="${input.action}" arg2="deploy" />

</condition>
<condition property="do.asdoc" value="true">
<0or>
<equals argl="${input.action}" arg2="generateDocs" />
<equals argl="${input.action}" arg2="exportAndPackage"
/>
</or>
</condition>

<condition property="do.export" value="true">
<equals argl="S${input.action}" arg2="exportAndPackage" />
</condition>
</target>

Conditionals read a little weird in Ant, so breaking it down into pieces may make it easier to
understand. For example, the first conditional will create a property named do . compile and
assign it a value of true if input.action (which is the user’s response) is equal to compile or
launch. If neither the compile nor launch option was selected, then the do . compile prop-
erty is never created and would, therefore, resolve as false if checked against.

The next step is to revisit the main target and add each of the targets you created earlier to its
depends attribute, as shown here:

<!-- MAIN -->

<target name="main" description="Entry point for the build
process." depends="init, input, compileAll, launch, deploy,
generateDocs, export” />

Upon running main, the init target will run, thus setting the location of the Flex SDK. Next, the
input target will run and the user will choose what he would like to do. After that, each of the
targets for compiling, launching, and so on will be called, but you only want the ones relevant to
the user’s selection to actually run. Fortunately, this can be handled very easily by adding an i £
attribute to each target.

Listing 21.26 is an example of adding an if attribute to the launch target that you created earlier
in the chapter.

417

Testing and Deploying

LISTING 21.26
Launch Target with Addition of If Attribute

<!-- LAUNCH APPLICATION -->
<target name="launch" if="do.launch">

<exec executable="S${FLEX HOME}/bin/ADL.exe">

<arg line="'${bin.dir}/main-app.xml'" />

</exec>

</target>

418

Now, when launch is called, Ant will check if the do . 1launch property exists before executing
any of its instructions. Any targets listed in the depends attribute will still be called though; so in
the case of the compileAll target, you still need to add the i £ attribute to each compile target.

By adding i £ attributes to all your targets and funneling all build file calls to begin with the main
target, you have better control over the order in which things get executed and defined, and there-
fore, you provide a more stable and reliable build file for team use.

Summary

As you have learned in this chapter, Ant is an essential tool for streamlining command-line pro-
cesses and making common project tasks easy to share amongst a development team. Hopefully
this has inspired you to give Ant a try in your projects, if you have not already. I encourage you to
experiment with Ant and browse through the online documentation to learn more about the vast
number of tasks currently built into Ant.

Beyond all of that, Ant allows you to branch out and try other development tools without suffering
from a major change in workflow. For this reason alone, Ant has quickly become an important tool
in many Flex/AIR developers’ toolkits.

n the Web world, distribution is simple: Simply upload your files to a

server and send the link out to the world. If you come across a major

bug in your application a week after deployment, fix it and reupload
your files — problem solved. In the desktop world, things are a little differ-
ent. Instead of simply sending a link to somebody to view your application,
first the person needs to download the link, Adobe AIR must be installed if it
isn’t already, and then your application needs to be installed.

This raises some important questions, though. How can you create a seam-
less way for users to download your application? Once users have down-
loaded your application, what happens if you make some important changes
that need distributed?

Before distributing your application for the first time, you need to put some
thought into planning for the future. Whenever you fix bugs or add new fea-
tures, you need an easy way to distribute your changes to users who have
already downloaded and installed your application. Fortunately, the AIR
framework does include some capabilities for installing updates, though it is
up to you to come up with a system for detecting and distributing these
updates so that they can be installed. The next section details how you can
accomplish this.

Implementing an Update System

Building an update system for your application requires a little bit of plan-
ning up front, but is fairly straightforward to implement. The process is
divided into three steps:

B Version tracking

419

IN THIS CHAPTER

Implementing an update
system

Using the Adobe install badge

Creating a custom install badge

Manual installation

Testing and Deploying

B User notification

B Update installation

Version tracking

Before jumping into the process of getting and installing updates for your application, first you
must lay some groundwork for tracking versions. This process is divided into two steps:

1. Application checks its own version

2. Application finds out what the most current version is

In order to find out the application’s version, load the application descriptor XML file at run time
and check the version node’s value. Listing 22.1 demonstrates this.

LISTING 22.1

Loading the Application Descriptor XML File to Check the Application’s Version
<?xml version="1.0" encoding="utf-8"?>

<mx : WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
creationComplete="creationCompleteHandler ()"

<mx:Script>
<! [CDATA[

import flash.desktop.NativeApplication;
import flash.events.Event;

import mx.core.WindowedApplication;
private var _appXML:XML;
private var _airXMLNamespace:Namespace;

[Bindable (event="descriptorChanged")]
public function get version() :String
{
return _appXML._airXMLNamespace: :version;

}

private function creationCompleteHandler () :void
{

_appXML = NativeApplication.nativeApplication.
applicationDescriptor;

420

Installation and Distribution m

_airXMLNamespace = _appXML.namespaceDeclarations ()
dispatchEvent (new Event ("descriptorChanged")) ;
11>

</mx:Script>

</mx:WindowedApplication>

To test, create a view for displaying the version inside of a Label instance, as shown in Listing 22.2.

LISTING 22.2

<mx:Label id="versionLabel" text="{version}" />

After launching the application, the version that is listed inside of the application descriptor XML
file should be displayed in the Label instance that is in the top-left corner of the application.

Now that you are successfully tracking the version of the application, you need to implement a sys-
tem for finding out what the most current version of the application is. To do this, you need to
place some information about the latest version of the application on a Web server so that you can
easily update the information and the application can easily fetch it. An example of this would be
to create an XML document named version.xml. Listing 22.3 shows how this file might be
structured.

LISTING 22.3

An XML File Containing Information about an Application’s Latest Version and Download
Location

<?xml version="1.0" encoding="utf-8"?>
<application xmlns="http://ns.adobe.com/air/application/1.0">

<!-- The latest version of the application. -->
<version>2.0</version>

<!-- The URL in which the latest version of the application
<!— can be aquired. -->

<url>http://www.airbible.org/examples/updater/UpdaterApp.air</url>

</application>

421

Testing and Deploying

The document is very simple, yet it contains everything you need to know to successfully detect
and get the latest version. Inside your application, you can now load this document and compare
its version to the application’s version, as shown in Listing 22.4.

LISTING 22.4

Loading the version.xml File into an Application for Comparing Versions
<?xml version="1.0" encoding="utf-8"?>

<mx : WindowedApplication
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute"
creationComplete="creationCompleteHandler ()"

<mx:Script>
<! [CDATA[

import flash.desktop.NativeApplication;

import flash.events.Event;

import flash.net.URLLoader;

import flash.net.URLRequest;

import mx.controls.Label;

import mx.core.WindowedApplication;
private const VERSION_URL:String = "http://www.airbible.org/examples/
updater/version.xml";

private var _appXML:XML;

private var _airXMLNamespace:Namespace;

private var _versionXML:XML;

[Bindable (event="descriptorChanged")]

public function get version() :String

{

return _appXML._airXMLNamespace: :version;

private function checkForUpdates () :void

{

var versionRequest:URLRequest = new URLRequest (VERSION_URL) ;
var versionLoader:URLLoader = new URLLoader () ;

422

Installation and Distribution m

versionLoader.addEventListener (Event .COMPLETE,
versionLoadCompleteHandler, false, 0, true);

versionLoader.load (versionRequest) ;

private function creationCompleteHandler () :void

{
_appXML = NativeApplication.nativeApplication.
applicationDescriptor;

_airXMLNamespace = _appXML.namespaceDeclarations()
[0];
dispatchEvent (new Event ("descriptorChanged")) ;
checkForUpdates () ;
}
protected function versionLoadCompleteHandler (event:Event
) :void
{
_versionXML = new XML (URLLoader (event.target) .data);
if (_versionXML._airXMLNamespace: :version != version)
versionLabel.text += ", a newer version is
available...";
}

11>
</mx:Script>

<mx:Label id="versionLabel" text="{version}" />

</mx:WindowedApplication>

After launching the application, the two version values will be compared to see if they differ. The
application now has everything it needs to determine if a newer version exists.

Notifying the user that updates are available

Rather than automatically initiating the update process, you should alert users that updates are
available and let them determine if they would like to retrieve the updates at that time. A common
solution to handle this situation is to launch a pop-up window that informs the users and presents
them with buttons for submitting their decision.

423

Testing and Deploying

Listing 22.5 shows an example of such a pop-up.

Once the application has compared the two version values, if they differ you can then use the Flex
PopUpManager to launch the pop up, notify the user, and wait for a response. If the user chooses
to get the updates, you can then move forward with the process.

LISTING 22.5

Sample Window for Notifying the User that Updates Are Available
<?xml version="1.0" encoding="utf-8"?>

<mx:TitleWindow
xmlns:mx="http://www.adobe.com/2006 /mxml"
width="300"
height="130"
title="Update"

<mx:TextArea
width="100%"
height="100%"
wordWrap="true"
borderThickness="0"

text="A newer version of this application exists. Would you like to
install the updates now?"
/>

<mx:ControlBar horizontalAlign="center">
<mx : HBox>
<mx:Button id="yesBtn" label="Yes" />
<mx:Button id="noBtn" label="No" />
</mx : HBox>
</mx:ControlBar>

</mx:TitleWindow>

Downloading and installing updates

In the steps that follow, you'll download the latest version of the application using the URL speci-
fied in the versions.xml document, write it to a temporary file, and then use the AIR frame-
work’s Updater class to install the updates from the file.

424

Installation and Distribution m

Picking up where you left off with the user having to choose the option to install the latest updates,
you will need to create a method that downloads the latest version of the application, as shown in

Listing 22.6.

LISTING 22.6

Downloading an AIR File from a Server for Update Purposes

public function getUpdate (url:String) :void

{
var updateDownloadRequest:URLRequest = new URLRequest (url) ;

if (_updateDownloadStream == null)

{
_updateDownloadStream = new URLStream() ;
_updateDownloadStream.addEventListener (Event.COMPLETE,

updateDownloadStreamCompleteHandler, false, 0, true);
_updateDownloadStream.addEventListener (ProgressEvent.PROGRESS,

updateDownloadStreamProgressHandler, false, 0, true);

}

_updateDownloadStream. load (updateDownloadRequest) ;

private function popUpYesHandler () :void
PopUpManager . removePopUp (updatePopUp) ;

getUpdate (_versionXML._airXMLNamespace: :url) ;

Once the application download is complete, you will need to create a temporary file in the applica-
tion’s storage directory and write the downloaded bytes into the file, as shown in Listing 22.7.

LISTING 22.7

Demonstration of Reading the Loaded AIR File into Memory

private function updateDownloadStreamCompleteHandler (event:Event) :void

{
var updateFileStream:FileStream = new FileStream() ;

var updateFileBytes:ByteArray = new ByteArray();
_updateFile = File.applicationStorageDirectory.resolvePath ("Update.

air");
continued

425

=1{AS Testing and Deploying

_updateDownloadStream.readBytes (updateFileBytes, 0,
updateDownloadStream.bytesAvailable) ;

updateFileStream.addEventListener (Event.CLOSE,
updateFileStreamCloseHandler, false, 0, true);

updateFileStream.openAsync (_updateFile, FileMode.WRITE) ;

updateFileStream.writeBytes (updateFileBytes, 0, updateFileBytes.
length) ;

updateFileStream.close() ;

Once the file stream has finished writing all the bytes to the temporary AIR file on disk, you are
ready to initiate the installation of the updates using the AIR framework’s Updater class.

An Updater object contains a single public method named update, which takes two parameters.
The first is a File, which is the AIR application being installed as an update. The second is the ver-
sion of the update file, required for security purposes. If the version specified by this parameter does
not match the version listed in the application’s descriptor XML file, the update will not proceed.

Listing 22.8 demonstrates how the Updater class is used.

LISTING 22.8

Using the Updater Class to Initiate the AIR Update Process

private function updateApplication(updateFile:File,
updateVersion:String) :void

{
var updater:Updater = new Updater();
updater.update (updateFile, updateVersion) ;
}
private function updateFileStreamCloseHandler (event:Event) :void
{
updatelApplication(_updateFile, String(_versionXML._
airXMLNamespace: :version)) ;
}

Once the update process begins, the application automatically closes and the AIR installer window
pops up and keeps the user informed of its progress. Once installation has completed, the application
relaunches. The application once again downloads the version.xml document and compares its

426

Installation and Distribution m

version value to the version value listed in the XML document. The two should match this time, so
no further action is required.

With a solid solution in place for updating your application once it has been installed on a user’s
machine, you are now ready to move on and examine some possible solutions for distributing your
application to the masses.

Using the Adobe Install Badge

Included in the AIR SDK (samples/badge/) is a generic badge for simplifying the installation
process of an application. It handles a couple of key processes for you:

W [t checks to see if the user has the necessary version of Adobe AIR installed and, if not,
installs the correct version.

W It installs your application on the user’s machine.

The code inside of the badge’s source and example files solely handles Flash Player detection and
the layout and presentation of the badge itself. The logic for installation used to be included in the
badge as well, but Adobe has since extracted this into its own SWF file named air.swt.

The badge now loads this SWF from an Adobe server and uses its API to handle installation. This
was a smart move by Adobe, as they can now quickly update the file without having to redistribute
it to a large number of developers.

Starting with the badge’s example files as a template, you can change some of the parameters in the
HTML page for configuring the badge to point towards your application. You can also customize
the badge’s image, button color, and message color as you see fit. Note that you will need to make
changes in three different places given that there are separate handlers for Flash, JavaScript, and
plain HTML.

The first place you will need to make changes is the part in which Flash variables are being passed
to the badge SWF file, as shown here:

'flashvars', 'appname=UpdaterApp&appurl=http://www.airbible.org/
examples/updater/UpdaterApp.air&airversion=1.0"

In addition to the required appname, appurl, and airversion parameters, the badge SWF
also supports the following optional parameters:

B imageurl: The main image that will be displayed inside of the badge.

B buttoncolor: The hex color value of the button. The default value is 000000.

B messagecolor: The hex color value of the message text that is displayed below the
button in certain situations. The default value is 000000.

427

Testing and Deploying

Next, you need to make changes to the JavaScript that renders alternate content in the event that
the proper version of Flash is not installed on the user’s machine, as shown in Listing 22.9.

LISTING 22.9

var alternateContent = '<table id="messageTable"><tr><td>"

+ 'This application requires the following be installed:'

+ 'Adobe® AIR™
Runtime</1i>"

+ '<a href="http://www.airbible.org/examples/updater/UpdaterApp.
air">UpdaterApp</1i>"

+ 'Please click on each link in the order above to complete the
installation process.</td></tr></table>';

Finally, the third and last place that you will need to make changes is the no script block. This
displays in the event that users do not have JavaScript enabled in their browsers, as shown in
Listing 22.10.

LISTING 22.10

<noscript>

<a href="http://www.airbible.org/examples/updater/UpdaterApp.
air">UpdaterApp</1li>

</noscript>

Also note that there are some steps that you should take to ensure that the file is properly deployed
from your Web server using the non-Flash links to the AIR file. These steps are detailed later in the
section on manual installation.

If you would like to customize the badge even further, you may be better off creating your own
badge from scratch. The next section describes how you can accomplish this.

Creating a Custom Install Badge

Creating your own custom install badge is a fairly simple process. As mentioned in the previous
section, Adobe has placed all the necessary logic for handling detection and installation in an SWF
file named air.swf, which is available for download.

428

Installation and Distribution

http://airdownload.adobe.com/air/browserapi/air.swf

The purpose behind this is that Adobe can quickly make changes to the file without needing to
worry about redistributing it. For this reason, it is recommended that you always load the file at
run time from the Adobe server rather than downloading it yourself and placing it on your own
server or embedding it into your project.

To get started, create a new Flash or Flex project and design the badge as you please. Inside of
your logic, you will need to load the air. swt file, as shown in Listing 22.11.

Once you have the air. swf file loaded, you can use its API to handle the detection of AIR and the

installation process when the user clicks something, or however you wish to invoke it. Listing 22.12
shows a demonstration of the process altogether.

LISTING 22.11

Loading the air.swf File into Memory

private function init () :void
{

loadAIR() ;
}

private function loadAIR():void
{
var loader:Loader = new Loader () ;
var loaderContext:LoaderContext = new LoaderContext () ;

loaderContext.applicationDomain = ApplicationDomain.currentDomain;

loader.contentlLoaderInfo.addEventListener (Event.INIT, onAIRInit,
false, 0, true);

// AIR_URL = "http://airdownload.adobe.com/air/browserapi/air.swf"
loader.load (new URLRequest (AIR_URL)) ;
}

private function onAIRInit (event:Event) :void
{

_air = Loader (event.target) .content;

}

429

Testing and Deploying

Using the air.swf File’s API to Detect the Status of AIR on a User’s Machine

package org.airbible.install
{
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;
import flash.system.LoaderContext;

public class InstallBadge extends Sprite
{

private static const AIR_URL:String = "http://airdownload.adobe.com/
air/browserapi/air.swf";

private static const APP_URL:String = "http://www.airbible.org/
examples/updater/UpdaterApp.air";

private static const AIR_VERSION:String = "1.0";

private static const AIR_INSTALLED:String = "installed";
private static const AIR_AVAILABLE :String = "available";
private static const AIR_UNAVAILABLE:String = "unavailable";

private var _air:0bject;

public function InstallBadge()
{

init () ;

public function install() :void
{
try
{
switch(_air.getStatus())

{
case AIR_INSTALLED:
{
_air.installApplication (APP_URL, AIR_
VERSION) ;

430

Installation and Distribution m

break;
}
case AIR_AVAILABLE:
{
_air.installApplication (APP_URL, AIR_
VERSION) ;
break;
}
case AIR_UNAVAILABLE:
break;
default:
break;
}
}
catch(error:Error)
}

private function init () :void
{
var loader:Loader = new Loader () ;
var loaderContext:LoaderContext = new LoaderContext () ;

loaderContext.applicationDomain
currentDomain;

ApplicationDomain.

loader.contentLoaderInfo.addEventListener (Event.INIT, airInitHandler,
false, 0, true);

loader.load (new URLRequest (AIR_URL)) ;

private function airInitHandler (event:Event) :void

{
_air = Loader (event.target) .content;
stage.addEventListener (MouseEvent.CLICK, onClick);

private function clickHandler (event:MouseEvent) :void

{
install();

431

Testing and Deploying

432

That’s really all there is to making a custom Flash install badge. If using Flash is out of the question
for various reasons, the next section covers how you can deploy the file directly from a Web server.

Manual Installation

Another option for installation is to use HTML to directly link to the application on a Web server,
rather than using a Flash install badge. Whether this is by choice or because the Flash Player
Detection Kit detected that the user does not have Flash installed, you can still distribute the appli-
cation successfully with a few small steps.

In order for the Web server to understand how it should deliver a file with the extension .air,
you need to declare a mime type for it. Depending on the type of access you have on the server,
this can be done in one of two places.

If you have admin rights, you can add the declaration to the httpd. conf (Apache) file. This is
the ideal case; however, you are not out of luck if you do not have access to this file. The alterna-
tive is to create a text file named .htaccess, place the declaration in this file, and then upload
the file to any directories that contain . air files on your server.

In either case, the declaration is the same and should be written as shown here:

AddType application/vnd.adobe.air-application-installer-
package+zip .air

Your Web server will now handle .air files as Adobe AIR installer packages.

Summary

Distribution is a subject that cannot be overlooked when it comes to AIR development. Despite
how great your application may be, if you are unable to distribute it to users in a simple fashion or
easily deploy updates to those who have already installed it, you are truly preventing your product
from ever living up to its true potential.

Symbols and Numerics

${propertyName} syntax, 397
$addChild method, 94

/ (forward slash character), 103
/api/read functionality, 178
/api/write functionality, 178

\ (backslash character), 103
_content property, 130
+flexlib line, 414

<height> tag, 82
<mx:Script> tag, 66, 126, 187, 189, 315
<mx:states> tag, 313
<mx:Style> tag, 368
<mx:transitions> tag, 313
<width> tag, 82

<x> tag, 82

<y> tag, 82

200-299 status code, HTTP, 112
300-399 status code, HTTP, 112
400-499 status code, HTTP, 112
500599 status code, HTTP, 112

A

About dialog box, 79

absolute path, 372

abstract class, 246, 318

AbstractDialogueWindow class, 246

AbstractPost class, 179-183

accelerate () method, 49

acceptableStatusCodes parameter, 111

accessibility, 366

ACID (atomic, consistent, isolated, and durable)
principle, 195

acompc compiler, 325-326

ActionScript 3.0 (AS3)

access modifiers, 50-51

class association, 63

classes, 48

combining MXML with, 315-317

compared to MXML, 312

display list, 59-60

events, 56-59

inheritance, 53-56

interfaces, 49-50

methods, 51-53

new features of, 46-47

overview, 9-10, 45

packages, 47

spaghetti code, 307

and use of AIR, 5

using in Flash, 64-66
ActionScript Virtual Machine 2 (AVM2), 10, 64
ActionScript Virtual Machine (AVM), 65
ADD COLUMN variant, 215
Add Folder option, Flex Builder, 15
addchild () method, 37, 60, 65, 231
addEventListener method, 58, 97
addToastWindow method, 243-244
addTwitterWindow method, 244
ADL (AIR Debug Launcher), 327-328, 393
ADL command-line tool, 410
Adobe Cairngorm, 158-159, 161-166
Adobe Cairngorm Microarchitecture, 281
Adobe Extension Manager, 25
Adobe Flash CS3. See Flash CS3
Adobe install badge, 427-428
Adobe Integrated Runtime (AIR). See AIR
Adobe subdirectory, 80
Adobe Updater, 35, 388
ADT (AIR Developer Tool), 393

433

ADT command-line tool, 410-411
Advanced setting, Application & Installer Settings
window, 22
Advanced Settings menu, AIR, 22-23
aggregate function, 209, 213
AIR (Adobe Integrated Runtime)
accessing API, 256-261
comparable technologies, 5-7
development platforms, 7-8
installation file, 11
installing, 11
Introspector, 40—41, 84, 261-268
overview, 3, 9-10
reasons to use, 3—5
system requirements for, 10-11
uninstalling, 12

Air — Application & Installer Settings window, 20-22

AIR Application Settings Wizard, 269

AIR Debug Launcher (ADL), 327-328, 393

AIR Developer Tool (ADT), 393

AIRAliases.js file, 39, 196, 256, 261

airbible.org page, 109

air-config.xml file, 406407

.air file, 432

AIRFolder folder, 118

.air installer package, 327

AIRIntrospector.js file, 30-40, 84, 261

air.SQLConnection file, 196

air.swf file, 427-431

airversion parameter, 427

AJAX, 6

alert method, JavaScript, 39

All Components option, Flex Builder New Style
dialog, 369

allowCopy option, NativeDragOptions class,
174

allowDomain method, 339, 345

allowLink option, NativeDragOptions class, 174

allowMove option, NativeDragOptions class, 174

ALTER TABLE statement, 215-216

alwaysInFront group, 230

alwaysOnTop property, 240

amxml compiler, 324-325

amxmlc compiler, 324-325, 327

animation technology, 364

434

annotation, type, 46
Ant. See also build file, Ant

clean target, 412

command-line calls, 404-405

compiling targets, 406—409

deploy target, 411-412

exporting and packaging source target, 415-416
generateCertificate target, 410-411
generating documentation target, 413—414
init target, 405-406

launch target, 410

main target, 405

overview, 395

setting up, 395-396

user input target, 416-418

ant/1ib directory, 402
Apache Ant. See Ant
API (Application Programming Interface). See also

drag-and-drop API

AIR security sandbox, 104-108

differences among operating systems, 102—-104

overview, 101-102

preparing in log reader sample application,
338-340

TextFileStream, 128-129

working with operating system, 108-113

appearance, window, 80-81
APPEND string constant, 116
application. See also copy and paste sample

application; developing AIR application;
drag-and-drop API; Flex Builder 3; Twitter
client sample application

basic properties, 77-82

Cairngorm model, 161-164

compiling, 324-326

configuring settings in Dreamweaver CS3, 29-31

control, Cairngorm, 164-166

creating files with Dreamweaver CS3, 28-29

desktop, 4, 33, 311

function, usability, and design, 358-361

good design, 362-363

icons, 234-237

menu item aliases, 257-258

monitoring network changes, 109

operating system native window support, 103

sandboxes, 72, 75-76, 105-107
setting up simple text editor MXML file, 126
signing, 74-75
steps to create in Flash, 19
storage directory, 76, 116
usability, 364-367
user interface, 4
Application and Installer Settings window, 30-31,
388, 390-391
application descriptor file
basic settings in, 79
creating application view and logic, 344
creating system windows, 220
Dreamweaver CS3, 390-392
installation settings, 80
overview, 77-78
SDK development, 324
version tracking, 420
window settings, 80-82
Application ID setting, Create a Flex Project dialog
box, 16
Application Programming Interface. See API
Application type setting, New Flex Project dialog
box, 14
Application Updates setting, Application and Installer
Settings window, 31
applicationDirectory property, 72, 76
application.html file, 28
applicationResourceDirectory folder, 116
applicationStorageDirectory folder, 116
Application.xml argument, 328
appname parameter, 427
appurl parameter, 427
architecture, log reader sample application
application view and logic, 340-352
overview, 330-331
preparing API, 338-340
updatable, 331-338
architecture phase, large-scale application, 280-283
argument, 52, 324. See also individual arguments by
name
--arguments argument, 328
array, 148
ArrayCollection class, 207
Array.splice() method, 244

AS clause, 213
AS3. See ActionScript 3.0
asdoc tool, 413-414
AssetLibrary class, 372-373, 381
Associated File Types setting, Application and Installer
Settings window, 31

asynchronous method

of copying and moving folder, 118-120

of deleting folder, 120
asynchronous mode, SQLConnection class, 197
atomic, consistent, isolated, and durable (ACID)

principle, 195

atomic transaction, 195
attachEmptyMovieClip method, 60
audio, adding to Flash Library, 64
AUTOINCREMENT constraint, 201
AUTOUPDATE constraint, 205
AVM (ActionScript Virtual Machine), 65
AVMI1Movie subclass, DisplayObiject class, 60
AVM2 (ActionScript Virtual Machine 2), 10, 64

B
backslash character (\), 103
backup certificate file, 74
base class for inheriting updatable logic, 331-332
basedir attribute, 397
BASIC language, 306
best practice
Flex and Flash guidelines, 310-317
general coding guidelines, 317-322
overview, 305
ravioli code, 307-310
security model, 75-77
spaghetti code, 306-307
bin directory, 344, 392, 406
bin/modules directory, 409
bitmap manipulation, 258
Bitmap subclass, DisplayObject class, 60
BITMAP_FORMAT clipboard format, 148
BitmapData object, 103, 177
bitwise operation, 96
body argument, 183, 186
bodyField input field, 187

435

Boolean property, 235
Boolean success value, 52
BOOLEAN type, 202
borderSkin component, 161
Browse-for-File menu-style, 188
browseForOpen method, 138
browseForSave method, 139
bubbles parameter, 57
bug, 367
build file, Ant

defining properties, 397-399

defining targets, 399-401

defining tasks, 401-403

executing targets, 403—405
building AIR application

overview, 33

using Dreamweaver CS3, 38—41

using Flash CS3, 35-38

using Flex Builder 3, 33-35
build.properties file, 398
build.xml file, 397-398
button

linking methods to, 229

skinning, 375-377

user interface, 126127
Button class, 133, 169-171, 381
buttoncolor parameter, 427
bypassing Flex framework, 93-95
ByteArray class, 177
bytesAvailable method, 123

C

C++ language, 4

Cairngorm, 158-159, 161-166

Cairngorm Microarchitecture, 281
calendar-based interface, 275

callLater method, 341

cancellable parameter, 57

Canvas container, Flex Layout Manager, 68
Capabilities class, 117
Capabilities.hasIME static property, 117
Capabilities.language static property, 117
Capabilities.os property, 101, 103, 117

436

Cascading Style Sheets (CSS)
overview, 368-371
programmatic skins, 375-377
skinning a new application, 160
CDATA (character data) tags, 66
certificate, 17, 410-412
certificate authority, 73
CHANGED state, 133-135
chaotic code, 310
character, special, 103-104
character data (CDATA) tags, 66
checkForUpdates (e:TimerEvent) method,
250
chrome, window, 223-226
class. See also individual classes by name
acompc compiler, 325-326
AS3, 48, 53-54
drag-and-drop API, 174-175
implementing Singleton pattern, 297-301
interfaces, 318-319
package structuring, 318
static, 298
class library, Flex, 66
class linkage, 65
ClassNamel class, 325
ClassName?2 class, 325
clean target, 412
cleanDocs target, 413
click attribute, 69
clipboard. See also copy and paste sample application
AlRAliases.js, 257
choosing format, 147-148
copying data to, 148-152
overview, 147
pasting data from, 152-157
Clipboard object, 174-177
ClipboardEvent class, 165-166
Clipboard. formats array, 152-153
ClipboardFormats class, 169, 175
ClipboardFormats.FILE_LIST_FORMAT
function, 176, 191
Clipboard.getData () method, 152,175
Clipboard.hasFormat () method, 152
clipboardItem function, 171
Clipboard.setData () method, 151

Clipboard.setDataHandler () method,

151-152
ClipboardTransferMode class, 175
Clipboardvo value object, 163-164, 167
clocking code, 91
close () method, 129, 131, 229
CLOSED state, 133
cluster size, 199
code execution, timing, 91
code injection, 76
code library, hacked, 104
code signing, 73-75
code-behind, 315
collapsible menu, 362
color palette, 362-363
column affinity, 202
com.airbible.samples.simpletext.

TextFile class, 128
command prompt, 323, 326, 396
command-line tool

compiling with, 392-393
deploying with, 393
SDK, 323-324
testing with, 393
Commands menu, 20, 24
communicating with local machine
AIR security sandbox, 104-108

differences among operating systems, 102—-104

monitoring network, 108-112
monitoring user presence, 112—-113
overview, 101-102
comparable technology, 5-7
compiler, acompc, 325-326
compile-time checking, 46
compiling
Ant targets, 406—409
application, 324-326
with command-line tools, 392-393
component
compiling, 325-326
Flex, 67-68
component library, 326
composition, 53, 291-295
compound SELECT statement, 214
compressed zip file, 77

computer. See communicating with local machine

concurrency, 195
Config class
in action, 301-303

event dispatching, using composition for, 291-295

global accessibility, 295-301

resolving dynamic properties, 289-291

XML, 285-289
Config getInstance method, 297
configuration file, acompc, 325-326
configuring

AIR application settings in Dreamweaver CS3,

29-31

Flash CS3 publish settings, 19-23
config.xml file, 301
connecting to SQL database, 196-199
connection.open() method, 199
consistent transaction, 195
Console class, 41
console.css file, 344-346, 352
ConsoleTextArea class, 341-342
constant variable, 133-134, 180
constructor, 48, 297
consumption, memory, 90
content, window, 80, 231-233
content file, 80
control, Flex, 68
controlling system window

adding content to windows, 231-233

managing multiple windows, 230-231

minimizing, maximizing, and restoring, 227-229

NativeWindow events, 233
overview, 227-233
converting symbol, Flash Library, 63
copy and paste sample application
getting started, 158-161
implementing view, 166-171
overview, 158
setting up Cairngorm, 161-166
copying
data to clipboard, 148-152
files, 121
folders, 118-120

copyright information in application descriptor file, 79

437

Copyright setting, Application and Installer Settings
window, 22, 31

copyTo () method, 116, 120-121
copyToAsync () method, 116, 120-121
COUNT function, 213
Create a Flex Project dialog box, Flex Builder, 15
create statement, 200-201
CREATE TEMPORARY TABLE statement, 201
CREATE VIEW command, 214
createDirectory () method, 117
createTempDirectory () method, 118
createTempFile () method, 118
creational SQL call, 196
creationComplete event, 34-35
credentials, sensitive, 76
CRITICAL constant, 235
critical notification alert, 235-236
CROSS JOIN statement, 211-212
crossdomain policy file, 105
cross-site request forgery (CSRF), 105
cross-site scripting (XSS), 105
CSS (Cascading Style Sheets)

overview, 368-371

programmatic skins, 375-377

skinning a new application, 160
currentState property, 134, 381
custom install badge, 428-432
custom logger target, 354-355

D

data property, 239
data type, 202, 318
database. See also SQLite database
connecting to SQL, 196-199
example, 210-211
in-memory, 197
DataEvent event type, 56
dataField property, 205
DataGrid component, 205, 207
DataGridColumns method, 205
dataProvider property, 207
Date object, parseDate method, 250
deadline in ideation phase, 276

438

debug button, Flex Builder, 34
debug parameter, 393
debugging, 16, 24, 83-84
decelerate() method, 49
Default Application file, 16
default attribute, 403—404
default installation directory, 80
default.html file, 28
defaults.css file, 343-344
defining
classes in AS3, 48
interfaces in AS3, 49
delegation, 295-296
DELETE statement, 215
deleteDirectory () method, 116, 120-121
deleteDirectoryAsync () method, 116,
120-121
deleteDirectoryContents parameter, 120
deleteFile () method, 121-122
deleteFileAsync () method, 121-122
deleting
files, 122
folders, 120-121
depends attribute, 405, 409-410, 412, 416-417
deploy target, 411-412
deploying
with command-line tools, 393
from Dreamweaver CS3 IDE, 390-392
from Flash CS3 IDE, 388-390
from Flex Builder 3 IDE, 385-388
depth management, 230
description attribute, 399-400
description in application descriptor file, 79

Description setting, Application and Installer Settings

window, 22, 31
design
overview, 357
properties of good, 362-363

relationship with function and usability, 358-361

Design View, Flex Builder, 161, 375, 377
desktop application, 4, 33, 311
desktopDirectory folder, 116
destination directory, 118

Destination setting, Application and Installer Settings

window, 22, 31

developing AIR application
overview, 33
using Dreamweaver CS3, 38-41
using Flash CS3, 35-38
using Flex Builder 3, 33-35
development bug, 367
development environment. See also Dreamweaver CS3;
Flash CS3
Flex Builder 3, 12-17
overview, 9
development essentials
AIR security model, 71-77
basic application properties, 77-82
overview, 71
development path selection, large-scale application,
277
development platform, AIR, 7-8
development stage, 360
dialog box, 246-249
digital certificate, 73-75, 391, 393
Digital Rights Management (DRM), 6
Digital Signature setting, Application and Installer
Settings window, 22, 31
Digital Signature window, 24, 75, 386-387
directory
ant/1lib, 402
application, 72
bin, 344, 392, 406
bin/modules, 409
docs, 413
export.dir, 415
File.applicationStorageDirectory, 76
File.isDirectory, 115
Program Files, 80
source, 118, 406
src, 33, 36, 406
src/modules, 409
storage, application, 76, 116
user, 116
wikipedia.org/wiki/Cross-site_
scripting, 105
dispatchEvent method, 56, 58
dispatching event, 58-59
display list, AS3, 59-60
display object, 95, 233

DisplayObject class, 58, 60, 62, 189, 246, 256
DisplayObjectContainer subclass, 60-61,
65, 67
DISTINCT statement, 209
distribution. See also update system
Adobe install badge, 427-428
custom install badge, 428-432
manual installation, 432
overview, 419
dock icon, 234-236, 250
docs directory, 413
document class, 36-38, 65
Document Object Model (DOM), 283
Document Properties panel, 65
documentation, ravioli code, 309
documentation target, Ant, 413-414
documentsDirectory folder, 116
doDrag () method, NativeDragManager class,
174
Dojo Offline Toolkit, 7
do. launch property, 418
DOM (Document Object Model), 283
DOM navigator, Introspector, 265
downgrade attack, 77
downloading
AIR file from server for update purposes, 424
Flex Builder 3, 13
updates, 424-427
drag and drop access, AlRAliases.js, 257
drag-and-drop API
AbstractPost, 179-183
application structure, 178
classes, 174-175
dragging files, 185-192
dragging out, 176-177
overview, 173
PhotoPost, 184-185
RegularPost, 183-184
Tumblr API, 178
dragging out, 176-177
Dreamweaver CS3
configuring AIR application settings, 29-31
creating application file, 28-29
creating site, 25-28
deploying from IDE, 390-392

439

Dreamweaver CS3 (continued)
developing AIR applications, 38—41
HTML content, 255, 269
installing, 24-25
overview, 9, 24
steps to sign applications, 74

DRM (Digital Rights Management), 6

DROP VIEW command, 214

dropping. See drag-and-drop API

dump method, Console class, 41

durable transaction, 195

dynamic class, 46, 207

dynamic content in window, 233

dynamic icon, 237

dynamic keyword, 46

dynamic text, Flash, 62-63

dynamic typing, 202

E

Eclipse IDE, 395-396. See also Ant; Flex Builder 3
ECMAScript edition 3 language specification
(ECMA-262), 47
ECMAScript for XML (E4X), 46
Emacs application, 274
Embed Fonts dialog box, Flash, 63
embed tag, CSS, 370, 372
embedded asset, 372
encapsulation, 308-309, 322
EncryptedLocalStore class, 76, 125
encryption, file, 125
enforcer class, 297
ENTER_FRAME event handler, 89-90
EnterFrame event, 237
entropy, 309-310
entry point, 65
environment variable, 396
error () method, 41, 264
eval () function, 76, 104
event
AlRAliases.js, 260-261
AS3, 56-59
linking methods to, 229
Event class, 56-57

440

event dispatching, 291-295

event handler, 35, 59

event handling, Flex, 68—69

event listener, weakly referenced, 96-97
event signature, 165

Event subclass, 57, 337

Event .ACTIVATE event type, 57
Event .ADDED event type, 57

Event .CLOSE event, 244

Event .CLOSING event, 233
EventDispatcher class, 291
Event .RESIZE event type, 57
Event.SELECT event, 138

Event . UNLOAD event type, 57
EXCEPT operator, 214

exclude node, 416

. exe extension, 410

execution, timing code, 91

exist property, 116

Export Release Build, Flex Builder, 17, 385
export.dir directory, 415
exporting source target, 415416
extends keyword, 53-54, 65, 239
ExternalInterface interface, 217

F

facade design pattern, 308
file
copying, 121
deleting, 122
dragging, 185-192
file encryption, 125
FileStream objects, 123
moving, 121-122
overview, 121-124
reading and writing, 122-123
working with XML, 124
Fileclass, 115-118, 176, 181, 192, 286-287
File menu, 279
File name setting, Application and Installer Settings
window, 21, 31
File object, 117, 176, 179, 250
File Open dialog box, 101

File Save dialog box, 101
FILE_LIST_FORMAT clipboard format, 148
File.applicationStorageDirectory
directory, 76
File.createDirectory () method, 117
File.exists method, 117
File.isDirectory directory, 115
File.lineEnding static property, 117
FileList class, 192
FileMode class, 115-116, 123
fileMode parameter, FileStream class, 116
FileMode APPEND mode, 123
FileMode.READ mode, 123, 129
FileMode . UPDATE mode, 123
FileMode.WRITE mode, 123-124
filename in application descriptor file, 79
FileReference class, 116
File.separator property, 103, 117
FileStreamclass, 115-117, 122123, 128, 176
286-287

filesystem. See also text editor

AlRAliases.js, 257

files, 121-125

folders, 117-121

overview, 115-117
filesystem method, 188
File.systemCharsSet static property, 117
filter level constant, 338
filtering, 84
FilterLevel class, 338
final keyword, 53
Finder file menu, 279
finished application, polishing. See also Flex Builder 3

function, usability, and design, 358-361

good design, 362-363

overview, 357-358

usability, 364-367
Firefox file menu, 279
FLA file, 19-20
Flash CS3

compared to AIR, 6

configuring publish settings, 19-23

creating AIR application, 19

deploying from, 388-390

developing AIR applications, 35-38

geometry library, 258

HTTP access, 258-259

information architecture, 278

installing, 18-19

Library, 63-64

library for embedding assets, 372

logging mechanism, 257

media library, 259

overview, 18, 61, 310-311

shared object, 259

signing applications, 74

steps to download, 18

testing AIR applications, 24

Timeline, 61

using ActionScript in, 64-66

using MXML, 311-317

utils, 259

working with text, 61-63
Flash Loader, 258

flash

proxy namespace, 289

Flash symbol, 378, 427

flash.

flash.
flash.
flash.

flash

clipboard.ClipboardFormats method,
148-149

data package, 196

desktop package, 235

desktop.Clipboard variable, 149

.display. * package, 220
flash.
flash.
flash.
flash.

events package, 56

filesystem class package, 115
filesystem.File method, 72
filesystem.FileStream class, 128

FlashPlayerTrust file, 106

flash.
Flash.

Flex

system. Security object, 105
utils.Proxy class, 289

bypassing, 93-95
components, 67-68

event handling, 68-69
HTML content, 256

logger, 85-89, 338, 353-355
MXML, 66-67

overview, 66, 310-311
signing applications, 74
using MXML, 311-317

441

Flex Builder 3
adding Ant view to stand-alone, 396
Cascading Style Sheets, 368-371
composing custom components, 373-375
creating AIR project, 13-17
debugging, 83-84
deploying from, 385-388
Design View, 161, 375, 377
developing AIR applications, 33-35
downloading and installing, 13
embedding assets, 371-373
file menus, 279
menu bar, 396
monitoring memory with profiler, 91-92
overview, 12, 66
programmatic skins, 375-379

using Flex states to guide transitions, 379-382

Flex Component Kit for Flash CS3, 378
Flex Properties panel, CSS Document, 377
Flex Skinning Template, 159, 378-379
Flex Style Explorer, 369
flexible interface, 280
flexTasks. jar file, 402
Flow framework, JavaScript, 263
focus management, 364
FocusEvent event type, 56
folder
adding to Flash Library, 64
copying and moving, 118-120
creating, 117-118
creating temporary, 118
deleting, 120-121
folder/subfolder folder, 80
font
adding to Flash Library, 64
for CSS documents, 369-370
license, 363
format, clipboard, 147-148
forward slash character (/), 103
frame rate, monitoring, 89-90
frames per second (FPS), 90
friend list, 237
FROM clause, 209-212
FrontController class, 164-166, 281
FULL OUTER JOIN statement, 212

442

function
relationship with design and usability, 358-361
statements inside, 53

functionality, 330, 340-341

G

Gears plugin, Google, 6-7
generalClipboard method, 153
general-Clipboard static variable, 149
generalClipboard.setData () method, 149
generating certificate target, 410-412
get method, 49, 130, 289
getChildByName method, 246
getDirectoryListing method, 116
getDirectoryListingAsync method, 116
getItem() method, 125
getProperty method, 290, 301
getStyle method, 375
getTimer method, 89, 91
getVisiblePositions method, 321
global accessibility

delegation, 295-296

Singleton pattern, 296-301
global style element, Flex Builder New Style dialog, 369
go () method, 50
Google Gears plugin, 6-7
GOTO statement, 307
GROUP BY clause, 209, 213

H

hacked code library, 104
HAVING clause, 213
HBox container, Flex Layout Manager, 68
HEIGHT property, 242
HelloWorld application, 36-39, 306
Helvetica Neue font, 161
Herrera, Richard, 263
horizontalCenter method, 373
.htaccess file, 432
HTML
accessing AIR API, 256-261
adding content to windows, 232

AIR HTML Introspector, 261-268

clipboard format, 157

in Dreamweaver, 269

overview, 255-256

steps to create initial file, 28
HTML_FORMAT clipboard format, 148
HTMLLoader class, 231-232
HTMLLoader .createRootWindow () method, 232
HTTP Basic Authentication, 238
HTTP POST method, 178
HTTP status code, 112
httpd.conf file, 432

IAutomobile interface, 49

IClass interface, 50

icon

application, 234-237
system, 103

Icon setting, Application and Installer Settings
window, 22, 31

icons.swf file, 171

id field, table column, 201

id in application descriptor file, 79

id property, DisplayObjectContainer
subclass, 67

ID setting, Application and Installer Settings window,
21,31

IDE (Integrated Development Environment), 12, 83.
See also Flash CS3; Flex Builder 3

ideation, 274-277, 360

IEventDispatcher interface, 291, 298

if attribute, 400, 417

IF NOT EXISTS clause, 200-201

IF statement, 52, 307

imageurl parameter, 427

IModelLocator interface, 161

implementing interface in AS3, 50

Import command, Flash Library, 64

Included Files setting, Application and Installer
Settings window, 22, 31

includeInLayout method, 373, 381

INDEX statement, 210

Index

index.html file, 28, 39-41, 391
info () method, 41, 264
information
filesystem, 117
sensitive, 76
information architecture, 278-279
INFORMATIONAL constant, 235
informational notification alert, 235-236
inheritance, AS3
adding to superclass methods, 55-56
inheriting a class, 53
overriding methods and properties, 54-55
overview, 53
inheritance chain, 53
init () method, 263
init target, Ant, 405-406, 410
Initial content setting, Application and Installer
Settings window, 31
initialize listener, 187
initiating drag element, 175
in-memory database, 197
in-memory table, 201
INNER JOIN statement, 211
input file, MXMLC, 392
input mechanism, 275, 277
input target, Ant, 416-417
input text, Flash, 63
input.action property, 417
INSERT statement, 203
install badge
Adobe, 427-428
custom, 428-432
Install folder configuration, 80
installation. See also update system
AIR, 11
Ant, 396
Dreamweaver CS3, 24-25
Flash CS3, 18-19
Flex Builder 3, 13
install badges, 427-432
manual, 432
installation file, AIR, 11
installation setting, application, 80
instantiating class in AS3, 48
int type, ActionScript 3.0, 47

443

integer, 96

Integrated Development Environment (IDE), 12, 83.

See also Flash CS3; Flex Builder 3
InteractiveIcon class, 234
InteractiveObject class, 60-61, 256
interface

AS3,49-50

using, 318-322
interface keyword, 49
internal modifier, 51
internalLog method, 353
INTERSECT operator, 214
intro animation, 364
Introspector, AIR, 40-41, 84, 261-268
IO Error event, 120
IPositionManager interface, 322
isDirectory property, 116
isHidden property, 116
isolated transaction, 195
isPrivate variable, 179
itemClass property, 207
IVehicle interface, 50

J
Java, 7, 396
Java Runtime Environment (JRE), 4
JavaScript

alert method, 39

coding, 317

eval () function, 104

Flow framework, 263

jQuery framework, 282

overview, 5
JOIN clause, 209-212
JPEGEncoder class, 177, 189
jQuery JavaScript framework, 282
JRE (Java Runtime Environment), 4

K

keyboard
AlRAliases.js, 259
navigation, 366
shortcut, 365

444

KeyboardEvent event type, 56
keyword, 157. See also individual keywords by name

L

Label component, 34, 373, 421
language, 7, 282-283, 365
large-scale application
architecture phase, 280-283
overview, 273
planning, 274-279
launch target, Ant, 410, 412, 417
layout, application, 362
Layout component, Flex, 67-68
layout manager, 319
leak, memory, 90, 92
LEFT OUTER JOIN statement, 212
leveraging existing library, 282-283
library
defined, 280
embedding assets, 371-372
hacked code, 104
leveraging existing, 282-283
specifying path, 324
Library, Flash, 63-64
Library folder, 64
Library path setting, Create a Flex Project dialog box, 15
-library-path option, amxml compiler, 324
license, font, 363
lightweight window, 220, 222-223
LIMIT clause, 214
LinearPostionManager interface, 321-322
linkage class, 65
link-report option, mxmlc compiler, 407-408
Linux, 11, 274
listening for event, 58-59
Live Objects spreadsheet, 92
Loader class, 231
Loader.loadBytes () method, 76
load-externs option, 408
loadFriendsTimeline method, 250
local machine. See communicating with local machine
local network, 75
local trusted sandbox, 73, 106
local with filesystem sandbox, 73, 106-107

local with network sandbox, 73, 106
LocalConnection class, 79
localization, 365
log () method, 41, 264
log reader sample application
application view and logic, 340-352
functionality, 330
making architecture updatable, 331-338
overview, 329, 330-331
preparing API, 338-340
testing, 352-355
user interface, 330
logger, Flex, 85-89, 338, 353-355
Logger class, 83
LoggerTarget class, 353
Log.getLogger method, 86
logging, 84-89
logic, 340-352
logical workflow, 278
Login class, 246
login window, 246-248
Login.mxml component, 178
LoginWindow class, 246, 249-250

M

Mac OS X
dock, 234
dock icons, 236
installing AIR, 11
installing Flex Builder, 13
uninstalling AIR, 12
utility window, 222
window chrome, 224
Main application file setting, Create a Flex Project
dialog box, 16
Main class, 65, 250-253
Main source folder setting, Create a Flex Project dialog
box, 15
main target, Ant, 403, 405, 417
Main.as class, 126, 133-145
MainController class, 178
main.html file, 28

main.swf file, 408
maintaining SQLite database, 215-216
malicious script, 104-105
managing
multiple windows, 230-231
SQLite database, 208-214
manual installation, 432
math, 96
maximizable setting, 82
maximize () ; method, 228
maximizing system window, 227-229
mediator, 282
megabyte, 90
memory
monitoring total, 90-91
monitoring with Flex Builder profiler, 91-92
requirement for Mac OS X, 10
requirement for Windows, 10
tips, 93-97
menu. See also individual menus by name
collapsible, 362
operating system support of native, 102-103
message formatting, 84
messagecolor parameter, 427
method. See also individual methods by name
AS3, 54-56
and event handlers, 59
interfaces and, 319
overview, 51-53
method argument, 52
method closure, ActionScript, 46
Microsoft. See also Windows
utility window, 222
window chrome, 224
Word file menu, 279
minimizable setting, 82
minimize () ; method, 228
minimizing system window, 227-229
ModelLocator class, 161-162, 281-282
modification SQL phase, 196
Modify menu, Flash CS3, 278-279
module.mxml property, 408
module.swf property, 408
monitor.available method, 111

445

monitoring
frame rate, 89-90
memory with Flex Builder profiler, 91-92
operating system, 108-113
total memory, 90-91
MorphShape subclass, DisplayObject class, 60
mouse, 259
mouseChildren property, 95
mouseEnabled property, 95
MouseEvent event type, 50
MouseEvent .CLICK event, 58, 192
moveSprites method, 307
moveTo () method, 116, 121
moveToAsync () method, 121
moveToTrash () method, 121
moveToTrashAsync () method, 121
MovieClip class, 60-61, 63, 65, 310-311
moving
files, 121-122
folders, 118-120
Mozilla Prism, 7
MSDN Developer Center, 157
multiple window, managing, 230-231
mx_internal namespace, 94
mx.controls.Button component, 69
MXML
creating application view and logic, 341
Flex and Flash applications, 311-317
overview, 66—-67
setting up simple text editor application file, 126
states and skinned elements, 379-381
using Flex Builder 3, 34
mxmlc utility, 324, 392-393, 402-403, 406-407, 414
mx.skins.ProgrammaticSkin method, 375
mx.utils.ColorUtil method, 375
mx.utils.Delegate class, 46
MyApplication-config.xml application
descriptor, 324
MyClass class, 48

N

name in application descriptor file, 79
name property, 54, 290, 375, 397
Name property, TwitterUser object, 242

446

Name setting, Application and Installer Settings
window, 21, 31
namespace, ActionScript, 47
naming, class, 318
native menu support, operating system, 102—103
native operating system window. See also Twitter
client sample application
controlling system windows, 227-233
overview, 217-220
sizing and positioning, 226-227
types of, 220-223
using application icons, 234-237
window chrome, 223-226
native window access, AIR, 258
NativeApplication.icon property, 103
NativeApplication.menu, 279
NativeApplication.nativeApplication.
icon property, 235, 237
NativeApplication.nativeApplication.
icon.bitmaps array, 237
NativeApplication.nativeApplication.
icon.menu property, 236-237
NativeApplication.nativeApplication.
menu property, 103
NativeApplication.supportsDockIcon
property, 103, 235
NativeApplication.supportsMenu property, 103
NativeApplication.
supportsSystemTrayIcon property,
103, 235-236
NativeDragActions class, 175
nativeDragDrop drag event, 175
nativeDragEnter drag event, 175
NativeDragEvent class, 174-175
NativeDragEvent .NATIVE_DRAG_DROP function,
187, 191
NativeDragEvent .NATIVE_DRAG_ENTER
function, 187
nativeDragExit dragevent, 175
NativeDragManager class, 174, 189, 191
NativeDragManager .acceptDragDrop method,
175
NativeDragManager .doDrag () method, 176
NativeDragOptions class, 174-175
nativeDragOver dragevent, 175

NativeMenu class, 103, 362
NativeWindow class
creating toast window, 239
events, 233
methods, 230
notifyUser method, 235
overview, 217-218
window sizing and positioning, 226-227
NativeWindowBoundsEvent event, 233
NativeWindowInitOptions class, 218,220, 240
NativeWindow.menu, 279
NativeWindowSystemChrome .ALTERNATE
default setting, 226
NativeWindowSystemChrome .NONE property,
226, 240
NativeWindowSystemChrome.STANDARD
property, 225-226
NativeWindowType .LIGHTWEIGHT window type,
221-223
NativeWindowType.NORMAL window type, 221
NativeWindowType.UTILITY window type,
221-222
NATURAL JOIN statement, 211
natural key, 194
Navigator palette, Flex Project, 16
NET Framework, 7
network, monitoring, 108-112
New Document window
Dreamweaver CS3, 28
Flash CS3, 19, 36, 389
New Flex Project dialog box, Flex Builder 3, 14-15
New Font dialog box, Flash CS3, 64
New Site setting, Site menu, 38
NEW state, 133
New Style dialog box, Flex Builder, 369-370
New Symbol window, Flash Library, 63
no script block, 428
-nodebug argument, 328
nonapplication sandbox, 72-73
NORMAL window, 220-221
Notification.INFORMATIONAL static constant,
236
NotificationType class, 235
NotificationType.CRITICAL static constant, 236
notifying user of update, 423-424

notifyUser method, 235, 236
Number numeric type, 47
Numbers type, 96

numChild property, 60

O

object
in object-oriented programming, 298
reusing, 96
Object class, 289
object-oriented language, 306
object-oriented programming (OOP), 53, 295, 298
odds property, 400
OFFSET value, 214
ON clause, 211-213
onAddComplete event handler, 206
onClip event, 64
onCloseClickedHandler event, 139
onDragDrop event handler, 192
onDragDropHandler event, 187
onDragEnter method, 191
onDragEnter (event :NativeDragEvent)
method, 191
onDragEnterHandler event, 187
onInitialize method, 187
OnOpencClickedHandler event, 138
onOpenClickedHandler event, 139
onSaveAsClickedHandler event, 139
onTextChangedHandler event, 139
OOP (object-oriented programming), 53, 295, 298
open event handler, 138
open () method, 116, 122-123, 129, 131
openAsync () method, 116, 122-123
OPENED state, 133
open-source library, 283
operating system (OS). See also native operating
system window; Windows
differences among, 102-104
icon types, 257
information, 257
monitoring network, 108-112
monitoring user presence, 112—-113
version requirement, 10-11

447

optional task, 402
ORDER BY clause, 214
orderBehind () ; method, 231
orderToBack () ; method, 231
orderToFront (); method, 231
orderToFrontOf () ; method, 231
org. airbible.applicationname identifier, 16
org/airbible folder, 47
org.airbible.application class package, 79
org.airbible.package class, 51
org.airbible.twitter. * package, 246
org.airbible.utils. * package, 250
OS. See operating system
OSX

dock icons, 236

installing AIR, 11

paste results, 151, 154-155

uninstalling AIR, 12
OUTER JOIN statement, 211-212
output, memory, 90
output format of FLA file, 19-20
override keyword, 54
overriding methods and properties, 54-55

P

package, AS3, 47

package keyword, 49

package naming, 318

package org.airbible package, 48

package structuring, 318

packaging source target, 415-416

packaging tool, 75

page size, 199

Papervision 3D engine, 282

Papervision 3D library, 283

Parallel transition, 312

parseDate method, 250

passing null, 59

paste event, Safari, 152

PasteButton class, 167,169, 171

PasteData class, 162-163, 167

pasteList variable, 162

pasting data from clipboard, 152-157. See also copy
and paste sample application

448

PATH environment variable, 392
percentHeight property, 67
percentWidth property, 67
performance, 93-97, 366-367
Photo Drop button, 189
photoDrop component, 191
PhotoForm class, 188-189, 192
PhotoForm.mxml component, 178, 188-192
PhotoPost class, 184-185, 192
Photoshop file menu, 279
plainButton style, 381
PlainButtonSkin.as class, 376-377
planning large-scale application
development path selection, 277
ideation, 274-277
information architecture phase, 278-279
planning stage, 360
platform adaptability, 5
PNG object, 379
PNGEncoder format, 189
Point object, 242
polishing finished application. See also Flex Builder 3
function, usability, and design, 358-361
good design, 362-363
overview, 357-358
usability, 364-367
polymorphism, 322
PopUpManager class, 422-423
positioning window, 82, 226-227
PositionVvo class, 321
post object, 178
Preview file menu, 279
Preview mode, AIR Application and Installer Settings
window, 30
PreviewCanvas class, 166
primary key, 194
PRIMARY KEY AUTOINCREMENT constraint, 201
PRIMARY KEY statement, 210
primaryType variable, 171
primitive type, ActionScript, 47
private access modifier, 53, 180
processor requirement, 10-11
Profile method, 16
profileImageURL property, 242
Profiler tool, Flex Builder, 91-92

profiling, 89-92
Program Files directory, 80
program menu folder, 80
Program menu folder setting, Application and Installer
Settings window, 31
programmatic skin, 375-379
ProgrammaticSkin class, 375
programming languages. See also ActionScript 3.0
(AS3)
Flash, 61-66
Flex, 66-69
overview, 45
Project Creation Wizard, Flex Builder, 15
Project location setting, New Flex Project dialog
box, 14
Project name setting, New Flex Project dialog box, 14
project node, 403—404
properties. See also individual properties by name
access modifiers, 51
basic settings, 79
defining build file, 397-399
installation settings, 80
NativeWindow class, 218
overriding AS3, 54-55
overview, 77-78
read-only, 130
window settings, 80-82
Properties palette, TextField class, 62-63
property view, 378
protected modifier, 51, 53
proxy, 282
Proxy class, 289, 291, 298
ProxyExample class, 290
-pubidpublisher-id argument, 327
public key, 73
public method, 52-53, 130
publish settings, Flash CS3, 19-23
Publish Settings window, 19-20, 107, 388-389
publishing AIR installer file, 24
pun table, 201, 204
PurchaseEvent event, 58-59
purchaseHandler event handler, 59
PureMVC framework, 281-282

R

ravioli code
documentation, 309
encapsulation, 308-309
entropy, 309-310
overview, 307-308
rawChildren method, 93-94
read functionality, 178
READ string constant, 116
reading
data out of SQL database, 205-207
files, 122-123
receiving element, 175
refactoring, 309, 367
ReferenceError class, 207
regular expression, ActionScript, 47
RegularForm.mxml component, 178, 186-187
RegularPost class, 183-184
reliability, 366-367
remote sandbox, 73, 105
removeChild method, 60
removeItem () method, 125
removeToastWindow method, 243
removeTwitterWindow method, 244
report.xml link report, 412
reset () static method, 125
resizable setting, 82
resizing, window, 82
resolving dynamic properties, 289-291
restore () ; method, 228
restoring system window, 227-229
RESULT event, 207
resultList property, 209
Retrieval SQL phase, 196
reusable Config class
in action, 301-303
event dispatching, 291-295
global accessibility, 295-301
resolving dynamic properties, 289-291
XML, 285-289
reusable foundation, 338
reusing object, 96
rich Internet application (RIA), 66

449

RIGHT OUTER JOIN statement, 212

root project node, 397

RSL (Runtime Shared Library), 106, 325-326

Run method, 16

runtime exception, ActionScript, 46

-runtime runtimedirectory argument, 327
Runtime Shared Library (RSL), 106, 325-326
runtime type checking, 46

S
Safari, 8, 152
SampleApp namespace, 263
samples-config.xml file, 326
sandbox
in AIR API, 104-108
application, 75-76
overview, 72-73
save as event handler, 138
SAVED state, 133
sayName method, 54
Screen class, 226
screen property, 242
Screen.mainScreen.visibleBounds object, 242
screens property, 226
script, malicious, 104-105
Script tag, 341, 381
scripting file, 75
scripting language, 7
SDK (Software Developer Kit) development
compiling applications, 324-326
debugging, 327-328
required files, 323-324
sealed class, ActionScript, 46
security model
best practices, 75-77
code signing, 73-75
communicating with local machine, 104-108
Flash Player, 72
overview, 71
sandboxes, 72-73
Select Component link, 375
SELECT MAX (x, Yy, z)statement, 209
SELECT random () statement, 209

450

SELECT statement, 206, 208-214

SELECT SUM(x, y, z) statement, 209

selectedItem variable, PasteData class, 162

self-signing, 17, 387

send () method, 181

sensitive information and credentials, 76

Sequence transition, 382

serializable parameter, 149

Server Technology setting, New Flex Project dialog

box, 14

service call, 56

Service.available value, 111

ServiceLocator class, 281

Service.unavailable value, 111

set method, 49, 130, 289

setAuth () method, 246

setData operation, 150

setEventHandlers () method, 137

setEventListeners method, 246

setItem() method, 125

setState () method, 133-134

setter method, 130

Shape subclass, DisplayObject class, 60

shared runtime library, 325

signature of event, 165

signature timestamp, 75

signing application, 74-75

Silverlight, 6

SimpleTXT.mxml file, 128

Singleton pattern, 48, 281-282, 296-301

site, creating with Dreamweaver CS3, 25-28

Site Definition pop-up window, 25-26

sizing window, 82, 226-227

skin, programmatic, 375-379

skin element, 371

skinning, 67, 368

snapshot, memory, 92

Software Developer Kit (SDK) development
compiling applications, 324-326
debugging, 327-328
required files, 323-324

sound, 363

Sound object, 64

source directory, 118, 406

source file, Software Developer Kit, 324

Source path setting, Create a Flex Project dialog
box, 15
spaghetti code, 306-307
special character, 103-104
Sprite class, 60, 93
Sprite DisplayObject class, 67
SQLConnection class, 196-199, 216
SQLConnection.itemClass method, 207
SQLConnection.open () method, 197, 201
SQLEvent .OPEN event, 199
SQLite database
adding data to table, 203-205
AIR access to, 260
connecting to database, 196-199
creating simple table, 199-201
maintaining, 215-216
managing using SELECT statements, 208-214
overview, 193-196
reading data out of database, 205-207
understanding data types, 202
SQLResult object, 205
SQLStatement class, 201, 203, 216
SQLStatement.execute () method, 216
SQLStatement .getResult () method, 205
SQLStatement .parameters hash table, 203-204
SQLStatement . sglConnection property, 201
SQLStatement. text property, 201
src directory, 33, 36, 406
src folder, 16
src.dir property, 406
src/modules directory, 409
src.modules.dir property, 409
Stage class, 60
stage quality, 95
STANDARD window, 226
statement, 53
static class, 86, 298, 408
static constant properties, 242
Static Logger class, 87
static method, 51, 296, 339
static text, Flash, 62-63
StaticText subclass, DisplayObject class, 60
status code, 112

status update input window, 248-249
stop () method, 50
storage directory, application, 76, 116
string, malicious, 104-105
String constant, 175
string type, 150
Style tag, 381
styleName property, 67, 375
subclass, 53, 233, 301
submit button, login window, 246
submitBtn event handler, 187, 192
super () method, 55, 240
superclass, 53, 55-56
superclass constructor, 240
SWC library file, 15
SWF content
adding to windows, 231-232
using MXMLC to compile, 392-393
swf subdirectory, 371
swirl element, 373
SwirlLabel class, 381
SwirlLabel .mxml component, 374
symbol, Flash Library, 63
symbol attribute, 372
synchronous method, 118
synchronous mode, SQLConnection class, 197
syntax, MXML, 66-67
system chrome, 80, 226
system icon, 103
system memory, 108
system requirement, AIR, 10-11
system window
adding content to, 231-233
managing multiple, 230-231
minimizing, maximizing, and restoring, 227-229
NativeWindow events, 233
overview, 218-220
sizing and positioning, 226-227
types of, 220-223
window chrome, 223-226
systemChrome property, 222, 225-226, 240, 344
SystemTrayIcon class, 234-235
systray icon, 237, 250

451

T

tab navigation, 364-365
table, SQL
adding data to, 203-205
creating simple, 199-201
target, Ant build file
asdoc, 413-414
clean, 412
compile, 406-409
defining build file, 399-401
deploy, 411412
executing build file, 403-405
export and package source, 415-416
generateCertificate, 410-411
init, 405-406
launch, 410
main, 405
user input, 416418
target, log, 84
target dependency chain, 399
task, Flex, 401-403
taskbar, 234
taskbar icon, 234-236
TempDirectory () method, 118
template descriptor file, 77
temporary folder, 118
TEMPORARY modifier, 201
temporary table, 201
terminal window, OS X, 396
testing
AIR applications with Flash CS3, 24
with AIR Debug Launcher, 393

log reader sample application, 352-355

testing phase, 366
text, working with in Flash, 61-63
Text component, CSS, 371
text editor
building out Main, 133-145
building TextFileStream, 129-132
creating user interface, 128
design, 359
Main API, 133
overview, 126
setting up MXML application file, 126
TextFileStream’s API, 128-129

452

Text Field properties palette, Flash, 63
Text tool, Flash, 62
TEXT type, 202
TEXT_FORMAT clipboard format, 148
TextArea class, 126-127, 133, 187, 340
TextEvent event type, 56
TextField class, 61-63
TextFileStream class

API, 128-129

building, 129-132

event handlers, 136-137

Main.as class, 133
TextInput component, 186-187
TextMate file menu, 279
Thawte certificate authority, 74
themeColor method, 375
thermodynamics, 309
TileCanvas class, 166-168
Timeline, Flash

overview, 61

using ActionScript in, 65-66
Timer event, 237
timestamp, signature, 75
timing code execution, 91
title, window, 80
Title argument, 183
title argument, 186
titleField input field, 187
Toast class, 239-240
Toaster class, 242-245
Toast-styled window, 218, 237, 239-245
total memory, monitoring, 90-91
trace () method, 327
trace statement, 34-35, 37-38, 84, 353
TraceTarget class, 89, 353
transferMode parameter, 175
transition

in good design, 363

MXML, 312-315

using Flex states to guide, 379-382
transparency, window, 80-81

transparent setting for window chrome, 225-226

try ... catch statement, 197
Tumblr API, 178
TumblrClient .mxml class, 178

TumblrModel class, 180

Tweener animation library, 282

Twitter client sample application
creating dialog boxes, 246-249
creating Toast-styled windows, 239-245
overview, 237
putting it all together, 249-253
using Twitter API, 238

twitter event, 239

Twitter object, 250

TwitterAPI class, 238

twitter.api package, 238

TwitterEvent class, 238-239, 242, 250

TwitterStatus argument, 244

TwitterStatus class, 238-240, 242

TwitterUser class, 238, 242

type, event, 165

type checking, ActionScript, 46

type conversion in SQLite, 202

type parameter, Event class, 57

type property, 220

typed language, 318

typeIcon variable, 171

typography, 362

U

Ubuntu window chrome, 225

Ul (User Interface) element, 89

UIComponent class, 67-68, 93, 381

uint type, 47, 96

Unicode (UTF-8) character, 79

uninstalling AIR, 12

UNION ALL operator, 214

UNION operator, 214

Universal Resource Identifier (URI), 47

Universal Resource Locator (URL), monitoring
specific, 109-112

Unix commandline text editor, 274

unless attribute, 400

unscaledHeight parameter, 375

unscaledwWidth parameter, 375

updatable application, 331-338

update method, 426

UPDATE statement, 215-216
UPDATE string constant, 116
update system
downloading and installing updates, 424-427
Flex Builder, 396
notifying user of available updates, 423-424
overview, 419-420
version tracking, 420-423
updateDisplayList method, 375
updatePlaylistMethod method, 375
UpdatePopUp component, 342
Updater class, 424, 426
Updater.update () method, 79
UpdateWindow class, 248-249
URI (Universal Resource Identifier), 47
URL (Universal Resource Locator), monitoring
specific, 109-112
url property, 116
URL_FORMAT clipboard format, 148
URLLoader class, 124, 179, 181, 184, 286-289
URLMonitor class, 109, 111
URLMonitor.pollInterval method, 111
URLMonitor.stops () method, 111
URLRequest object, 109, 179, 184
URLVariables object, 179, 184
usability
accessibility, 366
keyboard shortcuts and versatility, 365
language support, 365
overview, 357, 364
performance and reliability, 366-367
properties of, 364-367
relationship with design and function, 358-361
use case, 275
Use custom application descriptor file setting,
Application & Installer Settings window, 22
user directory, 116
user input target, Ant, 416—-418
user interface
components, 68
focus on, 5
log reader sample application, 330
simple text editor, 128
User Interface (UI) element, 89
user presence, monitoring, 112-113

453

USER_PRESENT event fire, 112
userDirectory folder, 116
USING clause, 211-212
UTF-8 (Unicode) character, 79
utility window, 220, 222

\%

value object, 203

Vbox component, 188

VBox container, Flex Layout Manager, 68

vector graphic, 95

verbose property, 399

VeriSign certificate authority, 74

versatility, 365

version in application descriptor file, 79

Version setting, Application & Installer Settings

window, 21

version tracking, 420-423

version.xml document, 421-424, 426

video, adding to Flash Library, 64

Video subclass, DisplayObject class, 60

view
Ant, adding to stand-alone Flex Builder IDE, 396
copy and paste sample application, 166-171
log reader sample application, 340-352

virtual desktop, 226

VI/VIM text editor, 274

void keyword, 52

w

warn () method, 41, 264

weakly referenced event listener, 96-97
Web application, 273

WebKit, 8, 256, 367

what you see is what you get (WYSIWYG), 4
WHERE clause, 206, 212-213

widget, 330

width property, 226

WIDTH property, TOASTER class, 242

454

wikipedia.org/wiki/Cross-site_
scripting directory, 105
window. See also native operating system window
chrome, 217, 223-226
menu item aliases, 257
settings, 80-82
Window Style setting, Application and Installer
Settings window, 22, 31
WindowedApplication class, 14, 16, 34, 133, 167,
227,371
WindowManager class, 231
Windows
installing AIR, 11
paste results, 151, 155-157
taskbar, 234
taskbar icons, 235-236
uninstalling AIR, 12
wireframe, 158
Word file menu, 279
workflow, 276
WRITE string constant, 116
writing file, 122-123
WYSIWYG (what you see is what you get), 4

X

x property, 226
XML
ECMAScript for, 46
reusable Config class, 285-289
working with local files, 124
.xml extension, 16
XML object, 124
XML Property node, 290
XSS (cross-site scripting),

Y

y property, 226
YesNoPopUp class, 337

